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Abstract

Energy problems are important in the formal analysis of embedded or
autonomous systems. With the purpose of unifying a number of approaches
to energy problems found in the literature, we introduce energy automata.
These are finite automata whose edges are labeled with energy functions that
define how energy levels evolve during transitions.

Motivated by this application and in order to compute with energy func-
tions, we introduce a new algebraic structure of ∗-continuous Kleene ω-alge-
bras. These involve a ∗-continuous Kleene algebra with a ∗-continuous action
on a semimodule and an infinite product operation that is also ∗-continuous.

We define both a finitary and a non-finitary version of ∗-continuous Kleene
ω-algebras. We then establish some of their properties, including a charac-
terization of the free finitary ∗-continuous Kleene ω-algebras. We also show
that every ∗-continuous Kleene ω-algebra gives rise to an iteration semiring-
semimodule pair.

Keywords: Energy problem, Kleene algebra, ∗-continuity, ∗-continuous Kleene
ω-algebra

1 Introduction

Energy problems are concerned with the question whether a given system admits
infinite schedules during which (1) certain tasks can be repeatedly accomplished
and (2) the system never runs out of energy (or other specified resources). These
are important in areas such as embedded systems or autonomous systems and,
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starting with [4], have attracted some attention in recent years, for example in [20,
27, 3, 5, 28, 7, 6, 23, 9].

With the purpose of generalizing some of the above approaches, we have in [14,
21] introduced energy automata. These are finite automata whose transitions are
labeled with energy functions which specify how energy values change from one
system state to another. Using the theory of semiring-weighted automata [10], we
have shown in [14] that energy problems in such automata can be solved in a simple
static way which only involves manipulations of energy functions.

In order to put the work of [14] on a more solid theoretical footing and with an
eye to future generalizations, we have recently introduced a new algebraic structure
of ∗-continuous Kleene ω-algebras [12, 13].

A continuous (or complete) Kleene algebra is a Kleene algebra in which all
suprema exist and are preserved by products. These have nice algebraic properties,
but not all Kleene algebras are continuous, for example the semiring of regular
languages over some alphabet. Hence a theory of ∗-continuous Kleene algebras has
been developed to cover this and other interesting cases [25].

For infinite behaviors, complete semiring-semimodule pairs involving an infinite
product operation have been developed [19]. Motivated by some examples of struc-
tures which are not complete in this sense, for example the energy functions of the
preceding section, we generalize the notion of ∗-continuous Kleene algebra to one of
∗-continuous Kleene ω-algebra. These are idempotent semiring-semimodule pairs
which are not necessarily complete, but have enough suprema in order to develop a
fixed-point theory and solve weighted Büchi automata (i.e., to compute infinitary
power series).

We will define both a finitary and a non-finitary version of ∗-continuous Kleene
ω-algebras. We then establish several properties of ∗-continuous Kleene ω-algebras,
including the existence of the suprema of certain subsets related to regular ω-
languages. Then we will use these results in our characterization of the free finitary
∗-continuous Kleene ω-algebras. We also show that each ∗-continuous Kleene ω-
algebra gives rise to an iteration semiring-semimodule pair.

Structure of the Paper This is the first in a series of two papers which deal with
energy problems and their algebraic foundation. In the present paper, we motivate
the introduction of our new algebraic structures by two sections on energy automata
(Section 2) and on the algebraic structure of energy functions (Section 3). We then
pass to introduce continuous Kleene ω-algebras in Section 4 and to expose the free
continuous Kleene ω-algebras in Section 5.

In Section 6 we generalize continuous Kleene ω-algebras to our central notion of
∗-continuous Kleene ω-algebras and finitary ∗-continuous Kleene ω-algebras. Sec-
tion 7 exposes the free finitary ∗-continuous Kleene ω-algebras; the question whether
general free ∗-continuous Kleene ω-algebras exist is left open.

The penultimate Section 8 shows that every ∗-continuous Kleene ω-algebra is an
iteration semiring-semimodule pair, hence techniques from matrix semiring-semi-
module pairs apply. This will be important in the second paper of the series. In
Section 9 we concern ourselves with least and greatest fixed points and introduce
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a notion of Kleene ω-algebra, analogous to the concept of Kleene algebra for least
fixed points.

In the second paper of the series [15], we show that one can use matrix operations
to solve reachability and Büchi acceptance in weighted automata over ∗-continuous
Kleene ω-algebras, and that energy functions form a ∗-continuous Kleene ω-algebra.
This will allows us to connect the algebraic structures developed in the present
paper back to their motivating energy problems.

Acknowledgment The origin of this work is a joint short paper [21] between
the last three authors which was presented at the 2012 International Workshop
on Weighted Automata: Theory and Applications. After the presentation, the
presenter was approached by Zoltán Ésik, who told him that the proper setting for
energy problems should be idempotent semiring-semimodule pairs. This initiated
a long-lasting collaboration, including several mutual visits, which eventually led
to the work presented in this paper and its follow-up [15].

We are deeply indebted to our colleague and friend Zoltán Ésik who taught
us all we know about semiring-semimodule pairs and ∗-continuity. Unfortunately
Zoltán could not see this work completed, so any errors are the responsibility of
the last three authors.

In honor of Zoltán Ésik, we propose to give the name “Ésik algebra” to ∗-contin-
uous Kleene ω-algebras.

2 Energy Automata

The transition labels on the energy automata which we consider in this paper will
be functions which model transformations of energy levels between system states.
Such transformations have the (natural) properties that below a certain energy
level, the transition might be disabled (not enough energy is available to perform
the transition), and an increase in input energy always yields at least the same
increase in output energy. Thus the following definition.

Definition 1. An energy function is a partial function f : R≥0 ⇀ R≥0 which is
defined on a closed interval [lf ,∞[ or on an open interval ]lf ,∞[, for some lower
bound lf ≥ 0, and such that for all x ≤ y for which f is defined,

yf ≥ xf + y − x . (∗)

The class of all energy functions is denoted by F .

We will write composition and application of energy functions in diagrammatical
order, from left to right. Hence we write f ; g, or simply fg, for the composition g◦f
and x; f or xf for function application f(x). This is because we will be concerned
with algebras of energy functions, in which function composition is multiplication,
and where it is customary to write multiplication in diagrammatical order.

Thus energy functions are strictly increasing, and in points where they are
differentiable, the derivative is at least 1. The inverse functions to energy functions
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s1 s2 s3

x 7→ x + 2;x ≥ 2

x 7→ x + 3;x > 1

x 7→ 2x− 2;x ≥ 1
x 7→ x− 1;x > 1

x 7→ x + 1;x ≥ 0

Figure 1: A simple energy automaton.

exist, but are generally not energy functions. Energy functions can be composed,
where it is understood that for a composition fg, the interval of definition is {x ∈
R≥0 | xf and xfg defined}. The following lemma shows an important property of
energy functions which we will use repeatedly later, mostly without mention of the
lemma.

Lemma 1. Let f ∈ F and x ∈ R≥0.

• If xf < x, then there is N ≥ 0 such that xfn is undefined for all n ≥ N .

• If xf = x, then xfn = x for all n ≥ 0.

• If xf > x, then for all P ∈ R there is N ≥ 0 such that xfn ≥ P for all
n ≥ N .

Proof. In the first case, we have x− xf = M > 0. Using (∗), we see that xfn+1 ≤
xfn −M for all n ≥ 0 for which xfn+1 is defined. Hence the sequence (xfn)n≥0
decreases without bound, so that there must be N ≥ 0 such that xfN is undefined,
and then so is xfn for any n > N .

The second case is trivial. In the third case, we have xf − x = M > 0. Again
using (∗), we see that xfn+1 > xfn+M for all n ≥ 0. Hence the sequence (xfn)n≥0
increases without bound, so that for any P ∈ R there must be N ≥ 0 for which
xfN ≥ P , and then xfn ≥ xfN ≥ P for all n ≥ N .

Example 1. The following example shows that property (∗) is not only sufficient
for Lemma 1, but in a sense also necessary: Let α ∈ R with 0 < α < 1 and
f : R≥0 → R≥0 be the function xf = 1 + αx. Then yf = xf + α(y − x) for all

x ≤ y, so (∗) “almost” holds. But xfn =
∑n−1
i=0 α

i + αnx for all n ∈ N, hence
limn→∞ xfn = 1

1−α <∞.

Definition 2. An energy automaton (S, s0, T, F ) consists of a finite set S of states,
with initial state s0 ∈ S, a finite set T ⊆ S×F×S of transitions labeled with energy
functions, and a subset F ⊆ S of acceptance states.

Example 2. Figure 1 shows a simple energy automaton. Here we have used
inequalities to give the definition intervals of energy functions, so that for example,
the function labeling the loop at s2 is given by f(x) = 2x − 2 for x ≥ 1 and
undefined for x < 1.
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A finite path in an energy automaton is a finite sequence of transitions π =
(s0, f1, s1), (s1, f2, s2), . . . , (sn−1, fn, sn). We use fπ to denote the combined energy
function fπ = f1f2 · · · fn of such a finite path. We will also use infinite paths, but
note that these generally do not allow for combined energy functions.

A global state of an energy automaton is a pair q = (s, x) with s ∈ S and
x ∈ R≥0. A transition between global states is of the form ((s, x), f, (s′, x′)) such
that (s, f, s′) ∈ T and x′ = f(x). A (finite or infinite) run of (S, T ) is a path in the
graph of global states and transitions.

We are ready to state the decision problems with which our main concern will
lie. As the input to a decision problem must be in some way finitely representable,
we will state them for subclasses F ′ ⊆ F of computable energy functions; an F ′-
automaton is an energy automaton (S, s0, T, F ) with T ⊆ S × F ′ × S. Note that
we give no technical meaning to the term “computable” here; we simply need to
take care that the input be finitely representable.

Problem 1 (State reachability). Given an F ′-automaton A = (S, s0, T, F ) and a
computable initial energy x0 ∈ R≥0: does there exist a finite run of A from (s0, x0)
which ends in a state in F?

Problem 2 (Coverability). Given an F ′-automaton A = (S, s0, T, F ), a com-
putable initial energy x0 ∈ R≥0 and a computable function z : F → R≥0: does
there exist a finite run of A from (s0, x0) which ends in a global state (s, x) such
that s ∈ F and x ≥ sz?

Problem 3 (Büchi acceptance). Given an F ′-automaton A = (S, s0, T, F ) and a
computable initial energy x0 ∈ R≥0: does there exist an infinite run of A from
(s0, x0) which visits F infinitely often?

As customary, a run such as in the statements above is said to be accepting.
The special case of Problem 3 with F = S is the question whether there exists an
infinite run in the given energy automaton. This is what is usually referred to as
energy problems in the literature; our extension to general Büchi conditions has not
been treated before.

3 The Algebra of Energy Functions

Let [0,∞]⊥ = {⊥}∪[0,∞] denote the complete lattice of non-negative real numbers
together with extra elements ⊥ and ∞, with the standard order on R≥0 extended
by ⊥ < x < ∞ for all x ∈ R≥0. Also, ⊥ + x = ⊥ − x = ⊥ for all x ∈ R≥0 ∪ {∞}
and ∞+ x =∞− x =∞ for all x ∈ R≥0.

Definition 3. An extended energy function is a mapping f : [0,∞]⊥ → [0,∞]⊥,
for which ⊥f = ⊥ and yf ≥ xf + y − x for all x ≤ y. Moreover, ∞f =∞, unless
xf = ⊥ for all x ∈ [0,∞]⊥. The class of all extended energy functions is denoted E.

This means, in particular, that xf = ⊥ implies yf = ⊥ for all y ≤ x, and
xf =∞ implies yf =∞ for all y ≥ x. Hence, except for the extension to ∞, these
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functions are indeed the same as the energy functions from Definition 1. More
precisely, every energy function f : R≥0 ⇀ R≥0 as of Definition 1 gives rise to an

extended energy function f̃ : [0,∞]⊥ → [0,∞]⊥ given by ⊥f̃ = ⊥, xf̃ = ⊥ if xf is
undefined, xf̃ = xf otherwise for x ∈ R≥0, and ∞f̃ =∞.

Composition of extended energy functions is defined as before, but needs no
more special consideration about its definition interval.

We define a partial order on E , by f ≤ g iff xf ≤ xg for all x ∈ [0,∞]⊥. We
will need three special energy functions, ⊥⊥, id and >>; these are given by x⊥⊥ = ⊥,
x; id = x for x ∈ [0,∞]⊥, and ⊥>> = ⊥, x>> =∞ for x ∈ [0,∞].

Lemma 2. With the ordering ≤, E is a complete lattice with bottom element ⊥⊥ and
top element >>. The supremum on E is pointwise, i.e., x(supi∈I fi) = supi∈I xfi
for any set I, all fi ∈ E and x ∈ [0,∞]⊥. Also, h(supi∈I fi) = supi∈I(hfi) for all
h ∈ E.

Proof. The pointwise supremum of any set of extended energy functions is an ex-
tended energy function. Indeed, if fi, i ∈ I are extended energy functions and x < y
inR≥0, then yfi ≥ xfi+y−x for all i. It follows that supi∈I yfi ≥ supi∈I xfi+y−x.
Also, since ⊥fi = ⊥ for all i ∈ I, supi∈I ⊥fi = ⊥. Finally, if there is some i such
that ∞fi =∞, then supi∈I∞fi =∞. Otherwise each function fi is constant with
value ⊥.

The fact that h(supi∈I fi) = supi∈I hfi is now clear, since the supremum is taken
pointwise: For all x, x(h(supi∈I fi)) = (xh)(supi∈I fi) = supi∈I xhfi = x(supi hfi).

We denote binary suprema using the symbol ∨; hence f ∨ g, for f, g ∈ E , is the
function x(f ∨ g) = max(xf, xg).

Recall that an idempotent semiring [1, 22] S = (S,∨, ·,⊥, 1) consists of a com-
mutative idempotent monoid (S,∨,⊥) and a monoid (S, ·, 1) such that the distribu-
tive laws

x(y ∨ z) = xy ∨ xz
(y ∨ z)x = yx ∨ zx

and the zero laws

⊥ · x = ⊥ = x · ⊥

hold for all x, y, z ∈ S. It follows that the product operation distributes over all
finite sums.

Each idempotent semiring S is partially ordered by its natural order relation
x ≤ y iff x ∨ y = y, and then sum and product preserve the partial order and ⊥ is
the least element. Moreover, for all x, y ∈ S, x ∨ y is the least upper bound of the
set {x, y}.

Lemma 3. (E ,∨, ;,⊥⊥, id) is an idempotent semiring with natural order ≤.



An Algebraic Approach to Energy Problems I 209

Proof. It is clear that (E ,∨,⊥⊥) is a commutative idempotent monoid and that
(E , ;, id) is a monoid. ≤ is the natural order on E because ∨ is given pointwise. It
is also clear that ⊥⊥f = f⊥⊥ = ⊥⊥ for all f ∈ E .

To show distributivity, we have already shown that x(h(f ∨ g)) = x(hf ∨hg) in
the proof of Lemma 2; using monotonicity of h, we also have

x((f ∨ g)h) = x(f ∨ g)h = (xf ∨ xg)h = xfg ∨ xgh = x(fh ∨ gh) .

The proof is complete.

We will show in the second paper [15] of this series that E in fact forms a
∗-continuous Kleene algebra [25], which will allow us to solve energy problems
algebraically.

4 Continuous Kleene Algebras and Continuous
Kleene ω-Algebras

We have already recalled the notion of idempotent semiring in the last section. A
homomorphism of idempotent semirings (S,∨, ·,⊥, 1), (S′,∨′, ·′,⊥′, 1′) is a function
h : S → S′ which respects the constants and operations, i.e., such that h(⊥) = ⊥′,
h(1) = 1′, h(x ∨ y) = h(x) ∨′ h(y), and h(x · y) = h(x) ·′ h(y) for all x, y ∈ S.

A Kleene algebra [25] is an idempotent semiring S = (S,∨, ·,⊥, 1) equipped
with a star operation ∗ : S → S such that for all x, y ∈ S, yx∗ is the least
solution of the fixed point equation z = zx ∨ y and x∗y is the least solution of
the fixed point equation z = xz ∨ y with respect to the natural order. A Kleene
algebra homomorphism is a semiring homomorphism h which respects the star:
h(x∗) = (h(x))∗ for all x ∈ S.

Examples of Kleene algebras include the language semiring P (A∗) over an al-
phabet A, whose elements are the subsets of the set A∗ of all finite words over A,
and whose operations are set union and concatenation, with the languages ∅ and
{ε} serving as ⊥ and 1. Here, ε denotes the empty word. The star operation is the
usual Kleene star: X∗ =

⋃
n≥0X

n = {u1 . . . un : u1, . . . , un ∈ X, n ≥ 0}.
Another example is the Kleene algebra P (A×A) of binary relations over any set

A, whose operations are union and relational composition (written in diagrammatic
order), and where the empty relation ∅ and the identity relation id serve as the
constants ⊥ and 1. The star operation is the formation of the reflexive-transitive
closure, so that R∗ =

⋃
n≥0R

n for all R ∈ P (A×A).
The above examples are in fact continuous Kleene algebras, i.e., idempotent

semirings S such that equipped with the natural order, they are complete lattices
(hence all suprema exist), and the product operation preserves arbitrary suprema
in either argument:

y(
∨
X) =

∨
yX and (

∨
X)y =

∨
Xy

for all X ⊆ S and y ∈ S. The star operation is given by x∗ =
∨
n≥0 x

n, so that x∗

is the supremum of the set {xn : n ≥ 0} of all powers of x.
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Homomorphisms of continuous Kleene algebras S, S′ are homomorphisms of
idempotent semirings h : S → S′ which respect arbitrary suprema: h(

∨
X) =∨

h(X) =
∨
{h(x) | x ∈ X} for all X ⊆ S. To distinguish these from semiring

homomorphisms, they are sometimes called continuous homomorphisms, but we
will not do this here.

A larger class of models is given by the ∗-continuous Kleene algebras [25]. By
the definition of a ∗-continuous Kleene algebra S = (S,∨, ·,⊥, 1), all suprema of
sets of the form {xn | n ≥ 0} are required to exist, where x is any element of S,
and x∗ is given by this supremum. Moreover, product preserves such suprema in
both arguments:

y(
∨
n≥0

xn) =
∨
n≥0

yxn and (
∨
n≥0

xn)y =
∨
n≥0

xny .

Every ∗-continuous Kleene algebra is a Kleene algebra. For any alphabet A, the
collection R(A∗) of all regular languages over A is an example of a ∗-continuous
Kleene algebra which is not continuous. There exist Kleene algebras which are
not ∗-continuous, see [25]. For non-idempotent extensions of the notions of contin-
uous Kleene algebras, ∗-continuous Kleene algebras and Kleene algebras, we refer
to [17, 16]. Homomorphisms of ∗-continuous Kleene algebras are the Kleene algebra
homomorphisms.

Recall that an idempotent semiring-semimodule pair [19, 2] (S, V ) consists of
an idempotent semiring S = (S,∨, ·,⊥, 1) and a commutative idempotent monoid
V = (V,∨,⊥) which is equipped with a left S-action S × V → V , (x, v) 7→ xv,
satisfying

(x ∨ x′)v = xv ∨ x′v x(v ∨ v′) = xv ∨ xv′

(xx′)v = x(x′v) ⊥v = ⊥
x⊥ = ⊥ 1v = v

for all x, x′ ∈ S and v ∈ V . In that case, we also call V a (left) S-semimodule.
A homomorphism of semiring-semimodule pairs (S, V ) and (S′, V ′) is a pair

h = (hS , hV ) of functions hS : S → S′ and hV : V → V ′ such that hS is a
semiring homomorphism, hV is a monoid homomorphism, and h respects the action,
i.e., hV (xv) = hS(x)hV (v) for all x ∈ S and v ∈ V .

Definition 4. A continuous Kleene ω-algebra is an idempotent semiring-semi-
module pair (S, V ) in which S is a continuous Kleene algebra, V is a complete lattice
with the natural order, and the action preserves all suprema in either argument.
Additionally, there is an infinite product operation which is compatible with the
action and associative in the sense that the following hold:

1. For all x0, x1, . . . ∈ S,
∏
n≥0 xn = x0

∏
n≥0 xn+1.

2. Let x0, x1, . . . ∈ S and 0 = n0 ≤ n1 · · · be a sequence which increases without
a bound. Let yk = xnk

· · ·xnk+1−1 for all k ≥ 0. Then
∏
n≥0 xn =

∏
k≥0 yk.
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Moreover, the infinite product operation preserves all suprema:

3.
∏
n≥0(

∨
Xn) =

∨
{
∏
n≥0 xn : xn ∈ Xn, n ≥ 0}, for all X0, X1, . . . ⊆ S.

The above notion of continuous Kleene ω-algebra may be seen as a special case
of the not necessarily idempotent complete semiring-semimodule pairs of [19]. A ho-
momorphism of continuous Kleene ω-algebras is a semiring-semimodule homomor-
phism h = (hS , hV ) such that hS is a homomorphism of continuous Kleene algebras,
hV preserves all suprema, and h respects infinite products: for all x0, x1, . . . ∈ S,
hV (

∏
n≥0 xn) =

∏
n≥0 hS(xn).

One of our aims in this paper is to provide an extension of the notion of con-
tinuous Kleene ω-algebras to ∗-continuous Kleene ω-algebras, which are semiring-
semimodule pairs (S, V ) consisting of a ∗-continuous Kleene algebra S acting on
a necessarily idempotent semimodule V , such that the action preserves certain
suprema in its first argument, and which are equipped with an infinite product
operation satisfying the above compatibility and associativity conditions and some
weaker forms of the last axiom.

5 Free Continuous Kleene ω-Algebras

In this section, we offer descriptions of the free continuous Kleene ω-algebras and
the free continuous Kleene ω-algebras satisfying the identity 1ω = ⊥. We recall the
following folklore result.

Theorem 1. For each set A, the language semiring (P (A∗),∨, ·,⊥, 1) is the free
continuous Kleene algebra on A.

In more detail, if S is a continuous Kleene algebra and h : A → S is any
function, then there is a unique homomorphism h] : P (A∗) → S of continuous
Kleene algebras which extends h.

In view of Theorem 1, it is not surprising that the free continuous Kleene ω-
algebras can be described using languages of finite and infinite words. Suppose
that A is a set. Let Aω denote the set of all ω-words over A and A∞ = A∗ ∪ Aω.
Let P (A∗) denote the language semiring over A and P (A∞) the semimodule of
all subsets of A∞ equipped with the action of P (A∗) defined by XY = {xy : x ∈
X, y ∈ Y } for all X ⊆ A∗ and Y ⊆ A∞. We also define an infinite product by∏
n≥0Xn = {u0u1 . . . : un ∈ Xn}. It is clear that (P (A∗), P (A∞)) is a continuous

Kleene ω-algebra.

Theorem 2. For each set A, (P (A∗), P (A∞)) is the free continuous Kleene ω-
algebra on A.

Proof. Suppose that (S, V ) is any continuous Kleene ω-algebra an let h : A→ S be a
mapping. We want to show that there is a unique extension of h to a homomorphism
(h]S , h

]
V ) from (P (A∗), P (A∞)) to (S, V ).

For each u = a0 . . . an−1 in A∗, define hS(u) = h(a0) · · ·h(an−1) and hV (u) =
h(a0) · · ·h(an−1)1ω =

∏
k≥0 bk, where bk = ak for all k < n and bk = 1 for all
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k ≥ n. When u = a0a1 . . . ∈ Aω, define hV (u) =
∏
k≥0 h(ak). Note that we have

hS(uv) = hS(u)hS(v) for all u, v ∈ A∗ and hS(ε) = 1. Also, hV (uv) = hS(u)hV (v)
for all u ∈ A∗ and v ∈ A∞. Thus, hV (XY ) = hS(X)hV (Y ) for all X ⊆ A∗ and
Y ⊆ A∞. Moreover, for all u0, u1, . . . in A∗, if ui 6= ε for infinitely many i, then
hV (u0u1 . . .) =

∏
k≥0 hS(uk). If on the other hand, uk = ε for all k ≥ n, then

hV (u0u1 . . .) = hS(u0) · · ·hS(un−1)1ω. In either case, if X0, X1, . . . ⊆ A∗, then
hV (

∏
n≥0Xn) =

∏
n≥0 hS(Xn).

Suppose now that X ⊆ A∗ and Y ⊆ A∞. We define h]S(X) =
∨
hS(X)

and h]V (Y ) =
∨
hV (Y ). It is well-known that h]S is a continuous semiring mor-

phism P (A∗) → S. Also, h]V preserves arbitrary suprema, since h]V (
⋃
i∈I Yi) =∨

hV (
⋃
i∈I Yi) =

∨⋃
i∈I hV (Yi) =

∨
i∈I
∨
hV (Yi) =

∨
i∈I h

]
V (Yi).

We prove that the action is preserved. Let X ⊆ A∗ and Y ⊆ A∞. Then
h]V (XY ) =

∨
hV (XY ) =

∨
hS(X)hV (Y ) =

∨
hS(X)

∨
hV (Y ) = h]S(X)h]V (Y ).

Finally, we prove that the infinite product is preserved. Let X0, X1, . . . ⊆ A∗.
Then h]V (

∏
n≥0Xn) =

∨
hV (

∏
n≥0Xn) =

∨∏
n≥0 hS(Xn) =

∏
n≥0

∨
hS(Xn) =∏

n≥0 h
]
S(Xn).

It is clear that hS extends h, and that (hS , hV ) is unique.

Consider now (P (A∗), P (Aω)) with infinite product defined, as a restriction of
the above infinite product, by

∏
n≥0Xn = {u0u1 . . . ∈ Aω : un ∈ Xn, n ≥ 0}. It is

also a continuous Kleene ω-algebra. Moreover, it satisfies 1ω = ⊥.

Lemma 4. (P (A∗), P (Aω)) is a quotient of (P (A∗), P (A∞)) under the homomor-
phism (ϕS , ϕV ) such that ϕS is the identity on P (A∗) and ϕV maps Y ⊆ A∞ to
Y ∩Aω.

Proof. Suppose that Yi ⊆ A∞ for all i ∈ I. It holds that ϕV (
⋃
i∈I Yi) = Aω ∩⋃

i∈I Yi =
⋃
i∈I(A

ω ∩ Yi) =
⋃
i∈I ϕV (Yi).

Let X ⊆ A∗ and Y ⊆ A∞. Then hV (XY ) = XY ∩ Aω = X(Y ∩ Aω) =
ϕS(X)ϕV (Y ).

Finally, let X0, X1, . . . ⊆ A∗. Then hV (
∏
n≥0Xn) = {u0u1 . . . ∈ Aω : un ∈

Xn} =
∏
n≥0 hS(Xn).

Lemma 5. Suppose that (S, V ) is a continuous Kleene ω-algebra satisfying 1ω = ⊥.
Let (hS , hV ) be a homomorphism (P (A∗), P (A∞))→ (S, V ). Then (hS , hV ) factors
through (ϕS , ϕV ).

Proof. Define h′S = hS and h′V : P (Aω) → V by h′V (Y ) = hV (Y ), for all Y ⊆ Aω.
Then clearly hS = h′S ◦ ϕS . Moreover, hV = h′V ◦ ϕV , since for all Y ⊆ A∞,
h′V (ϕV (Y )) = hV (Y ∩Aω) = hV (Y ∩Aω)∨hS(Y ∩A∗)1ω = hV (Y ∩Aω)∨hV ((Y ∩
A∗)1ω) = hV ((Y ∩Aω) ∪ (Y ∩A∗)1ω) = hV (Y ).

Since (ϕS , ϕV ) and (hS , hV ) are homomorphisms, so is (h′S , h
′
V ). It is clear that

h′V preserves all suprema.

Theorem 3. For each set A, (P (A∗), P (Aω)) is the free continuous Kleene ω-
algebra on A satisfying 1ω = ⊥.
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Proof. Suppose that (S, V ) is a continuous Kleene ω-algebra satisfying 1ω = ⊥.
Let h : A → S. By Theorem 2, there is a unique homomorphism (hS , hV ) :
(P (A∗), P (A∞)) → (S, V ) extending h. By Lemma 5, hS and hV factor as hS =
h′S ◦ϕS and hV = h′V ◦ϕV , where (h′S , h

′
V ) is a homomorphism (P (A∗), P (Aω))→

(S, V ). This homomorphism (h′S , h
′
V ) is the required extension of h to a homo-

morphism (P (A∗), P (Aω)) → (S, V ). Since the factorization is unique, so is this
extension.

6 ∗-Continuous Kleene ω-Algebras

In this section, we define ∗-continuous Kleene ω-algebras and finitary ∗-continuous
Kleene ω-algebras as an extension of the ∗-continuous Kleene algebras of [24]. We
establish several basic properties of these structures, including the existence of the
suprema of certain subsets corresponding to regular ω-languages.

Definition 5. A generalized ∗-continuous Kleene algebra is a semiring-semimodule
pair (S, V ) in which S is a ∗-continuous Kleene algebra (hence S and V are idem-
potent), subject to the usual laws of unitary action as well as the following axiom

Ax0: For all x, y ∈ S and v ∈ V , xy∗v =
∨
n≥0 xy

nv.

Definition 6. A ∗-continuous Kleene ω-algebra is a generalized ∗-continuous Kleene
algebra (S, V ) together with an infinite product operation Sω → V which maps ev-
ery ω-word x0x1 . . . over S to an element

∏
n≥0 xn of V , subject to the following

axioms:

Ax1: For all x0, x1, . . . ∈ S,
∏
n≥0 xn = x0

∏
n≥0 xn+1.

Ax2: Let x0, x1, . . . ∈ S and 0 = n0 ≤ n1 · · · be a sequence which increases without
a bound. Let yk = xnk

· · ·xnk+1−1 for all k ≥ 0. Then
∏
n≥0 xn =

∏
k≥0 yk.

Ax3: For all x0, x1, . . . and y, z in S,
∏
n≥0(xn(y ∨ z)) =

∨
x′n∈{y,z}

∏
n≥0 xnx

′
n.

Ax4: For all x, y0, y1, . . . ∈ S,
∏
n≥0 x

∗yn =
∨
kn≥0

∏
n≥0 x

knyn.

The first two axioms are the same as for continuous Kleene ω-algebras. The last
two are weaker forms of the complete preservation of suprema of continuous Kleene
ω-algebras. It is clear that every continuous Kleene ω-algebra is ∗-continuous.

A homomorphism of ∗-continuous Kleene ω-algebras is a semiring-semimodule
homomorphism h = (hS , hV ) : (S, V ) → (S′, V ′) such that hS is a ∗-continuous
Kleene algebra homomorphism and h respects infinite products: for all x0, x1, . . . ∈
S, hV (

∏
n≥0 xn) =

∏
n≥0 hS(xn).

Some of our results will also hold for weaker structures. We define a finitary
∗-continuous Kleene ω-algebra as a structure (S, V ) as above, equipped with a star
operation and an infinite product

∏
n≥0 xn restricted to finitary ω-words over S,

i.e., to sequences x0, x1, . . . such that there is a finite subset F of S such that each
xn is a finite product of elements of F . (Note that F is not fixed and may depend on
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the sequence x0, x1, . . . ) It is required that the axioms hold whenever the involved
ω-words are finitary.

The above axioms have a number of consequences. For example, if x0, x1, . . . ∈ S
and xi = ⊥ for some i, then

∏
n≥0 xn = ⊥. Indeed, if xi = ⊥, then

∏
n≥0 xn =

x0 · · ·xi
∏
n≥i+1 xn = ⊥

∏
n≥i+1 xn = ⊥. By Ax1 and Ax2, each ∗-continuous

Kleene ω-algebra is an ω-semigroup [26].

Suppose that (S, V ) is a ∗-continuous Kleene ω-algebra. For each word w ∈ S∗
there is a corresponding element w of S which is the product of the letters of w in the
semiring S. Similarly, when w ∈ S∗V , there is an element w of V corresponding
to w, and when X ⊆ S∗ or X ⊆ S∗V , then we can associate with X the set
X = {w : w ∈ X}, which is a subset of S or V . Below we will denote w and X by
just w and X, respectively.

The following two lemmas are well-known and follow from the fact that the
semirings of regular languages are the free ∗-continuous Kleene algebras [24] (and
also the free Kleene algebras [25]).

Lemma 6. Suppose that S is a ∗-continuous Kleene algebra. If R ⊆ S∗ is regular,
then

∨
R exists. Moreover, for all x, y ∈ S, x(

∨
R)y =

∨
xRy.

Lemma 7. Let S be a ∗-continuous Kleene algebra. Suppose that R,R1 and R2

are regular subsets of S∗. Then

∨
(R1 ∪R2) =

∨
R1 ∨

∨
R2∨

(R1R2) = (
∨
R1)(

∨
R2)∨

(R∗) = (
∨
R)∗.

In a similar way, we can prove:

Lemma 8. Let (S, V ) be a generalized ∗-continuous Kleene algebra. If R ⊆ S∗ is
regular, x ∈ S and v ∈ V , then x(

∨
R)v =

∨
xRv.

Proof. Suppose that R = ∅. Then x(
∨
R)v = ⊥ =

∨
xRv. If R is a singleton set

{y}, then x(
∨
R)v = xyv =

∨
xRv. Suppose now that R = R1 ∪R2 or R = R1R2,

where R1, R2 are regular, and suppose that our claim holds for R1 and R2. Then,
if R = R1 ∪R2,

x(
∨
R)v = x(

∨
R1 ∨

∨
R2)v (by Lemma 7)

= x(
∨
R1)v ∨ x(

∨
R2)v

=
∨
xR1v ∨

∨
xR2v

=
∨
x(R1 ∪R2)v =

∨
xRv,
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where the third equality uses the induction hypothesis. If R = R1R2, then

x(
∨
R)v = x(

∨
R1)(

∨
R2)v (by Lemma 7)

=
∨

(xR1(
∨
R2)v)

=
∨
{y(
∨
R2)v : y ∈ xR1}

=
∨
{
∨
yR2v : y ∈ xR1}

=
∨
xR1R2v =

∨
xRv,

where the second equality uses the induction hypothesis for R1 and the fourth the
one for R2. Suppose last that R = R∗0, where R0 is regular and our claim holds for
R0. Then, using the previous case, it follows by induction that

x(
∨
Rn0 )v =

∨
xRn0 v (1)

for all n ≥ 0. Using this and Ax0, it follows now that

x(
∨
R)v = x(

∨
R∗0)y = x(

∨
n≥0

∨
Rn0 )v

= x(
∨
n≥0

(
∨
R0)n)v (by Lemma 7)

=
∨
n≥0

x(
∨
R0)nv (byAx0)

=
∨
n≥0

x(
∨
Rn0 )v (by Lemma 7)

=
∨
n≥0

∨
xRn0 v (by (1))

=
∨
xR∗0v =

∨
xRv.

The proof is complete.

Lemma 9. Let (S, V ) be a ∗-continuous Kleene ω-algebra. Suppose that the lan-
guages R0, R1, . . . ⊆ S∗ are regular and that R = {R0, R1, . . . } is a finite set.
Moreover, let x0, x1, . . . ∈ S. Then∏

n≥0

xn(
∨
Rn) =

∨∏
n≥0

xnRn.

Proof. If one of the Ri is empty, our claim is clear since both sides are equal to ⊥,
so we suppose they are all nonempty.

Below we will suppose that each regular language comes with a fixed decom-
position having a minimal number of operations needed to obtain the language
from the empty set and singleton sets. For a regular language R, let |R| denote
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the minimum number of operations needed to construct it. When R is a finite
set of regular languages, let Rns denote the set of non-singleton languages in it.
Let |R| =

∑
R∈Rns

3|R|. Our definition ensures that if R = {R,R1, . . . , Rn} and
R = R′ ∪R′′ or R = R′R′′ according to the fixed minimal decomposition of R, and
if R′ = {R′, R′′, R1, . . . , Rn}, then |R′| < |R|. Similarly, if R = R∗0 by the fixed
minimal decomposition and R′ = {R0, R1, . . . , Rn}, then |R′| < |R|.

We will argue by induction on |R|.
When |R| = 0, then R consists of singleton languages and our claim follows

from Ax3. Suppose that |R| > 0. Let R be a non-singleton language appearing in
R. If R appears only a finite number of times among the Rn, then there is some
m such that Rn is different from R for all n ≥ m. Then,∏

n≥0

xn(
∨
Rn) =

∏
i<m

xi(
∨
Ri)

∏
n≥m

xn(
∨
Rn) (by Ax1)

= (
∨
x0R0 · · ·xn−1Rn−1)

∏
n≥m

xn(
∨
Rn) (by Lemma 7)

=
∨

(x0R0 · · ·xn−1Rn−1
∏
n≥m

xn(
∨
Rn)) (by Lemma 8)

=
∨
{y
∏
n≥m

xn(
∨
Rn) : y ∈ x0R0 · · ·xn−1Rn−1}

=
∨
{
∨
y
∏
n≥m

xnRn : y ∈ x0R0 · · ·xn−1Rn−1}

=
∨∏

n≥0

xnRn,

where the passage from the 4th line to the 5th uses induction hypothesis and Ax1.
Suppose now that R appears an infinite number of times among the Rn. Let

Ri1 , Ri2 , . . . be all the occurrences of R among the Rn. Define

y0 = x0(
∨
R0) · · · (

∨
Ri1−1)xi1

yj = xij+1(
∨
Rij+1) · · · (

∨
Rij+1−1)xij+1

,

for j ≥ 1. Similarly, define

Y0 = x0R0 · · ·Ri1−1xi1
Yj = xij+1Rij+1 · · ·Rij+1−1xij+1 ,

for all j ≥ 1. It follows from Lemma 7 that

yj =
∨
Yj

for all j ≥ 0. Then ∏
n≥0

xn(
∨
Rn) =

∏
j≥0

yj(
∨
R), (2)
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by Ax2, and ∏
n≥0

xnRn =
∏
j≥0

YjR.

If R = R′ ∪R′′, then:

∏
n≥0

xn(
∨
Rn) =

∏
j≥0

yj(
∨

(R′ ∪R′′)) (by (2))

=
∏
j≥0

yj(
∨
R′ ∨

∨
R′′) (by Lemma 7)

=
∨

zj∈{
∨
R′,

∨
R′′}

∏
j≥0

yjzj (by Ax3)

=
∨

zj∈{
∨
R′,

∨
R′′}

∨∏
j≥0

Yjzj

=
∨

Zj∈{R′,R′′}

∨∏
j≥0

YjZj

=
∨∏

n≥0

xn(R′ ∪R′′) =
∨∏

n≥0

xnR,

where the 4th and 5th equalities hold by the induction hypothesis and Ax2.

Suppose now that R = R′R′′. Then, applying the induction hypothesis almost
directly,

∏
n≥0

xn(
∨
Rn) =

∏
j≥0

yj(
∨
R′R′′)

=
∏
j≥0

yj(
∨
R′)(

∨
R′′) (by Lemma 7)

=
∨∏

j≥0

Yj(
∨
R′)(

∨
R′′)

=
∨∏

j≥0

YjR
′R′′

=
∨∏

n≥0

xnR
′R′′ =

∨∏
n≥0

xnR,

where the third and fourth equalities come from the induction hypothesis and Ax2.

The last case to consider is when R = T ∗, where T is regular. We argue as
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follows: ∏
n≥0

xn(
∨
Rn) =

∏
j≥0

yj(
∨
T ∗)

=
∏
j≥0

yj(
∨
T )∗ (by Lemma 7)

=
∨

k0,k1,...

∏
j≥0

yj(
∨
T )kj (by Ax1 and Ax4)

=
∨

k0,k1,...

∨∏
j≥0

Yj(
∨
T )kj

=
∨

k0,k1,...

∨∏
j≥0

YjT
kj

=
∨
j≥0

YjT
∗ =

∨
j≥0

YjRj =
∨
n≥0

xnRn,

where the 4th and 5th equalities follow from the induction hypothesis and Ax2.
The proof is complete.

By the same proof, we have the following version of Lemma 9 for the finitary
case:

Lemma 10. Let (S, V ) be a finitary ∗-continuous Kleene ω-algebra. Suppose that
the languages R0, R1, . . . ⊆ S∗ are regular and that R = {R0, R1, . . . } is a finite
set. Moreover, let x0, x1, . . . be a finitary sequence of elements of S. Then∏

n≥0

xn(
∨
Rn) =

∨∏
n≥0

xnRn.

Note that each sequence x0, y0, x1, y1, . . . with yn ∈ Rn is finitary.

Corollary 1. Let (S, V ) be a finitary ∗-continuous Kleene ω-algebra. Suppose
that R0, R1, . . . ⊆ S∗ are regular and that R = {R0, R1, . . . } is a finite set. Then∨∏

n≥0Rn exists and is equal to
∏
n≥0

∨
Rn.

Using our earlier convention that ω-words v = x0x1 . . . ∈ Sω over S determine
elements

∏
n≥0 xn of V and subsets X ⊆ Sω determine subsets of V , Lemma 9 may

be rephrased as follows.
For any ∗-continuous Kleene ω-algebra (S, V ), x0, x1, . . . ∈ S and regular sets

R0, R1, . . . ⊆ S∗ for which R = {R0, R1, . . . } is a finite set, it holds that∏
n≥0

xn(
∨
Rn) =

∨
X,

where X ⊆ Sω is the set of all ω-words x0y0x1y1 . . . with yi ∈ Ri for all i ≥ 0,
i.e., X = x0R0x1R1 . . .
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Similarly, Corollary 1 asserts that if a subset of V corresponds to an infinite
product over a finite collection of ordinary regular languages in S∗, then the supre-
mum of this set exists.

In any (finitary or non-finitary) ∗-continuous Kleene ω-algebra (S, V ), we define
an ω-power operation S → V by xω =

∏
n≥0 x for all x ∈ S. From the axioms we

immediately have:

Corollary 2. Suppose that (S, V ) is a (finitary or non-finitary) ∗-continuous Kleene
ω-algebra. Then the following hold for all x, y ∈ S:

xω = xxω

(xy)ω = x(yx)ω

xω = (xn)ω, n ≥ 2.

Thus, each ∗-continuous Kleene ω-algebra gives rise to a Wilke algebra [29].

Lemma 11. Let (S, V ) be a (finitary or non-finitary) ∗-continuous Kleene ω-
algebra. Suppose that R ⊆ Sω is ω-regular. Then

∨
R exists in V .

Proof. It is well-known that R can be written as a finite union of sets of the form
R0(R1)ω where R0, R1 ⊆ S∗ are regular, moreover, R1 does not contain the empty
word. It suffices to show that

∨
R0(R1)ω exists. But this holds by Corollary 1.

Lemma 12. Let (S, V ) be a (finitary or non-finitary) ∗-continuous Kleene ω-
algebra. For all ω-regular sets R1, R2 ⊆ Sω and regular sets R ⊆ S∗ it holds
that ∨

(R1 ∪R2) =
∨
R1 ∨

∨
R2∨

(RR1) = (
∨
R)(
∨
R1).

And if R does not contain the empty word, then∨
Rω = (

∨
R)ω.

Proof. The first claim is clear. The second follows from Lemma 8. For the last, see
the proof of Lemma 11.

7 Free Finitary ∗-Continuous Kleene ω-Algebras

Recall that for a set A, R(A∗) denotes the collection of all regular languages in A∗.
It is well-known that R(A∗), equipped with the usual operations, is a ∗-continuous
Kleene algebra on A. Actually, R(A∗) is characterized up to isomorphism by the
following universal property.

Theorem 4 ([25]). For each set A, R(A∗) is the free ∗-continuous Kleene algebra
on A.
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Thus, if S is any ∗-continuous Kleene algebra and h : A → S is any mapping
from any set A into S, then h has a unique extension to a ∗-continuous Kleene
algebra homomorphism h] : R(A∗)→ S.

Now let R′(A∞) denote the collection of all subsets of A∞ which are finite
unions of finitary infinite products of regular languages, that is, finite unions of
sets of the form

∏
n≥0Rn, where each Rn ⊆ A∗ is regular, and the set {R0, R1, . . .}

is finite. Note that R′(A∞) contains the empty set and is closed under finite unions.
Moreover, when Y ∈ R′(A∞) and u = a0a1 . . . ∈ Y ∩Aω, then the alphabet of u is
finite, i.e., the set {an : n ≥ 0} is finite. Also, R′(A∞) is closed under the action
of R(A∗) inherited from (P (A∗), P (A∞)). The infinite product of a sequence of
regular languages in R(A∗) is not necessarily contained in R′(A∞), but by definition
R′(A∞) contains all infinite products of finitary sequences over R(A∗).

Example 3. Let A = {a, b} and consider the set X = {aba2b . . . anb . . . } ∈ P (A∞)
containing a single ω-word. X can be written as an infinite product of subsets of
A∗, but it cannot be written as an infinite product R0R1 . . . of regular languages
in A∗ such that the set {R0, R1, . . .} is finite. Hence X /∈ R′(A∞).

Theorem 5. For each set A, (R(A∗), R′(A∞)) is the free finitary ∗-continuous
Kleene ω-algebra on A.

Proof. Our proof is modeled after the proof of Theorem 2. First, it is clear from
the fact that (P (A∗), P (A∞)) is a continuous Kleene ω-algebra, and that R(A∗)
is a ∗-continuous semiring, that (R(A∗), R′(A∞)) is indeed a finitary ∗-continuous
Kleene ω-algebra.

Suppose that (S, V ) is any finitary ∗-continuous Kleene ω-algebra and let h :
A→ S be a mapping. For each u = a0 . . . an−1 in A∗, let hS(u) = h(a0) · · ·h(an−1)
and hV (u) = h(a0) · · ·h(an−1)1ω =

∏
k≥0 bk, where bk = ak for all k < n and

bk = 1 for all k ≥ n. When u = a0a1 . . . ∈ Aω whose alphabet is finite, define
hV (u) =

∏
k≥0 h(ak). This infinite product exists in R′(A∞).

Note that we have hS(uv) = hS(u)hS(v) for all u, v ∈ A∗, and hS(ε) = 1. And if
u ∈ A∗ and v ∈ A∞ such that the alphabet of v is finite, then hV (uv) = hS(u)hV (v).
Also, hV (XY ) = hS(X)hV (Y ) for all X ⊆ A∗ in R(A∗) and Y ⊆ A∞ in R′(A∞).

Moreover, for all u0, u1, . . . in A∗, if ui 6= ε for infinitely many i, such that
the alphabet of u0u1 . . . is finite, then hV (u0u1 . . .) =

∏
k≥0 hS(uk). If on the

other hand, uk = ε for all k ≥ n, then hV (u0u1 . . .) = hS(u0) · · ·hS(un−1)1ω. In
either case, if X0, X1, . . . ⊆ A∗ are regular and form a finitary sequence, then the
sequence hS(X0), hS(X1), . . . is also finitary as is each infinite word in

∏
n≥0Xn,

and hV (
∏
n≥0Xn) =

∏
n≥0 hS(Xn).

Suppose now that X ⊆ A∗ is regular and Y ⊆ A∞ is in R′(A∞). We de-

fine h]S(X) =
∨
hS(X) and h]V (Y ) =

∨
hV (Y ). It is well-known that h]S is

a ∗-continuous Kleene algebra morphism R(A∗) → S. Also, h]V preserves finite

suprema, since when I is finite, h]V (
⋃
i∈I Yi) =

∨
hV (

⋃
i∈I Yi) =

∨⋃
i∈I hV (Yi) =∨

i∈I
∨
hV (Yi) =

∨
i∈I h

]
V (Yi).

We prove that the action is preserved. Let X ∈ R(A∗) and Y ∈ R′(A∞). Then

h]V (XY ) =
∨
hV (XY ) =

∨
hS(X)hV (Y ) =

∨
hS(X)

∨
hV (Y ) = h]S(X)h]V (Y ).
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Finally, we prove that infinite product of finitary sequences is preserved. Let
X0, X1, . . . be a finitary sequence of regular languages in R(A∗). Then, using Corol-

lary 1, h]V (
∏
n≥0Xn) =

∨
hV (

∏
n≥0Xn) =

∨∏
n≥0 hS(Xn) =

∏
n≥0

∨
hS(Xn) =∏

n≥0 h
]
S(Xn).

It is clear that hS extends h, and that (hS , hV ) is unique.

Consider now (R(A∗), R′(Aω)) equipped with the infinite product operation∏
n≥0Xn = {u0u1 ∈ Aω : un ∈ Xn, n ≥ 0}, defined on finitary sequences

X0, X1, . . . of languages in R(A∗).

Lemma 13. Suppose that (S, V ) is a finitary ∗-continuous Kleene ω-algebra satis-
fying 1ω = ⊥. Let (hS , hV ) be a homomorphism (R(A∗), R′(A∞))→ (S, V ). Then
(hS , hV ) factors through (ϕS , ϕV ).

Proof. Similar to the proof of Lemma 5.

Theorem 6. For each set A, (R(A∗), R′(Aω)) is the free finitary ∗-continuous
Kleene ω-algebra satisfying 1ω = ⊥ on A.

Proof. This follows from Theorem 5 using Lemma 13.

8 ∗-Continuous Kleene ω-Algebras Are Iteration
Semiring-Semimodule Pairs

In this section, we will show that every (finitary or non-finitary) ∗-continuous Kleene
ω-algebra is an iteration semiring-semimodule pair.

Some definitions are in order. Suppose that S = (S,∨, ·,⊥, 1) is an idempotent
semiring. Following [2], we call S a Conway semiring if S is equipped with a star
operation ∗ : S → S satisfying, for all x, y ∈ S,

(x ∨ y)∗ = (x∗y)∗x∗

(xy)∗ = 1 ∨ x(yx)∗y .

(Note that in [2], also non-idempotent Conway semirings have been considered, but
we stick to the idempotent case here.)

It is known [2] that if S is a Conway semiring, then for each n ≥ 1, so is
the semiring Sn×n of all n × n-matrices over S with the usual sum and product
operations and the star operation defined by induction on n so that if n > 1 and
M =

(
a b
c d

)
, where a and d are square matrices of dimension < n, then

M∗ =

(
(a ∨ bd∗c)∗ (a ∨ bd∗c)∗bd∗

(d ∨ ca∗b)∗ca∗ (d ∨ ca∗b)∗
)
.

The above definition does not depend on how M is split into submatrices.
Suppose that S is a Conway semiring andG = {g1, . . . , gn} is a finite group of or-

der n. For each xg1 , . . . , xgn ∈ S, consider the n×n matrix MG = MG(xg1 , . . . , xgn)
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whose ith row is (xg−1
i g1

, . . . , xg−1
i gn

), for i = 1, . . . , n, so that each row (and col-

umn) is a permutation of the first. We say that the group identity [8] associated
with G holds in S if for each xg1 , . . . , xgn , the first (and then any) row sum of M∗G
is (xg1 ∨ · · · ∨ xgn)∗. Finally, we call S an iteration semiring [2, 11] if the group
identities hold in S for all finite groups of order n.

Classes of examples of (idempotent) iteration semirings are given by the continu-
ous and the ∗-continuous Kleene algebras defined in the introduction. As mentioned
above, the language semirings P (A∗) and the semirings P (A × A) of binary rela-
tions are continuous and hence also ∗-continuous Kleene algebras, and the semirings
R(A∗) of regular languages are ∗-continuous Kleene algebras.

When S is a ∗-continuous Kleene algebra and n is a nonnegative integer, then the
matrix semiring Sn×n is also a ∗-continuous Kleene algebra and hence an iteration
semiring, cf. [24]. The star operation is defined by

M∗i,j =
∨

m≥0, 1≤k1,...,km≤n

Mi,k1Mk1,k2 · · ·Mkm,j ,

for all M ∈ Sn×n and 1 ≤ i, j ≤ n. It is not trivial to prove that the above
supremum exists. The fact that M∗ is well-defined can be established by induction
on n together with the well-known matrix star formula mentioned above.

An idempotent semiring-semimodule pair (S, V ) is a Conway semiring-semi-
module pair if it is equipped with a star operation ∗ : S → S and an omega
operation ω : S → V such that S is a Conway semiring acting on the semimodule
V = (V,∨,⊥) and the following hold for all x, y ∈ S:

(x ∨ y)ω = (x∗y)∗xω ∨ (x∗y)ω

(xy)ω = x(yx)ω.

It is known [2] that when (S, V ) is a Conway semiring-semimodule pair, then
so is (Sn×n, V n) for each n, where V n denotes the Sn×n-semimodule of all n-
dimensional (column) vectors over V with the action of Sn×n defined similarly to
matrix-vector product, and where the omega operation is defined by induction so
that when n > 1 and M =

(
a b
c d

)
, where a and d are square matrices of dimension

< n, then

Mω =

(
(a ∨ bd∗c)ω ∨ (a ∨ bd∗c)∗bdω
(d ∨ ca∗b)ω ∨ (d ∨ ca∗b)∗caω

)
. (3)

We also define iteration semiring-semimodule pairs [2, 19] as those Conway
semiring-semimodule pairs such that S is an iteration semiring and the omega
operation satisfies the following condition: let MG = MG(xg1 , . . . , xgn) like above,
with xg1 , . . . , xgn ∈ S for a finite group G = {g1, . . . , gn} of order n, then the first
(and hence any) entry of Mω

G is equal to (xg1 ∨ · · · ∨ xgn)ω.
Examples of (idempotent) iteration semiring-semimodule pairs include the semi-

ring-semimodule pairs (P (A∗), P (Aω)) of languages and ω-languages over an alpha-
bet A mentioned earlier. The omega operation is defined by Xω =

∏
n≥0X. More
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generally, it is known that every continuous Kleene ω-algebra gives rise to an iter-
ation semiring-semimodule pair. The omega operation is defined as for languages:
xω =

∏
n≥0 xn with xn = x for all n ≥ 0.

Other not necessarily idempotent examples include the complete and the (sym-
metric) bi-inductive semiring-semimodule pairs of [18, 19].

Suppose now that (S, V ) is a ∗-continuous Kleene ω-algebra. Then for each
n ≥ 1, (Sn×n, V n) is a semiring-semimodule pair. The action of Sn×n on V n is
defined similarly to matrix-vector product (viewing the elements of V n as column
vectors). It is easy to see that (Sn×n, V n) is a generalized ∗-continuous Kleene
algebra for each n ≥ 1.

Suppose that n ≥ 2. We would like to define an infinite product operation
(Sn×n)ω → V n on matrices in Sn×n by

(
∏
m≥0

Mm)i =
∨

1≤i1,i2,...≤n

(M0)i,i1(M1)i1,i2 · · ·

for all 1 ≤ i ≤ n. However, unlike in the case of complete semiring-semimodule
pairs [19], the supremum on the right-hand side may not exist. Nevertheless it is
possible to define an omega operation Sn×n → V n and to turn (Sn×n, V n) into an
iteration semiring-semimodule pair.

Lemma 14. Let (S, V ) be a (finitary or non-finitary) ∗-continuous Kleene ω-
algebra. Suppose that M ∈ Sn×n, where n ≥ 2. Then for every 1 ≤ i ≤ n,

(
∏
m≥0

M)i =
∨

1≤i1,i2,...≤n

Mi,i1Mi1,i2 · · ·

exists, so that we define Mω by the above equality. Moreover, when M =
(
a b
c d

)
,

where a and d are square matrices of dimension < n, then (3) holds.

Proof. Suppose that n = 2. Then by Corollary 1, (a ∨ bd∗c)ω is the supremum
of the set of all infinite products A1,i1Ai1,i2 · · · containing a or c infinitely often,
and (a∨ bd∗c)∗bdω is the supremum of the set of all infinite products A1,i1Ai1,i2 · · ·
containing a and c only finitely often. Thus, (a ∨ bd∗c)ω ∨ (a ∨ bd∗c)∗bdω is the
supremum of the set of all infinite products A1,i1Ai1,i2 · · · . Similarly, (d∨ ca∗b)ω ∨
(d ∨ ca∗b)∗caω is the supremum of the set of all infinite products A2,i1Ai1,i2 · · · .

The proof of the induction step is similar. Suppose that n > 2, and let a be k×k.
Then by induction hypothesis, for every i with 1 ≤ i ≤ k, the ith component of (a∨
bd∗c)ω is the supremum of the set of all infinite products Ai,i1Ai1,i2 · · · containing
an entry of a or c infinitely often, whereas the ith component of (a ∨ bd∗c)∗bdω is
the supremum of all infinite products Ai,i1Ai1,i2 · · · containing entries of a and c
only finitely often. Thus, the ith component of (a ∨ bd∗c)ω ∨ (a ∨ bd∗c)∗bdω is the
supremum of the set of all infinite products Ai,i1Ai1,i2 · · · . A similar fact holds for
(d ∨ ca∗b)ω ∨ (d ∨ ca∗b)∗caω. The proof is complete.

Theorem 7. Every (finitary or non-finitary) ∗-continuous Kleene ω-algebra is an
iteration semiring-semimodule pair.
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Proof. Suppose that (S, V ) is a finitary ∗-continuous Kleene ω-algebra. Then

(x ∨ y)ω = (x∗y)ω ∨ (x∗y)∗xω,

since by Lemma 7 and Lemma 12, (x∗y)ω is the supremum of the set of all infinite
products over {x, y} containing y infinitely often, and (x∗y)∗xω is the supremum of
the set of infinite products over {x, y} containing y finitely often. Thus, (x∗y)ω ∨
(x∗y)∗xω is equal to (x∨y)ω, which by Ax3 is the supremum of all infinite products
over {x, y}. As noted above, also

(xy)ω = x(yx)ω

for all x, y ∈ S. Thus, (S, V ) is a Conway semiring-semimodule pair and hence so
is each (Sn×n, V n).

To complete the proof of the fact that (S, V ) is an iteration semiring-semimodule
pair, suppose that x1, . . . , xn ∈ S, and let x = x1 ∨ · · · ∨ xn. Let A be an n × n
matrix whose rows are permutations of the x1, . . . , xn. We need to prove that each
component of Aω is xω. We use Lemma 14 and Ax3 to show that both are equal
to the supremum of the set of all infinite products over the set X = {x1, . . . , xn}.

By Lemma 14, for each i0 = 1, . . . , n, the i0th row ofAω is
∨
i1,i2,...

ai0,i1ai1,i2 · · · .
It is clear that each infinite product ai0,i1ai1,i2 · · · is an infinite product over X.
Suppose now that xj0xj1 · · · is an infinite product over X. We define by induction
on k ≥ 0 an index ik+1 such that aik,ik+1

= xjk . Suppose that k = 0. Then let i1
be such that ai0,i1 = xj0 . Since xj0 appears in the i0th row, there is such an i1.
Suppose that k > 0 and that ik has already been defined. Since xjk appears in the
ikth row, there is some ik+1 with aik,ik+1

= xjk . We have completed the proof of
the fact that the i0th entry of Aω is the supremum of the set of all infinite products
over the set X = {x1, . . . , xn}.

Consider now xω = xx · · · . We use induction on n to prove that xω is also the
supremum of the set of all infinite products over the set X = {x1, . . . , xn}. When
n = 1 this is clear. Suppose now that n > 1 and that the claim is true for n − 1.
Let y = x1 ∨ · · · ∨ xn−1 so that x = y ∨ xn. We have:

xω = (y ∨ xn)ω

= (x∗ny)∗xωn ∨ (x∗ny)ω

= (x∗ny)∗xωn ∨ (x∗nx1 ∨ · · · ∨ x∗nxn−1)ω.

Now

(x∗ny)∗xωn =
∨

k,m1,...,mk≥0

xm1
n y · · ·xmk

n yxωn

by Lemma 8, which is the supremum of all infinite products over X containing
x1, . . . , xn−1 only a finite number of times.
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Also, using the induction hypothesis and Ax4,

(x∗nx1 ∨ · · · ∨ x∗nxn−1)ω =
∨

1≤i1,i2,...≤n−1

x∗nxi1x
∗
nxi2 · · ·

=
∨

1≤i1,i2,...≤n−1

∨
k0,k1,...

xk0n xi1x
k1
n xi2 · · ·

which is the supremum of all infinite products overX containing one of x1, . . . , xn−1
an infinite number of times. Thus, xω is the supremum of all infinite products over
X as claimed.

9 Kleene ω-Algebras

Recall that when S is a ∗-continuous Kleene algebra, then S is a Kleene algebra [24].
Thus, for all x, y ∈ S, x∗y is the least pre-fixed point (and thus the least fixed point)
of the function S → S defined by z 7→ xz ∨ y for all z ∈ S. Moreover, yx∗ is the
least pre-fixed point and the least fixed point of the function S → S defined by
z 7→ zx ∨ y, for all z ∈ S. Similarly, when (S, V ) is a generalized ∗-continuous
Kleene algebra, then for all x ∈ S and v ∈ V , x∗v is the least pre-fixed point and
the least fixed point of the function V → V defined by z 7→ xz ∨ v.

As a natural analogy to Kleene algebras in semiring-semimodule pairs, we pro-
pose a notion of Kleene ω-algebra.

Definition 7. A Kleene ω-algebra is a semiring-semimodule pair (S, V ) in which
S is a Kleene algebra and equipped with an omega operation ω : S → V such that
the following hold for all x, y ∈ S and v ∈ V :

• x∗v is the least pre-fixed point of the function V → V defined by z 7→ xz ∨ v,

• xω ∨ x∗v is the greatest post-fixed point of the function V → V defined by
z 7→ xz ∨ v.

It is clear that any Kleene ω-algebra is a bi-inductive semiring-semimodule pair
in the sense of [19]. By the above remarks we have:

Lemma 15. Suppose that (S, V ) is a (finitary or non-finitary) ∗-continuous Kleene
ω-algebra. When for all x ∈ S and v ∈ V , xω ∨ x∗v is the greatest post-fixed point
of the function V → V defined by z 7→ xz ∨ v, then (S, V ) is a Kleene ω-algebra.

We remark that the precondition of the lemma is indeed necessary, and it is
not the case that any ∗-continuous Kleene ω-algebra is a Kleene ω-algebra. As an
example, note that the above property implies that 1ω is the greatest fixed point
of the mapping z 7→ z; but we have seen in Theorem 6 that there are finitary
∗-continuous Kleene ω-algebras with 1ω = ⊥.
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10 Conclusion

Motivated by an application to energy problems, we have introduced continuous
and ∗-continuous Kleene ω-algebras and exposed some of their basic properties.
Continuous Kleene ω-algebras are idempotent complete semiring-semimodule pairs,
and conceptually, ∗-continuous Kleene ω-algebras are a generalization of continuous
Kleene ω-algebras in much the same way as ∗-continuous Kleene algebras are of
continuous Kleene algebras: In ∗-continuous Kleene algebras, suprema of finite sets
and of sets of powers are required to exist and to be preserved by the product; in
∗-continuous Kleene ω-algebras these suprema are also required to be preserved by
the infinite product.

We have seen that the sets of finite and infinite languages over an alphabet
are the free continuous Kleene ω-algebras, and that the free finitary ∗-continuous
Kleene ω-algebras are given by the sets of regular languages and of finite unions
of finitary infinite products of regular languages. A characterization of the free
(non-finitary) ∗-continuous Kleene ω-algebras (and whether they even exist) is left
open.

We have seen that every ∗-continuous Kleene ω-algebra is an iteration semiring-
semimodule pair, hence also matrix-vector semiring-semimodule pairs over ∗-con-
tinuous Kleene ω-algebras are iteration semiring-semimodule pairs. In the second
paper of the series [15], we will apply the algebraic setting developed here in order
to solve energy problems.
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