218 research outputs found

    An Energy Aware and Secure MAC Protocol for Tackling Denial of Sleep Attacks in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks which form part of the core for the Internet of Things consist of resource constrained sensors that are usually powered by batteries. Therefore, careful energy awareness is essential when working with these devices. Indeed,the introduction of security techniques such as authentication and encryption, to ensure confidentiality and integrity of data, can place higher energy load on the sensors. However, the absence of security protection c ould give room for energy drain attacks such as denial of sleep attacks which have a higher negative impact on the life span ( of the sensors than the presence of security features. This thesis, therefore, focuses on tackling denial of sleep attacks from two perspectives A security perspective and an energy efficiency perspective. The security perspective involves evaluating and ranking a number of security based techniques to curbing denial of sleep attacks. The energy efficiency perspective, on the other hand, involves exploring duty cycling and simulating three Media Access Control ( protocols Sensor MAC, Timeout MAC andTunableMAC under different network sizes and measuring different parameters such as the Received Signal Strength RSSI) and Link Quality Indicator ( Transmit power, throughput and energy efficiency Duty cycling happens to be one of the major techniques for conserving energy in wireless sensor networks and this research aims to answer questions with regards to the effect of duty cycles on the energy efficiency as well as the throughput of three duty cycle protocols Sensor MAC ( Timeout MAC ( and TunableMAC in addition to creating a novel MAC protocol that is also more resilient to denial of sleep a ttacks than existing protocols. The main contributions to knowledge from this thesis are the developed framework used for evaluation of existing denial of sleep attack solutions and the algorithms which fuel the other contribution to knowledge a newly developed protocol tested on the Castalia Simulator on the OMNET++ platform. The new protocol has been compared with existing protocols and has been found to have significant improvement in energy efficiency and also better resilience to denial of sleep at tacks Part of this research has been published Two conference publications in IEEE Explore and one workshop paper

    A Comprehensive Survey on Routing and Security in Mobile Wireless Sensor Networks

    Get PDF
    With the continuous advances in mobile wirelesssensor networks (MWSNs), the research community hasresponded to the challenges and constraints in the design of thesenetworks by proposing efficient routing protocols that focus onparticular performance metrics such as residual energy utilization,mobility, topology, scalability, localization, data collection routing,Quality of Service (QoS), etc. In addition, the introduction ofmobility in WSN has brought new challenges for the routing,stability, security, and reliability of WSNs. Therefore, in thisarticle, we present a comprehensive and meticulous investigationin the routing protocols and security challenges in the theory ofMWSNs which was developed in recent years

    A Novel Method of Enhancing Security Solutions and Energy Efficiency of IoT Protocols

    Get PDF
    Mobile Ad-hoc Networks (MANET’s) are wireless networks that are capable of operating without any fixed infrastructure. MANET routing protocols must adhere to strict secrecy, integrity, availability and non-repudiation criteria. In MANETs, attacks are roughly categorised into two types: active and passive. An active attack attempts to modify or remove data being transferred across a network. On the other hand, passive attack does not modify or erase the data being sent over the network. The majority of routing protocols for MANETs were built with little regard for security and are therefore susceptible to a variety of assaults. Routing technologies such as AODV and dynamic source routing are quite common. Both however are susceptible to a variety of network layer attacks, including black holes, wormholes, rushing, byzantine, information disclosure. The mobility of the nodes and the open architecture in which the nodes are free to join or leave the network keep changing the topology of the network. The routing in such scenarios becomes a challenging task since it has to take into account the constraints of resources of mobile devices. In this an analysis of these protocols indicates that, though proactive routing protocols maintain a route to every destination and have low latency, they suffer from high routing overheads and inability to keep up with the dynamic topology in a large sized network. The reactive routing protocols in contrast have low routing overheads, better throughput and higher packet delivery ratio. AODVACO-PSO-DHKE Methodology boosts throughput by 10% while reducing routing overhead by 7%, latency by 8% and energy consumption by 5%. To avoid nodes always being on, a duty cycle procedure that's also paired with the hybrid method is used ACO-FDR PSO is applied to a 100-node network and NS-3 is used to measure various metrics such as throughput, latency, overhead, energy consumption and packet delivery ratio

    A Novel Method of Enhancing Security Solutions and Energy Efficiency of IoT Protocols

    Get PDF
    Mobile Ad-hoc Networks (MANET’s) are wireless networks that are capable of operating without any fixed infrastructure. MANET routing protocols must adhere to strict secrecy, integrity, availability and non-repudiation criteria. In MANETs, attacks are roughly categorised into two types: active and passive. An active attack attempts to modify or remove data being transferred across a network. On the other hand, passive attack does not modify or erase the data being sent over the network. The majority of routing protocols for MANETs were built with little regard for security and are therefore susceptible to a variety of assaults. Routing technologies such as AODV and dynamic source routing are quite common. Both however are susceptible to a variety of network layer attacks, including black holes, wormholes, rushing, byzantine, information disclosure. The mobility of the nodes and the open architecture in which the nodes are free to join or leave the network keep changing the topology of the network. The routing in such scenarios becomes a challenging task since it has to take into account the constraints of resources of mobile devices. In this  an analysis of these protocols indicates that, though proactive routing protocols maintain a route to every destination and have low latency, they suffer from high routing overheads and inability to keep up with the dynamic topology in a large sized network. The reactive routing protocols in contrast have low routing overheads, better throughput and higher packet delivery ratio. AODVACO-PSO-DHKE Methodology boosts throughput by 10% while reducing routing overhead by 7%, latency by 8% and energy consumption by 5%. To avoid nodes always being on, a duty cycle procedure that's also paired with the hybrid method is used ACO-FDR PSO is applied to a 100-node network and NS-3 is used to measure various metrics such as throughput, latency, overhead, energy consumption and packet delivery ratio

    Secure Routing Optimization in Hierarchical Cluster-Based Wireless Sensor Networks

    Get PDF
    Popularity of wireless sensor networks (WSNs) is increasing continuously in different domains of daily life, as they provide efficient method of collecting valuable data from the surroundings for use in different applications. Routing in WSNs is the vital functionality that allows the flow of information generated by sensor nodes to the base station, while considering the severe energy constraint and the limitations of computational and storage resources. Indeed, this functionality may be vulnerable and must be in itself secured, since conventional routing protocols in WSNs provide efficient routing techniques with low power consumption, but they do not take into account the possible attacks. As sensor nodes may be easily captured and compromised, the classical cryptographic solutions become insufficient to provide optimal routing security, especially, for cluster-based WSNs, where cluster heads can be still among the compromised nodes. In this work, we propose a hierarchical, robust and well-adapted intrusion detection system, named THIDS, which is intended to be integrated into the secure hierarchical cluster-based routing protocols. We have chosen the protocol RLEACH to be equipped with the proposed IDS. The results of simulation performed under NS2 simulator show that the resulting protocol ORLEACH is much more resistant to compromised nodes exercising the most dangerous attacks

    Solutions and Tools for Secure Communication in Wireless Sensor Networks

    Get PDF
    Secure communication is considered a vital requirement in Wireless Sensor Network (WSN) applications. Such a requirement embraces different aspects, including confidentiality, integrity and authenticity of exchanged information, proper management of security material, and effective prevention and reaction against security threats and attacks. However, WSNs are mainly composed of resource-constrained devices. That is, network nodes feature reduced capabilities, especially in terms of memory storage, computing power, transmission rate, and energy availability. As a consequence, assuring secure communication in WSNs results to be more difficult than in other kinds of network. In fact, trading effectiveness of adopted solutions with their efficiency becomes far more important. In addition, specific device classes or technologies may require to design ad hoc security solutions. Also, it is necessary to efficiently manage security material, and dynamically cope with changes of security requirements. Finally, security threats and countermeasures have to be carefully considered since from the network design phase. This Ph.D. dissertion considers secure communication in WSNs, and provides the following contributions. First, we provide a performance evaluation of IEEE 802.15.4 security services. Then, we focus on the ZigBee technology and its security services, and propose possible solutions to some deficiencies and inefficiencies. Second, we present HISS, a highly scalable and efficient key management scheme, able to contrast collusion attacks while displaying a graceful degradation of performance. Third, we present STaR, a software component for WSNs that secures multiple traffic flows at the same time. It is transparent to the application, and provides runtime reconfigurability, thus coping with dynamic changes of security requirements. Finally, we describe ASF, our attack simulation framework for WSNs. Such a tool helps network designers to quantitatively evaluate effects of security attacks, produce an attack ranking based on their severity, and thus select the most appropriate countermeasures

    Security protocols suite for machine-to-machine systems

    Get PDF
    Nowadays, the great diffusion of advanced devices, such as smart-phones, has shown that there is a growing trend to rely on new technologies to generate and/or support progress; the society is clearly ready to trust on next-generation communication systems to face today’s concerns on economic and social fields. The reason for this sociological change is represented by the fact that the technologies have been open to all users, even if the latter do not necessarily have a specific knowledge in this field, and therefore the introduction of new user-friendly applications has now appeared as a business opportunity and a key factor to increase the general cohesion among all citizens. Within the actors of this technological evolution, wireless machine-to-machine (M2M) networks are becoming of great importance. These wireless networks are made up of interconnected low-power devices that are able to provide a great variety of services with little or even no user intervention. Examples of these services can be fleet management, fire detection, utilities consumption (water and energy distribution, etc.) or patients monitoring. However, since any arising technology goes together with its security threats, which have to be faced, further studies are necessary to secure wireless M2M technology. In this context, main threats are those related to attacks to the services availability and to the privacy of both the subscribers’ and the services providers’ data. Taking into account the often limited resources of the M2M devices at the hardware level, ensuring the availability and privacy requirements in the range of M2M applications while minimizing the waste of valuable resources is even more challenging. Based on the above facts, this Ph. D. thesis is aimed at providing efficient security solutions for wireless M2M networks that effectively reduce energy consumption of the network while not affecting the overall security services of the system. With this goal, we first propose a coherent taxonomy of M2M network that allows us to identify which security topics deserve special attention and which entities or specific services are particularly threatened. Second, we define an efficient, secure-data aggregation scheme that is able to increase the network lifetime by optimizing the energy consumption of the devices. Third, we propose a novel physical authenticator or frame checker that minimizes the communication costs in wireless channels and that successfully faces exhaustion attacks. Fourth, we study specific aspects of typical key management schemes to provide a novel protocol which ensures the distribution of secret keys for all the cryptographic methods used in this system. Fifth, we describe the collaboration with the WAVE2M community in order to define a proper frame format actually able to support the necessary security services, including the ones that we have already proposed; WAVE2M was funded to promote the global use of an emerging wireless communication technology for ultra-low and long-range services. And finally sixth, we provide with an accurate analysis of privacy solutions that actually fit M2M-networks services’ requirements. All the analyses along this thesis are corroborated by simulations that confirm significant improvements in terms of efficiency while supporting the necessary security requirements for M2M networks

    Security attacks and challenges in wireless sensor networks

    Get PDF

    The Internet of Everything

    Get PDF
    In the era before IoT, the world wide web, internet, web 2.0 and social media made people’s lives comfortable by providing web services and enabling access personal data irrespective of their location. Further, to save time and improve efficiency, there is a need for machine to machine communication, automation, smart computing and ubiquitous access to personal devices. This need gave birth to the phenomenon of Internet of Things (IoT) and further to the concept of Internet of Everything (IoE)
    corecore