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Sommario

La comunicazione sicura è considerata un requisito fondamentale nelle applicazio-
ni basate su Wireless Sensor Networks (WSNs). Essa comprende differenti aspetti,
tra cui confidenzialità, integrità e autenticità delle informazioni trasmesse, una accu-
rata gestione del materiale crittografico, e una efficace prevenzione e reazione con-
tro eventuali attacchi. Tuttavia, le WSNs sono principalmente composte da dispo-
sitivi dalle risorse limitate, specialmente in termini di memoria disponibile, capacità
computazionale, velocità trasmissiva, e disponibilità energetica.

Garantire la comunicazione sicura nelle WSNs risulta quindi essere più difficile
che in altri tipi di rete. Infatti, diventa ancora più importante raggiungere un com-
promesso tra l’efficacia e l’efficienza delle soluzioni adottate. Per di più, specifiche
classi di dispositivi o tecnologie possono richiedere l’adozione di soluzioni ad-hoc.
Inoltre, è necessario gestire efficientemente il materiale crittografico, e adattarsi dina-
micamente a cambiamenti dei requisiti di sicurezza. Infine, possibili attacchi e relative
contromisure devono essere vagliati attentamente sin dalla progettazione della rete.

Questa tesi di dottorato considera la comunicazione sicura nelle WSNs, e con-
siste nei seguenti contributi. Per prima cosa, valutiamo le performance dei servizi di
sicurezza offerti dallo standard IEEE 802.15.4. Quindi, consideriamo la tecnologia
ZigBee, ne analizziamo i servizi di sicurezza, e proponiamo possibili soluzioni ad al-
cuni difetti e inefficienze. Successivamente, presentiamo HISS, uno schema per la
gestione delle chiavi crittografiche altamente scalabile ed efficiente, in grado di con-
trastare gli attacchi di collusione a fronte di un graduale calo delle prestazioni. Quindi,
presentiamo STaR, una componente software per WSNs, atta a proteggere simulta-
neamente più flussi di traffico. Oltre che trasparente all’applicazione, è riconfigurabile
dinamicamente, e quindi adatta a possibili cambiamenti dei requisiti di sicurezza. In-
fine, descriviamo ASF, il nostro framework per la simulazione di attacchi su WSNs.
ASF aiuta il progettista a valutare quantitativamente gli effetti di possibili attacchi, a
classificarli in base alla loro gravità, e a selezionare le contromisure più appropriate.
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Abstract

Secure communication is considered a vital requirement in Wireless Sensor Network
(WSN) applications. Such a requirement embraces different aspects, including confi-
dentiality, integrity and authenticity of exchanged information, proper management of
security material, and effective prevention and reaction against security threats and
attacks. However, WSNs are mainly composed of resource-constrained devices. That
is, network nodes feature reduced capabilities, especially in terms of memory storage,
computing power, transmission rate, and energy availability.

As a consequence, assuring secure communication in WSNs results to be more
difficult than in other kinds of network. In fact, trading effectiveness of adopted so-
lutions with their efficiency becomes far more important. In addition, specific device
classes or technologies may require to design ad-hoc security solutions. Also, it is nec-
essary to efficiently manage security material, and dynamically cope with changes of
security requirements. Finally, security threats and countermeasures have to be care-
fully considered since from the network design phase.

This Ph.D. dissertion considers secure communication in WSNs, and provides the
following contributions. First, we provide a performance evaluation of IEEE 802.15.4
security services. Then, we focus on the ZigBee technology and its security services,
and propose possible solutions to some deficiencies and inefficiencies. Second, we
present HISS, a highly scalable and efficient key management scheme, able to con-
trast collusion attacks while displaying a graceful degradation of performance. Third,
we present STaR, a software component for WSNs that secures multiple traffic flows
at the same time. It is transparent to the application, and provides runtime reconfigura-
bility, thus coping with dynamic changes of security requirements. Finally, we describe
ASF, our attack simulation framework for WSNs. Such a tool helps network designers
to quantitatively evaluate effects of security attacks, produce an attack ranking based
on their severity, and thus select the most appropriate countermeasures.
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1

Introduction

In the recent years, Wireless Sensor Networks (WSNs) have become a popular and
widely adopted technology, both in the academic and industrial world. They can be
profitably used in several fields of application, including military surveillance, home
automation, and environment monitoring. Success gained by WSNs is mostly due to
the availability of standard technologies and protocols, low cost of sensor devices,
ease of use, as well as an active worldwide community support.

However, WSNs are typically deployed in unattended, unsecure, or even hostile
environments. Thus, they can be easily affected by a number of security attacks
[49][89][98]. Specifically, logical attacks aimed at thwarting communication can be
easily performed [17][24][59][103][106]. For instance, a determined adversary can in-
tercept network messages, in order to alter, replicate, or even discard them, as well as
inject fake ones. Also, unsecure environments ease an adversary to perform physical
attacks [8][81], i.e. to physically attack sensor devices in order to reprogram, misplace,
or break them. In the end, this most likely determines unreliable data collection, and
may even results in safety issues.

It follows that it is vital to protect WSNs by adopting appropriate security coun-
termeasures. However, with respect to other network technologies, properly securing
WSNs results to be a more difficult task. This is mainly due to the scarce amount of
resources available on sensor devices, in terms of memory capacity and computa-
tion capability [84][85]. Also, sensor nodes are typically battery powered, thus limiting
power consumption is a key aspect in WSN applications [39]. Therefore, we argue
that providing security in WSNs should be based on the following recommendations.

1. Adopted solutions must be both effective and efficient. That is, they must result in
an affordable impact on performance, and be scalable with the network size.

2. Security countermeasures must accommodate different traffic flows, and be
adaptable to dynamic changes in network conditions.

3. In order to select adequate countermeasures, it must be possible to evaluate
impact and effects of security attacks since from the network design phase.
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CHAPTER 1. INTRODUCTION

In this Ph.D. dissertation, we consider the above mentioned assertions about se-
curity in WSNs, and support their foundation by means of the following contributions.

In Chapter 2, we describe security services provided by the IEEE 802.15.4 stan-
dard [52], and present our implementation of its security sublayer for the TinyOS
platform [100] and the TmoteSky motes [74]. We relied on our implementation to
experimentally evaluate how IEEE 802.15.4 security services impact on memory oc-
cupancy, network performance, and energy consumption [85]. In particular, we show
that IEEE 802.15.4 security services require an affordable amount of memory, and
have a meaningful impact on network performance and energy consumption. We be-
lieve this is an important step towards a quantitative analysis that allows designers
and implementers to properly define a security-performance trade-off.

Chapter 3 considers the security model provided by the ZigBee technology [116]
and its Smart Energy application profile [117]. Although it provides a good trade-off
between security and complexity, this model presents deficiencies concerning key and
certificate management that may limit its application [45]. Specifically, we highlight a
deficiency in cryptographic key management, and propose to manage rekeying at the
application level. Such a solution makes it possible to select the rekeying scheme
that better suits the application requirements and constraints. Also, we show that the
objectives of openness and interoperability may result in a not scalable certificate
management, due to the limited storage resources of ZigBee devices. In order to
overcome this problem, we propose a home-certification mechanism that drastically
reduces the storage requirements without endangering security.

In Chapter 4, we present HISS, a highly scalable scheme for group rekeying based
on logical subgrouping [47]. HISS has the following merits. First, it allows for securely
and efficiently performing group rekeying upon a user join or leave, thus assuring
both backward and forward security. In order to do that, it requires a number of rekey-
ing messages that is small, constant, and independent of the group size. Second,
in terms of memory occupancy, HISS requires every user to store O(

√
n) secrets,

which is an affordable storage overhead in most practical cases, even encompassing
resource-scarce devices such as sensor nodes. Third, HISS provides a recovery pro-
tocol aimed at restoring group security upon a collusion attack. The recovery protocol
does not require to re-initialise the group, it is affordable on customary platforms, and
displays a form of graceful degradation. That is, the protocol communication perfor-
mance degrades with the number of compromised subgroups. Finally, HISS makes it
possible to define policies of allocation of users to subgroups that practically constrast
or even prevent successful instances of collusion attacks.

Chapter 5 presents STaR, our security software component for WSNs that pro-
tects multiple traffic flows at the same time, according to different security policies
[87]. STaR is transparent to the application, which can rely on the same communica-
tion interface already in use. Also, it allows users to change security policies and their
association to traffic flows at runtime. Finally, we consider our preliminary implemen-
tation of STaR for TmoteSky motes, and provide a performance evaluation in terms

2



of memory occupancy, communication overhead, and energy consumption. Our re-
sults show that STaR is efficient as well as affordable even in the considered resource
scarce hardware platform. In fact, the heaviest impact on performance is due to the
adopted standard security algorithms, and not to the presence of STaR.

Finally, in Chapter 6, we present ASF, our framework for simulative evaluation of
attacks in WSNs [46]. ASF provides an Attack Specification Language to describe dif-
ferent kinds of attacks, and an Attack Simulator to quantitatively evaluate their effects.
This allows users to evaluate attacks severity, and thus define protection priorities and
select appropriate countermeasures. We consider a realistic application scenario, and
use our ASF prototype for the Castalia simulator [2] to evaluate the effects of four dif-
ferent attacks. Our results show how considered attacks affect the application and
network behavior, and suggest to ensure reliability of communications and provide
physical protection to sensor nodes.
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2

Security in IEEE 802.15.4 networks

IEEE 802.15.4 is an emerging technology addressing the needs of low-rate wire-
less personal area networks with a focus on enabling low power devices, personal
area networks, and wireless sensor networks (WSNs). The standard is characterized
by maintaining a high level of simplicity, allowing for low cost and low power imple-
mentations [52]. IEEE 802.15.4 is adopted in a wide range of application scenarios
including environmental monitoring, health-care, military surveillance, and industrial
automation. Most of these applications require forms of secure communication includ-
ing confidentiality, authenticity, and ready detection of replay-attacks. For this reason,
IEEE 802.15.4 specification includes a number of security provisions and options.

Security and performance of IEEE 802.15.4 have been extensively analysed, al-
though separately. Relevant works include [76][102] as to security analysis, as well
as [60][62] as to performance analysis. In contrast, a thorough analysis of the impact
that security provisions and options have on IEEE 802.15.4 performance is missing.
Some related works have been presented, but they face either with specific aspects,
such as cipher design [110], or with collateral although important issues, such as key
management [37][58].

What is really missing is an analysis providing quantitative indications regarding
consumption of system resources due to security services provided by IEEE 802.15.4.
We believe that this analysis is crucial. Security and performance compete for the
same system resources, namely memory, CPU, bandwidth and energy, that are
scarce in low power, low cost sensor devices. Therefore, quantitative indications re-
garding resources consuption are fundamental to design and implement adequate
performance-security trade-offs in IEEE 802.15.4-based applications.

For these reasons, we have performed an experimental evaluation of impact and
costs of IEEE 802.15.4 security services [85]. Specifically, we referred to a free imple-
mentation of the IEEE 802.15.4 specification for TinyOS on TmoteSky motes [4]. We
have extended it with an implementation of the IEEE 802.15.4 security sublayer, which
is compliant to the standard specification [53]. To the best of our knowledge, this is
the first available free implementation of IEEE 802.15.4 including security services.

5



CHAPTER 2. SECURITY IN IEEE 802.15.4 NETWORKS

Our experimental evaluation focuses on three performance aspects, namely mem-
ory occupancy, network performance, and energy consumption, and has a twofold
objective. On the one hand, we aim at evaluating how security impacts on these
three aspects. That is, we are interested in determining how security services (e.g.
confidentiality and/or authenticity) and security options (e.g. message integrity code
length) influence such aspects. On the other hand, we are willing to devise a model
that allows designers and implementers to carry out, for example at pre-deployment,
simulative and/or analytical performance analysis that include security too.

In this chapter, we report results of our evaluation activity. As to memory occu-
pancy, we show that security requires a non negligible although affordable amount of
memory. This result is relevant as WSNs often comprise devices whose storage capa-
bilities are severely limited. For instance, TmoteSky motes have 48 Kbytes of available
memory and our implementation of the IEEE 802.15.4 security sublayer requires just
the 9.4% of that memory on the sender side, and the 12.9% on the receiver side.
As to network performance, we show that the security impact derives from the fact
that, in the most general case, secured frames are larger than unsecured ones (frame
expansion) and that securing frames requires additional frame processing (extra pro-
cessing). We show that securing communications reduces the amount of transmitted
data frames of up to 33.8%. Finally, frame expansion and extra processing influence
also energy consumption, which is one of the main issues in WSNs. We show that the
major impact is due to the transmission of expanded data frames, which represents
the 61.12% of the overall extra energy consumption in the presence of security.

2.1 IEEE 802.15.4 security services

Two different kinds of device can participate in an IEEE 802.15.4 network: Full-
Function Devices (FFDs) and Reduced-Function Devices (RFDs). In particular, one
FFD is elected as the Personal Area Network (PAN) Coordinator and is responsible
for network and security management. In the following, we consider a beacon en-
abled PAN, that is the PAN Coordinator periodically broadcasts beacon frames within
the network. Specifically, the MAC attribute BeaconOrder defines the interval at which
the PAN Coordinator broadcasts beacon frames.

IEEE 802.15.4 provides a number of security services and makes them available
to the higher layers. In particular, data confidentiality, data authenticity and replay pro-
tection are supported on a per-frame basis. The standard includes a security suite
based on the Advanced Encryption Standard (AES) 128 bits symmetric-key cryp-
tography. The security suite relies on three elements: an Auxiliary Security Header
(ASH), security modes and settings, and security procedures.

If communications are secured, senders build the ASH, insert it next to the stan-
dard MAC header (see Figure 2.1), and secure frames before transmitting them. Ac-
cording to the information carried by the ASH, recipients retrieve the right crypto-
graphic key and correctly unsecure MAC frames. More in detail, the ASH carries in-
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Figure 2.1. Auxiliary Security Header (ASH).

formation required for the security processing, including i) the specified security mode
and its options, ii) a frame counter value for the anti-replay service, and, finally, iii) the
KeyIdMode according to which the key retrieval procedure is supposed to take place.

In particular, the KeyIdMode indicates whether the cryptographic key has to be ob-
tained implicitly or explicitly. The IEEE 802.15.4 standard provides four different KeyId-
Modes, that is four different ways to retrieve cryptographic keys. More specifically, in
KeyIdMode0 the key is determined implicitly from the originator and the recipient(s)
of the frame, and the Key Identifier field of the ASH is not present. In KeyIdMode1
the key is determined from the Index subfield of the Key Identifier field of the ASH, in
conjunction with the macDefaultKeySource value, which is predetermined by network
devices. In KeyIdMode2 the key is determined explicitly from the 4 bytes Key Source
subfield and the 1 byte Key Index subfield of the Key Identifier field. Finally, in KeyId-
Mode3 the key is determined in the same way as in KeyIdMode2, but the Key Source
subfield is 8 bytes in size instead of 4.

Security mode
Data Data MIC size

confidentiality authenticity (bytes)
CTR ON OFF -

CBC_MAC_4 OFF ON 4
CBC_MAC_8 OFF ON 8
CBC_MAC_16 OFF ON 16

CCM_4 ON ON 4
CCM_8 ON ON 8

CCM_16 ON ON 16

Table 2.1. Security modes.

Three different kinds of security modes are available: encryption only (CTR), au-
thentication only (CBC_MAC), and both encryption and authentication (CCM). In par-
ticular, CBC_MAC and CCM rely on a Message Integrity Code (MIC), whose size can
be either 4, 8, or 16 bytes. By choosing and properly setting the security mode to be
used, it is possible to deal with applications’ constraints and security requirements.
Table 2.1 provides an overview of the available security modes.
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By means of the standard security procedures, it is possible to secure and unse-
cure MAC frames, assure a minimum security level, retrieve cryptographic keys, deal
with blacklisted nodes, and verify frames’ freshness by means of the Frame Counter
field of the ASH. Securing/unsecuring operations rely on a fresh nonce value, that is
a randomly generated number used to prevent replay attacks. Nonces are generated
by senders and checked by recipients.

Security material is stored into two different tables on each device, that is a Key
Table and a Device Table. The former contains cryptographic keys and their identifiers,
while the latter includes information about other sender devices, such as the highest
frame counter value received by each one of them. Security procedures are respon-
sible for accessing and updating data structures, and verifying their consistency.

Finally, IEEE 802.15.4 does not concern about key establishment and devices au-
thentication, which are potentially entrusted to the higher layers. Thus, both senders
and recipients have to share common security settings and store the necessary se-
curity material before secure communication can actually take place.

2.2 Security sublayer implementation

We extended the open source implementation of IEEE 802.15.4 for the TinyOS plat-
form currently available at [4]. In particular, we implemented IEEE 802.15.4 security
services and procedures responsible for protecting MAC data frames, with reference
to the TmoteSky motes [74] and the CC2420 chipset [99]. The source code of our
implementation can be found at [5].

MAC layer security relies on two main sets of services, namely frame handling and
actual security procedures. Frame handling has been extended in order to properly
manage the auxiliary security header in case data frames require to be protected. Se-
curity procedures have been implemented on both the sender and the receiver side,
according to the guidelines and practices described by the IEEE 802.15.4 standard.

While implementing our security suite, we made reference to the security mecha-
nisms provided by the CC2420 chipset. All security modes described in Section 2.1
are available and can be selected on a per-frame basis, according to the application
requirements on the sender side. CC2420 provides cryptographic primitives based on
AES 128 bits encryption, and hardware support for the IEEE 802.15.4 security ser-
vices. MAC frames protection can be performed in two different ways: stand-alone or
in-line. The former encrypts MAC frames into a proper RAM buffer, while the latter se-
cures and unsecures frames within the transmit buffer TXFIFO and the receive buffer
RXFIFO, respectively. In the following, we refer to the in-line security operations.

CC2420 determines the security mode to be used according to the SECCTRL0
and SECCTRL1 registers settings. That is, these registers have to be properly set
before the actual security operations take place. Besides, before issuing a security
command strobe, it is necessary to set the cryptographic key to be used into the
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KEY0 or KEY1 register. Finally, in order to detect replay attacks, a nonce is written in
the TXNONCE (on the sender side) or RXNONCE (on the recipient side) register.

Outgoing frames protection is accomplished by issuing the STXENC command
strobe, which actually secures the frame within the TXFIFO buffer and then transmits
it. On the other hand, recipient nodes invoke the SRXDEC command strobe, which
unsecures the frame inside RXFIFO and makes it available to the higher layers.

2.3 Performance evaluation

In order to test our security sublayer, we have used two TmoteSky motes, equipped
with a 48 Kbytes ROM, and a 8 MHz MSP430 microcontroller with a 10 Kbytes RAM.
In particular, we have considered a beacon enabled network with BeaconOrder 7. An
FFD acts as the PAN Coordinator and a single RFD acts as sender. Both the RFD
and the FFD share a common cryptographic symmetric key. The PAN Coordinator
unsecures received protected data frames, and sends ACK frames back. On the other
hand, the RFD continuously transmits protected data frames to the PAN Coordinator,
and waits for ACK frames back. We consider data frames whose payload is 18 bytes
in size. Since the IEEE 802.15.4 standard does not permit to secure ACK frames, they
are neither encrypted nor authenticated.

2.3.1 Memory consumption

The amount of available memory on a TmoteSky mote may represent a severe
constraint while developing applications or, as in our case, while extending MAC
layer capabilities. We have evaluated the memory overhead due to the presence of
IEEE 802.15.4 security sublayer by comparing the amount of used memory both in
the presence and in the absence of security. In the absence of security, memory is
necessary to allocate the application and TinyOS images. In the presence of security,
additional memory is necessary to allocate security services and data structures. As
to security, we have considered the KeyIdMode2 and the CCM_16 security mode.

Figure 2.2 shows the memory footprints of the PAN Coordinator (columns A, B)
and the RFD (columns C, D) with and without security services, respectively. Y-axis re-
ports the absolute memory occupancy in bytes, whereas percentages express mem-
ory occupancy as a fraction of the available memory (i.e. 48 Kbytes).

On the PAN Coordinator, memory occupancy without security is 33.12 Kbytes (i.e.
69% of the available memory). It becomes 39.31 Kbytes (81.9%) when security is
used. It follows that security causes an increase of memory occupancy of about 6.19
Kbytes (12.9%). This leaves 8.69 Kbytes (18.1%) free for other uses. As to the RFD,
memory occupancy without security is 34.43 Kbytes (71.7%), whereas it becomes
38.94 Kbytes (81.1%) with security. It follows that security causes an increment of 4.51
Kbytes (9.4%). This leaves 9.06 Kbytes (18.9%) free for other uses. Without security,
the difference in size between the RFD and the PAN Coordinator is merely due to
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Figure 2.2. Memory consumption.

their different basic operations. In the presence of security, the memory occupancy
increases both on the RFD and the PAN Coordinator. However, unlike RFDs, the PAN
Coordinator is required to deal with larger security structures in a more complex way.

Notice that the amount of free memory is important because other high level secu-
rity services might be necessary. For instance, let us consider key establishment. If a
designer wishes to use Elliptic Curve Diffie-Hellman (ECDH), a possibility is the imple-
mentation in the TinyECC suite [11]. However, only the unoptimized version could be
accommodated in the free memory as it requires 4446 bytes on a TmoteSky mote. Of
course, a more memory-efficient implementation of IEEE 802.15.4 security sublayer
could save more memory. However, although we believe that our implementation is
affordable given the limited memory overhead it causes, we claim that our aim is not
to achieve a highly optimized implementation but, rather, to provide an early experi-
mental framework to start quantitative evaluations.

Also, we have considered the impact of data structures and security operations,
separately. Figure 2.3 shows the memory usage breakdowns on the PAN Coordinator
and the RFD side, respectively. In particular, the PAN Coordinator requires 1228 bytes
(2.6%) for security services and 4958 bytes (10.3%) for security data structures and
their relative operations. The RFD requires 826 bytes (1.7%) for security services and
3688 bytes (7.7%) for security data structures and their relative operations.

It is important to notice that memory consumption of data structures varies with the
number of RFDs and cryptographic keys, whereas memory consumption of the code
does not. Intuitively, the Device Table size grows with the number of RFDs, whereas
the Key Table grows with the number of keys. However, the number of RFDs and the
number of keys may depend on the design choices. For instance, one possible choice
is that all devices in the network share a single “network key”. An alternative choice is
that each RFD may share a private secret key with the PAN Coordinator.

10



2.3. PERFORMANCE EVALUATION

Figure 2.3. Memory occupancy breakdown.

2.3.2 Impact on network performance

In this section, we discuss the impact of security on network performance by evalu-
ating the decrement of transmitted data frames due to the presence of security. Op-
eratively, we consider a single RFD continuously transmitting data frames to the PAN
Coordinator for a given amount of time T , as described at the beginning of Section 2.3.
Then, we count the number of both secured and unsecured frames transmitted dur-
ing such an amount of time. Finally, we perform the subtraction of the latter number
of frames from the former. As to secured communication, we consider key retrieval
mode KeyIdMode2 and all security modes. Provided results are averaged over ten
repetitions lasting T = 120 s each. In order to count data frames without introduc-
ing any additional delay, we used a Texas Instruments IEEE 802.15.4/Zigbee packet
sniffer equipped with a CC2430 chipset [6].

Table 2.2 shows the number of transmitted data frames in the different se-
curity modes. The column “Mode” lists security modes, and “No security” speci-
fies that frames are not secured. The parameter F refers to the number of data
frames transmitted when security is not used, whereas Fe, Fax

(x = 4, 8, 16) and
Feax(x = 4, 8, 16) specify the number of data frames transmitted when encryption (e),
authentication (a) or both (ea) are used, respectively. When authentication is used, x
specifies the MIC size. The column “Frame size” specifies the size of the frame for
each security mode. Finally, the column “Decrement” specifies the transmitted data
frame decrement for each security mode, with respect to the “No security” mode. As it
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Mode Parameter # frames
Decrement Frame size

(%) (bytes)
No security F 7685.5 - 27

CTR Fe 5671.6 26.2 37
CBC_MAC_4 Fa4

5534.8 28 41
CBC_MAC_8 Fa8

5371.6 30.1 45
CBC_MAC_16 Fa16 5110.3 33.5 53

CCM_4 Fea4
5514.6 28.2 41

CCM_8 Fea8
5374.4 30.1 45

CCM_16 Fea16 5082.1 33.9 53

Table 2.2. Number of transmitted frames vs. security modes.

turns out, security causes quite a tangible transmitted data frame decrement, ranging
from 26.2% in the CTR mode, up to 33.9% in the CCM_16 mode.

The overhead introduced by security services consists in two elements, the com-
munication overhead C and the processing overhead P . The communication over-
head C is due to the extra bytes that it is necessary to transmit in the presence of
security. These extra bytes account for the additional ASH and the MIC field. The
processing overhead P is due to the extra processing necessary to parse the ASH,
compute the MIC, and secure data frames. The objective of our analysis is to sepa-
rate the contributions of communication and processing from the total overhead. We
have accomplished such a task in the case of CCM_16, which causes the largest
overhead (see Table 2.2) from both the processing (encyphering and hashing) and
the communication (largest MIC) viewpoint.

The communication overhead C has been evaluated as the difference between
F , the number of transmitted data frames in the “No security” mode, and F ∗a16

, the
number of data frames transmitted when frames have the same size as frames in
CBC_MAC_16 mode (see Table 2.2). That is, C = (F − F ∗a16

). In order to evaluate
F ∗a16

, we have transmitted unsecured data frames whose payload (18 bytes) has been
increased by the size of the MIC field (16 bytes) and the ASH (10 bytes), for a total of
44 bytes. F ∗a16

amounts to 6091.7 data frames. Frames are pre-prepared in order to
avoid any processing overhead. The communication overhead C results in a decre-
ment of transmitted frames equal to 1593.8. As CCM_16 causes a total decrement
equal to (7685.5− 5082.1) = 2603.4 frames (see Table 2.2), then the communication
overhead represents the 61.2% of the overall overhead (i.e. 2603.4 data frames).

The processing overhead P can be determined as the difference between the total
overhead and the communication overhead, i.e. P = (F −Fea16−C). P results equal
to 1009.6 unsent data frames, which amounts to the 38.8% of the whole overhead.
Note that P is given by three processing overhead subcomponents, i.e. i) building
and handling the ASH, ii) computing the MIC, and, finally, iii) encrypting the frame.
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2.3.3 Impact on energy consumption

While evaluating how security impacts on WSNs, it is also important to consider the
costs in terms of energy consumption due to the additional communications and com-
putations required by any given security mode. More in detail, a security mode re-
quires the following operations: i) extra communications for the transmission of the
ASH and the MIC; ii) extra computation at the hardware level for encryption/decryption
and/or generation/verification of the MIC; iii) extra computation for security manage-
ment, e.g. retrieving keys from the Key Table or ASH parsing. Operations i) and ii) are
performed by the CC2420 chipset, while operation iii) involves the MSP430 microcon-
troller. Thus, the extra energy consumption E of a given security mode is given by
E = Ec + Es + Ep, where Ec, Es, and Ep are the energy consumptions associated
to i), ii), and iii), respectively.

Each component Ex, x ∈ {c, s, p}, is evaluated as Ex = Vx × Ix × tx, where Vx
and Ix are, respectively, the supply voltage and the absorbed current of the hardware
device performing operation x, and tx is the duration of the operation. The time inter-
val tx has been computed according to the same experimental method described in
Section 2.3.2, by properly bypassing operations not involved in the energy component
under exam. Values of Vx and Ix are those specified by the CC2420 and TmoteSky
motes data sheets [74][99]. If security is on, we refer to KeyIdMode2 and the CCM_16
security mode, that is the security mode which causes the largest overhead.

E V I t
Involved

component
Ec = 240.54 µJ 3.6 V 17.4 mA 3.84 ms CC2420
Es = 150.34 µJ 3.6 V 17.4 mA 2.40 ms CC2420
Ep = 2.66 µJ 3 V 600 µA 1.48 ms MSP430

Table 2.3. Energy consumption overview.

Table 2.3 provides the energy consumption components, and reports related sup-
ply voltage, current consumption, and time intervals. More details follow.

• Ec = Vc×Ic× tc is the additional energy comsumed to transmit one secured data
frame because of the presence of the ASH and the MIC. Since frames transmis-
sion involves the CC2420 chipset, the supply voltage Vc = 3.6 V and the current
consumption Ic = 17.4 mA have been considered. The time tc has been calcu-
lated as tc = tcea16

− tc0 . In particular, tcea16
is the time required to transmit an

unsecured data frame with a 44 bytes payload, thus simulating the presence of
the ASH and the MIC. On the other hand, tc0 is the time required to transmit an
unsecured basic data frame with a 18 bytes payload.

• Es = Vs × Is × ts is the additional energy comsumed to perform hardware en-
cryption and authentication. Since these operations involve the CC2420 chipset,
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the supply voltage Vs = 3.6 V and the current consumption Is = 17.4 mA have
been considered. The time ts has been calculated as ts = tsea16

− ts0 . In par-
ticular, tsea16

is the time required to transmit a secured data frame having a 18
bytes payload, performing all hardware security operations but not the security
management operations. On the other hand, ts0 is the time required to transmit
an unsecured basic data frame with a 18 bytes payload.

• Ep = Vp × Ip × tp is the additional energy comsumed to perform security man-
agement operations. Since these operations involve the MSP430 microcontroller,
the supply voltage Vp = 3 V and the current consumption Ip = 600 µA have been
considered. The time tp has been calculated as tp = tpea16

− tp0 . In particular,
tpea16

is the time required to transmit a data frame having a 18 bytes payload, per-
forming all security management operations but not the actual hardware security
operations. Instead, tp0

is the time required to transmit an unsecured data frame
with a 44 bytes payload, thus simulating the presence of the ASH and the MIC.

Finally, the overall extra energy consumption due to the presence of security ser-
vices is E = Ec + Es + Ep = 393.54 µJ per data frame.

14



3

Security in ZigBee networks

ZigBee is an emerging standard for low-power, low-rate wireless communication
which aims at interoperability and encompasses a full range of devices even including
low-end battery-powered sensor nodes [116]. It is built upon the physical layer and
medium access control defined in the IEEE 802.15.4 standard (2003 version) [51].

ZigBee Specification includes a number of security provisions and options. In par-
ticular, ZigBee provides facilities for carrying out secure communication, protecting
establishment and transport of cryptographic keys, cyphering frames and controlling
devices. ZigBee improves the basic security framework defined in IEEE 802.15.4,
focusing also on establishment and distribution of cryptographic keys.

ZigBee Specification provides two security models, namely Standard Security
Mode and High Security Mode. While the former is designed for lower security res-
idential applications, the latter is intended to be used for high security commercial
applications. Also, the security model provided by the Smart Energy Profile [117] is
asserting itself as a reference security model for ZigBee applications, since it consti-
tutes a trade-off between the two standard modes.

In this chapter, we introduce ZigBee security mechanisms and the Smart Energy
Profile security model. Then, we show that two critical issues related to cryptographic
key renewal and device authentication have not been adequately addressed, and pro-
pose our solutions to them. More detailed information can be found in [45][95].

3.1 Overview

ZigBee is a specification for a suite of high level communication protocols, intended for
devices equipped with small and low-power digital radios based on the IEEE 802.15.4
standard [51]. As reported in [35], ZigBee and IEEE 802.15.4 are standard-based pro-
tocols which provide the network infrastructure required for wireless sensor network
applications. As depicted in Figure 3.1, IEEE 802.15.4 defines the physical and MAC
layers, while ZigBee defines the network and application layers.
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Figure 3.1. ZigBee protocol stack.

The IEEE 802.15.4 MAC layer provides reliable communication between a node
and its immediate neighbors, addressing collision avoidance and improving efficiency.
The MAC layer also assembles and decomposes data packets and frames, while the
physical layer provides the interface to the physical transmission medium (e.g. radio).

ZigBee places itself on top of the IEEE 802.15.4 PHY and MAC layers. Basically,
it is formed by the application (APL) layer and the network (NWK) layer. Among other
things, the application layer specifies frame formats for transporting data and provides
a data service to the applications, while the network layer handles network manage-
ment and routing by invoking actions in the MAC layer. Security is provided in a cross-
layered fashion, involving both the application and the network layer.

According to the Specification [116], a ZigBee network may comprise three types
of devices: Coordinator , Router , and end device. With reference to the device types
in an IEEE 802.15.4 network, the ZigBee Coordinator corresponds to the PAN Co-
ordinator, a Router corresponds to a Coordinator and an end device corresponds to
an RFD or an FFD which is neither a Coordinator nor the PAN Coordinator. In the
following, we use the ZigBee terminology to indicate devices.

The ZigBee network layer (NWK) supports Star, Tree, and Mesh topologies. In
the Star topology, the network is controlled by the Coordinator, which is responsible
for initiating and maintaining the devices on the network, while end devices directly
communicate with the Coordinator. In Mesh and Tree topologies, the Coordinator is
responsible for starting the network and for choosing certain key network parame-
ters. However, the network may also be extended through the use of ZigBee Routers,
while routes are established by means of a routing protocol similar to the Ad hoc On-
demand Distance Vector (AODV) protocol [27]. In Tree networks, Routers move data
and control messages through the network using a hierarchical routing strategy.
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3.2 ZigBee application profiles

ZigBee provides some application profiles that specify possible collections of devices,
and a set of messages used by devices to communicate with one another. Each ap-
plication profile describes also some clusters, i.e. sets of parameters and commands
(some mandatory) that devices have to use in order to interoperate within the network.
Nowadays, the most important and promising ZigBee application profiles are Home
Automation [115] and Smart Energy [117].

The ZigBee Home Automation profile defines device descriptions and standard
practices for applications needed in a residential or light commercial environment. In
particular, it provides standard interfaces and device definitions to allow interoperabil-
ity among ZigBee devices produced by various manufacturers of home automation
products. Installation scenarios range from a single room to an entire home. The key
application domains included so far are lighting, HVAC, window shades and secu-
rity. Also, this profile primarily focuses on sporadic real time control of devices. Other
applications will be added in future versions.

The ZigBee Smart Energy Profile (SEP) provides device descriptions and stan-
dard practices for Demand Response and Load Management Smart Energy applica-
tions, and is tailored for residential or light commercial environment. Possible sce-
narios include single homes or even an entire apartment complex. Currently, key
application domains are metering, pricing, and demand response and load control
applications. SEP specification provides standard interfaces and device definitions to
allow interoperability among ZigBee devices produced by various manufacturers of
electrical equipment, meters, and Smart Energy enabling products.

3.3 ZigBee security services

ZigBee security mechanisms fit very well with the security services provided by the
IEEE 802.15.4 MAC layer. Communication can be protected by means of symmetric
key encryption, in an end-to-end fashion. In particular, a ZigBee network must com-
prise one Trust Center , a node, typically the ZigBee Coordinator, which provides key
management and other security services. ZigBee security relies on the Advanced
Encryption Standard (AES) [78] and the CCM* Mode (i.e. encryption and authenti-
cation). Also, two distinct security modes are available, that is the Standard Security
Mode and the High Security Mode.

Security is provided on an end-to-end basis in a cross-layer fashion, that is both
from the Network (NWK) and the Application Support sub-layer (APS). Specifically,
the layer that originates a ZigBee frame is responsible for initially securing it. ZigBee
frames can be both encrypted and authenticated. In case authentication is requested,
an additional Message Integrity Code (MIC) is appended next to the frame payload.
Note that only data frames and command frames can be secured, while ACK frames
are always sent in the clear.
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Octets: 1 4 0/8 0/1
Security Frame Source Key sequence
control counter address number

Table 3.1. ZigBee Auxiliary Security Header.

Protected frames include an additional Auxiliary Security Header (ASH) just be-
fore the payload. The structure of the ASH is shown in Table 3.1. The Security control
field indicates by means of which key an outgoing (incoming) ZigBee frame has to be
(is) secured, the MIC size in bytes (i.e. 0, 4, 8, 16) and whether or not the payload
is encrypted. The Frame counter field is used to verify frame freshness and pre-
vent processing of duplicate frames (anti-replay ). When present, the Source address
field indicates the extended 64-bit address of the device responsible for securing the
frame. Finally, the Key sequence number field indicates the key sequence number of
the Network Key possibly used to secure the current frame.

In order to activate security, the nwkSecurityLevel parameter must be set to a
value greater than zero. ZigBee security is based on the reuse of cryptographic keys
by different layers, in order to reduce storage costs. More specifically, in certain cases
APS frames can be secured by means of security material maintained by the NWK
layer. The APS layer deals also with key management (i.e. key establishment and key
transport) and provides device management services. A Trust Center node, which
typically coincides with the ZigBee Coordinator, handles key management and other
security services.

In order to protect communication within a ZigBee network, up to five different
kinds of cryptographic keys are supposed to be used.

• The Network Key is used to protect NWK frames. It is commonly shared within
the whole ZigBee network, and is typically generated by the Trust Center. It is
supposed to be periodically renewed.

• A Data Link Key can be shared between any two peers to protect APS frames.
• A Key-Transport Key is derived from a Data Link Key. It is used to protect mes-

sages carrying a Network Key, in case of Network Key distribution or renewal.
• The Master Key is a long term secret used during the Symmetric Key Key Estab-

lishment (SKKE) protocol. However, it is present only in High Security Mode.
• A Key-Load Key is derived from a Data Link Key. It is used to protect messages

carrying a Master Key. As Master Keys, Key-Load Keys are present only in High
Security Mode.

3.3.1 ZigBee NWK frame protection

If the nwkSecureAllFrames parameter is set to TRUE, security is applied to every
incoming and outgoing NWK data frame. NWK frames are protected by means of the
current Network Key. In particular, for NWK data frames, securityEnabled must be
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specified as TRUE before starting a transmission. Figure 3.2 shows an example of
protected ZigBee NWK data frame.

Figure 3.2. A protected ZigBee NWK frame.

3.3.2 ZigBee APS frame protection

ZigBee frames generated at the APL layer are protected according to their specific
type. Figure 3.3 shows an example of protected ZigBee APS data frame.

• APS data frames are protected using either the Network Key or the Link Key
shared with the recipient node. More specifically, the actual key to be used de-
pends on the specific application profile which the particular data frame refers to.

• Transport Key commands are used to carry cryptographic keys. The key used to
protect them must be selected according to the key to be transported and pro-
tected. For instance, Key-Transport Keys are used to protect Network Keys.

• Other APS commands are supposed to be protected by means of the Data Link
Key shared with the recipient node. In case such a key could not be retrieved, the
Network Key can be used. In the latter case, if the NWK layer is already applying
security (i.e. the nwkSecureAllFrames parameter is set to TRUE), then the APS
layer must not have to.

Figure 3.3. A protected ZigBee APS frame.

3.3.3 ZigBee security modes

As stated before, ZigBee provides two distinct security modes. The Standard Secu-
rity Mode is designed for lower-security residential applications (e.g. Home Automa-
tion scenarios). The Trust Center device is supposed to maintain a Network Key and
control network admittance policies. Also, the Network Key is either pre-installed on
devices, or obtained unsecurely before joining the network. Potential Data Link Keys
must be pre-installed, and almost no key management functionalities are provided.
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Figure 3.4. Key relationships in High Security Mode.

On the other hand, the High Security Mode is designed for high security commer-
cial applications. The Trust Center is supposed to maintain a list of devices, Master
Keys, Data Link Keys and Network Keys. In addition, the High Security Mode man-
dates devices authentication and Link Keys establishment with the Trust Center, by
means of the Symmetric Key Key Establishment (SKKE) protocol, based on Elliptic
Curve Cryptography [28]. According to the SKKE, two peers agree on a Master Key
and exchange ephemeral quantities. Then they generate a common Data Link Key
by means of a Key Derivation Function, and confirm with each other that the new
key has been correctly established. Figure 3.4 summarizes the relationships among
cryptographic keys in High Security Mode.

3.4 Security in ZigBee Smart Energy Profile

The ZigBee Smart Energy Profile (SEP) considers security as a major issue and
includes precise mechanisms to secure communication, as well as a proper Key Es-
tablishment Cluster [117]. Besides, it refers to the ZigBee Standard Security Mode,
but provides several improvements and enhancements.

In order to become part of a ZigBee network, a new device has to pass through a
process called Commissioning, which is known as the task of configuring devices and
networks to achieve the needs of the specific installation [34]. The ZigBee Alliance
has recognized the importance of Commissioning and, in particular, the importance
of specifications for Commissioning in a multi-vendor environment. According to SEP,
devices can form their own network or join an existing network.

The Commissioning process is critical from a security viewpoint, but it has to be
simple from a user perspective, and capable to provide some sort of feedback. Be-
sides, it is assumed to be accomplished by a trusted person. A Commissioning Cluster
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is currently under development [114]. However, from a very high level of abstraction,
Commissioning consists of the following steps:

1. The network must be informed of the device that is to be joined. This operation is
done through out-of-band means, which could include a web login, a phone call to
a service center, or an interaction through an hand-held appliance. By means of
this operation, the network is made aware of the device identifier (ID) and security
information appropriate for the device.

2. The network is put into permit joining ON state.
3. The installer/homeowner is prompted to press a button or complete a menu se-

quence that tells the device to attempt to join the network.
4. The device attempts to join the network. In doing that, the device is authenticated

using the appropriate security mechanisms and new keying material is distributed
using the Key Establishment Cluster. In the following, we refer to this step as Join
procedure.

5. An indicator is provided for the installer/homeowner indicating the device has
joined the network and authenticated properly or provides information about im-
proper authentication.

6. The device can now operate normally on the network.

Step 1 assures that the device is under the physical control of the installer user,
and has been explicitly authorized by him to join the ZigBee network. The Join pro-
cedure is the most complex step and it is described in detail later in this section.
Therefore, the Commissioning process seems to provide a pretty good robustness
regarding device access to the network, thanks to the very first step and to the Key
Establishment Cluster features.

3.4.1 Cryptographic keys

SEP assumes three kinds of keys: the Link Key, the Network Key, and the Key-
Transport Key. A Link Key is an end-to-end key that a device may share with another
device. However, a device must share a Link Key with the Trust Center (TC). This key
is called Trust Center Link Key (TCLK ). The end device and the Trust Center estab-
lish the TCLK during the Join procedure (step 4 of the Commissioning process). The
TCLK is used to protect application level messages and stack commands. SEP allows
the Trust Center to refresh the TCLK established with an end device, but suggests that
it should be an infrequent operation.

A Network key is shared by all devices and is used to protect management and
control communication. Also application level data and commands can be protected
by means of the Network Key, in case either a Link Key can not be retrieved or the
network layer is explicitly requested to secure outgoing frames.

Finally, every device shares a Key-Transport Key with the Trust Center. This key is
derived from the TCLK, and its main use consists in securing the Network Key refresh
process within the ZigBee network.
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According to SEP, the Trust Center has to periodically refresh the Network Key.
Such a rekeying is protected by means of the Key-Transport Keys. It follows that this
rekeying is performed in a point-to-point way and thus its complexity in terms of rekey-
ing messages amounts to O(n), where n is the number of devices in the network. In
order to prevent potential de-synchronization problems, the Trust Center can order to
start using the new Network Key by sending a proper SWITCH_KEY command to all
devices after the new Network Key has been distributed all over the network.

3.4.2 Device authentication and key establishment

Now we focus on the security mechanisms which take place during the secure Join
procedure. Basically, as specified at step 4 of the Commissioning process, an end
device has to authenticate itself and exchange security information items with the
Trust Center after it has joined the network. Specifically, a device has to obtain the
current Network Key from the Trust Center, and establish a new end-to-end Trust
Center Link Key with it. The key establishment process consists of the following steps:

1. Establishing the TCLK . The Key Establishment Cluster specifies that each device
i has a pre-installed Trust Center Link Key LKi, typically obtained from the device
Installation Code, or similar. LKi is provided to the local Trust Center through out-
of-band means. This operation could take place at step 1 of the Commissioning
process, while informing the Trust Center about the device that is to be joined.

2. Establishing the Key-Transport Key . The device i and the Trust Center can now
obtain the Key-Transport Key TKi deriving it from LKi.

3. Distributing the Network Key . As soon as the device i has joined the network, the
Trust Center sends it the Network Key NK encrypted by means of TKi.

4. Establishing a new Link Key . As soon as the Join procedure has been completed,
the Trust Center must update the Trust Center Link Key LKi of the joining device
i as described below.

According to the Key Establishment Cluster, during the Join procedure the key
establishment process should follow the Certificate-Based Key Establishment (CBKE)
method, since it provides the most comprehensive form of key exchange among two
nodes in the network. Every device holds a certificate issued by a trusted Certification
Authority (CA). Through such a certificate, it is possible to retrieve the device public
key and other useful security information. The main reason that led to adopt the CBKE
method is the need to safely identify a device, before it can start data communication.

The key establishment process between an initiator and a responder consists es-
sentially in the following four steps:

1. Exchange Static and Ephemeral Data.
2. Generate Key Bitstream.
3. Derive Message Authentication Code (MAC) key and Key Data.
4. Confirm Key using MAC.
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Figure 3.5. Key relationships in ZigBee Smart Energy Profile.

Regarding the second and third step, the key establishment procedure refers to
the Elliptic Curve MQV key agreement scheme and a Key Derivation Function re-
spectively, both described in [28]. At the end of this process, the Trust Center and the
end device i share a new Link Key LKi that is going to be used to protect data com-
munication between them. Observe that the new Key-Transport Key TKi is obtained
from the new Link Key LKi just established. Figure 3.5 summarizes the relationships
among cryptographic keys in ZigBee Smart Energy Profile.

Figure 3.6. Pairwise Data Link Key establishment.

Once a device i has joined and been authenticated via key establishment and ob-
tained an authorized Link Key LKi with the Trust Center, it may need to communicate
with another device j on the network, using application layer encryption. Rather than
using key establishment between them, it would be advantageous to leverage the
Trust Center to broker trust with other devices on the network. In fact, if two devices i
and j have both obtained their Link Key with the Trust Center via key establishment,
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then they both trust the Trust Center. So both devices use the Trust Center to request
a Link Key with each other. The Trust Center responds to each node individually, send-
ing a randomly generated Link Key LKij , protecting it by means of the respective Link
Key LKi and LKj . Figure 3.6 summarizes the pairwise Data Link Key establishment.

3.4.3 Leaving the network

A device that has temporarily lost its connection to the network can perform a rejoin by
means of a NWK Rejoin procedure. First, the device must attempt a secured rejoin,
using the current Network Key. In case of failure (i.e. the Network Key has just been
refreshed), it must attempt an unsecured rejoin, which will be successful only if the
Trust Center has a Link Key with the device that was established using the Key Es-
tablishment Cluster. In case even the unsecured rejoin fails, the device has no other
options but to repeat the standard Join procedure from the start. Finally, if a device
i leaves the network, the Trust Center must remove the Trust Center Link Key LKi

assigned to that device.

3.5 Security concerns and possible solutions

In this section, we highlight security concerns we have found in the Smart Energy
Profile (SEP), and propose possible solutions.

3.5.1 On supporting forward security

In general, a device leaves the network when it has accomplished its mission and
thus it is dismissed or when it is momentarily sent to maintenance. Furthermore, a
device may be forced to leave the network if it is compromised or suspected to be
so. In any case, a device that has left the network must not be able to access any
further communication in the network (forward security). Otherwise, if it ends up into
an adversary’s hands, she could abuse of the keying material still stored in the device.
For this reason, the forward security requirement is typically achieved by a proper key
revocation and redistribution (rekeying) policy [92]. In this section, we argue that SEP
fails to specify a proper rekeying policy, so raising security and efficiency concerns.

As stated in Section 3.4.3, when a device i leaves, or is forced to leave, the net-
work, the Trust Center must revoke the Trust Center Link Key LKi assigned to that
device. In order to do that, the Trust Center can simply delete that key. By doing so,
the device will be unable to establish any further connection with the Trust Center,
since it is not associated to any valid Link Key anymore.

However, SEP says nothing about the Network and Link Key management upon
a device leaving. More precisely, a device that has left the network still retains the
Network Key NK and all Link Keys LKs it established with peer devices. If these
keys are not properly revoked and redistributed, the device remains able to overhear
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and/or actively take part in all communication protected by means of these keys. In the
case of the Network Key, this threat is particularly serious because the device would
be able to access all communication protected by the NWK layer security, namely
network and application layer commands and even application data messages, when
allowed by the specific application profile. Thus, if the device is compromised, the
adversary controlling it could exploit the Network Key to spoof and inject bogus rout-
ing information—e.g., false routes, bogus information about network status and link
conditions—and perform highly disruptive routing attacks such as the sinkhole and
selective forwarding attack [24].

As to the Network Key, the ZigBee Specification dictates that the Trust Center
must refresh such a key periodically, but it neither clarifies how to determine the re-
fresh period nor, more importantly, specifies any event that asynchronously triggers
the Network Key refresh. This implies that an implementation that does not refresh
the Network Key upon a node’s leaving, and thus becomes exposed to the aforemen-
tioned threats, would be still compliant with ZigBee Specification.

A possible solution consists in revoking the Network Key every time a device
leaves and redistributing a new one to all remaining nodes. Rekeying also assures
that a device which has left is not able to perform a secured rejoin, being forced to
employ the Key Establishment Cluster procedure to rejoin the network.

In fact, ZigBee provides two ways to refresh the Network Key: broadcast-based re-
fresh and unicast-based refresh. In the broadcast-based refreshing, the new Network
Key NK+ is protected by means of the current Network Key NK. This is certainly
a suitable solution for protecting the Network Key periodic refreshing against an ex-
ternal adversary. However, it is not acceptable for refreshing the Network Key upon
a device’s leaving of the network. Actually, in this case the current Network Key NK
is compromised and cannot be trusted anymore. In such a case, the unicast-based
refreshing can be used instead. In the unicast-based refreshing, the new Network Key
NK+ is delivered to every device i in a one-to-one fashion, protecting it by means of
the device’s Key-Transport Key TKi. Although this solution is secure, it clearly has
scalability limitations, due to the amount of encryptions and rekeying messages that
grows according to O(n), where n is the number of devices in the network [92].

As to the Link Key between two devices, neither the ZigBee Specification nor SEP
specify how to deal with it when one of the two devices leaves the network. Thus,
it would be reasonable and wise to invalidate also all Link Keys that a leaving node
has established with every other peer device which is still a member of the ZigBee
network. However, ZigBee provides no mechanisms to explicitly inform a device that
another one has left the network.

It must be said that ZigBee provides a mechanism to notify that a device is about
to leave the network. However, such a mechanism is designed just to assure that
network activity, basically the routing process, can be kept alive after a device has left
the network. Also, an application layer command is present, but it is meant to be used
by Routers to inform just the Trust Center that another device has a status that needs
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to be updated (i.e. it left the network). So, as a matter of fact, ZigBee does not provide
an explicit way to inform nodes about a device which has left the network.

A possible solution to efficiently and securely managing rekeying could be at the
application level, so avoiding the security features directly provided by ZigBee. How-
ever, as clarified within ZigBee Specification, every application level protocol message
requires proper identifiers for the presently considered application profile, cluster and
command, each one with its specific payload. Thus, the introduction of an application
level protocol might involve the extension of existing clusters with new commands or,
as an alternative, even the definition of a brand-new manufacturer-specific cluster.

That being said, we claim it is worth defining and introducing a new ZigBee
Key Revocation Cluster , aimed at coping with devices removal and capable to pro-
vide an efficient and secure Link Key and Network Key revocation and redistribu-
tion procedure. This cluster considers rekeying in two steps. The first rekeying step
deals with Network Key revocation and redistribution. There are many network rekey-
ing protocols properly conceived for networks composed of low-power, low-rate de-
vices [41][44][47][69][111]. The advantage of implementing network rekeying at the
application level consists in letting the application/system developer choose the rekey-
ing scheme most suitable to the specific scenario requirements and constraints. The
second rekeying step deals with the Link Key revocation and leverages on the previ-
ous step. After a device i has left the network and the Network Key has been revoked
and redistributed, the Trust Center notifies every remaining device of that event by
means of a broadcast message authenticated by the new Network Key. Upon receiv-
ing the notification message, each device j, i 6= j, can verify if it is sharing a Link Key
LKij with i, and, if this is the case, discard it.

3.5.2 On supporting backward security

In order to guarantee backward security as well, it would be wise to refresh the cur-
rent Network Key NK each time a new device i is about to join the ZigBee network.
If we exclude the presence of malicious nodes within the network, it is sufficient to
broadcast a new Network Key NK+ to all present devices, protecting it via the cur-
rent Network Key NK. Then, every node will start using NK+ as the current Network
Key. Once this procedure has been completed, the new device i is allowed to se-
curely join the network, and the Trust Center provides it with the Network Key NK+,
as described in Section 3.4.

3.5.3 Certificate management

As discussed in Section 3.4.2, the key establishment process follows the Certificate-
Based Key Establishment (CBKE) scheme. This implies that every device holds a
certificate issued by a Certification Authority (CA). In order to generate certificates
and verify their validity, SEP refers to the ECQV Implicit Certificate Scheme [29].
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CBKE provides every device with an implicit certificate and the public key of the
CA releasing the certificate, also called the CA root key . Implicit certificates include
neither the subject public key nor a traditional CA’s signature. Thereby they are sup-
posed to be smaller than conventional certificates, as well as more efficient to handle,
since there is no signature to be verified. However, they make it possible to compute
the certified public key, which is retrieved by means of the CA root key.

ZigBee Key Establishment Cluster claims that many different subjects can is-
sue certificates, namely device manufacturers, device distributors, and even end-
customers. However, it seems to underestimate the management issue that ensues
from the limited storage resources on ZigBee end devices. Actually, in order that any
Coordinator and any end device, possibly coming from different manufacturers or dif-
ferent distributors, can inter-operate, it is necessary that they are able to authenticate
each other. This requires that the one is able to verify the other’s certificate. It follows
that each device should store the root key of every possible certification authority
releasing implicit certificates for devices. While we can reasonably assume that a Co-
ordinator has no storage limitations, and thus can keep a large set of root keys, the
same does not hold for end devices that have scarce storage resources. Of course,
at the other extreme of the spectrum of solutions, we can assume the existence of
a single certification authority, or, at least, a very limited number, so as to manage
a meager number of root keys. However, practice proves that this approach is pretty
unrealistic and might lead to a monopoly regime.

In order to provide a practical solution to this problem, we introduce another level
of certification. We assume that the network administrator, i.e. the installer or the
homeowner, runs a Home Certification Authority (CAH ) which stores the root keys
of certification authorities releasing implicit certificates for devices. We call this set of
keys the Root Keys Database. The task of the Home Certification Authority consists
in verifying the certificate pre-installed in a device and, if the verification succeeds,
issuing a new certificate for that device. We call this process home-certification.

More in detail, let D be a device, KD its public key and 〈D〉CA a certificate re-
leased to D by a given certification authority CA (see Figure 3.7). The certificate
is pre-installed in the device. The Home Certification Authority home-certificates the
device according to the following steps.

1. The Home Certification Authority CAH obtains the device’s certificate 〈D〉CA .
2. CAH retrieves the CA’s root key from the Root Keys Database and verifies 〈D〉CA

by means of that key (if the key is not present, CAH obtains it from the Internet
and updates the database).

3. CAH issues a new home-certificate for D, namely 〈D〉CAH
.

4. The new home-certificate 〈D〉CAH
is installed in the device D.

If the home-certification is applied to the Trust Center at the moment the network
is started up, later any device that joins the network needs only to know and store
KCAH

in order to authenticate the Trust Center certificate 〈TC〉CAH
. So doing, the
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Figure 3.7. Home-certification.

storage demand for authentication is drastically reduced to just one key. The most
reasonable choice is to provide a device with KCAH

during the execution instance of
the Commissioning process for that device, and before the Join procedure is carried
out (see Section 3.4). Observe that devices can trust KCAH

since it has been created
by CAH which, in turn, is managed by the network manager. So, trustworthiness of
KCAH

is clearly related to the network manager capability to manage CAH .
If the home-certification is applied not only to the Trust Center but also to other

devices, then also the Trust Center needs to store only the public key KCAH
of the

Home Certification Authority CAH to authenticate every device. Thus, storage saving
may be also at the Trust Center side. Finally, we observe that even the Trust Center
can act as the Home Certification Authority CAH . However, in this case it should have
to store the Root Keys Database, so losing every benefit in terms of storage saving
deriving from the home-certification of devices.

The proposal discussed above introduces some new challenges: the user would
have in his own hands a core component of the security architecture. Therefore, she
should be capable of managing her home CA and issuing new certificates. Thus,
this approach could evidently turn out to be in contrast with the simplicity recommen-
dations provided by ZigBee Specification and ZigBee application profiles about user
duties within the network. On the other hand, it is evident the lack of clear specifica-
tions about how to organize the Public Key Infrastructure, in order to validate device
certificates. Nevertheless, it is really important to focus on assuring simplicity to the
final user while coping with that.
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Key Management in secure group communication

Group communication has proven to be a suitable and efficient communication model
for distributed systems in many different application scenarios, including content distri-
bution, Wireless Sensor Networks (WSNs), teleconferencing, wargaming, and others.
These application scenarios typically involve a large number of participants, which
dynamically join and leave the application, so causing group membership to change
frequently. Furthermore, they also require that group communication is protected from
unauthorized accesses. This is achieved by restricting the access to group communi-
cation to group members only.

Intuitively, this is achieved by distributing a group key to all group members which
use it to encrypt (decrypt) messages broadcast (received) within the group. Good
cryptographic practices suggest to periodically refresh the key in order to prevent
cryptanalysis. Furthermore, when a new user joins the group, she must not be able
to access any group communication prior its joining (backward security ). Besides,
when a current member leaves the group, she must be prevented from accessing
any further group communication (forward security ). As a consequence, upon a new
user’s joining or a current one’s leaving, the current group key has to be revoked and
a new one has to be distributed. This process is known as rekeying, and makes it
possible to fulfill the backward and forward security requirements [92].

Rekeying the group upon a new member’s joining is actually trivial. In contrast,
rekeying the group upon a current member’s leaving is a far more complex prob-
lem. A naïve solution consists in separately rekeying every remaining member, by
transmitting that member the new group key encrypted with the member’s secret key.
Although very simple, this solution requires O(n) rekeying messages, where n is the
group size, and thus scales poorly. Actually, efficient rekeying requires to broadcast
the new group key in its encrypted form into the group. However, the current group key
cannot be used, because the leaving member is aware of it. A typical approach is to
encrypt rekeying messages by means of administrative keys that are not known to the
evicted member. Furthermore, the administrative keys known to the evicted member
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should also be replaced. It follows that efficient rekeying is a crucial component in any
secure group communication system [13][23][33][72][73][77][92][96].

A group member may leave a group for several reasons. For instance, because its
mission is concluded, its subscription is expired, or it has failed or depleted its energy.
Also, a group member may be forced to leave because it has been compromised or
it is suspected so. A collusion attack occurs when evicted compromised members
share their security material in order to regain access to the group key [92]. A typical
collusion attack consists of an adversary capturing a set of users, incrementally ag-
gregating the uncovered keying material of individual members to a level that allows
revealing the group key and, consequently, all encrypted traffic in the network. No
group rekeying scheme is exempt from collusion attacks, and different schemes dis-
play different levels of resilience [33][55][56][67][68][71]. After a successful collusion
attack, group rekeying schemes generally require a total group recovery , i.e. every
group member must be re-initialised in a one-to-one fashion. Of course, such a total
group recovery has a negatively impact on the overall rekeying performance.

In this chapter, we describe HISS [47], a highly scalable rekeying scheme for
large scale, dynamic groups. HISS is centralized and levers on logical subgrouping,
a consolidated conceptual technique that has been already exploited in several ex-
isting group rekeying schemes [23][33][44][55][67][68][70][71]. HISS partitions group
members into non overlapping logical subgroups that become the units of rekeying
and recovery from collusion attacks. With respect to other rekeying schemes based
on subgrouping, HISS features two novel contributions.

First, unlike other well-known centralized approaches [23][33][44][55], HISS rekeys
the system with a number of messages that is small, constant, and independent of
the group size, thus resulting highly scalable and efficient. Specifically, HISS only re-
quires two broadcast messages to rekey the system, so displaying O(1) communica-
tion complexity. One broadcast message rekeys the subgroup containing the leaving
member, and another one rekeys all the remaining subgroups.

Second, differently from [67][68][70][71], HISS considers collusion attacks as a
first-class problem, and provides an integrated recovery protocol that re-establishes
security as soon as a collusion attack has been detected. Such a protocol gracefully
decreases in efficiency with the collusion attack severity, and does not require a total
group recovery of the system. In fact, only compromised subgroups are totally re-
covered, whereas uncompromised ones are efficiently rekeyed by a single broadcast
message each. The rational basis for this is that while rekeying accounts for the nor-
mal functioning of the system (joining or a leaving), recovery has to be considered
an exceptional event. Therefore, according to the well-known Lampson’s recommen-
dations for computer systems design [19], while rekeying must be very efficient, it is
sufficient that recovery is able to make progress provided it remains practically sus-
tainable. Also, we show that a proper allocation of users to subgroups may practically
increase the resilience of HISS to collusion attacks or, even, prevent them altogether.
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4.1 System architecture

We consider a group G of users. A user becomes member of the group by explic-
itly joining it. As a member of the group, a user may broadcast messages to other
members. Later, a member may voluntarily leave the group or be forced to leave if
compromised or suspected to be so. In order to guarantee security of group commu-
nication, it is generally required that when a user joins the group it is not able to ac-
cess group communication prior its joining (backward security ), and that when a user
leaves the group it is prevented from accessing any further group communication (for-
ward security ). In order to achieve this, group members share a secret cryptographic
key, the group key, which they use to encrypt and decrypt messages transmitted and
received, respectively, within the group. We denote by KG the group key of the group
G. When a new user joins or a current member leaves the group, the current group
key is revoked and a new one is distributed. We call this operation rekeying.

The group is managed by a Group Controller (GC), which is composed of three
different components: a Group Membership Service (GMS), a Key Management Sys-
tem (KMS), and an Intrusion Detection System (IDS). The GMS maintains group
membership by keeping track of users that join and leave the group. A user wish-
ing to join the group invokes the join operation. Later, a user may leave the group
by invoking the leave operation. As they are exposed to attackers, the IDS monitors
network activities to detect compromised users. As there exist no sure and efficient
way to readily detect a single user capture [68][94], the IDS may return multiple com-
promised users at once. Upon detecting them, the IDS invokes the leave operation
specifying the set Gc of compromised users, in order to have them evicted from the
group. The IDS component is beyond the scope of this dissertation, and readers may
refer to [18][38][61][83][93][109] for more details.

Figure 4.1. The Group Controller GC.

Whenever a user joins, leaves or is evicted, the group key has to be renewed
in order to guarantee the backward and forward security requirements. The KMS is
responsible for the rekeying task. When managing a change in the group membership,
the GMS activates a rekeying. In particular, it invokes the rekey(u, join) operation when
a new user u joins the group, or the rekey(Gc, leave) operation when a setGc of users
have to leave the group. Figure 4.1 shows the architecture described above.
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In a centralized approach, GC is implemented by a resourceful computing node
that is generally more powerful than users. GC may be a server with plentiful of com-
puting, storage, communication, and power resources. Furthermore, we assume that
GC is trustworthy and thus cannot be compromised by attackers. Although server
security is still a research issue, the literature provides a number of established tech-
niques and methodologies to keep servers secure. For instance, good starting read-
ings are [36][88]. In the following, we detail the Key Manager (KM) that implements
the Key Management System in the centralized approach.

4.2 The rekeying scheme

In this section, we describe HISS. Specifically, in Section 4.2.1, we provide an informal
description of the basic rekeying scheme with particular reference to key revocation
and distribution upon a user’s leaving. Then, in Section 4.2.2, we introduce the prob-
lem of collusion attack, and give an informal description of how HISS solves it. Finally,
in Section 4.2.3, we present the rekeying protocols that manage a user’s leaving and
joining, as well as the recovery from multiple colluding user captures.

4.2.1 The basic scheme

We assume that the group G is partitioned into a set S of nonempty subgroups,
such that every member of G is exactly in one of these subgroups. More formally, let
S ⊆ 2G be a partition of G. Then, ∀S, S′ ∈ S, S ∩ S′ = ∅, and

⋃
S∈S S = G. We

call cognate two users belonging to the same subgroup. Furthermore, we consider
the function SubgroupOf : G → S that returns the subgroup of a given user, i.e.
∀u ∈ G,∀S ∈ S, S = SubgroupOf(u) iffu ∈ S. Subgroups are relevant only for key
management and have no application-level meaning. Finally, we consider the function
SubgroupSetOf : 2G → S that given G′ ⊆ G returns a set of subgroups S ′ such that
∀u ∈ G′ ⇒ SubgroupOf(u) ∈ S ′ and ∀S ∈ S ′, S ∩G 6= ∅.

We assume that every user and every subgroup are associated with random quan-
tities called tokens. We call user tokens and subgroup tokens the tokens associated
with users and subgroups, respectively. We denote by tu the token associated to user
u, and by tS the subgroup token associated to subgroup S. We also assume that
every user a priori shares a user key with the Key Manager KM. We denote by Ku

the user key of user u. Finally, we assume that every subgroup is associated to a
subgroup key . We denote by KS the subgroup key of subgroup S ∈ S. A subgroup
key is shared between the Key Manager KM and every user in the subgroup. KM and
users keep tokens and keys secret.

The Key Manager maintains subgroups, tokens and keys for all users and sub-
groups in the system. In particular, the Key Manager records: i) all user tokens in
the User Token Set (UTS ); ii) all subgroup tokens in the Subgroup Token Set (STS );
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iii) all user keys in the User Key Set (UKS ); and, finally, iv) all subgroup keys in the
Subgroup Key Set (SKS ).

Let us consider a user u belonging to a subgroup S, i.e. S = SubgroupOf(u). The
user maintains its user keyKu and the subgroup keyKS associated with its subgroup
S. Furthermore, the user maintains the User Token Set UTSu, namely the set of user
tokens associated to its cognate users. More formally,

UTSu = {tv|v ∈ S ∧ v 6= u}. (4.1)

Finally, the user u maintains the Subgroup Token Set STSS , i.e. the set of subgroup
tokens of all subgroups belonging to the absolute complement of S in S. More formally,

STSS = STSSubgroupOf(u) = {tR|R ∈ S ∧R 6= S}. (4.2)

wx y

vu z

S

S′

G

S′′

(A)

Subgroup User
User Subgroup

User Key Subgroup Key
Token Set Token Set

S
u {tv, tz} {tS′ , tS′′} Ku KS

v {tu, tz} {tS′ , tS′′} Kv KS

z {tu, tv} {tS′ , tS′′} Kz KS

S′
x {tw, ty} {tS , tS′′} Kx KS′

w {tx, ty} {tS , tS′′} Kw KS′

y {tx, tw} {tS , tS′′} Ky KS′

(B)

Figure 4.2. A) a group G partitioned in three subgroups S, S′, and S′′ and B) the keying
material held by members of S and S′.

In order to fix ideas, without any ambition of generality, consider the example in
Figure 4.2. Figure 4.2-A shows a group G partitioned in three subgroups S, S′, and
S′′, while Figure 4.2-B shows data structures maintained by members of S and S′.

Intuitively, the Key Manager uses tokens to rekey the system in a scalable way as
follows. With reference to Figure 4.2-A, let us suppose that user u ∈ S leaves the
group G and, therefore, the current group key KG has to be revoked and a new one
K+

G redistributed to all members of G but u. In order to distribute the new key to all
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members of S but u, the Key Manager uses tu. By construction, all users in S but u
know tu (see Figure 4.2-B). Therefore, the Key Manager can use tu to generate a key
encryption key, use it to encrypt K+

G , and then broadcast the resulting ciphertext into
S. All members of S but u can use tu to derive the key encryption key, decrypt the
received ciphertext, and, finally, obtain K+

G .
In order to distribute the new key to all the other subgroups, the Key Manager uses

tS . By construction, this token is known to all members of any subgroup S′ different
from S. Thus, user u does not know tS (see Figure 4.2-B). Therefore, the Key Manager
can use tS to generate another key encryption key, use it to encrypt K+

G , and then
broadcast the resulting ciphertext into G. Any user w ∈ S′, S′ 6= S, can derive the key
encryption key, decrypt the received ciphertext, and, finally, obtain K+

G .

4.2.2 Dealing with collusion attacks

Collusion attack is a typical problem in group rekeying [92]. We have a collusion attack
when evicted members share their individual piece of information to regain access to
the group key. Colluding users may be evicted malicious group members working
together or compromised members under the control of the same adversary. In the
worst case, a collusion attack requires a total group recovery , i.e. every single user
of the group has to be re-initialized separately in a one-to-one fashion, thus limiting
efficiency and scalability of the rekeying scheme.

If two or more users are captured within a subgroup, two cases need to be consid-
ered: 1) non colluding user captures (e.g. attacks carried out by different adversaries);
and 2) colluding user captures. In the former case, it is possible to exploit the basic
scheme in order to evict non colluding users (see Section 4.2.1). In the latter case,
colluding attackers may compromise the whole subgroup. Actually, by joining the user
token sets of at least two users it is possible to obtain the whole set of user tokens
associated with the subgroup. With reference to Figure 4.2-A, if users u and v col-
lude, then all user tokens associated to S, namely UTSu ∪ UTSv = {tu, tv, tz}, are
compromised. Thus, user tokens cannot be used to rekey the compromised subgroup.

Notice that, in this case, subgroup tokens can still be used to rekey the other non
compromised subgroups. However, in the most general case, multiple users belong-
ing to two or more subgroups collude. Let us suppose that u, v, w, and x collude.
Similarly to before, all user tokens associated with subgroups S and S′ are compro-
mised. However, with respect to the previous case, the adversary may obtain all the
subgroup tokens by joining the Subgroup Token Sets of any two users belonging to
different subgroups. With reference to Figure 4.2-A, if users u ∈ S andw ∈ S′ collude,
then all the subgroup tokens, namely STSS ∪ STSS′ = {tS , tS′ , tS′′}, are compro-
mised. Thus, subgroup tokens cannot be used to rekey non compromised subgroups.

The basic scheme described in Section 4.2.1 is efficient as it requires just two
broadcast messages to rekey the group upon a member’s leaving, and works well
provided that captured users are non colluding. However, in practice collusion attacks
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can occur, and the group key management system solution has to take this threat into
account. Researchers have pointed out that there exist no sure and efficient way to
readily detect a single user capture [68][94]. Therefore, for a group key management
solution to be truly effective in a hostile environment, it must be able to recover from
multiple user captures.

Let us suppose that r subgroups are compromised due to a collusion attack in-
volving multiple users. Let C ⊆ S be the set of these subgroups. Let U be the absolute
complement of C in S, i.e. U = S \ C. Subgroups in U are not compromised. Then,
every compromised subgroup in C needs to be totally recovered by unicasting the new
keying material to every non captured user using its respective user key. Furthermore,
every non compromised subgroup in U is recovered by broadcasting the new keying
material to the subgroup using its subgroup key.

As it turns out, a collusion attack affects subgroups separately, and does not com-
promise the entire group. More specifically, a total group recovery is not necessary
upon a collusion attack. In contrast, total recovery is necessary only for the subgroups
involved in the attack. The other subgroups that are not involved in the attack can be
efficiently rekeyed by broadcasting the new key material. This form of partial recov-
ery provides a form of graceful degradation of performance, in terms of number of
recovery messages and cryptographic operations.

4.2.3 The protocols

In this section, we present the leave, join, and recovery protocols in a more detailed
way. Each protocol is a master-slave protocol, where the Key Manager is the mas-
ter, and users are the slaves. Every user is structured as a collection of message
handlers. Each handler is denoted by 2 HANDLER handler name. The execution of a
handler is triggered by the reception of the corresponding message, and runs unin-
terrupted until its completion.

We also use the following notation. By h() we denote a one-way hash function [10].
A one-way hash function h() is a function that has the following properties: given an
input x, it is easy to compute the image y, y = h(x), whereas given y it is computa-
tionally unfeasible to compute the preimage x so that y = h(x). Furthermore, given
an input x and its image y = h(x) it is computationally unfeasible to find a second
preimage z such that y = h(z). Examples of one-way hash functions are SHA-1,
SHA-2, and SHA-256 [79]. Furthermore, by kdf () we denote a key derivation func-
tion, that is a pseudo-random function that derives one or more cryptographic keys
from a secret value [15]. Keyed cryptographic hash functions are popular examples
of pseudo-random functions used for key derivation. Finally, by {x}k we denote the
encryption of quantity x by means of key k. Concerning this, we assume that: i) the
cipher is computationally secure; ii) the cryptographic keys are generated by means
of a secure random generator, unless otherwise specified; and iii) key length is ade-
quate to discourage an exhaustive key search [10]. Finally, by u → v : m we denote
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process u sending a unicast message m to process v, whereas by u 9 G : m we
denote process u sending a broadcast message m to the group G.

System initialization

Upon system initialization, the Key Manager performs the following actions: i) ran-
domly generate user tokens and subgroup tokens, as well as user keys and subgroup
keys for all users and subgroups in the system; ii) store tokens and keys into the Key
Manager’s User Token Sets, Subgroup Token Sets, User Key Set, and Subgroup Key
Set, as appropriate (see Section 4.2.1); and iii) initialize every user with the corre-
sponding user and subgroup key as well as the user and subgroup tokens, according
to the subgroup the user belongs to (see Section 4.2.1). User initialization (step iii) is
performed through a pre-existing secure, confidential, and authentic channel.

Forward security

In order to assure forward security, the Key Manager KM relies on two different pro-
tocols, namely the leave protocol and the recovery protocol. The former protocol is
used when a single user has to be evicted from the group G. This may occur when
the user has completed its mission and thus leaves the group. Alternatively, this may
happen when the Intrusion Detection System has detected a single user capture and
thus the compromised user has to be evicted from the group. The recovery protocol is
used in case the Intrusion Detection System has detected multiple possibly colluding
user captures and thus multiple users have to be evicted at the same time.

More specifically, upon receiving the rekey(Gc, leave) call from the Group Mem-
bership Service GMS, the Key Manager KM determines whether to trigger the leave
protocol or the recovery protocol, according to the following steps.

1. If Gc contains a single user u, then KM triggers the leave protocol specifying u as
argument. Otherwise,

2. if Gc contains t users, t > 1, then

a) if the t users belong to different subgroups, i.e. there are no couples of cog-
nate users, then for each user u ∈ Gc, KM triggers an instance of the leave
protocol specifying u. Otherwise,

b) if a number of users in Gc are cognate, i.e. one or more subgroups have been
compromised, then KM triggers the recovery protocol specifying the set Gc

as argument.

It is worthwhile to notice that multiple user captures require the execution of the
recovery protocol if and only if the compromised users are colluding. Actually, the
presence of multiple user captures does not imply in itself that they are colluding too.
If compromised users are not colluding, they can be efficiently evicted from the sys-
tem by means of the leave protocol. In general, determining whether two or more
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compromised users are also colluding may be a difficult task that strictly depends on
the specific application scenario. A conservative application-independent policy, trad-
ing performance for security, could consist in invoking the recovery protocol whenever
the Intrusion Detection System detects multiple user captures.

In the following, we abstract away from both the application scenario and the cor-
responding intrusion detection technique and recovery policy, and present the leave
and recovery protocols in the two respective relevant situations, namely upon a user’s
leaving, or being evicted, and upon evicting a set of colluding captured users. These
two protocols constitute the basic mechanisms for any intrusion management policy.

The leave protocol

Let us suppose that a user u, belonging to the subgroup S, leaves, or is forced to
leave, the group G. The Key Manager KM revokes the current group key KG and dis-
tributes a new one K+

G according to the leave protocol .

KEY MANAGER KM

1. KM generates i) a new group key K+
G ; ii) a new subgroup key K+

S ; iii) a key en-
cryption key KEKu,KEKu ← kdf (tu), to rekey the subgroup S; and iv) a key
encryption key KEKS ,KEKS ← kdf (tS), to rekey all the other subgroups. Then,

2. KM broadcasts the following rekeying messages.

M1 : KM 9 S : u, {K+
G ,K

+
S }KEKu

M2 : KM 9 G \ S : S, {K+
G}KEKS

Finally,

3. KM installs K+
G as the current group key, KG ← K+

G ; installs K+
S as the cur-

rent subgroup key of the subgroup S, KS ← K+
S ; removes tu from UTS ,

UTS ← UTS \ {tu}, and updates the user tokens related to the remaining users
in S, ∀tv ∈ UTS , v ∈ S, tv ← h(tv‖K+

G); and, finally, updates all the subgroup
tokens, ∀t ∈ STS , t← h(t‖K+

G).

USER v

2 HANDLER LH1. Upon receiving message M1, user v, v ∈ S, v 6= u, performs the
following actions.

1. User v computes the key encryption key KEKu,KEKu ← kdf (tu), and uses
it to retrieve the new group key K+

G and the new subgroup key K+
S . Then,
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2. user v installs K+
G as the current group key, KG ← K+

G ; installs K+
S as

the current subgroup key of the subgroup S, KS ← K+
S ; removes tu from

UTSv, UTSv ← UTSv \ {tu}, and updates the remaining user tokens,
∀t ∈ UTSv, t← h(t‖K+

G); and, finally, updates its Subgroup Token Set STSS ,
∀t ∈ STSS , t← h(t‖K+

G).

2 HANDLER LH2. Upon receiving message M2, user v ∈ S′, S′ ∈ S, S′ 6= S, per-
forms the following actions.

1. User v computes the key encryption key KEKS ,KEKS ← kdf (tS), and uses
it to retrieve the new group key K+

G . Then,

2. user v installs K+
G as the current group key, KG ← K+

G , and updates its
Subgroup Token Set, ∀t ∈ STSS′ , t← h(t‖K+

G).

It is worth noting that, in any execution of the leave protocol, a user v receives
either message M1 or message M2. Since both the Key Manager and any user’s
handler have a fixed number of steps, the protocol time complexity is constant.

The recovery protocol

Let Gc be the set of compromised users. KM revokes the current group key KG

and distributes a new one K+
G according to the recovery protocol.

KEY MANAGER KM

1. Initially, KM builds C = SubgroupSetOf(Gc) and U = S \ C. Then, ∀u ∈ Gc,

KM removes u from G and from SubgroupOf(u). Then, KM randomly generates
i) a new group key K+

G ; ii) a new subgroup key K+
S for each compromised sub-

group S ∈ C; iii) a new user token tu for each non compromised user u belonging
to a compromised subgroup S, i.e. u 6∈ Gc, u ∈ S, S ∈ C; and, finally, iv) a new
subgroup token tS for every subgroup S ∈ S. Then,

2. ∀S ∈ C,∀u ∈ S, KM sends u a unicast rekeying message Mu

Mu : KM → u : {K+
G ,K

+
S ,UTS

+
u ,STS

+
S }Ku

carrying the new group key K+
G , the new subgroup key K+

S , the new User To-
ken Set UTS+

u (see equation 4.1) and the new Subgroup Token Set STS+
S (see

equation 4.2) containing, respectively, the new user tokens and the new subgroup
tokens built at step 1.

3. Then, ∀S ∈ U , KM broadcasts a rekeying message MS

MS : KM 9 S : {K+
G ,STS

+
S }KS
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carrying the new group key K+
G and the new Subgroup Token Set STS+

S (see
Equation 4.2) which contains the subgroup tokens built at step 1. Finally,

4. KM installs K+
G as the current group key, KG ← K+

G ; installs the new subgroup
keys as the current subgroup keys of each colluding subgroup belonging to C;
and, finally, updates its own User Token Set UTS and Subgroup Token Set STS
with the user tokens and subgroup tokens generated at step 1.

USER u

2 HANDLER RH1. Upon receiving the unicast rekeying message Mu, non compro-
mised user u belonging to a compromised subgroup S ∈ C performs the following
actions.

1. User u uses the user key Ku shared with KM to decrypt message Mu and re-
trieve the new group key K+

G , the new subgroup key K+
S , the new User Token

Set UTS+
u and the new Subgroup Token Set STS+

S . Then,

2. user u installsK+
G as the current group key,KG ← K+

G ; installsK+
S as the cur-

rent subgroup key of the subgroup S, KS ← K+
S ; and, finally, updates its own

User Token Set, UTSu ← UTS+
u , and Subgroup Token Set, STSS ← STS+

S .

2 HANDLER RH2. Upon receiving the rekeying message MS, user u belonging to a
non compromised subgroup S ∈ U performs the following actions.

1. User u uses the subgroup key KS to decrypt MS and retrieve the new group
key K+

G , and the new Subgroup Token Set STS+
S . Then,

2. user u installsK+
G as the current group key,KG ← K+

G , and the new Subgroup
Token Set STS+

S , as the current Subgroup Token Set, i.e. STSS ← STS+
S .

It is worth noting that, in any execution of the recovery protocol, a user u receives
either message Mu or message MS. Also, involved users execute their own rekeying
operations independently from one another. Since both the Key Manager and any
user’s handler have a fixed number of steps, the protocol time complexity is constant.

Note that in the presence of C ⊂ S compromised subgroups, then U 6= ∅, and the
whole groupG is not entirely compromised. Therefore, in order to restore secure com-
munications, it is not necessary to totally recover it by unicasting rekeying messages
to every non compromised users remained in the group G. In fact, it is necessary
to unicast rekeying messages only to non compromised users in compromised sub-
groups, i.e. subgroups in C. As subgroup keys associated to non compromised sub-
groups, i.e. subgroups in U , are not compromised, then we can use each one of them
to efficiently rekey its respective subgroup by means of a single rekeying message.
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Backward security

Before a user can become a new member of the group G, the Key Manager has to
refresh the network security material in order to assure backward security. In fact, a
new user must not be able to gain knowledge of group activities that took place before
its join, that is, it must be prevented from having access to old secured messages.

Let us suppose that a user u wants to join the group G and become a member
of the subgroup S ∈ S. First, u invokes the join(u) operation provided by the Group
Membership Manager GMS. Then, GMS invokes the rekey(u, join) operation provided
by the Key Manager KM. By doing so, KM revokes the current group key KG and dis-
tributes a new group key K+

G according to the join protocol.

KEY MANAGER KM

1. KM generates a new group key K+
G , a new subgroup key K+

S , and a new user
token tu. Then,

2. KM broadcasts the following rekeying messages.

M1 : KM 9 G : {K+
G}KG

M2 : KM 9 S : {K+
S , tu}KS

Finally,

3. KM installs K+
G as the current group key, KG ← K+

G ; installs K+
S as the cur-

rent subgroup key of the subgroup S, KS ← K+
S and, finally, adds tu to UTS ,

UTS ← UTS ∪ {tu}.

USER v

2 HANDLER JH1. Upon receiving the rekeying message M1, user v ∈ G performs
the following actions.

1. User v uses KG to retrieve the new group key K+
G . Then,

2. user v installs K+
G as the current group key, KG ← K+

G .

2 HANDLER JH2. Upon receiving the rekeying message M2, user v ∈ S performs
the following actions.

1. User v uses KS to retrieve the new subgroup key K+
S and the new token tu.

Then,
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2. user v installs K+
S as the current subgroup key of the subgroup S, KS ← K+

S ,
and adds tu to UTSv, UTSv ← UTSv ∪ {tu}.

Once the join protocol has been completed, user u joins the group G and the sub-
group S, according to the following steps.

1. KM provides user u with the new group key K+
G , the new subgroup key K+

S , the
(m − 1) user tokens associated to its subgroup cognates, and the (p − 1) sub-
group tokens stS′ , S′ 6= S, through a pre-existing secure channel. Then,

2. user u installs K+
G as the current group key, KG←K+

G ; installs K+
S as the current

subgroup key of the subgroup S, KS←K+
S ; and, finally, builds its own User Token

Set UTSu (see equation 4.1) and Subgroup Token Set STSS (see equation 4.2)
with the user tokens and subgroup tokens received at step 1.

As stated at step 1, the keying material is provided to the new user u by the Key
Manager through a pre-existing secure channel. As a consequence, authentication
and confidentiality are both assured. Possible implementations include an a priori
shared cryptographic key or out-of-band means.

4.3 Security analysis

In this section, we argue that the leave, recovery, and join protocols guarantee the
forward and backward security requirements.

Theorem 1. The leave protocol guarantees forward security.

Proof. Given the assumptions on the cipher strength and key length, the proof con-
sists in showing that all group users but u ∈ S can derive the next group key K+

G from
an execution instance of the leave protocol, and that user u cannot derive it nor any
future group key.

Thanks to HANDLER LH1, all users in S but u retrieves the new group key K+
G .

Then, thanks to HANDLER LH2, every user v ∈ S′,∀S′ ∈ S, S′ 6= S, retrieves K+
G .

Thus, u is evicted from the group G, and all other users hold the new group key K+
G .

Also, tokens are updated by KM and users in S by means of the new group key
K+

G . As it does not hold such a key, u cannot compute these new tokens. Since we
assume that the token length is large enough to discourage an exhaustive attack, u
cannot deriveK+

G , nor any future group key. Therefore, forward security is guaranteed.
ut

Theorem 2. The recovery protocol guarantees forward security.

41



CHAPTER 4. KEY MANAGEMENT IN SECURE GROUP COMMUNICATION

Proof. Given the assumptions on the cipher strength and key length, the proof con-
sists in showing that all group users but colluding ones can derive the next group
key K+

G from an execution instance of the recovery protocol, and that colluding users
cannot derive neither it nor any future group key.

Thanks to HANDLER RH1, every non colluding user belonging to a compromised
subgroup retrieves the new group key K+

G . Then, thanks to HANDLER RH2, every
user belonging to a non compromised subgroup retrieves the new group key K+

G . It
follows that all non colluding users are successfully rekeyed.

Also, colluding users do not hold cryptographic keys used to protect rekeying mes-
sages. Then, they are not able to retrieve the new security material. Since we assume
that the key length is large enough to discourage an exhaustive attack, colluding users
cannot derive K+

G , nor any future group key. Thus, forward security is guaranteed. ut

Theorem 3. HISS guarantees forward security.

Proof. The proof descends directly from Theorem 1, in the case of a single user’s
leaving, and Theorem 2, in the case of colluding users’ leaving. ut

Theorem 4. HISS guarantees backward security.

Proof. First, the join protocol provides current users with new keys. Then, once cur-
rent users have been rekeyed, the joining user u is provided with the new keys as
well, i.e. K+

G and K+
S . As a consequence, u never has knowledge of security material

used before its join, and thus is not able to access old communications. Therefore,
backward security is assured. ut

4.3.1 On rekeying message authenticity

Authenticity of rekeying messages specified in Sections 4.2.3 and 4.2.3 must be guar-
anteed. Otherwise, an adversary could modify in-transit rekeying messages or inject
fake ones, so completely breaking the rekeying protocol. In this section, we discuss
techniques that could be used in HISS to assure the authenticity of rekeying mes-
sages. The choice of one of them is tightly related to the current application scenario,
the network technology, as well as the hardware capabilities of the network devices.

Digital signatures are a typical and widely adopted solution for providing rekeying
messages authentication [23][33]. However, they are quite onerous from a computa-
tion and communication standpoint [10]. The communication overhead derives from
the increased size of packets due to the appending of the digital signature to the mes-
sage itself. For instance, in RSA-1024, the increment of a message size is 128 bytes.
Since rekeying messages are “short”, a digital signature may be even larger than
the information it protects. Elliptic Curve Cryptography (ECC) ameliorates this situa-
tion [28]. For instance, ECC-160 digital signature is, roughly, an order of magnitude
faster than RSA-1024, and increases a message by only 40 bytes while delivering the
same security level.
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While digital signatures are adequate for conventional distributed applications
(e.g. teleconferencing or content distribution), they may result practically unfeasi-
ble for resource-constrained computing platform such sensor nodes in WSNs. Here,
even ECC-based digital signatures especially conceived for sensor nodes may re-
sult too computing and energy demanding [14][48]. In this case, authentication tech-
niques more efficient than digital signatures have to be exploited. For instance, group
rekeying schemes for WSNs such as LARK [44], S2RP [40][42], µTESLA [12], and
LEAP++ [21] use hash-chains, an authentication mechanism deriving from Lamport’s
one-time password [65]. The advantage of an hash-chain is that the current element
in the chain can be efficiently authenticated by computing its hash and verifying that
the result is equal to the previous element in the chain. Therefore, it is sufficient to
distribute the head of the chain in an authenticated way, e.g. off-line or through a pre-
defined point-to-point authenticated channel, so that all the remaining items can be
automatically and efficiently authenticated.

In HISS, hash-chains may be used to authenticate both the new group key and the
new subgroup key in the leave protocol messages M1 and M2, and the new group key
and the new subgroup tokens in the recovery protocol message MS. Therefore, the
authentication of these quantities would require just the execution of a hash function.
Furthermore, these quantities are “self-authenticating”, so avoiding the need for a
MAC or a digital signature which would increase the rekeying and recovery message
size. Finally, it is worth noting that the contents of the recovery protocol message
Mu does not require any special technique to be authenticated, neither the digital
signature nor the hash-chains, because it is encrypted by means of the user key.

Using hash-chains has cons too. In fact, the previous items in the chain can be
computed from the current one by repeatedly computing a hash function. This implies
that when a user joins the group she becomes able to compute all previous group
keys. It follows that the backward security requirements does not hold anymore. How-
ever, backward security is not so crucial for WSNs applications [7][44]. In fact, they
actually deal most with monitoring and control, where integrity is a top priority. In this
application domain, supporting the backward security requirement is not critical from
an integrity standpoint. Actually, the adversary may only attempt to inject messages
by using “past” group keys, but they are supposed to be discarded by the monitoring
and control algorithm.

4.4 Performance evaluation

In this section, we evaluate the rekeying scheme performance with respect to the
following factors: communication overhead , storage overhead , and computing over-
head . In this evaluation, we abstract away from the specific design and implementa-
tion choices (e.g. the cryptographic suite or the network technology). This means that
we evaluate the storage overhead and the communication overhead as the number of
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information items that protocol actors have to store and broadcast. Similarly, we eval-
uate the computing overhead as the number of cryptographic operations performed
during protocol instances, i.e. the number of encryptions, decryptions, and hash func-
tion executions. In any case we perform a worst-case analysis, that is we analyse the
largest overhead implied by a given protocol execution instance.

For simplicity, but without lack of generality, we assume that the system is orga-
nized in p homogeneous subgroups containing m users each. It follows that the group
G is composed of n = p ·m users. We point out that HISS supports heterogeneous
subgrouping policies, according to which different subgroups may contain different
numbers of users. However, an homogeneous subgrouping policy allows us to per-
form an analytical performance analysis without any significant lack of generality.

While the communication and computing overhead is protocol-specific, the stor-
age overhead is common to all protocols. For this reason, we analyse the storage
overhead in a separate section (Section 4.4.1), and devote one section for the com-
munication and computing overhead of each protocol (Sections 4.4.2–4.4.4).

In order to fix ideas, we also discuss the respective overheads of a WSNs applica-
tion. Such a discussion is contextual to every overhead type and thus distributed over
the four Sections 4.4.1–4.4.4. Specifically, we consider a group composed of 1024
sensor nodes (e.g. Mica2 or TmoteSky) interconnected by an IEEE 802.15.4 wireless
network. Every sensor node is battery operated, and equipped with a microcontroller
and a small amount of memory. Of course, this application is not exhaustive of the full
range of possible applications in which HISS can be used. However, it allows us to
give a concrete insight of the high scalability and practical sustainability of HISS.

4.4.1 Storage overhead

As to the storage overhead, the Key Manager KM stores the current group key KG,
all the p current subgroup keys, all the n user keys, all the n user tokens, and all the
p subgroup tokens. Thus, the storage overhead for KM is Os,km = (2 · p+ 2 · n+ 1).

On the other hand, every user u ∈ S, stores: i) its user keyKu; ii) the current group
key KG; iii) the current subgroup key KS ; iv) the (m − 1) user tokens associated to
its cognate users; and v) the (p− 1) subgroup tokens associated to all the subgroups
different from S. Thus, the storage overhead for every user is Os,u = (p+m+ 1).

Storage overhead Os,km at the Key Manager grows linearly with n. However, this
is not a problem in practice because the Key Manager has plentiful of resources.
The key point is that the HISS memory overhead is affordable at the user side. From
this standpoint, it is important to notice that for p � 1 or m � 1, Os,u ' p + m.

Therefore, under the assumption that users are uniformly distributed in p subgroups
of m members each, then the minimum storage overhead O(min)

s,u = 2 ·
√
n for p =

m =
√
n. Hereafter, we will assume this distribution of users to subgroups.

In the WSN application, the minimum storage overhead is O(min)
s,u = 64. If we

assume that secrets (keys and tokens) have a size equal to 80 bits, then the storage
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overhead is 640 bytes. The rationale basis of this choice is that 80 bits is the size
of keys of Skipjack, a secure and efficient cipher for WSN applications [9][20][54]. If
sensor nodes belong to the TmoteSky class, they are equipped with 48 Kbytes of
memory [74], and thus the memory overhead is the 1.30% of the total sensor node’s
memory. If, instead, sensor nodes belong to the Mica2 class, they have 128 Kbytes
of memory, and thus the memory overhead becomes the 0.49% of the memory. It
follows that the storage overhead of HISS is practically negligible even in resource-
poor devices such as sensor nodes.

4.4.2 The leave overhead

Let us consider the leave protocol (see Section 4.2.3), and a user u ∈ S which leaves
the group G. The communication overhead accounts for messages M1 and M2. Mes-
sage M1 introduces a communication overhead equal to three, as it conveys the iden-
tifier of the leaving user, the next group key K+

G , and the next subgroup key K+
S .

Message M2 introduces a communication overhead equal to two, as it conveys the
identifier of the subgroup S and the next group key K+

G in its encrypted form. It fol-
lows that the total communication overhead is constant and equal to five, i.e.O(l)

c = 5.
From these initial considerations, we can conclude that HISS provides a small

and constant communication overhead that is independent of the group size and
the adopted subgrouping strategy. This property is particularly important because it
makes HISS highly scalable. Of course, in a real implementation setting, the possibil-
ity of exploiting this property strictly depends on the broadcast communication service
provided by the underlying network technology.

As to the computing overhead, the worst case regards the operations performed
by a user v ∈ S, v 6= u. Such a user is required to: i) compute the key encryption
key KEKu by means of kdf(); ii) decrypt the message M1 to retrieve K+

G and K+
S ;

iii) update its own User Token Set UTSv by executing (m − 2) hash functions, and
its own Subgroup Token Set STSS by executing (p − 1) hash functions. Thus, in the
worst case, a user performs one decryption and (p+m−2) hash function executions.

On the other hand, the Key Manager has to: i) compute the new group keyK+
G and

the new subgroup key K+
S , as well as the two key encryption keys KEKu and KEKS ,

by means of kdf(); ii) encrypt messages M1 and M2; and, finally, iii) update its own
User Token Set UTS by executing (m − 1) hash functions, and its own Subgroup
Token Set STS by executing p hash functions. Thus, the Key Manager has to perform
2 encryptions and (p+m+ 3) hash function executions.

As it turns out, the computing overheads of the Key Manager and users have the
same order of magnitude. Once again, since the Key Manager is plentiful of resources,
the practical viability of HISS from the computing standpoint depends on the users. In
the considered WSN application, users are required to perform at most 1 decryption
and 62 hash function executions, which is practically affordable for sensor nodes.
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4.4.3 The recovery overhead

Let us consider the recovery protocol (see Section 4.2.3), with C compromised sub-
groups and (p−C) non-compromised subgroups. For the sake of simplicity but without
any lack of generality, let us assume that every compromised subgroup contains c col-
luding captured users. It follows that the overall captured users are (c · C), whereas
non-captured users are (n− c · C).

The communication overhead accounts for messages of type Mu and MS. For
every compromised subgroup, the Key Manager sends a message of type Mu to
every non-captured node in the subgroup. The size ‖Mu‖ of a message of type Mu

is ‖Mu‖ = (p + m − c), as the message conveys the new group key K+
G , the new

subgroup key K+
S , the new User Token Set UTSu, and the new Subgroup Token

Set STSS . As the number of compromised subgroups is C, and the number of non-
captured users in every compromised subgroup is (m − c), then the total overhead
due to messages of type Mu is C · (m− c) · (p+m− c).

A message of type MS is broadcast to every non-compromised subgroup S ∈ U .
Thus, the number of these messages is (p−C). The size ‖MS‖ of a message of type
MS is ‖MS‖ = p, as it conveys the new group key K+

G and the new Subgroup Token
Set STSS . Therefore, MS messages introduce a total overhead equal to p · (p − C).
Consequently, the total communication overhead of the recovery protocol is equal to
O

(r)
c = [C · (m− c) · (p+m− c)] + p · (p− C).

If we reasonably assume that i) each subgroup includes a non-negligible number
of members, i.e. m � 1; ii) a few users per subgroup are captured, i.e. m � c;
iii) a few subgroups are compromised, i.e. p � C; and iv) p = m =

√
n, for storage

optimisation, thenMu, MS , andO(r)
c can be approximated as follows: ‖Mu‖ ' 2 ·

√
n,

‖MS‖ '
√
n, and O

(r)
c ' (2 · C + 1) · n. As it turns out, the total communication

overhead linearly grows with C, so displaying a smooth degradation behavior.
The total communication overhead also grows linearly in n. However, an execution

of the recovery protocol has to be considered an exceptional event with respect to an
execution of the leave protocol, that is instead a normal event. So, according to the
well-known Lampson’s recommendations for computer systems design [19], while the
leave protocol must be efficient and scalable, the recovery protocol must be able to
make some progress. However, it is crucial that the recovery protocol is sustainable.
In the rest of this section, we argue that this is indeed the case.

In the WSN application, we have ‖Mu‖ = 640 bytes, ‖MS‖ = 320 bytes and
O

(r)
c = 30 Kbytes. Let us consider the IEEE 802.15.4 communication protocol [52],

where unsecured frames have a payload whose size can be up to 102 bytes. Thus,
every message Mu requires 7 frames, whereas the transmission of the whole O(r)

c

overhead requires 302 frames. In an implementation of IEEE 802.15.4, the effective
data rate (i.e. excluding headers, CRCs, and control packets) is about 8.4 Kbps (out of
250 Kbps), thus the transmission of every message Mu requires about 610 ms (per-
hop), whereas the transmission of the whole O(r)

c overhead requires about 29.25 s
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(per-hop). It follows that also in this case the communication overhead is sustainable.
However, it is worthwhile to notice that IEEE 802.15.4 is conducive to provide better
performance. For instance, Latré et al. showed that a throughput of about 140 Kbps
can be achieved in IEEE 802.15.4, even if Acknowlegment frames are trasmitted [16].
In such a case, the trasmission of a message Mu requires about 36.57 ms (per-hop),
whereas the transmission of the whole O(r)

c overhead requires 1.75 s (per-hop).
As to the computing overhead, each user performs only one decryption, in order to

decrypt either a message Mu or a message MS. On the other hand, the Key Manager
has to: i) compute K+

G , (p−C) new subgroup keys, C · (m− c) new user tokens, and
p new subgroup tokens by means of kdf ; ii) encrypt C · (m − c) messages Mu and
(p − C) messages MS. Thus, the Key Manager has to perform p + C · (m − c − 1)

encryptions and 2 · p+ C · (m− c− 1) + 1 hash functions.
On the other hand, the computing overhead at the Key Manager side is generally

not a problem, because the Key manager may be implemented on a high-performance
server platform. Therefore, the actual sustainability from the computing standpoint
practically depends on the user side.

Particular attention must be paid to the WSN application scenario, where users
are sensor nodes with constrained computing capabilities. In such a case, messages
Mu and MS are 640 bytes and 320 bytes in size, respectively. On a Mica2 node,
the performance of a software-version of Skipjack is 25 µs per encrypted/decrypted
byte [20], whereas, on a TmoteSky node, it is 77 µs [44]. Hence, decrypting a mes-
sage Mu or a message MS takes 16 ms and 8 ms, respectively, on a Mica2 node,
and 49.28 ms and 24.64 ms, respectively, on a TmoteSky node. This makes the HISS
recovery protocol affordable from the computing standpoint too.

4.4.4 The join overhead

Let us consider the join protocol (Section 4.2.3), and a user u which wants to join
the group G and become a member of the subgroup S. An execution instance of the
protocol requires a constant number of rekeying messages, namely i) a broadcast
message providing the new group key K+

G ; and ii) a broadcast message providing the
new subgroup key K+

S and the user token tu to the members of S. Thus, the total
communication overhead amounts to three, i.e. O(j)

c = 3.
As to the computing overhead, the worst case regards the operations performed

by the members of the subgroup S. Each one of them is required to perform two
decryptions, in order to retrieve K+

G , and K+
S and tu from messages M1 and M2, re-

spectively. Conversely, the Key Manager has to: i) compute the new group keyK+
G , the

new subgroup key K+
S , and the user token tu; and ii) encrypt messages M1 and M2.

Thus, the Key Manager has to perform 2 encryptions and 3 hash function executions.
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4.5 Collusion management

So far, we have shown that if two captured users belonging to the same subgroup
collude, then the whole subgroup is compromised. However, we have also shown that
recovering a compromised subgroup requires only to totally recover such a subgroup
rather than the whole group. The remaining uncompromised subgroups can be then
efficiently rekeyed by means of a single broadcast message each.

We argue that a proper allocation of users to subgroups can make a successful
collusion attack practically unfeasible. As we consider a form of practical security, we
cannot abstract away from the application scenario and the hypothesized adversary
strength. So, given an application scenario, we have first to assess the adversary
strength, and then devise an allocation strategy that is consistent with the application
constraints and requirements, and makes a collusion attack practically unfeasible for
the alleged adversary. This is a common process in security management [26].

In any case, the chosen allocation strategy has to satisfy the general principle
that, for an adversary, it must be practically unfeasible to i) determine the subgroups
membership, or ii) compromise two or more users belonging to the same subgroup.

In the former case, the only strategy for the adversary consists in exhaustively
attacking users in the attempt to compromise two users belonging to the same sub-
group. The system is practically secure if the resources required to carry out this
exhaustive attack strategy exceeds the resources of the hypothesized adversary. For
instance, if we consider the Internet and its magnitude, determining subgroups and
their membership through traffic analysis is a practically unfeasible task.

In the latter case, subgroups membership is known to the adversary, who can thus
target the attack to well defined users. Therefore, the system is secure if the resources
required to attack, physically or logically, two or more users belonging to the same
subgroup exceed the resources of the adversary. In this case, off-the-shelf protection
measures and security engineering best-practices can be employed [88][105].

In order to fix ideas, we refer again to the WSN application scenario that so far
have constituted the leading example (see Section 4.4). In particular, we discuss a
possible instantiation of the allocation strategy principle, that depends on the specific
application requirements and constraints as well as the related hypothesized adver-
sary. We consider an homogeneous allocation of users to subgroups, with p sub-
groups containing m members each, and a total group size n = p ·m. Once again, it
is arguable that, although not exhaustive, it however constitutes a meaningful example
to get a concrete insight of the HISS flexibility in collusion management.

4.5.1 Wireless Sensor Networks applications

WSNs are often employed in monitoring, surveillance, and control of buildings, plants,
or critical infrastructures. In these application scenarios, we can assume that an ad-
versary is able to physically break into a given area, and capture “neighbouring” sen-
sor nodes, possibly all, deployed in that area. Once a sensor node has been captured,
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all secrets it holds become known to the adversary. Thus, she can gather secrets pos-
sibly from all sensor nodes in that area, and possibly collect enough information to
gain access to the group key. It has been experimentally shown that an equipped and
experienced adversary is able to obtain copies of all memory and data of, for instance,
a Mica2 mote in tens of seconds, or minutes, after a node is captured [22].

On the other hand, due to the reduced amount of services provided by sensor
nodes, it is believed that a WSN presents a number of vulnerabilities which is smaller
with respect to computers typically connected to the Internet. Since there are less
functionalities and less complex code, there are less software bugs too. Also, as sen-
sor nodes are resource-constrained, programmers spend more time per line of code
in sensor network applications, than in applications for regular computer networks [7].

Thus, it is the size of the area the adversary can physically compromise that gives
a practical measure of the adversary’s strength. Such a “critical” value is typically
defined at pre-deployment after a threat analysis [26]. It follows that the problem that
has to be solved consists in devising an allocation and deployment policy such that
any area not larger than the critical size contains sensor nodes belonging to different
subgroups with high probability.

It is well-known that devising an optimal allocation policy is in general an NP-
hard problem [63][71]. Therefore, we have to resort to heuristics for the assignment
of users to subgroups that reduce, or even practically eliminate, the probability of
successful collusion attacks. Such heuristics depend on both the adversary model
and application-specific requirements and constraints. In this section, we discuss a
real case-study, the “Highly Automated Airfield” (HAA) reference application of the
PLANET European integrated project [82].

Figure 4.3. The HAA application: an allocation policy for w = 5. Black circles represent sensor
nodes, while the dashed rectangle depicts the largest area that the adversary can compromise.
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The HAA application provides the support for automated airfield operations involv-
ing cooperating unmanned air vehicles (UAVs). In particular, by means of a WSN,
the HAA application intends to monitor the runways of an airport in order to permit
automated take-offs and landings of UAVs. The HAA application considers a WSN
composed of n sensor nodes, evenly distributed on both sides of every runway to
monitor both the runway occupancy and the presence of obstacles. As the airport is
provided with a physical land surveillance system, we assume that an adversary can
compromise a portion L of a runway, possibly spanning both sides (see Figure 4.3),
and thus capture the w “neighbouring” sensors deployed therein. The adversary can-
not move from one runway to another without being caught.

In order to avoid collusion attacks, we organize sensor nodes into p = 2·w different
subgroups with m = n/(2 ·w) members each, and cyclically allocate sensor nodes to
subgroups. Figure 4.3 shows an example for w = 5. Since the adversary is not able to
compromise a number of sensor nodes larger than w, nor to move from one runway
to another, then she cannot successfully perform a collusion attack. It is worth noting
that the application-specific constraints and requirements have allowed us to reduce
the allocation problem to a single-dimension problem, and thus devise an effective
allocation strategy that prevents collusion attack under the considered threat model.

w
Memory TmoteSky Mica2
(bytes) (%) (%)

32 800 1.66 0.62
64 1360 2.83 1.06
128 2600 5.41 2.03
256 5140 10.70 4.01

Table 4.1. Highly Automated Airfield: storage overhead.

Table 4.1 reports the storage overhead in the TmoteSky and Mica2 platforms, for
different values of w. The column “Memory” reports the amount of storage neces-
sary for the sensor node to store the HISS keys and tokens (see Section 4.4.1). The
columns “TmoteSky” and “Mica2” specify, respectively, the percentual impact of this
amount of storage on the total memory available on the platform. It follows that the
proposed allocation policy has a practically affordable storage overhead. Specifically,
in the most extreme case of tolerating the capture of w = 256 sensor nodes, the
overhead is around 10% on the TmoteSky platform and 4% on the Mica2 platform.
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Programming secure Wireless Sensor Networks

Wireless Sensor Networks (WSNs) have been used chiefly for scientific purposes,
where an adversary has little incentive to attack sensors [7]. However, WSNs are now
employed also in Cooperating Objects Systems (COS) where mobile physical agents
share the same environment to fulfill their tasks, either in group or in isolation [30][82].
Such agents not only sense the environment, but also act on it. COS are a tempting
target for an adversary, since a security infringement may easily translate into a safety
one, with possible consequences in terms of damages to things and injures to people.
Same considerations hold for WSNs in Critical Infrastructures [64][66].

However, sensor nodes are typically resource constrained devices deployed in
unattended, possibly hostile environments. Given the nature of WSNs, it is an easy
task for an adversary to eavesdrop messages and alter or inject fake ones. It follows
that secure communication is vital to assure messages confidentiality, integrity, and
authenticity. Many solutions have been devised for WSNs security, including [25] for
secure communication, [23][45][57][104][113] for key management, and [80][90] for
secure code dissemination. Particular attention has been paid to component-based
security architectures tailored to WSNs [43][75].

In this chapter, we present STaR [87], a modular, reconfigurable and transparent
software component for secure communications in WSNs. STaR guarantees confi-
dentiality, integrity, and authenticity by means of encryption and/or authentication.

STaR is modular because it separates interfaces from their implementations. This
makes it easily portable on different hardware [31][74] and network stacks [52][116].
Modularity allows for loading/unloading STaR modules to match security require-
ments, add new features, or extend existing ones.

STaR allows for protecting multiple traffic flows at the same time, according to
different security policies. Also, it is reconfigurable because it makes it possible to
change security policies on a per packet basis at runtime. That is, it assures a fine
grained adaptability to possible changes in security requirements.

STaR is transparent, because the application can still rely on the communication
interface already in use. The application does not require to be redesigned or recoded
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in order to exploit a certain security policy. This clearly separates the implementation
of the application from the STaR component. STaR characteristics allow for reusing
application components in scenarios where security becomes relevant. Also, STaR al-
lows unskilled people to secure their applications, by simply selecting security policies
to be applied. Besides, application developers need neither to implement complex se-
curity procedures, nor to configure unfriendly tools, such as network firewalls.

We evaluate our STaR implementation [86] for TinyOS [100] on Tmote Sky motes
[74], showing it is affordable as to memory occupancy, communication overhead, and
energy consumption. STaR features a generic architecture, and can be implemented
for other hardware platforms and WSNs operating systems.

5.1 STaR architecture

STaR allows for securing multiple traffic flows according to different security policies.
Possible security policies include packet encryption, packet authentication, or both of
them. The choice of appropriate security policies is related to the specific application
and threat model, and is out of the scope of this dissertation.

Figure 5.1. STaR component overview.

As shown in Figure 5.1, the STaR component stays between the application and
the communication stack. STaR intercepts both incoming and outgoing traffic, seg-
ments it into flows, and secures them according to the corresponding security poli-
cies. STaR assures reconfigurability by allowing users to dynamically change security
policies, provides transparency of security with respect to the application, and exports
the same interface as that of the underlying communication stack to the application.

The StarToApplication component provides the application with the same com-
munication interface exported by the communication stack. The StarToCommunica-
tion component connects STaR to the underlying communication stack. The StarLa-
belling component classifies packets into traffic flows, and determines the associated
label. The StarConfig component allows users to enable/disable security policies, and
change their association to traffic flows, providing reconfigurability at runtime.
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Figure 5.2. Example of packet processed by STaR.

The StarEngine component actually processes packets, according to the security
policy associated to the traffic flow they belong to. Distribution and revocation of nec-
essary security material are left to other system components, which are not part of
STaR and are out of the scope of this dissertation. Figure 5.2 shows a packet pro-
cessed by STaR, with the Label field prepended to the packet payload.

STaR modularity eases the porting of STaR onto different communication stacks.
Actually, different communication stacks require to customize the StarToCommunica-
tion and StarToApplication components, while other components remain unmodified.

Although the application developer is not required to change the application code
and/or behavior, she has certain obligations in order to exploit STaR, namely i) im-
plementation of security policies; ii) traffic segmentation; iii) association of security
policies to traffic segments; and, iv) STaR initialization.

5.2 STaR security services

As described in Section 5.1, STaR relies on packet labels to protect multiple traffic
flows at the same time. All packets belonging to a given packet flow can be associated
to a common label, and secured before being transmitted, according to a specified
security policy. Incoming packets can be unsecured upon being received, according
to the security policy associated to the traffic flow they belong to.

STaR is responsible for securing/unsecuring packets and mapping flow labels into
security policies. These tasks are totally transparent to the application. The applica-
tion can still rely on the original communication interface provided by the available
communication stack, and does not require to be modified. In order to manage as-
sociations between traffic flows and security policies, STaR maintains two tables: i) a
Security Policy Table (SPT ), and ii) a PolicyDB.

The SPT is formatted as follows. The Label field is one byte in size, i.e. STaR man-
ages up to 256 different traffic flows at the same time. The PolicyID field specifies the
security policy to be adopted for a given traffic flow. PolicyID entries in the SPT refer
to security policies specified in the PolicyDB by the specific STaR implementation.
The Active field indicates whether the security policy associated to a given label has
to be applied or not to packets belonging to such traffic flow. The Active field is set to
TRUE by default in all entries. SPTs of all network nodes are supposed to be initial-
ized in the same way at the network startup. In order to manage the SPT at runtime,
STaR provides a set of configuration functions, which we describe in Section 5.2.2.

The PolicyDB is formatted as follows. PolicyID values in the PolicyDB have to
match PolicyID entries of the SPT to correctly retrieve the security policy implemen-
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tation provided by STaR. The EntryPoint field contains a reference to the code section
which implements the policy (e.g. a C++ function pointer).

5.2.1 STaR communication support

The following communication functions are provided.

bool send(packet, size);

Provide the packet packet of size size to STaR. Return TRUE in case of success,
FALSE otherwise.

bool receive(packet, size);

Provide the application with the packet packet of size size coming from STaR. Return
TRUE in case of success, FALSE otherwise.

int retrieveLabel(packet);

Return the label associated to the traffic flow which the packet packet belongs to.

Policy retrievePolicy(label);

Return the security policy associated to label. Return an error code if the Active field
in the SPT is set to FALSE, or the policy is not present in the PolicyDB.

The application developer must determine the best security policy to protect each
traffic flow, and bind each one of them to a specific label value. Specifically, the re-
trieveLabel function must implement the criteria according to which it is possible to
infer which traffic flow a given packet belongs to.

(a) (b)

Figure 5.3. A) Outgoing packet processing and B) incoming packet processing.
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Packet P is transmitted according to the following steps. The application provides
STaR with packet P , through the send function. Then, STaR retrieves the label L
associated to packet P through the retrieveLabel function, and the associated security
policy SP through the retrievePolicy function. Then, STaR builds a one byte field, fills it
with the label L, and inserts it between the header and the payload of packet P . Then,
packet P is secured, according to the security policy SP . Finally, STaR provides the
secured packet P to the communication stack, to deliver it to the recipient node(s). The
label must never be encrypted, in order to assure that packet P is correctly unsecured
at the recipient side. However, the label can be authenticated, in order to guarantee
that it has been actually generated by the STaR component. Figure 5.3-A shows an
outgoing packet processed by STaR.

Packet P is received according to the following steps. STaR receives the secured
packet P from the communication stack, and retrieves the label L from the addi-
tional field, which can then be removed. Then, STaR retrieves the security policy SP
associated to label L, through the retrievePolicy function, and unsecures packet P ,
according to SP . Finally, STaR provides the unsecured packet to the application, that
receives it through the receive function. Figure 5.3-B shows an incoming packet pro-
cessed by STaR.

5.2.2 STaR configuration services

STaR allows users to change security settings at runtime, and provides a specific
configuration interface aimed at changing how security policies are used, and their
association to traffic flows. In the following, we describe the configuration functions.

void enablePolicy(label);

Set to TRUE the Active field of the label SPT entry.

void disablePolicy(label);

Set to FALSE the Active field of the label SPT entry.

void changePolicy(label, newPolicy);

Write newPolicy in the PolicyID field of the SPT entry related to label. The Active field
remains unchanged.

5.3 STaR TinyOS implementation

We implemented the STaR component [86] on TinyOS 2.1.1 [100], for the Tmote
Sky motes [74] and the CC2420 chipset [99]. Also, we implemented the Skipjack
encryption module [101] and the SHA-1 module for integrity hashing [32].
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5.3.1 STaR memory footprint

ROM memory available on Tmote Sky motes is 48 KB, and may be a severe constraint
while dealing with complex modules like those composing STaR. In order to evaluate
memory consumption on Tmote Sky motes, we considered the TinyOS image size
wiring the STaR submodules separately.

S is the image size in bytes of the original TinyOS stack and the RadioCount-
ToLeds application, which is one of the provided demo applications.

Ĉ = S + C is the image size in bytes of the original TinyOS stack and the Radio-
CountToLeds application (S), wired to the StarConfig module (C). C = Ĉ− S is the
memory occupancy of the StarConfig module.

Ê = S + C + E is the image size in bytes of the original TinyOS stack and the Ra-
dioCountToLeds application (S), wired to the StarConfig module (C) and the Skipjack
submodule of the StarEngine module (E). E = Ê− Ĉ is the memory occupancy of
the Skipjack submodule of the StarEngine module.

Â = S + C + A is the image size in bytes of the original TinyOS stack and the
RadioCountToLeds application (S), wired to the StarConfig module (C) and the SHA-
1 submodule of the StarEngine module (A). A = Â− Ĉ is the memory occupancy of
the SHA-1 submodule of the StarEngine module.

Memory Memory
occupancy (B) occupancy (%)

Application and TinyOS stack 13372 27.86
StarConfig 854 1.78

StarEngine (Skipjack) 2046 4.26
StarEngine (SHA-1) 3900 8.12
Available memory 27828 57.98

Table 5.1. Detailed memory occupancy.

Table 5.1 provides information on memory occupancy, and shows the percentages
of Tmote Sky ROM occupied by the original application and STaR (sub)modules. If we
sum the contributions of the StarConfig, Skipjack and SHA-1 modules, we observe
our STaR implementation totally requires the 14.16% of the overall memory available
on a Tmote Sky mote. Since the application together with the TinyOS stack requires
the 27.85% of the available memory, the 57.99% of 48 KB is available for other uses.
Thus, memory required by STaR is reasonable with respect to the available memory.

5.3.2 STaR performance evaluation

In our analysis, we assumed STaR operates on top of the 2.4 GHz physical layer, with
a 250 Kb/s bit rate [99]. We modeled the impact of security considering i) network
performance degradation due to security processing and extra trasmission overhead,
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and ii) the extra energy consumption, due to extra processing and transmissions.
We evaluated the security processing overhead by means of experiments. The extra
transmission overhead has been computed considering the bit rate and the packet
size. Instead, energy consumption has been evaluated analytically.

Figure 5.4. Send and Secure events nesting.

Figure 5.4 shows events which take place when we transmit a secured packet
with STaR, according to the TinyOS Send/SendDone schema. The STaR processing
overhead time interval is the extra time required to process the packet according to
the chosen security policy. This time has been evaluated experimentally.

Policy dproc (µs) Standard deviation (µs)
NONE 142 0
ENC 1239.70 1.96

HASH 32853.50 2.53
ENC + AUTH 33948.65 3.01

Table 5.2. STaR dproc contributions overview.

In our experiments, we observed one sender device at a time transmitting secured
packets whose payload is 8 bytes in size. In order to increase the accuracy of our
results, we performed 10 repetitions of 20 transmissions for each experiment. Results
shown in Table 5.2 are averaged over all different repetitions. We also report the
standard deviation we derived from the independent replication method.

Considerable delays are due to the standard encryption and authentication algo-
rithms, while the actual STaR contribution to the processing delay is just 142 µs. This
is the additional delay required to add the label field, which is negligible if compared to
the one introduced by standard cryptographic computations, such as those performed
by Skipjack and SHA-1.

The transmission overhead has been evaluated analytically, considering a 250

Kb/s bit rate [99]. Specifically, we have considered the time required to transmit the
additional bytes added by STaR, according to the specific security policy. The origi-
nal application packet size, including the header and the Cyclic Redundancy Check
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(CRC) is 21 bytes. The time dtx required to transmit the original application packet is
the ratio between the packet size in bits and the bit-rate: dtx = 21·8

0.250 = 672 µs.

Policy dtx (µs) Increase (%)
NONE 32 4.76
ENC 32 4.76

HASH 672 100
ENC + AUTH 672 100

Table 5.3. STaR dtx contributions overview.

Table 5.3 provides an overview of the transmission overhead, considering different
security policies. Considerable delays of the HASH and ENC + AUTH policies are due
to the standard SHA-1 hashing output size, which is 20 bytes long. In fact, the actual
STaR contribution to the transmission delay is just 32 µs, that is the time required to
transmit the one byte label field added to the original packet. We believe this delay is
affordable, since it is due to the increase of just one byte of the original packet size.

We expressed energy consumption contributions as Ei = Pi × di. Let di be the de-
lay due to the considered operation i. Pi = Vi × Ii is the single power contribution, i.e.
the product between voltage and current of the MSP430 and CC2420 components.

Policy
Processing Transmission

Pproc = 1.08 mW Ptx = 31.32 mW
dproc(µs) Eproc(nJ) dtx(µs) Etx(nJ)

NONE 142 153.4 32 1002.2
ENC 1239.7 1338.9 32 1002.2

HASH 32853.5 35481.8 672 21047.0
ENC + AUTH 33948.7 36664.6 672 21047.0

Table 5.4. STaR energy consumption contributions.

Table 5.4 provides an overview of such contributions. Considerable increases in
per packet energy consumption are due to the standard encryption and authentica-
tion algorithms, while the actual STaR contribution to energy consumption is the one
reported in the NONE policy entry: Eproc + Etx = 1155.6 nJ that is the energy con-
sumed to add the label field to the original packet and transmit it. We believe that the
extra energy consumption is affordable, if compared to contributions due to standard
security mechanisms as SHA-1.
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6

Simulative evaluation of security attacks

Wireless Sensor Networks (WSNs) are a widely adopted technology in several fields
of application. Their consolidated success, both in the academic and industrial world,
is mainly due to standards availability, low cost of sensor nodes, and world-wide
communities support. Their uses include home automation, plant monitoring, military
surveillance, disaster recovery situations, environment monitoring, and many others.

A WSN may be affected by a great number of security threats and attacks. WSNs
are subject to logical attacks (aka cyber attacks), as an adversary simply equipped
with a radio receiver-transmitter can easily eavesdrop as well as inject messages.
Furthermore, WSNs are also subject to physical attacks. Actually, WSNs are often
deployed in environments that are open, unattended, and possibly hostile. This allows
an adversary to physically attack sensor nodes in order to reprogram, misplace, or,
even, break them. All these attacks may lead to unreliable data collection, inaccuracy
in controlling processes, or even safety problems.

There are lot of possible attacks against WSNs [49][89][98]. They can have differ-
ent objectives, be performed at different levels, and result in different effects. Phys-
ical attacks comprise node capture [81], and tampering with sensor nodes [8]. On
the other hand, logical attacks include the HELLO flooding attack [24], the Sybil at-
tack [59], the sinkhole attack [24], the wormhole attack [106], the blackhole attack [17],
and the Distributed Denial of Service (DDoS) attack [103].

However, providing a security countermeasure for every possible attack would re-
sult in a huge security overhead, which is difficult to afford and would overwhelm the
scarce resources available on sensor nodes [84][85]. Thus, it is vital to properly rank
security attacks, in order to evaluate their severity, state protection priorities, and se-
lect appropriate countermeasures. That is, it would be useful to quantitatively evaluate
the effects of attacks, in order to assign them a priority, and select adequate counter-
measures. Most of the times, this information becomes available when it is too late,
i.e. once attacks have already occurred. Instead, it would be better to have it even
before network deployment takes place.
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In this chapter, we present ASF, our attack simulation framework for WSNs [46].
Thanks to ASF, users can describe attacks, reproduce their effects, and quantitatively
evaluate their impact on the overall functionality and performance. ASF helps users
to evaluate the severity of an attack, and therefore constitutes a valuable tool for the
attack ranking process. We show that the architecture of ASF is general and indepen-
dent of the underlying network simulator.

Also, we present an early prototype of ASF built on top of Castalia [2], the popular
WSNs simulator based on the OMNeT++ platform [3]. Then, we show the capabili-
ties of ASF by considering a realistic case study and analysing four different attacks.
Specifically, we compare the effects of these attacks on system functionality and per-
formance with respect to the case when the system is attack-free.

6.1 Attack simulation background

Simulative analysis can provide a quantitative idea of the effects of attacks. However,
little work has been done on attack simulation so far. In fact, most of the adopted
approaches focus on network simulation and performance evaluation. Also, they con-
sider analytical models or algorithms aimed at detecting specific attacks upon their
occurrence. Then, simulation is typically used to validate such models.

For instance, [112] describes a distributed wormhole detection algorithm, and
shows simulation results in order to prove its low false toleration and false detec-
tion rates. In [91], Kaplantzis et al. propose an intrusion detection scheme to detect
blackhole and selective forwarding attacks. Also, simulative results are presented to
validate such scheme. In [50], the authors propose a scheme based on weighted-
trust evaluation, aimed at detecting malicious nodes, and verify its correctness and
efficiency by simulations. Bonaci et al. consider physical node capture attacks, de-
velop a network response strategy, and validate it by means of simulations [97].

In [108], Wang and Bagrodia present SenSec, a framework for security evaluation
in WSNs. SenSec allows for simulating the occurrence of attacks against the network,
by injecting events into real application simulators. They test SenSec on TiQ [107], a
framework for executing TinyOS applications [100], and use it to evaluate the impact
of a number of attacks against routing and time synchronization protocols.

6.2 Attack simulation framework

The ASF framework provides: i) an Attack Specification Language to specify attacks;
ii) an Attack Database to store attack descriptions; iii) an Attack Compiler to convert
attack descriptions into XML configuration files; and iv) an Attack Simulator to evalu-
ate effects of attacks. Figure 6.1 shows an overview of the framework architecture.

First, the user specifies attacks to be evaluated by means of the Attack Specifica-
tion Language (ASL), and possibly stores attacks descriptions in the Attack Database.
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Figure 6.1. Overview of the ASF framework architecture.

Then, the Attack Compiler (AC) takes such specifications as input, and converts them
into an XML Attacks Configuration File (ACF ). The user must specify the name of the
specific simulator to be used. By doing so, XML statements in the ACF can be cor-
rectly parsed and acquired by the adopted simulator. Finally, the Attack Simulator
takes the ACF as input, in order to reproduce attacks and evaluate their effects.

6.2.1 Attack specification

The Attack Specification Language (ASL) is a collection of primitives which allow
users to specify attacks to be evaluated. From our framework standpoint, we define
an attack as a sequence of events, which takes place atomically. That is, the user
specifies the sequence of events that compose an attack by means of ASL primitives.

We consider two sets of primitives. Node primitives allow for altering node behav-
ior, thus performing physical attacks. Instead, packet primitives allow for performing a
number of actions on network packets, thus carrying on logical attacks. The following
two node primitives are available.

destroy(nodeID, t);
At time t, remove node nodeID from the network.

move(nodeID, t, x, y, z);
At time t, move node nodeID to position (x ;y ;z).

Also, the following six packet primitives are available.

drop(packet);
Discard the packet packet.
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create(packet, field, content);
Create a new packet packet, and fill its field field with content.

clone(srcPacket, dstPacket);
Create a new packet dstPacket as a perfect copy of srcPacket.

change(packet, field, newContent);
Write newContent into the field field of packet packet.

retrieve(packet, field, content);
Retrieve the content of the field field of packet packet, and write it into content.

put(packet, dstNodes, direction, delay);
After delay milliseconds, put packet packet either in the transmission or reception
buffer of all nodes in the dstNodes list. Possible values for direction are TX and RX,
which refer to the transmission or reception buffer, respectively.

The ASL allows for defining three kinds of attacks, i.e. physical attacks, conditional
attacks, and unconditional attacks. In the following, we describe how to specify them.

Physical attacks. They consist in a single event, modeled by either the destroy()
or move() node primitive. As described above, such primitives require to specify the
time t at which the event takes place, and the node affected by the attack.

Conditional attacks. This class of attacks considers a number of nodes that in-
tercept packets to be examined, and, potentially, manipulated or even discarded. The
user must specify the time t starting from which the attack takes place, and the list of
network nodes that perform the attack.

Events occurrence may depend on the evaluation of a conditional statement,
namely a packet filter. We define a packet filter as a set of simple boolean conditions
c1, c2, ..., cN joined by logic operators, i.e. AND, OR, and NOT.

What follows is an example of conditional attack specification. Starting from time
200 s, nodes 1, 2, and 7 intercept all packets travelling through their communication
stack. Then, such nodes check if each intercepted packet satisfies the packet filter
conditions. In case of a positive match, the attack is actually reproduced, i.e. the
specified list of events is executed.

from t = 200; nodes = "1 2 7" do {

if(<packet filter>)

<List of events>

}

Unconditional attacks. Unlike conditional attacks, these attacks are not related
to interception of packets by network nodes. However, new packets can be created,
and possibly cloned, in order to be naughtly injected into the network. The user must
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specify the time t starting from which the attack takes place, and the occurrence
frequency f according to which the attack has to be repeatedly reproduced over time.
For this class of attacks, events occurrence does not depend on the evaluation of
conditional statements.

What follows is an example of unconditional attack specification. Starting from
time 200 s, the attack occurs repeatedly every 10 s, i.e. the specified list of events is
executed.

from t = 200; every f = 10 do {

<List of events>

}

In the following, we consider different kinds of attacks, and specify them by means
of ASL primitives. For the sake of simplicity, we refer to packet fields with a simplified
and extremely general notation. However, in a more general case, the user must be
aware of which specific network protocols are in use. That is, for each communication
layer, she must be aware of packet header structures and fields.

In such a general case, the user relies on a packet.layer.field notation, in order
to access the field field of packet packet in the header of layer layer. Being available
this information, it is possible to access specific header fields, in order to check and
alter their content. As a practical example, the OMNeT++ platform [3] and the WSNs
simulator Castalia [2] provide a set of objects, namely descriptors, aimed at handling
packets of a given communication layer and accessing their header fields.

Node removal. Nodes 5 and 10 are removed from the network, at time 200 s and
500 s, respectively.

destroy(5,200);

destroy(10,500);

Node misplacement. Node 10 is moved to position (80; 10; 0) at time 200 s. Sim-
ilarly, node 11 is moved to position (60; 10; 0) at time 200 s.

move(10,200,80,10,0);

move(11,200,60,10,0);

Node reprogram. Starting from time 400 s, nodes 5 and 7 replace the original
payload of application data packets sent by node 10 with the minimum possible value.
Then, data packets are regularly sent to their scheduled destination.

from t = 400; nodes = "5 7" do {

if(packet.APP.source==10 &&

packet.APP.type==DATA)

change(packet,APP.payload,MIN);

}

Wormhole attack. Starting from time 200 s, MAC data packets sent by node 3 are
intercepted. Then, they are provided to distant nodes 15, 17, and 18, which receive
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them in their reception buffer after 100 milliseconds. This is basically a wormhole
attack, where a subset of packets are captured from a given portion of the network,
and forwarded to a number of distant nodes through a low-latency channel.

dstList={15,17,18};

from t = 200; nodes = "*" do {

if(packet.MAC.source==3 &&

packet.MAC.type==DATA)

put(packet,dstList,RX,100);

}

As already said, attacks specifications can be stored into the Attack Database. Of
course, the user can retrieve them subsequently, by querying the Attack Database.
Querying parameters include the lapse of time during which attacks are supposed to
be performed, or a list of involved nodes.

Thanks to the Attack Database, the user does not have to necessarily define new
attacks from scratch. Instead, she can rely on stored specifications, or modify their
behavior and severity for different network and application scenarios.

6.2.2 ASF network architecture

As depicted in Figure 6.2, ASF considers every node as composed by a generic Sens-
ing & Application module, a Communication stack module, and a Local Filter module.

Figure 6.2. Sensor node architecture in ASF.

The Sensing & Application module may be composed of different submodules,
which model the actual node application as well as physical sensing processes. The
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Communication stack module may include an arbitrarily complex combination of com-
munication layers, e.g. Routing and MAC. Finally, the Local Filter module intercepts all
packets travelling through the communication stack. Thus, it is able to collect packets
that the node application has transmitted or is about to receive.

The Local Filter can inspect and alter packet content, add new packets to be trans-
mitted, or even discard them. Also, it can alter the node behavior at different layers,
change the node position in space, or even remove the node from the network.

Figure 6.3. Overview of ASF network architecture.

Furthermore, one single Global Filter module is connected with every Local Filter
module. That is, Local Filters of different nodes can communicate and cooperate with
each other through the Global Filter module, in order to reproduce and evaluate more
complex attacks, e.g. a wormhole attack. Figure 6.3 shows the overall ASF network
architecture, in the presence of two sensor nodes, i.e. Node1 and Node2.

6.2.3 Attack reproduction

An Attacks Configuration File (ACF ) is divided into three sections. The first section
regards physical attacks, and contains the list of node primitives to be performed.
We recall that each node primitive specifies the involved node and the time when the
attack takes place.

The second section of the ACF consists of the list of conditional attacks to be
reproduced. For each one of them, the following elements are specified: i) the time
starting from which the attack occurs; ii) the set of nodes that perform the attack; iii)
the packet filter; and, finally, iv) the list of packet primitives to be executed.
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Finally, the third section of the ACF consists of the list of unconditional attacks to
be reproduced. For each one of them, the following elements are specified: i) the time
starting from which the attack occurs; ii) the occurrence frequency according to which
the attack has to be performed over time; and, finally, iii) the list of packet primitives to
be executed.

At its startup, the Attack Simulator retrieves the configurations of the attacks to be
reproduced from the ACF. Then, the following data structures are initialized.

Physical attacks. The simulator considers every node n among the N nodes
involved in at least one physical attack. For each node n, the simulator creates a list
of physical attacks LPA, containingNPA elements. Such elements represent physical
attacks that involve node n, and are ordered in a chronological fashion, according to
their occurence time. Finally, the simulator starts N sets of timers, one for each node
n. That is, for each node n, it starts NPA timers, one for each attack in LPA, thus
scheduling their occurrence.

Conditional attacks. The simulator considers every node n among the N nodes
involved in at least one conditional attack. For each node n, the simulator creates a
list of conditional attacks LCA, containing NCA elements. Such elements represent
conditional attacks performed by node n, and are ordered in a chronological fashion,
according to their starting time. Each element includes: i) the packet filter; and ii) the
list of events that define the attack. Finally, the simulator prepares N sets of timers,
one for each of the above mentioned nodes. Then, for each node n, it starts NCA

timers, one for each attack in LCA, thus scheduling the beginning of their occurrence.
Unconditional attacks. The simulator creates a list of unconditional attacks LUA,

containing NUA elements. Such elements represent unconditional attacks to be re-
produced, and are ordered in a chronological fashion, according to their starting time.
Each one of them includes: i) the occurrence frequency according to which the attack
is reproduced over time; and ii) the list of events that define the attack. Finally, the
simulator starts NUA timers, one for each attack in LUA, thus scheduling their first
occurrence.

Then, the Attack Simulator relies on the above mentioned data structures, and
reproduces attacks as follows.

Physical attacks. When the timer associated to a physical attack expires, the
simulator retrieves the corresponding attack A from the right LPA list, and reproduces
it on the involved node. Then, the attack A is removed from the LPA list.

Conditional attacks. When the timer associated to a conditional attack expires,
the simulator retrieves the corresponding attack A from the right LCA list, associated
to node n. From then on, node n starts to intercept packets by means of its own Local
Filter, and filters them according to the packet filter specified in A. Then, for each
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packet that satisfies the packet filter, node n executes the list of events defined in A.
The actual reproduction of conditional attacks may involve the Global Filter, as well as
more than one Local Filter module.

Unconditional attacks. When the timer associated to an unconditional attack ex-
pires, the simulator retrieves the corresponding attack A from the LUA list. From then
on, the list of events defined in A is executed, and repeatedly performed according
to the specified occurrence frequency. The Global Filter is responsible for starting the
actual reproduction of unconditional attacks.

It is worth remarking that we are interested in simulating and evaluating the effects
of attacks. That is, we assume that attacks have been entirely and successfully per-
formed, and focus on their effects on the WSN. Unlike described in [108], we do not
simulate the actual occurrence of attacks. Instead, we reproduce their final effects on
the sensor network.

Finally, it is worth noting that our architectural model is general, and can be further
extended. In fact, the Local Filter module is able to deal with arbitrary compositions
of communication layers. This makes ASF potentially suitable for any discrete event
network simulator.

6.2.4 ASF prototype implementation

We implemented a prototype of ASF for the WSNs simulator Castalia [2], based on
the OMNeT++ platform [3]. Castalia considers the network as a collection of nodes,
which sense values according to a given physical process, and communicate through
a commonly shared wireless channel.

In the original architecture of Castalia, nodes are composed of different submod-
ules. Sensor nodes applications interact with the physical process through a sensor
manager module, and retrieve physical information from the environment. Also, nodes
are provided with a full communication stack, composed by a Routing, a MAC, and a
Radio layer. Thanks to such communication modules, the application sends (receives)
packets to (from) the wireless channel. Also, Castalia provides the implementations
of different Routing and MAC layers.

Our ASF implementation for Castalia improves the original node architecture by
introducing the Local Filter module. As shown in Figure 6.4, the Local Filter intercepts
incoming and outgoing packets travelling through the communication stack, between
every pair of layers. Also, every node’s Local Filter module is connected with the
Global Filter module.

6.3 Application scenario

We consider a room, whose size is 100 by 20 meters. The room is composed by three
different areas, and each one of them hosts a heater, i.e. S1, S2, and S3. Every heater
has a constant temperature of 200 °C.
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Figure 6.4. Enhanced architecture of Castalia node.

In order to monitor the heat level in a regular way, eighteen static sensor nodes
n1, n2, . . . , n18 are positioned within the room in a regular fashion. That is, they
form three rows of six nodes each. The network is divided into three different
node clusters, each one covering a different area, i.e. {n1, n2, n7, n8, n13, n14},
{n3, n4, n9, n10, n15, n16}, and {n5, n6, n11, n12, n17, n18}. Basically, each node is re-
sponsible for periodically monitoring the temperature in its cluster.

An additional node is placed in the very center of the room, and acts as sink. The
sink node collects reports received by other nodes, and computes average tempera-
tures over time. In particular, it computes and stores average temperatures for each
one of the three clusters, as well as for the whole room.

Figure 6.5. Application scenario and network topology.

Figure 6.5 depicts the room described above. The heaters are represented by
squares, one for each area. The sink node is the triangle above the central heater.
Finally, the eighteen black circles represent the sensor nodes deployed in the room.
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6.3.1 Threat model

In such a scenario, an adversary may be interested in compromising the service avail-
ability, or altering reports correctness before they are collected by the sink. We con-
sider four possible attacks to the monitoring wireless sensor network.

Removal attack. The adversary removes a number of sensor nodes from the net-
work. By doing so, the computation of average temperatures is clearly altered. How-
ever, this attack is relatively simple to detect, since the sink is supposed to not receive
temperature reports from removed nodes anymore.

Misplace attack. The adversary moves a number of sensor nodes from their origi-
nal position to a new one. By properly choosing the new positions, it is possible to al-
ter the computation of average temperatures on the sink node, or even worse. In fact,
if a temperature warning threshold is defined, an alarm can be erroneously raised,
because of a dangerously fake high temperature. This attack is far more difficult to
detect, since the sink assumes that all nodes’ original positions are unchanged.

Reprogram attack. The adversary tampers with a number of sensor nodes, and
reprograms their behavior. In particular, she can force them to erroneously report ei-
ther the minimum or the maximum possible temperature value, or even a randomly
generated value. In the latter case, the random value is comprised among the mini-
mum and maximum possible value. This attack is quite hard to be detected, although
comparisons with other nodes’ reports may help to contrast its effectiveness.

Drop attack. The adversary forces a number of sensor nodes to drop a subset of
packets, according to specified criteria. For instance, a node can be forced to drop
all data packets sent to the sink by a certain group of senders. This attack is quite
hard to be detected, since packet loss may be erroneously considered due to packet
corruption or medium access issues.

6.4 Simulative analysis

In this section, we refer to the application scenario described in Section 6.3, with
network nodes sensing temperature in their proximity one time per second. Then,
we evaluate the effects of the four attacks presented in Section 6.3.1 by using our
prototype implementation of ASF for the Castalia simulator.

In our simulations, we consider the Multipath Rings routing protocol [1], the IEEE
802.15.4 MAC protocol [52], and the CC2420 radio chipset [99]. Results were ob-
tained by means of 10 simulation runs, whose length was 600 seconds each.

The heat propagation model is based on the Customizable Physical Process pro-
vided by Castalia [1]. We assume that sensor nodes are able to report 0 °C and 1000
°C as minimum and maximum temperature value, respectively.

In the following, we consider the attacks described in Section 6.3.1. For each one
of them, we provide an example of attack configuration using ASL primitives presented
in Section 6.2.1, and discuss its impact on the application.
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Considered attacks occur at time t = 200 s, and may involve three different pairs
of nodes. In particular, the adversary manages to compromise either i) not a node; ii)
nodes {2,3}; iii) nodes {9,10}; or iv) nodes {12,18}.

With reference to Figure 6.5, nodes 9 and 10 are supposed to be the most impor-
tant ones, being very close to the central heater S2 and the sink node. On the other
hand, nodes 12 and 18 are supposed to be less important, being positioned at the
extreme right side of the room and far from the sink node.

6.4.1 Removal attack

At time t = 200 s, the adversary removes either nodes {2,3}, {9,10}, or {12,18} from
the network. In case nodes {2,3} are removed, the attack can be described as follows.

destroy(2,200);

destroy(3,200);
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Figure 6.6. Average room temperature with node removal.

Figure 6.6 shows variations of the average perceived room temperature, in case
different pairs of nodes are removed. It is evident that the average value remains
almost the same, and barely changes only if nodes {9, 10} are removed.

This result is reasonable, since the Multipath Rings routing protocol introduces
redundancy in network connectivity, which results to be pretty robust. Then, messages
sent by a given node are likely to be successfully delivered to the sink, through some
of the other nodes acting as relay.

Actually affecting temperature monitoring requires to remove either a consistent
amount of nodes, or the most relevant ones. Observable effects can be seen if nodes
{9, 10} are removed, because of their proximity to the sink node, and their major con-
tribution in the packet relaying process.
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Figure 6.7. Reports reception with node removal.

Figure 6.7 shows the amount of temperature reports received by the sink from
each node. The graph confirms that the amount of received reports can be drastically
reduced, depending on the specific pair of nodes removed from the network. Also, if a
pair of nodes is removed, reports from other nodes are more likely to be delivered to
the sink. This is due to a reduced number of nodes contending to access the medium.

6.4.2 Misplace attack

At time t = 200 s, the adversary moves either nodes {2,3}, {9,10}, or {12,18} to the
specified new position. More specifically: i) nodes {2,3} are moved to position (0;10;0);
ii) nodes {9,10} are moved to position (100;10;0); and, finally, iii) nodes {12,18} are
moved to position (50;10;0). In case nodes {2,3} are moved to position (0;10;0), the
attack can be described as follows.

move(2,200,0,10,0);

move(3,200,0,10,0);

Figure 6.8 shows variations of the average perceived room temperature, in case
different pairs of nodes are misplaced. As depicted in the graph, the nodes pair {12,18}
is the only one that not negligibly affects the average temperature perceived in the
room. This is because such two nodes are supposed to be at the room border and
distant from the sink. Then, they are moved to the room center, at the very same
position of the sink and the central heater S2, thus altering the average perceived
temperature of up 20%.

If we focus on the right cluster, the misplace attack appears to be much more ef-
fective. As shown in Figure 6.9, nodes {12,18} are still the only ones that consistently
affect the average temperature in the right cluster, if moved away from their legitimate
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Figure 6.8. Average room temperature with node misplacing.
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Figure 6.9. Average right cluster temperature with node misplacing.

positions. However, the average temperature in the right cluster is erroneously per-
ceived as considerably different, i.e. up to 70% higher. Clearly, if a monitoring system
took into account also single clusters, this attack might easily succeed in improperly
raising an alarm.

6.4.3 Reprogram attack

At time t = 200 s, the adversary reprograms either nodes {9,10} or {12,18} to change
the content of their own application data packets, i.e. their temperature reports, before
sending them to the sink. The new content can be either the minimum, the maximum,
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or a random temperature value. In case nodes {9,10} replace their reported tempera-
ture with a random value, the attack can be described as follows.

from t = 200; nodes = "9 10" do {

if(packet.APP.source==SELF &&

packet.APP.type==DATA)

change(packet,APP.payload,RAND);

}
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Figure 6.10. Average room temperature with nodes {9, 10} reprogrammed.

Figure 6.10 shows variations of the average perceived room temperature, in case
nodes {9, 10} are reprogrammed. As depicted in the graph, forcing nodes to provide
a random temperature value results in erroneously perceiving the room temperature
up to 100% higher. Moreover, if the nodes report the maximum possible value, the
average perceived room temperature is over 200% higher. Thus, by performing this
attack, it is easy to improperly raise an alarm within the room.

As shown in Figure 6.11, this attack is less severe in case nodes {12, 18} are
reprogrammed. In fact, such nodes are located at the right room border, i.e. far from
the sink, and not so close to an heater (especially node 18), i.e. they are less influent in
the temperature monitoring process. Thus, if nodes are forced to report the maximum
possible value, the average perceived room temperature can be up to 40% higher.

6.4.4 Drop attack

At time t = 200 s, nodes {9,10} start to retain all MAC data packets sent by nodes
{1,2,7,8,13,14}. Then, they discard such packets, rather than relaying them to the sink
according to the Multipath Rings routing protocol. In case nodes {9,10} are forced to
drop MAC data packets from other nodes, the attack can be described as follows. The
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Figure 6.11. Average room temperature with nodes {12, 18} reprogrammed.

utility function belong() returns true in case the list specified as first argument includes
the value specified as second argument.

srcList={1,2,7,8,13,14};

from t = 200; nodes = "9 10" do {

if(belong(srcList,packet.MAC.source) &&

packet.MAC.type==DATA)

drop(packet);

}

Even if nodes {9,10} drop MAC data packets, the amount of reports received by the
sink is basically not affected. As a consequence, the average perceived temperature
within the room remains the same, even if a Drop attack occurs. We performed more
simulations, where either nodes {2,3} or {12,18} perform the attack, and obtained
similar results.

This is mainly due to the adopted Multipath Rings routing protocol. As discussed
for the Removal attack in Section 6.4.1, sensor nodes act as relay at the network
layer, thus introducing redundancy in network connectivity. Thus, even if temperature
reports from sensor nodes are dropped, they are likely to be eventually delivered to
the sink. This means that, in the considered application scenario, two nodes dropping
MAC data packets are not sufficient to alter network activity and application perfor-
mance in a relevant way.

Also, we think that if non trivial routing mechanisms are adopted, an attack con-
sisting only in discarding packets can hardly affect applications and performance. In-
stead, discarding packets may be effective as part of more complex attacks, together
with other basic actions (e.g. altering packet contents, reprogramming nodes, injecting
fake packets).
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Conclusion

In this Ph.D. dissertation, we have considered, highlighted, and supported the impor-
tance of security in Wireless Sensor Networks (WSNs). Specifically, we have stressed
that securing WSNs displays peculiar issues with respect to other kinds of networks.
This is mainly due to the scarce resources provided by typical sensor devices, in terms
of memory capacity, computational capabilities, and battery lifetime.

Therefore, it is vital that adoption of security solutions trades between their effec-
tiveness and efficiency. That is, adopted countermeasures have to be scalable with
the network size, and affordable by resource-scarce devices. Also, their impact on
network performance must be sustainable in terms of communication overhead. In
addition, adopted solutions should be able to deal with different traffic flows, and eas-
ily adapt to possible changes in network conditions. Finally, countermeasures should
be chosen and configured according to severity of security attacks, whose impact and
effects should be known since from the network design phase.

In this Ph.D. dissertation, we have addressed the above mentioned issues, and
provided the following contributions to WSN security.

• Analysis and performance evaluation of IEEE 802.15.4 security services.
• Analysis and solutions against deficiencies of ZigBee security services.
• A highly scalable scheme for group rekeying including collusion management.
• A transparent and reconfigurable software component for secure communication.
• A framework for quantitative evaluation of security attacks through simulation.

We believe that such contributions represent a valid set of recommendations, so-
lutions, and tools to properly secure applications based on WSNs, and hope they will
be a first step towards further achievements in this field.
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