2,018 research outputs found

    A novel approach to gait synchronization and transition for reconfigurable walking platforms

    Get PDF
    Legged robots based on one degree-of-freedom reconfigurable planar leg mechanisms, that are capable of generating multiple useful gaits, are highly desired due to the possibility of handling environments and tasks of high complexity while maintaining simple control schemes. An essential consideration in these reconfigurable legged robots is to attain stability in motion, at rest as well as while transforming from one configuration to another with the minimum number of legs as long as the full range of their walking patterns, resulting from the different gait cycles of their legs, is achieved. To this end, in this paper, we present a method for the generation of input joint trajectories to properly synchronize the movement of quadruped robots with reconfigurable legs. The approach is exemplified in a four-legged robot with reconfigurable Jansen legs capable of generating up to six useful different gait cycles. The proposed technique is validated through simulated results that show the platform׳s stability across its six feasible walking patterns and during gait transition phases, thus considerably extending the capabilities of the non-reconfigurable design

    Dynamic Analysis and Modeling of Jansen Mechanism

    Get PDF
    AbstractTheo Jansen mechanism is gaining wide spread popularity among legged robotics researchers due to its scalable design, energy efficiency, low payload to machine load ratio, bio-inspired locomotion, deterministic foot trajectory among others. In this paper, we present dynamic analysis of a four legged Theo Jansen link mechanism using projection method that results in constraint force and equivalent Lagrange's equation of motion necessary for any meaningful extension and/or optimization of this niche mechanism. Numerical simulations using MaTX is presented in conjunction with the dynamic analysis. This research sets a theoretical basis for future investigation into Theo Jansen mechanism

    On a Jansen leg with multiple gait patterns for reconfigurable walking platforms

    Get PDF
    Legged robots are able to move across irregular terrains and those based on 1-degree-of-freedom planar linkages can be energy efficient, but are often constrained by a limited range of gaits which can limit their locomotion capabilities considerably. This article reports the design of a novel reconfigurable Theo Jansen linkage that produces a wide variety of gait cycles, opening new possibilities for innovative applications. The suggested mechanism switches from a pin-jointed Grübler kinematic chain to a 5-degree-of-freedom mechanism with slider joints during the reconfiguration process. It is shown that such reconfigurable linkage significantly extend the capabilities of the original design, while maintaining its mechanical simplicity during normal operation, to not only produce different useful gait patterns but also to realize behaviors beyond locomotion. Experiments with an implemented prototype are presented, and their results validate the proposed approach

    Emerging Linguistic Functions in Early Infancy

    Get PDF
    This paper presents results from experimental studies on early language acquisition in infants and attempts to interpret the experimental results within the framework of the Ecological Theory of Language Acquisition (ETLA) recently proposed by (Lacerda et al., 2004a). From this perspective, the infant’s first steps in the acquisition of the ambient language are seen as a consequence of the infant’s general capacity to represent sensory input and the infant’s interaction with other actors in its immediate ecological environment. On the basis of available experimental evidence, it will be argued that ETLA offers a productive alternative to traditional descriptive views of the language acquisition process by presenting an operative model of how early linguistic function may emerge through interaction

    Review and synthesis of a walking machine (Robot) leg mechanism

    Get PDF
    A walking machine (robot) is a type of locomotion that operates by means of legs and/or wheels on rough terrain or flat surface. The performance of legged machines is greater than wheeled or tracked walking machines on an unstructured terrain. These types of machines are used for data collections in a variety of areas such as large agricultural sector, dangerous and rescue areas for a human. The leg mechanism of a walking machine has a different joint in which a number of motors are used to actuate all degrees of freedom of the legs. In the synthesis of walking machine reported in this article, the leg mechanism is developed using integration of linkages to reduce the complexity of the design and it enables the robot to walk on a rough terrain. The dimensional synthesis is carried out analytically to develop a parametric equation and the geometry of the developed leg mechanism is modelled. The mechanism used is found effective for rough terrain areas because it is capable to walk on terrain of different amplitudes due to surface roughness and aerodynamics.publishedVersio

    Comparison of Spider-Robot Information Models

    Get PDF
    The paper deduces a mathematical model of a spider-robot with six three-link limbs. Many limbs with a multi-link structure greatly complicate the process of synthesizing a model, since in total the robot has twenty-four degrees of freedom, i.e., three coordinates of the center of mass of the body in space, three angles of rotation of the body relative to its center of mass and three degrees of freedom for each limb, to describe the position of the links. The derived mathematical model is based on the Lagrange equations with a further transformation of the equations to the Cauchy normal form in a matrix form. To test the resulting model in a SimInTech environment, an information model is synthesized and two simple experiments ar carried out to simulate the behavior of real spiders: moving forward in a straight line and turning in place at a given angle. The experimental results demonstrate that the synthesized information model can well cope with the tasks and the mathematical model underlying it can be used for further research

    Robotic design and modelling of medical lower extremity exoskeletons

    Get PDF
    This study aims to explain the development of the robotic Lower Extremity Exoskeleton (LEE) systems between 1960 and 2019 in chronological order. The scans performed in the exoskeleton system’s design have shown that a modeling program, such as AnyBody, and OpenSim, should be used first to observe the design and software animation, followed by the mechanical development of the system using sensors and motors. Also, the use of OpenSim and AnyBody musculoskeletal system software has been proven to play an essential role in designing the human-exoskeleton by eliminating the high costs and risks of the mechanical designs. Furthermore, these modeling systems can enable rapid optimization of the LEE design by detecting the forces and torques falling on the human muscles

    Feel the beat: using cross-modal rhythm to integrate perception of objects, others, and self

    Get PDF
    For a robot to be capable of development, it must be able to explore its environment and learn from its experiences. It must find (or create) opportunities to experience the unfamiliar in ways that reveal properties valid beyond the immediate context. In this paper, we develop a novel method for using the rhythm of everyday actions as a basis for identifying the characteristic appearance and sounds associated with objects, people, and the robot itself. Our approach is to identify and segment groups of signals in individual modalities (sight, hearing, and proprioception) based on their rhythmic variation, then to identify and bind causally-related groups of signals across different modalities. By including proprioception as a modality, this cross-modal binding method applies to the robot itself, and we report a series of experiments in which the robot learns about the characteristics of its own body

    Rolling Locomotion Control of a Biologically Inspired Quadruped Robot Based on Energy Compensation

    Get PDF
    We have developed a biologically inspired reconfigurable quadruped robot which can perform walking and rolling locomotion and transform between walking and rolling by reconfiguring its legs. This paper presents an approach to control rolling locomotion with the biologically inspired quadruped robot. For controlling rolling locomotion, a controller which can compensate robot’s energy loss during rolling locomotion is designed based on a dynamic model of the quadruped robot. The dynamic model describes planar rolling locomotion based on an assumption that the quadruped robot does not fall down while rolling and the influences of collision and contact with the ground, and it is applied for computing the mechanical energy and a plant in a numerical simulation. The numerical simulation of rolling locomotion on the flat ground verifies the effectiveness of the proposed controller. The simulation results show that the quadruped robot can perform periodic rolling locomotion with the proposed energy-based controller. In conclusion, it is shown that the proposed control approach is effective in achieving the periodic rolling locomotion on the flat ground
    corecore