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We have developed a biologically inspired reconfigurable quadruped robot which can performwalking and rolling locomotion and
transform betweenwalking and rolling by reconfiguring its legs.This paper presents an approach to control rolling locomotionwith
the biologically inspired quadruped robot. For controlling rolling locomotion, a controller which can compensate robot’s energy
loss during rolling locomotion is designed based on a dynamicmodel of the quadruped robot.The dynamicmodel describes planar
rolling locomotion based on an assumption that the quadruped robot does not fall downwhile rolling and the influences of collision
and contact with the ground, and it is applied for computing the mechanical energy and a plant in a numerical simulation. The
numerical simulation of rolling locomotion on the flat ground verifies the effectiveness of the proposed controller. The simulation
results show that the quadruped robot can perform periodic rolling locomotion with the proposed energy-based controller. In
conclusion, it is shown that the proposed control approach is effective in achieving the periodic rolling locomotion on the flat
ground.

1. Introduction

Reconfigurable robots have the capability to adapt to different
tasks and environments. Various designs of reconfigurable
robots have been investigated, for instance, modular robots
[1–3], cooperative robots [4–6], and transformable multi-
legged or parallel robots [7–12].

Designs of reconfigurable robots can be inspired by
creatures in nature [13–16]. Reconfigurable robots inspired
by a creature performing walking and rolling locomotion
particularly provide the capability to attain the fast and
energy-efficient movement on the flat ground with rolling
locomotion and high stability and mobility on the uneven
groundwith walking locomotion. Such reconfigurable robots
have been discussed in literatures [17, 18]. Lin et al. have
focused on a caterpillar that can escape rapidly from preda-
tors by reconfiguring its body structure like a wheel and
have developed a caterpillar-inspired soft robot, which has
attempted rolling locomotion [17]. King has focused on
somersault rolling locomotion performed by a spider called

“huntsman spider (Cebrennus villosus)” and has developed
a quadruped robot capable of somersaulting, which has
performed somersault rolling locomotion [18].

We have optimized the design mechanism presented in
[18] and have developed reconfigurable robotic platforms
which can perform walking and rolling locomotion and
transform between walking and rolling by reconfiguring
their legs. For the platforms, we have built a feedforward
controller and a terrain perception system in our previous
work [19]. Applying the feedforward controller and the
terrain perception system has provided walking and rolling
locomotion on the platforms; however, we have not achieved
stable and periodic rolling locomotion.

In this paper, we discuss periodic rolling locomotion
control of one of our platforms called the huntsman-spider-
inspired quadruped robot. For periodic rolling locomotion,
we focus on robot’s energy during rolling locomotion, though
previous studies of rolling locomotion on reconfigurable
robots [8, 11, 20, 21] have focused on the movement of
robot’s center of gravity (COG).We show that the quadruped
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Figure 1: Huntsman-spider-inspired quadruped robot: (a) walking form and (b) rolling form. This robot has four legs and three motors on
each leg, namely, twelve motors. Three motors on each leg are mounted as their axes are at right angles to each other.

robot performs periodic rolling locomotion with energy-
based control.

The quadruped robot loses some of robot’s energy due
to collision and contact with the ground while rolling, and
therefore it cannot performperiodic rolling locomotionwith-
out energy supply. It hence requires energy compensation,
which is provided by applying control methods based on
object’s energy discussed in literatures [22–26].

In this paper, a controller which can compensate the
robot’s energy loss during rolling locomotion is designed
based on a dynamic model of the quadruped robot. Its
dynamic model describes planar rolling locomotion based
on an assumption that it does not fall down while rolling
and the influences of collision and contact with the ground.
Applying the dynamicmodel, the controller computes robot’s
energy and input for energy compensation. The effectiveness
of the proposed controller is verified through a numerical
simulation of its rolling locomotion.

2. Modeling the Huntsman-Spider-Inspired
Quadruped Robot with Rolling Locomotion

This section presents the dynamic model of the huntsman-
spider-inspired quadruped robot with rolling locomotion.

Figure 1 shows the developed platform. This robot has
four legs and threemotors on each leg, namely, twelvemotors.
Threemotors on each leg aremounted as their axes are at right
angles to each other.

The robot has the walking form and rolling one shown
in Figure 1 and can transform between walking and rolling
by reconfiguring their legs as shown in Figure 2. By utilizing
these forms, it can adapt to different tasks and environments.

The robot can roll on the flat ground by moving the front
legs or the rear legs simultaneously as shown in Figure 3,
which shows rolling locomotion with feedforward control. In
this paper, the rolling locomotion is modeled.

The quadruped robot model is developed based on the
following assumptions.

Assumption 1. The quadruped robot can swing the legs while
rolling.

Table 1: Physical parameters of the rolling huntsman-spider-
inspired quadruped robot.

Parameter Character Value
Mass of body (kg) 𝑚𝑏 1.70 × 10−1

Mass of leg (kg) 𝑚𝑙 5.50 × 10−2

Inertia moment of body (kgm2) 𝐼
𝑏

7.65 × 10−5

Inertia moment of leg (kgm2) 𝐼𝑙 6.10 × 10−6

Viscosity of body (Nms/rad) 𝑐𝑏 1.70 × 10−9

Viscosity of leg (Nms/rad) 𝑐𝑙 5.50 × 10−10

Length from COG of body to joint (m) 𝑙𝑏 5.50 × 10−2

Length from joints to COG of leg (m) 𝑙𝑔𝑙 5.83 × 10−2

Angle from leg to COG of leg (rad) 𝛼𝑔𝑙 5.40 × 10−1

Radius of ground contact area (m) 𝑟𝑙 8.00 × 10−2

Gravity acceleration (m/s2) 𝑔 9.81

Table 2: Variables of the rolling huntsman-spider-inspired
quadruped robot (𝑗 = 1, 2).

COG coordinates of body (m) (𝑥𝑏, 𝑦𝑏)

COG coordinates of leg 𝑗 (m) (𝑥𝑙𝑗, 𝑦𝑙𝑗)

Rotational angle of body (rad) 𝜃𝑏

Rotational angle of leg 𝑗 (rad) 𝜃𝑙𝑗

Joint torque of leg 𝑗 (Nm) 𝜏𝑙𝑗

Assumption 2. Thequadruped robot does not fall downwhile
rolling.

Assumption 3. The quadruped robot rolls across the high
frictional flat ground without slipping.

Assumption 4. Collision with the ground is assumed as
completely inelastic in nature.

According to the assumptions, the model diagram of the
rolling quadruped robot is shown in Figure 4, the physical
parameters are shown in Table 1, and the variables are shown
in Table 2. The subscripts 𝑏 and 𝑙𝑗 denote the body and
the legs, respectively, and 𝑗 = 1, 2 denotes number of



Journal of Robotics 3

Figure 2: Transformation betweenwalking and rolling.Thequadruped robot has thewalking formand rolling one and can transformbetween
walking and rolling by reconfiguring their legs.

Figure 3: Rolling locomotion with feedforward control. The quadruped robot can roll on the flat ground by moving the front legs or the rear
legs simultaneously.

the legs. The rotational angles of the legs are a relative
angle against the body. The model diagram describes planar
rolling locomotion on the quadruped robot in the vertical
two-dimensional surface, and its 𝑋-axis describes the flat
ground.

A motion equation of the rolling quadruped robot model
is derived by applying the projection method [27–29]. To
derive it, the projection method yields a base motion equa-
tion of the quadruped robot, which does not contain the
influences of collision and contact with the ground on the
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Figure 4: Model diagram of the rolling huntsman-spider-inspired
quadruped robot. The model diagram describes planar rolling
locomotion on the quadruped robot in the vertical two-dimensional
surface, and its𝑋-axis describes the flat ground.

robot, from independent motion equations of components
constituting the robot and constraint conditions between
each component. It is then obtained by giving a constraint
force due to collision and contact with the ground, which
is given by constraint conditions posed to the quadruped
robot while the collision or contact occurs, to the base
motion equation [30, 31]. The constraint force also gives
discontinuous changes of velocity due to collision according
to Assumption 4.

2.1. The Base Model of the Huntsman-Spider-Inspired
Quadruped Robot. An unconstrained motion equation
constituted of the motion equations of the independent
components is written to derive the base motion equation of
the quadruped robot.

Generalized coordinates x𝑞 are defined as

x𝑞 = [𝜃𝑏, 𝜃𝑙1, 𝜃𝑙2, 𝑥𝑏, 𝑦𝑏, 𝑥𝑙1, 𝑦𝑙1, 𝑥𝑙2, 𝑦𝑙2]
𝑇
. (1)

A generalized mass matrix M𝑞 and a generalized force
vector h𝑞 are given by

M𝑞 = diag (M11,M22) ,

M11 :=
[

[

[

𝐼𝑏 + 2𝐼𝑙 𝐼𝑙 𝐼𝑙
𝐼𝑙 𝐼𝑙 0
𝐼𝑙 0 𝐼𝑙

]

]

]

,

M22 := diag (𝑚𝑏, 𝑚𝑏, 𝑚𝑙, 𝑚𝑙, 𝑚𝑙, 𝑚𝑙) ,

h𝑞 = [−𝑐𝑏
̇

𝜃𝑏, 𝜏𝑙1 − 𝑐𝑙
̇

𝜃𝑙1, 𝜏𝑙2 − 𝑐𝑙
̇

𝜃𝑙2, 0, −𝑚𝑏𝑔, 0, −𝑚𝑙𝑔, 0,

−𝑚𝑙𝑔]

𝑇

.

(2)

The unconstrained motion equation is represented by
M𝑞ẍ𝑞 = h𝑞.

The projection method leads to a constrained motion
equation by considering conditions to constrain system
behavior including definitions of positional relationships
between each component. The constraint conditions of the
quadruped robot are definitions of positional relationships
between the body and each leg. They are given by

𝑥𝑙1 = 𝑥𝑏 + 𝑙𝑏 cos 𝜃𝑏 + 𝑙𝑔𝑙 cos (𝜃𝑏 + 𝜃𝑙1 +𝛼𝑔𝑙) ,

𝑦𝑙1 = 𝑦𝑏 − 𝑙𝑏 sin 𝜃𝑏 − 𝑙𝑔𝑙 sin (𝜃𝑏 + 𝜃𝑙1 +𝛼𝑔𝑙) ,

𝑥𝑙2 = 𝑥𝑏 − 𝑙𝑏 cos 𝜃𝑏 − 𝑙𝑔𝑙 cos (𝜃𝑏 + 𝜃𝑙2 +𝛼𝑔𝑙) ,

𝑦𝑙2 = 𝑦𝑏 + 𝑙𝑏 sin 𝜃𝑏 + 𝑙𝑔𝑙 sin (𝜃𝑏 + 𝜃𝑙2 +𝛼𝑔𝑙) .

(3)

The constraint conditions give a constraint matrix C𝑞
which should satisfy C𝑞ẋ𝑞 = 0. They are combined into a
constraint equation Φ𝑞 = 0 by moving the right member of
each equation in (3) to the other side. The constraint matrix
C𝑞 is thus represented by

C𝑞 =
𝜕Φ𝑞

𝜕x𝑞
. (4)

Applying the constraint matrix C𝑞 and Lagrange’s unde-
termined multipliers 𝜆𝑞 yields a constrained system

M𝑞ẍ𝑞 = h𝑞 +C𝑇
𝑞
𝜆𝑞. (5)

Since (5) has redundant degrees of freedom, they are reduced.
An independent velocity vector under constrained state

q̇𝑞 which is selected from ẋ𝑞 is defined as

q̇𝑞 = [
̇

𝜃𝑏,
̇

𝜃𝑙1,
̇

𝜃𝑙2, �̇�𝑏, ̇𝑦𝑏]

𝑇

. (6)

Since applying the independent velocity vector q̇𝑞 yields ẋ𝑞 =
[q̇𝑇
𝑞
, k𝑇
𝑞
]
𝑇, we can represent the constraint matrix by C𝑞 =

[C𝑞1,C𝑞2] so that C𝑞 can satisfy C𝑞ẋ𝑞 = C𝑞1q̇𝑞 + C𝑞2k𝑞. From
this relationship, an orthogonal matrixD𝑞 can be obtained so
as to be C𝑞D𝑞 = 0 and ẋ𝑞 = D𝑞q̇𝑞. Since C𝑞ẋ𝑞 = C𝑞1q̇𝑞 +
C𝑞2k𝑞 = 0 gives k𝑞 = −C−1

𝑞2C𝑞1q̇𝑞, the orthogonal matrix D𝑞
is obtained from ẋ𝑞 = [q̇𝑇

𝑞
, k𝑇
𝑞
]
𝑇
= D𝑞q̇𝑞 as

D𝑞 = [

I5
−C−1
𝑞2C𝑞1

] , (7)

where I denotes an identitymatrix and an index of I denotes a
dimensions of an identitymatrix. Besides (7) satisfiesC𝑞D𝑞 =
C𝑞1 − C𝑞2C−1𝑞2C𝑞1 = 0.

The constrainedmotion equation is derived by projecting
the constrained system (5) on the space constrained by D𝑇

𝑞

and transforming the coordinates of the component vectors.
The base motion equation of the quadruped robot is thereby
derived as

D𝑇
𝑞
M𝑞D𝑞q̈𝑞 +D𝑇

𝑞
M𝑞 ̇D𝑞q̇𝑞 = D𝑇

𝑞
h𝑞. (8)
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2.2. Consideration of the Constraint Force due to Collision
and Contact with the Ground. The motion equation of the
quadruped robot with rolling locomotion is derived by
applying the constraint force due to collision and contact with
the ground to the base motion equation of the quadruped
robot.

Applying the constraint force due to collision and contact
with the ground 𝜏𝐼 to the base motion equation (5) yields
the motion equation of the quadruped robot with rolling
locomotion

M𝑞ẍ𝑞 = h𝑞 +C𝑇
𝑞
𝜆𝑞 + 𝜏𝐼. (9)

The constraint force 𝜏𝐼 is represented by

𝜏𝐼 = C𝑇
𝐼
𝜆𝐼, (10)

where C𝐼 is the constraint matrix due to collision and
contact with the ground, 𝜆𝐼 is the Lagrange’s undetermined
multipliers, and C𝐼 should satisfy C𝐼ẋ𝑞 = 0.

When the height of a grounding point of the quadruped
robot ℎ𝑗 is less than or equal to 0 (ℎ𝑗 ≤ 0) and the ground
reaction force 𝜆𝑗 is greater than 0 (𝜆𝑗 > 0), consider the
following constraint conditions:

(1) grounding legs roll without slipping;
(2) a height of a grounding leg does not change.

Here the coordinates of ground basing point (𝑥𝑐𝑗, 𝑦𝑐𝑗) are
given by

𝑥𝑐1 = 𝑥𝑏 + 𝑙𝑏 cos 𝜃𝑏 + 𝑙𝑐 cos (𝜃𝑏 + 𝜃𝑙1 +𝛼𝑐) ,

𝑦𝑐1 = 𝑦𝑏 − 𝑙𝑏 sin 𝜃𝑏 − 𝑙𝑐 sin (𝜃𝑏 + 𝜃𝑙1 +𝛼𝑐) ,

𝑥𝑐2 = 𝑥𝑏 − 𝑙𝑏 cos 𝜃𝑏 − 𝑙𝑐 cos (𝜃𝑏 + 𝜃𝑙2 +𝛼𝑐) ,

𝑦𝑐2 = 𝑦𝑏 + 𝑙𝑏 sin 𝜃𝑏 + 𝑙𝑐 sin (𝜃𝑏 + 𝜃𝑙2 +𝛼𝑐) ,

(11)

and ℎ𝑗 can be represented by ℎ𝑗 = 𝑦𝑐𝑗 − 𝑟𝑙, where 𝑙𝑐 = 5.70 ×
10−2 m and 𝛼𝑐 = 1.30 rad are the length from the joint to
the ground basing point and angle from the leg to the ground
basing point, respectively. The following expressions are thus
derived from the above:

𝑥𝑐𝑗 = 𝑥𝑐𝑗0 + 𝑟𝑙 (𝜃𝑏 + 𝜃𝑙𝑗 − (𝜃𝑏0 + 𝜃𝑙𝑗0)) ,

𝑦𝑐𝑗 = 𝑟𝑙,

ℎ𝑗 ≤ 0 ∩ 𝜆𝑗 > 0,

(12)

where 𝑥𝑐𝑗0, 𝜃𝑏0, and 𝜃𝑙𝑗0 are the 𝑥-coordinate of each leg and
the angle of the body and the legs when constraints occur,
respectively.

The constraint matrix C𝐼 is consequently represented by

C𝐼 =
𝜕Φ𝐼

𝜕x𝑞
, ℎ𝑗 ≤ 0 ∩ 𝜆𝑗 > 0, (13)

where the constraint equationΦ𝐼 = 0 is obtained from (12).

When (13) holds, projecting (9) on the space constrained
by D𝑇
𝑞
and transforming the coordinates of the component

vectors can transform (9) into

D𝑇
𝑞
M𝑞D𝑞q̈𝑞 +D𝑇

𝑞
M𝑞 ̇D𝑞q̇𝑞 = D𝑇

𝑞
h𝑞 +D𝑇

𝑞
C𝑇
𝐼
𝜆𝐼. (14)

Besides substituting (10) into (9) can also represent (9) as

M𝑞ẍ𝑞 = h𝑞 +C𝑇
𝑞𝑞
𝜆𝑞𝑞,

C𝑞𝑞 := [C𝑇
𝑞
,C𝑇
𝐼
]

𝑇

,

𝜆𝑞𝑞 := [𝜆
𝑇

𝑞
,𝜆
𝑇

𝐼
]

𝑇

.

(15)

SinceC𝑞𝑞ẋ𝑞 = 0 andC𝑞𝑞ẍ𝑞 = −
̇C𝑞𝑞ẋ𝑞, (15) can be transformed

into
C𝑞𝑞ẍ𝑞 = C𝑞𝑞M

−1
𝑞
h𝑞 +C𝑞𝑞M

−1
𝑞
C𝑇
𝑞𝑞
𝜆𝑞𝑞,

𝜆𝑞𝑞 = (C𝑞𝑞M
−1
𝑞
C𝑇
𝑞𝑞
)

−1
(C𝑞𝑞M

−1
𝑞
h𝑞 + Ċ𝑞𝑞ẋ𝑞) .

(16)

𝜆𝐼 included in (14) is produced from (16).

2.3. Velocity Transformation. In the case of touching each
leg of the quadruped robot to the ground, a collision occurs
and the velocities of the components change discontinuously.
The velocities after the collision can be determined by the
constraint conditions (12) posed to the robot when the
collision with the ground occurs and the velocities before
the collision. According to Assumption 4, the collision is
assumed as completely inelastic collision, and the velocities
after the collision are obtained from the velocities before the
collision as follows.

Transforming (9) gives 𝜆𝑞 as

𝜆𝑞 = −X−1
𝑞

(C𝑞M
−1
𝑞
h𝑞 + Ċ𝑞ẋ𝑞 +C𝑞M

−1
𝑞
𝜏𝐼) ,

X𝑞 := C𝑞M
−1
𝑞
C𝑇
𝑞
.

(17)

Substituting (10) and (17) into (9) yields

M𝑞ẍ𝑞 = Y𝑞h𝑞 −C𝑇
𝑞
X−1
𝑞
Ċ𝑞ẋ𝑞 +Y𝑞C

𝑇

𝐼
𝜆𝐼,

Y𝑞 := I9 −C𝑇
𝑞
X−1
𝑞
C𝑞M
−1
𝑞
.

(18)

Let ẋ−
𝑞
denote the velocities before the collision and let ẋ+

𝑞

denote the velocities after the collision. From (18), we obtain
the following velocity relationship between the velocities
before the collision and after that:

M𝑞ẋ
+

𝑞
−M𝑞ẋ

−

𝑞
= Y𝑞C

𝑇

𝐼
𝜆𝐼. (19)

Since ẋ+
𝑞
should satisfy C𝐼ẋ+𝑞 = 0, 𝜆𝐼 is given by

𝜆𝐼 = −Z−1
𝑞
C𝐼ẋ
−

𝑞
,

Z𝑞 := C𝐼M
−1
𝑞
Y𝑞C
𝑇

𝐼
.

(20)

The velocities after the collision ẋ+
𝑞
are thus obtained by

substituting (20) into (19) as

ẋ+
𝑞
= (I9 −M−1

𝑞
Y𝑞C
𝑇

𝐼
Z−1
𝑞
C𝐼) ẋ
−

𝑞
. (21)
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Figure 5: Transformed model diagram of the rolling huntsman-
spider-inspired quadruped robot. A grounding leg is defined as the
supporting leg and another leg is defined as the idling leg. The
grounding point of the supporting leg is defined as the origin 0,
which is switched to the point after switching each supporting leg.

3. Design of the Energy-Based Controller

This section presents the controller based on the robot’s
energy during rolling locomotion.The quadruped robot loses
some of the robot’s energy due to collision and contact with
the ground while rolling, and therefore it cannot perform
periodic rolling locomotion without energy supply. It hence
requires a controller which can compensate the robot’s energy
loss [25].

We derive a motion equation and mechanical energy
of the quadruped robot based on its grounding point on a
supporting leg. Applying them, the controller generates joint
torque for its supporting leg that allows the robot’s kinetic
energy to reach target energy at the moment when it switches
the supporting leg.

The quadruped robot performs an energy recovery action
immediately before switching the supporting leg. Otherwise
it returns and keeps the legs to initial positions.

3.1. Transforming the Motion Equation. The transformed
motion equation and the mechanical energy of the
quadruped robot are derived by defining a grounding
leg as the supporting leg and another leg as the idling leg and
shifting the origin 0 to the grounding point of the supporting
leg as shown in Figure 5. Here the subscripts 𝑠 and 𝑖 denote
the supporting leg and the idling leg, respectively. The origin
0 is switched to the grounding point of the supporting leg
after switching each supporting leg.

The transformed motion equation is derived by modify-
ing the constraint conditions and the independent velocity
vector. The constraint conditions after shifting the origin are
given by

𝑥𝑏 = − 𝑙𝑐 cos (𝜃𝑏 + 𝜃𝑠 +𝛼𝑐) − 𝑙𝑏 cos 𝜃𝑏,

𝑦𝑏 = 𝑙𝑐 sin (𝜃𝑏 + 𝜃𝑠 +𝛼𝑐) + 𝑙𝑏 sin 𝜃𝑏 + 𝑟𝑙,

𝑥𝑠 = − 𝑙𝑐 cos (𝜃𝑏 + 𝜃𝑠 +𝛼𝑐) + 𝑙𝑔𝑙 cos (𝜃𝑏 + 𝜃𝑠 +𝛼𝑔𝑙) ,

𝑦𝑠 = 𝑙𝑐 sin (𝜃𝑏 + 𝜃𝑠 +𝛼𝑐) − 𝑙𝑔𝑙 sin (𝜃𝑏 + 𝜃𝑠 +𝛼𝑔𝑙) + 𝑟𝑙,

𝑥𝑖 = − 𝑙𝑐 cos (𝜃𝑏 + 𝜃𝑠 +𝛼𝑐) − 2𝑙𝑏 cos 𝜃𝑏

− 𝑙𝑔𝑙 cos (𝜃𝑏 + 𝜃𝑖 +𝛼𝑔𝑙) ,

𝑦𝑖 = 𝑙𝑐 sin (𝜃𝑏 + 𝜃𝑠 +𝛼𝑐) + 2𝑙𝑏 sin 𝜃𝑏

+ 𝑙𝑔𝑙 sin (𝜃𝑏 + 𝜃𝑖 +𝛼𝑔𝑙) + 𝑟𝑙.

(22)

The independent velocity vector q̇𝑞 is also modified as

q̇𝑞 = [
̇

𝜃𝑏,
̇

𝜃𝑠,
̇

𝜃𝑖]

𝑇

, (23)

where ̇
𝜃𝑠 and ̇

𝜃𝑖 are the controllable variables and ̇
𝜃𝑏 is

uncontrollable one; however, ̇
𝜃𝑖 is not utilized for energy

compensation control. Applying the modified constraint
conditions (22) and the independent velocity vector (23)
yields the constraint matrixC𝑞 and the orthogonal matrixD𝑞
in the manner described in the previous section, and thereby
we can derive the quadruped robot motion equation with the
origin at the grounding point of the supporting leg.

The transformed motion equation is represented by

M𝑐 (q𝑞) q̈𝑞 +C𝑐 (q𝑞, q̇𝑞) q̇𝑞 +
𝜕𝑈

𝜕q𝑞
= T𝑐, (24)

whereM𝑐(q𝑞) is the inertia matrix, C𝑐(q𝑞, q̇𝑞) is the damping
matrix, 𝑈 is the potential energy, and T𝑐 is the input torque
and alsoM𝑐(q𝑞) = D𝑇

𝑞
M𝑞D𝑞 and T𝑐 = [0, 𝜏𝑠, 𝜏𝑖]

𝑇.
The mechanical energy 𝐸, the kinetic energy 𝐾, and the

potential energy 𝑈 are defined as

𝐸 = 𝐾+𝑈,

𝐾 =

1
2
q̇𝑇
𝑞
M𝑐 (q𝑞) q̇𝑞,

𝑈 = (𝑚𝑏𝑦𝑏 +𝑚𝑙 (𝑦𝑠 +𝑦𝑖)) 𝑔.

(25)

Additionally the relationship between the time derivative
mechanical energy and the input torque is represented by

�̇� = �̇� + �̇� = q̇𝑇
𝑞
T𝑐. (26)

3.2. Energy Compensation Control. Some of the kinetic
energy𝐾 is lost due to collision and contact with the ground.
We hence set the kinetic energy at the moment when the
quadruped robot switches the supporting leg for the case of
completing rolling locomotion as the target energy 𝐸𝑑 for
control and assume that 𝐾 = 𝐸𝑑 is satisfied at the moment
while it is completing that. On the basis of the above, the
energy state function 𝑉 is defined as

𝑉 =

1
2
(𝐾−𝐸𝑑)

2
,

�̇� = (𝐾−𝐸𝑑) �̇�.

(27)



Journal of Robotics 7

Equation (27) is 𝑉 > 0 obviously and satisfies 𝑉 = 0 for 𝐾 =

𝐸𝑑. When �̇� < 0, 𝑉 → 0 and 𝐾 → 𝐸𝑑 is satisfied. Rolling
locomotion is thus achieved by satisfying𝐾 → 𝐸𝑑 when the
joint torque which satisfies �̇� < 0 is given to the supporting
leg.

The time derivative of the energy state function �̇� is
written by applying (26) and (27) as

�̇� = (𝐾−𝐸𝑑) (q̇
𝑇

𝑞
T𝑐 − �̇�) ,

= (𝐾−𝐸𝑑) (
̇

𝜃𝑠𝜏𝑠 +
̇

𝜃𝑖𝜏𝑖 − �̇�) < 0.
(28)

Since the kinetic energy is recovered only by movement of
the supporting leg, let ̇

𝜃𝑖𝜏𝑖 = 0. Equation (28) is definitely
transformed into

�̇� = (𝐾−𝐸𝑑) (
̇

𝜃𝑠𝜏𝑠 − �̇�) < 0. (29)

This paper supposes that the quadruped robot should
roll only in the positive direction on the 𝑋-coordinate. In
order for the robot to roll in only one direction, we restrict
the angular velocity of the supporting leg during an energy
recovery action to ̇

𝜃𝑠 < 0. Under this restriction, if𝐾−𝐸𝑑 < 0,
that is,𝐾 < 𝐸𝑑, then

̇
𝜃𝑠𝜏𝑠 − �̇� > 0. (30)

Since ̇
𝜃𝑠 < 0, let ̇

𝜃𝑠 = −|
̇

𝜃𝑠|. Equation (30) is calculated as

𝜏𝑠 <

{
{
{
{
{

{
{
{
{
{

{

−











�̇�

̇
𝜃𝑠











, (�̇� ≥ 0 ∩ ̇
𝜃𝑠 < 0) ,











�̇�

̇
𝜃𝑠











, (�̇� < 0 ∩ ̇
𝜃𝑠 < 0) .

(31)

If 𝐾 − 𝐸𝑑 ≥ 0, that is,𝐾 ≥ 𝐸𝑑, then

𝜏𝑠 >

{
{
{
{
{

{
{
{
{
{

{

−











�̇�

̇
𝜃𝑠











, (�̇� ≥ 0 ∩ ̇
𝜃𝑠 < 0) ,











�̇�

̇
𝜃𝑠











, (�̇� < 0 ∩ ̇
𝜃𝑠 < 0) .

(32)

The input is determined to satisfy (31) and (32).The input
𝜏𝑠 is defined as

𝜏𝑠 =

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{

−𝜁











�̇�

̇
𝜃𝑠











, (𝐾 − 𝐸𝑑 < 0 ∩ ̇
𝜃𝑠 < 0) ,

𝜁











�̇�

̇
𝜃𝑠











, (𝐾 − 𝐸𝑑 ≥ 0 ∩ ̇
𝜃𝑠 < 0) ,

0, (
̇

𝜃𝑠 ≥ 0) ,

(33)

where 𝜁 is the gain to adjust the input and 1 < 𝜁 < ∞. Besides
an initial angular velocity is provided by another input since
̇

𝜃𝑠 has the singular point in (33).
To determine 𝜁, values of the energy state function 𝑉 at

themomentwhen the quadruped robot switches the support-
ing leg are set as the Poincare mapping 𝜉 = {𝜉1, 𝜉2, . . . , 𝜉𝑘, . . .}.

Table 3: Controller parameters.

𝐸
𝑑

5.00 × 10−2

𝛼0 10.0
𝐾𝑝 1.00 × 102

𝐾𝑖 20.0
𝐾
𝑑

1.00 × 10−1

Here 𝜉𝑘 denotes the value of the energy state function 𝑉 for
the time 𝑡𝑘 at themoment.The control target is achievedwhen
the Poincare mapping is settled to 0. The gain 𝜁 settling the
Poincare mapping to 0 is defined as

𝜁 = 𝜁0 +
𝑁

∑

𝑘=1
(𝜅𝑝Δ𝜉𝑘 + 𝜅𝑖

𝑘

∑

𝑛=1
Δ𝜉𝑛 + 𝜅𝑑

Δ𝜉𝑘 − Δ𝜉𝑘−1
Δ𝑡𝑘

) , (34)

where Δ𝜉𝑘 = 𝜉𝑘 − 𝜉∗ is the difference between the value 𝜉𝑘
and the terget value 𝜉∗ = 0 of the energy state function 𝑉,
Δ𝑡𝑘 = 𝑡𝑘 − 𝑡𝑘−1 is the difference between the time 𝑡𝑘 and the
previous time 𝑡𝑘−1 at the moment, and 𝜁0, 𝜅𝑝, 𝜅𝑖, and 𝜅𝑑 are
the adjustable parameters and should be positive constant.

4. Simulation of Rolling Locomotion on the
Flat Ground

Rolling locomotion on the quadruped robot on the flat
ground is simulated to verify the effectiveness of the proposed
controller. The initial state of the rotational angle of the body
and the legs is set at 𝜃𝑏 = 8.73 × 10−2 rad and 𝜃𝑙𝑗 = 1.57 rad,
respectively. The quadruped robot starts rolling locomotion
when the first leg contacts the ground. The robot performs
the energy recovery action immediately before switching the
supporting leg. At this time the horizontal COG of the robot
𝑋𝑔 = (𝑚𝑏𝑥𝑏 + 𝑚𝑙(𝑥𝑠 + 𝑥𝑖))/(𝑚𝑏 + 2𝑚𝑙) ≥ 1.25 × 10−2.

The model described in the section about modeling is
applied as a plant. A PID controller is applied with the
proposed controller in order to return and keep the legs to the
initial positions and provide an initial angular velocity for the
supporting leg.The PID controller works when the proposed
controller is not active.

The controller parameters are shown in Table 3.
Simulation results are shown in Figures 6–11. Figure 6

shows the rotational angle of the body, Figures 7 and 8 show
the positions of the body and the legs, Figure 9 shows the
rotational angles of the legs, Figure 10 shows the joint torque
values with energy compensation control, and Figure 11
shows the error between the kinetic energy and the target
energy.

Figures 6 and 7 show that the quadruped robot moves
in the positive direction with rolling continuously. It rotates
5.57 times and moves 2.91m in 10 s. Figure 8 shows that
𝑌 direction positions repeatedly increase and decrease. The
positional relationship between the legs in Figure 8 shows
that it rolls with switching the supporting leg.

Figure 9 shows that the quadruped robot performs the
energy recovery action immediately before switching the sup-
porting leg and returns it to the initial position immediately
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Figure 6: Rotational angle of the body. The rotational angle of the
body increases over time. It means that the quadruped robot rolls
continuously, and the robot rotates 5.57 times in 10 s.
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Figure 7: 𝑋 direction positions of the body and the legs (𝑥𝑏: body,
𝑥𝑙𝑗: leg 𝑗).The𝑋 direction positions of the body and the legs increase
over time. It means that the quadruped robot moves in the positive
direction, and the robot moves 2.91m in 10 s.

after that. The legs rotate in the negative direction when it
is the supporting leg. Figure 9 also shows that the angular
variations of the legs are converged to periodic trajectories.
The joint torque values for the energy recovery action shown
in Figure 10 allow the error of energy to be more than 0 as
shown in Figure 11. It means that the robot’s energy loss is
compensated by the proposed controller. The above results
show that the proposed controller is effective in achieving
periodic rolling locomotion on the flat ground with the
quadruped robot.
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Figure 8: 𝑌 direction positions of the body and the legs (𝑦𝑏: body,
𝑦𝑙𝑗: leg 𝑗). The 𝑌 direction positions of the body and the legs repeat-
edly increase and decrease. The positional relationship between
the legs shows that the quadruped robot rolls with switching the
supporting leg.
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Figure 9: Rotational angles of the legs (𝜃𝑙𝑗: leg 𝑗). The quadruped
robot moves the supporting leg in the negative direction imme-
diately before switching the supporting leg to increase the robot’s
kinetic energy. The legs return to its initial position immediately
after that.

5. Conclusion

This paper has presented an approach to control rolling loco-
motion with a huntsman-spider-inspired quadruped robot.
A dynamic model of the quadruped robot with rolling
locomotion has been developed by applying a constraint
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Figure 10: Joint torque values with energy compensation control
(𝜏𝑙𝑗: leg 𝑗). The negative joint torque values are supplied to the legs
immediately before the quadruped robot switches the supporting
leg.
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Figure 11: Error of energy.The joint torque values allow the error of
energy to be more than 0, which means that the robot’s energy loss
is compensated by the proposed controller.

force due to collision and contact with the ground to a base
quadruped robot model. The rolling locomotion is limited
to planar one by an assumption that the quadruped robot
does not fall down while rolling. A transformed model and
mechanical energy of the quadruped robot have been derived
based on its grounding point on a supporting leg. Employ-
ing these, a controller which can compensate the robot’s
energy loss during rolling locomotion has been designed.
The effectiveness of the proposed controller has been verified
through a numerical simulation of rolling locomotion on
the flat ground. The simulation results have shown that the
quadruped robot can perform periodic rolling locomotion

with the proposed energy-based controller. The proposed
control approach is effective in achieving periodic rolling
locomotion in conclusion. The proposed controller will be
implemented in our platforms and its effectiveness will be
tested in future work.
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