215 research outputs found

    A continuum robotic platform for endoscopic non-contact laser surgery: design, control, and preclinical evaluation

    Get PDF
    The application of laser technologies in surgical interventions has been accepted in the clinical domain due to their atraumatic properties. In addition to manual application of fibre-guided lasers with tissue contact, non-contact transoral laser microsurgery (TLM) of laryngeal tumours has been prevailed in ENT surgery. However, TLM requires many years of surgical training for tumour resection in order to preserve the function of adjacent organs and thus preserve the patient’s quality of life. The positioning of the microscopic laser applicator outside the patient can also impede a direct line-of-sight to the target area due to anatomical variability and limit the working space. Further clinical challenges include positioning the laser focus on the tissue surface, imaging, planning and performing laser ablation, and motion of the target area during surgery. This dissertation aims to address the limitations of TLM through robotic approaches and intraoperative assistance. Although a trend towards minimally invasive surgery is apparent, no highly integrated platform for endoscopic delivery of focused laser radiation is available to date. Likewise, there are no known devices that incorporate scene information from endoscopic imaging into ablation planning and execution. For focusing of the laser beam close to the target tissue, this work first presents miniaturised focusing optics that can be integrated into endoscopic systems. Experimental trials characterise the optical properties and the ablation performance. A robotic platform is realised for manipulation of the focusing optics. This is based on a variable-length continuum manipulator. The latter enables movements of the endoscopic end effector in five degrees of freedom with a mechatronic actuation unit. The kinematic modelling and control of the robot are integrated into a modular framework that is evaluated experimentally. The manipulation of focused laser radiation also requires precise adjustment of the focal position on the tissue. For this purpose, visual, haptic and visual-haptic assistance functions are presented. These support the operator during teleoperation to set an optimal working distance. Advantages of visual-haptic assistance are demonstrated in a user study. The system performance and usability of the overall robotic system are assessed in an additional user study. Analogous to a clinical scenario, the subjects follow predefined target patterns with a laser spot. The mean positioning accuracy of the spot is 0.5 mm. Finally, methods of image-guided robot control are introduced to automate laser ablation. Experiments confirm a positive effect of proposed automation concepts on non-contact laser surgery.Die Anwendung von Lasertechnologien in chirurgischen Interventionen hat sich aufgrund der atraumatischen Eigenschaften in der Klinik etabliert. Neben manueller Applikation von fasergeführten Lasern mit Gewebekontakt hat sich die kontaktfreie transorale Lasermikrochirurgie (TLM) von Tumoren des Larynx in der HNO-Chirurgie durchgesetzt. Die TLM erfordert zur Tumorresektion jedoch ein langjähriges chirurgisches Training, um die Funktion der angrenzenden Organe zu sichern und damit die Lebensqualität der Patienten zu erhalten. Die Positionierung des mikroskopis chen Laserapplikators außerhalb des Patienten kann zudem die direkte Sicht auf das Zielgebiet durch anatomische Variabilität erschweren und den Arbeitsraum einschränken. Weitere klinische Herausforderungen betreffen die Positionierung des Laserfokus auf der Gewebeoberfläche, die Bildgebung, die Planung und Ausführung der Laserablation sowie intraoperative Bewegungen des Zielgebietes. Die vorliegende Dissertation zielt darauf ab, die Limitierungen der TLM durch robotische Ansätze und intraoperative Assistenz zu adressieren. Obwohl ein Trend zur minimal invasiven Chirurgie besteht, sind bislang keine hochintegrierten Plattformen für die endoskopische Applikation fokussierter Laserstrahlung verfügbar. Ebenfalls sind keine Systeme bekannt, die Szeneninformationen aus der endoskopischen Bildgebung in die Ablationsplanung und -ausführung einbeziehen. Für eine situsnahe Fokussierung des Laserstrahls wird in dieser Arbeit zunächst eine miniaturisierte Fokussieroptik zur Integration in endoskopische Systeme vorgestellt. Experimentelle Versuche charakterisieren die optischen Eigenschaften und das Ablationsverhalten. Zur Manipulation der Fokussieroptik wird eine robotische Plattform realisiert. Diese basiert auf einem längenveränderlichen Kontinuumsmanipulator. Letzterer ermöglicht in Kombination mit einer mechatronischen Aktuierungseinheit Bewegungen des Endoskopkopfes in fünf Freiheitsgraden. Die kinematische Modellierung und Regelung des Systems werden in ein modulares Framework eingebunden und evaluiert. Die Manipulation fokussierter Laserstrahlung erfordert zudem eine präzise Anpassung der Fokuslage auf das Gewebe. Dafür werden visuelle, haptische und visuell haptische Assistenzfunktionen eingeführt. Diese unterstützen den Anwender bei Teleoperation zur Einstellung eines optimalen Arbeitsabstandes. In einer Anwenderstudie werden Vorteile der visuell-haptischen Assistenz nachgewiesen. Die Systemperformanz und Gebrauchstauglichkeit des robotischen Gesamtsystems werden in einer weiteren Anwenderstudie untersucht. Analog zu einem klinischen Einsatz verfolgen die Probanden mit einem Laserspot vorgegebene Sollpfade. Die mittlere Positioniergenauigkeit des Spots beträgt dabei 0,5 mm. Zur Automatisierung der Ablation werden abschließend Methoden der bildgestützten Regelung vorgestellt. Experimente bestätigen einen positiven Effekt der Automationskonzepte für die kontaktfreie Laserchirurgie

    Cable-driven parallel robot for transoral laser phonosurgery

    Get PDF
    Transoral laser phonosurgery (TLP) is a common surgical procedure in otolaryngology. Currently, two techniques are commonly used: free beam and fibre delivery. For free beam delivery, in combination with laser scanning techniques, accurate laser pattern scanning can be achieved. However, a line-of-sight to the target is required. A suspension laryngoscope is adopted to create a straight working channel for the scanning laser beam, which could introduce lesions to the patient, and the manipulability and ergonomics are poor. For the fibre delivery approach, a flexible fibre is used to transmit the laser beam, and the distal tip of the laser fibre can be manipulated by a flexible robotic tool. The issues related to the limitation of the line-of-sight can be avoided. However, the laser scanning function is currently lost in this approach, and the performance is inferior to that of the laser scanning technique in the free beam approach. A novel cable-driven parallel robot (CDPR), LaryngoTORS, has been developed for TLP. By using a curved laryngeal blade, a straight suspension laryngoscope will not be necessary to use, which is expected to be less traumatic to the patient. Semi-autonomous free path scanning can be executed, and high precision and high repeatability of the free path can be achieved. The performance has been verified in various bench and ex vivo tests. The technical feasibility of the LaryngoTORS robot for TLP was considered and evaluated in this thesis. The LaryngoTORS robot has demonstrated the potential to offer an acceptable and feasible solution to be used in real-world clinical applications of TLP. Furthermore, the LaryngoTORS robot can combine with fibre-based optical biopsy techniques. Experiments of probe-based confocal laser endomicroscopy (pCLE) and hyperspectral fibre-optic sensing were performed. The LaryngoTORS robot demonstrates the potential to be utilised to apply the fibre-based optical biopsy of the larynx.Open Acces

    SURGICAL NAVIGATION AND AUGMENTED REALITY FOR MARGINS CONTROL IN HEAD AND NECK CANCER

    Get PDF
    I tumori maligni del distretto testa-collo rappresentano un insieme di lesioni dalle diverse caratteristiche patologiche, epidemiologiche e prognostiche. Per una porzione considerevole di tali patologie, l’intervento chirurgico finalizzato all’asportazione completa del tumore rappresenta l’elemento chiave del trattamento, quand’anche esso includa altre modalità quali la radioterapia e la terapia sistemica. La qualità dell’atto chirurgico ablativo è pertanto essenziale al fine di garantire le massime chance di cura al paziente. Nell’ambito della chirurgia oncologica, la qualità delle ablazioni viene misurata attraverso l’analisi dello stato dei margini di resezione. Oltre a rappresentare un surrogato della qualità della resezione chirurgica, lo stato dei margini di resezione ha notevoli implicazioni da un punto di vista clinico e prognostico. Infatti, il coinvolgimento dei margini di resezione da parte della neoplasia rappresenta invariabilmente un fattore prognostico sfavorevole, oltre che implicare la necessità di intensificare i trattamenti postchirurgici (e.g., ponendo indicazione alla chemioradioterapia adiuvante), comportando una maggiore tossicità per il paziente. La proporzione di resezioni con margini positivi (i.e., coinvolti dalla neoplasia) nel distretto testa-collo è tra le più elevate in ambito di chirurgia oncologica. In tale contesto si pone l’obiettivo del dottorato di cui questa tesi riporta i risultati. Le due tecnologie di cui si è analizzata l’utilità in termini di ottimizzazione dello stato dei margini di resezione sono la navigazione chirurgica con rendering tridimensionale e la realtà aumentata basata sulla videoproiezione di immagini. Le sperimentazioni sono state svolte parzialmente presso l’Università degli Studi di Brescia, parzialmente presso l’Azienda Ospedale Università di Padova e parzialmente presso l’University Health Network (Toronto, Ontario, Canada). I risultati delle sperimentazioni incluse in questo elaborato dimostrano che l'impiego della navigazione chirurgica con rendering tridimensionale nel contesto di procedure oncologiche ablative cervico-cefaliche risulta associata ad un vantaggio significativo in termini di riduzione della frequenza di margini positivi. Al contrario, le tecniche di realtà aumentata basata sulla videoproiezione, nell'ambito della sperimentazione preclinica effettuata, non sono risultate associate a vantaggi sufficienti per poter considerare tale tecnologia per la traslazione clinica.Head and neck malignancies are an heterogeneous group of tumors. Surgery represents the mainstay of treatment for the large majority of head and neck cancers, with ablation being aimed at removing completely the tumor. Radiotherapy and systemic therapy have also a substantial role in the multidisciplinary management of head and neck cancers. The quality of surgical ablation is intimately related to margin status evaluated at a microscopic level. Indeed, margin involvement has a remarkably negative effect on prognosis of patients and mandates the escalation of postoperative treatment by adding concomitant chemotherapy to radiotherapy and accordingly increasing the toxicity of overall treatment. The rate of margin involvement in the head and neck is among the highest in the entire field of surgical oncology. In this context, the present PhD project was aimed at testing the utility of 2 technologies, namely surgical navigation with 3-dimensional rendering and pico projector-based augmented reality, in decreasing the rate of involved margins during oncologic surgical ablations in the craniofacial area. Experiments were performed in the University of Brescia, University of Padua, and University Health Network (Toronto, Ontario, Canada). The research activities completed in the context of this PhD course demonstrated that surgical navigation with 3-dimensional rendering confers a higher quality to oncologic ablations in the head and neck, irrespective of the open or endoscopic surgical technique. The benefits deriving from this implementation come with no relevant drawbacks from a logistical and practical standpoint, nor were major adverse events observed. Thus, implementation of this technology into the standard care is the logical proposed step forward. However, the genuine presence of a prognostic advantage needs longer and larger study to be formally addressed. On the other hand, pico projector-based augmented reality showed no sufficient advantages to encourage translation into the clinical setting. Although observing a clear practical advantage deriving from the projection of osteotomy lines onto the surgical field, no substantial benefits were measured when comparing this technology with surgical navigation with 3-dimensional rendering. Yet recognizing a potential value of this technology from an educational standpoint, the performance displayed in the preclinical setting in terms of surgical margins optimization is not in favor of a clinical translation with this specific aim

    Microscope Embedded Neurosurgical Training and Intraoperative System

    Get PDF
    In the recent years, neurosurgery has been strongly influenced by new technologies. Computer Aided Surgery (CAS) offers several benefits for patients\u27 safety but fine techniques targeted to obtain minimally invasive and traumatic treatments are required, since intra-operative false movements can be devastating, resulting in patients deaths. The precision of the surgical gesture is related both to accuracy of the available technological instruments and surgeon\u27s experience. In this frame, medical training is particularly important. From a technological point of view, the use of Virtual Reality (VR) for surgeon training and Augmented Reality (AR) for intra-operative treatments offer the best results. In addition, traditional techniques for training in surgery include the use of animals, phantoms and cadavers. The main limitation of these approaches is that live tissue has different properties from dead tissue and that animal anatomy is significantly different from the human. From the medical point of view, Low-Grade Gliomas (LGGs) are intrinsic brain tumours that typically occur in younger adults. The objective of related treatment is to remove as much of the tumour as possible while minimizing damage to the healthy brain. Pathological tissue may closely resemble normal brain parenchyma when looked at through the neurosurgical microscope. The tactile appreciation of the different consistency of the tumour compared to normal brain requires considerable experience on the part of the neurosurgeon and it is a vital point. The first part of this PhD thesis presents a system for realistic simulation (visual and haptic) of the spatula palpation of the LGG. This is the first prototype of a training system using VR, haptics and a real microscope for neurosurgery. This architecture can be also adapted for intra-operative purposes. In this instance, a surgeon needs the basic setup for the Image Guided Therapy (IGT) interventions: microscope, monitors and navigated surgical instruments. The same virtual environment can be AR rendered onto the microscope optics. The objective is to enhance the surgeon\u27s ability for a better intra-operative orientation by giving him a three-dimensional view and other information necessary for a safe navigation inside the patient. The last considerations have served as motivation for the second part of this work which has been devoted to improving a prototype of an AR stereoscopic microscope for neurosurgical interventions, developed in our institute in a previous work. A completely new software has been developed in order to reuse the microscope hardware, enhancing both rendering performances and usability. Since both AR and VR share the same platform, the system can be referred to as Mixed Reality System for neurosurgery. All the components are open source or at least based on a GPL license

    Advanced Endoscopic Navigation:Surgical Big Data,Methodology,and Applications

    Get PDF
    随着科学技术的飞速发展,健康与环境问题日益成为人类面临的最重大问题之一。信息科学、计算机技术、电子工程与生物医学工程等学科的综合应用交叉前沿课题,研究现代工程技术方法,探索肿瘤癌症等疾病早期诊断、治疗和康复手段。本论文综述了计算机辅助微创外科手术导航、多模态医疗大数据、方法论及其临床应用:从引入微创外科手术导航概念出发,介绍了医疗大数据的术前与术中多模态医学成像方法、阐述了先进微创外科手术导航的核心流程包括计算解剖模型、术中实时导航方案、三维可视化方法及交互式软件技术,归纳了各类微创外科手术方法的临床应用。同时,重点讨论了全球各种手术导航技术在临床应用中的优缺点,分析了目前手术导航领域内的最新技术方法。在此基础上,提出了微创外科手术方法正向数字化、个性化、精准化、诊疗一体化、机器人化以及高度智能化的发展趋势。【Abstract】Interventional endoscopy (e.g., bronchoscopy, colonoscopy, laparoscopy, cystoscopy) is a widely performed procedure that involves either diagnosis of suspicious lesions or guidance for minimally invasive surgery in a variety of organs within the body cavity. Endoscopy may also be used to guide the introduction of certain items (e.g., stents) into the body. Endoscopic navigation systems seek to integrate big data with multimodal information (e.g., computed tomography, magnetic resonance images, endoscopic video sequences, ultrasound images, external trackers) relative to the patient's anatomy, control the movement of medical endoscopes and surgical tools, and guide the surgeon's actions during endoscopic interventions. Nevertheless, it remains challenging to realize the next generation of context-aware navigated endoscopy. This review presents a broad survey of various aspects of endoscopic navigation, particularly with respect to the development of endoscopic navigation techniques. First, we investigate big data with multimodal information involved in endoscopic navigation. Next, we focus on numerous methodologies used for endoscopic navigation. We then review different endoscopic procedures in clinical applications. Finally, we discuss novel techniques and promising directions for the development of endoscopic navigation.X.L. acknowledges funding from the Fundamental Research Funds for the Central Universities. T.M.P. acknowledges funding from the Canadian Foundation for Innovation, the Canadian Institutes for Health Research, the National Sciences and Engineering Research Council of Canada, and a grant from Intuitive Surgical Inc

    Ανάπτυξη τεχνολογιών επαυξημένης πραγματικότητας στην ιατρική εκπαίδευση με προσομοιωτές

    Get PDF
    Στην παρούσα διδακτορική διατριβή παρουσιάζουμε ένα πρωτοπόρο σύστημα εκπαίδευσης και αξιολόγησης βασικών δεξιοτήτων λαπαροσκοπικής χειρουργικής σε περιβάλλον Επαυξημένης Πραγματικότητας (ΕΠ). Το προτεινόμενο σύστημα αποτελεί μια πλήρως λειτουργική πλατφόρμα εκπαίδευσης η οποία επιτρέπει σε χειρουργούς να εξασκηθούν χρησιμοποιώντας πραγματικά λαπαροσκοπικά εργαλεία και αλληλεπιδρώντας με ψηφιακά αντικείμενα εντός ενός πραγματικού περιβάλλοντος εκπαίδευσης. Το σύστημα αποτελείται από ένα τυπικό κουτί λαπαροσκοπικής εκπαίδευσης, πραγματικά χειρουργικά εργαλεία, κάμερα και συστοιχία αισθητήρων που επιτρέπουν την ανίχνευση και καταγραφή των κινήσεων του χειρουργού σε πραγματικό χρόνο. Χρησιμοποιώντας το προτεινόμενο σύστημα, σχεδιάσαμε και υλοποιήσαμε σενάρια εκπαίδευσης παρόμοια με τις ασκήσεις του προγράμματος FLS®, στοχεύοντας σε δεξιότητες όπως η αίσθηση βάθους, ο συντονισμός χεριού-ματιού, και η παράλληλη χρήση δύο χεριών. Επιπλέον των βασικών δεξιοτήτων, το προτεινόμενο σύστημα χρησιμοποιήθηκε για τον σχεδιασμό σεναρίου εξάσκησης διαδικαστικών δεξιοτήτων, οι οποίες περιλάμβανουν την εφαρμογή χειρουργικών clips καθώς και την απολίνωση εικονικής αρτηρίας, σε περιβάλλον ΕΠ. Τα αποτελέσματα συγκριτικών μελετών μεταξύ έμπειρων και αρχαρίων χειρουργών που πραγματοποιήθηκαν στα πλαίσια της παρούσας διατριβής υποδηλώνουν την εγκυρότητα του προτεινόμενου συστήματος. Επιπλέον, εξήχθησαν σημαντικά συμπεράσματα σχετικά με την πιθανή χρήση της ΕΑ στην λαπαροσκοπική προσομοίωση. Η συγκεκριμένη τεχνολογία προσφέρει αυξημένη αίσθηση οπτικού ρεαλισμού και ευελιξία στον σχεδιασμό εκπαιδευτικών σεναρίων, παρουσιάζοντας σημαντικά μικρότερες απαιτήσεις από πλευράς εξοπλισμού σε σύγκριση με τις υπάρχουσες εμπορικές πλατφόρμες. Βάσει των αποτελεσμάτων της παρούσας διατριβής μπορεί με ασφάλεια να εξαχθεί το συμπέρασμα πως η ΕΠ αποτελεί μια πολλά υποσχόμενη τεχνολογία που θα μπορούσε να χρησιμοποιηθεί για τον σχεδιασμό προσομοιωτών λαπαροσκοπικής χειρουργικής ως εναλλακτική των υπαρχόντων τεχνολογιών και συστημάτων.In this thesis we present what is, to the best of our knowledge, the first framework for training and assessment of fundamental psychomotor and procedural laparoscopic skills in an interactive Augmented Reality (AR) environment. The proposed system is a fully-featured laparoscopic training platform, allowing surgeons to practice by manipulating real instruments while interacting with virtual objects within a real environment. It consists of a standard laparoscopic box-trainer, real instruments, a camera and a set of sensory devices for real-time tracking of surgeons’ actions. The proposed framework has been used for the implementation of AR-based training scenarios similar to the drills of the FLS® program, focusing on fundamental laparoscopic skills such as depth-perception, hand-eye coordination and bimanual operation. Moreover, this framework allowed the implementation of a proof-of-concept procedural skills training scenario, which involved clipping and cutting of a virtual artery within an AR environment. Comparison studies conducted for the evaluation of the presented framework indicated high content and face validity. In addition, significant conclusions regarding the potentials of introducing AR in laparoscopic simulation training and assessment were drawn. This technology provides an advanced sense of visual realism combined with a great flexibility in training task prototyping, with minimum requirements in terms of hardware as compared to commercially available platforms. Thereby, it can be safely stated that AR is a promising technology which can indeed provide a valuable alternative to the training modalities currently used in MIS

    Soft Robot-Assisted Minimally Invasive Surgery and Interventions: Advances and Outlook

    Get PDF
    Since the emergence of soft robotics around two decades ago, research interest in the field has escalated at a pace. It is fuelled by the industry's appreciation of the wide range of soft materials available that can be used to create highly dexterous robots with adaptability characteristics far beyond that which can be achieved with rigid component devices. The ability, inherent in soft robots, to compliantly adapt to the environment, has significantly sparked interest from the surgical robotics community. This article provides an in-depth overview of recent progress and outlines the remaining challenges in the development of soft robotics for minimally invasive surgery

    TRAINING AND ASSESSMENT OF HAND-EYE COORDINATION WITH ELECTROENCEPHALOGRAPHY

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Snake Robots for Surgical Applications: A Review

    Get PDF
    Although substantial advancements have been achieved in robot-assisted surgery, the blueprint to existing snake robotics predominantly focuses on the preliminary structural design, control, and human–robot interfaces, with features which have not been particularly explored in the literature. This paper aims to conduct a review of planning and operation concepts of hyper-redundant serpentine robots for surgical use, as well as any future challenges and solutions for better manipulation. Current researchers in the field of the manufacture and navigation of snake robots have faced issues, such as a low dexterity of the end-effectors around delicate organs, state estimation and the lack of depth perception on two-dimensional screens. A wide range of robots have been analysed, such as the i2Snake robot, inspiring the use of force and position feedback, visual servoing and augmented reality (AR). We present the types of actuation methods, robot kinematics, dynamics, sensing, and prospects of AR integration in snake robots, whilst addressing their shortcomings to facilitate the surgeon’s task. For a smoother gait control, validation and optimization algorithms such as deep learning databases are examined to mitigate redundancy in module linkage backlash and accidental self-collision. In essence, we aim to provide an outlook on robot configurations during motion by enhancing their material compositions within anatomical biocompatibility standards

    Medical Robotics

    Get PDF
    The first generation of surgical robots are already being installed in a number of operating rooms around the world. Robotics is being introduced to medicine because it allows for unprecedented control and precision of surgical instruments in minimally invasive procedures. So far, robots have been used to position an endoscope, perform gallbladder surgery and correct gastroesophogeal reflux and heartburn. The ultimate goal of the robotic surgery field is to design a robot that can be used to perform closed-chest, beating-heart surgery. The use of robotics in surgery will expand over the next decades without any doubt. Minimally Invasive Surgery (MIS) is a revolutionary approach in surgery. In MIS, the operation is performed with instruments and viewing equipment inserted into the body through small incisions created by the surgeon, in contrast to open surgery with large incisions. This minimizes surgical trauma and damage to healthy tissue, resulting in shorter patient recovery time. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in this expanding area. Nevertheless, many chapters in the book concern advanced research on this growing area. The book provides critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies. This book is certainly a small sample of the research activity on Medical Robotics going on around the globe as you read it, but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable source for researchers interested in the involved subjects, whether they are currently “medical roboticists” or not
    corecore