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Summary  

Hand-eye coordination (HEC) is a complex system of perceptual processing of 

visual information, proprioceptive feedback of our hands and arms and the cognitive 

controller that manages these sensory inputs and executive motion. It is a natural 

function taken for granted in the simple common tasks in everyday life. However, in 

some people such as mentally ill patients, their hand-eye coordination may become 

impaired and require exhaustive rehabilitative treatments. At the other end of the 

spectrum, professionals such as athletes and surgeons require excellent HEC to 

function. 

The objective of this thesis is to investigate the visual, motor and neural aspects 

of HEC through neural and motor performance analysis of subjects performing visual 

cue driven HEC tasks such as pointing and tracing in order to examine a person’s 

hand eye coordination capability thereby leading to methods for more effective 

assessment and training. This research approaches each aspect of HEC and develops 

appropriate simulation games to study the hand eye coordination skills of subjects. 

Specific investigations include identifying pertinent Electroencephalography (EEG) 

markers correlating to motor skill mastery, analysing and correlating motor 

performance with neural activity. 

The effect of visual cues influencing HEC was studied upon. Visual cues provide 

significant perceptual information that can affect performance. In some scenarios 

such as surgical endoscopy, some cues are lost or diminished, leading to reduced 

HEC ability and diminished motor performance. In our study, we investigated the 

influence of attenuating and augmenting various visual cues such as dynamic depth 

shadowing to improve HEC capability, reducing execution time and number of errors. 

The effect of robotic haptic guidance on motor skill mastery of two HEC tasks 

through a robotic manipulator was also investigated. Through two separate tasks, one 
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designed for testing accuracy of motion and another designed for testing consistency 

in motion, detailed motion analysis breakdown in factors such as cumulative 

trajectory error and cumulative joint angle motion show that robotic guidance 

improves motor skill mastery more than autonomous practice. Haptic guidance also 

elicited a larger change in neural signal complexity in the subjects. 

Conventional physical motor task performance metrics, when insufficient in 

differentiating the overall performance, can be augmented with neural analysis. 

Utilizing non-invasive EEG readings, we compared task performance against EEG 

readings to identify possible neural markers for gauging mental activity pertinent to 

motor skill mastery of a simple folding task. Through power spectrum and signal 

complexity analysis, results identify signal complexity values and activity in the theta 

and low alpha frequency band in the central, occipital and parietal regions as suitable 

neural markers. 

Further experiments with a rapid-fire pointing task within an interactive game on 

a touch-screen panel demonstrated the correlation between task performance learning 

curves with neural activity and the effect of colour in the visual cues presented to the 

subjects. Epoched extraction of consecutive event related EEG data enabled neural 

analysis at shorter time scales, revealing significant differences in intra-task 

waveforms for different scenarios.  
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1 Introduction  

1.1 Background and Motivations 

Hand-Eye Coordination (HEC) is a complex system of perceptual processing of 

visual information, proprioceptive feedback of our hands and arms and the cognitive 

controller that manages these sensory inputs and executive motion. It is a natural fine 

motor skill function that is learned in early childhood and taken for granted in the 

execution of simple common tasks in everyday life.  

However, in some instances of neurological trauma such as bilateral lesions of 

the parieto-occiptal lobe in people suffering from Bálint's syndrome [1] or 

psychological disorder such as children suffering from developmental coordination 

disorder [2], the brain’s ability to coordinate visual input and proprioception with 

executive function is impaired, leading to significant deterioration in HEC ability. In 

such patients, the conventional route of therapy is lengthy and continual occupational 

rehabilitation in order to ameliorate the deficit in HEC ability. This effectually puts a 

large strain on the manpower and resources needed to operate the rehabilitative 

programs.  At the other end of the spectrum, professionals such as athletes and 

surgeons require excellent HEC to function and they spend countless hours practicing 

in order to achieve skill mastery. At both ends of the spectrum, there lies a need for 

HEC training and current methods often involve the need for manpower-intensive 

experienced coaching in order to improve the efficacy of the training.  

In this thesis, HEC is organized into three aspects: vision, haptics and cognition. 

The visual aspect covers visual perception and eye gaze motion. The haptic aspect 

covers executive motion of the hand/arm along with proprioception and haptic 

feedback. The cognition aspect covers the synergy between the visual and haptic 

aspects coupled with memory and learning.  
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 Much of the earlier research into HEC involves fields such as the study of human 

gaze behaviour, eye saccade/fixation strategies and analysis of human arm motion, 

including task-specific gaze behaviour with the eyes leading the hand motion and 

providing optimal spatial feedback of the hand’s motion in completion of the task, 

highlighting the synergy between visual inputs and motor output being the core of a 

person’s HEC ability. The effects of visual cues and haptic cues on HEC have also 

been explored thoroughly. 

In more recent times, with the advancement and proliferation of brain monitoring 

methods, especially non-invasive ones, such as Electroencephalography (EEG), 

Functional Magnetic Resonance Imaging (fMRI) and Near-Infrared Spectroscopy 

(NIRS), research into brain functions has been exponentially growing but still, very 

little is known about the various neural mechanisms in the brain that support HEC. 

That is because HEC requires almost every aspect of the central nervous system such 

as the occipital lobe that processes visual inputs, frontal lobe for planning and parietal 

lobe for sensory integration. In addition, current state of the art brain monitoring 

Hand-Eye 
Coordination

Vision

HapticsCognition

Figure 1.1: Aspects of Hand-Eye Coordination. 



3 

 

devices are also unable to provide the level of spatio-temporal resolution needed to 

fully monitor the billions of neurons and trillions of synapses in a single brain. 

The notion of monitoring the brain for HEC task mastery stems from two general 

facts from neuroscience research into brain function: Firstly, the cerebral cortex can 

be spatially generalized into functional lobes [3]. Measuring activity at specific 

regions of the brain therefore relates to particular brain function.  Secondly, 

neuroplasticity which is the generalized term for induced plastic changes in the 

neurons and synapses occurs as a result of task mastery [4].  Therefore, there should 

be a correlation between the changes in brain activities of a person with the 

consolidation of skill over practice.  

The broad aim of this research is to probe the nature of this correlation by 

controlling inbound cues to the subject (visual and haptic cues) and observing 

resultant outbound changes from the subject (motor performance and neural activity). 

By first developing an understanding of this correlation, we hope to eventually apply 

this knowledge and achieve a better means of training and assessment of HEC tasks. 

To achieve the aim of this research, hypotheses are constructed and a series of 

experiments have been conducted for this study on HEC. The experiments are 

connected to the theme of this research when perceived as permutations of the 3 

broad aspects of HEC: vision, haptics and cognition as described in Chapter 1. The 

first experiment in Chapter 4 can be generalized as the investigation of visual cues 

affecting HEC ability. In the second experiment in Chapter 5, the focus is on visual 

cues with cognition through task mastery and its associated changes in neural activity. 

In Chapter 6, the robotic platform provides substantive haptic cues, subjects’ motor 

performance and its associative neural activity were compared. And finally the last 

experiment in Chapter 7 validates and builds on the knowledge of implementing 

direct and indirect visual cues and neural analysis trends that have been founded in 
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the previous chapters. The experiment in Chapter 7 also brings in new intra-task 

modality of analysis such as event-related potentials which have been lacking in the 

previous experiments.  All these experiments contributed to proving of the 

hypotheses. 

 

1.2 Objectives and Scope 

Different aspects of HEC have been studied but there are still underlying voids 

that should be addressed: 

 The significance of visual cues in affecting performance and mastery with a 

HEC task; 

 The significance of haptic cues in affecting performance and mastery with a 

HEC task; and 

 The changes in brain activity in relation to the mastery of a HEC task.  

Specifically, the objectives of this research are to address these three main voids 

by: 

(1) Investigating the effect of augmenting and attenuating visual cues such as 

depth and colour in affecting motor performance with a series of HEC tasks; 

(2) Applying signal processing methodologies for EEG analysis to identify 

neural markers in the EEG pertinent to the motor skill mastery of HEC tasks;  

(3) Investigating the efficacy of using EEG as an augmentation to conventional 

physical motor task performance metrics; and 

(4) Investigating the effect of haptic cues in the form of robotic guidance in 

training two HEC tasks through motor performance analysis and EEG neural 

activity. 
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In Chapter 4, the experiment investigated Objective (1) by examining the 

hypothesis that HEC performance can be improved through the augmentation of 

visual cues. Different permutations of depth, colour and binocular cues were 

augmented and attenuated to investigate the effect of visual cues on HEC 

performance.  

In Chapter 5, the experiment explored Objectives (2) and (3) by considering the 

hypothesis that trends in neural activity can correlate with the subjects’ mastery of 

HEC tasks. Subjects performed on a simple cue-driven box folding task until the task 

was mastered. EEG analysis was performed through the computation of spectral 

power and LZC. Physical performance was correlated with EEG activity and 

pertinent EEG markers relevant to the mastery of simple HEC tasks were identified.  

In Chapter 6, the experiment explored Objectives (2), (3) and (4) by studying the 

hypothesis that training with haptic guidance will be better than unaided practice and 

the difference in mastery can be contrasted through physical performance and neural 

analysis. Building on the findings of Chapter 4 and 5, Haptic-guidance was 

implemented and the neural markers identified in Chapter 5 were validated. The 

effect of haptic guidance on task mastery, motor performance and neural activity was 

also tabulated.  

In Chapter 7, the experiment investigated Objectives (1), (2) and (3) by studying 

the hypothesis that spatio-temporal changes between epoched windows of visual-cued 

neural activity can potentially differentiate successful pointing events against failed 

events and differentiate the level of task mastery. Sequential visual cues generated by 

the system were correlated with neural activity in order to determine the effect of 

visual cues on cognitive activity, identifying the spatio-temporal pattern differences 

between successfully completed tasks and failed tasks. 



6 

 

Appropriate platforms for the training and assessment of HEC tasks were 

designed, developed and used to conduct experiments such that the targeted aspects 

of HEC can be studied upon. 

 

1.3 Contributions 

The results of this study contribute to the understanding of neural activity 

changes with respect to the mastery of HEC tasks and the effect of external cues such 

as visual and haptic cues on neural activity and performance of human subjects. 

Specifically, the contributions of this thesis are summarized as follows: 

 In Chapter 4, the effect of visual cues on HEC was investigated. The 

significance of visual cues on HEC ability was quantified. A novel way of 

augmenting depth perception was developed and the significance of this method 

was proven. Different permutations of visual cues such as colour and shadows 

were also investigated. It was found that over-augmentation of visual cues of 

similar nature (shadows and binocular visuals) could inadvertently induce 

interference that reduced the subjects’ performance. 

 In Chapter 5, the neural activity of subjects performing a box folding task was 

investigated. Several neural analysis methods were evaluated and multiple 

neural markers that were pertinent to the mastery of HEC tasks were identified. 

The spatio-temporal nature of these neural markers have been verified through 

subsequent experiments to consistently exhibit correspondence with task 

performance and mastery. LZC was shown to reflect tonic changes in the neural 

activity that correlated well with subject task mastery. 

 In Chapter 6, a robotic haptic guidance platform was used to train subjects in 

HEC tasks. In addition to verifying the neural markers introduced in Chapter 5, 

the experiment objectively identified that computer-generated haptic cues could 
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significantly aid HEC training and contrasted how neural activity and physical 

task mastery was different between the two groups.  

 In Chapter 7, a platform that implemented a sequential planar pointing task 

simulation was developed, enabling the analysis of tonic and phasic traits of 

neural activity. Task mastery was found to correlate with tonic traits like LZC 

values and task performance was found to correlate with phasic traits like ERP 

patterns. This discovery showed that varying the timescale of EEG analysis can 

reveal different facets of HEC performance.   

  



8 

 

2 Literature Review 

Existing literature for the three main aspects of HEC was reviewed. The literature 

can be categorized into the methods of monitoring vision, haptics and cognition, the 

tests and platforms for assessing HEC ability and the methods for the modelling and 

analysis of HEC, in particular, eye-guided arm motions. Neural tracking through EEG 

was also introduced and various EEG analysis methods have also been detailed.  

 

2.1 Monitoring 

HEC monitoring can broadly be classified under eye and gaze tracking, motion 

tracking and neural tracking. Much of the earlier work into HEC research has been 

focused on eye motion analysis such as saccadic motions and smooth-pursuit eye 

motion together with different forms of task-related motion tracking [5]–[7] whereas 

the use of neural tracking for HEC measurement is a relatively novel aspect. Eye 

movements and its saccadic gaze control is a key factor in coordinating precise motor 

control and has been a large part of HEC research [8]–[10]. Strategic saccadic control 

is inferred as an important aspect of HEC mastery as cognitive neuroscience research 

shows that goal-directed motion is optimized when both eye and hand motion are 

harmonized [11]. Optimal performance is achieved when eye motion precedes motor 

action and operates to acquire the most visually pertinent cues related to the task [12].  

2.1.1 Eye tracking 

Eye tracking refers to the recording of eye orientations relative to the head. In 

addition, when the head position and orientation relative to the task space is known, 

the person’s gaze can be derived. This information is useful in many applications 

such as human-computer interfaces, cognitive psychological research of attention and 

perception and surgical HEC. Half of the human cortex is dedicated to visual 

processing. Visual scanning patterns have been shown to couple with changes of 
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attention focus [13]. Visual cues can significantly affect our cognition and 

sensorimotor behaviour. The most commonly used eye tracking method is the optical 

based tracking mechanisms which are popular for being non-invasive and 

inexpensive.  

2.1.1.1 Optical based eye tracking 

The optical based method of eye tracking typically uses infrared light that is 

shone onto the eyes to create a corneal reflection. Subsequently, when the reflected 

infrared light is picked up by an infrared-sensitive camera, various traits in that 

captured image can be processed. This technique of determining the point-of-gaze 

(POG) is commonly called the Pupil Centre Corneal Reflection (PCCR) method [14]. 

The angular difference of the reflections off the cornea and pupil, along with other 

geometrical information, can be used to derive the direction of gaze.  

A variation in the infrared illumination of the eye is the use of Bright and Dark 

Pupil tracking. The difference is in the position of the infrared illumination with 

respect to the optical axis of the infrared camera. When the illumination is on the 

optical axis of the camera, light shone onto the pupil gets largely reflected into the 

camera hence the pupil becomes bright. When the illumination is away from the 

optical axis of the camera, the pupil will appear darker than the iris.  

There are several factors in the choice of bright and dark pupil illumination but 

the fundamental aim of choosing bright/dark pupil illumination is to maximize the 

iris/pupil contrast for better image segmentation and tracking. For example, ethnicity 

plays a large factor with Hispanics and Caucasians more suitable for bright pupil 

illumination and Asians being more suitable for dark pupil illumination. There are 

robust commercially available optical eye tracking systems that can automate 

between using bright/dark pupil illumination.   
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Eye tracking information is commonly used to follow the visual attention 

fixations and saccades of the subject. Fixations are defined as pauses in eye motion 

where the foveal gaze is focused on a particular region of interest for the processing 

of visual information. Whereas saccades are defined as the eye motions in between 

fixations, shifting the foveal region to a new point of interest. Researchers have been 

using the fixture and saccade patterns from eye tracking information in order to 

explore the visual attention behaviour of subjects in response to visual stimulations.  

2.1.1.2 Electrooculography  

The other common eye tracking method is electrooculography. 

Electrooculography (EOG) is the measurement of the resting potential between the 

front and back of the eye, commonly called the corneo-fundal potential [15]. This 

potential is generated from the retinal pigment epithelium resulting in the cornea of 

the eye (front) being positively charged with respect to the posterior part of the sclera 

(back), creating a dipole electric field.  

When electrodes are placed in pairs across the eyes vertically or horizontally, the 

change in electrode potential reflects the rotation in orientation of the eyes. The 

amplitude of the EOG signal depends on the range of motion of the eye and varies 

from person to person but it is generally considered to be linear and constant. A 30 

degree saccade will produce typical amplitude of about 250 to 1000 µV. Due to the 

linear and constant relation between EOG signals and eye motion, EOG signals can 

be used to track eye motion.  

The advantage of using an EOG over optical method is that EOG signals can be 

easily achieved as an extension of an existing electroencephalography (EEG) setup 

and the electrodes do not obstruct the subject’s field of vision. EOG systems are also 

comparably inexpensive compared to optical based infrared systems for eye motion 

capturing. Eye motion can also be recorded when the eyelids are closed. This 
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advantage is used in clinical applications for sleep disorder tests where the rapid eye 

movement stage of sleep needs to be determined. 

2.1.2 Motion tracking 

Motion tracking is the process of recording the movement of human subjects. 

This information could be used in applications such as gait analysis, animation, 

virtual reality interface and rehabilitation. There are many ways to capture motion 

and they are primarily divided into the vision based and sensor based approaches.  

2.1.2.1 Vision based marker tracking 

Vision based approaches to motion capturing can be classified into two general 

forms: marker based and marker-less systems. Markers refer to arbitrarily inserted 

visually identifiable points that can be used for tracking.  Conventional commercial 

motion tracking systems utilize marker based motion capturing although the current 

trend is for more convenient marker-less motion tracking such as the Microsoft 

Kinect which processes a stereoscopic view of the user as a controller-less interface 

to their Xbox 360 gaming console.  

Vision based motion tracking utilize multiple known camera positions that have 

overlapping viewpoints of the target to be tracked within a volumetric workspace. 

This enables the 3D coordinates of the target to be triangulated. Overlapping of the 

cameras also enables some degree of redundancy such that the markers can be tracked 

even if they may be obstructed within a particular viewpoint. 

Commercial systems commonly use infrared-sensitive systems of markers and 

cameras so as to easily distinguish the markers from the background. The markers 

can be of the passive retro-reflective type or active blinking type. Active markers can 

be individually programmed for its own unique flashing signature that greatly aids in 

marker identification at the cost of more expensive and complicated implementation 

over passive markers.  
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Marker placement positions are usually defined together with the associated 

system software that will link the marker identities with an internal musculoskeletal 

model. The markers are usually placed non-invasively on the skin, approximately at 

joint centres where the skin is closest to the bone and at anatomical landmarks of 

interest. The rationale is for the markers to not shift locally from underlying muscle 

flexion. The number of markers is usually chosen to adequately define the motion so 

as to reduce the amount of post processing. The problems with skin markers are that 

accuracy and repeatability of placements are not as high as invasive measures since 

the markers are only connected to soft tissue. Since it is impossible to place the 

markers right at the joint centres, there are unavoidable translational errors with each 

marker, even with prior calibration and subject measurement.  

2.1.2.2 Vision based marker-less tracking 

Aside from conventional methods of using visual markers or physical sensors, 

recent trends are toward the popularization of marker-less methods that make use of 

machine vision and image processing techniques to capture motion. The most well-

known example is the Microsoft Kinect which is actually a hybrid system consisting 

of an RGB camera, an infrared laser system for depth sensing and an array of 

microphones for noise cancellation and voice localization. The infrared laser 

projector shines a grid array of points for an infrared CMOS camera to pick up, 

essentially mapping the depth of the whole scene. Coupled with the standard RGB 

video feed, the system is able to automatically pick out probable regions of interest 

from the background. Alternatively, regions of interest can also be identified through 

other means such as feature-based profiling and optical flow methods. Once the 

regions of interest are identified from the background, segmentation of the image can 

take place to identify the boundaries of the target. By resolving the change in 

boundaries over a time sequence, motion vectors can be identified. 
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Marker-less motion tracking is the cheapest and easiest to implement since it only 

requires a video feed and depth perception such as the infrared laser system in the 

Kinect or a pair of cameras to form a stereoscopic view. However, its accuracy is 

heavily dependent on the post processing algorithms and it is more susceptible to 

errors from overlapping planes of motions within the perspective of the camera as the 

targets are tracked by their boundaries instead of marker points. In the experiments 

conducted for this research, a multimodal system of human performance tracking was 

developed that included two modes of marker-less motion tracking, differentiating 

between macro torso and arm motions and localized finger and wrist motions (see 

Figure 2.1- Figure 2.2). 

2.1.2.3 Sensors  

Sensor based approaches to motion tracking involves the use of physical sensors 

such as accelerometers and gyroscopes that are attached to the regions of interest on 

the body. Human motion is then broken down into relevant forces and angles for 

interpretation. Typically, sensors work in tandem within a system, sharing a common 

infrastructure for the collection and transmission of the sensor data. Hence, it is 

common to have sensors and infrastructure integrally woven into a body suit for 

better management.  

In addition to full body suits, there are also data gloves for the capture of fine 

motor control in hand motion. Depending on the cost and complexity of the system, 

data gloves can be used to capture hand motion as basic whole finger curls or up to 

every individual knuckle joint angles with the abduction between fingers. Hand 

motion is particularly useful for its characteristics such as hand posture, hand gestures 

and range of motion.  
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Figure 2.1: Multimodal HEC measurement system. 

Multimodal HEC measurement system including dual marker-less motion 

tracking using a Microsoft Kinect sensor for macro motion tracking (upper body torso 

and arms) and a Leap Motion sensor for localized motion tracking (fingers and wrist). 

 

 



15 

 

 

Figure 2.2: Photographs of a medical student performing a Pick and Place task 

Medical student performing a Pick and Place task with the Multimodal HEC 

measurement system tracking her physical and neural performance. System operators 

are in the background observing the subject’s performance so that any erroneous 

actions can be identified. 

 

Typically, goniometers are attached to measure joint flexion and extension angles 

and inertial sensors such as accelerometers and gyroscopes are used to measure 

acceleration and orientation respectively. However, the disadvantage with inertial 

sensors is that by relying on indirect higher order measurements, it leads to bias and 

drift upon integration. Many human joints are also multi-planar in nature so there 

may be a need for multiple sensors to measure the joint motion adequately. As human 

motion is highly non-linear, the sensors too have to be capable of capturing up to an 

adequate order of sensitivity. 

2.1.2.4 Electromyography 

Electromyography (EMG) refers to the recording of muscle activation through 

the electrical membrane potential signals that the muscles emit when the muscles are 

electrically or neurologically activated. Hence, EMG amplitudes generally correlate 



16 

 

with the amount of force generated by the muscles. EMG is useful for situations 

where muscle activation is not significantly visible. There are two types of electrodes 

used for EMG.  

Firstly, there are the non-invasive surface electrodes that are usually made of 

silver/silver chloride and applied on the skin with conductive electrolyte gel. Surface 

electrodes are effective for superficial muscles but they have limited sensitivity due to 

the indirect conductivity and “cross-talk” from neighbouring muscles. Hence, they 

are only sensitive up to a gross muscle group [16].  

The invasive approach uses needle electrodes to directly tap on the electrical 

signal of individual muscle units. These needle electrodes can be inserted into the 

deeper muscles groups that surface electrodes are unable to reach. However, needle 

electrodes are less reliable than surface electrodes and are susceptible to displacement 

by muscle motion. Typically, for HEC measurement, only surface electrodes are used 

since they are easier to implement and the muscle unit specificity of needle electrodes 

is not needed.    

EMG recordings are influenced by many factors such as electrode reliability, 

electrode configuration, type of muscle tissue being recorded, electrode specificity 

and electrode placement. In order to reduce “cross-talk”, the electrode locations, size 

and distribution over the muscle area have to be investigated [17]. Beyond electrodes, 

EMG signals have to be processed by band-pass filtering, amplification, rectification 

and smoothening [18].  

2.1.3 Neural tracking 

Neural tracking refers to the recording of electrical voltages and/or magnetic 

fields that are generated by neural activity in the brain. While there is a spectrum of 

invasive and non-invasive methods used to record neural activity, invasive measures 

such as electrocorticography (ECoG) are mainly used in clinical epilepsy treatment, 
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whereas non-invasive methods such as Electroencephalography (EEG) and 

Magnetoencephalography (MEG) are more commonly used. However, MEG requires 

the use of very sensitive magnetic sensors such as the superconducting quantum 

interference device (SQUID) along with specially built magnetically shielded rooms. 

Due to its expensive infrastructure costs and need for low temperature 

superconductivity, MEG setups are uncommon whereas EEG equipment are the 

cheapest and easiest to implement.  

In addition, there are other methods of indirectly measuring brain activity such as 

the functional Magnetic Resonance Imaging (fMRI) and near-infrared spectroscopy 

that operate on the basis of recording the oxygenation levels of haemoglobins in the 

brain, where it is postulated that brain activity corresponds to the reduction in 

oxygenation. fMRI scans are able to achieve very high spatial resolution slices but 

fall short in temporal resolution. As brain activities are highly dynamic spatially and 

temporally, there is no perfect neural tracking solution available yet.  

The main advantage of using intracranial methods is the ability to bypass the poor 

conductance of the skull and scalp so as to record the neural activity at much lower 

noise levels and with higher specificity. As the electrodes get finer and more 

intrusive, smaller units of neuronal signalling can be recorded. However, there has 

always been a debate over the use of invasive and non-invasive methods for neural 

tracking [19]. 

For EEG and MEG methods, the neural signal is recorded off the scalp of the 

head. Due to the amplitude and temporal aspects of the EEG and MEG recordings, it 

is assumed that scalp EEG and MEG readings do not directly measure the firing of 

individual neurons but rather the culmination of the brain acting as a volume 

conductor, along with volumetric representation of parallel dendrites alignment in 

cortical columns by excitatory postsynaptic potential (EPSP) and inhibitory 
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postsynaptic potential (IPSP) networks that occur in temporal synchrony after 

neuronal action potential firing.  

EEG signals can be classified as spontaneously occurring brain activity and event 

evoked potentials that occur in reaction to external stimuli. Spontaneous EEG 

readings typically occur around the 100 µV range (see Figure 2.3) and evoked 

potentials typically are in the tens of micro volts range, which is why event evoked 

potentials have to be averaged over several epochs in order to be differentiated from 

the spontaneous potential.  

 

Figure 2.3: Sample snapshot showing 6 channels of raw EEG reading 

EEG electrodes are attached in the standardized 10-20 system of labelling and 

locating electrodes [20].  EEG electrodes are typically arranged in the 10-20 system 

and woven into an elastic nylon cap for easy application. Electrolyte gel is injected 

between the interfaces of the electrode with the scalp so as to reduce the interfacial 

impedance. Scalp EEG readings based on the 10-20 system of electrode placements 

correlate with brain activity based on evidence that the cerebral hemispheres are 

anatomically segregated into general zones of separate functionality such as vision, 

perception, motor and cognitive functions. By mapping the activity in the zones, EEG 

readings provide a means to measure neural function. 
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As discussed in the section on eye tracking and motion tracking, EOG signals and 

EMG signals are typically of much higher magnitude than the spontaneous neural 

EEG signals. This shows that in order to measure EEG signals cleanly, EOG and 

EMG signals have to be treated as unwanted artifacts and minimized during the 

capture of EEG signals. For example, EOG blinking artifacts can be reduced from the 

recorded EEG signal through techniques such as independent component analysis 

(ICA) [21]. 

 

2.2 Assessment 

Hand eye coordination testing methodologies can generally be grouped under two 

different forms. First, there are the commercialized forms of standardized motor skill 

testing. Alternatively, there are the arbitrary task-specific testing procedures which 

are more common with researchers who need to define their own set of 

methodologies for the novel and unique tasks and scenarios. 

2.2.1  Standard motor skill tests 

A popular example of a standardized motor skill test is the Movement 

Assessment Battery for Children (MABC) [22], [23]. HEC is part of the battery of 

tests of motor skills such as manual dexterity, ball skills and static and dynamic 

balance. The advantage of these commercial packages is that they have extensive 

statistical foundations as evidence for the reliability and validity of their testing 

methods [24]. Many researchers and clinicians alike, rely on such commercially 

packaged battery of testing methods as a common means of comparison. MABC has 

been used in a wide variety of experiments such as the effects of visual impairment 

on motor skill performance [25] and the correlation between sensorimotor white 

matter with upper-limb visuomotor tracking performance of young subjects with 

traumatic brain injury [26]. 
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2.2.2 Arbitrary testing 

Investigation on HEC of human subjects often involves unique scenarios that 

cannot make use of standardized packages since these tests might only be valid within 

certain conditions such as age, experience and type of task. Researchers have adapted 

or defined the tasks and testing metrics to suit their testing scenario. For example, in 

order to test HEC for laparoscopic surgery, instead of actual patients, subjects’ 

performances are evaluated using computer simulation or animal models. In order to 

reduce the complexity of the task, instead of testing the entire surgical procedure, the 

tasks are objectively abstracted into primary technical components such as picking 

and placing, pattern cutting and knot tying [27]. Multiple medical simulation systems 

focusing on HEC training have also been developed for various surgical procedures 

such as percutaneous verteboplasty, Percutaneous Transluminal Coronary 

Angioplasty and interventional radiology [28]–[31]. 

2.2.3  Integrated measurement system 

As described earlier, HEC comprises of a complex dynamic system of sensory 

inputs and motor outputs. In order to assess all aspects of HEC, an integrated 

measurement system is required for monitoring the human subject. The integrated 

measurement system primarily comprises of sensing mechanisms for concurrent eye 

tracking, motion tracking and neural tracking (see Figure 2.4).  

Depending on the nature of the task, ease of implementation and level of 

accuracy required, different combinations of tracking methods can be used. For 

example, in Figure 2.4, motion tracking is achieved with both the pair of stereoscopic 

cameras and motion capture glove. The reason for using both methods simultaneously 

is that motion capture gloves can track the localized fine motor control of the fingers 

much more accurately than the cameras, especially if the hands are obstructed or 

skewed in the cameras’ perspectives. Whereas the stereoscopic cameras are more 

suited for recording macro level motions of the body and arms within a larger 
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workspace as compared to the motion capture gloves. More recently, high resolution 

compact depth sensing infrared cameras (such as the Leap Motion sensor) have 

become commercially available that serves as an alternative to motion capture gloves 

for very fine (~1mm accuracy) motor tracking.  

Chapters 4 to 7 document the series of HEC experiments conducted for this 

research, highlighting the various different combinations of measurement devices and 

interfaces that have been successfully implemented to achieve the experimental 

objectives. 

 

Figure 2.4: Integrated system of sensors for HEC measurement. 

 

2.3 Modelling and analysis 

The study of human motion can be divided into two forms: Kinematics – which is 

the study of displacement, velocity and acceleration with respect to time; and Kinetics 

which is the study of joint forces and moments. Depending on the type of information 

required, one or both forms of study are used. With regards to HEC, kinematics 

describes arm and hand motion through joint angles, position and orientation while 

kinetics resolves the motion into sequential link-segment joint forces that correlates 
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external known forces with patterns of muscle activation. As human muscle 

activation happens through a highly complex network of tendons that act indirectly 

over the skeletal joints, hence resolving joint forces to individual muscle activations 

is in itself a difficult task. Furthermore, internal joint forces are resolved from known 

external forces hence they are prerequisite limited to scenarios in which testing setups 

have been planned for force recording, through force plates or EMG signals.  

In addition to subject oriented motion analysis, information about HEC can be 

inferred from the task performance. For example, in the computer-enhanced 

laparoscopic training system (CELTS) [32] recorded motion is resolved into 

kinematic information and presented as relevant metrics such as the time taken to 

perform the task, path length, smoothness of motion, depth perception and response 

orientation.  

Path length is defined as the trajectory of the end effector of the instrument.  In 

addition, the montage of instrument positions and orientations over time represents 

the spatial distribution of the motion in the workspace. The size of the spatial 

distribution montage represents the efficacy of the motion. The smoothness of 

motion, 

 J = √
1

2
∫ j2dt

T

0
 ,  [1] 

is based on the cumulative amount of instantaneous jerk which is defined by the 

derivative of acceleration,  

 𝑗 =
𝑑3𝑥

𝑑𝑥3 . [2] 

Depth perception is defined as the sum of motion in the axial direction. Response 

orientation refers to the cumulative range of angular motion of the instrument which 

signifies the amount of rotation used to correct the orientation of the motion. Each 
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performance metric is weighted and compared against the corresponding score of the 

expert group in order to obtain an overall score of the motor performance of the 

subject.  

A problem with human motion planning is the redundancy in the 7 degree of 

freedom kinematic structure of our human arm. This redundancy is further 

compounded when taking into account that both path planning and muscle action 

have in themselves redundantly large combinations of possible solutions to a desired 

outcome. In describing human arm motion, several models have been proposed over 

the past few decades [33]. They are further classified as descriptive or complete 

models. Descriptive models involve the precipitation of observed behaviour into 

models that can mathematically account for human motion trajectories. However, 

these descriptive models ignore the biologic nature of the human musculoskeletal 

system and the central nervous system that controls it. In contrast, complete models 

take into account for the lack of biologic principles void in the descriptive models.  

2.3.1 Descriptive models 

The main aim of descriptive models is to derive the empirical mathematic 

representation of human motion and they are useful as computational tools to model 

trajectories in experimental human motion. Some well-known descriptive models are 

the Fitts Law, the 2/3 power law and the bell shaped velocity profiles in straight 

motion. 

2.3.1.1 Fitts Law 

Fitts Law relates the rapid, goal orientated motion time with the size and distance 

of the object. It is represented mathematically by: 

 𝑀𝑇 = 𝑎 + 𝑏 [𝑙𝑜𝑔2 (
2𝐴

𝑤
)] ,  [3] 
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where 𝑀𝑇= motion time, 𝑎 and 𝑏 are regression coefficients, 𝐴= movement distance 

and 𝑤 relates to the size of the object [34]. This intuitive relationship describes how 

when the goal distance is large and the size of the object is small, it takes a longer 

time for a person to approach the target. 

2.3.1.2 2/3 Power Law 

The 2/3 power law in general is descriptive of curved motion where the velocity 

(𝑉) is proposed to be related to the inverse of the radius of curvature (𝑘) with the 

equation: 

 𝑉(𝑡) = 𝛾𝑘(𝑡)−1
3 ,    [4] 

where 𝛾 is an empirically derived constant of 0.33. This simple relation describes the 

relation that in curved motion, the velocity increases with decreasing radius of 

curvature. However, this simple equation breaks down when describing straight 

motion (or rather curvature at a radius of infinity), inflection points and motion with 

very small radius of curvature where the velocity will show to reach infinity.  

2.3.1.3 Bell shaped velocity profile 

The bell shaped velocity profile [35] of straight motion is one of the most 

prominent and consistent behaviour in human arm motion and that has led to the 

assumption of the underlying principle of smoothness of motion. When it is applied 

to the redundancy of kinematic musculoskeletal system, this enables an optimization 

protocol that can produce the most efficient and “natural” way of motion. 

This smoothness prioritization can be manifested in several ways such as the 

minimum jerk model [35]. This model defines jerk as the derivative of acceleration 

and in planar motion, overall jerk ( 𝐽) can be defined as: 

 𝐽 =  √(
𝑑3𝑥

𝑑𝑡3 )
2

+ (
𝑑3𝑦

𝑑𝑡3 )
2

. [5] 
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The corresponding cost function relative to this jerk in motion can be defined as 

the integral of the squared quantity of jerk: 

 𝐶 =
1

2
∫ ((

𝑑3𝑥

𝑑𝑡3)
2

+ (
𝑑3𝑦

𝑑𝑡3 )
2

)
𝑡𝑓

0
𝑑𝑡 ,  [6] 

where 𝑥 and 𝑦 are the planar coordinates and 𝑡 is time.  

When this cost function is applied to differential equations of motion and 

trajectory constraints, such as initial and final positions, velocity, acceleration, time 

duration and via-points, it is found that a 5th order polynomial is necessary for point 

to point motion that can specify a straight line trajectory with 4th order polynomial 

velocity profile [36]. However, the downfall of this appealingly simple model is that 

in curved motion and via-point motion, the velocity profile may be accurate but the 

actual movement path may not fulfil the trajectory requirements. 

The constrained minimum jerk model is proposed by Todorov and Jordan [37] to 

overcome the weakness of the minimum jerk model. Given that the path trajectory is 

chosen and fixed, the model suggests that its velocity profile will be determined by a 

new cost function: 

 𝐽 = ∫ ‖
𝑑3

𝑑𝑡3 𝑟[𝑠(𝑡)]‖
2

𝑑𝑡 
𝑡𝑓

0
, [7] 

where 𝑟(𝑠) is the vector coordinate of the path points and 𝑠(𝑡) is the distance along 

the path.  Therefore the third order differential of the vector function with relation to 

the predetermined path will also lead to a minimum jerk cost function.  

2.3.2 Complete models 

In the descriptive minimum jerk model, the objective is for an optimal trajectory 

path in Cartesian space but that does not take into account the redundant joint 

kinematics of the human musculoskeletal system. Dynamic models will include these 
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arm dynamics into the cost function while stochastic models will take into account 

the presence of noise in the muscular signals.  

2.3.2.1 Dynamic models 

Dynamic models are classified as dynamic because their cost functions carry 

variables that are dependent on the dynamics of the arm and task. Where the 

traditional kinematic minimum jerk model only depended on the initial and final 

states, ignoring the physical forces involved in producing the motion, the dynamic 

minimum torque change model [38] addresses this problem and its corresponding 

cost function is defined as: 

 𝐶 =
1

2
∫ (

𝑑𝑧𝑖

𝑑𝑡
)

2
𝑑𝑡

𝑡𝑓

0
, [8] 

where 𝑍𝑖  is the torque at joint 𝑖. However, due to the nonlinear properties of arm 

dynamics, the result of this implementation is that individual joint torques cannot be 

calculated independently and they must all be reiteratively processed in order to 

derive an optimal solution for each joint torque and trajectory. 

2.3.2.2 Stochastic models 

In general, the minimum jerk and minimum torque models are able to be applied 

to different aspects of human arm motion but other than being able to correlate with 

certain experimental data, they lack premise when assuming that the central nervous 

system (CNS) has to optimize through such priorities.  

In an attempt to solve this divide, Harris and Wolpert [39] proposed a theory of 

minimum final position variance which they renamed as task optimization in the 

presence of signal dependent noise (TOPS). The key hypothesis put forth by this 

model is that neural noise is signal dependent and proportional to its amplitude. This 

neural noise is purported to cause the stochastic results of natural motion. This model 

hypothesizes that even though neural noise is cumulative over the trajectory, trying to 
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avoid it by using rapid motion will also increase the amplitude of noise. Interestingly, 

when applied to saccades and arm motions, this relation correlates with the well-

established Fitt’s Law.  

In the minimum variance model, the hypothesis is that the neural commands are 

selected in a feedforward sequence of commands that minimize end point variance 

with the target while keeping to the time constraints of the task. As a result, the 

velocity profile reduces into a bell curve where the end phase of the motion has 

slower velocity in order to minimize variance in the neural signal. The advantage of 

this model is that it has a better biologic standpoint as compared to the earlier 

assumptions of the CNS having to compute with third order differentials in the 

minimum jerk and minimum torque models.  

More recently, Todorov and Jordan [40] proposed a modification with respect to 

the TOPS model. The key notion that is different in their model is the inclusion of 

feedback control which is lacking from all models so far, including that of the TOPS 

model. The previous models described all worked under the assumption that the CNS 

performed motor planning before all motor commands in a feedforward manner.  

2.3.3 Biological model 

As described in the earlier section on complete models, there is a need for a 

biologic correlation between conceptual control models and the neural CNS of our 

brains. Until recently, the internal workings of the brain have been largely 

inaccessible unless volunteers were willing to undergo invasive electrode placements. 

Pioneering work into the mapping of sensorimotor function within the primary motor 

cortex was done by the neurosurgeon Wilder Penfield in 1949. A popular depiction of 

his ground-breaking work is the motor and sensor homunculus where the difference 

in size of representation of different parts of the body signifies the associated level of 

complexity. With the development of non-invasive neuronal technologies such as 
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functional magnetic resonance imaging (fMRI), electroencephalography (EEG) and 

near infra-red spectroscopy (NIRS), comes with advancement in the experimentation 

and observation into how parts of the brain works.  

The cerebral cortex is roughly divided in function into several local areas [41]. 

Right after the generation of intent of motion in the posterior parietal cortex and 

cerebral limbic system, it is relayed through the basal ganglion into the corresponding 

area of the frontal cortex, where sensory information are collated and processed, 

which includes the premotor cortex (PMC) and supplementary motor area (SMA). 

After which, the information is fed to the cerebellum, brain stem and pyramidal tracts 

within the primary somatosensory cortex (SmI).  

The cerebellum is responsible for integrating signals from the frontal cortex, 

proprioceptive feedback from the spinal cord and positional information from the 

vestibular system. Within the cerebellum, all these sources of information are 

processed for complex coordinated control and fed back to the PMC and primary 

motor cortex (MsI) as well as output into the brainstem for motor neuron activation. 

In cases where patients’ cerebellum is damaged, refined motor control is lost and the 

motion degenerates into short jerky motions. 

2.3.4 Internal models 

Descriptive models do not include control of motor execution but in dynamic and 

stochastic models, the optimization control implicitly creates all levels of motor 

control which includes motor execution. However, for models such as TOPS, they 

operate in a feedforward manner that is not sufficient for motor execution as there is 

no implicit conversion into motor commands. This leads to the introduction of 

internal models that help map out the neural commands necessary for motor control. 

Internal models are divided into the forward model and the inverse model. 
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2.3.4.1 Forward model 

The forward model signifies the causal relationship between the inputs of the 

system to the estimated output. Hence, when looking at arm motion, inputting an 

efference copy (copy of the motor command) of variables such as arm position and 

velocities will produce an output of the estimated behaviour of that motion and the 

sensory effects of that motion (reafference). In effect, because our proprioceptive 

feedback includes both the actual feedback from interaction with the environment as 

well as the effects of sensation induced by self-motion, the forward model will serve 

to negate that self-motion sensation so as to only contemplate with external feedback.  

Another evidence of argument for the validity of forward modelling is the fact 

that forward models are able to provide balance and stability to a system if it were 

assumed to only be based on feedback control. That is because the feedback 

mechanisms in our neuronal pathways are comparatively significantly delayed when 

compared to the time taken in fast motion [42]. This reduces the ability of feedback 

control to generate a stable output. With the addition of forward model predictive 

motor control, it reduces the dependency on feedback to generate and correct fast 

motion. In addition, it is also postulated that in assuming only pure feedback control, 

the initial phase of the motion where there can be no proprioceptive feedback due to 

inherent delays in the motor and visual relays, the argument for motion breaks down 

due to lack of guidance at that gap of time if there were no forward mechanisms in 

the cerebellum.  

The Smith predictor is utilized in the modelling of the cerebellum to account for 

the long proprioceptive and visual delays [43]. The critical concept of the Smith 

predictor is the utilization of an efference copy of the motor command that is fed into 

the forward dynamic model in order to generate a predictive estimate of the causal 

state of the system.  
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This output is fed back into the state estimate and into a forward output model 

that translates the information relative to the delays anticipated in enacting these 

corrective commands onto the sensory feedback. The key advantage of this system is 

the fast reiterative internal loop that enables the system to manipulate the state 

estimate faster.  

The overall loop of the proprioception from the motor command against the 

corrective commands from the forward output model is fed back to the state estimate 

as sensory discrepancy and used in the new state error.  

2.3.4.2 Inverse model 

The inverse model is the opposite effect of the forward model in which the motor 

commands are estimated in order to achieve a desired state. This inherently suggests 

that inverse modelling is used as a controller of the motor system and allows for a 

system to generate a set of motor commands without the necessity for feedback [43].  

However, the biggest problem in inverse modelling is the assumption that the 

CNS has good inherent mastery over the inverse model such that it can provide the 

good estimate of motor commands without the initial feedback error correction. In 

addition, motor command error is received in sensory coordinates and need to be 

transformed into motor errors in order to be fed back into the inverse model.   

2.3.4.3 Cerebellar feedback-error-learning model (CBFELM) 

In responding to the weaknesses of the inverse model, Kawato [44], [45] 

proposed the CBFELM in order to account for the training of the inverse model 

necessary for adaptation to the motor task. Trajectory error derived from the 

difference in desired initial trajectory and actual trajectory is fed through the feedback 

controller in order to convert the sensory coordinates into a motor command error that 

can then be used to train the inverse model.  
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The updated inverse model can then be used to act upon the desired and actual 

trajectory input to generate a feedforward motor command. This feedforward motor 

command is summed with the feedback motor command to generate the overall 

motor command that will act upon the controlled object. 

2.3.4.4 Multiple paired forward-inverse models 

In the previous models, we have seen the advantages and weaknesses of forward 

and inverse models in the construction of motor control modelling. In the next 

example, Wolpert and Kawato [46] have proposed a unifying model that seeks to 

incorporate paired forward and inverse modelling as a single controller that is set in a 

framework of multiple parallel controllers selected off a responsibility predictor. By 

pairing forward and inverse models, they seek to couple the advantages of both 

models and unify their application. This model was then further updated and renamed 

as the MOSIAC model [47]. 

Firstly, the forward model is used both as the predictive initial motor command 

through the forward dynamic model and forward output model as well as part of the 

prediction error used in weighing the likelihood of this controller as the correct 

controller to be used. Overall, the efference copy, sensory feedback and contextual 

signals influence the overall determination of the most appropriate controller to be 

used for the task.  

With each forward model within each controller, a corresponding inverse model 

is paired to learn off the motor error from the feedback motor command and generate 

a feedforward motor command that will act with the feedback motor command to 

yield an overall motor command onto the controlled object. 

The advantage of a modular model is that human motor tasks are inherently 

modular and rather than relying on relearning a single controller, it is more practical 

to assume the brain divides up the modular task into appropriate efficiently learned 
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forward-inverse controllers. This behaviour also provides proof that when we learn 

similar tasks faster as common modular tasks can be applied without learning the 

inverse model again.   

2.3.4.5 Bayesian model 

Bayesian modelling of motor control is essentially based on the premise that 

humans modify behaviour based on a sense of probability. Therefore, the rules of 

probability apply to influence our behaviour [48], [49].  

The mathematical notation for the probability of an event A is given by 𝑃(𝐴) and 

𝑃(𝐴|𝐵)  refers to the probability of event A given that event B is true. 

Mathematically, 𝑃(𝐴|𝐵) can also be expressed as: 

 𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)  

𝑃(𝐵) 
. [9] 

When this identity is applied to the brain, event A can be interpreted as the state 

of the system and event B as the sensory input. Therefore, the identity becomes: 

 𝑃(𝑠𝑡𝑎𝑡𝑒|𝑠𝑒𝑛𝑠𝑜𝑟𝑦 𝑖𝑛𝑝𝑢𝑡) =
𝑃(𝑠𝑒𝑛𝑠𝑜𝑟𝑦 𝑖𝑛𝑝𝑢𝑡|𝑠𝑡𝑎𝑡𝑒)𝑃(𝑠𝑡𝑎𝑡𝑒)  

𝑃(𝑠𝑒𝑛𝑠𝑜𝑟𝑦 𝑖𝑛𝑝𝑢𝑡) 
. [10] 

This shows that an updated probability of the state is given by incorporating 

probabilities from the new sensory input and the prior state of the system. 

Cue assimilation: The Bayesian model also provides with a useful mathematical 

proof that humans are able to incorporate multimodal sensory cues in order to reduce 

the individually inherent noise from each source [48]. By looking at cues as a 

probabilistic framework, we can associate noise 𝜀  with each signal 𝜃  as one with 

Gaussian distribution set at zero mean and having a variance of 𝜎2 . Hence for a 

sensory input: 

 𝑆 = 𝜃 + 𝜀. [11] 
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When we consider two independent sensory inputs, the optimal estimate of 𝜃 will 

be based on a weighted average of the two sensory inputs based on the ratio of their 

variances given by:  

 𝜃 = 𝑤𝑠1 + (1 − 𝑤)𝑠2 , [12] 

where  

 𝑤 =  𝜎2
2/(𝜎1

2 + 𝜎2
2) ,  [13] 

and their variance 𝜎2 can be calculated by: 

 𝜎2 =  𝜎1
2𝜎2

2/(𝜎1
2 + 𝜎2

2) . [14] 

This equation from [50] shows that the variance of two sensory inputs together is 

always lower than either of each input independently. The mathematical proof from 

this equation reflects in the real life experimental results that show improved motor 

performance when subjects are able to incorporate more independent sensory inputs. 

In reality, we can look at sensory inputs and motor output in terms of a 

probabilistic distribution. For example, we can continuously throw darts at the centre 

of the board and the cumulative outcome will show a probabilistic output distribution 

of the mean dart position and its associated variances. By accounting for this 

distribution, we correct the aiming target to coincide with the mean dart position in 

order to achieve the optimal motor control hence incorporated motor learning based 

on a Bayesian probability model.  

 

2.4 HEC measurement and monitoring 

HEC is the ability to coordinate between the person’s visual system and motor 

actions in order to fulfil a task. Although there is no definitive test for measuring 
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HEC ability, conventionally, HEC ability is inferred through measurable aspects such 

as eye movements and motor performance in reaction to a controlled stimulus or task. 

Such aspects can then be tabulated and ranked in order to gain a measure of the 

inferred HEC ability. For example, in the Fundamentals of Laparoscopic Surgery, 

their technical skills curriculum1,2 details the performance level adequate for each 

simulated task that signifies a proficient level of surgical skill. The required 

proficiency level was determined by benchmarking against expert surgeons who 

performed on the same tasks.  

The pick and place experiment tasks performed in Chapters 4 and 6 and the circle 

tracing task in Chapter 6 have been modelled after tasks performed in the 

Fundamentals of Laparoscopic Surgery. However, the benchmarks from the 

Fundamentals of Laparoscopic Surgery are not directly applicable as the task 

protocols are not identical as they have been modified to suit our experimental 

objectives. In addition, the participants in the experiments conducted have no surgical 

or medical background hence it would be naturally biased to use the same 

benchmarks for the appraisal of HEC ability in laypersons.  

 

2.5 Methods and Materials of EEG Analysis  

EEG signals have been used for decades to map brain activity. Their first clinical 

therapeutic implementation was on the use of neurofeedback brain wave conditioning 

by patients with epileptic seizures [51], [52]. It was found that the sensorimotor 

rhythm (SMR), which is found in the 12-20Hz range, is able to suppress the 

depolarization of low frequency brain signals that led to seizures. Hence, with 

                                                      

1 http://www.flsprogram.org/wp-content/uploads/2014/03/Revised-Manual-Skills-

Guidelines-February-2014.pdf  
2 http://www.flsprogram.org/wp-content/uploads/2014/02/Proficiency-Based-Curriculum-

Word-File-updated-February-2014.pdf  
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reinforced training to voluntarily induce high frequency brain waves, like the SMR, 

the likelihood of full blown seizures in epileptic patients can be reduced.  

Another way of utilizing EEG signals is in mapping the brain’s attention level. It 

was shown that when the quantitative EEG was categorized into the different 

frequency bands, there was correlation between the bands with different aspects of 

behaviour in the patients (see Table 2.1) [53]. In patients with Attention 

deficit/hyperactivity disorder (ADHD), it was observed that their theta band is 

excessively activated while the beta band activity is low [54]. And in response, 

clinicians have been able to use neurofeedback brain wave conditioning by training 

subjects with abstract tasks to focus their attention and inducing higher beta band 

activity.  

One commercial example is the attention training toy by Uncle Milton Industries, 

Inc: The Star Wars Force Trainer 3  is a toy in which players are instructed to 

concentrate their thoughts on levitating a ball, which is picked up by a dry sensor 

wireless EEG headset and relayed to a controller that adjusts the speed of a fan under 

the ball which is blowing air upwards in order to make the ball levitate with respect to 

the EEG signals recorded. In a similar example, Necomimi4 by Neurowear is a dry 

sensor EEG headset that is attached with articulating mechanisms in the shape of cat 

ears. Depending on the level of concentration, the ears are rotated upwards when the 

subject shows high levels of concentration in the EEG signals and rotated downwards 

when the subject is relaxed.  

Fundamentals of EEG processing such as data pre-processing, EEG frequency 

bands, topographical spatial contour mapping and Lempel-Ziv Complexity are 

                                                      

3 http://www.starwars.com/vault/collecting/20090209b.html 
4 http://neurowear.net 

http://www.starwars.com/vault/collecting/20090209b.html
http://neurowear.net/
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detailed in Section 2.5. Additional EEG analysis methods such as Event-Related 

Potentials (ERP) are detailed in Chapter 7.  

2.5.1 EEG fundamentals  

Raw EEG signals that have been recorded from electrodes placed in the 10-20 

system are first processed for the removal of line noise (notch filter at 50Hz or 60 Hz 

depending on the country), band pass filtering for the removal of low frequency noise 

(typically with a high-pass filter set at 0.1 to 1Hz and used to remove slow artifacts 

such as movement) and high frequency noise (typically with a low-pass filter set at 

around 50Hz, depending on focus of study. High frequency artifacts such as EMG 

signals are removed.)  

In addition, Independent Component Analysis (ICA) methods can be used to 

remove eye blinking artifacts and movement artifacts (see Figure 2.5 and 2.6). ICA is 

a digital signal processing method for signal-noise decomposition which assumes that 

there are N number of statistically independent inputs (S1,...., SN) that are mixed 

linearly channels into N number of outputs (X1,....., XN).  

 𝑋 = 𝐴𝑆,  [15] 

where 𝐴 is the mixing matrix.  

ICA is used to find an equivalent solution to the matrix X through a 

decomposition matrix W and a matrix of estimated source vectors �̂�, 

  Ŝ = WX .  [16] 

Matrix W is defined in a way such that the components of matrix �̂�  are as 

independent as possible. 



37 

 

 
Figure 2.5: Sample snapshot of a raw EEG reading with eye blinking artefact. 

The readings are scaled to 50µV/unit length in amplitude and the horizontal axis 

is scaled to 1 second intervals. 

 

 
Figure 2.6: Sample snapshot of a raw EEG reading. 

The eye blinking artifact removed by ICA. The readings are scaled to 50µV/unit 

length in amplitude and the horizontal axis is scaled to 1 second intervals. 

 

Spatial Potential Mapping 

Spatial potential mapping is a form of graphical representation of the EEG signals 

recorded. EEG electrodes allocated according to the 10-20 system have been 

proportionally defined to be independent of anatomical variance. By assuming that 

the electrodes act as node sources on a spherical grid system, the potential 
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distribution at any point on the grid is interpolated from neighbouring electrode 

nodes. In addition, the derived potential distribution can be graphically coded by 

isopotential contour lines (as shown in Figure 2.7) 

 
Figure 2.7: Spatial potential mapping of EEG signals with isopotential contour 

lines. 

 

The potentials can be colour-scaled with respect to an overall range of electrode 

potentials present in the recordings. As each spatial potential mapping corresponds to 

a single snapshot in time, we can also collate a series of such spatial potential maps 

into a dynamic representation of changes in scalp potential over time.  

 

EEG frequency band classification 

Fourier transform is used to convert the time-based EEG signals into the 

frequency domain. Mathematically, any signal for a given interval, can be 

decomposed into a sum of mutually orthogonal sinusoidal waves of different 

amplitudes, phases and frequencies. The power of the signal hence refers to the 

square of the amplitude of the sinusoidal signal of a specific frequency. The larger the 

time window interval for sampling, the better is the accuracy of transformation but 

more artifacts get included and the temporal resolution drops as well.  



39 

 

It is experimentally shown that EEG waves can be pathologically correlated with 

activity of different frequency bands (see Table 2.1) [53] and there is spatial 

prevalence associated with each frequency band activity. 

 

Table 2.1: EEG Frequency Bands 

Frequency 

band 
Traits Prevalence 

Delta (δ) 0.5-

4Hz 
 Predominant in infants 

 Associated with deep sleep in 

adults 

 Disruptions to delta wave 

activity correlated to 

neurological disorders such 

as schizophrenia and 

dementia 

 Posteriorly in children 

 Frontally in adults 

Theta (θ) 4-

8Hz 
 Linked with drowsiness and 

meditation 

 Found in areas that are idling 

Alpha (α) 8-

13Hz 
 Attenuation with mental 

action or eye opening 

 

 Occipitally when mind is 

relaxed and/or eyes are 

closed 

 Related mu rhythm that 

egresses in the contralateral 

sensorimotor areas on the 

cortex when arms and hands 

idle 

Beta (β) 13-

30Hz 
 Attenuation with action 

 Linked with active thinking 

and concentration 

 Frontally 

 

Lempel-Ziv Complexity 

Lempel-Ziv Complexity is a means of characterizing the distinct dynamic and 

nonlinear patterns of biomedical signals [55], [56], including EEG [57]–[61]. When 

used on EEG signals, the Lempel-Ziv Complexity value represents the rate of 

emergence of new neural spike patterns in a time series. Hence, a higher LZC value 

indicates that the signal is more complex. The advantage of the LZC computational 

method on EEG analysis is it is a direct single-pass processing step that reduces the 

dimensionality of the EEG signal into a single value. The binary conversion of the 
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analog EEG signal also inherently negates the effect of high amplitude noise that is 

typical in motion related artifacts in the EEG signal.  

The first step in LZC is the conversion of the analog EEG signal into a binary 

signal. Conventionally, the median or mean of the signal is used as the binary 

thresholding value [62]. Data points above the thresholding value are converted into 

ones and data points below that value are converted into zeroes. The binary string is 

then read from left to right while each character is compared against a concatenating 

‘vocabulary of unique words’. As the string is read, the vocabulary increases and the 

rate of unique word entry into the vocabulary represents the emergence of new 

patterns in the string. Normalized over a function based on the length of the entire 

string, this value represents the complexity of the string.  

2.5.2 EEG for motor learning of HEC tasks 

Motor learning is the process of acquisition and optimization of a motor skill 

through practice or experience, leading to relatively plastic changes in the motor skill 

capability. The progression of mastery is typified by a power law relationship where 

there is a steep rise in skill in the beginning and the improvement asymptotically 

tapers over time. Several EEG analysis methods such as spectral power [63], 

electrode coherence [64] and event-related potentials [65] have been used to quantify 

the changes in neural activity associated with motor learning [66].   

However, EEG studies of motor skill performance have typically been cross-

sectional studies between groups of varying skill levels [63], [67], [68]. For example, 

Haufler et al. [63] discovered that experts at marksmanship possessed higher alpha 

power in the left temporal region on the cerebral cortex as compared to novice 

shooters. Baumeister et al. [67] found a difference in the theta band at the frontal 

midline region between novice golfers and expert golfers. This increase in theta band 

activity is associated with higher focused attention in other studies as well [66].   
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The severe limitation with such cross-sectional studies is that the study assumes 

differences in neural activity patterns between the groups of subjects, arise only from 

the different levels of skill mastery. In reality, even under tightly controlled 

experimental conditions, EEG is found to be highly variable from person to person 

and susceptible to external noise. Therefore cross-sectional comparisons have to be 

highly scrutinized and their findings are limited and unlikely to be reproducible. In 

order not to be limited by such pitfalls, the experiments conducted in this study have 

been designed for inter-sectional comparisons such that the comparison is on the 

same individuals who trains on a single task from novice to master.   

The reported trends in neural activities for various tasks such as shooting [64], 

archery [69], table tennis [65], video games [70] also appear to be highly task-

specific. Unless the tasks are comparable or the trends, such as high theta band 

activity for focused attention [66], have been corroborated in several studies with 

unrelated tasks, the reported trends cannot be assumed to be generalizable. Hatfield et 

al. [66] is a good review article that reported that trends in spectral power for 

marksmanship-related tasks are very different from that of other sports like karate or 

golf. These reports in literature highlight the limitations of the current body of 

literature with respect to HEC tasks as well as the inherent limitations to EEG 

analysis methods. 

Experiments are highly customized for specific studies. Experimental findings 

and neural analysis are also typically limited to the specific experimental scope and 

are not readily translatable [66]. There are few research on the neural or cognition 

aspect of the mastery of HEC tasks [63], [64], [66]. To the best of our knowledge, 

trends of neural activity for the mastery of HEC tasks have not been investigated.  An 

important aim of this study is the verification of neural markers over a series of 

experiments with HEC tasks such that the groundwork for further benchmarking of 

HEC-related neural activity can be investigated upon. Although LZC is a common 
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method for biosignal analysis, very little is known on the use of LZC with EEG 

signals [57]–[61]. Consequently, the consistency of the LZC neural trends for HEC-

related tasks has been established by utilizing the same processing algorithms and 

parameters with varied experimental setups. 
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3 Integrated Framework for Hand-Eye 

Coordination Training 

In this chapter, we conceptualized a hypothetical integrated framework for HEC. 

The conceptual framework represents the interconnection of various aspects of HEC 

described in Chapter 2, such as neural tracking and analysis, motion analysis and 

control modelling, which will serve as a map for the development of a holistic and 

autonomous system to train and assess HEC-related ability of a subject. Various 

aspects of this framework have been developed through the course of this study.  

 

3.1 Conceptual framework 

The foundation of the framework is created using the biological brain’s 

sensorimotor model with sensory feedback (see Figure 3.1). By adapting the 

biological motor control system, as discussed in Section 2.3.3, to include the 

mechanisms of sensorimotor feedback, we can get a closed loop representation of the 

biological model.  

In HEC, sensory feedback is achieved primarily through two modalities: haptics 

and visual information. Haptic information can be seen as physical cues and 

proprioceptive sensing of the physical orientation and motion of the subject’s limbs 

and eyes. Such haptic information is processed at the primary sensorimotor cortex 

[41].  Visual information can be seen as visual cues such as colour and depth and the 

processing of such cues into information such as objectification and spatial 

orientation. Such visual information is processed at the primary visual cortex [41]. 
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Figure 3.1: Biological Model with Sensory Feedback. 

In addition to the biological model, we introduce forward and inverse control 

models incorporated into the different levels of motor planning and execution (see 

Figure 3.2). The forward model draws on an efference copy of the motor commands 

and is fed back into the thought and planning process of the brain in order to 

reiteratively plot a causal prediction of the motor execution. In addition, the forward 

output model is used as an offsetting re-afference signal to filter the proprioceptive 

feedback of sensation caused by self-motion. This forward model concept has been 

shown to be useful in characterizing the effects of schizophrenia [71]. 

The inverse control model is applied in this framework to formulate an 

approximation of motor learning skill into control theory. That is because, when an 

inverse control model is improved by motor learning, it is reflected in the parametric 

characteristics of the controller. A “black box” strategy can be implemented by 
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assuming a simplified and generalized transfer function. The regressive comparison 

of the generalized transfer function with empirical data will generate the transfer 

function parameters [72]. This effectively maps motor execution performance into the 

domain of control modelling. The forward and inverse models complement the 

biological model because they serve as an idealistic mathematical rationalization of 

HEC behaviour which can be more easily modelled as compared to neuronal 

mechanisms of the biological model. 

The final step of the integrated framework is the inclusion of EEG derived 

neurofeedback into the previous model (see Figure 3.3). EEG signals will be recorded 

on all relevant locations pertinent to motor control as defined by the biological model. 

The EEG signals can be used either in an online manner or as offline analysis.  

Offline analysis of EEG signals is mostly used for data that requires complete 

recordings such as LZC analysis, as discussed in Section 2.5. In the spatial mapping 

of the electrical activity of electrodes, we can gain a mean overview of the activity of 

the different parts of the brain. This overview is beneficial in the classification of the 

stage of motor skill learning due to the known segregation of brain function into 

different locations of the brain. 

In the online utilization of EEG signals for neurofeedback, we can perform live 

transformation of the EEG signals in order to separate the EEG activity into its bands 

of brain wave frequencies as described in Section 2.5. This allows us to monitor and 

utilize live information of the subject’s neural behaviour such as the attention level by 

inference on the degree of Alpha band brain wave activation [73]. This, in effect, 

helps us to quantify the cognitive state of the subject and we can incorporate the 

performance of the subject’s cognitive state into supervised/ reinforcement learning 

protocols. These protocols map the deviation in the desired cognitive state and the 

current cognitive state and level of motor and task performance, so as to decide upon 
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an appropriate feedback that is directed to the subject through different visual, aural 

and haptic cues.  

The evolution of the hypothetical framework from Figure 3.1 to Figure 3.3 

represents the author’s overall interpretation of the various interdisciplinary aspects 

of literature in HEC as detailed in Chapter 2. The framework serves as an abstract 

model of what HEC would look like when intra-cortical neurobiological mechanisms, 

physical control modelling and neurofeedback are integrated as a single concept. 

Such a framework could eventually be substantiated with new knowledge which is 

yet to be discovered.  The experimental findings from Chapters 4 to 7 serve as 

preliminary steps towards the realization of some aspects of this framework.   

 

3.2 Motor performance analysis 

The primary function of motor performance analysis is the classification of 

different aspects of motor execution such as path length, efficacy of path planning, 

trajectory smoothness, time taken and errors incurred. Our initial implementation of 

motion capture was through computer vision based marker motion tracking of the 

subject performing HEC tasks as it is the easiest to implement and the subjects are 

minimally hindered in motion by any sort of equipment. Progressively, we acquired 

marker-less computer vision based motion capturing solutions (Microsoft Kinect and 

Leap Motion) for completely unhampered motion capture. 

The other aspect of motor execution is the tracking of eye saccades. Eye saccades 

have been shown to predate and guide goal oriented hand movement. Studies in 

cognitive neuroscience show that task oriented HEC requires the synergy of both 

hand and eye movement [74]. Additionally, the eye movement is leading and 

naturally acquires a gaze strategy in order to achieve the most advantageous view that 

can reveal the best spatio-temporal information significant to the task [9]. 
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It has been suggested that gaze strategy itself can be trained in order to improve 

HEC in novice laparoscopic surgeons [75]. That is because visual attention is a 

limited resource that directly affects motor planning. Hence, when the strategy for 

visual attention in a laparoscopic environment is trained to be efficient, the 

advantages manifold into better hand eye coordination and laparoscopic skills. Hence, 

by incorporating the physical motor performance analysis and neuronal analysis of 

cognitive activity, we can achieve an objective scoring of a subject’s hand eye 

coordination. 

Another aspect of motor performance is the development of motor skill learning. 

Motor skill learning involves the acquisition of complex sequential motor tasks. 

Motor skill learning can be divided into segmental tasks that are learned through 

repetition over time and the rate of acquisition (learning curve) is regulated by the 

cognitive process. What we see in the cellular level as synaptic plasticity where the 

connection between neurons grow stronger in response to repeated activity, it is 

represented in the common layman phrase “practice makes perfect”. 

The alternative way to improve HEC would be to investigate on the mental 

process within cognition. What we learn from cognitive psychology is that attention, 

learning and memory are all part of the cognitive process [76]. Through the use of 

EEG, we are able to map the brain activity of the subject and approximate the level of 

attention [77] that the subject is giving to perform a task. Research has shown that 

attention levels peak at the start when the brain is processing new visuospatial data 

and reduce slowly over time just as motor skill improves for the task [78]. 

 

3.3 Cognitive cost and cognitive capacity modelling  

Conventionally, cognitive workload for a human-machine interface task is 

determined with self-report scales such as the NASA Task Load Index [79] but they 
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are subjective in nature. More recently, there have been studies that involve the use of 

EEG/ERP-based methods [80] to determine the cognitive workload on a subject.  

The general approach is to implement a dual-task paradigm and the user’s ERP 

response to the secondary task cue is used to infer the level of workload that the 

subject is under due to the primary task [81]. The use of EEG to determine workload 

is based on the rationale that due to the allocation of limited neural resources to a 

primary task, the remaining neural resources illicit changes to ERP related to the 

secondary task. Hence by looking at the change in ERP related to a secondary task, 

the workload of the primary task can be inferred. 

In our approach, we propose to directly track and label the ERP changes 

associated with successful and unsuccessful tasks and hypothesize that there is a 

correlation for a task-related cognitive workload cost with a parameter from its 

corresponding ERP profile. In this manner, each ERP epoch will be able to contribute 

a sense of the cognitive cost of a repeated task.  

Another notion is that once the cognitive cost of the task reduces the person’s 

cognitive capacity down to a certain threshold, there will not be enough neural 

resources to properly complete the task hence the subject fails in that task instance. 

Hence by collaboratively analysing these concatenations of ERP trends in a single 

subject repeatedly performing a single we can estimate the cognitive cost of the task 

to the person and estimate the cognitive capacity of the person. 
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Figure 3.2: Biological model with integrated forward and inverse models. 

The forward model is coloured blue and the inverse model is coloured green. 



50 

 

 

Figure 3.3: Biological model with integrated forward and inverse models and neurofeedback. 

The neurofeedback aspect is coloured red.
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4 Experiment - Depth Perception and Colour Cues  

Four experiments were conducted exploring the various aspects of HEC. In 

Chapter 4, the aspect of visual cues in the form of depth perception and colour cues 

for endoscopic visualization was investigated. In Chapter 5, a visual cue guided box 

folding experiment was conducted to identify pertinent neural markers related to 

simple task mastery. In Chapter 6, an experiment was conducted to investigate the 

effects of haptic guidance from a robotic trainer on tracing and pointing tasks. In 

Chapter 7, a touchscreen based sequential pointing simulation game was created and 

used to explore the effects of visual cues with sequential planar arm motion through 

epochal EEG responses.  

In Chapter 4, the effect of visual cues on HEC was investigated. The motivation 

for this experiment is that visual cue is the singularly most important cue for HEC 

[82]. Understanding how visual cues can affect HEC performance will be 

fundamental to any subsequent implementation of visual cues for HEC research.  The 

subjects’ visual cues were affected by the augmentation of depth cues and colour. The 

corresponding effects on the subjects’ HEC ability were measured through the 

performance of a series of basic abstract surgical tasks.  

 

4.1 Background  

Minimally invasive surgery (MIS), also called laparoscopic surgery, has evolved 

into a common preference as the main treatment approach for many types of surgeries 

such as laparoscopic cholecystectomy. There are many advantages in laparoscopic 

surgery for the patient such as reduced recovery time, lesser analgesic use and less 

post-operative pain [83]. However, laparoscopic surgery has its disadvantages as 

well. Compared to open surgery, surgeons have to work with harder visual and 
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physical conditions [84], [85]. Because of the skewed hand-eye-instrument axis, the 

dexterity of the surgeon is reduced. The stationary positioning of the laparoscopic 

trocar ports imposes a counter-intuitive fulcrum effect on the mapping between the 

surgeon and the instrument’s movement. The long and thin laparoscopic instruments 

amplifies hand tremor and, along with frictional effects of the trocar, reduces haptic 

feedback to the surgeon. As most conventional endoscopic systems can only display a 

two-dimensional (2D) representation of the three-dimensional (3D) operating 

workspace, it leads to a reduced perception of depth. This is due to the removal of 3D 

depth cues such as binocular stereopsis that is derived from binocular disparity that 

occurs due to the slight difference of vision experienced in both eyes. For a 2D 

display, both eyes view the same image; hence there can be no binocular disparity.  

While there are many aspects to HEC in laparoscopic surgery, this study focuses 

on laparoscopic visualization, in particularly, on depth perception. In a previous study 

that explored laparoscopic training methodologies with a customized laparoscopic 

box trainer, it took about twice as long for subjects to perform abstract laparoscopic 

tasks with laparoscopic visualization as compared to open visualization [86]. 

Similarly, even the hybrid hand-assisted laparoscopic surgery (HALS) method, with 

better depth perception from the inclusion of an intracorporeal hand, was reported to 

be significantly faster than conventional laparoscopy [87]. Improving depth 

perception is necessary as surgeons, especially inexperienced ones, tend to 

compensate for the reduction in depth perception by “crashing” onto the tissue 

surface when trying to probe for the relative depth of the surfaces that results in past-

pointing tissue damage [88]. 

Depth perception is a crucial part of HEC as it affects the accuracy of the brain’s 

internal representation of the physical scene. Depth perception is based on binocular 

and monocular depth cues such as stereopsis, motion parallax, accommodation, 

convergence, occlusion and shadows. Literature shows that the most dominant cue, 
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especially for close proximity sight, is binocular stereopsis [89] which led to the 

development of 3D stereoscopic endoscopes that try to recover that cue. However, 3D 

laparoscopic visualization products are still in its infancy and prohibitively expensive. 

Furthermore, earlier studies have shown that initial 3D products had mixed results 

and tend to induce mental fatigue as well as look unnatural [90], [91]. Although 

recent studies have shown that using state of the art 3D HD systems increased task 

efficiency while performing abstract tasks in a physical phantom [92], [93]. 

One way to improve depth perception within conventional 2D displays is to 

reinforce monocular cues. In an endoscopic environment, some of the more 

significant monocular depth cues are motion parallax, occlusions and shadows [89]. 

Shadows are typically absent in the endoscopic view due to the coaxial arrangement 

of the illumination and camera. Recent research has gone into the restoration of 

absent cues such as shadows, through optimal secondary illumination positioning 

[94], shadow contrast ratio [94], enhanced shadowing from image processing [95] 

and colour contrasting shadows [96]. However, to our knowledge, no work is done on 

enhancing motion parallax for laparoscopic visualization. This is not surprising as the 

nature of motion parallax requires a translating viewpoint to be effective. In the small 

laparoscopic environment, fixed trocar positioning makes it hard to achieve a manual, 

steady and translating endoscopic viewpoint. In addition, the endoscopic field of 

vision is very narrow hence excessive and unstable movement of the viewpoint will 

induce mental fatigue to the observer [97].  

This leads to the first aim of our study which is to integrate motion parallax and 

shadows by introducing dynamic shadowing. Conventionally, in order to achieve the 

motion parallax depth cue, a translating viewpoint is needed. However, in our 

experiment, it is the light source and shadows that are moving instead of a translating 

viewpoint. This is achieved by mounting a secondary light-emitting diode (LED) 

light source onto the laparoscopic grasper that shines onto the tip of the instrument 
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itself, producing a dynamic silhouette of the instrument against the surface that the tip 

is pointing at. The background illumination from the moving LED casts dynamic 

shadows against objects in the workspace as well. Indirectly, motion parallax can be 

inferred as shadows of objects nearer to the moving light source have a higher 

shadow contrast and move faster than the shadows of objects farther away. In 

addition, moving cast shadows have also been found to be such an effective depth cue 

that it can override [98] other depth cues such as object size changes and movement 

in light sources [99].  

The second part of this study involves the evaluation of infrared light (IRL) as the 

illumination for the application of dynamic shadowing and laparoscopic visualization. 

Aside from thermal imaging18, IRL has long been attempted for use in medical 

purposes such as classification of tissue type based on IRL, which is capable of 

penetrating into tissue and is absorbed and reemitted differently by different tissue 

types [100], [101]. The second useful property of IRL is the strong optical absorption 

by haemoglobin. Coupled with its penetrative nature, IRL is capable of enhancing 

and revealing near surface vasculature [102] which is very useful to help surgeons 

avoid unnecessary haemorrhages. However, one major drawback of using IRL is the 

loss of colour which is an important source of visual information for the surgeon to 

differentiate between tissue types. In this study, we replaced visible light with IRL 

and examined whether dynamic shadowing translates well into a monochrome 

environment where shadows are less distinguishable from the environment. 

The scope of this study is to investigate two hypotheses put forward by the 

authors. In the first experiment, we investigate the first hypothesis which is that the 

implementation of a dynamic light source to produce dynamic shadowing will 

improve depth perception and enhance the performance of three abstract laparoscopic 

tasks under a conventional 2D view and an autostereoscopic 3D view. In the second 

experiment, we investigate the second hypothesis which is that IRL can be used as an 



55 

 

alternative invisible light source for the implementation of dynamic shadowing as 

well as general illumination in laparoscopic surgery.   

 

4.2 Materials and Methods 

4.2.1 Experiment 1 

Participants: Ethics approval for both experiments was granted by the local 

institutional review board. Twelve volunteers from non-medical backgrounds were 

recruited for the first experiment. Their age varied from 22 to 26 years. None of them 

had any prior laparoscopic training. All of the subjects had good (or corrected) 

eyesight and no colour impairment. Subject demographics are listed in Table 4.1. 

Apparatus: A 300mm by 300mm by 270mm laparoscopic box trainer made of 

acrylonitrile butadiene styrene (ABS) was designed and fabricated (see Figure 4.1). 

The box trainer had a 3mm thick silicon rubber that was stretched over the curved top 

cover of the box and fastened with Velcro. It was designed with detachable side 

panels for easy access into the workspace. 

Instead of a 2D endoscope, an 8.1 megapixel USB webcam was used as the 

primary overhead video source (model webcam 7100; Sensonic, Singapore). 

Conventional commercial dry-box laparoscopic trainers also utilize USB webcams as 

a low cost, widely available alternative to endoscopes. USB webcams are able to 

provide a similar image quality and field-of-vision as surgical endoscopes when used 

in the dry-box ex-vivo setting so they are a feasible and economical alternative. The 

webcam was secured in place through the use of an adjustable mechanical arm. The 

2D output was displayed onto a 17” LCD monitor (model 1708FP; Dell) and the 3D 

output was displayed onto a 20” lenticular autostereoscopic 3D monitor (model AD2; 

Newsight, Jena, Germany).  
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The laparoscopic instruments used are a 5mm diameter 310mm length bullet nose 

grasper (BBraun, Tuttlingen, Germany) and a straight tip needle holder (model 

E705R; Ethicon). Primary static overhead illumination is from six white LED bulbs 

built into the webcam or by a separate overhead LED probe (see Figure 4.2) that 

houses five 3 mm Clear 3.6 V Visible LEDs (Nichia, Tokyo, Japan) and is secured 

through the silicone sheet with an external magnet. Secondary dynamic grasper 

illumination (see Figure 4.3) is provided by two 3mm diameter white LED bulbs 

powered by an external DC source (model E3616A, Hewlett Packard). All probes 

were designed to be implantable and conform to 15mm laparoscopic trocar size 

restrictions. In addition to the size advantage, compared to arc-lamp light sources, 

LED light was reported to produce sharper shadows, uniform lighting and less 

flickering [103]. 

 

Table 4.1: Subject demographics for the first experiment 

Mean Age 23.8 years 

Gender 9 Males, 3 Females 

Master hand 10 Right, 2 Left 

Hand eye coordination games experience 

and frequency 

67% have experience/ About 

twice monthly 

Racquet games experience and frequency 100% have experience/ Seldom 
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Figure 4.1: Overview of the laparoscopic box trainer. 

Procedure: We have come up with three abstract laparoscopic tasks in order to 

test the depth perception of our subjects. The tasks comprised of threading, pushing 

and pick & place. The first was a threading task (see Figure 4.4). It involved the 

subject withdrawing and inserting a thin stick held onto the end of the needle holder 

into a perforated vertical surface. The perforated surface is split into 4 separate rows 

of holes and the subject was tasked to insert the stick into a randomly generated 

sequence of targets. Because of the nearly top-down orientation of the view, the rows 

of holes are perceived as targets at different depths.  

 

Figure 4.2: Overhead light-emitting diode probe. 
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Figure 4.3: Light-emitting diode probe mounted on a laparoscopic grasper. 

The subjects were assessed based on their execution time only as the majority of 

the subjects did not make any gross mistakes and were able to self-correct, at the 

expense of slightly additional time incurred. Each run consists of 8 holes and each run 

was carried out twice, once with the perforated surface located frontally to the 

camera’s orientation and once with the perforated surface located obliquely to the 

camera’s orientation. 

The second and third tasks involved the use of a hollow box that was interlaced 

with wires inserted at various depths across the box (see Figure 4.5). By linking a 

light and buzzer circuit with the network of wires and the electrode of the 

laparoscopic instrument, we created a maze to test the subject’s instrument navigation 

performance in an intricate 3D space. We have previously used this 3D wire maze as 

part of training and assessing accuracy in laparoscopic motion with a robotic platform 

[104].  
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Figure 4.4: Task 1: Threading a wooden stick through the perforated Lego brick. 

The second task was to drag a piece of Lego brick horizontally across the length 

of the box. A subject has to withdraw and insert the laparoscopic grasper at 

appropriate positions and orientations several times across the maze in order to avoid 

touching the wires and be within reach of the brick as the brick was moved. The 

subjects were assessed on total time taken and the number of times the instrument tip 

touched the wires and triggered the circuit.  

The third task was to pick six sponge cubes that were randomly placed within the 

maze and deposit them in a designated corner of the screen (see Figure 4.6). 

Similarly, the subjects were assessed on time taken and the number of times the 

circuit was triggered.  
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Figure 4.5: Task 2: pushing a Lego brick horizontally across the workspace. 

 

Figure 4.6: Task 3: Picking and placing the randomly positioned sponge cubes. 

The sequence of the tasks and viewing conditions assigned to the participants was 

randomized to minimize any learning effect on the results. The result collected were 

evaluated using Analysis of Variance (ANOVA) to determine if there is significant 

difference in the mean time taken and error rates for the different viewing conditions. 

Significance was set at p < 0.05. 
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Each set of three tasks were carried out under the following four viewing 

conditions: 

a) 2D view with static illumination only, 

b) 2D view with dynamic grasper illumination, 

c) 3D view with static illumination only,  

d) 3D view with dynamic grasper illumination. 

4.2.2 Experiment 2 

The objective of the second experiment is to investigate the second hypothesis 

which is that IRL can be used as an alternative light source for the implementation of 

dynamic shadowing as well as for general illumination in laparoscopic surgery. 

Participants: Twenty Five volunteers from non-medical backgrounds were 

recruited for this part of the study. Their age varied between 22 and 27 years. None of 

them had any prior laparoscopic training. All of the subjects had good (or corrected) 

eyesight and no colour impairment. Subject demographics are listed in Table 4.2. 

Table 4.2: Subject demographics for the second experiment 

Mean Age 23.9 years 

Gender 15 Males, 10 Females 

Master hand 23 Right, 1 Left, 1 

Ambidextrous 

Hand eye coordination games experience 

and frequency 

60% have experience/ about 

twice monthly 

Racquet games experience and frequency 88% have experience/ Seldom 

 

Apparatus: The setup used for the second experiment was similar to that of the 

first experiment except for changes to the camera and lighting. A second webcam of 

the same model was modified to capture video in infrared (see Figure 4.7). The IRL 

filter on the second webcam was removed so as to make it sensitive to IRL. In 

addition, a visible light filter made from standard photography film negative was 

added to the lens of the camera. The filter was prepared by overexposing a strip under 
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visible light for a few minutes and then developed. The strip was subsequently sized 

and fitted onto the lens of the camera. 860nm peak wavelength Infrared LED (SFH 

4350, OSRAM Opto Semiconductors) was also incorporated into the overhead 

lighting probe and the grasper lighting probe. 

 

Figure 4.7: Performing task 3 under infrared illumination. 

Procedure: The task evaluation methods for the second experiment were the same 

as those used in the first experiment. Volunteers were asked to perform the same set 

of laparoscopic tasks under four viewing conditions: 

a) Static illumination with visible lighting  

b) Dynamic illumination with visible lighting 

c) Static illumination with Infrared lighting 

d) Dynamic illumination with infrared lighting 
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4.3 Results 

4.3.1 Experiment 1 

For Task 1: Threading task, the viewing condition with the lowest average 

threading time is the 2D display condition with dynamic illumination (56.37s). 

Overall results also show that the 2D display conditions (60.53s) yielded significantly 

better results than the 3D display conditions (79.12s) (p=0.008) and dynamic shadows 

(68.41s) was slightly better than static illumination (71.24s) although the difference 

was not significant (p= 0.672).  

For Task 2: Pushing task, the viewing condition with the lowest average pushing 

time is the 3D display with static illumination (43.91s). Overall results show that the 

time taken to complete the task under 3D viewing conditions (56.85s) was generally 

shorter than that under 2D viewing conditions (60.46 s). The difference was not 

statistically significant (p= 0.736). The overall mean for static illumination is 53.25 s 

and the overall mean for dynamic illumination is 64.06 s which is not significantly 

different (p= 0.315). The least amount of errors was made under 2D display 

conditions with dynamic shadowing (2.42). However, overall trends indicate static 

illumination (2.67) to be slightly better than dynamic illumination (2.92). 

For Task 3: Pick and Place task, the viewing condition with the lowest average 

pick and place task was 2D display conditions with dynamic illumination (103.53s). 

Overall trends correlate with this result, with 2D display conditions (114.82s) faring 

better than 3D display conditions (119.65s) and dynamic illumination (111.48s) doing 

better than static illumination (123.00s). The least amount of errors was recorded 

under the 2D display condition with dynamic illumination (3.00). However, overall 

trends show that the 3D display condition (3.46) has a better error rate than 2D 

display conditions (3.88). 
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4.3.2 Experiment 2 

For Task 1: Threading task, the viewing condition for with the lowest mean 

threading time is visible light with dynamic illumination (51.98s). Overall, dynamic 

illumination (52.02s) was better than static illumination (57.17s) but the difference 

was not statistically significant (p=0.24). IRL (52.74s) was found to be slightly better 

than conventional visible light (56.46s, p=0.39). 

For Task 2: Pushing task, the viewing condition for with the lowest average time 

taken for this task was visible light with static illumination (40.87s). Overall, the 

performance under visible light (41.81s) was significantly better than under IRL 

(61.33s, p=0.0051) and dynamic illumination (48.21s) was found to be slightly better 

than static illumination (54.94s, p=0.32).  

The least number of mean errors made was under visible light and static 

illumination (1.04). Overall, the number of errors made under visible light (1.18) was 

found to be significantly lesser than under IRL (2.30, p=0.019) and the number of 

errors made under static illumination (1.56) was lesser than dynamic illumination 

(1.92, p=0.44).    

For Task 3: Pick and Place task, visible light with dynamic illumination was 

found to have the lowest mean time taken for this task (74.99s). Overall, Visible light 

(77.99s) was found to be better than IRL (91.55s) and dynamic illumination (81.02s) 

was found to be better than static illumination (88.52s). 

Similar to the pushing task, the mean number of errors made was lowest under 

visible light and static illumination (2.44). Overall, there were fewer errors made 

under visible light (2.68) compared to IRL (3.30) and there were fewer errors made 

under static illumination (2.76) compared to dynamic illumination (3.22). 
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4.4 Discussion 

4.4.1 Experiment 1  

In general, from the tabulation of mean results (see Table 4.3), for all three tasks, 

using the 2D display, performance improved with the use of dynamic shadows. The 

experiment has shown that dynamic illumination with 2D display conditions reduces 

execution time and the number of errors made. The user relied on the brightness of 

the reflected light and the size of the shadow to gauge the distance between the 

instrument and the target.  

However, this was not true when looking at 3D display results. Mean 

performance for Task 1 and Task 3 was almost the same but Task 2 took 60% longer 

when using dynamic shadows. We hypothesize that this was due to the Pulfrich effect 

that the 3D monitor utilized to simulate depth. This effect generates a decaying 

ghosting effect that tended to duplicate the number of shadows, hence the 3D effects 

served to disorientate the subject more than aiding him. Feedback from the volunteers 

was that the 3D images had distorted depth judgment and induced dizziness. Some of 

them also stated that they became mentally fatigued faster when using the 3D 

monitor.  

Looking at the mean number of errors; as compared to the static counterpart, 

using dynamic shadows reduced the number of mistakes with the 2D display but the 

trend reversed with the 3D display. This showed that the Pulfrich effect not only 

increased the time taken but also increased the number of mistakes made.  

When we look at the results of each task under the four viewing conditions, 2D 

display with dynamic illumination and 3D display with static illumination tend to 

perform better in terms of time taken and number of errors made as compared to the 

remaining two viewing conditions. This trend signifies two findings. First, 

implementing a dynamic illumination or 3D display improves on the conventional 2D 
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display with static illumination. Second, although individually, the dynamic 

illumination and 3D display generated an improvement in performance over the 2D 

display with static illumination, their joint effect produced an opposite effect, 

resulting in the worst performing viewing condition in most of the results.  

Pre-emptively, the task order was randomized for each subject in order to 

minimize the learning effect. However, there were still signs of familiarization as 

each task was carried out four times per subject. In addition, subjects feedback that 

the dynamic shadowing did help them in perceiving depth but they needed to be 

reminded to actively use the shadows to gauge depth. This may be accounted for by 

the evidence that individuals have different strategies for depth cue combination 

[105]. As a consequence, some subjects might need to specifically train to 

consciously take notice and make use of the shadows.   

4.4.2 Experiment 2  

By comparing static illumination to dynamic illumination (see Table 4.4), 

dynamic illumination has reduced the overall mean time taken for all 3 tasks. This 

trend is also evident for all 3 tasks under IRL which shows that the benefit of 

dynamic shadows, as shown in experiment 1, can be applied with IRL as well.  

Both the first and third tasks showed that performance under IRL yielded no 

significant penalty as compared to visible light. However, the performance under IRL 

was significantly worse in the second task. Both mean time and number of errors 

made were significantly higher. We hypothesize that it was due to the nature of the 

task coupled with the optical property of the block material under IRL. The red Lego 

brick used for the second task actually appeared white under IRL (See Figure 4.8 . 

The background also appeared white so subjects might have had difficulty trying to 

differentiate the brick from the background. In the first and third task, since there 

were no problems in recognizing the perforated surface or sponge cubes under IRL, it 
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explains why using IRL did not result in significantly longer execution times as 

compared to using visible light.  

Overall, when comparing visible light to IRL, the mean performance was faster 

with visible light in two tasks and less number of errors was made under visible light 

as compared to IRL in both Task 2 and Task 3. This showed that the loss of colour 

under IRL did reduce the laparoscopic performance of the subjects. 

 

Figure 4.8: The colour differences of the same Lego brick under (left) infrared 

and (right) visible light. 

 

4.5 Summary  

In Experiment 1, it has been shown that the implementation of a dynamic light 

source in 2D visualization provides better depth information in the form of moving 

shadows. In Experiment 2, the results indicated that dynamic shadowing continued to 

show that it improved the subjects’ performance and its improvement can be shown 

even under IRL. IRL was found to be generally inferior to visible light as general 

endoscopic illumination, especially if the task involved colour recognition. 

The experimental results in Experiment 1 showed that dynamic shadowing with 

2D display reduced execution time and number of errors. Dynamic shadowing with 

3D display increased execution time for one of the tasks and increased number of 

errors for all three tasks. This demonstrates that dynamic shadowing could be an 
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inexpensive method to improve conventional 2D laparoscopic depth perception. 

However, familiarization is necessary to increase the dominance of shadows as depth 

cue. In the experiment, subjects had to be reminded to pay attention to the shadows.  

A possible improvement would be to enhance the delivery of shadows to the subject’s 

view through image processing.  

The general feedback from the volunteers was mixed. Some were in favour of 

IRL citing that the lack of colour created less confusion and gave a sharper tone 

contrast. However there were also those who claimed that the visible lighting allowed 

them to perform better as people were generally more accustomed to viewing from a 

full colour display.For future work, we intend to improve on mounting of the grasper 

illumination as the current LED setup was deemed to be too bulky and became 

entangled with the live wires frequently. We also aim to introduce another variant of 

dynamic illumination using a static and flexible array of LEDs that can be 

magnetically mounted onto the inner wall of the operating space.  

Currently, the main performance indicator of the tasks was derived from time. 

We intend to improve on the assessment criteria by including image based motion 

tracking as well as force analysis. The author proposed that further experiment could 

track the path taken by the instrument and use the path length and path deviation to 

further assess individual performance. Secondly, the assigned game could simulate 

actual laparoscopic task like suturing and cutting. Thirdly, besides using near-

infrared, medium and far infrared can also be considered for illumination. Last but 

not least, the torso case should not only mimic the human body externally but also 

internally. Inserting synthetic organs and vessels that have wet surface finish can 

make the workspace looks and feels like the actual abdomen. In this way, the user can 

experience the real visual and tactile restrictions encountered by laparoscopic 

surgeons. 
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Table 4.3: Averaged results for experiment 1 

(corresponding standard deviation is listed in parenthesis.  Best performance highlighted in bold) 

Task 1: Threading time (seconds) Task 2: Pushing time (seconds) Task 3: Pick and Place time (seconds) 

 Static Dynamic Overall 

(2D/3D) 

 Static Dynamic Overall 

(2D/3D) 

 Static Dynamic Overall 

(2D/3D) 

2D 64.70 

(17.76) 

56.37 

(11.54) 
60.53 

(15.25) 

2D 62.58 

(28.69) 

58.34 

(34.54) 

60.46 

(31.13) 

2D 126.11 

(55.22) 

103.53 

(50.25) 
114.82 

(52.91) 

3D 77.79 

(30.05) 

80.45 

(27.93) 

79.12 

(28.40) 

3D 43.91 

(19.19) 

69.79 

(55.37) 
56.85 

(42.63) 

3D 119.88 

(66.87) 

119.43 

(76.23) 

119.65 

(70.13) 

Overall 

(Static / 

Dynamic) 

71.24 

(25.05) 
68.41 

(24.25) 

 Overall 

(Static / 

Dynamic) 

53.25 

(25.71) 

64.06 

(45.51) 

 Overall 

(Static / 

Dynamic) 

123.00 

(60.06) 
111.48 

(63.66) 

 

    Task 2: Pushing Errors (touches) Task 3: Pick and Place Errors (touches) 

     Static Dynamic Overall 

(2D/3D) 

 Static Dynamic Overall 

(2D/3D) 

    2D 2.83 

(3.24) 

2.42 

(1.93) 
2.63 

(2.62) 

2D 4.75 

(4.47) 

3.00 

(1.95) 

3.88 

(3.49) 

    3D 2.50 

(2.28) 

3.42 

(3.26) 

2.96 

(2.79) 

3D 3.17 

(1.85) 

3.75 

(2.77) 
3.46 

(2.32) 

    Overall 

(Static / 

Dynamic) 

2.67 

(2.75) 

2.92 

(2.67) 

 Overall 

(Static / 

Dynamic) 

3.96 

(3.44) 
3.38 

(2.37) 
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Table 4.4: Averaged results for experiment 2 

(corresponding standard deviation is listed in the parenthesis. Best performance highlighted in bold.) 

Task 1: Threading time (seconds) Task 2: Pushing time (seconds) Task 3: Pick and Place time (seconds) 

 Static Dynamic Overall 

(Visible 

/ IR) 

 Static Dynamic Overall 

(Visible 

/ IR) 

 Static Dynamic Overall 

(Visible 

/ IR) 

Visible 60.93 

(30.06) 

51.98 

(19.64) 

56.46 

(25.78) 

Visible 40.87 

(18.79) 

42.76 

(24.24) 
41.81 

(21.71) 

Visible 80.99 

(34.31) 

74.99 

(30.76) 
77.99 

(32.72) 

IR 53.42 

(17.40) 

52.06 

(14.18) 
52.74 

(15.89) 

IR 69.00 

(46.99) 

53.66 

(36.05) 

61.33 

(42.58) 

IR 96.05 

(40.85) 

87.05 

(40.20) 

91.55 

(40.77) 

Overall 

(Static / 

Dynamic) 

57.17 

(24.84) 
52.02 

(17.13) 

 Overall 

(Static / 

Dynamic) 

54.94 

(38.45) 
48.21 

(31.20) 

 Overall 

(Static / 

Dynamic) 

88.52 

(38.47) 
81.02 

(36.29) 

 

                Task 2: Pushing Errors (touches) Task 3: Pick and Place Errors (touches) 

     Static Dynamic Overall 

(Visible 

/ IR) 

 Static Dynamic Overall 

(Visible 

/ IR) 

    Visible 1.04 

(1.40) 

1.32 

(1.43) 
1.18 

(1.42) 

Visible 2.44 

(2.95) 

2.92 

(3.11) 
2.68 

(3.04) 

    IR 2.08 

(2.43) 

2.52 

(3.32) 

2.3 

(2.92) 

IR 3.08 

(2.76) 

3.52 

(2.32) 

3.3 

(2.56) 

    Overall 

(Static / 

Dynamic) 

1.56 

(2.05) 

1.92 

(2.63) 

 Overall 

(Static / 

Dynamic) 

2.76 

(2.87) 

3.22 

(2.75) 
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5 Experiment - Folding task with visual cue 

In Chapter 5, the preliminary experiment with EEG recordings was carried out. 

The motivation for this experiment was to identify any possible EEG trends that can 

signify mastery of a HEC task.  The target was to explore the differences in a 

subject’s neural activity as he repetitively practices on a simple paper folding task. 

Through offline EEG analysis methods, the changes in neural activity was quantified 

and compared. Several topological neural markers that potentially corresponded with 

subjects’ task mastery were identified.  

 

5.1 Background 

In a large scale epidemiological study conducted in 2010 by the Institution of 

Mental Health in Singapore, it was found that more than one in ten people will be 

stricken by a form of mental illness within their lifetime.  Increasing prevalence of 

mental illness in society is a growing concern and as a result, there is a need for better 

management and rehabilitation of these mental patients. In order to reintegrate mental 

patients back to society as productive and self-reliant individuals, mental patients 

undergo rehabilitation and are exposed to occupational therapy that are designed to 

train them for suitable jobs in areas such as clerical work and food handling in food 

and beverage industries. Conventionally, due to the delicate nature of the interactions 

with mental patients, occupational therapists are required to manually train them in 

cognitive and motor skills crucial in the job scope. In addition, it is often hard to 

judge a subject’s level of competence and task mastery without the professional 

supervision of therapists. As such, the occupational therapy sessions are limited to 

small groups. These factors put pressure on the already constrained manpower 

available. Therefore, one possible solution is to create an autonomous rehabilitative 
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training protocol with serious games that mental patients can train independently so 

as to reduce the reliance on therapists.  

Conventionally, serious games involves simulations of tasks with the main notion 

of educating the user to master achieving certain task objectives, likely through a 

supervised or reinforcement learning protocol. For example, the occupational task 

objectives for a kitchen aide could be the proper technique for wielding and using a 

knife. The corresponding task performance would be the speed and accuracy of 

cutting the food ingredients. However, with respect to the training of mental patients, 

purely using conventional task performance metrics are insufficient in assessing the 

overall performance of the mental patients. Revisiting the example of a kitchen aide’s 

cutting skill, an occupational therapist would focus more on the confidence in 

wielding the knife and mood of the mental patient in participating in the training 

before the product of the practice itself. Hence, the focus is on affective nurturing 

[106] of the mental state of the patient that further enables effective learning of tasks. 

This example highlights that in order to develop an effective rehabilitation solution; 

we should combine human performance engineering with cognitive science. Hence, 

to assess the rehabilitation progress of mental patients, the motor performance and 

mental state should ideally be assessed in conjunction with each other. 

The most common way of observing a person’s mental state would be through 

non-invasive scalp EEG readings, as described in Chapter 2.3.5.  However, EEG 

itself is an indirect measure of mental activity through the spatial recording of 

spontaneous electrical fields that perpetuate a person’s brain which are generated by 

the ionic activations of neurons in the brain. Raw EEG data can be recorded with 

multiple low impedance electrodes on the scalp. In order to interpret the sheer 

multiplicity of EEG readings, post processing of the EEG data is required.  
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A conventional way of post processing the EEG data is through the Fourier 

transformation of the signals into the frequency domain. This is because neurons are 

known to activate with causal synchrony resulting in neural oscillations across the 

brain. This synchronous activity is revealed with frequency analysis of the EEG data. 

The classification of brain waves into frequency bands within the frequency domain 

has been classically shown to correlate with certain mental states and spatial 

prevalence [107]. For example, the alpha frequency band in the occipital region (8-

13Hz) has been associated with a more relaxed mental state [108], [109]. Hence, the 

relative changes in activity in the frequency domain are an indication of the mental 

state of the brain as the subject performs the training task. In fact, one of the earliest 

clinical uses for EEG was in EEG biofeedback which was fundamentally based on 

training individuals to alter levels of brain activity in certain frequency bands. This 

form of therapy was widely used with the treatment of attention deficit / hyperactivity 

disorder (ADHD) where ADHD patients were frequently found to have relatively 

elevated levels of activity in the theta frequency band (4-7Hz) and lower relative 

levels of activity in the alpha (8-13Hz) and beta (14-25Hz) range [110].  

Another method of interpreting the EEG recordings is through the computation of 

the complexity of the EEG time series data. Lempel-Ziv Complexity [111] has been a 

popular method of characterizing several types of biological signals including 

classifying genomic sequences [112], [113], identifying subjects with Alzheimer’s 

disease [114], classifying mental fatigue [57] and the depth of anaesthesia from EEG 

complexity [58]. It represents the rate of emergence of new patterns in a time series. 

Hence, a higher LZC value indicates that the signal is more complex. Before an EEG 

signal can be computed with LZC, it first has to be converted into a binary signal. 

Conventionally, the median or mean of the signal is used as the binary thresholding 

value [62]. Data points above the thresholding value are converted into ones and data 

points below that value are converted into zeroes. The binary string is then read from 
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left to right while each character is compared against a ‘vocabulary of words’. As the 

string is read, the vocabulary increases and the rate of unique word entry into the 

vocabulary represents the emergence of new patterns in the string. After being 

normalized over a function based on the length of the entire string, this value 

indicates the complexity of the string. Thus, LZC is useful in reducing the 

dimensionality of an EEG data channel into a single value.  

In this study, the objective is to compare a subject’s task performance against the 

corresponding scalp EEG data recorded during the task. The comparison enables the 

identification of possible markers for gauging mental activity pertinent to the mastery 

of simple tasks such as the origami box folding used in this study. This enables a 

benchmark for deeper analysis of a person’s performance beyond that of the 

conventional physical kinematic analysis.  

 

5.2 Materials and Methods  

5.2.1 Subjects and Experimental Protocol 

We recruited six healthy male volunteers with ages between 21 and 30 who were 

all right-handed to perform the study. The experimental task chosen in this study was 

to fold a simple paper origami box. The folding instructions were presented in the 

form of 39 animated steps within a PowerPoint presentation. Each subject was 

required to build one box per trial with 5 trials in all. The first four trials were aided 

by the PowerPoint instructions while the last trial was unassisted.  

5.2.2 Equipment 

In order to record the scalp EEG readings, a Neuroscan NuAmps EEG amplifier 

was used. The amplifier is connected to a flexible lycra stretch cap where 32 sintered 

silver/silver chloride electrodes have been pre-positioned to the International 10-20 
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system of EEG electrode placements. The amplifier converts the analogue electrode 

signal and outputs to a PC for recording. 19 electrode channels were recorded in this 

study and their topographical map is shown in Figure 5.1. EEG conductive gel were 

applied on each electrode to reduce the impedance of the electrodes (<5KΩ) before 

the EEG data was recorded. On a separate PC, a series of animated origami folding 

instructions are shown to the subject (see Figure 5.2). A webcam was also used to 

record the subjects performing the task (see Figure 5.3). 

 
Figure 5.1: Topographic plot of the EEG electrodes recorded in accordance to the 

International 10-20 system of EEG electrode placement and labelling. 

The electrodes are named and abbreviated according to the topological regions of 

the brain. FP stands for frontal polar, F stands for frontal, C stands for central, T 

stands for temporal, P stands for parietal and O stands for occipital. 

 

 

Figure 5.2: Sequential screenshots of the origami folding instructions shown to 

the subjects. 

The cue sequence is from left to right and top to bottom. 
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Figure 5.3: Screenshot of Subject 1 performing the folding task. 

5.2.3 EEG processing 

In this study, raw EEG data was recorded from the 19 EEG channels sampled at 

1000Hz and exported for further processing in the EEGLAB toolbox [115] for 

Matlab. Using EEGLAB, the EEG data was notch filtered at 50Hz to remove 

electrical line noise. Recorded EEG data tends to be very noisy due to external 

physiological artifacts such as ocular motion (EOG) and muscle activation (EMG). 

Eye blinks also induce large slow waveforms at the frontal regions of the EEG 

recorded. These obvious visible noise artifacts are manually cropped from the raw 

EEG readings before analysis. The EEG signal is then band pass filtered between 

0.5Hz and 45Hz to remove low frequency noise such as slow drift found in 

continuous raw EEG data and high frequency noise such as muscle activations.  

The Fast Fourier transform (FFT) function implemented in Matlab was used by 

EEGLAB to perform the spectral analysis of the EEG data. Subsequently, for LZC 

calculation, the EEG data after preprocessing is converted to a binary string by 

thresholding using the median value of the individual channel’s signal. The binary 

string is then fed into a Matlab function to extract the LZC value. 
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5.3 Results 

The six subjects took an average of 14 minutes to complete the five trials. The 

individual time taken for all six subjects to perform the 5 folding tasks is plotted in 

Figure 5.4. It can be seen that the subjects were able to almost plateau the time taken 

to fold the paper box by the 3rd trial. The timings for Trial 5 remained low, suggesting 

that the subjects have managed to master the folding task by the 4th iteration since 

there was no guidance given in Trial 5. Looking at Figure 5.4 it is evident that 

Subject 5 was the worst performing subject overall and Subject 6 was the fastest 

performer overall. Even with the relatively stabilized plateau of timings between 

Trials 3 to 5, Subject 5 still took approximately 3 times as long as the fastest person, 

Subject 6, to perform the folding task in those trials. In the subsequent spectral 

analysis, we shall focus mainly on the disparity between the trends in these two 

subjects’ EEG data. 

 

Figure 5.4: Time taken for each origami box folding trial of all 6 subjects. 

The calculated LZC values for each subject are plot for the 19 EEG channels in 

Figure 5.5 to Figure 5.10. The LZC values averaged across the 6 subjects is shown in 

Figure 5.11. The LZC values are found to range between 0.10 and 0.35 for all the 

EEG data recorded in this study.  
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Figure 5.5: Lempel-Ziv Complexity values for all 19 EEG channels at all 5 trials 

of Subject 1. 

 

Figure 5.6: Lempel-Ziv Complexity values for all 19 EEG channels at all 5 trials 

of Subject 2. 

 

 

Figure 5.7: Lempel-Ziv Complexity values for all 19 EEG channels at all 5 trials 

of Subject 3. 
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Figure 5.8: Lempel-Ziv Complexity values for all 19 EEG channels at all 5 trials 

of Subject 4. 

 

 

Figure 5.9: Lempel-Ziv Complexity values for all 19 EEG channels at all 5 trials 

of Subject 5. 

 

 

Figure 5.10: Lempel-Ziv Complexity values for all 19 EEG channels at all 5 trials 

of Subject 6. 
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Figure 5.11: Averaged Lempel-Ziv Complexity distribution of all EEG channels 

for all 6 subjects. 

 

The overall topological frequency spectrum plots of Subject 5 over Trial 1 to 

Trial 5 are shown in Figure 5.12 (a-e). Similarly, the topological frequency spectrum 

plots for Subject 6 are shown in Figure 5.13 (a-e). The individual frequency 

spectrums of channels C3, C4, CZ, O1, OZ, O2, P3, PZ and P4 are plotted in Figure 

5.14(a-e) and Figure 5.15(a-i) for Subject 5 and Subject 6 respectively. 

 

5.4 Discussion  

5.4.1 LZC distribution  

It would be a logical assumption that the since brain activity would decrease and 

be less complex as the task gets mastered, the LZC values would be shown to 

decrease with increasing number of trials performed. However, overall LZC values 

are shown to increase with increasing number of trials (see Figure 5.11). Although 

this seems counter-intuitive since it shows that the signals get increasingly more 

complex even though the subject is getting more masterful with the task, one  
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Figure 5.12 (a-e): Channel spectra and topographic maps of Subject 5 for all 5 

trials.  

The subplots are sequentially lettered from Trial 1 to Trial 5. 
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Figure 5.13 (a-e): Channel spectra and topographic maps of Subject 6 for all 5 

trials.  

The subplots are sequentially lettered from Trial 1 to Trial 5. 
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suggested possible explanation for this phenomenon is that at high mental 

concentration, amplitude synchrony triggers the activation of an internal 

concentration state [116], [117]. The internal concentration state refers to an isolation 

of the activity in the thalamencephalon cortex [118]. The result of that postulation is 

that at higher concentration with higher difficulty, the brain waves seemingly become 

more harmonic and synchronous, leading to lower LZC values. In our case, when the 

task gets mastered over increasing number of trials, the subjects need to concentrate 

less, thus the brain waves reduce to a more asynchronous and complex state.  

By comparing the trends in LZC values of individuals (Figure 5.5 - Figure 5.10) 

over the 5 trials against the time taken for each trial, we can occasionally see that the 

increase in LZC values in some channels seem to mirror the improvement in timings. 

For example, when we look at Subject 3, the time taken sharply improves 

significantly from Trial 1 to Trial 2 and similarly we see a large consistent rise in 

LZC values between Trial 1 to Trial 2. Similarly, for Trial 2 to Trial 5, the 

improvement in timings tapers off and a similar trend appears in the LZC values of 

Trials 2 to 5. In addition, a similar corresponding trend is evident with Subject 6 

where Subject 6 has relatively little improvement in timings and the LZC trend lines 

(see Figure 5.10) are also shown to be clustered vertically. However, more studies 

need to be performed to determine the consistency of this trend as it might possibly 

be an artifact from the LZC computation due to the different lengths of the trials [56]. 

Due to the rounding of data points, LZC has also been found to be more sensitive to 

high frequency components in the EEG signal [119].  

Ideally, the LZC distributions should generate a consistently identifiable trend in 

that mirrors the changes in subject motor performance, meaning that the LZC trend 

lines of the 5 trials should not overlap each other and ideally be vertically spaced out 

to reflect the reduction in difficulty of consecutively performing the folding task over  
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Figure 5.14(a-i):  Individual frequency spectrums of channel C3, C4, CZ, O1, 

OZ, O2, P3, PZ and P4 for Subject 5.  

The difference in power between Trial 5 and Trial 1 are plotted in orange for each 

of the channels. 
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Figure 5.15: (a-i) Individual frequency spectrums of channel C3, C4, CZ, O1, 

OZ, O2, P3, PZ and P4 for Subject 6.  

The difference in power between Trial 5 and Trial 1 are plotted in orange for each 

of the channels. 
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increasing number of trials. However, in most individual subject data sets, the LZC 

trend lines appear clustered together and intersecting at multiple channel locations.  

Visually, it was hard to identify any useful LZC trend per individual, but when 

the LZC values are averaged over all 6 subjects, as shown in Figure 5.11, we can 

clearly see that channels C3, C4, CZ, O1, OZ, O2, P3, and P4 seem to satisfy our 

requirements for a useful LZC marker. This result mirrors that found by Hong et. al. 

whereby their LZC distributions were significantly different at the  

occipital and parietal regions when comparing amongst different levels of mental 

workload using tasks of increasing levels of difficulty [117]. In the following section, 

we shall compare these channels in the frequency spectrum to see if there is a similar 

trend present in these channels identified by their LZC distributions. 

5.4.2 Spectral Analysis 

Unlike the normalized LZC values, frequency spectrums can vary from person to 

person so we cannot directly average the values across the 6 subjects like in LZC 

analysis. By looking at the topological spectral analysis plots in Figure 5.12 (a-e) for 

Subject 5, we can see that the delta (1-3Hz) and theta (4-7Hz) activity are frontally 

predominant and remain frontally predominant over the 5 trials. Similarly, the beta 

(14-25) and gamma (25-45Hz) activity are predominantly occipital and persist over 

the 5 trials. However for the alpha band (8-13Hz), it changes from being frontally 

dominant to occipital. Overall, the power reduces across the whole spectrum in all the 

channels when moving from Trial 1 to Trial 5, clearly indicating that brain activity 

and mental workload was reduced as the task is repeated. 

By looking at the topological spectral analysis plots in Figure 5.13(a-e) for 

Subject 6, we can see similar topological trends as with Subject 5 for the delta and 

theta range. However, the alpha range remains primarily frontal and parietal 

(corresponding to area around channel PZ). Similarly the beta and gamma range are 
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predominantly parietal instead of occipital as in Subject 5. The overall activity level 

is also lower in Subject 6 as compared to Subject 5, especially in the first 3 trials. 

These two trends suggest that because Subject 6 has better mastery of the task, he 

does not need to visually focus as much on the task. Hence it is reflected in lower 

activity in the occipital region which processes visual information. Thus the parietal 

region that is responsible for integration of visual and proprioceptive inputs [120] 

appears relatively more active hence stands out in contrast. 

Looking the individual channel frequency spectrums of subjects 5 and 6 (see 

Figure 5.14 (a-i) and Figure 5.15(a-i) respectively), it is clear that with an increasing 

number of trials, the activity level of all the individual channels plotted drops. By 

looking at Subject 5’s channel plots (see Figure 5.14(a-i)), we can see that the drop in 

activity in individual channels is more pronounced in the central channels (C3, C4 

and CZ) and parietal channels (P3 and P4) as compared to the occipital channels (O1, 

O2 and OZ). This is also reflected in the overall channel spectrum trends as shown in 

Figure 5.12 (a-e). In contrast, the overall activity levels of the individual channel 

frequency spectrum plots of Subject 6 (see Figure 5.15(a-i)) start out lower than that 

of Subject 5 but do not drop as much as that in Subject 5 from Trial 1 to Trial 5. This 

shows that Subject 6’s brain activity starts relatively low and remains low over the 5 

trials. This trend is mirrored in the time taken for Subject 6 to perform the 5 trials, 

suggesting that the task seemed naturally easier for Subject 6 as compared to the 

other subject. 

Research on the alpha band (8-13Hz) [121] can be further divided into the slow 

alpha (8-10Hz) [122] and fast alpha (10-12Hz) range [123]–[126]. Slow alpha while 

not topographically bound to any brain region, is shown to relate to general attention 

levels. Whereas theta band activity has been found to be closely related to short term 

memory load [127]–[129] and sustained attention [130]–[133]. In Figure 5.14(d-f) we 

can see a sharp drop in the slow alpha and theta bands at the occipital area when we 
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compare Trial 1 with Trial 5. However, the same trend is much more attenuated in 

Subject 6 (see Figure 5.15(d-f)). This result suggests that the slower Subject 5 

experienced higher levels of short term memory load and attentional demands during 

the early trial that decreases after more trials. This outcome complements the Fitts 

and Posner model for skill acquisition [134].  

In the Fitts and Posner model, the first cognitive stage is associated with 

interpreting the nature of the task and trying out different strategies to perform the 

task which result in highly variable performance and high cognitive load such as 

attention. The second stage is the associative stage where the person has settled on a 

strategy and the focus is on refinement of the strategy, biomechanical efficiency and 

task performance. The third stage is the autonomous stage where the person has 

achieved muscle memory and automation of the skill, enabling minimal cognitive 

load for the task and allowing for the attention to be spent on other aspects such as 

higher order strategic planning. Therefore, classifying and monitoring the cognitive 

load of the trainee can be used as a method of determining the stage of skill learning 

where, according to the model, cognitive load and attention level decreases as the 

trainee advances in skill acquisition [135]. 

 

5.5 Summary  

The objective of this study was to determine suitable means of gauging mental 

activity pertinent to the mastery of simple tasks. This study presents our method of 

integrating EEG in serious games for mental patient’s rehabilitation. We have shown 

in our results and discussion that LZC trends measured using EEG in the central, 

occipital and parietal regions as well as spectral analysis of those channels, in 

particular within the theta and low alpha band, have potential to be used as markers 

for identifying the mental performance of a subject performing a simple training task. 
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LZC and spectral analysis of EEG data is capable of revealing deeper mental 

processes that correlate with overall motor performance. These means of classifying 

cognitive activity enable alternative and more reliable ways of looking at a person’s 

task mastery and hand eye coordination ability.  

We have shown that using LZC and spectral analysis in combination can help to 

reduce the redundant processing of data in the EEG data that we recorded. In 

retrospect, by looking at the clustered plots of individual channels in Figure 5.14 and 

Figure 5.15, it is hard to visually identify the same trends found in LZC analysis. This 

shows that LZC and spectral analysis could be used simultaneously in order to get 

alternative perspectives on the same EEG data.  

Using results from this study enables us to isolate the pertinent EEG markers 

needed to develop an effective solution through a Serious Game environment that 

uses both physical kinematics and mental states for the rehabilitation of mental 

patients. Combining human performance engineering with cognitive science in a 

computer gaming environment is our ongoing research for mental patient’s 

rehabilitation.  
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6 Experiment - Tracing and pointing task with 

robotic guidance 

Chapter 6 presents our investigation on the effect of robotic haptic guidance on 

motor skill mastery of two HEC tasks through a robotic manipulator. The motivation 

for this experiment is to investigate the efficacy of haptic cues for training of HEC 

tasks as well as to contrast relative changes in neural activity due to the haptic 

guidance. 

 

6.1 Background 

The traditional dogma of teaching dexterous surgical skill has been the “see one, 

do one, teach one” system of master-apprentice tutelage as pioneered by William 

Halsted at Johns Hopkins University over a century ago [136]. After observing the 

master surgeon perform a surgical procedure several times, the trainee surgeon will 

attempt the procedure by mimicking the master surgeon’s actions while the master 

surgeon physically steers the trainee with hand-over-hand guidance. Although this 

method is manpower intensive and limited in opportunity, arguably it provides the 

best form of guidance to the trainee. With the rapid advancement of surgical 

techniques together with technological breakthroughs such as laparoscopy as well as 

ethical and legal perspectives on teaching with real patients and the implementation 

of work-hour restrictions, the traditional approach has become insufficient to the 

needs of modern surgical training. This is especially true for laparoscopic training as 

it has been found that laparoscopic surgery requires significantly different skill sets as 

compared to open surgery [137] thus specificity in laparoscopic training is required. 

The skewed eye-hand-instrument axis, fulcrum effect of operating through a fixed 

trocar port and 2D endoscopic representation of the 3D intra-abdominal workspace 
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are some of the factors that contribute to a steep learning curve for laparoscopic 

training [85], [138].  

A solution to the problem of the steep learning curve in laparoscopic training is 

the introduction of laparoscopic simulators that enable self-directed learning outside 

of the operating theatre. Laparoscopic simulators range from traditional box trainers 

[139] to virtual reality simulators [140] with a multitude of surgical fidelity and 

feedback mechanisms such as haptics and quantitative assessment of performance 

through indicators such as kinematic analysis, time taken, force and torque analysis 

[141]. However, current laparoscopic simulators have their limitations. It has been 

postulated the cheaper and simpler box trainers are just as effective as the expensive 

virtual reality simulators in training basic laparoscopic skill [142] which limits the 

advantages of the virtual reality trainers to other factors such as fidelity in simulating 

complex surgical scenarios. However, the range of operative scenarios included with 

the simulators is also limited and generic. Certain manoeuvres and skills such as 

tactile soft tissue manipulation cannot be easily taught through observation or virtual 

reality simulators. Furthermore, standard quantitative assessment of performance in 

current virtual reality simulators may be able to generalize the competency of the 

subject but it might not necessarily relate to the qualitative evaluation of laparoscopic 

skill which requires the expert judgement of experienced surgeons and is still an 

actively researched and discussed topic [139], [143].  

Current laparoscopic simulators can only more or less function as a safe visual 

and haptic sandbox environment where trainees are free to make mistakes. However, 

without the traditional critical analysis and hand-over-hand guidance from a master 

surgeon, they forgo the physical experience of being taught the proper method of 

performing a procedure. Therefore, in order to reintroduce the missing traditional 

hand-over-hand guidance, the notion of haptic guidance through a robotic training 

system for laparoscopy was proposed [104].  
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A robotic laparoscopy training system that has the same range of motion and 

degrees of freedom (DOF) as conventional laparoscopic instruments was used in this 

experiment. This system enables the recording of a master surgeon performing a 

surgical procedure as a reference for the training of other subjects. Haptic guidance 

can then be given to the trainee based on the recorded motions of the master surgeon 

through the actuators on each axis.  

The haptic guidance can be tuned to a spectrum of trajectory tolerances with 

respect to the reference recording ranging from fully controlling the replaying motion 

or an intermediately assistive type of guidance in which the amount of force the robot 

uses to correct the trainee’s motion is proportional to the deviation from the reference 

trajectory or a “virtual guide rail” that allows free motion within a certain 

displacement radius from the reference trajectory. It is hypothesized that the degree of 

haptic guidance should be in tandem with the amount of experience and confidence of 

the trainee with the task. The novice trainees should initially experience a fully 

controlled robotic motion and gradually the amount of haptic guidance can be 

reduced to allow for greater autonomy once the trainee familiarizes with the 

elementary stage of the task as described in the Fitts and Posner model for technical 

skill acquisition [134].  

In the Fitts and Posner model, the first cognitive stage is associated with 

interpreting the nature of the task and trying out different strategies to perform the 

task which result in highly variable performance and high cognitive load such as 

attention. The second stage is the associative stage where the person has settled on a 

strategy and the focus is on refinement of the strategy, biomechanical efficiency and 

task performance. The third stage is the autonomous stage where the person has 

achieved muscle memory and automation of the skill, enabling minimal cognitive 

load for the task and allowing for the attention to be spent on other aspects such as 

higher order strategic planning. 



93 

 

With haptic guidance, the optimal strategy as defined by the master surgeon’s 

reference trajectory is introduced early to the trainee which we hypothesize that it will 

directly help to shorten the first two stages where the trainee would be attempting 

various self-formulated strategies which may not be anywhere near optimal at all.  

The initial fully controlled haptic guidance phase complements the notion of 

observational practice as described by Wulf et al [144] where they highlight that 

observation and practice can uniquely benefit the learning process. Shea et al [145] 

also postulates that an observer may develop a unique perspective on the task that is 

hard to achieve while physically engaged in practicing the task. Therefore, the fully 

controlled haptic guidance phase enables a way of “haptic observation” whereby the 

trainee can simultaneously experience the reference motion as an observer and a 

physical hands-on participant. Once the trainee has advanced past the elementary 

stage, the haptic guidance will be relaxed in order to motivate the trainee to have 

more self-guided learning [146] and vested interest in their motion.   

In this study, haptic robotic guidance for training of laparoscopic HEC tasks was 

performed. The hypothesis is that fully controlled haptic guidance will improve 

training efficacy as compared to unaided practice on two basic laparoscopic HEC 

training tasks. Fundamentally, the experiment was performed to investigate whether 

the “haptic observation” of a reference trajectory will improve the early cognitive and 

associative stages of skill learning. In addition, the EEG readings of the subjects were 

recorded in order to compare for any difference in neural activation from being taught 

by a robot and correlate with the motor performance of the subject.  
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6.2 Materials and Methods 

6.2.1 Experimental Setup 

The equipment used in this study includes the robotic laparoscopy trainer, a PC 

that manages the system of actuators and encoders in the robot, a HD webcam 

(Microsoft LifeCam HD-5000) that represents the endoscopic view of the 

intracorporeal workspace and an EEG recording system that comprises of a 40 

channel EEG electrode cap, PC to record the EEG data and an EEG amplifier 

(Neuroscan, NuAmps Express). The robotic laparoscopy trainer includes a pair of 

spherical joint laparoscopic manipulators which can be recorded and replayed 

through a network of encoder and actuator pairs at each degree of freedom: namely, 

the roll, pitch and yaw rotation axes, the translational motion associated with 

withdrawing and inserting the instrument through the trocar and the activation of the 

tip of the instrument such as a grasper or a pair of scissors. 

6.2.2 Laparoscopic tasks 

We tested the laparoscopic proficiency of the subjects with two basic 

laparoscopic tasks adapted from conventional commercial laparoscopic training 

systems. The first task is a circle pattern tracing game in which the subjects are 

instructed to follow the black and red lines demarcating a 9 cm diameter circular 

pattern for two revolutions with a total path length of 131 cm per trial (see Figure 

6.1). Subjects were not allowed to rest the manipulator on the task plane as it would 

create additional frictional forces. The subjects were assessed by their time taken and 

the consistency of motion by their cumulative path deviation of the tip of the 

instrument to the circle. The circular tracing pattern is the adaptation of the circular 

pattern cutting task available in the Fundamentals of Laparoscopic Surgery (FLS) and 

ProMIS laparoscopic training systems. Although the task seems simplistic, it requires 

constant manipulation of most DOFs in order to generate the circular pattern which 

enables a more thorough gauge of laparoscopic proficiency. 
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Figure 6.1: Endoscopic view of the circular tracing task. 

 

The second task is a pointing game that is adapted from peg transfer / pick & 

place tasks. The task is to use the tip of the manipulator to touch the purple markers, 

in a clockwise manner starting from the top right corner, which are spread out 

amongst a network of interweaving wires that act as 3D obstacles simulating major 

vasculature that has to be avoided to prevent haemorrhages (see Figure 6.2). Due to 

the labyrinth of wires, the subjects have to continually withdraw and insert the 

manipulator at correct orientations in order to reach the purple markers. Subjects will 

be assessed by their time taken and the accuracy of the manipulator’s trajectory. 
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Figure 6.2: Endoscopic view of the pointing task. 

 

6.2.3 Experimental Protocol 

In this study, twelve volunteers (10 male, 2 female. Age ranged from 21 to 32 

years with a mean of 27 years) from non-medical backgrounds with no prior training 

with laparoscopy volunteered for this experiment. Participants provided informed 

consent. 

The twelve volunteers were divided into two groups of six. One group was 

assigned as the control whereby they practiced on the robotic platform with the same 

two tasks but with no actuators enabled thus no haptic guidance was given to them. 

The other group was trained on the same robotic platform but with the actuators 

enabled.  

In this study, the mode of haptic guidance was set to fully control the manipulator 

to move according to a pre-recorded reference trajectory. For the group that was 

trained with haptic guidance, the reference trajectory used in this study were recorded 

by iterative manual manipulation of the end effector tip of the robotic instrument  to 

ensure the most direct control over the manipulator trajectory, akin to performing the 
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tasks like an open surgery procedure whereas the subjects have to perform the tasks 

laparoscopically.  

All subjects performed the experiment with only their dominant hand. For each 

task, the subjects record a starting baseline performance of the task with no robotic 

feedback. After which, each group continued with their allocated mode of practice for 

5 rounds and a final assessment of their task performance was taken. The order of 

tasks carried out was alternated with each consecutive subject in order to reduce the 

effect of familiarity on the results collected.  

 

6.3 Results  

Subject task performance of the control group and haptic guided group have been 

tabulated in Table 6.1 and Table 6.2 respectively. All statistical comparisons were 

analyzed using an analysis of variance (ANOVA) with statistical significance set at 

0.05.  

 

Table 6.1: Subject performance in the circle tracing task 

 Haptic guided group Control group 

 Initial 
timing 

Final 
timing 

Initial 
timing 

Final 
timing 

Mean timings  (s) 66.5 61.2 66.1 52 

Average percentile improvement (p 
value) 

8.00%  
(p=0.65) 

21.40% (p=0.40) 

Average percentile reduction in 
cumulative path deviation (p value) 

8.50% (p=0.11) 29.70% (p=0.89) 

*Corresponding P values are indicated in parenthesis 
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Figure 6.3: Example of the circle tracing trajectory by (a) Subject 8 and (b) Subject 

11. 

Each grid marking represent 3 cm distance on the actual workspace. The blue line 

indicates the initial baseline assessment and the red line indicates the final 

assessment. 

 

(a) 

(b) 
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Figure 6.4: Example of the conical workspace of the pointing task trajectory 

recorded by Subject 1. 

The blue line indicates the initial baseline assessment and the red line indicates 

the final assessment. 

 

Table 6.2: Percentile improvement in performance of the control group 

Subject yaw pitch translation 

1 -7.17 1.92 -0.08 

2 15.37 -9.86 17.17 

3 -14.59 6.10 -12.27 

4 -8.70 -11.60 -5.24 

5 -15.12 6.65 -3.84 

6 4.98 -13.33 1.89 

Mean -4.20 (0.80) -3.35 (0.75) -0.39 (0.96) 

*Corresponding P values are indicated in parenthesis 

 

Table 6.3: Percentile improvement in performance of the haptic guidance group 

Subject yaw pitch translation 

7 27.00 -1.75 -1.49 

8 -17.02 35.88 1.14 

9 28.65 17.03 13.24 

10 10.59 0.37 10.30 

11 20.15 13.11 -24.16 

12 19.68 10.61 12.32 

Mean 14.84 (0.04) 12.54 (0.22) 1.89 (0.79) 

*Corresponding P values are indicated in parenthesis 

 



100 

 

6.4 Discussion 

6.4.1 Circular Tracing task Discussion  

The trajectory data of two subjects in the group with haptic guidance (Subject 8 

and Subject 10) had to be discarded from analysis as outliers due to ambiguity in 

interpreting their trajectories as they performed the tracing far elevated above the real 

task plane (see Figure 6.3 (a)). This skewed their performance as the size and 

orientation of their traces were no longer similar to the task objectives or the data of 

the other subjects who managed to remain close to the task plane as instructed.   

On average, the control group reduced their time taken for this task by 21.4% 

(p=0.40) from 66.1s initially to 52.0s at the final assessment but their cumulative path 

deviation increased by 3.94% (p=0.89) to 6.7 cm. Whereas, in the group with haptic 

guidance, their average time taken reduced by 8.0% (p=0.65) from 66.5s to 61.2s and 

their cumulative path deviation also reduced by 8.5% (p=0.11) to 3.2 cm.  The 

reference trajectory for the circle task was approximately 50s long. 

The results from the cumulative error of motion showed that the control group 

did not manage to improve their trajectory error whereas the haptic guidance group 

achieved an almost significant (p=0.11) 8.5% reduction in trajectory error. Our 

assumption is that the reduction in timing relates to the confidence of the subject in 

performing the task.  

The control group reduced their timings by a larger percentage than the haptic 

guided group, suggesting that autonomous hands-on learning helps the subject get 

more comfortable with manipulating the instrument faster but the confidence and 

speed did not correlate with better motor performance. This corresponds to the 

cognitive stage of the Fitts and Posner model where confidence influences the 

propensity to try more radical strategies which leads to volatility in performance but 

also an opportunity to acquire a significantly better strategy. Whereas, the haptic 
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guidance group showed more restraint than the control group but were able to learn 

off the reference trajectory to improve both timing and trajectory error.  

 

 

Figure 6.5: Circle task – Control Group (best vs. worst performer). 

 

 

Figure 6.6: Circle task – Haptic Guided Group (best vs. worst performer). 

 

 

Figure 6.7: Trial Averaged LZC values for Control Group - Circle task. 
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Figure 6.8: Trial Averaged LZC values for Haptic Guided Group - Circle task 

 

In Figure 6.5 and Figure 6.6, the Lempel-Ziv complexity scores of the best and 

worst performing individuals from the passive training group and active training 

group are plotted. The difference in LZC scores between individuals was not as 

pronounced as the LZC results tabulated in Chapter 5. This is accommodated by the 

fact that the experimental protocol is slightly different between the folding task in 

Chapter 5 and the experiment in Chapter 6. The subjects practiced the task to mastery 

in Chapter 5 whereas in Chapter 6, the number of trials is standardized so not all 

subjects might have mastered the tasks by the last trial. Although, the trend for the 

highest change in LZC values occurring in the occipital, parietal and central lobes 

remains consistent. 

When the trial averaged LZC values are plot (see Figure 6.7 and Figure 6.8) 

between the control group and haptic guided group, it is clear in the control group 

that the LZC values did not vary much across the trials. One possible explanation was 

that this circle tracing task with the laparoscopic tool was too difficult to master 

within the limited number of trials set so the subjects were still in the early stages of 

skill acquisition. In the haptic guided group, there is greater variance in LZC values 
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especially in the parietal, occipital and temporal regions. This complements the 

findings in Chapter 4, corresponding to evidence of skill learning having taken place 

in this group.  

6.4.2 Pointing task 

Due to the orthogonal arrangement of the encoders, trajectory data from the 

robotic trainer can be independently analysed in each degree of freedom such as the 

orientation (pitch and yaw) and translation axes of motion (see Figure 6.4 for path 

illustration). The percentile improvements in cumulative joint angle motion of 

orientational and translational axes of motion are listed in Table 6.1 -Table 6.2. A 

smaller cumulative joint angle motion represents a narrower and more efficient 

trajectory and a shorter translational motion represents better control of the reach of 

the instrument indicating the depth perception ability of the subject. The roll axis of 

motion, which is represented by the twisting orientation of the tool tip, is ignored 

from the analysis as there is no need for tool tip orientation for these two tasks and 

the motion in this axis throughout the study was also small and insignificant.  

The control group improved their timing by 27.9% (p=0.30) with the mean time 

taken reduced from 97.3s to 52.5s. The haptic guidance group similarly improved 

their timing by 25% (p=0.08) with their mean timings reduced from 78.1s to 56.7s. 

The reference trajectory used was approximately 40s long.  

The mean percentile reduction in timing was almost equal in both groups but the 

haptic guidance group showed prominent improvement in their orientational yaw 

(14.84%, P=0.04) and pitch (12.54%, P=0.22) joint displacements whereas the 

control group had a largely unchanged trajectory performance denoted by the small 

insignificant percentile change in yaw, pitch and translations joint displacements. As 

the pointing task is fundamentally a test of accuracy of orientation and reach and 

manipulator path strategy, the contrasting difference in improvement of orientational 
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joint displacements between the two groups signifies that there is some evidence to 

the hypothesis of haptic guidance being used to teach a reference trajectory as an 

optimal strategy in order to shorten the cognitive and associative stages of skill 

learning. 

  
Figure 6.9: Pointing task – Control Group (best vs. worst performer). 

 

 
Figure 6.10: Pointing task – Haptic Guided Group (best vs. worst performer) 

 

 
Figure 6.11: Trial Averaged LZC values for Passive Training Group - Pointing task 
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Figure 6.12: Trial Averaged LZC values for Haptic Guided Group - Pointing task 

 

The LZC scores of the best and worst performing individuals for the pointing task 

are plotted in Figures 6.9 and 6.10. The results are similar to the circular tracing task 

whereby there are no discernible trends in the LZC scores and the variance in LZC 

scores across trials are not as pronounced as in the subjects in Chapter 4. When the 

LZC scores are averaged across subjects within the two groups (see Figure 6.11 - 

Figure 6.12), it can be seen that the LZC values did not vary much across trials in the 

Control Group whereas the LZC values in the Haptic Guided Group visibly varied in 

the parietal, temporal and frontal regions. This trend is similar to that in the circular 

tracing task (see Figure 6.7 and Figure 6.8). 
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There is significantly decreased complexity in temporal, parietal and central 

regions in the Haptic Guided Group vs. the Control Group, corresponding to primary 

motor cortex (motion) and somatosensory cortex (sensory integration) (see Figure 

6.13). By tabulating the variance of Lempel-Ziv complexity values between the 

passive training group and the active training group (see Figure 6.14), it is evident 

that the Haptic Guided Group experience higher variance in complexity values at the 

frontal-temporal-parietal regions as compared to the passive group which did not 

experience much change in complexity.  

Figure 6.13: Grand Averaged Lempel-Ziv complexity values between the Control 

Group and Haptic Guided Group. 

 

 
Figure 6.14: Variance in Lempel-Ziv Complexity values 
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6.5 Summary 

Haptic guidance has been used primarily as means of rehabilitation [147] and 

even as assistive virtual fixtures during robotic surgery [148]. However, its 

application for laparoscopic training, to our knowledge, is novel. As shown by the 

favourable results for both tasks in the haptic guidance group over the control group, 

the initial assessment of the concept of robotic assistance in laparoscopic motor skill 

learning is promising.  

In this preliminary study, we have arbitrarily enrolled 12 volunteers within a 

three week recruitment window. Therefore, the sample size might be too small to 

conclude statistically significant results. Data from this preliminary study will be used 

for power analysis calculation of the minimum sample size of future studies. Another 

factor that affects this study is the motivation towards the training. Motivational 

factors have been found to affect training efficacy [144], [149]. In this study, we have 

enrolled non-medical students hence they might not have the same attitude and 

interest in laparoscopic training as surgical trainees.  

The two tasks used were adapted from conventional laparoscopic partial task 

trainers which have been used as platforms for practicing technical skill for open 

surgery before the era of laparoscopy. The common presumption is that actual 

surgical procedures can be broken down into partial tasks and that mastery of the 

partial tasks has transferability to the clinical setting [150]. However, it is still unclear 

whether haptic guidance of laparoscopic training can be applicable to full complex 

surgical procedures and eventually unto clinical proficiency. As future work, we 

intend to explore this notion further with simulations of realistic surgical scenarios 

along with the reference trajectories recorded from experienced senior surgeons.  

In addition, EEG based neural sensing has been used to classify and monitor the 

cognitive load of the trainee which can be used as a method of indirectly determining 
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the stage of skill learning where, according to the Fitts and Posner model, cognitive 

load and attention level decreases as the trainee advances in skill acquisition [135].  

In the control group, it has been shown that the LZC values did not vary much as 

compared to the Haptic Guided Group. This suggests that the difference in motor 

performance mirrors the LZC trends, highlighting the difference in skill acquisition 

between the two groups. One limitation of this study was the limited number of trials. 

The number was fixed according to the average number of trials needed for the 

mastery of the box folding task. However, as shown by the LZC trends in the Control 

Group, the limited number of trials seemed to not be enough to induce significant 

change in neural complexity in the passively trained group whereas the Haptic 

Guidance Group showed significant changes in neural complexity and significant 

improvement in motor performance within the same number of trials.  

As future work, the degree of haptic guidance can be dynamically adjusted 

according to the cognitive state of the trainee. Adaptive haptic guidance enables the 

robot to gently rein in control of the motion during a particularly difficult phase of the 

procedure, enabling the trainee to pay less attention to his own motion and 

concentrate on understanding the haptic guidance’s reference motion as a “haptic 

observer”.  Such adaptive haptic guidance would be useful for complex surgical 

procedures with varied intermittent difficulties.   
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7 Experiment - Sequential Pointing task 

In this chapter, a platform was developed that encompasses a sequential planar 

pointing task that was implemented on a touchscreen. The objective was to develop 

an integrated platform between the simulation game and EEG recording system to 

enable epoched inter-task neural analysis at a much shorter time scale. 

 

7.1 Background 

Sequential pointing is a classic task for HEC research [151]. Studies have been 

performed to look at how the continual goal driven rapid eye saccade/fixation have a 

neural coupling with rapid hand movements [152]. The performance can be affected 

by factors such as length of target distance and performance feedback [153].  Bock et 

al showed that arm motion is controlled in the motor cortex and parietal cortex by 

independent direction and movement amplitude than position for sequential planar 

motions [154] which mirrors Harris and Wolpert’s postulation of signal dependent 

neural noise being proportional to signal amplitude [39]. The effects of gaze 

restriction on the accuracy of HEC has also been investigated [155] to reveal that the 

feedforward model based on foveal motion efference enabling an eye-hand lead time 

of about 200ms is critical in the accuracy of hand-eye coordinated motion.  

In this study, the overall objective was to incorporate the classic sequential 

pointing task used for HEC studies with the principles of epoched event-related 

potential (ERP) analysis of EEG [156] such that a platform for measuring intra-trial 

performance can be developed. In particular, the hypothesis is that the spatial-

temporal changes between epoched windows of neural activity can potentially be 

used to differentiate successful pointing events against failed events. In addition, the 

latencies of epoched EEG can also potentially be used to reflect changes in saccade 

and reach reaction times that has been postulated to correlate with movement speed 
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and accuracy [157]. In addition, task mastery of the sequential pointing game should 

derive similar trends in LZC values as discovered in Chapters 5 and 6.  

In an additional exploratory aim, the effect of colour on the simulation game was 

investigated. The colour of the background, target crosshair and balloons were 

modified to red, green or blue (see Figure 7.7). Previously, in the visual cue 

experiment performed in Chapter 4, Colour was shown to be an important indirect 

visual cue for HEC. The colour red, in particular, has been shown to affect physical 

performance [158]. The exploratory hypothesis was that by changing the colour 

scheme of the simulation game, subject performance could be influenced.  

Another exploratory aspect of the simulation game in Chapter 7 is the 

implementation of a dyadic avatar using Matlab Simulink. The objective of this 

implementation was to automatically generate a dyadic avatar that simulated and 

mirrored a user in an allocentric frame of view, providing the user with a companion 

for dyadic training. This form of training has been proven to improve training 

effectiveness [159], [160] by increasing the simulation’s interactiveness and 

providing a motivational companion for the subject.  
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Figure 7.1 Simulated dyadic avatar designed to mirror and accompany the 

subjects performing the sequential pointing task. 

 

7.2 Materials and Methods 

7.2.1 Experimental setup 

The experimental setup (see Figure 7.2 and Figure 7.3) consists of several CMOS 

webcams (Microsoft LifeCam HD-5000) arranged to the side and top of the subject to 

record the subject’s arm motion. Several joint markers were placed on the subject’s 

shoulder, elbow and wrist as visual tracking markers. A 40 channel NuAmps EEG 

amplifier (Neuroscan, Scan NuAmps Express) and EEG electrode cap was used to 

record the neural activity of the subjects. A touchscreen monitor (Acer, T230H) was 

used as a planar target workspace for the subject to directly interact with the 

sequential pointing simulation game created.  
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Figure 7.2: Schematic layout of the experimental setup. 

A PC was used to run both the simulation game as well as the EEG recording 

with automated event timestamp markers for latency reduction which is essential 

for epoched analysis of EEG events. 

 

7.2.2 Experimental task 

In Chapters 5 and 6, the experimental tasks chosen were too long and 

unsegmentable which made them unsuitable for epochal analysis methods like ERP 

and PLV. In this study, the sequential pointing task was designed specifically for 

sequential epoch generation. In order to execute the sequential pointing task with the 

touchscreen monitor interface, a simple “whack-a-mole” simulation game (see Figure 

7.4 ) was written in Visual Basic.  In order to appeal to the subjects, the simulation 

game disguised the sequential pointing task to resemble the balloon popping game 

commonly seen in carnivals (see Figure 7.5).  
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Figure 7.3: Layout of the experimental setup. 

The subject is tasked to manipulate visual targets on the touchscreen while 

cameras record his motion. An EEG cap is also worn to record the neural activity 

of the subject. 

 

The logical workflow for the simulation game is presented in Figure 7.6. When 

initiated, the game presents the subject with a crosshair on a randomly chosen balloon 

and a 1 second window for the subject to successfully tap the balloon with crosshair 

is initiated. As the simulation game was implemented on a touchscreen, the subject 

only needs to directly tap the target on the screen to register their input. The planar (x, 

y) pixel locations of the subject’s taps are automatically recorded together with the 

classification of whether the tap was a successful or failed attempt on the EEG signal 

data (see Figure 7.8). If the subject taps on the wrong balloon or no attempt was made 

before the time window lapses, the event was logged as either failed or no attempt 

Overhead camera 

EEG Cap 

Touchscreen panel 

Side cameras 

Visual Joint markers 
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respectively. At the start of the next time window, a new target crosshair then appears 

on the next randomly chosen balloon until 25 targets have been presented to the 

subject.  

 

Figure 7.4: Screenshot of the simulation game. 

The target crosshair (shown in black) is displayed over a balloon icon as a visual 

cue to the subject. If the correct balloon is successfully pressed within the allowed 

time window of 1 second, the balloon popping icon will be shown and the score will 

be reflected. 

 

 

Figure 7.5: The balloon popping carnival dart game.5 

                                                      

5Photo credit: D.H. Parks. https://www.flickr.com/photos/parksdh/6141149497/  

https://www.flickr.com/photos/parksdh/6141149497/
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Figure 7.6: Schematic for the logical workflow of the simulation game. 

 

 

Figure 7.7: The sequential pointing simulation game with a modified red colour 

scheme. 
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Figure 7.8: Automated task event labelling and classification on the EEG data stream. 

 

7.2.3 Experimental Protocol 

In total, 18 healthy volunteer subjects between the ages of 20 to 28 were recruited 

for this study (11 male and 7 female). All but two of the subjects had right master 

hands so all subjects were standardized to use only their right hands for this study. To 

aid post-experiment video review of the experimental procedure, visual tracking 

markers were placed on the subjects’ right shoulder, elbow and wrist.   

Ten trials were conducted per subject. Each sequential pointing trial consists of 

25 targets, totalling 250 targets per subject. The 10 trials were sequentially conducted 

within a single session but the subjects were allowed to rest whenever desired.  

Before and after the 10 sequential pointing trials, single observational trials were 

performed where the subjects would observe the trial but not move to tap on the 

crosshair, the subject was instructed to click on a mouse to acknowledge the 

identification of the crosshair. The rationale for the observational trials was to record 

EEG epochs with less motor noise before and after the 10 trials and use these epochs 
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as noise cancellation. However, the EEG epochs from the observational trials were 

eventually not used as it was found that the subjects performed the clicks much faster 

(<~200ms) than the typical finger tapping action in the 10 trials so this means of 

noise cancellation could not be implemented.  

An additional set of exploratory trials was performed on the same sequential 

pointing task but with modified colour schemes of red, green and blue. Subjects were 

tasked to perform a practice observational trial and an actual trial for each colour 

scheme twice so a total of 12 trials of modified colour schemes were conducted per 

subject.  

Similar to the EEG pre-processing steps done for studies in Chapters 4, 5 and 6, 

raw EEG data recorded from the Nuamps EEG system was imported into Matlab and 

the extraneous recordings at the before and after the actual trials were trimmed. Next, 

the data was band-pass filtered with a linear finite impulse response (FIR) filter 

between 1Hz to 50Hz. Subsequently, the data was passed through an ICA 

decomposition (see Section 2.5 for details) and noise-related components were 

manually removed from the EEG signal. Afterwards, the filtered data was manually 

scanned and sections of the data were removed if there were regions containing 

significant noise artifacts.  

 

7.3 Results 

The spectral maps and ICA component maps of all the subjects have been plot 

(see Appendix A for sample of spectral maps and ICA component maps). A typical 

example of the spectral map and ICA component map of a subject is shown in Figure 

7.9– Figure 7.11. 
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Figure 7.9: Spectral map for Subject 7 during the first sequential pointing trial. 

 

 

Figure 7.10: Spectral map for Subject 7 during the last sequential pointing trial. 
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Figure 7.11: ICA component map for Subject 8 during the first sequential 

pointing task. 

 

By inspecting the spectral maps of the subjects, it is observed that there is a trend 

of alpha band (8-13Hz) oscillatory activity (see Figure 7.9 and Figure 7.10) being 

attenuated at the frontal region. Attenuation of frontal alpha power has been shown to 

relate to decreased cognitive workload  [161] and increased task mastery, mirroring 

the Spectral Analysis findings in Chapter 5.4.2 for the box folding task. Slow wave 

Delta (1-3Hz) and theta (4-7Hz) activity are frontally predominant and remain 

frontally predominant over the 10 trials. Whereas the beta (14-25) and gamma (25-

45Hz) band activity are predominantly occipital and persist over the occipital regions 

throughout the trials.  

ICA component maps (see Figure 7.11) are sorted in decreasing order of 

significance. As the sequential pointing task is predominantly a visuomotor task, 

typical ICA component maps generated show the largest contributions from eye 

motion (component 1 and 2 in Figure 7.11), and visual cognition (component 3, 4 and 

5 in Figure 7.11).  
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Figure 7.12: Averaged Lempel-Ziv Complexity values amongst subjects across 

all sequential pointing trials. 

 

The averaged Lempel-Ziv Complexity values of all subjects across all sequential 

pointing trials is shown in Figure 7.12. The range of LZC values in this experiment 

are similar to those calculated for the previous experiments in Chapters 4, 5 and 6. It 

is observed that there are consistent spikes in complexity at the three occipital nodes 

(O1, O2 and OZ) in all subjects. This trend is to be expected since the sequential 

pointing task is a rapid-fire sequence of visual cues, the occipital region, which is 

responsible for visual processing, continually remains very active throughout the 

whole trial.  

As a sample, the individual LZC plots of the first and last trials for two subjects 

are tabulated in the Appendix A. An example of the LZC plot is shown in Figure 

7.13. It is observed that the largest changes in complexity occur in the frontal, parietal 

and occipital regions for most subjects. However, not all subjects exhibit the same 

trend (see Figure 7.14).  

In most subjects, the difference in complexity values is not plainly different. LZC 

values averaged across all subjects (see Figure 7.15) show that there is very little 
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difference (<10%) between the first and last trial at most electrode channels. In order 

to further extrapolate the difference in LZC values between the first and last trial, the 

variance of the averaged values was calculated (see Figure 7.16).  

 

Figure 7.13: Lempel-Ziv Complexity values for Subject 1.  

The complexity values for the first sequential pointing trial are plot in blue. The 

complexity values for the last sequential pointing trial are plot in red. 

 

 

Figure 7.14: Lempel-Ziv Complexity values for Subject 2.  

The complexity values for the first sequential pointing trial are plot in blue. The 

complexity values for the last sequential pointing trial are plot in red. 
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Figure 7.15: Averaged Lempel-Ziv Complexity values across all subjects. 

 

 

Figure 7.16: Variance of the averaged Lempel-Ziv Complexity values across all 

subjects. 

 

Event-Related Potentials (ERP) have been generated for most subjects by 

creating a time-locked 1 second window beginning at the start of each visual cue 

generated by the simulation game (see Appendix A for two sample plots). Due to the 

time and noise sensitive nature of ERP analysis, approximately half of all trials 
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recorded were discarded due to factors such as high noise level and mismatches 

between simulation and user generated event timestamps.  

By grouping and averaging the 1 second windows at the onset of every visual 

cue, the differences in a subject’s time-locked cognitive response to a visual cue at 

every EEG electrode (see Figure 7.17) can be observed. On a broader scope, the 

collation of the individual ERP channels can be view for topological trends (see 

Figure 7.18). Throughout all subjects, it is observed that the anterior channels (FP1, 

FP2, F7 and F8) tend to be slow wave (~1Hz) dominant. Whereas the posterior 

channels (O1 and O2) are composed of higher frequency waves (~10 to 30Hz).   

 

Figure 7.17: ERP plot of Subject 1 at channel FP2. 

The blue line indicates the averaged ERP signal of all successfully completed 

tasks. The red line indicates the averaged ERP signal of all failed tasks. The black 

line is the computed difference between the successful and unsuccessful tasks. 

 

ERP data for all subjects have been categorized under two different scenarios. 

The first scenario is the comparison between all successfully completed tasks and 

unsuccessfully completed tasks across all 10 trials per subject. The second scenario is 

the comparison between the successfully completed tasks in the first 5 trials and last 5 

trials of each subject (see Figure 7.19).  
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Figure 7.18: Collation of all ERP channels for Subject 1. 

The Blue lines indicate the average of all successful tasks and the red lines 

indicate the average of all unsuccessful tasks. The black lines are the calculated 

difference between the successful and unsuccessful tasks. 

 

The first scenario provides a grand averaged comparison of the difference in 

cognitive response between a successful task and unsuccessful task at each electrode 

channel. Although the trends were slightly different in every subject, it was observed 

that ERP signals were attenuated in the central channels like C3, C4, CZ, P3, P4, PZ, 

F3, F4 and FZ.  

Peripheral channels, such as the frontal polar (FP1 and FP2), frontal (F7 and F8), 

temporal (T7 and T8) and occipital (O1 and O2) channels, exhibit significantly 

different amplitudes and waveforms when comparing between a successfully 

completed task and unsuccessfully completed task. In some channels, the waveform 

polarity was completely reversed for large parts of the epoch time window (see 

Figure 7.17).  

This finding directly supports the main hypothesis of this experiment, showing 

that ERP-based analysis of the peripheral channels might be used to differentiate 

whether the subject has successfully performed a task. A simple way of leveraging 
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and implementing this novel information is to sample the peak amplitudes and 

corresponding latencies of ERP signals at the peripheral channels as inputs for 

classification.  

The second scenario is the comparison between the successfully completed tasks 

in the first 5 trials and last 5 trials of each subject (see Figure 7.19). This comparison 

was implemented to identify any difference in cognitive response to visual task cues 

due to the effect of task mastery. However, it was found that in most subjects, there 

was no consistently discernible difference to be observed. This could be due to the 

fact that the subjects might not have had sufficient training to exact a difference in 

their ERP since this experiment was conducted within a single 30 minute session. In 

some subjects, some of the peripheral channels showed increased amplitudes in the 

later trials. However, this is most likely due to increased noise from electrode 

displacement than neural activity.  

 

Figure 7.19: Collation of all ERP channels for Subject 1. 

The Blue lines indicate the average of the successfully completed tasks in the first 

5 trials and the red lines indicate the average of successfully completed tasks in 

the last 5 trials. The black lines are the calculated difference between the first 5 

trials and last 5 trials. 
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The subjects’ averaged game performances per trial are plot in Figure 7.20 to 

Figure 7.22. The first six trials recorded were from the exploratory modified colour 

scheme trials. Each of the three modified colour schemes (red, green and blue) was 

performed twice, totalling six trials. The following ten trials were then conducted 

with the standard colour scheme.   

It can be seen that the subjects exhibited a typical logarithmic learning curve 

whereby the first few trials had poor scores and high levels of null-attempts and 

wrongly-keyed tasks. As the subjects performed more trials, the average score rapidly 

improved and plateaued at 22 points out of a possible 25, which is an approximately 

90% success rate. This was achieved by the reduction in both null-attempts and 

wrongly-keyed tasks (see Figure 7.21 and Figure 7.22).  

 

 

Figure 7.20: Average score of all subjects per trial. 
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Figure 7.21: Average number of tasks with no user input for all subjects per trial. 

 

 

Figure 7.22: Average number of tasks with erroneous inputs for all subjects per 

trial. 

 

7.4 Discussion 

Similar to previous Chapters 4 and 5, the spectral plots of the subjects exhibited 

predominantly slow wave delta (1-3Hz) and theta (4-7Hz) activity in the anterior 

electrode channels, across all trials. This trend of slow wave dominance is also clearly 

evident in the 1 second ERP epochs of the anterior channels (see Figure 7.16 - Figure 

7.18). Fast waves in the beta (14-25) and gamma (25-45Hz) bands remain 

predominantly in the posterior channels. When comparing the first few trials against 

the last few trials of every subject, alpha band (8-13Hz) attenuation at the frontal 
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channels was observed for some subjects. This load-related attenuation reflects the 

reduction in task difficulty as subjects got familiar with the sequential pointing task.  

However, as compared to the other experiments, there is constantly high alpha 

band activity in the occipital region. It is postulated that the occipital region remains 

continually in high activity due to the rapid-fire randomized visual cue sequence of 

the sequential pointing task in this experiment. Comparatively, the visual cues 

provided for the experimental tasks in the other chapters were static and relatively 

constant so the subject’s reliance on the visual cues becomes diminished once the task 

is learned after a few trials and the alpha band activity in the occipital region becomes 

attenuated. 

The plot of averaged Lempel-Ziv Complexity values (see Figure 7.15) showed 

that the complexity of the signals was slightly increased after the 10 trials. The 

channels that exhibited the largest changes in complexity were the peripheral 

channels such as T7, P7, O1, O2, FP1 and FP2. 

It is postulated that the small changes in LZC values are due to the relatively 

short overall trial lengths as compared to the trials conducted for the other 

experiments in Chapters 4, 5 and 6. Each of the trials conducted in this experiment 

lasted approximately 50 seconds and the total amount of time each subject took to 

complete this experiment was approximately 25 minutes, inclusive of intermittent 

resting periods. The cumulative amount of subject experimentation time is 

approximately half of what subjects took to complete the other experiments in 

Chapters 4, 5 and 6.  

Taking into account that LZC algorithm utilizes the entire length of the EEG trial 

recording to generate the LZC value, it is a relatively tonic representation of the 

subject’s EEG signal. Since the trials in this experiment are much shorter than other 
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experiments, this may explain why the LZC values in this experiment are relatively 

insensitive to change.  

The Event-Related Potential is an important derivative of this study. Typical ERP 

studies in literature utilize the ERP components for analysis. ERP components are the 

approximate amplitudes of the ERP waveform at different latencies. For example, the 

P200 ERP component is the positive peak amplitude of the ERP waveform at 

approximately 200ms after the onset of the stimuli. Another widely researched ERP 

component is the P300 ERP component which is the peak positive amplitude of the 

ERP waveform at 300ms after the onset of an external stimulus. Other ERP 

components include the N100 and LPP (late positive potential) which represented the 

remaining waveform beyond the P300 peak. Miller et al reported that ERP 

components at central channels (CZ, PZ and FZ) were found to be correlated with 

cognitive workload [80], [81]. The larger the cognitive workload, the more attenuated 

the ERP components like P200 and P300 components became.  

In the perspective of our sequential pointing task experiment, it is expected that 

the ERP components become less attenuated with more trials, to reflect the gradual 

reduction in cognitive workload and improved task mastery. This trend was found to 

be present for most of the subjects in this experiment (see two sample Figures in 

Appendix) and it was found to occur in many peripheral channels (such as F7, F8, T7 

and T8) in addition to the central channels (CZ, PZ and FZ) reported by Miller et. al. 

[81]. 

 

7.5 Summary 

Consistent with the other experiments, Spectral Analysis and Lempel-Ziv 

Complexity analysis were performed on the EEG data. Spectral analysis showed that 

there was attenuation of the alpha band at the frontal channels with increased task 
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mastery. In contrast, alpha band activity at the occipital region remained high due to 

continual visual cue information. The LZC plots showed that most channels did not 

exhibit significant changes in complexity. This may be attributable to the short 

duration of the overall experiment and the short length of each trial.  

ERP analysis of the EEG data revealed novel information. Activity in the central 

channels was comparatively attenuated whereas the amplitude and waveform of ERP 

signals in the peripheral channels were found to vary between successful and 

unsuccessful tasks.  This finding supports the primary hypothesis of this experiment 

that is; properly contextualized ERP analysis of EEG could be used to investigate 

differences in subject intra-trial performance.  

The design and implementation of the simulation system was a challenging 

process. Due to the time sensitive nature of ERP analysis, various system operations 

had to be carried out in synchrony. User generated data and events had to be 

continually transmitted from the simulation game to the EEG recording software. 

However, even with meticulous planning, approximately half of all ERP epochs had 

to be discarded due to noise artifacts and data synchrony mismatches. It was noticed 

that in some of those trials that were discarded, the CPU utilization was intermittently 

high. This could be due to buffering or memory leaks from the video capturing 

software or EEG recording software.  

The parameters of the sequential pointing task were also carefully investigated 

prior to the experimentation with subjects. The game task parameters had to be well-

tuned to provide a proper level of difficulty such that novice subjects were able to 

demonstrate the distinct logarithmic learning curve and plateau in performance within 

the limited amount of trials planned. Visual cue parameters such as balloon shape and 

size, balloon grid size and density, crosshair shape, size and colour were all 

recursively investigated to fine-tune the game difficulty. The 1 second task window 
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was another important game parameter that was adjusted to match the ERP epoch 

generation and provided a uniform time window for comparison.   

Building on the weaknesses of the current platform, to reduce the amount of data 

lost to de-synchronization, the interface between the EEG software and simulation 

game could be further optimized by reducing the communication latency between the 

two systems in the future. Better marker-less motion capturing systems will be 

implemented to integrate motion analysis. Excessive motion of the head and torso can 

also be used as a cue for automated noise removal in the EEG data.  

The current simulation game parameters are static. This provides a consistent 

level of difficulty to all subjects, enabling comparisons across the whole cohort. 

However, in some subjects, their high level of HEC ability trivializes the game’s 

default difficulty, reducing the ability for the system to track any improvement in 

score and task mastery. One possible solution is to enable the game parameters to be 

dynamically derived from past performance and ERP components that correlate with 

cognitive workload. This will enable an adaptable game that will continually adjust 

its difficulty to be challenging to the subject.  
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8  Conclusions  

The overall objective of this thesis is to investigate the visual, motor and neural 

aspects of HEC through neural and motor performance analysis of subjects 

performing visual cue driven HEC tasks such as pointing and tracing.   

In Chapter 4, the effect of visual cues on HEC was investigated. By attenuating or 

augmenting the illumination, colour and depth cues to the subjects, the influence of 

visual cues on subject HEC performance was investigated and quantified. A novel 

way of augmenting depth cues through endoscopic dynamic shadowing was also 

developed. Key findings include: 

 The effect of depth cues was independent of the effect of colour on the 

performance of a subject.  

 Visual cues, when applied incorrectly, can have a negative compounding 

effect on subject performance. When dynamic shadowing was applied 

with 3D visualization, subject performance was degraded even though 

both techniques were depth cue augmentations.   

In Chapter 5, the neural activity of subjects performing a box folding task was 

investigated. The objective was to evaluate suitable neural analysis methods to gauge 

mental activity that is pertinent to the mastery of simple HEC tasks. Key findings 

include: 

 Spectral analysis showed that activity in the theta and low alpha band of 

the channels in the central, occipital and parietal regions corresponded 

well to task mastery.  

 LZC values within the central, occipital and parietal regions correspond 

with subjects’ task performance.  
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 LZC values tend to vary inversely to task mastery. The complexity of the 

signal increases with reduced cognitive load. It was postulated that this is 

due to a phenomena whereby different regions of the brain synchronize 

in a concentrated state of high attention during high cognitive workloads, 

leading to a more harmonic mental state and reducing the complexity of 

the signal. 

 Combined Spectral analysis and LZC analysis can be a tool to greatly 

reduce the dimensionality of the captured EEG data into more 

manageable and relevant information.  

In Chapter 6, a robotic haptic guidance platform was used to train subjects in 

HEC tasks. The objective was to compare the training efficacy of automated haptic 

guidance and investigate the effects of the haptic guidance on the neural activity of 

the subjects. Key findings include: 

 Subjects in the control group reduced their time taken to perform the 

tasks but the accuracy of the motion suffered. Whereas subjects in the 

haptic guidance group improved in both timing and motion accuracy.  

 By comparing the experimental tasks and protocol in Chapter 5 and 6, the 

magnitude of change in LZC values in subjects tend to correlate with 

overall experimental task duration and training duration. A more 

intensive training task and longer duration of exposure will elicit a larger 

change in LZC. The largest change in LZC occurs in the occipital, 

parietal and central regions. 

 There is a larger change in LZC values in the haptic guidance group as 

compared to the control group. The greatest difference in LZC values 

between the two groups are located at the EEG channels corresponding to 
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the Primary Motor Cortex (responsible for motion control) and 

Somatosensory Cortex (responsible for sensory integration).  

In Chapter 7, a platform that implemented a sequential planar pointing task 

simulation was developed. The objective was to create a system suitable for 

performing inter-task neural analysis through ERPs and investigate whether ERP 

analysis could be used for differentiating the neural activity between subject task 

performances. Key findings include: 

 In some subjects, spectral analysis showed attenuation at the alpha band 

in the frontal region during the initial trials, suggesting cognitive load 

related attenuation. 

 The alpha band activity in the occipital region remains high despite 

increased task mastery as the simulation demands continual visual cue 

processing.  

 LZC is insensitive to the change in task mastery due to the limited length 

of the trials. This suggests that LZC analysis fares better for comparing 

the tonic changes in neural activity.  

 ERP components at the peripheral channels are significantly different 

between successfully completed tasks and unsuccessfully completed 

tasks.  

 The attenuation of ERP components corresponded with larger cognitive 

workload at multiple peripheral channels and central channels. 

 Neural synchrony through PLV analysis did not generate any observable 

trends. This may be due to the limited number of trials and presence of 

noise artifacts. 

The results of this study contribute to the further understanding of HEC and their 

underlying aspects. The inclusion of EEG provides with a novel insight into the 
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neural mechanisms of HEC and learning, providing the foundations for the 

development of EEG-based supervisory guidance, as described in Chapter 3, for 

autonomous training platforms for HEC related skills. The comprehensive analysis 

and correlation of trends in neural activity with motor task performance and task 

mastery will enable a better understanding to a person’s HEC ability, allowing for 

more efficient training and better causal feedback, more akin to human supervision. 
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9 Future Work 

We are investigating the application of autonomous EEG-based supervisory 

guidance into rehabilitation of mental patients. It is not uncommon to have mental 

illnesses manifest as deficiencies in hand eye coordination. For example, in 

schizophrenic patients, they can feel physically dissociated between their sensory 

feedback and motor execution [71]. Therefore, they feel as if the body is not their 

own to control and this paranoia further affects their emotive capability to recover. 

From this observation, it is speculated that schizophrenia affects the forward model 

from providing a proper reafference signal that offsets the proprioceptive feedback 

sensation of self-motion. Thus the two asynchronous signals end up negatively 

manifesting on the patient. 

One possible way of applying the framework for schizophrenic patients is to 

rehabilitate patients with situations that mimic the causal relationship of the forward 

model. The subjects can be trained with a simple object manipulation computer 

simulation with varying degrees of latency from the input to the virtual environment 

so as to let the schizophrenic patient have an opportunity in a controlled environment 

to familiarize and cope with his condition. Another way would be the brain 

conditioning approach to help the patient cope with the paranoia of suffering from a 

schizophrenic episode.  

Another possible example for applying the hand eye coordination framework is 

the rehabilitation of mental depression. Although, physically, the motor function of 

patients with mental depression may not be inherently impaired, the cognitive state of 

the subject may affect proper implementation of HEC. During several occupational 

therapy (OT) cooking classes conducted for mental patients, it was observed that 

patients that suffered from depression lacked the confidence in performing tasks. This 

resulted in purposefully slow, tensed and doubtful actions that impaired their motor 

performance and memory. Rather than focusing on the performance of the patient, 
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OT staffs take a gentler approach of positive reinforcement that in one way help to 

calm the patients’ state of mind and also guide the patient to complete the task 

successfully. From this observation, motor performance may not necessarily be the 

highest priority in rehabilitation and neurofeedback on the cognitive state of the 

subject will help in determining an efficient positive reinforcement protocol to 

provide feedback cues to the subject. 
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APPENDIX: EEG Analysis results from the 

sequential pointing experiment 

 

Spectral Analysis  

In the following Figure A1 - Figure A2, the channel spectra topographical maps 

and ICA component scalp maps of two subjects at the first and last trial are shown. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A1: Subject 1 Trial 1 and 10 (a) Channel spectral scalp map (b) 

Component scalp map 

Subject 1 Trial 1 (a) Channel spectral scalp map (b) Component scalp map 

Subject 1 Trial 10 (a) Channel spectral scalp map (b) Component scalp map 
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Figure A2: Subject 2 Trial 1 and 10 (a) Channel spectral scalp map (b) 

Component scalp map 

  

Subject 2 Trial 1 (a) Channel spectral scalp map (b) Component scalp map 

Subject 2 Trial 10 (a) Channel spectral scalp map (b) Component scalp map 
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LZC complexity  

In the following Figure A3 - Figure A4, the complexity values each of the 18 

subjects in the sequential pointing experiment detailed in Chapter 7 are shown. The 

complexity values for the first sequential pointing trial are plot in blue. The 

complexity values for the last sequential pointing trial are plot in red. 

 

Figure A3: Lempel-Ziv Complexity values for Subject 1. 

 

Figure A4: Lempel-Ziv Complexity values for Subject 2.
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Event-Related Potential 

In the following Figure A5 - Figure A6, The ERP plots comparing the subjects’ ERP from the first half of the experiment and the second half 

of the experiment is shown. The blue lines indicate the average ERP of the successfully completed tasks in the first 5 trials. The red lines 

indicate the average ERP of the successfully completed tasks in the last 5 trials.  

Figure A5: Subject 1 ERP plot – comparison of initial vs last trials.  

The Blue lines indicate the average of the successfully completed tasks in the first 5 trials and the red lines indicate the average of 

successfully completed tasks in the last 5 trials. The black lines are the calculated difference between the first 5 trials and last 5 trials. 

 



155 

 

 

Figure A6: Subject 2 ERP plot – comparison of initial vs last trials. 

The Blue lines indicate the average of the successfully completed tasks in the first 5 trials and the red lines indicate the average of 

successfully completed tasks in the last 5 trials. The black lines are the calculated difference between the first 5 trials and last 5 trials. 
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In the following Figure A7-Figure A8, The ERP plots comparing the subjects’ ERP from the successfully completed tasks against 

unsuccessfully completed tasks is shown. The blue lines indicate the average ERP of the successfully completed tasks. The red lines indicate 

the average ERP of the unsuccessfully completed tasks. The black lines are the calculated difference between the blue and red lines.  

 

Figure A7: Subject 10 ERP plot – Comparison of successfully completed tasks vs unsuccessfully completed tasks. 
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Figure A8: Subject 16 ERP plot – Comparison of successfully completed tasks vs unsuccessfully completed tasks.  

 


