939 research outputs found

    User Perceptions of Wi-Fi Security Service in Universiti Utara Malaysia

    Get PDF
    At the time of information technology, the development of technology runs rapidly for the needs of the users themselves. Internet access is very important to obtain any desired information around the world. As well as the internet, it develops rapidly. High mobility of the users is in need of access that can be connected all the time to the electronic device which is owned by the user. A wireless access is one of the exact solutions being applied at the present time. A security network is necessary to keep the rights of the wireless access user and security is one of the most important priorities. Security can be applied by the user or provider of communication services themselves. Because of the danger's security could be from anywhere. There are many factors that can disturb the network security. This project attempt to use the questionnaire methodology to the users of Wi-Fi in the Universiti Utara Malaysia, particularly at SOC building, to find out the perception of the users toward Wi-Fi security service provided by Universiti Utara Malaysia. All participants were SOC students with the total of 873 populations. The sample size used in this project was 109 students. The confidence level stated was 92% which represent a high confidentiality. This study found that the user aspect has a positive relation with the security aspect

    From Analysing Operating System Vulnerabilities to Designing Multiversion Intrusion-Tolerant Architectures

    Get PDF
    This paper analyses security problems of modern computer systems caused by vulnerabilities in their operating systems. Our scrutiny of widely used enterprise operating systems focuses on their vulnerabilities by examining the statistical data available on how vulnerabilities in these systems are disclosed and eliminated, and by assessing their criticality. This is done by using statistics from both the National Vulnerabilities database (NVD) and the Common Vulnerabilities and Exposures system (CVE). The specific technical areas the paper covers are the quantitative assessment of forever-day vulnerabilities, estimation of days-of-grey-risk, the analysis of the vulnerabilities severity and their distributions by attack vector and impact on security properties. In addition, the study aims to explore those vulnerabilities that have been found across a diverse range of operating systems. This leads us to analysing how different intrusion-tolerant architectures deploying the operating system diversity impact availability, integrity and confidentiality

    An Anomaly Detection Scheme for DDoS Attack in Grid Computing

    Get PDF
    The demand for computing power and storage is increasing continuously and there are applications like scientific research and industrial need, whose computational demand even exceeds the available fastest technologies. As a result it is an economically feasible mean to look into efficiently aggregate existing distributed resources. To achieving this goal makes it possible to build a shared large scale wide-area distributed computing infrastructure, a concept which has been named the Grid computing. The primary objective of Grid computing is to support the sharing of resources and service spanning across multiple administrative domains. Due to the inherently dynamic and multi organizational nature maintaining security of both users and resources is the challenging aspect of Grid. Grid uses internet as an infrastructure to build communication, with the fusion of web services and grid technologies further increases the security concerns for their complex nature. This thesis takes a look at the vulnerability of Grid environment on denial of service attack. We found that deploying an efficient intrusion detection system to Grid can significantly improve its security and it can detect denial of service attack before it affects the victim. But due to the special characteristics and requirement of Grids, the existing traditional intrusion detection system can not work properly in that environment. The focus of this thesis is to investigate and design an anomaly detection system which can detect DoS and DDoS attack with high attack detection and low false alarm rate to achieve high performance. We have extensively surveyed the current literatures in this area; the main stress is put on feature selection for the Grid based anomaly detection system. An entropy based anomaly detection system has been proposed; also we have discussed the advantage of taking entropy as the metric. Finally the performance of the system has been analyzed using NS2 network simulator. For shake of continuity each chapter has its relevant introduction and theory. The work is also supported by list of necessary references. Attempt is made to make the thesis self-content

    Intrusion Tolerance: Concepts and Design Principles. A Tutorial

    Get PDF
    In traditional dependability, fault tolerance has been the workhorse of the many solutions published over the years. Classical security-related work has on the other hand privileged, with few exceptions, intrusion prevention, or intrusion detection without systematic forms of processing the intrusion symptoms. A new approach has slowly emerged during the past decade, and gained impressive momentum recently: intrusion tolerance. The purpose of this tutorial is to explain the underlying concepts and design principles. The tutorial reviews previous results under the light of intrusion tolerance (IT), introduces the fundamental ideas behind IT, and presents recent advances of the state-of-the-art, coming from European and US research efforts devoted to IT. The program of the tutorial will address: a review of the dependability and security background; introduction of the fundamental concepts of intrusion tolerance (IT); intrusion-aware fault models; intrusion prevention; intrusion detection; IT strategies and mechanisms; design methodologies for IT systems; examples of IT systems and protocol

    Hardening Tor Hidden Services

    Get PDF
    Tor is an overlay anonymization network that provides anonymity for clients surfing the web but also allows hosting anonymous services called hidden services. These enable whistleblowers and political activists to express their opinion and resist censorship. Administrating a hidden service is not trivial and requires extensive knowledge because Tor uses a comprehensive protocol and relies on volunteers. Meanwhile, attackers can spend significant resources to decloak them. This thesis aims to improve the security of hidden services by providing practical guidelines and a theoretical architecture. First, vulnerabilities specific to hidden services are analyzed by conducting an academic literature review. To model realistic real-world attackers, court documents are analyzed to determine their procedures. Both literature reviews classify the identified vulnerabilities into general categories. Afterward, a risk assessment process is introduced, and existing risks for hidden services and their operators are determined. The main contributions of this thesis are practical guidelines for hidden service operators and a theoretical architecture. The former provides operators with a good overview of practices to mitigate attacks. The latter is a comprehensive infrastructure that significantly increases the security of hidden services and alleviates problems in the Tor protocol. Afterward, limitations and the transfer into practice are analyzed. Finally, future research possibilities are determined

    Software-implemented attack tolerance for critical information retrieval

    Get PDF
    The fast-growing reliance of our daily life upon online information services often demands an appropriate level of privacy protection as well as highly available service provision. However, most existing solutions have attempted to address these problems separately. This thesis investigates and presents a solution that provides both privacy protection and fault tolerance for online information retrieval. A new approach to Attack-Tolerant Information Retrieval (ATIR) is developed based on an extension of existing theoretical results for Private Information Retrieval (PIR). ATIR uses replicated services to protect a user's privacy and to ensure service availability. In particular, ATIR can tolerate any collusion of up to t servers for privacy violation and up to ƒ faulty (either crashed or malicious) servers in a system with k replicated servers, provided that k ≥ t + ƒ + 1 where t ≥ 1 and ƒ ≤ t. In contrast to other related approaches, ATIR relies on neither enforced trust assumptions, such as the use of tanker-resistant hardware and trusted third parties, nor an increased number of replicated servers. While the best solution known so far requires k (≥ 3t + 1) replicated servers to cope with t malicious servers and any collusion of up to t servers with an O(n^*^) communication complexity, ATIR uses fewer servers with a much improved communication cost, O(n1/2)(where n is the size of a database managed by a server).The majority of current PIR research resides on a theoretical level. This thesis provides both theoretical schemes and their practical implementations with good performance results. In a LAN environment, it takes well under half a second to use an ATIR service for calculations over data sets with a size of up to 1MB. The performance of the ATIR systems remains at the same level even in the presence of server crashes and malicious attacks. Both analytical results and experimental evaluation show that ATIR offers an attractive and practical solution for ever-increasing online information applications

    The Proceedings of 15th Australian Information Security Management Conference, 5-6 December, 2017, Edith Cowan University, Perth, Australia

    Get PDF
    Conference Foreword The annual Security Congress, run by the Security Research Institute at Edith Cowan University, includes the Australian Information Security and Management Conference. Now in its fifteenth year, the conference remains popular for its diverse content and mixture of technical research and discussion papers. The area of information security and management continues to be varied, as is reflected by the wide variety of subject matter covered by the papers this year. The papers cover topics from vulnerabilities in “Internet of Things” protocols through to improvements in biometric identification algorithms and surveillance camera weaknesses. The conference has drawn interest and papers from within Australia and internationally. All submitted papers were subject to a double blind peer review process. Twenty two papers were submitted from Australia and overseas, of which eighteen were accepted for final presentation and publication. We wish to thank the reviewers for kindly volunteering their time and expertise in support of this event. We would also like to thank the conference committee who have organised yet another successful congress. Events such as this are impossible without the tireless efforts of such people in reviewing and editing the conference papers, and assisting with the planning, organisation and execution of the conference. To our sponsors, also a vote of thanks for both the financial and moral support provided to the conference. Finally, thank you to the administrative and technical staff, and students of the ECU Security Research Institute for their contributions to the running of the conference
    corecore