
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

MQTT Chaos Engineering for
Self-Healing IoT Systems

Miguel Pereira Duarte

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: André Monteiro de Oliveira Restivo

Second Supervisor: João Pedro Dias

July 14, 2021





MQTT Chaos Engineering for Self-Healing IoT Systems

Miguel Pereira Duarte

Mestrado Integrado em Engenharia Informática e Computação

Approved in oral examination by the committee:

Chair: Prof. João Reis

External Examiner: Prof. Ângelo Martins

Supervisor: Prof. André Restivo

July 14, 2021





Abstract

The Internet-of-Things (IoT) has shown substantial growth throughout the years, especially due to
advancements in connectivity, computing power, and device affordability. Nowadays, any device
might have a small computer inside it, enabling "smart" features. These devices are used to create
a useful connection between the digital and physical world (through sensors and actuators), but
failures or attacks might render them useless or compromise their users’ safety and well-being.

Thus, it is increasingly important that they work correctly, since failures in their functioning
may result in consequences ranging from slight discomfort to life-threatening situations. Fault-
tolerant systems have been a subject of research that aims to tackle these issues. These systems
have increased reliability due to being able to handle faults that may occur. More recently, ap-
proaches based on autonomic computing and self-healing have been introduced, providing valu-
able tools to handle and recover from failures in complex IoT systems.

To the best of our knowledge, what has been defined as best practices of security and depend-
ability for both software and hardware development has not yet been fully applied to the IoT-scope.
In particular, Chaos Engineering is currently being applied mainly to cloud infrastructure, without
a lot of focus on IoT systems. Despite Fault Injection already having been applied in IoT, its focus
is mostly on injecting faults in its hardware. As such, there is room for further development: the
usage of Chaos Engineering in IoT systems can be useful to identify operational issues, as well
as to find limitations in existing fault-tolerance mechanisms. Chaos Engineering may be paired
with other techniques (e.g., Fuzzing, Fault Injection) to further assess the dependability of existing
systems.

This work focuses on the core problem of being able to exercise fault-tolerance mechanisms
— more concretely, self-healing strategies — using Chaos Engineering. We hypothesise that the
application of Chaos Engineering leads to systems with higher reliability since we can (a) exercise
self-healing mechanisms, and (b) know when these mechanisms are not working correctly.

To find supporting evidence to our hypothesis, we proceed to implement a proof-of-concept
of a Chaos injection solution. This solution consists of an extension to an MQTT Broker which
enables the injection of faults via user-configured Chaos Engineering pipelines.

Using our proof-of-concept, we draft two experimental scenarios with a total of six experi-
ments, mimicking real-world IoT systems and instrumenting them. In these experiments we focus
on injecting faults into systems with and without Self-Healing capabilities, as well as comparing
their behaviour to when faults are not injected to achieve a full comprehension of the systems’
behaviour in each situation.

The conducted experiments supported our hypothesis by showing that it is possible to exercise
and verify the correct behaviour of the Self-Healing mechanisms and strategies present in the
systems under test.

Keywords: IoT, Internet of Things, Dependability, Fault Injection, Chaos Engineering, Self-
Healing

i



ii



Resumo

A Internet-of-Things (IoT) tem mostrado um crescimento substancial ao longo dos anos, especial-
mente devido a avanços na conetividade, no poder computacional, e menor custo por dispositivo.
Hoje em dia, qualquer dispositivo pode conter um pequeno computador, que possibilite funcio-
nalidades "inteligentes". Estes dispositivos são usados para criar uma útil ligação entre o mundo
digital e físico (através de sensores e atuadores), mas falhas ou ataques poderão inutilizá-los ou
até comprometer a segurança e bem-estar dos seus utilizadores.

Então, é cada vez mais importante que estes funcionem corretamente, pois falhas no seu fun-
cionamento poderão resultar em consequências variadas, desde ligeiro desconforto a situações
que apresentam risco de vida. Sistemas tolerantes a falhas (fault-tolerant systems) têm sido um
tópico de investigação que almeja enfrentar estes desafios. Estes sistemas possuem uma maior
reliability devido à sua capacidade de lidar com falhas que possam ocorrer. Mais recentemente,
têm sido apresentadas abordagens baseadas em autonomic computing e self-healing, que provi-
denciam valiosas ferramentas para a capidade de gestão e recuperação de falhas em sistemas IoT
complexos.

Tanto quanto sabemos, o que tem sido definido como as melhores práticas de segurança e
dependability para desenvolvimento de software e hardware ainda não foram totalmente aplicadas
ao contexto IoT. De forma particular, Chaos Engineering tem neste momento um maior destaque
na sua aplicação a infraestrutura na cloud, sem haver um grande foco em sistemas IoT. Apesar de
Fault Injection já ter tido alguma aplicação a IoT, o seu foco é principalmente na injeção de falhas
em hardware. Como tal, existe espaço para crescimento: a utilização de Chaos Engineering em
sistemas IoT pode ser útil na identificação de questões operacionais, bem como para encontrar
limitações em mecanismos de fault-tolerance existentes. Chaos Engineering poderá ser utilizado
em conjunto com outras técnicas (e.g., Fuzzing, Fault Injection) de modo a avaliar a dependability
de sistemas existentes.

Esta dissertação foca-se no problema central de ser capaz de exercitar mecanismos de fault-
tolerance — mais concretamente, estratégias de self-healing — com recurso a Chaos Engineering.
A nossa hipótese é que a aplicação de Chaos Engineering leva a sistemas com maior reliability,
dado que podemos (a) exercitar mecanismos de self-healing, e (b) saber quando estes mecanismos
não estão a funcionar corretamente.

De modo a encontrar evidências que apoiem a nossa hipótese, procedemos a implementar uma
solução prova-de-conceito que efetue injeção de Chaos. Esta solução consiste numa extensão a
um Broker MQTT que possibilita a injeção de falhas através de configuração pelo utilizador, por
meio de Chaos Engineering pipelines.

Utilizando a nossa prova-de-conceito, criamos dois cenários experimentais com um total de
seis experiências, imitando sistemas IoT de mundo-real, e instrumentando-os. Nestas experiências
focamo-nos na injeção de falhas em sistemas com e sem capacidades de self-healing, bem como
na comparação do seu comportamento quando falhas não eram injetadas, de modo a atingir uma
total compreensão do comportamento de cada sistema em cada situação.

As experiências realizadas apoiaram a nossa hipótese ao mostrar que é possível exercitar e
verificar o comportamento correto de mecanismos e estratégias de self-healing presentes nos sis-
temas sob teste.

Keywords: IoT, Internet of Things, Dependability, Fault Injection, Chaos Engineering, Self-
Healing

iii



iv



Acknowledgements

Firstly, I would like to thank my supervisors, André Restivo and João Pedro Dias, for the guid-
ance and insight given through endless threads of back-and-forth discussion, which undoubtedly
resulted in the best work I could produce. A special thanks to JP for all the off-topic conversations
about all things geeky, and for helping me keep my motivation up throughout this journey.

To my family, especially my mother, father, and sister, a warm thank-you for all the kind words
in dire moments. They were the ones that made sure I always had what I needed, be it a nice space
to work in, or a much needed break after stressing out with some small issue over god-knows how
long. I am certain that you will be glad to know that this journey has reached its end, even if only
to hear me complain about something different for once.

To Catarina, my girlfriend, thank you for the "push to deliver" that I many times lacked, along
with the affectionate smiles, long conversations and shared moments. I am ever grateful for the
incentive to work, especially when it was the last thing I wanted to do.

To all the "help groups" that I am part of, spread along Messenger, Telegram and Discord:
thank you for the moments we shared, of both virtue and vice, fun and frustration.

To Teresa, for the random calls, book recommendations and conversations, even if just to
confirm that we were both on the same boat.

To Rui, my MIEIC "partner-in-crime", for the jokes, projects, and growth we shared these last
few years.

To all those not mentioned, friends and otherwise, that also contributed to this journey. Thank
you, for I would not be who I am or where I am today without you.

Miguel Duarte

v



vi



“Websites that collect quotes are full of
mistakes and never check original sources.”

Randall Munroe, in XKCD 1942

vii



viii



Contents

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Literature Review 5
2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Dependability and Autonomic Systems . . . . . . . . . . . . . . . . . . 7
2.2.2 Reliability Measurement in IoT . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Chaos Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.1 Chaos Engineering for Fault Detection . . . . . . . . . . . . . . . . . . . 9
2.3.2 Chaos Engineering applied to Security . . . . . . . . . . . . . . . . . . . 10

2.4 Fault Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Fuzzing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5.1 Fuzzing Network Protocols . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.2 Fuzzing Practices for IoT . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Security Attacks in IoT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Problem Statement 21
3.1 Problem under Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Hypothesis and Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Validation 25
4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Proof-of-Concept Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.1 MQTT Broker Middleware . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.2 MQTT Broker Pipeline Operators . . . . . . . . . . . . . . . . . . . . . 27
4.2.3 JSON Configuration File . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Sanity Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.1 Testing threshold-check (SCE1) . . . . . . . . . . . . . . . . . . . . . . 28
4.3.2 Testing timing-check (SCE2) . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.3 Testing compensate (SCE3) . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Experimental Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.6.1 Value Changing Experiments (S1) . . . . . . . . . . . . . . . . . . . . . 35
4.6.2 Timing Experiments (S2) . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

ix



x CONTENTS

4.7.1 Value Changing Experiments (S1) . . . . . . . . . . . . . . . . . . . . . 38
4.7.2 Timing Experiments (S2) . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.8 Hypothesis Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Conclusions 51
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

A NOx Dataset Statistics 55

B Chaos Engineering JSON Configurations 57

References 61



List of Figures

2.1 Relationship between dependability and security attributes. . . . . . . . . . . . . 7
2.2 The dependability and security tree. . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Graphical depiction of WiFi deauthentication attack. . . . . . . . . . . . . . . . 17

3.1 Relationships between systems defined in hypothesis. . . . . . . . . . . . . . . . 23

4.1 Example IoT system which uses the implemented solution. . . . . . . . . . . . . 26
4.2 Chaos Engineering extension high-level logic. . . . . . . . . . . . . . . . . . . . 27
4.3 SCE1 Node-RED Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4 SCE2 Node-RED Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5 SCE3 Node-RED Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.6 Baseline System Node-RED Flow (BL). . . . . . . . . . . . . . . . . . . . . . . 34
4.7 First Self-Healing System Node-RED Flow (SH1). . . . . . . . . . . . . . . . . 35
4.8 Second Self-Healing System Node-RED Flow (SH2). . . . . . . . . . . . . . . . 35
4.9 Marble diagram of messages for S2E2. . . . . . . . . . . . . . . . . . . . . . . . 37
4.10 NOx concentration and alarm status without self-healing (S1E1BL) . . . . . . . . 38
4.11 NOx concentration and alarm status with self-healing (S1E1SH1) . . . . . . . . . 39
4.12 NOx concentration and alarm status without self-healing (S1E2BL) . . . . . . . . 40
4.13 NOx concentration and alarm status with self-healing (S1E2SH1) . . . . . . . . . 41
4.14 NOx concentration and alarm status without self-healing (S1E3BL) . . . . . . . . 42
4.15 NOx concentration and alarm status with self-healing (S1E3SH1) . . . . . . . . . 42
4.16 NOx concentration and alarm status without self-healing (S1E4BL) . . . . . . . . 44
4.17 NOx concentration and alarm status with self-healing (S1E4SH1) . . . . . . . . . 44
4.18 NOx concentration and alarm status without self-healing (S2E1BL) . . . . . . . . 46
4.19 NOx concentration and alarm status with self-healing (S2E1SH2) . . . . . . . . . 46
4.20 NOx concentration and alarm status without self-healing (S2E2BL) . . . . . . . . 48
4.21 NOx concentration and alarm status with self-healing (S2E2SH2) . . . . . . . . . 48

xi



xii LIST OF FIGURES



List of Tables

2.1 Fuzzing tools comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Definition of four systems for use in elaborating the hypothesis. . . . . . . . . . 23

4.1 Alarm level state transitions for S1E1. . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 S1E2 Overlap Percentages in comparison with the base experiment (S1E1). . . . 40
4.3 Alarm level state transitions for S1E2. . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 S1E3 Overlap Percentages in comparison with the base experiment (S1E1). . . . 43
4.5 Alarm level state transitions for S1E3. . . . . . . . . . . . . . . . . . . . . . . . 43
4.6 S1E4 Overlap Percentages in comparison with the base experiment (S1E1). . . . 45
4.7 Alarm level state transitions for S1E4. . . . . . . . . . . . . . . . . . . . . . . . 46
4.8 Alarm level state transitions for S2E1. . . . . . . . . . . . . . . . . . . . . . . . 47
4.9 S2E2 Overlap Percentages in comparison with the base experiment (S2E1). . . . 49
4.10 Alarm level state transitions for S2E2. . . . . . . . . . . . . . . . . . . . . . . . 50

xiii



xiv LIST OF TABLES



List of Listings

1 Chaos Engineering Broker configuration for SCE1. . . . . . . . . . . . . . . . . 29
2 Chaos Engineering Broker configuration for SCE2. . . . . . . . . . . . . . . . . 30
3 Chaos Engineering Broker configuration for SCE3. . . . . . . . . . . . . . . . . 32
4 NOx Dataset Statistics obtained by using pandas’s .describe method. . . . . 55
5 Chaos Engineering Broker configuration for S1E1. . . . . . . . . . . . . . . . . 57
6 Chaos Engineering Broker configuration for S1E2. . . . . . . . . . . . . . . . . 57
7 Chaos Engineering Broker configuration for S1E3. . . . . . . . . . . . . . . . . 58
8 Chaos Engineering Broker configuration for S1E4. . . . . . . . . . . . . . . . . 59

xv



xvi LIST OF LISTINGS



Abbreviations

CoAP Constrained Application Protocol
DoS Denial of Service
IoT Internet of Things
JSON JavaScript Object Notation
MQTT Message Queuing Telemetry Transport
SCE Security Chaos Engineering

xvii





Chapter 1

Introduction

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Context

The Internet-of-Things (IoT) has shown substantial growth throughout the years, especially due

to advancements in connectivity, computing power, and device affordability [49]. Nowadays, any

device might have a small computer inside it, enabling "smart" features. These devices are used to

create a useful connection between the digital and physical world (through sensors and actuators),

but failures or attacks might render them useless or even compromise their users’ safety and well-

being [47, 18].

With the wide-spreading of IoT devices across domains of application at an unprecedented

scale, it becomes of the utmost importance to ensure that IoT systems are dependable. However,

due to budget and time constraints, reliability of IoT systems is frequently disregarded. Some of

the dependability risks for IoT systems are often a result of not receiving support via patches or

updates, low or no use of encryption or an inability to deal with unexpected circumstances such as

network failures [47, 50].

1.2 Motivation

As IoT devices and systems become more common in everyday life, it becomes increasingly im-

portant that they work correctly, specially given the criticality of some the devices that users wish

to automate [48]. Failures in their functioning may result in consequences ranging from slight

discomfort to life-threatening situations [20, 19]. For example, one can think of a simple system

consisting of a thermometer feeding data into an IoT system, which outputs a signal to a room

heater, configuring it with the desired intensity. In this case, certain failures in the thermometer

(i.e., sensor readings stuck at a low value) may result in the IoT system unknowingly causing a fire

due to continuously turning on the room heater at the highest intensity. Furthermore, as another

1



2 Introduction

motivational example one may consider the impact of malfunctioning IoT devices in critical sys-

tems such as healthcare. Wrong sensor readings may result in wrong patient diagnosis, incorrect

treatment administration or even pose serious risk to the device users in the case of critical devices

such as an automated insulin pump [9].

In order to tackle these issues, fault-tolerant systems have been a subject of research for some

time [5, 59, 40]. These systems have increased reliability due to their ability to handle faults in

their components using techniques such as redundancy (having several components that perform

the same task such that if one fails, others can be used as backups).

More recently, approaches based on autonomic computing such as self-healing have been in-

troduced by IBM [5], which have become increasingly valuable tools to handle failures and the

complexity of IoT systems since applying these techniques increases the systems’ dependability

[19, 20, 17]. These concepts are further explored in Subsection 2.2.1 (p. 7).

Given the complexity and heterogeneity of Internet-of-Things systems [47], paired with the

lack of technical knowledge of most of their users (which may be driven by the aforementioned

affordability of IoT devices), it is becoming increasingly important that faults and issues of these

devices are fixed or mitigated without the need for specific technical intervention on behalf of the

users. Thus, not only is the application of autonomic computing concepts such as self-healing

progressively relevant, but also the need to ensure that these capabilities are working correctly.

This would further increase the confidence in the adequate functioning of complex IoT systems.

1.3 Problem

The problem that this work will focus upon can be decomposed into several parts:

• Analysis of the reliability of an IoT system when facing misoperation (e.g., stuck-at values,

values out-of-range);

• Analysis of the extent to which self-healing mechanisms may help in avoiding or mitigating

the impact of faults the system faces;

• Usage of Chaos Engineering techniques to confirm that the self-healing mechanisms are

working as expected, correctly recovering from injected faults.

To the best of our knowledge, what has been defined as best practices of security and depend-

ability for both software and hardware development has not yet been fully applied to the IoT-scope.

In particular, the usage of fault injection techniques and chaos engineering to assert the system’s

compliance with its expected behaviour may be further applied [15, 16].

Furthermore, Chaos Engineering has been applied to availability and reliability issues, having

little exploration in its application to security aspects [41, 52].

Chapter 3 (p. 21) further expands on this problem, explaining it in greater detail, and defining

its hypothesis and scope.



1.4 Goal 3

1.4 Goal

The core goal of this dissertation is to study the applicability of Chaos Engineering to Internet-of-

Things systems, with a particular focus in those that pro-actively attempt to address issues as they

occur, namely the ones that employ self-healing mechanisms and strategies.

To achieve this goal, we aim to be able to inject Chaos in IoT systems so that it is possible

to analyse how these behave. Furthermore, it is also relevant to assess how recovery mechanisms

such as self-healing strategies function in these conditions.

1.5 Document Structure

This document is composed by six chapters, structured as follows:

• Chapter 1 (p. 1), Introduction, which presents the problem under study, as well as its goal

and motivation;

• Chapter 2 (p. 5), Literature Review, which overviews relevant literature to this work, de-

scribing the current state of the art of the areas relevant to it;

• Chapter 3 (p. 21), Problem Statement, which presents the problem under study and the

solution proposed to solve it;

• Chapter 4 (p. 25), Validation, which focuses on the evaluation process to validate the hy-

pothesis of this work, including description of the implemented solution, as well as the

presentation and discussion of the results of the evaluation;

• Chapter 5 (p. 51), Conclusions, which concludes this dissertation by reflecting on this

work’s core aspects, presenting a summary of the developed work and highlighting some

perspectives for future work.



4 Introduction



Chapter 2

Literature Review

2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Chaos Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Fault Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Fuzzing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Security Attacks in IoT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

This chapter will focus on analyzing research that was previously done on topics of interest to

this work. As such, this analysis will focus especially on technologies that are widely used in IoT,

such as 802.11 and MQTT and failures that may be injected into devices, networks and systems

using them, as well as contributions from related fields.

In Section 2.1 we overview the methodology for the literature review detailed in this chapter.

Section 2.2 (p. 6) highlights some core concepts necessary for full comprehension of this work.

Sections 2.3 (p. 9) to 2.6 (p. 16) focus on reviewing the results of the literature review for the

concepts of Chaos Engineering, Fault Injection, Fuzzing and Security Attacks in IoT, respectively.

Finally, Section 2.7 (p. 18) summarizes this chapter’s findings.

2.1 Methodology

The searched content is based on conference papers and journal articles published in authentic

electronic databases that are technically and scientifically reviewed by peers. These include IEEE

Xplore, ACM Digital Library, Science Direct, Elsevier Journals and Springer Link. Grey Literature

consisting of articles, technical reports, among others, also supported the search process.

The amount of relevant peer-reviewed literature was very low (a search in Google Scholar

for ("internet of things" OR iot) AND "chaos engineering" returned only 98

results1). However, this was not surprising as the concerns about IoT dependability have only

recently come into focus. Since this topic is rapidly evolving, peer-reviewed articles are lagging

behind (as is usually the case with new topics). As such, this has led to the decision to also

include some grey literature into the state of the art. This literature resulted from using Google

1As of 2021-01-19

5



6 Literature Review

Scholar search engine, along with following some renowned researchers in the area. As such, it

was possible to obtain magazines, reports, blog posts, and other web-items.

The bottom-up methodology to reach the found papers and articles can be summarized as

follows:

• Initially, several queries were made for specific keywords;

• Then, these query terms were refined, according to related keywords found in initial results,

with the aim of reaching broader topics;

• Finally, the references of the most relevant results were collected and searched for rele-

vant publications, resulting in a snowballing of terms, topics, and papers that helped the

expansion to related topics as well as the deepening of found literature for the topic under

consideration;

This methodology is iterative by nature. As such, it can be repeated in order to further improve

its results until they are satisfactory.

The used keywords were: MQTT, 802.11, WiFi, deauthentication, attack, fuzz,

fuzzing, IoT, Internet of Things, Security, Chaos Engineering, self-healing,

dependability, fault injection, failure injection, denial of service, DoS,

and network. This list is non-exhaustive, including all the used keywords which were then com-

bined in several ways in querying for papers (such as including more keywords via OR or AND

filters).

In order to achieve a complete overview of the cornerstones of this work, as well as the cur-

rently developed work in these areas, the found papers were analyzed with a funnelling scope:

(1) Initially, the keywords were considered in application to broad areas or ones unrelated to this

work; (2) Then, they were considered for the Internet of Things in specific; (3) Finally, whenever

possible, they were considered for specific protocols or vulnerabilities.

Furthermore, for an overview of broad areas (e.g., Chaos Engineering in general, not specifi-

cally applied to IoT or security) a different criterion was used whenever possible: review or survey

publications were considered, as well as papers with over 100 citations or belonging to recent edi-

tions of relevant conferences or symposiums. Thus, it is possible to reach some insight of the

area in general before diving into a specific subtopic, while not having to consider thousands of

publications to understand the current state-of-the-art for it.

2.2 Background

This section highlights concepts that are necessary to define, describe or expand upon for the

complete understanding of this work.

The first section focuses on Dependability and Autonomic Systems, defining several concepts

of relevance in this area, such as reliability and fault tolerance. The second section focuses on



2.2 Background 7

Reliability Measurement in IoT, highlighting some metrics that are currently being used for mea-

suring reliability in IoT devices, as well as clarifying that there currently is not a solution capable

of assessing the reliability of IoT infrastructure in its whole.

2.2.1 Dependability and Autonomic Systems

Ganek et al. [22] define several useful concepts for this work, namely self-protection, described

as the ability for systems to “anticipate, detect, identify and protect themselves from attacks from

anywhere”. These systems should be able to manage user access to computing resources in order

to protect against unauthorized resource access, detect intrusions and report and prevent these

types of activities as they occur. Additionally, this can be used to provide backup and recovery

capabilities that are as secure as the original resource management systems. These systems may

be built on top of several existing core security technologies (e.g., LDAP, SSL) and must provide

capabilities for easier comprehension and handling of user identities in various contexts, removing

this burden from administrators. Even though most of the definition provided by Ganek et al. may

not apply specifically to the developed work due to the systems having different requirements and

capabilities (e.g., a network of micro-controllers might not be powerful enough to run LDAP), the

core concept of the system’s ability to anticipate, detect, identify and protect itself from attacks is

still relevant and fundamental for this work.

Figure 2.1: Relationship between dependability and security attributes, from [5].

Furthermore, Avizienis et al. [5] define dependability, security and other related concepts that

are of relevance to this work:

Dependability Integrating concept that encompasses availability, reliability, safety, integrity and

maintainability.

Availability Readiness for correct service.

Reliability Continuity of correct service.

Safety Absence of catastrophic consequences on the user(s) and the environment.

Integrity Absence of improper system alterations.

Maintainability Ability to undergo modifications and repairs.



8 Literature Review

Security A composite of the attributes of confidentiality, integrity and availability. Requires the

concurrent existence of 1) availability for authorized actions only, 2) confidentiality, and 3)

integrity with "improper" meaning "unauthorized".

Confidentiality The absence of unauthorized disclosure of information.

The relationship between dependability and security is summarized in Figure 2.1 (p. 7) in

regards to their principal attributes. Furthermore, failures (deviation from correct behaviour),

faults (cause for error, e.g., bugs) and errors (deviation of external system state from the correct

service state, caused by faults) are threats to the dependability and security of systems. There are

several means to achieve the attributes of security and dependability, which can be grouped into

four major categories [5]:

Fault prevention Prevent the occurrence or introduction of faults.

Fault tolerance Avoid service failures in the presence of faults. In other words: even when facing

faults, the system should not fail.

Fault removal Reduce the number and severity of faults.

Fault forecasting Estimate the present number, future incidence, and likely consequences of

faults.

Figure 2.2: The dependability and security tree, from [5].

While fault prevention and fault tolerance provide the ability to deliver a system that can

be trusted, fault removal and fault forecasting offer confidence in this ability by justifying the

adequacy of functional and dependability and security specifications, as well as the likelihood of

the system to meet these requirements [5].



2.3 Chaos Engineering 9

Moreover, the attributes, threats to, and means to achieve dependability and security are sum-

marized in Figure 2.2 (p. 8). Avizienis et al. also describe other basic system properties and

concepts that are currently not relevant for the scope of this work.

2.2.2 Reliability Measurement in IoT

Moore et al. [31] provide an in-depth review of the state-of-the-art of reliability measurement in

IoT. While the detailed evolution of the study and quantification of reliability in IoT is outside

the scope of this work, the authors’ work elicits several useful metrics for measuring reliability in

IoT which may be used by this dissertation. Some are mentioned as standard reliability metrics,

being used by several works to quantify the state of reliability in IoT devices. These include

MTTF (Mean Time To Failure), MTTR (Mean Time To Repair), MTBF (Mean Time Between

Failures), and Availability, Maintainability and Failure Rates. Despite these metrics being able

to provide a view of how reliable an IoT device or set of devices is, the authors mention that

further research should be done, for example, in regards to: extending these metrics to include

network infrastructure and communication protocols, improving the metrics to allow the systems

to predict and preempt failure, and further analysing the interplay between IoT device reliability

and anomaly detection (researching the impact of anomalies on IoT device reliability).

Moreover, the research presented by Moore et al. [31] presents “a clear gap in the knowledge

and understanding of IoT: there is currently not a solution available capable of, in an end-to-

end sense, assessing the reliability of IoT infrastructure”, which supports the objective of this

dissertation.

2.3 Chaos Engineering

In 2012, Martin Fowler [21] first introduced the concept of Phoenix Servers, which is closely

related to the idea behind Chaos Engineering. The Principles of Chaos Engineering state that

“Chaos Engineering is the discipline of experimenting on a system in order to build confidence

in the system’s capability to withstand turbulent conditions in production” [11]. Furthermore,

modern software-based services are frequently implemented as distributed systems with complex

behaviour and several failure states. According to Basiri et al., Chaos Engineering is the practice

of using experimentation to verify the reliability of these kinds of systems [6].

As such, Chaos Engineering presents itself as an appealing approach to test the dependability

of systems.

2.3.1 Chaos Engineering for Fault Detection

Netflix’s Chaos Monkey is one of the main driving forces in the popularization of Chaos Engi-

neering. “Chaos Monkey is a resiliency tool that helps applications tolerate random instance

failures”. This solution randomly terminates virtual machines and containers that run in a produc-

tion environment during working hours (so that engineers can respond quickly if a service fails).



10 Literature Review

The idea behind this is that frequently exposing engineers to failures motivates them to develop

resilient services [33].

This technique has proved successful since Netflix engineers now design their services consid-

ering potential failures (and recovery from these) from the get-go. Basiri et al. [6] point out that

despite the concepts of Chaos Engineering not being fundamentally new, the practical application

of these concepts to software systems is still in its early stages. They mention that the increasing

complexity of software systems will be a driving force for the increasing adoption of empirical

approaches to achieve system availability.

In fact, this area has since grown, as expected, as Rosenthal et al. [42] highlight by mentioning

that Chaos Engineering practitioners from over 20 organizations (such as Microsoft, Google, Ama-

zon, Uber, or the University of California) were present at a recent event about Chaos Engineering.

In their own words, “It’s Not Just for Netflix”. Chaos Engineering is now even extensively applied

to companies that are not natively digital, like healthcare or large financial institutions.

Jernberg et al. [26] introduced Chaos Engineering in a group of companies in order to im-

prove their systems’ resilience. As a result, the authors contribute not only with a comprehensive

synthesis of Chaos Engineering literature and tools but also with guidelines for the successful

introduction of Chaos Engineering in a company. This research concludes that applying Chaos

Engineering principles and tooling to a company is feasible and successfully improved the con-

sidered systems’ resilience, due to finding a set of improvement opportunities. The presented

overview of Chaos Engineering tools highlights that the vast majority of currently existing tooling

for Chaos Engineering is aimed at testing infrastructure managed by cloud providers, with only

some tools being able to test specific applications of specific languages and frameworks (e.g., Java,

Spring Boot). Furthermore, the authors categorize the attacks that the tools perform into five cate-

gories, mentioning that only one tool mentions the ability to perform security attacks (ChaoSlingr

[35]). The authors present an implementation framework to apply Chaos Engineering to a com-

pany which, despite interesting, is outside of the scope of this work.

2.3.2 Chaos Engineering applied to Security

Security Chaos Engineering (SCE) was a term introduced by Aaron Rinehart and Charles Nwatu

[34] to describe the application of Chaos Engineering to tackle not only reliability issues but also

security ones. They mention that “(Security) Chaos Experiments are foundationally rooted in the

scientific method, in that they seek not to validate what is already known to be true or already

known to be false, rather they are focused on deriving new insights about the current state”, and

that “Security Chaos Engineering is the discipline of instrumentation, identification, and remedi-

ation of failure within security controls through proactive experimentation to build confidence in

the system’s ability to defend against malicious conditions in production”. Security Chaos Engi-

neering provides a methodology for the experimentation of distributed systems’ security with the

aim of building confidence in the system’s ability to withstand malicious conditions.

According to Rinehart [41], the motivation for this application of Chaos Engineering to the

field of cybersecurity arises from the need to think differently about information security due to a



2.3 Chaos Engineering 11

generalized movement toward complex distributed systems with which security struggles to keep

pace, as these systems are becoming impossible for the human mind to mentally model. Further-

more, Security Chaos Engineering allows teams to safely discover system weaknesses before they

disrupt the systems themselves.

Furthermore, Rinehart [41] points out that ChaoSlingr is proof that Chaos Engineering can

be applied to cybersecurity, and their experience of utilizing ChaoSlingr at UnitedHealth Group

demonstrates that there is value in this approach since it has the potential reveal valuable, objec-

tive information about the operation of security controls, allowing organizations to optimize their

security budgets further.

ChaoSlingr is a Security Chaos Engineering Tool initially published in September 2017 that

has since stopped being actively maintained. It was a Proof of Concept (PoC) focused on exper-

imentation on AWS Infrastructure to identify security weaknesses in it [35]. ChaoSlingr proac-

tively introduces known security failures through a set of experiments in order to determine the

effectiveness of the implemented security measures [41].

In the contextualization of their developed tool, CloudStrike, Torkura et al. [52] provide an

overview of current chaos engineering techniques, with particular emphasis in security. They

mention that state-of-the-art chaos engineering techniques inject faults into software systems to

detect availability issues which may be resolved to improve system resilience via resiliency pat-

terns (e.g., timeouts, retries). While these resiliency strategies provide useful and clear feedback

about system behaviour for chaos engineering experiments, they are not designed to improve se-

curity, instead tackling availability attributes. Additionally, in their summary of notable chaos

engineering tools, the authors highlight that despite there being a diversity of concrete applica-

tions of chaos engineering concepts, most tools focus on issues related to non-security availability

attributes, mentioning only CloudStrike (the tool proposed and developed by the authors) and

ChaoSlingr [35] as being focused on security resiliency attributes.

CloudStrike is a tool that is designed for multi-cloud security experimentation. It leverages

chaos engineering principles, focusing on security via fault injection, which may impact confiden-

tiality, integrity and availability of the tested cloud resources. This tool changes cloud infrastruc-

ture configurations to insecure settings to assess if these changes are detected by configurable alerts

(thus detecting potential security misconfiguration that may happen in a real scenario). While sim-

ilar to ChaoSlingr, it implements more fault injection rules (over 20 compared to ChaoSlingr’s 3),

covering a more expansive fault space. [52, 51].

Despite the findings mentioned above, Security Chaos Engineering is still a novel term. Search-

ing for "security chaos engineering" in Google Scholar and Web of Science (all databases)

resulted in only 7 and 2 results, respectively2.

2As of 2020-01-23



12 Literature Review

2.4 Fault Injection

Fault Injection is the act of exercising failures to measure their impact, with the aim of ensuring

resilience [8]. Fault Injection will be a core topic to focus on for this work, due to how helpful this

methodology may be in finding faults in systems. Software Fault Injection (SFI) is a method for

anticipating worst-case scenarios caused by faulty software via the deliberate injection of software

faults [32].

There is no clear distinction between the terms "Fault Injection" and "Failure Injection". As

such, "Fault Injection" will be used henceforth to refer to this concept.

Natella et al. [32] point out that software faults are a severe problem for current and future

systems, namely due to their continuous growth in complexity. Their survey analyses several

techniques and tools for software fault injection, while pointing out that several challenging issues

are still without an answer despite the evolution of the approaches. The authors list three core

research directions and open issues for Software Fault Injection:

• Usability and Dependability Benchmarking: Fault Injection techniques are difficult to

apply to software, e.g., when compared to hardware bit-flip faults. Improvements in the

usability of fault injection are necessary for the widespread adoption of this technique to be

feasible, as otherwise the industry will hesitate to adopt dependability benchmarking. This

usability improvement is also fundamental in making dependability benchmarking viable

for real software projects since the current costs and know-how required for its application

are deterrents for its widespread adoption.

• Challenge of Software Fault Tolerance: Despite the recognition of software faults as a

significant threat for modern systems, tolerating these faults is a challenging issue. Software

faults affect a program’s logic, requiring logic redundancy to be tolerated, which is non-

trivial in many cases. Even knowing that software is defective, one never knows exactly

where the defects are, when they will appear or which consequences they may have. These

challenges are an excellent opportunity for applying Software Fault Injection.

• Evolution of Fault Models: Fault models will have to keep up with the evolution of soft-

ware technologies and new development paradigms. For example, the growth of distributed

and concurrent systems requires new types of fault injection to be considered, such as the

injection of multiple faults, which is still at an early stage. There is also a need of further

research into the interaction between Software Fault Injection and software security since

SFI can be used as a simulation of security vulnerabilities, given that the injected faults

may, as an example, cause unauthorized access to confidential data. Given that software is

frequently exposed to security attacks, being able to emulate security vulnerabilities would

enable the creation of better countermeasures.

This last topic (the interaction between Fault Injection and software security) is of particular

relevance to this work, as Fault Injection will be applied to IoT systems in order to make them

more secure.



2.5 Fuzzing 13

Yoneyama et al. [57] performed model-based fault injection on MQTT using Modbat [4].

Their approach mimics unstable network environments by using fault injection to simulate net-

work errors and delays. The introduction of packet forwarders in the connections between the

clients and the server allows the software-based simulation of unstable TCP network environ-

ments during test execution, without any modification to the system under test. Additionally,

this technique enables the observation of the effect of lost packets on MQTT, being the authors

able to confirm that under higher QoS (Quality of Service) settings the data is retransmitted until

delivered.

Kazemi et al. [27] highlight the importance of carefully considering security and privacy in

the development of IoT devices. These must be protected against software and network-based

attacks, as well as hardware-based attacks. Their work goes into more detail on types of physical

fault attacks, which is outside of the scope of this work. Nevertheless, their research applies fault

injection in the form of physical hardware-based fault attacks with the aim of helping improve the

security and robustness of embedded systems, which aligns with this work’s aim to also improve

the research on the security of IoT devices.

Despite the applicability of fault injection to IoT, the found work focuses mostly on hardware

fault injection via physical interaction with the devices [27, 58, 25], rather than interfering with

their communications and network, as this work aims to do.

2.5 Fuzzing

At a high level, fuzzing refers to repeatedly executing a program with inputs that are generated and

may be syntactically or semantically malformed [30]. Fuzzing is a simple yet effective approach

to discover software bugs utilizing randomly generated inputs [36].

Moreover, Fuzzing is a prevalent software testing technique, being its popularity a result of

its simplicity, ease of deployment and proven effectiveness in discovering real-world software

vulnerabilities [30].

Li et al. [28] provide a thorough overview of the current state of fuzzing, as well as new trends

and challenges this area faces. They mention that as services are being deployed on a network

and client applications communicate with these servers via network protocols, security testing of

network protocols becomes a significant concern. Security problems that occur in these protocols

may result in much more severe damage than local applications, as denial of service and leakage

of private information, among others, are considerable threats. Some research is being done in

this area, resulting in several tools and proposals that the authors highlight. Finally, the authors

mention that fuzzing “is currently the most effective and efficient vulnerability discovery solution”,

which supports this work’s objective of using it to investigate potential security issues.

In their overview of the state of the art of fuzzing, Manès et al. [30] also mention several

network protocol fuzzers which take protocol specifications from the user. These fuzzers are

mentioned as using a predefined model for fuzzing, being referred to as model-based fuzzers.



14 Literature Review

The research for related work uncovered several tools for which not much publication was

found. Nevertheless, these tools have much potential to be applied to this work due to being aimed

at fuzzing network protocols, some having already been used for real-world scenarios (e.g., Sulley

being used to fuzz SCADA Protocols, shown in Defcon [14] or to find previously known vulnera-

bilities, validating fuzzing as an approach to find security issues [54]). These are compared among

themselves and with some popular general-purpose fuzzers mentioned in some of the literature in

Table 2.1 (p. 15) and also briefly described below:

• AFL (American Fuzzy Lop) [23] - A coverage-based grey-box fuzzer that employs an

instrumentation-guided genetic algorithm to fuzz its targets efficiently. AFL is aimed at

fuzzing binary targets, also being able to instrument programs when the source-code is

available. It has already helped detect several vulnerabilities and is actively maintained, as

well as being the base for several forks (e.g., FIRM-AFL [60]);

• BED [1] - Stands for Bruteforce Exploit Detector. A tool designed to fuzz several protocols

(e.g., FTP, SMTP, HTTP, POP, IMAP) in order to find buffer overflow or format string

vulnerabilities;

• Doona [56, 55] - A fork of BED with the same objective, created to add more features

to BED since its development was halted. Renamed due to the addition of “a significant

enough number of features/changes”;

• Sulley [38, 14, 54] - A fuzzing framework that (unlike other fuzzers) not only focuses on

data generation but also includes other aspects “a modern fuzzer should provide”. Sulley

watches the network and maintains records, instrumenting and monitoring the health of

its target, being able to detect and categorize detected faults, run in parallel, among other

features. Sulley is aimed at fuzzing network protocols;

• boofuzz [39] - A fork of Sulley that provides several bug fixes and aims for extensibility.

Also targets network protocols, describing itself as “Network Protocol Fuzzing for Hu-

mans”. It was created with the objective of being able to fuzz anything, as well as due to

the lack of maintenance of Sulley.

Some of the found tools are quite old (e.g., BED) and some are unmaintained (e.g., Sulley),

showing how fuzzing has recently focused mostly on honing some specific tools (e.g., AFL), as

well as custom-made fuzzers for specific purposes (e.g., boofuzz, Doona).

2.5.1 Fuzzing Network Protocols

Gorbunov et al. [24] introduce AutoFuzz, which learns protocol implementations by observing

communications between clients and servers and building a Finite State Automaton to represent

the protocol. Then, it can fuzz client or server protocol implementations using the constructed

automaton. The authors apply AutoFuzz to several FTP implementations, which resulted in the



2.5 Fuzzing 15

Table 2.1: Fuzzing tools comparison.

Name Language Scope Actively
maintained?

Creation date

BED [1] Perl Network protocols no Before 2011
Doona [56, 55] (BED fork) Perl Network protocols no 2012
Sulley [38, 14] Python Network protocols,

network and pro-
cess watching

no 2006

boofuzz [39] (Sulley fork) Python Network protocols,
network and pro-
cess watching

yes 2016

Peach [44] Python General Purpose no 2016
AFL (American Fuzzy Lop) [23] C General Purpose

Guided Brute-force
yes 2013

discovery and confirmation of vulnerabilities and unexpected behaviours, including arbitrary re-

mote code execution prior to authentication without the need to write shellcode. This research

shows the potential of the application of fuzzing to network protocols.

2.5.2 Fuzzing Practices for IoT

Chen et al. [10] present an automatic fuzzing framework, IoTFuzzer. It aims to find memory

corruption vulnerabilities in IoT devices without access to their firmware, unlike other fuzzers

which require access to these images. The authors’ approach was to focus on the mobile ap-

plications through which IoT devices are frequently controlled. IoTFuzzer was thus built as a

protocol-guided fuzzer, using information that the app contains about the protocol without reverse-

engineering the protocol or explicitly recovering specific knowledge on the protocol from the app.

This tool instead focuses on performing a dynamic analysis of the app, identifying how it gener-

ates the messages when communicating with the target device, mutating the message’s content in

run-time, and producing test cases for probing the firmware under study. IoTFuzzer was evaluated

on 17 real-world IoT devices - 15 security-critical vulnerabilities found, 8 of these not having been

previously reported. It was also compared to other network fuzzers such as BED and Sulley. Fi-

nally, the authors highlight that while impressive progress is being made in vulnerability research

for embedded systems, the approaches employed are often specific to certain models, vendors or

products, instead of being automatic, systematic or generic, like IoTFuzzer.

Zheng et al. [60] present FIRM-AFL, “the first high-throughput greybox fuzzer for IoT firmware”.

Coverage-based greybox fuzzing has been shown to be an effective and efficient way to find vul-

nerabilities in real-world programs. However, the application of greybox fuzzing to IoT firmware

faces two main challenges: state-of-the-art greybox fuzzers such as AFL are unable to run many

IoT programs due to hardware-specific restrictions or dependencies; and solutions for this first

issue have very low fuzzing throughput due to using full-system emulation. As such, FIRM-AFL

tackles both these problems by presenting a novel technique which the authors refer to as “aug-

mented process emulation”. This technique combines system and user-mode emulation, taking



16 Literature Review

advantage of the high compatibility of system-mode emulation, as well as the higher throughput

of user-mode emulation. FIRM-AFL is built on top of AFL [23], modifying it to adapt it to solve

the mentioned problems while taking advantage of its tried-and-tested workflow (e.g., replacing

its user-mode QEMU with augmented process emulation). The authors perform a series of tests

on several aspects, showing that this novel technique does incur a large performance loss in per-

formed benchmarks, and its throughput outperforms system-mode emulation based fuzzing by 8.2

times. Overall, FIRM-AFL is 3.6 to over ten times faster than full-system emulation in finding

crashes for the tested device firmwares, being able to find 1-day vulnerabilities much faster than

full-system emulation and finding two new vulnerabilities (0-days).

Liu et al. [29] apply fuzzing to Narrowband Internet of Things (NB-IoT) protocols to test them.

These protocols have complex frame structures, which makes it challenging to test them manually.

As such, they are great candidates for fuzz testing. The authors present HFuzz, a developed

automatic hierarchy-aware fuzzing framework that takes advantage of format information on NB-

IoT network protocols to outperform traditional fuzzing tools (AFL and Peach, in this case).

2.6 Security Attacks in IoT

This section focuses on specific attacks performed on IoT devices or which would be applicable

to IoT devices. These attacks include WiFi deauthentication and MQTT Denial of Service attacks,

among others.

Bellardo et al. [7] provide an experimental analysis of 802.11-specific denial-of-service (DoS)

attacks by targeting its MAC protocol. By taking advantage of MAC-level spoofing, the authors

explore several techniques such as deauthentication (cf. Figure 2.3, p. 17) and disassociation

attacks, providing a theoretical context of how they work and empirical validation of elicited

vulnerabilities and their impact in real networks. Despite their widespread adoption, 802.11-based

networks are shown as having a poor availability aspect, since there are several easily achieved

methods to launch DoS attacks on a network. Although several countermeasures are highlighted,

these fall out of scope for this work.

Sun et al. [50] analyze a set of common smart home appliances from a potential attacker’s

perspective, using side-channel attacks to fingerprint these IoT devices. In this work, they claim

that “modern day smart homes are not much different than a castle of glass: an intimidating,

towering paragon of defense, but indefensible with its inner workings exposed and fragile walls

easily cracked”, as the data that the IoT devices leak in their operation compromise their location’s

security. Furthermore, the authors use WiFi deauthentication attacks to assess the impact of a loss

of connectivity on the devices’ functionality, which frequently renders them useless due to the lack

of fallback physical controls on the devices.

Andy et al. [3] explore MQTT’s lack of security mechanisms with two types of attacks: using

Shodan to find public and unsecured MQTT servers, to then exfiltrate potentially private data by

subscribing to all topics, perform DoS attacks by flooding the broker with spam data or inject

incorrect data; and attacking MQTT brokers in a local network by sniffing and modifying packets



2.6 Security Attacks in IoT 17

Figure 2.3: Graphical depiction of WiFi deauthentication attack, from [7].

to compromise privacy, data integrity and the MQTT authentication mechanism, which is deemed

to be lackluster, especially in its default settings. The authors conclude that MQTT is vulnerable

to the aforementioned attacks and mention several mitigations with regards to improving security

by implementing cryptographic countermeasures. However, this cryptographic research is out of

scope for this work.

Vaccari et al. [53] present SlowITe, a Slow DoS Attack against IoT systems, specifically tar-

geting MQTT services. This attack exploits a flaw in the MQTT protocol in which the client can

set the Keep-Alive parameter (which denotes the time that a connection should be kept alive for)

of their connection to the server to an arbitrary value. It is possible to set this parameter to its

maximum value, which results in the connection being kept alive for over 27 hours without send-

ing any data to the listening daemon other than the initial 30 bytes of the CONNECT packet. As

such, it is possible to launch a low-rate DoS attack that seizes all of the broker’s available con-

nections by repeating this process for several hundred or thousands of connections, with a very

low resource cost for the attacker. Tests were performed on real networks against several different

MQTT servers (Eclipse Mosquitto MQTT, ActiveMQ, HiveMQ, and VerneMQ), using both unen-

crypted and encrypted communication. The connection closure was tested for the maximum value

of the Keep-Alive parameter (65535), which resulted in the connection remaining open for the

expected period of about 27 hours, without data transmission from the client. Given the simplic-

ity of replicating this attack for several connections (up to the MQTT broker’s maximum number



18 Literature Review

of connections), as well as the ability to reach a DoS state in the different services (as shown in

further tests), the effectiveness of this simple attack in disabling MQTT servers is proven.

Since MQTT and AMQP are both asynchronous publish/subscribe protocols used in IoT, re-

search upon these protocols was focused more on MQTT since it yielded more results (29100 for

"MQTT" and 8600 for "AMQP"3).

2.7 Summary

This chapter performed a literature review focused on the three main areas that this work aims

to build upon: Chaos Engineering, Fault Injection and Fuzzing and their applications to IoT and

security. Additionally, we researched about attacks and security vulnerabilities relevant to IoT due

to affecting IoT devices and protocols.

Chaos Engineering presents itself as an appealing approach to test the dependability of sys-

tems. In 2016, despite Chaos Engineering concepts not being new, their practical application was

still in its early stages [6]. Since then, the area has grown and even seen extensive application to

areas that are not natively digital [42]. Despite this, the performed literature review highlighted

that current investigation in Chaos Engineering focuses mostly on cloud systems, being the found

tooling primarily aimed at cloud providers such as AWS. Furthermore, most of the found work on

Chaos Engineering focused primarily on improving the system’s availability, rarely focusing on

security aspects [52, 26]. Only two tools were found which claimed to perform Security Chaos

Engineering: ChaoSlingr [35] and CloudStrike [52, 51]. Additionally, Security Chaos Engineering

may be applicable to IoT due to fitting the description of systems that are becoming so complex

that they are impossible for the human mind to mentally model [41].

The review of Fault Injection showed that it is primarily considered for testing a system for

flaws and is frequently mentioned alongside Chaos Engineering. According to Natella et al. [32],

there are three core research directions and open issues for Software Fault Injection: Usability and

Dependability benchmarking; the Challenge of Software Fault Tolerance; and the Evolution of

Fault Models. These are explored in further detail in Section 2.4 (p. 12). Furthermore, the literature

recognizes the difficulty of applying Fault Injection to software (e.g., when compared to hardware)

and highlights the importance of improving the usability of fault injection methods. Moreover, it

recognizes the potential in the interaction between Software Fault Injection and software security,

which should be further researched [32]. Some work has been done in applying fault injection to

IoT to simulate network errors and delays [57]. However, found work focuses mostly on hardware

fault injection [27, 25, 58].

The literature review of fuzzing highlighted that it is considered a simple technique for testing

systems and has proven effectiveness in discovering real-world vulnerabilities [30]. Some authors

mention fuzzing as an effective and efficient method for vulnerability discovery [28], as well

as highlighting the security testing of network protocols as a significant concern. Model-based

fuzzing may be an interesting technique to apply for fuzzing network protocols [30], in a grey or

3As of 2021-01-26, in Google Scholar search engine



2.7 Summary 19

white-box approach. This research also found several tools that may be useful for this work in grey

literature [1, 56, 55, 38, 14, 54, 39]. Furthermore, we found some work done in the application

of fuzzing to IoT [10, 29, 60] which showed that fuzzers made for or adapted to fuzz specific IoT

targets (e.g., protocols, devices or improved emulation) outperformed popular general-purpose

fuzzers when applied to the same targets.

Finally, in this literature review, we researched about vulnerabilities found in IoT systems or

that would apply to them, which will help determine relevant attacks to perform and methodologies

with which to find vulnerabilities. This research resulted in finding some issues which may still

be exploitable and thus might be useful for this work (e.g., WiFi deauthentication attacks [7, 50]

or MQTT Denial of Service [53]).

In sum, after the literature review performed in this chapter, we found that Chaos Engineer-

ing’s applications are currently focused mainly on cloud infrastructure and improving a system’s

availability, without much focus in IoT systems or security aspects of dependability. Moreover,

although Fault Injection has seen some application in security research, the found work is more

focused on hardware and physical fault injection instead of on network fault injection. Further-

more, Fuzzing has been proven to be effective in finding security vulnerabilities, already having

some applications to IoT, which shows it may be applicable to the problem under study. Finally,

we already found some security attacks performed on and applicable to IoT networks and devices

which may be a good starting point for this research.

As such, several areas and shortcomings were found. These will be analysed in further detail

in Chapter 3 (p. 21).



20 Literature Review



Chapter 3

Problem Statement

3.1 Problem under Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Hypothesis and Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Problem under Study

The Internet-of-Things (IoT) has shown substantial growth throughout the years, primarily due to

advancements in connectivity, computing power, and device affordability. Nowadays, any device

might have a small computer inside it, enabling "smart" features. These devices may create a

useful connection between the digital and physical world (through sensors and actuators), but

failures or attacks might render them useless or compromise their users’ safety and well-being

[47]. Furthermore, since IoT employs network architectures very similar to traditional ones for

communication between devices, it also inherits the flaws of such traditional networks [13].

The literature review presented in Chapter 2 (p. 5) focused on three areas that are the basis

of this work: Chaos Engineering, Fault Injection and Fuzzing. Likewise, we researched some

attacks and security vulnerabilities relevant to IoT (focusing on the exploration of IoT devices and

networks or protocols commonly used in IoT).

This review showed that current investigation in Chaos Engineering focuses mostly on cloud

systems, being the found tooling even aimed at cloud providers such as AWS. Furthermore, most

of the found work on Chaos Engineering focused primarily on improving the system’s availability,

rarely focusing on security aspects [52, 26]. Additionally, Security Chaos Engineering may also

be applicable to IoT since it fits the description of systems that are becoming so complex that they

are impossible for the human mind to mentally model [41].

The review of Fault Injection showed that it is primarily considered for testing a system for

flaws and is frequently mentioned alongside Chaos Engineering. The literature recognizes the

difficulty of applying Fault Injection to software (e.g., when compared to hardware) and highlights

the importance of improving the usability of fault injection methods. Moreover, it recognizes the

potential in the interaction between Software Fault Injection and software security, which should

be further researched [32]. Some work has been done in applying fault injection to IoT to simulate

network errors and delays [57]. However, found work focuses mostly on hardware fault injection

[27, 25, 58].

21



22 Problem Statement

The literature review of fuzzing highlighted that it is considered a simple technique for testing

systems and has proven effectiveness in discovering real-world vulnerabilities [30]. Some authors

mention fuzzing as an effective and efficient method for vulnerability discovery [28], as well as

highlighting the security testing of network protocols as a significant concern. This research also

found several tools that may be useful for this work, despite not having appearing in scientific

literature [1, 56, 55, 38, 14, 39]. Furthermore, we found some work done in the application of

fuzzing to IoT [10, 29, 60] which showed that fuzzers made for or adapted to fuzz specific IoT

targets (e.g., protocols, devices or improved emulation) outperformed popular general-purpose

fuzzers.

Complimentary, we also researched about vulnerabilities found in IoT systems or that would

apply to them, which will help determine relevant attacks to perform and methodologies with

which to find vulnerabilities. This research resulted in finding some issues which may still be

exploitable and thus might be useful for this work (e.g., WiFi deauthentication attacks [7, 50] or

MQTT Denial of Service [53]).

In sum, after the literature review in Chapter 2 (p. 5), we found that Chaos Engineering’s appli-

cations are currently focused mainly on cloud infrastructure and improving a system’s availability,

without much focus in IoT systems or security aspects of dependability. Moreover, although Fault

Injection has seen some application in security research, the found work is more focused on hard-

ware and physical fault injection instead of on network fault injection. Furthermore, Fuzzing has

been proven to be effective in finding security vulnerabilities, already having some applications

to IoT, which shows it may be applicable to the problem under study. Finally, we already found

some security attacks performed on and applicable to IoT networks and devices which may be a

good starting point for this research.

3.2 Hypothesis and Validation

We define four IoT systems (cf. Table 3.1, p. 23), which are: NCBL, without Self-Healing mecha-

nisms nor Chaos Engineering being applied to it; NCSH, also without Chaos but with Self-Healing

capabilities; WCBL, which does not have Self-Healing mechanisms but to which Chaos Engineer-

ing is applied; and WCSH, which has both Self-Healing capabilities and also has Chaos applied to

it. The work developed in this dissertation aims to validate the following hypothesis:

H: The application of Chaos Engineering leads to a system with higher reliability

since we can (a) exercise self-healing mechanisms, and (b) know when these mecha-

nisms are not working correctly.

We can measure the exercise of Self-Healing in order to validate (a) by verifying that WCSH

behaves similarly to NCSH, since when Chaos is applied, the Self-Healing mechanisms in the

system are able to recover from the injected faults (which can be confirmed of being injected by

observing the measurably different input data). This assertion has as a pre-condition that NCBL



3.3 Scope 23

Table 3.1: Definition of four systems with and without Self-Healing mechanisms and Chaos En-
gineering application, for use in elaborating the hypothesis.

No Chaos (NC) With Chaos (WC)
Without Self-Healing (BL) NCBL WCBL

With Self-Healing (SH) NCSH WCSH

and WCBL must differ significantly in their behaviour, i.e., that the base system without Self-

Healing components is unable to recover from the injected faults, ensuring that the performed

Chaos Engineering is “chaotic” enough.

Furthermore, we can validate (b) by measuring that the functioning of the self-healing mech-

anisms. If the self-healing mechanisms are working correctly then: (b.1) The similarity of the

output between NCSH and WCSH will increase, and (b.2) the similarity between NCBL and WCBL

will decrease (i.e., applying Chaos to a system which does not have self-healing capabilities will

result in its behaviour differing from the baseline behaviour, without Chaos).

The aforementioned relationships are illustrated in Figure 3.1. NCBL and NCSH should have

a similar behaviour in order to confirm that the added self-healing mechanisms are not having

a meaningful impact in the system’s base behaviour. NCBL and WCBL should have a different

behaviour, in order to confirm that the applied chaos is sufficiently severe, impacting the base

system’s functioning. NCSH and WCSH should be similar, so that we verify that the self-healing

mechanisms are able to mitigate the injected faults.

NCBL WCBL

NCSH WCSH

≠
(chaos)

≈
(self-healing 
sanity check)

≈
(self-healing)

Figure 3.1: Relationships between systems defined in hypothesis.

3.3 Scope

This dissertation focuses on the application of Chaos Engineering to Self-Healing IoT systems.

Despite this, since the scope could be too broad if a large variety of systems were taken into

account, it was narrowed down to applying Chaos Engineering to an MQTT Broker, as well as

focusing on Self-Healing systems developed using Node-RED for validation.



24 Problem Statement

Furthermore, this work will not focus on furthering the self-healing area. Instead, the aim will

be of using previously existing self-healing solutions as part of this work’s validation.

In terms of target audience, this work may be useful for those considering the hardening of self-

healing capabilities in IoT systems. Additionally, the concepts applied by this work can be helpful

for fault injection in other technologies, since the process with which this work was developed is

also applicable to other technologies.

3.4 Summary

The problem of applying Chaos Engineering to Self-Healing Internet-of-Things systems in order

to validate their increased reliability poses several challenges. It is introduced in Section 3.1 (p. 21),

along with a knowledge gap analysis found in the literature review done in Chapter 2 (p. 5). Sec-

tion 3.2 (p. 22) presents the hypothesis that drives this work, as well as defining the driving concept

behind its validation.



Chapter 4

Validation

4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Proof-of-Concept Implementation . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Sanity Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4 Experimental Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.5 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.8 Hypothesis Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 Methodology

In order to validate this work’s hypothesis (cf. Section 3.2, p. 22), we have acted upon a thorough

process which consists of the following high-level phases:

1. Proof-of-Concept Implementation: We implemented a proof-of-concept extension to an

MQTT Broker to perform Chaos Engineering in MQTT communications;

2. Sanity Checks: The selected Self-Healing tooling (SHEN) was tested to ensure they per-

formed as expected in reduced test scenarios;

3. Scenario Definition: Several test scenarios and experiments for each of them were defined,

after careful consideration of ways to inject faults via Chaos Engineering in relevant sys-

tems;

4. Running the Experiments: The experiments were conducted in a 4-axis fashion (with and

without chaos, and with and without self-healing) with the collection of useful metrics in

order to analyse and compare the systems’ behaviours;

5. Experiment Discussion: We analysed the results of running the experiments in order to

conclude if the hypothesis’s claims still held after practical experimentation.

These phases will be further explored in the following sections of this chapter.

25



26 Validation

In order to develop and test systems with self-healing capabilities, we will make use of the

node-red-contrib-self-healing package1 by Dias et al.[17, 19], also represented as

SHEN. SHEN targets Node-RED, since the author’s work was motivated by it being open-source,

having widespread popularity, and having widespread adoption by the research community as a

target and base for other experiments. Node-RED2 is a flow-based visual programming tool which

provides a browser-based editor for flow editing. It is an open-source tool with a large focus on its

community due to its package-driven architecture which allows for easy extensibility by importing

external packages developed by other users. Furthermore, it allows deployment to several types of

platforms, namely IoT devices.

4.2 Proof-of-Concept Implementation

In order to support the validation of the hypothesis (cf. Section 3.2, p. 22), we developed additional

code for an existing MQTT Broker. These additions allowed us to use the MQTT Broker as a proxy

which was able to intercept and modify messages before they were broadcasted to subscribers of

a topic.

The architecture of an example system which makes use of the developed solution is show-

cased in Figure 4.1. A message emitted by a sensor is processed in the MQTT Broker, which

then transmits it to an IoT Rules Engine, that will be able to interact with an actuator through the

MQTT Broker once again. Furthermore, Figure 4.2 (p. 27) highlights some of the logic in the

developed Chaos Engineering additions for the MQTT Broker.

Figure 4.1: Example IoT system which uses the implemented solution.

This section will further elaborate on certain implementation details which may be relevant

for those attempting to replicate or expand upon the developed proof-of-concept.

4.2.1 MQTT Broker Middleware

We used the AEDES MQTT broker3 as a base project from which to expand. In order to be able to

convert the MQTT broker into an MQTT proxy, we introduced code which would intercept sub-

scribes, unsubscribes and publish requests and call our own code instead of the broker’s original

1https://github.com/jpdias/node-red-contrib-self-healing/
2https://nodered.org/
3https://github.com/moscajs/aedes

https://nodered.org/
https://github.com/moscajs/aedes


4.2 Proof-of-Concept Implementation 27

Figure 4.2: Chaos Engineering extension high-level logic.

functions.

After this, we developed a Chaos Engineering scaffolding which is able to modify messages

according to user-defined rules. These rules are able to use several operators based upon and

implemented with RxJS4. This allows the creation of powerful, extensible and modular pipelines

of operations that can be applied to MQTT packets that are published in a certain topic.

4.2.2 MQTT Broker Pipeline Operators

In order to ensure that the configuration was sufficiently powerful, we implemented several oper-

ators:

Map This operator mimics the Map function that many programming languages provide. It runs

the provided function, calling it with the current packet as a parameter. The value returned

by this function will be used as an argument in following pipeline operators;

Random Delay This operator adds a random delay in the specified interval to the messages in the

pipeline;

Buffer This operator buffers up to a maximum time interval and/or number of messages. After

the first of these two conditions is achieve, the captured messages are released all at once.

The condition can be either time or size based, and both can be provided simultaneously;

Random Drop This operator randomly drops some of the messages according to the specified

chance. Messages are dropped before exiting the broker, thus not being broadcasted for any

of the subscribers of the target topic;

These operators are based upon ReactiveX5. We believe that following an already existing

standard may be helpful for adoption of this software, as well as to simplify future extension.

4https://rxjs.dev/
5http://reactivex.io/

https://rxjs.dev/
http://reactivex.io/


28 Validation

4.2.3 JSON Configuration File

A JSON file must be used in order to configure the Chaos Engineering pipeline. This JSON should

have as its root element an array of objects, each defining a pipeline for a specific MQTT topic.

Each of these objects must contain a topic attribute with a string representing the MQTT topic

that this operator should be applied to, as well as an operators attribute.

The operators attribute is an array containing objects that define a set of operators (cf.

Subsection 4.2.2, p. 27) to apply in a pipeline fashion.

Besides specific operator arguments, there are two optional arguments of each pipeline defi-

nition: startAfter and stopAfter. These can be used to define the indexes between which

the Chaos Engineering pipeline will function. When the message index is in the specified interval

([startA f ter,stopA f ter] — the interval is inclusive), the Chaos Engineering pipeline is applied

normally. On the other hand, when the message index is outside this interval, the pipeline will not

be run and the topic will behave as a regular MQTT topic. Messages are zero-indexed, and their

indexes are topic-specific.

Several examples of Chaos Engineering configuration files that were used for the validation

experiments (cf. Section 4.6, p. 35) are included in Appendix B (p. 57).

4.2.4 Summary

The implemented proof-of-concept solution enables fault injection in IoT systems via the manip-

ulation of MQTT messages which are specified by user-defined configuration, resulting in Chaos

Engineering. Its extensible configuration is helpful in the creation of varied test scenarios for

validating this work’s hypothesis, as well as easily applying Chaos Engineering to any MQTT-

connected device.

4.3 Sanity Checks

In order to validate that the used self-healing extensions were working as expected, we imple-

mented several Sanity Check Experiments (SCE) which aimed to confirm that the chaos engi-

neering injected via the MQTT broker’s chaos pipelines correctly triggered SHEN’s probes and

recovery mechanisms.

Additionally, we performed other ad-hoc experiments in order to validate the correct function-

ing of all the used SHEN nodes.

4.3.1 Testing threshold-check (SCE1)

This sanity check experiment aimed to test the functionality of the threshold-check node.

Additionally, it was also helpful for some initial validation on the applicability of the Map operator

(cf. Subsection 4.2.2, p. 27) for changing message values.



4.3 Sanity Checks 29

Figure 4.3: SCE1 Node-RED Flow. This system emits temperatures within a range to a topic,
which are then read and checked to be inside the specification range.

As per Figure 4.3 (p. 29), this Node-RED flow represents a system which feeds itself with

temperature data from a fictional sensor that emits values inside its operating range. The “Ran-

dom value in spec interval” JavaScript node sets the message payload to a random integer

in the range [0,40], which is considered as the operating range for this sensor. Likewise, the

threshold-check node is configured so that msg.payload must be in this operating interval

for the message to be considered valid.

[{

"topic": "flow1/temperature",

"operators": [

{

"type": "map",

"func": "function (packet) {

const min = -15;

const max = 25;

const shift = Math.floor(Math.random() * (max - min + 1)) + min;

packet.payload = Buffer.from(

(parseInt(packet.payload.toString()) + shift)

.toString());

return packet;

}"

}

]

}]

Listing 1: Chaos Engineering Broker configuration for SCE1. Presented with added line-breaks
for ease of viewing.

Listing 1 presents the configuration used with the Chaos Engineering Broker (cf. Section 4.2, p. 26).

This configuration resulted in a random shift to the message payload value in a range of [−15,25].



30 Validation

As such, it is expected that several of the messages originally emitted by the sensor will result in

messages with payloads outside of the sensor’s specification.

In practice, we verified that the results matched our expectations. When messages were emit-

ted, they were inside the operating range. However, due to the Chaos Engineering pipeline that

was applied, some messages would be shifted to a value outside the operating range. These mes-

sages were correctly filtered by the threshold-check node, thus validating that it is behaving

as expected.

4.3.2 Testing timing-check (SCE2)

This sanity check experiment aimed to test the functionality of the timing-check node. This is

especially useful due to the node’s planned usage for SCE3.

Figure 4.4: SCE2 Node-RED Flow. This system emits temperatures in a steady timing which are
then fed to a timing-check node to verify their periodicity.

As per Figure 4.4, this Node-RED flow represents a basic system which feeds itself with

temperature data from a fictional sensor that emits values with a standard periodicity of one second.

Likewise, the timing-check node is configured with an expected period of one second.

[

{

"topic": "flow4/temperature",

"operators": [

{

"type": "randomDelay",

"min": 0,

"max": 500

}

]

}

]

Listing 2: Chaos Engineering Broker configuration for SCE2.



4.3 Sanity Checks 31

In order to validate this node’s behaviour, we created another flow mirroring the one above,

which used a different topic. To one of the topics, we applied no Chaos Engineering operators.

To the other, we applied a Random Delay operator (cf. Listing 2, p. 30). In theory, the result of

this should be: the original topic has messages in the expected periodicity, and the mirrored topic

has its messages delayed by a random factor in the range of zero to half a second. We expect

that the timing-check node for the original system remains in the “Normal” state, while its

counterpart in the second system is expected to alternate between “Normal”, “Too Fast” and “Too

Slow” states.

In practice, our expectations were met. By subscribing the used MQTT topics, we were able

to confirm the time elapsed between messages and thus further validate timing-check’s correct

functioning for both systems.

4.3.3 Testing compensate (SCE3)

This sanity check experiment has the goal of testing the functionality of the compensate node.

It will be tested by using two systems: one with a reliable topic, and a second system similar to

the first one, with an unreliable topic which has a chance of losing messages that are published in

it.

Figure 4.5: SCE3 Node-RED Flow. This system emits a fixed temperature to a topic, whose
periodicity is checked.

As per Figure 4.5, this Node-RED flow represents a basic system that feeds a temperature

reading in a fixed interval to a topic. Then, it listens to this topic and using both a timing-check

and a trigger node, confirm the periodicity of the output messages both before and after the

compensate node. The compensate node has been configured with a timeout of 2 seconds and

a compensate strategy of "last". The timing-check and trigger nodes are configured with

an expected periodicity of one second.

If the node under test is behaving correctly, it is expected that even when the timing of the

received messages is slower than expected (e.g., due to losing some messages), the message peri-

odicity of the node’s output will remain stable. It is possible to compare the outputs and states of



32 Validation

the timing-check and trigger nodes before and after the compensate node to verify that

this is happening correctly.

[{

"topic": "flow6/reliable",

"operators": []

},

{

"topic": "flow6/unreliable",

"operators": [

{

"type": "randomDrop",

"chance": 0.70

}

]

}]

Listing 3: Chaos Engineering Broker configuration for SCE3. Messages published in the unreli-
able topic have a 70% chance of being dropped, while messages in the reliable topic do not have
any operators applied, operating normally.

Listing 3 presents the configuration used with the Chaos Engineering Broker (cf. Section 4.2, p. 26).

This configuration results in the reliable topic operating normally, and the unreliable topic having

a 70% chance to drop messages, simulating an unstable network.

In practice, we verified that the results matched our expectations. When messages were

dropped the compensate node correctly injected messages in the flow according to its com-

pensate strategy, resulting in the timing for the nodes after it being kept steady. This validates that

the compensate node is working as expected.

4.4 Experimental Dataset

The dataset6 for the experiments was taken from DeVito et al. [12]. We used this dataset since

it was collected using a real system, thus it makes sense to consider it for mimicking the real

operation of an IoT system. Despite this dataset consisting of hourly averages, we consider the

measurements as peak measurements for the purposes of the validation experiments, since the

objective is to mimic a real-time IoT system that takes action as soon as a value goes beyond a

certain threshold.

The data was filtered and converted using a Python script developed with recourse to the

pandas library. We used the first 120 readings of NOx(GT). Since these readings are average

readings and three different readings for three different sensors are necessary, the dataset was

modified: we added two extra readings for each sensor value by adding random integer values in a

range. Thus, the second and third sensor readings resulted from the aforementioned random shift

6DeVito et al. [12] dataset: https://archive.ics.uci.edu/ml/datasets/Air+Quality# and
http://archive.ics.uci.edu/ml/machine-learning-databases/00360/



4.5 Scenarios 33

in the intervals of [−10,10] and [−15,15], respectively. The final dataset containing the readings

for the three sensors, as well as an index representing the reading number was saved to a separate

csv file. The original dataset was carefully analysed by the authors in the scope of their work in

[12]. Additionally, dataset metrics are available in Appendix A (p. 55).

The filtered dataset includes 114 instead of 120 values since some are missing in the original

dataset. This will produce some inherent chaos, which we believe to be acceptable and even

helpful for the experiment.

Since the specification of the sensor’s ranges is not clear, it is possible to consider a reference

sensor 7 which has a hardware range of 0-1 ppm (0-1000 ppb) and a minimum detection limit of

0.005 ppm (5 ppb). Thus, only values ranging from 5 to 1000 ppb should be considered valid.

As for the dataset’s context, “the device was located on the field in a significantly polluted

area, at road level, within an Italian city.” [12].

Despite there being no clear standards for NO2 concentration levels, the USA-based entity

EPA mentions that 0.053ppm should be the average 24-hour limit for NO2 in outdoor air8. As

such, given that 1 ppm is 1000 ppb, a threshold of 53 ppb may be considered for a warning of

potentially harmful levels of NOx. Additionally, another threshold can be naïvely established

by multiplying the aforementioned limit by 4, resulting in 212 ppb, which can be considered an

average 6-hour limit for NO2 in outdoor air. We considered this a threshold for a higher level of

danger and thus have attributed to it an "alarm-level" alarm state.

4.5 Scenarios

In order to validate the previously presented hypothesis (cf. Section 3.2, p. 22), we evaluated the

impact of the developed proof-of-concept Chaos Engineering toolkit (cf. Section 4.2, p. 26) using

Node-RED flows, communicating over MQTT.

The experiments were done with Node-RED (ver. 1.3.2), and the modified AEDES MQTT

broker was ran with NodeJS (ver. 14.15.5). The NodeJS scripts created to run the experiments

were ran with the same version as the broker. The duration of each experiment was around 10

minutes.

Two experimental scenarios are the foundation for our experiments:

S1 A set of three NOx sensors feed into an alarm, which emits alerts for certain thresholds of

NOx concentration values. Chaos Engineering is applied as faults in the messages’ values,

simulating sensor malfunctions.

S2 Similar to S1, instead applying Chaos Engineering to the messages’ timings, simulating faults

in the sensors and the network.

These scenarios mirror problems that occur in real systems. Sailhan et al.[43] categorize

faults in a fashion similar to the one done in this work (e.g., stuck-at faults and spike faults).
7Reference NO2 sensor: https://www.aeroqual.com/product/nitrogen-dioxide-sensor-0-1ppm
8“EPA National Ambient Air Quality Standards list 0.053ppm as the avg. 24-hour limit for NO2 in outdoor air.” [2]



34 Validation

Furthermore, research has been developed in the area of Self-Healing and autonomic computing

related to these types of faults [20, 17, 19].

Three Node-RED flows were implemented, each representing a different system: the base-

line system, without any self-healing additions, focusing solely on the system’s core functionality,

represented as BL; the first self-healing system, represented as SH1, which extends upon BL’s

capabilities with self-healing components that may help it recover from faults; and the second self-

healing system, represented as SH2, which further extends upon SH1 with more self-healing com-

ponents which may help the system recover from faults related to the messages’ periodicity. The

self-healing flows use the node-red-contrib-self-healing package9 by Dias et al.[19]

first presented in Section 4.1 (p. 25).

For S1, we used BL and SH1, while for S2 we used BL and SH2. BL was configured with

the respective topic that was being used for the specific scenario.

For each scenario, three sensors with NOx readings will be the input, and the expected output

is a value in an alarm MQTT topic. This alarm can have the following values, in increasing

urgency: 0 (no risk), 1 (warning) and 2 (alert). After analysing the concentrations in the dataset

(cf. Section 4.4, p. 32), we concluded that the threshold for the warning level should be of 53 ppb

and the threshold for the alarm level should be 212 ppb. As such, the alarm’s expected behaviour

is that:

• For values under 53, the alarm should not be triggered (0);

• For values above 53 but below 212, the alarm should be triggered in a warning state (1);

• For values above 212 the alarm should be triggered in the alarm state (2).

Figure 4.6: Baseline System Node-RED Flow (BL). This system parses the reading received from
the sensors and sends the respective alarm level as output, filtered by a report-by-exception node
to ensure that values are only emitted when the current alarm level changes. The topics in this
figure are set to those of Scenario 1 but are altered depending on the Scenario being tested.

In regards to the Node-RED flow implementation of the SH1 system (cf. Figure 4.7, p. 35):

the join and compensate nodes are configured with a timeout of 6 seconds since the messages

are expected to have a periodicity of 5 seconds.

In regards to the Node-RED flow implementation of the SH2 system (cf. Figure 4.8, p. 35):

the join and compensate nodes are configured with a timeout of 6 seconds and the debounce

nodes are configured with a timeout of 4.5 seconds since the messages are expected to have a

periodicity of 5 seconds.
9https://github.com/jpdias/node-red-contrib-self-healing/



4.6 Experiments 35

Figure 4.7: First Self-Healing System Node-RED Flow (SH1). This system expands upon BL
by introducing self-healing capabilities via SHEN nodes. It filters extraneous messages that are
outside the expected operating range, compensates for missing values after a certain timeout, joins
messages so that they are considered in groups of 3, considers majority of values with a minimum
of 2 "agreeing" values in a 25% value difference margin, and compensates for readings for which
there is no majority with a mean of the previous readings, besides the basic functionality already
implemented by BL.

Figure 4.8: Second Self-Healing System Node-RED Flow (SH2). This system expands upon SH1
by introducing debounce nodes which can filter out extraneous messages based on the expected
timing of the system’s regular messages, besides the functionality already implemented by SH1.

4.6 Experiments

This section will detail the experiments that were conducted for each experimental scenario. We

briefly elaborate upon the several experiments and their respective configuration.

4.6.1 Value Changing Experiments (S1)

Four experiments were done for S1. Each of these used a separate chaos configuration so that

different operations were applied to the same dataset of messages. For each experiment, messages



36 Validation

were relayed to both BL and SH1 simultaneously to ensure that both systems received the same

input and that their outputs (alarm level) could be compared meaningfully with recourse to a Node-

RED flow that mirrored the messages that entered a specific input topic. This also ensures that

operators which rely on the broker’s random number generation do not produce different results

for each flow (as the operator is not re-ran). Chaos is applied to messages 10 thru 110 so that

the system has time to gain stability before entering a chaotic state and can also resume normality

after chaos is applied.

The experiments are as follows:

S1E1 No chaos is applied, as this is the base case. The chaos configuration is empty. This

experiment serves as a way to compare the behaviour of BL with SH1 in a situation in which

the system functions normally, as well as to provide a baseline with which to compare the

functioning of the two systems when chaos is applied with when it isn’t, comparing the

system’s regular behaviour with its behaviour in the presence of faults.

S1E2 A constant fault is injected in sensor 3’s readings. As a result, this sensor’s readings are

altered to be stuck at the upper operating bound (1000 ppb).

S1E3 Readings done by sensor 3 have a 40% chance to be multiplied by a random factor in the

range [0.2,2.2], resulting in "spikes" for sensor values. The factor is randomized for each

spike that occurs.

S1E4 Faults are injected in sensor 3 so that it has a 20% chance to lose messages. The system

does not received lost messages, as these are suppressed before leaving the MQTT broker.

The used Chaos Engineering configuration files (cf. Subsection 4.2.3, p. 28) are included in

Appendix B (p. 57).

In order to collect insights on the behaviour of the systems under test, their input and output

MQTT topics are monitored and logged during the course of the experiment.

4.6.2 Timing Experiments (S2)

Two experiments were conducted for S2. Both experiments were run in different circumstances,

created with different script files used for running the experiments with different setups. Similarly

to S1, messages were delivered simultaneously to BL and SH2 via an auxiliary Node-RED flow,

which mirrored the received messages to the input topics of BL and SH2. Furthermore, Chaos is

applied to messages 10 thru 110 so that the system can gain stability before faults are injected and

can resume normality after Chaos is applied.

The experiments are defined as follows:

S2E1 No faults are injected for this experiment. Its purpose is to provide a method for confirming

that the system’s base functionality is correctly implemented for both BL and SH2, as well

as to provide a base experimental output with which to compare the behaviour of the systems

in following experiments.



4.7 Discussion 37

S2E2 In order to introduce additional noise into the system, each message for sensor 3 is repeated

after 6 seconds. Since the periodicity of the system’s readings in regular circumstances is of

5 seconds, the repeated message will be output in close proximity to the next reading.

Since it is more difficult to visualize the effect of the injected faults in S2E2, Figure ?? (p. ??)

depicts the message flow for this experiment as a marble diagram. The top diagram shows a regular

message flow, with no faults being injected, and the bottom diagram is the result of applying the

operators that are applied in S2E2 to the original messages.

Figure 4.9: Marble diagram of messages for S2E2. The top diagram depicts the regular flow of
messages, while the bottom diagram shows the messages after the fault injection done for S2E2.

In order to collect insights on the behaviour of the systems under test, their input and output

MQTT topics are monitored and logged during the course of the experiment.

4.7 Discussion

The scenarios and respective experiments were conducted, being the input and output messages of

every used topic monitored. The following sections present and discuss the experimental results

we obtained.

To analyse these experiments’ results, the overlap between two outputs ("output" is considered

the result of running an experiment for a specific system, e.g., running S1E1 for BL or SH1) has

been calculated using a helper script. This metric, mentioned as "overlap percentage", represents

the overlap between the ranges of alarm states for two different experimental executions. Any two

outputs of experiment executions may be compared by using the logs generated after performing

the experiments. While this metric may not be the most accurate (especially if timing faults are

injected instead of only value-changing faults), it is an uncomplicated and surefire way to compare

two systems’ behaviours since we are comparing the final behaviour by comparing the outputs of

the systems directly (i.e., if the alarm state is supposed to be in the warning state at a given

timestamp for S1E1 and it is not, it may be indicative of a fault that was not correctly handled by

the system).

Furthermore, in order to complement the analysis done using the overlap percentage, we calcu-

lated the number of alarm level state transitions for each experiment output. These are calculated

by counting the number of times that the system transitions to each alarm level. This aims to

enable the comparison of the stability of two different systems, i.e., even if two systems for S1E2

have a high overlap percentage with their counterparts in S1E1, one may be more stable than the

other, since there may be frequent extraneous alarm level state transitions. These extraneous tran-

sitions are not easy to notice using the overlap percentage since they are frequently accompanied



38 Validation

straight away by a transition to the correct alarm state for that given timestamp and thus do not

significantly impact the overlap percentage. Thus, this metric may provide further insight for cases

in which the previously detailed metric would otherwise result in inconclusive experiments.

4.7.1 Value Changing Experiments (S1)

These experiments focus on evaluating the system’s ability to detect and recover from faults in-

jected in the sensor messages, with a particular focus on their values.

4.7.1.1 S1E1

This experiment serves as a baseline case to establish the systems’ behaviour in the presence

of just the original dataset (no additional faults are injected). It is also insightful to be able to

compare the behaviour of BL with that of SH1 since we can then better understand the self-healing

mechanisms’ recovery profile when there is no added entropy.

We expect that the systems under observation remain stable during this experiment since there

are no injected faults, correctly outputting the respective alarm levels for the sensor readings’

thresholds. Despite both systems likely having similar alarm levels over time, it is also expected

that SH1’s alarm level output will be more stable than that of BL. This is due to the latter not

implementing any type of consensus or majority voting and instead simply using the received

values directly as a stream.

0 100 200 300 400 500
time (s)

0

100

200

300

400

500

NO
x 

(p
pb

)

Alarm Level
0
1
2

Figure 4.10: NOx concentration and alarm status without self-healing (S1E1BL)

Figure 4.10 shows the experiment results for BL, while Figure 4.11 (p. 39) shows the exper-

iment results for SH1. Despite the alarm output being very similar for both experiment outputs,

its stability is higher for SH1. This can be observed by the lack of quick alarm state changes

for borderline values for SH1, which occur several times for BL (e.g., around 35 to 40 seconds

into the experiment or around 415 to 420 seconds). The cause of this is likely to be BL’s lack of



4.7 Discussion 39

0 100 200 300 400 500
time (s)

0

100

200

300

400

500
NO

x 
(p

pb
)

Alarm Level
0
1
2

Figure 4.11: NOx concentration and alarm status with self-healing (S1E1SH1)

consensus mechanism, given that this system instead simply considers the most recent reading in

order to determine the alarm state. When the three sensors report in quick succession, if the values

of their readings are near the alarm level thresholds, it is understandable to observe this fluctuation

(which is what occurred in the examples above).

S1E1BL∩S1E1SH1 = 97.3% (4.1)

The output similarity is confirmed by the calculated alarm level overlap percentage (cf. Sec-

tion 4.7, p. 37) between these two outputs, which is 97.3% (cf. Equation 4.1). This is also a

good sanity check to confirm that the addition of self-healing capabilities to the base system does

not significantly change the alarm status output, which means that comparisons for SH1 between

S1E1 and further experiments will be meaningful in validating correct self-healing recovery of

injected faults.

Table 4.1: Alarm level state transitions for S1E1.

S1E1BL S1E1SH1

OFF (0) 8 4
WARN (1) 20 13
ALERT (2) 11 8
Total 39 25

Table 4.1 clearly supports the previous claim that SH1 provides an improvement in system

stability in comparison to BL, due to the lower number of alarm state transitions.

This experiment also confirms that both BL and SH1 correctly implement the expected core

functionality (triggering the different alarm levels for different sensor reading thresholds), given

that the alarm level at a given point in time (cf. Section 4.4, p. 32) corresponds to the sensor



40 Validation

readings’ distribution along the thresholds (represented in the mentioned figures by the horizontal

lines).

4.7.1.2 S1E2

This experiment simulates a fault in which a sensor malfunctions by continuously emitting read-

ings in its top operating bound.

We expect that BL will have an inconsistent output, especially if the third sensor is frequently

the last to emit its reading, even if only by a slight delay. Due to relying on a majority of at least

2 values to decide on the alarm level to emit, we expect that SH1 will be able to withstand the

applied Chaos Engineering.

0 100 200 300 400 500
time (s)

0

200

400

600

800

1000

NO
x 

(p
pb

) Alarm Level
0
1
2

Figure 4.12: NOx concentration and alarm status without self-healing (S1E2BL)

Figure 4.12 shows the experiment results for BL, while Figure 4.13 (p. 41) shows the exper-

iment results for SH1. As expected, the faults that the applied Chaos Engineering injects are too

severe for the original system. BL malfunctions, quickly alternating between alarm states and

especially spending most of the experiment’s time in the highest alarm level. Meanwhile, SH1
seems to have successfully recovered from the injected faults, having a near-perfect performance

in comparison to this system’s output for S1E1.

Table 4.2: S1E2 Overlap Percentages in comparison with the base experiment (S1E1).

S1E1BL S1E1SH1

S1E2BL 40.0% -
S1E2SH1 - 98.1%

These statements are supported by Table 4.2, which shows that SH1 has a similar behaviour

when chaos is and is not applied, with an overlap of 98.1%. Furthermore, BL has a significantly

lower overlap percentage of 40.0%.



4.7 Discussion 41

0 100 200 300 400 500
time (s)

0

200

400

600

800

1000
NO

x 
(p

pb
) Alarm Level

0
1
2

Figure 4.13: NOx concentration and alarm status with self-healing (S1E2SH1)

The previous statements are further supported by Table 4.3 (p. 42), in which S1E2BL is much

more unstable in comparison to S1E1BL, being the total number of state transitions for this ex-

periment 148, while there were only 39 state transitions for the base experiment. Furthermore,

the number of state transitions for SH1 has increased only marginally, going from 25 in the base

experiment to 27 in this experiment.

Therefore, S1E2 demonstrates that the original system cannot handle "sensor-stuck-at"-type

errors since the behaviour of BL is considerably affected, which validates that the performed

Chaos Engineering was meaningful enough to disturb the system’s regular operation. On the other

hand, SH1 can recover from the injected faults, having a remarkably similar behaviour to that in

S1E1 (behaving similarly to when the system did not have any chaos injected).

4.7.1.3 S1E3

This experiment simulates a fault in which a sensor malfunctions by occasionally “spiking” its

readings. This is simulated by multiplying a reading by a random factor (in the range [0.2,2.2]).

This fault may naturally occur when a sensor is running out of battery, for example.

We expect that BL may output incorrect alarm values (in comparison to its behaviour in S1E1),

especially when the altered values switch between alarm level thresholds. On the other hand, SH1
should be able to handle the changes in values since even if one of the three sensors outputs a value

considerably different from the others, it will be discarded and the other two sensors’ values will

be considered instead, due to its usage of the replication-voter node from the SHEN library.

Figure 4.14 (p. 42) shows the experiment results for BL, while Figure 4.15 (p. 42) shows the

experiment results for SH1. BL has had a notably good performance in the presence of the sensor

reading spikes (both when increasing and decreasing the read value). However, there were still

several situations in which the sensor reading spike caused the output alarm level to differ from



42 Validation

Table 4.3: Alarm level state transitions for S1E2.

S1E2BL S1E2SH1

OFF (0) 10 5
WARN (1) 68 14
ALERT (2) 70 8
Total 148 27

0 100 200 300 400 500
time (s)

0

100

200

300

400

500

600

NO
x 

(p
pb

)

Alarm Level
0
1
2

Figure 4.14: NOx concentration and alarm status without self-healing (S1E3BL)

0 100 200 300 400 500
time (s)

0

100

200

300

400

500

600

NO
x 

(p
pb

)

Alarm Level
0
1
2

Figure 4.15: NOx concentration and alarm status with self-healing (S1E3SH1)

the expected value in the base case (without Chaos). On the other hand, SH1 has held up to our

expectations, handling the injected faults quite well and almost perfectly matching the output of

the base case.



4.7 Discussion 43

Table 4.4: S1E3 Overlap Percentages in comparison with the base experiment (S1E1).

S1E1BL S1E1SH1

S1E3BL 76.3% -
S1E3SH1 - 97.4%

These statements are supported by Table 4.4, which shows that SH1 has a similar behaviour

when Chaos is and is not applied, with a near-perfect overlap of 97.4%, while BL has a somewhat

lower overlap percentage of 76.3%.

Table 4.5: Alarm level state transitions for S1E3.

S1E3BL S1E3SH1

OFF (0) 8 4
WARN (1) 26 13
ALERT (2) 17 8
Total 51 25

Table 4.5 further supports the previous statements. Despite the difference not being as remark-

able as that of the overlap percentages, it is of note to mention that SH1 has the exact same number

of alarm level state transitions as it did in S1E1 while the number of state transitions has slightly

increased for BL.

Despite this experiment not causing as significant a variation of the behaviour of BL as S1E2,

we were still able to observe a mismatch between the behaviour of this system between the base

case and this experiment, even if to a lesser extent. This shows that for the system under study,

these faults are not as severe as those injected in S1E2. Nevertheless, due to the decline in the

overlap percentage for BL in comparison with S1E1, we can conclude that the faults injected

using Chaos Engineering were significant enough to affect the system’s correct functioning.

As such, since SH1 displayed a performance with much greater similarity in comparison to

the base case when Chaos was not applied, we are able to confirm that for this experiment the

presence of self-healing capabilities are beneficial for the system’s correct operation.

4.7.1.4 S1E4

This experiment simulates a fault in which the sensor loses some readings. This fault may naturally

occur when a sensor is disconnected, has an intermittent power supply, or the network is unstable.

We expect that BL may report erroneous alarm values (compared to the base experiment,

S1E1), especially when the missing values are in proximity to the alarm thresholds. SH1 should

be able to handle the injected faults by compensating the missing values with previous ones.

Figure 4.16 (p. 44) shows the experiment results for BL, while Figure 4.17 (p. 44) shows the

experiment results for SH1. BL has shown a great ability to handle the loss of some readings,

being that the alarm output is quite similar to the one in S1E1. SH1 is also able to handle the loss

of readings, similarly having almost the same behaviour as in the base case. After further analysis,



44 Validation

0 100 200 300 400 500
time (s)

0

100

200

300

400

500

NO
x 

(p
pb

)

Alarm Level
0
1
2

Figure 4.16: NOx concentration and alarm status without self-healing (S1E4BL)

0 100 200 300 400 500
time (s)

0

100

200

300

400

500

NO
x 

(p
pb

)

Alarm Level
0
1
2

Figure 4.17: NOx concentration and alarm status with self-healing (S1E4SH1)

this may be attributed to the fact that since the chance of failure was low, not many readings were

suppressed. Furthermore, since the values for different sensors in the original dataset are in great

proximity to one another, even heavy suppression of values from one of the sensors would likely

result in even the naïve BL system being able to output the expected alarm values for most of the

experiment’s duration.

These statements are supported by Table 4.6 (p. 45), which shows that SH1 has a similar

behaviour when chaos is and is not applied, with a near-perfect overlap of 99.8%. Furthermore,

BL has a slightly lower overlap percentage of 98.7%.

The previous claims are further supported by Table 4.7 (p. 46), in which we may observe that

the number of state transitions for both systems are identical to those that occurred in S1E1.



4.7 Discussion 45

Table 4.6: S1E4 Overlap Percentages in comparison with the base experiment (S1E1).

S1E1BL S1E1SH1

S1E3BL 99.8% -
S1E3SH1 - 98.7%

In sum, this experiment did not cause a significant enough deviation from the base experi-

ment’s behaviour for BL, which is corroborated by the high overlap percentage for BL between

S1E1 and S1E4 (S1E1BL∩S1E4BL = 98.7%), as well as the fact that the number and type of alarm

state transitions are identical to those of S1E1 (cf. Table 4.7, p. 46). As such, and also given the

aforementioned analysis of this experiment’s results, we conclude that this dataset may not be the

best candidate for this type of fault injection. Furthermore, it may be necessary to have a higher

chance of message suppression in order for the injected faults to become more meaningful.

4.7.2 Timing Experiments (S2)

The experiments detailed in the following sections focus on evaluating the system’s ability to

detect and recover from faults injected in the timing of the sensors messages.

4.7.2.1 S2E1

This experiment serves as a baseline to establish the systems’ behaviour in the presence of just

the original dataset (no additional faults are injected). It is also insightful to be able to compare

the behaviour of BL with that of SH2 since we can then better understand the self-healing mech-

anisms’ recovery profile when there is no added entropy. This experiment is extremely similar to

S1E1 in its purpose, and its aim is to confirm that the additions made to SH1 do not impact the

core functionality of the system (much like S1E1 was meant to confirm this by comparing BL and

SH1 in a stable environment).

We expect that the systems under observation remain stable during this experiment since there

are no injected faults, correctly outputting the respective alarm levels for the sensor readings’

thresholds. Despite both systems likely having similar alarm levels over time, it is also expected

that SH2’s alarm level output will be more stable than that of BL. This is due to the latter not

implementing any type of consensus or majority voting and instead simply using the received

values directly as a stream.

Figure 4.18 (p. 46) shows the experiment results for BL, while Figure 4.19 (p. 46) shows

the experiment results for SH2. Despite the alarm output being very similar for both experiment

outputs, its stability is higher for SH2. This can be observed by the lack of quick alarm state

changes for borderline values for SH2, which occur several times for BL (e.g., around 35 to 40

seconds into the experiment or around 415 to 420 seconds). The cause of this is likely to be BL’s

lack of consensus mechanism, given that this system instead simply considers the most recent

reading in order to determine the alarm state. When the three sensors report in quick succession,



46 Validation

Table 4.7: Alarm level state transitions for S1E4.

S1E4BL S1E4SH1

OFF (0) 8 4
WARN (1) 20 13
ALERT (2) 11 8
Total 39 25

0 100 200 300 400 500
time (s)

0

100

200

300

400

500

NO
x 

(p
pb

)

Alarm Level
0
1
2

Figure 4.18: NOx concentration and alarm status without self-healing (S2E1BL)

0 100 200 300 400 500
time (s)

0

100

200

300

400

500

NO
x 

(p
pb

)

Alarm Level
0
1
2

Figure 4.19: NOx concentration and alarm status with self-healing (S2E1SH2)

if the values of their readings are near the alarm level thresholds, it is understandable to observe



4.7 Discussion 47

this fluctuation (which is what occurred in the examples above).

S2E1BL∩S2E1SH2 = 97.4% (4.2)

The output similarity is confirmed by the calculated alarm level overlap percentage (cf. Sec-

tion 4.7, p. 37) between these two outputs, which is 97.4% (cf. Equation 4.2). This is also a

good sanity check to confirm that the addition of self-healing capabilities to the base system does

not significantly change the alarm status output, which means that comparisons for SH2 between

S2E1 and further experiments will be meaningful in validating correct self-healing recovery of

injected faults.

Table 4.8: Alarm level state transitions for S2E1.

S2E1BL S2E1SH2

OFF (0) 8 4
WARN (1) 20 13
ALERT (2) 11 8
Total 39 25

Similarly to S1E1, Table 4.8 clearly supports the previous claim that SH2 provides an im-

provement in system stability in comparison to BL, as shown by the lower number of alarm state

transitions.

This experiment also confirms that both BL and SH2 correctly implement the expected core

functionality (triggering the different alarm levels for different sensor reading thresholds), given

that the alarm level at a given point in time (cf. Section 4.4, p. 32) corresponds to the sensor

readings’ distribution along the thresholds (represented in the mentioned figures by the horizontal

lines).

4.7.2.2 S2E2

In order to introduce additional noise into the system, this experiment simulates a fault in which

messages for a sensor are repeated after a certain delay (6 seconds). Since the periodicity of the

system’s readings in ordinary circumstances is of 5 seconds, the repeated message will be output

in close proximity to the next reading.

We expect that BL will have an output that is less stable than it was for S2E2 due to the injected

faults. It is not easy to predict how much this will affect the system. However, we believe it may

be problematic for BL since it does not have any concept of message timing. On the other hand,

SH2 should be able to cope with the injected faults without much issue due to the debounce

nodes that it contains, which will filter out the additional messages.

Figure 4.20 (p. 48) shows the experiment results for BL, while Figure 4.21 (p. 48) shows the

experiment results for SH2. BL performed significantly better than expected, despite struggling at

times when messages were near the alarm level thresholds, since repeating the previous message

would cause the system to output the previous alarm level once again until it received the following



48 Validation

0 100 200 300 400 500
time (s)

0

100

200

300

400

500

NO
x 

(p
pb

)

Alarm Level
0
1
2

Figure 4.20: NOx concentration and alarm status without self-healing (S2E2BL)

0 100 200 300 400 500
time (s)

0

100

200

300

400

500

NO
x 

(p
pb

)

Alarm Level
0
1
2

Figure 4.21: NOx concentration and alarm status with self-healing (S2E2SH2)

message and went back to the expected state. This may be caused by the fact that the periodicity

of the sensor readings messages is quite high and thus whenever a fault is injected, it is not "in

effect" for a long duration. Furthermore, as expected, SH2 was able to cope with the applied Chaos

Engineering quite well, having a near-perfect behaviour in comparison to the base experiment

(S2E1).

These statements are supported by Table 4.9 (p. 49), which shows that SH2 has a similar

behaviour when chaos is and is not applied, with an overlap of 95.7%. Furthermore, BL has a

slightly lower overlap percentage of 83.4%.

Despite the high overlap percentages for BL (cf. Table 4.9, p. 49), Table 4.10 (p. 50) shows that

for S2E2, BL has output nearly two times the amount of alarm level state transitions in comparison



4.8 Hypothesis Evaluation 49

Table 4.9: S2E2 Overlap Percentages in comparison with the base experiment (S2E1).

S2E1BL S2E1SH2

S2E2BL 83.4% -
S2E2SH2 - 95.7%

to its performance in S2E1.

S2E2 shows that despite BL having had a slightly worse performance when compared to S2E1,

the difference in performance (show by the overlap percentage) is not very large. Despite this,

since SH2’s performance was better, we may attribute its better ability to cope with the injected

faults to its additional Self-Healing capabilities. Furthermore, BL also had a noticeably worse

performance in regards to the number of alarm level state transitions in comparison to SH2 (cf.

Table 4.10, p. 50). Finally, while it is not easy to conclude if this experiment caused a significant

enough deviation from the base experiment’s behaviour for BL judging solely based on the overlap

percentage, the difference in alarm level state transition for BL in comparison to S1E1 provides

evidence that the injected Chaos has caused issues on the baseline system which the self-healing

system is able to address.

4.8 Hypothesis Evaluation

The validation process described in this chapter aimed to prove the hypothesis presented in Sec-

tion 3.2 (p. 22). Given the experimental results, we can conclude that we focused on the hypothe-

sis’ core ideas, the exercise of Self-Healing mechanisms using Chaos Engineering.

S1E1, S1E2, S1E3, S2E1, and S2E2 allowed us to confirm our hypothesis, concluding that:

(1) the self-healing systems (SH1 and SH2) do not deviate too much in behaviour from the baseline

system (BL); (2) the faults injected via Chaos Engineering are meaningful since there is a deviation

on the baseline system in comparison to the base experiment when no Chaos is being injected; (3)

when the Chaos is meaningful, the self-healing systems were able to recover from it, replicating the

original behaviour (when no Chaos was present) despite the injected Chaos, and thus confirming

that the Self-Healing mechanisms were being exercised.

On another hand, S1E4 was equally useful in understanding that it is paramount for the be-

haviour of BL to be noticeably different when faults are being injected in comparison to the regular

operating circumstances. This factor made it so that we considered this experiment inconclusive.

Nevertheless, it has helped validate that it is necessary to find this stark difference in expected

versus observed output for the baseline system. Otherwise, one cannot be sure if the Self-Healing

components are doing any work at all, since a naïve system would already be able to "recover"

from the injected faults well enough.

It is also noteworthy that for the created scenarios, due to the used dataset (cf. Section 4.4, p. 32),

some types of chaos did not result in much instability. This is due to the fact that all three sensors

output readings with values in close proximity to each other. As such, if one or even two sensors

fail, it is likely that a naïve system (e.g., BL) will still perform as expected, outputting the correct



50 Validation

Table 4.10: Alarm level state transitions for S2E2.

S2E2BL S2E2SH2

OFF (0) 12 4
WARN (1) 36 13
ALERT (2) 25 8
Total 73 25

alarm levels for most cases. This is an indicator that further research should be done with other

types of datasets, as well as different types of injected faults via Chaos Engineering.

Finally, it is also of note to mention that from the observed results during the experiments,

we can conclude that both self-healing systems (SH1 and SH2) are able to cope with even drastic

faults in one sensor, as long as two others remain in working condition.

4.9 Summary

This chapter presents the results from the validation process of the developed solution, as well as

this work’s hypothesis. Section 4.1 (p. 25) starts by defining the methodology used for validation,

and Section 4.5 (p. 33) defines the experimental scenarios, also providing some insight on the used

dataset.

Furthermore, Section 4.6 (p. 35) further details the experiments for each scenario and their

purpose, and Section 4.7 (p. 37) explores these further by showcasing the experiments’ results and

starting some analysis and discussion upon them.

Finally, in Section 4.8 (p. 49), this work’s hypothesis is revisited, and we build upon the

experimental results to validate our hypothesis.

Furthermore, the validation process was helpful in identifying possibilities for improving the

implemented solution. We developed several companion scripts, especially for collecting data

and generating graphs to support the validation process. An especially relevant addition made

due to the evaluation process was that of the startAfter and stopAfter attributes for Chaos

Engineering configuration due to the need of limiting the application of the Chaos Engineering

pipeline to a specific interval of messages.



Chapter 5

Conclusions

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1 Conclusions

As IoT devices and systems become commonplace in everyday life, it is increasingly important

that they work correctly. Failures in their functioning may result in consequences ranging from

slight discomfort to life-threatening situations. Fault-tolerant systems have been a subject of re-

search for some time in order to tackle these issues. These systems have increased reliability due

to being able to handle faults that may occur. Additionally, more recently, approaches based on

autonomic computing and self-healing have been introduced, providing valuable tools to handle

and recover from failures in complex IoT systems.

Due to the complexity and heterogeneity of Internet-of-Things systems, as well as the lack

of technical knowledge of most of their users, it is becoming paramount that faults and issues of

IoT devices and systems are fixed or mitigated without the need of technical intervention by the

users. Therefore, the application of autonomic computing and self-healing is becoming progres-

sively relevant. As consequence, the need also arises to ensure that these capabilities are working

correctly, further increasing the confidence in the adequate functioning of complex IoT systems.

The literature review showed that Chaos Engineering’s applications currently focus mainly

on cloud infrastructure, without much focus in IoT systems. Moreover, both Fault Injection and

Fuzing were identified as possible techniques to use alongside Chaos Engineering in the scope of

this work.

This work focuses on the core problem of being able to exercise fault-tolerance mechanisms

— more concretely, self-healing strategies — using Chaos Engineering. Our work revolves upon

the following central hypothesis:

H: The application of Chaos Engineering leads to a system with higher reliability

since we can (a) exercise self-healing mechanisms, and (b) know when these mecha-

nisms are not working correctly.

In order to validate our hypothesis, we implemented an extension to an MQTT Broker which

allowed us to specify Chaos Engineering pipelines which would be applied to certain MQTT

51



52 Conclusions

topics. This made it straightforward to emulate a wide variety of faults in messages, according to

the given configuration.

Afterwards, we performed experiments in order to validate our hypothesis. Initially, we created

scenarios which would focus on injecting faults in message values and payloads, and in message

timings. While some experiments were not conclusive due to the applied Chaos not causing a

significant divergence from the system’s behaviour when Chaos was not applied, others allowed

us to clearly validate our hypothesis. The inconclusive experiments also added to the idea that the

experiments must be carefully crafted given that the used dataset must be taken into account, as

well as the types of faults to inject.

In conclusion, we developed a straightforward way to apply Chaos Engineering along pre-

determined rule-sets to a given system by extending an MQTT Broker. Then, we used this method

to create several test scenarios and experiments, which validated our initially proposed hypothesis.

5.2 Contributions

The work developed for this dissertation resulted in the following contributions:

Literature Review on Fault Injection, Chaos Engineering and Fuzzing in IoT: We researched

about Fault Injection, Chaos Engineering, Fuzzing and their applicability and current appli-

cations to IoT systems and devices, as well as some security-related implications of these

techniques (cf. Chapter 2, p. 5);

MQTT Broker for Chaos Engineering using user-defined pipelines: We implemented exten-

sions to a pre-existing MQTT Broker which allow it to perform Chaos Engineering and

Fault Injection via user-defined pipelines with rules on how to modify packets for specified

topics (cf. Section 4.2, p. 26);

Experimental Validation of the proposed Hypothesis: We conducted experiments with the aim

of validating this work’s hypothesis, providing insight on how to perform these kinds of

experiments as well as extracting some conclusions from the observed results (cf. Chapter 4,

p. 25).

5.3 Future Work

For this work, we extended a pre-existing MQTT Broker in order to be apply to modify mes-

sages that pass through it according to certain rules (Chaos Engineering pipeline). However, this

solution has some room for improvement, namely: (1) further simplify the Chaos configuration

by supporting more native language constructs (e.g., arrow functions) and other configuration ab-

stractions (e.g., leverage visual notations); (2) consider switching to a more user-friendly format

since the definition of JavaScript functions for the map operator is especially cumbersome; (3)

support wildcard topics as per the MQTT specification; and (4) enable switching configuration at



5.3 Future Work 53

run-time instead of having to specify the configuration file when starting the broker. Further, it

would be of relevance to understand how such a tool could be adapted to provoke chaos in IoT

systems were the different entities of the system perform computation (instead of relying on a

single computation unit, viz. Node-RED) [37, 45, 46].

In regards to the evaluation, it would be interesting to: (1) expand the scenarios with more

experiments; (2) attempt similar experiments using different datasets (since we had some issues

due to specific aspects of the used dataset); (3) use other self-healing implementations to further

validate this work’s hypothesis (no other implementations as complete as the one used are known

to us as of yet).

Concerning this work as a whole, several possible avenues of research were identified during

the Literature Review (cf. Chapter 2, p. 5) which were not explored, such as: (1) Fuzzing (which

may be applicable by e.g., injecting rogue messages according to identified patterns); (2) replica-

tion or injection of physical faults in the system; and (3) deauthentication, denial-of-service and

other similar security attacks which may cause system instability.



54 Conclusions



Appendix A

NOx Dataset Statistics

NOx_s1 count 114.000000

mean 165.973684

std 89.350009

min 16.000000

25% 104.500000

50% 152.500000

75% 212.250000

max 478.000000

NOx_s2 count 114.000000

mean 165.175439

std 89.994419

min 14.000000

25% 102.500000

50% 152.500000

75% 211.000000

max 472.000000

NOx_s3 count 114.000000

mean 166.043860

std 89.335045

min 21.000000

25% 103.000000

50% 151.000000

75% 214.750000

max 479.000000

Listing 4: NOx Dataset Statistics obtained by using pandas’s .describe method.

55



56 NOx Dataset Statistics



Appendix B

Chaos Engineering JSON Configurations

[]

Listing 5: Chaos Engineering Broker configuration for S1E1.

[

{

"topic": "scenario1_mirror/nox/sensor3",

"startAfter": 10,

"stopAfter": 102,

"operators": [

{

"type": "map",

"func": "function (packet) {

packet.payload = Buffer.from('1000');

return packet;

}"

}

]

}

]

Listing 6: Chaos Engineering Broker configuration for S1E2. Presented with added line-breaks
for ease of viewing.

57



58 Chaos Engineering JSON Configurations

[

{

"topic": "scenario1_mirror/nox/sensor3",

"startAfter": 10,

"stopAfter": 102,

"operators": [

{

"type": "map",

"func": "function (packet) {

if (Math.random() > 0.6) {

const min = 0.2;

const max = 2.2;

const factor = Math.random() * (max - min) + min;

packet.payload = Buffer.from(

(

parseFloat(packet.payload.toString()) * factor

).toString());

}

return packet;

}"

}

]

}

]

Listing 7: Chaos Engineering Broker configuration for S1E3. Presented with added line-breaks
for ease of viewing.



Chaos Engineering JSON Configurations 59

[

{

"topic": "scenario1_mirror/nox/sensor3",

"startAfter": 10,

"stopAfter": 102,

"operators": [

{

"type": "randomDrop",

"chance": 0.20

}

]

}

]

Listing 8: Chaos Engineering Broker configuration for S1E4.



60 Chaos Engineering JSON Configurations



References

[1] Eric Sesterhenn aka. Snakebyte and Martin J. Muench aka. mjm. BED: Bruteforce exploit
detector. Available at https://tools.kali.org/vulnerability-analysis/bed,
before 2012. Accessed: 2021-01-26.

[2] Ammar A. Al-Sultan, Ghufran F. Jumaah, and Faris H. Al-Ani. Evaluation of the disper-
sion of nitrogen dioxide and carbon monoxide in the indoor café – case study. Journal of
Ecological Engineering, 20(4):256–261, 2019.

[3] Syaiful Andy, Budi Rahardjo, and Bagus Hanindhito. Attack scenarios and security analysis
of mqtt communication protocol in iot system. In 2017 4th International Conference on
Electrical Engineering, Computer Science and Informatics (EECSI), pages 1–6. IEEE, 2017.

[4] Cyrille Valentin Artho, Armin Biere, Masami Hagiya, Eric Platon, Martina Seidl, Yoshinori
Tanabe, and Mitsuharu Yamamoto. Modbat: A model-based API tester for event-driven
systems. In Valeria Bertacco and Axel Legay, editors, Hardware and Software: Verifica-
tion and Testing - 9th International Haifa Verification Conference, HVC 2013, Haifa, Israel,
November 5-7, 2013, Proceedings, volume 8244 of Lecture Notes in Computer Science,
pages 112–128. Springer, 2013.

[5] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl E. Landwehr. Basic con-
cepts and taxonomy of dependable and secure computing. IEEE Trans. Dependable Secur.
Comput., 1(1):11–33, 2004.

[6] A. Basiri, N. Behnam, R. de Rooij, L. Hochstein, L. Kosewski, J. Reynolds, and C. Rosen-
thal. Chaos engineering. IEEE Software, 33(3):35–41, 2016.

[7] John Bellardo and Stefan Savage. 802.11 denial-of-service attacks: Real vulnerabilities and
practical solutions. In USENIX security symposium, volume 12, pages 2–2. Washington DC,
2003.

[8] Tiago Boldt Sousa. Engineering Software for the Cloud: A Pattern Language. PhD thesis,
Faculty of Engineering, University of Porto, 2020.

[9] Anil Chacko and Thaier Hayajneh. Security and privacy issues with iot in healthcare. EAI
Endorsed Trans. Pervasive Health Technol., 4(14):e2, 2018.

[10] Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun Zuo, Zhiqiang Lin, XiaoFeng
Wang, Wing Cheong Lau, Menghan Sun, Ronghai Yang, and Kehuan Zhang. Iotfuzzer: Dis-
covering memory corruptions in iot through app-based fuzzing. In 25th Annual Network and
Distributed System Security Symposium, NDSS 2018, San Diego, California, USA, February
18-21, 2018. The Internet Society, 2018.

[11] Chaos Engineering Community. Principles of chaos engineering. Available at https:
//principlesofchaos.org/, May 2018. Accessed: 2021-01-21.

[12] S. De Vito, E. Massera, M. Piga, L. Martinotto, and G. Di Francia. On field calibration of an
electronic nose for benzene estimation in an urban pollution monitoring scenario. Sensors
and Actuators B: Chemical, 129(2):750–757, 2008.

61

https://tools.kali.org/vulnerability-analysis/bed
https://principlesofchaos.org/
https://principlesofchaos.org/


62 REFERENCES

[13] Jyoti Deogirikar and Amarsinh Vidhate. Security attacks in iot: A survey. In 2017 Interna-
tional Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), pages
32–37. IEEE, 2017.

[14] Ganesh Devarajan. Unraveling scada protocols: Using sulley fuzzer. In Defcon 15 Hacking
Conf, 2007.

[15] J. P. Dias, F. Couto, A. C. R. Paiva, and H. S. Ferreira. A brief overview of existing tools for
testing the internet-of-things. In 2018 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), pages 104–109, 2018.

[16] Joao Pedro Dias, Hugo Sereno Ferreira, and Tiago Boldt Sousa. Testing and deployment
patterns for the internet-of-things. In Proceedings of the 24th European Conference on Pat-
tern Languages of Programs, EuroPLop ’19, New York, NY, USA, 2019. Association for
Computing Machinery.

[17] João Pedro Dias, Bruno Lima, João Pascoal Faria, André Restivo, and Hugo Sereno Fer-
reira. Visual self-healing modelling for reliable internet-of-things systems. In Valeria V.
Krzhizhanovskaya, Gábor Závodszky, Michael H. Lees, Jack J. Dongarra, Peter M. A. Sloot,
Sérgio Brissos, and João Teixeira, editors, Computational Science – ICCS 2020, pages 357–
370, Cham, 2020. Springer International Publishing.

[18] João Pedro Dias, José Pedro Pinto, and José Magalhães Cruz. A Hands-on Approach on
Botnets for Behavior Exploration. In Proceedings of the 2nd International Conference on
Internet of Things, Big Data and Security, pages 463–469. SCITEPRESS - Science and
Technology Publications, 2017.

[19] Joao Pedro Dias, André Restivo, and Hugo Sereno Ferreira. Empowering visual internet-of-
things mashups with self-healing capabilities. In 2021 IEEE/ACM 3rd International Work-
shop on Software Engineering Research Practices for the Internet of Things (SERP4IoT),
2021.

[20] João Pedro Dias, Tiago Boldt Sousa, André Restivo, and Hugo Sereno Ferreira. A pattern-
language for self-healing internet-of-things systems. In EuroPLoP ’20: European Confer-
ence on Pattern Languages of Programs 2020, Virtual Event, Germany, 1-4 July, 2020, pages
25:1–25:17. ACM, 2020.

[21] Martin Fowler. Phoenixserver. Available at https://martinfowler.com/bliki/
PhoenixServer.html, July 2012. Accessed: 2021-01-21.

[22] Alan G. Ganek and Thomas A. Corbi. The dawning of the autonomic computing era. IBM
Syst. J., 42(1):5–18, 2003.

[23] Google. AFL american fuzzy lop. Available at https://github.com/google/AFL,
November 2013. Accessed: 2021-01-29.

[24] Serge Gorbunov and Arnold Rosenbloom. Autofuzz: Automated network protocol fuzzing
framework. IJCSNS International Journal of Computer Science and Network Security,
10(8):239, August 2010.

[25] A. Höller, A. Krieg, T. Rauter, J. Iber, and C. Kreiner. Qemu-based fault injection for a
system-level analysis of software countermeasures against fault attacks. In 2015 Euromicro
Conference on Digital System Design, pages 530–533. IEEE, 2015.

https://martinfowler.com/bliki/PhoenixServer.html
https://martinfowler.com/bliki/PhoenixServer.html
https://github.com/google/AFL


REFERENCES 63

[26] Hugo Jernberg, Per Runeson, and Emelie Engström. Getting started with chaos engineering -
design of an implementation framework in practice. In Proceedings of the 14th ACM / IEEE
International Symposium on Empirical Software Engineering and Measurement (ESEM),
ESEM ’20, pages 1–10, New York, NY, USA, 2020. Association for Computing Machinery.

[27] Zahra Kazemi, David Hely, Mahdi Fazeli, and Vincent Beroulle. A review on evaluation and
configuration of fault injection attack instruments to design attack resistant mcu-based iot
applications. Electronics, 9(7):1153, 2020.

[28] Jun Li, Bodong Zhao, and Chao Zhang. Fuzzing: a survey. Cybersecurity, 1(1):1–13, 2018.

[29] Xinyao Liu, Baojiang Cui, Junsong Fu, and Jinxin Ma. Hfuzz: Towards automatic fuzzing
testing of nb-iot core network protocols implementations. Future Generation Computer Sys-
tems, 108:390–400, 2020.

[30] Valentin Jean Marie Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel
Egele, Edward J Schwartz, and Maverick Woo. The art, science, and engineering of fuzzing:
A survey. IEEE Transactions on Software Engineering, pages 1–1, 2019.

[31] Samuel J. Moore, Chris D. Nugent, Shuai Zhang, and Ian Cleland. Iot reliability: a re-
view leading to 5 key research directions. CCF Transactions on Pervasive Computing and
Interaction, 2(3):147–163, 2020.

[32] Roberto Natella, Domenico Cotroneo, and Henrique S. Madeira. Assessing dependability
with software fault injection: A survey. ACM Comput. Surv., 48(3), February 2016.

[33] Netflix. Chaos monkey. Available at https://github.com/Netflix/chaosmonkey,
2011. Accessed: 2021-01-22.

[34] Charles Nwatu and Aaron Rinehart. Security chaos engineering: A new paradigm
for cybersecurity. Available at https://opensource.com/article/18/1/
new-paradigm-cybersecurity, January 2018. Accessed: 2021-01-23.

[35] Optum. Chaoslingr: Introducing security into chaos testing. Available at https://
github.com/Optum/ChaoSlingr, September 2017. Accessed: 2021-01-22.

[36] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-fuzz: Fuzzing by program transforma-
tion. In 2018 IEEE Symposium on Security and Privacy (SP), pages 697–710. IEEE, 2018.

[37] D. Pinto, João Pedro Dias, and Hugo Sereno Ferreira. Dynamic allocation of serverless
functions in iot environments. In 2018 IEEE 16th International Conference on Embedded
and Ubiquitous Computing (EUC), pages 1–8, October 2018.

[38] Aaron Portnoy and Pedram Amini. Sulley - a pure-python fully automated and unattended
fuzzing framework. Available at https://github.com/OpenRCE/sulley, 2006. Ac-
cessed: 2021-01-26.

[39] Aaron Portnoy, Pedram Amini, and Ryan Sears. boofuzz - a fork and successor of the sulley
fuzzing framework. Available at https://github.com/jtpereyda/boofuzz, around
2016. Accessed: 2021-01-26.

[40] Antonio Ramadas, Gil Domingues, Joao Pedro Dias, Ademar Aguiar, and Hugo Sereno Fer-
reira. Patterns for Things that Fail. In Proceedings of the 24th Conference on Pattern Lan-
guages of Programs, PLoP ’17. ACM - Association for Computing Machinery, 2017.

https://github.com/Netflix/chaosmonkey
https://opensource.com/article/18/1/new-paradigm-cybersecurity
https://opensource.com/article/18/1/new-paradigm-cybersecurity
https://github.com/Optum/ChaoSlingr
https://github.com/Optum/ChaoSlingr
https://github.com/OpenRCE/sulley
https://github.com/jtpereyda/boofuzz


64 REFERENCES

[41] Aaron Rinehart. The case for security chaos engineering. In Casey Rosenthal and Nora
Jones, editors, Chaos Engineering: System Resiliency in Practice, chapter 20, pages 249–
260. O’Reilly Media, 2020.

[42] Casey Rosenthal, Lorin Hochstein, Aaron Blohowiak, Nora Jones, and Ali Basiri. Chaos En-
gineering: Building Confidence in System Behavior through Experiments. O’Reilly Media,
Incorporated, 2020.

[43] Francoise Sailhan, Thierry Delot, Animesh Pathak, Aymeric Puech, and Matthieu Roy. De-
pendable sensor networks. In Atelier sur la GEstion des Donn? es dans les Syst? mes
d’Information Pervasifs (GEDSIP) au sein de la conf? rence INFormatique des ORganisa-
tions et Syst? mes d? Information et de D? cision (INFORSID), page 6, 2010.

[44] Mozilla Security. Peach. Available at https://github.com/MozillaSecurity/
peach, 2015. Accessed: 2021-01-29.

[45] Margarida Silva, João Pedro Dias, André Restivo, and Hugo Sereno Ferreira. Visually-
defined real-time orchestration of iot systems. In Proceedings of the 17th International Con-
ference on Mobile and Ubiquitous Systems: Computing, Networking and Services, MOBIQ-
UITOUS 2020, New York, NY, USA, 2020. Association for Computing Machinery.

[46] Margarida Silva, João Pedro Dias, André Restivo, and Hugo Sereno Ferreira. A review on vi-
sual programming for distributed computation in iot. In Proceedings of the 21st International
Conference on Computational Science (ICCS). Springer, 2021.

[47] Sean W. Smith. The internet of risky things: trusting the devices that surround us. O’Reilly,
2017.

[48] Danny Soares, João Pedro Dias, André Restivo, and Hugo Sereno Ferreira. Programming
iot-spaces: A user-survey on home automation rules. In Proceedings of the 21st International
Conference on Computational Science (ICCS). Springer, 2021.

[49] John A. Stankovic. Research directions for the internet of things. IEEE Internet Things
Journal, 1(1):3–9, 2014.

[50] A. Sun, W. Gong, R. Shea, and J. Liu. A castle of glass: Leaky iot appliances in modern
smart homes. IEEE Wireless Communications, 25(6):32–37, 2018.

[51] Kennedy A. Torkura. From dependability to resilience → security chaos engineering for
cloud services. Available at https://run2obtain.medium.com/9c6d6d152ed2,
November 2019. Accessed: 2021-01-24.

[52] Kennedy A. Torkura, Muhammad I. H. Sukmana, Feng Cheng, and Christoph Meinel. Cloud-
strike: Chaos engineering for security and resiliency in cloud infrastructure. IEEE Access,
8:123044–123060, 2020.

[53] Ivan Vaccari, Maurizio Aiello, and Enrico Cambiaso. Slowite, a novel denial of service
attack affecting MQTT. Sensors, 20(10):2932, 2020.

[54] Aron Warren. Using sulley to protocol fuzz for linux software vulnerabilities. Avail-
able at https://www.sans.org/reading-room/whitepapers/testing/
sulley-protocol-fuzz-linux-software-vulnerabilities-36907, April
2016. Accesed: 2021-01-29.

https://github.com/MozillaSecurity/peach
https://github.com/MozillaSecurity/peach
https://run2obtain.medium.com/9c6d6d152ed2
https://www.sans.org/reading-room/whitepapers/testing/sulley-protocol-fuzz-linux-software-vulnerabilities-36907
https://www.sans.org/reading-room/whitepapers/testing/sulley-protocol-fuzz-linux-software-vulnerabilities-36907


REFERENCES 65

[55] Wireghoul. Doona - network based protocol fuzzer. Available at https://github.com/
wireghoul/doona, 2012. Accessed: 2021-01-26.

[56] Wireghoul. Doona: Network fuzzer, bed fork. Available at https://tools.kali.org/
vulnerability-analysis/doona, 2012. Accessed: 2021-01-26.

[57] Jun Yoneyama, Cyrille Artho, Yoshinori Tanabe, and Masami Hagiya. Model-based network
fault injection for iot protocols. In Ernesto Damiani, George Spanoudakis, and Leszek A.
Maciaszek, editors, Proceedings of the 14th International Conference on Evaluation of Novel
Approaches to Software Engineering, ENASE 2019, Heraklion, Crete, Greece, May 4-5,
2019, pages 201–209. INSTICC, SciTePress, 2019.

[58] David Zooker Zabib, Maoz Vizentovski, Alexander Fish, Osnat Keren, and Yoav Weizman.
Vulnerability of secured iot memory against localized back side laser fault injection. In 2017
Seventh International Conference on Emerging Security Technologies (EST), pages 7–11.
IEEE, 2017.

[59] Youmin Zhang and Jin Jiang. Bibliographical review on reconfigurable fault-tolerant control
systems. Annu. Rev. Control., 32(2):229–252, 2008.

[60] Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu Song, Hongsong Zhu, and Limin Sun.
FIRM-AFL: High-throughput greybox fuzzing of iot firmware via augmented process emu-
lation. In 28th USENIX Security Symposium (USENIX Security 19), pages 1099–1114, Santa
Clara, CA, August 2019. USENIX Association.

https://github.com/wireghoul/doona
https://github.com/wireghoul/doona
https://tools.kali.org/vulnerability-analysis/doona
https://tools.kali.org/vulnerability-analysis/doona

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Problem
	1.4 Goal
	1.5 Document Structure

	2 Literature Review
	2.1 Methodology
	2.2 Background
	2.2.1 Dependability and Autonomic Systems
	2.2.2 Reliability Measurement in IoT

	2.3 Chaos Engineering
	2.3.1 Chaos Engineering for Fault Detection
	2.3.2 Chaos Engineering applied to Security

	2.4 Fault Injection
	2.5 Fuzzing
	2.5.1 Fuzzing Network Protocols
	2.5.2 Fuzzing Practices for IoT

	2.6 Security Attacks in IoT
	2.7 Summary

	3 Problem Statement
	3.1 Problem under Study
	3.2 Hypothesis and Validation
	3.3 Scope
	3.4 Summary

	4 Validation
	4.1 Methodology
	4.2 Proof-of-Concept Implementation
	4.2.1 MQTT Broker Middleware
	4.2.2 MQTT Broker Pipeline Operators
	4.2.3 JSON Configuration File
	4.2.4 Summary

	4.3 Sanity Checks
	4.3.1 Testing threshold-check (SCE1)
	4.3.2 Testing timing-check (SCE2)
	4.3.3 Testing compensate (SCE3)

	4.4 Experimental Dataset
	4.5 Scenarios
	4.6 Experiments
	4.6.1 Value Changing Experiments (S1)
	4.6.2 Timing Experiments (S2)

	4.7 Discussion
	4.7.1 Value Changing Experiments (S1)
	4.7.2 Timing Experiments (S2)

	4.8 Hypothesis Evaluation
	4.9 Summary

	5 Conclusions
	5.1 Conclusions
	5.2 Contributions
	5.3 Future Work

	A NOx Dataset Statistics
	B Chaos Engineering JSON Configurations
	References

