
Intrusion Tolerance:
Concepts and Design Principles.

A Tutorial

Paulo Veŕıssimo

DI–FCUL TR–02–6

July 2002

Departamento de Informática
Faculdade de Ciências da Universidade de Lisboa

Campo Grande, 1749–016 Lisboa
Portugal

Technical reports are available at http://www.di.fc.ul.pt/tech-reports. The files
are stored in PDF, with the report number as filename. Alternatively, reports are
available by post from the above address.

DSN 2002 Tutorial Proposal

Intrusion Tolerance: Concepts and Design Principles

Paulo Veríssimo
pjv@di.fc.ul.pt

University of Lisboa Faculty of Sciences

Objective of Tutorial

There is a significant body of research on distributed computing architectures,
methodologies and algorithms, both in the fields of dependability and fault tolerance,
and in security and information assurance. Whilst they have taken separate paths until
recently, the problems to be solved are of similar nature: keeping systems working
correctly, despite the occurrence of mishaps, which we could commonly call faults
(accidental or malicious); ensure that, when systems do fail (again, on account of
accidental or malicious faults), they do so in a non harmful/catastrophic way.

In classical dependability, and mainly in distributed settings, fault tolerance has been
the workhorse of the many solutions published over the years. Classical security-related
work has on the other hand privileged, with few exceptions, intrusion prevention, or
intrusion detection without systematic forms of processing the intrusion symptoms.

A new approach has slowly emerged during the past decade, and gained impressive
momentum recently: intrusion tolerance. That is, the notion of tolerance to a wide set of
faults encompassing intentional and malicious faults (we may collectively call them
intrusions), which may lead to failure of the system security properties if nothing is
done to react, counteract, recover, mask, etc., the effect of intrusions on the system
state. In short, instead of trying to prevent every single intrusion, the latter are allowed,
but tolerated: the system has the means to trigger mechanisms that prevent the intrusion
from generating a system failure.

The purpose of this tutorial is to expose the audience to these new concepts and design
principles. The tutorial reviews previous results under the light of intrusion tolerance
(IT), introduces the fundamental ideas behind IT, and presents recent advances of the
state-of-the-art, coming from European and US research efforts devoted to IT. The
program of the tutorial will address: a review of the dependability and security
background; introduction of the fundamental concepts of intrusion tolerance (IT);
intrusion-aware fault models; intrusion prevention; intrusion detection; IT strategies and
mechanisms; design methodologies for IT systems; examples of IT systems and
protocols.

pjv
DSN 2002 Tutorial Proposal

• 1

Intrusion Tolerance:
Concepts and Design Principles

a Tutorial

Paulo Veríssimo
Univ. of Lisboa Faculty of Sciences

Lisboa – Portugal

pjv@di.fc.ul.pt
http://www.navigators.di.fc.ul.pt

© 2002 Paulo Veríssimo - All rights reserved, no unauthorized direct reproduction in any form.
Citations to parts can be made freely with acknowledgment of the source.

2

• A lot of the material presented here derives from past experience with
fault tolerant and secure systems, and from new work and challenging
discussions, during the past three years, within the European IST
MAFTIA project. I wish to warmly acknowledge the contributions of all
members of the team, several of whom contributed results presented
here, and collectively have represented a fenomenal thinking tank.

• Further reading on the concepts and design principles presented here
can thus be found in:

– Paulo Veríssimo and Luís Rodrigues, Distributed Systems for System
Architects, Kluwer Academic Publishers, 2001.
http://www.navigators.di.fc.ul.pt/dssa/

– A. Avizienis, J.-C. Laprie and B. Randell, Fundamental Concepts of
Dependability, Research Report N°01145, LAAS-CNRS, April 2001.
http://www.laas.fr/

– P. Veríssimo and N. F. Neves, eds., Service and Protocol Architecture for the
MAFTIA Middleware. Deliv. D23, Project MAFTIA IST-1999-11583, Tech.Rep.
DI/FCUL TR-01-1, Univ. Lisboa Jan. 2001.
http://www.di.fc.ul.pt/tech-reports/abstract01-1.html

– D. Powell and R. Stroud, eds., MAFTIA Conceptual Model and Architecture,
Deliv. D2, Project MAFTIA IST-1999-11583, Tech.Rep. DI/FCUL TR-01-10, Univ.
Lisboa Nov. 2001.
http://www.di.fc.ul.pt/tech-reports/abstract01-10.html

• 2

3

The case for Intrusion Tolerance

• Distribution and fault tolerance go hand in hand:
– You distribute to achieve resilience to common mode faults
– You embed FT in a distributed system to resist higher fault probabil.

• Security and distribution go hand in hand:
– You break, split, and separate your information
– You make life harder to an attacker

• So it looks like we should be talking about
(distributed) malicious fault tolerance, a.k.a.

(Distributed) Intrusion ToleranceIntrusion Tolerance
• If this is so obvious, why hasn’t it happened earlier?

– Distributed systems present fundamental issues and limitations that
took a long time to learn

– Classical fault tolerance tolerance follows a framework that is not
completely fit to the universe of intentional and/or malicious faults

4

Dependability as a common framework

• Dependability is defined as “that property of a
computer system such that reliance can justifiably be
placed on the service it delivers”

• The service delivered by a system is its behaviour as
it is perceptible by its user(s); a user is another
system (human or physical) which interacts with the
former

• Dependability grew under the mental framework of
accidental faults

• But all that is defined w.r.t. dependability can be
applied to malicious faults

• 3

5

Intrusion Tolerance

• Traditionally, security has involved either:
– Trusting that certain attacks will not occur
– Removing vulnerabilities from initially fragile software
– Preventing attacks from leading to intrusions

• In contrast, the tolerance paradigm in security:
– Assumes that systems remain to a certain extent vulnerable
– Assumes that attacks on components or sub-systems can happen

and some will be successful
– Ensures that the overall system nevertheless remains secure and

operational

• Obviously, a complete approach combines tolerance
with prevention, removal, forecasting, after all, the
classic dependability fields of action!

1
Introduction to security and information assurance

• 4

7

Security Properties

• Confidentiality
– the measure in which a service or piece of information is protected

from unauthorized disclosure

• Authenticity
– the measure in which a service or piece of information is genuine,

and thus protected from personification or forgery

• Integrity
– the measure in which a service or piece of information is protected

from illegitimate and/or undetected modification

• Availability
– the measure in which a service or piece of information is protected

from denial of authorized provision or access

8

Security Frameworks

• Secure Channels and Envelopes
– Communicating in a secure way
– Dispatching information in a secure way

• Authentication
– Ensuring what we deal with is genuine: end-users, data, servers, etc.

• Protection and Authorization
– Protecting resources from unauthorized access
– Ensuring the users are authorized to do just what they should

• Auditing and Intrusion Detection
– Following the system execution for a posteriori analysis
– Detecting anomalous usage in runtime

• 5

Example Secure Networks and Architectures

10

Cryptographic
Device

Leased Line

Data Network

Router
Cryptographic

Device

Secure Physical Circuits

Cryptographic
Device

Host

• 6

11

Public
Data Network

Router

Secure Virtual Circuits

Cryptographic
Server

Host

Host

Router

Router

Router

Router

Router

12

Reference Monitor

O.S. ResourcesUser

• 7

13

System
Servers

Data
Network

Security
Server

Security Server

14

Firewall

Firewall

System
Servers

Inside System

Data
Network

(Outside System)

• 8

15

Server

Server

Public
Data Network

Router

Secure Remote Operations

Client

Client

Tamperproof
Device

@# %*§
? ? ? ? ? ?

Sniffer

16

Banking Network

Client's
Bank

Merchant's
Bank

Electronic Payment

ATM

Merchant's
Terminal

Tamperproof
Device

Client's
Smart Card

• 9

Introduction
to

fault tolerance and dependability

18

The failure of computers

• Why do computers fail and what can we do about it?
[J. Gray]

• Because:
– All that works, fails
– We tend to overestimate our HW e SW--- that’s called faith☺

• So:
– We had better prevent (failures) than remedy

• Dependability is ...
– that property of a computer system such that reliance can justifiably

be placed on the service it delivers

• Why?
– Because (faith notwithstanding) it is the scientific way to quantify,

predict, prevent, tolerate, the effect of disturbances that affect the
operation of the system

• 10

19

Does not get better with distribution

• A distributed system is the one that prevents you from working
because of the failure of a machine that you had never heard of.

[L. Lamport]

• Since:
– Machines fail independently, for a start
– They influence each other,
– They communicate through unreliable networks, with unpredictable

delays

• ...gathering machines renders the situation worse:
– The reliability (<1) of a system is the product of the individual

component reliabilities, for independent component failures
– R(10 @ 0.99)= 0.9910= 0.90; R(10 @ 0.90)= 0.9010= 0.35

20

Can get much worse with malicious failures

• Failures are no longer independent
– Human attackers are the “common-mode” link
– Components may perform collusion through distributed protocols

• Failures become harder
– Components producing malicious, e.g. inconsistent output, at wrong

times, forged, etc.

• “Fault models”?
– How do you model the mind of an attacker?

• 11

21

Faults, Errors and Failures

• A system failure occurs when the delivered service deviates
from fulfilling the system function

• An error is that part of the system state which is liable to lead to
subsequent failure

• The adjudged cause of an error is a fault

• EXAMPLES:
– Fault --- stuck-at ‘0’ RAM memory register
– Error --- what happens when the register is read after ‘1’ is written
– Failure --- the wrong reading (‘0’) is returned to the user buffer

• SOLUTIONS?
– Remove the faulty memory chip
– Detect the problem, e.g. using parity bits
– Recover from the problem, e.g. using error correcting codes (ECC)
– Mask the problem, replicating the memory and voting on the readings

22

Types of Faults

• Physical
• Design
• Interaction (*)
• Accidental vs. Intentional vs. Malicious (*)
• Internal vs. External
• Permanent vs. Temporary
• Transient vs. Intermittent

(*) Especially important in distributed systems and security

• 12

23

Interaction Fault classification

• Omissive
– Crash

» host that goes down
– Omission

» message that gets lost
– Timing

» computation gets delayed

• Assertive
– Syntactic

» sensor says air
temperature is 100º

– Semantic
» sensor says air

temperature is 26º when it
is 30º

semantic

syntactic

timing

omission

crash

OMISSIVE ASSE
RTIVE

ARBITRARY

24

sequence fault→ error→ failure

design/
operation

faultDesigner/
Operator

interaction
fault

error failure

• 13

25

Achieving dependability

• Fault prevention
– how to prevent the occurrence or introduction of faults

• Fault tolerance
– how to ensure continued correct service provision despite faults

• Fault removal
– how to reduce the presence (number, severity) of faults

• Fault forecasting
– how to estimate the presence, creation and consequences of faults

26

fault
removal

Dependability measures

design/
operation

faultDesigner/
Operator

interaction
fault

error failure

fault
tolerance

imperfect

error
processing

fault
treatment

fault
prevention

• 14

27

Measuring dependability

• Reliability
– the measure of the continuous delivery of correct service (ex. MTTF)

• Maintainability
– the measure of the time to restoration of correct service (ex. MTTR)

• Availability
– measure of delivery of correct service with respect to alternation

between correct and incorrect service (ex. MTBF/(MTBF+MTTR))

• Safety
– the degree to which a system, upon failing, does so in a non-

catastrophic manner

• Integrity
– the measure in which a service or piece of information is protected

from illegitimate and/or undetected modification

• Confidentiality
• Authenticity

28

The “Dependability Tree”

IMPAIRMENTS
• FAULTS
• ERRORS
• FAILURES

MEANS

• FAULT PREVENTION

• FAULT TOLERANCE

• FAULT REMOVAL

• FAULT FORECASTING

ATTRIBUTES

• RELIABILITY
• MAINTAINABILITY
• AVAILABILITY
• SAFETY
• CONFIDENTIALITY
• INTEGRITY
• AUTHENTICITY

• 15

Foundations of
(Modular and Distributed)
Fault-Tolerant Computing

30

Forms of redundancy

• Space redundancy
– several copies of the same component
– same information stored in several disks
– different nodes compute same result in parallel
– messages disseminated along different paths

• Time redundancy
– doing the same thing more than once, in same or different ways
– retransmission of lost messages
– repeating computations that have aborted

• Value redundancy
– adding extra information about the data being stored or sent
– codes that allow the detection or correction of integrity errors
– parity bit or ECC added to memory chips or disk structures
– frame check sequences or cyclic redundancy in xmitted data
– cryptographic message signatures

• 16

31

Error processing techniques

• error detection
– detecting the error after it occurs aims at: confining it to avoid propagation;

triggering error recovery mechanisms; triggering fault treatment mechanisms

• error recovery
– recovering from the error aims at: providing correct service despite the error

backward recovery:
the system goes back to a previous state known as correct and resumes

forward recovery:
the system proceeds forward to a state where correct provision of service can

still be ensured

• error masking
– the system state has enough redundancy that the correct service can be

provided without any noticeable glitch

32

centralized

Foundations of modular and distributed fault tolerance

• Topological separation
– failure independence
– graceful degradation

• Replication
– software vs. hardware
– fine granularity
– Resource optimization

• incremental T/F by:
– class (omissive, semantic)
– number of faults
– number of replicas

» pairs, triples, etc.
– Type of replica control

» active, passive
» round robin, voting

I´m alive

distributed

• 17

Example Fault Tolerant Networks and Architectures

34

Redundant Networks

• 18

35

Redundant Media Networks

36

Redundant Storage and Processing

(a) (b)

• 19

37

Error Detection and Masking

(a) (b)

V

38

Modular Distributed FT with Replica Sets

• 20

39

Client-Server with FT Servers

Data
Network

Fault-Tolerant
Application

Servers

Client
PC or WS

40

FT Publisher-Subscriber

Data
Network

PERSISTENT
MESSAGE BUS

Publishers
Fault-Tolerant

Publishing
Server

Subscribers

• 21

2
Intrusion Tolerance (IT) concepts and terminology

42

What measures the risk of intrusion?

• RISK is a combined measure of the level of threat to
which a computing or communication system is
exposed, and the degree of vulnerability it possesses:

RISK = VULNERABILITY X THREAT

• The correct measure of how potentially insecure a
system can be (in other words, of how hard it will be to
make it secure) depends:

– on the number and severity of the flaws of the system (vulnerabilities)
– on the potential of the attacks it may be subjected to (threats)

• 22

43

An example

• Consider the following two example systems:
– System Vault has a degree of vulnerability vvault=0.1, and since it has

such high resilience, its designers have put it to serve anonymous
requests in the Internet, with no control whatsoever to whoever tries
to access it, that is, subject to a high level of threat, tvault=100.

– System Sieve, on the other hand, is a vulnerable system, vsieve=10,
and in consequence, its designers have safeguarded it, installing it
behind a firewall, and controlling the accesses made to it, in what
can be translated to a level of threat of tsieve=1.

• Which of them offers a lower operational risk?
• Consider the product threat x vulnerability:

– with the imaginary values we attributed to each system, it equates to
the same value in both systems (10), although system Vault is a
hundred times less vulnerable than system Sieve.

44

Should we bring the risk to zero? And... can we?

• This is classical prevention/removal
– of the number and severity of the flaws of the system (vulnerabilities)
– of the potential of the attacks it may be subjected to (threats)

• We cannot make either arbitrarily low
– too costly and infeasible
– certain attacks come from the kind of service being deployed
– certain vulnerabilities are attached to the design of the system proper

• ...and the question is: should we?
• can’t we talk about acceptable risk?
• doesn’t the hacker also incur in a cost of intruding??!!

• 23

45

Another example

• Is SSL secure?
– Secure Sockets Layer (SSL) reportedly ensures secure client-server

interactions between browsers and WWW servers. Users have
tended to accept that the interactions are secure (assumed low
degree of vulnerability), without quantifying how secure.

– Several companies have built their commerce servers around SSL,
some of them to perform financially significant transactions on the
Internet (high level of threat).

– Netscape's SSL implementation broken because of a bug that
allowed to replicate session keys and thus decrypt any
communication. The corrected version was then broken at least
twice through brute-force attacks on the 40-bit keys version.

– This initial situation led to a high risk

46

Another example (cont.)

• Is SSL secure enough?
– Netscape reported that it would cost at least USD10,000 to break an

Internet session on the second version of SSL, in computing time.
– The cost of intruding a system versus the value of the service being

provided allows the architect to make a risk assessment. Someone
who spends 10 000 EURO to break into a system and get 100 EURO
worth of bounty, is doing a bad business.

– This defined the acceptable risk. Unfortunately, these estimates may
fail: shortly after Netscape's announcement, a student using a single
but powerful desktop graphics workstation, broke it for just USD600.

– However, what went wrong here was not the principle and the
attitude of Netscape, just the risk assessment they made, which was
too optimistic.

• 24

47

What is Intrusion Tolerance?

• The tolerance paradigm in security:
– Assumes that systems remain to a certain extent vulnerable
– Assumes that attacks on components or sub-systems can happen

and some will be successful
– Ensures that the overall system nevertheless remains secure and

operational, with a measurable probability

• In other words:
– Faults--- malicious and other--- occur
– They generate errors, i.e. component-level security compromises
– Error processing mechanisms make sure that security failure is

prevented

• Obviously, a complete approach combines tolerance
with prevention, removal, forecasting, after all, the
classic dependability fields of action!

Intrusion Tolerance

Fault Models
Classical methodologies

Error processing
Fault treatment

• 25

49

Attacks, Vulnerabilities, Intrusions

• Intrusion
– an externally induced, intentionally malicious, operational fault,

causing an erroneous state in the system

• An intrusion has two underlying causes:

• Vulnerability
– malicious or non-malicious weakness in a computing or

communication system that can be exploited with malicious intention

• Attack
– malicious intentional fault introduced in a computing or comm’s

system, with the intent of exploiting a vulnerability in that system

– without attacks, vulnerabilities are harmless

– without vulnerabilities, there cannot be successful attacks

• Hence: attack + vulnerability → intrusion → error → failure
– A specialization of the generic “fault,error,failure” sequence

50

Attack-Vulnerability-Intrusion composite fault model

AVI sequence : attack + vulnerability→ intrusion → error → failure

Intruder/
Designer/
Operator

vulnerability
(fault)

Intruder
attack
(fault)

intrusion
(fault)

error failure

• 26

51

attack
(fault)

intrusion

error

vulnerability
(fault)

failure

Faults in Cascade

ALLOWED

ALLOWED

NOT ALLOWED !

ALLOWED

ALLOWED

intrusion failureerror

intrusion failureerror

52

Who’s fault was it?

• Subjects undergo authentication, to prove an identity:
– they are who they say

• Subjects receive authorization, in the measure of their privilege:
– allowed ops are defined by access rights on objects: <subject,object,rights>
– privilege is set of rights over a sub-set in the universe of object-oper. pairs

• This allows finer definitions of subject status, although a good
approximation is: Outsider ⇔ Privilege = Ø

• outsider vs. insider derives from security perimeter assumption:
– inadequate for open distr. syst.: insiders can/should have different privileges

• Theft of privilege:
– an unauthorised increase in privilege, i.e., a change in the privilege of a user

that is not permitted by the system’s security policy

• Abuse of privilege:
– a misfeasance, i.e., an improper use of authorised operations

• Usurpation of identity:
– impersonation of a subject a by a subject i, who with that usurps a’s privilege

• 27

53

Outsider vs Insider intrusions

• b is outsider w.r.t D:
– not authorized to perform any object-

operations on D

• a is insider w.r.t D:
– his privilege (A) intersects D
– authorized to perform some specified

object-operations

• b performs outsider intrusion on D
– privilege theft

• a performs insider intrusion on D
– privilege abuse
– maybe combined with privilege theft

• b usurps identity of a
– privilege usurpation

D: object-operation domain

B: user b
privilege

A: user a
privilege

insider intrusion
(abuse of priv.)

outsider intrusion
(identity usurpation)

outsider intrusion
(unauth. priv. increase)

Intrusion Tolerance

Fault Models
Classical methodologies

Error processing
Fault treatment

• 28

55

Achieving dependability w.r.t. malicious faults
(the classical ways...)

• Attack prevention
– Ensuring attacks do not take place against certain components

• Attack removal
– Taking measures to discontinue attacks that took place

• Vulnerability prevention
– Ensuring vulnerabilities do not develop in certain components

• Vulnerability removal
– Eliminating vulnerabilities in certain components (e.g. bugs)

INTRUSION PREVENTION

56

Examples

• Attack prevention
– selectively filtering access to internal parts of the system (e.g., if a

component is behind a firewall and cannot be accessed from the
Internet, attack from there is prevented)

– disabling JavaScript and/or Java prevents attacks by malicious
scripts or applets

• Attack removal
– identifying source of an external attack and taking measures to

terminate it

• Vulnerability prevention
– best practice in software development
– measures preventing configuration and operation faults

• Vulnerability removal
– of: coding faults allowing program stack overflow, files with root

setuid in UNIX, naive passwords, unprotected TCP/IP ports

• 29

57

AVI Composite fault model

Øsequence : attack + vulnerability→ intrusion→ failure

Intruder
attack
(fault)

intrusion
(fault)

error failure

attack
prevention

vulnerability
prevention

intrusion
prevention

vulnerability
removal

Intruder/
Designer/
Operator

vulnerability
(fault)

58

vulnerability
removal

AVI Composite fault model

Øsequence : attack + vulnerability→ intrusion→ failure

Intruder/
Designer/
Operator

vulnerability
(fault)

Intruder
attack
(fault)

intrusion
(fault)

error failure

attack
prevention

vulnerability
prevention

intrusion
prevention

intrusion
tolerance

• 30

Intrusion Tolerance

Fault Models
Classical methodologies

Error processing
Fault treatment

60

Processing the errors deriving from intrusions

• error detection
– detecting the error after it occurs aims at: confining it to avoid propagation;

triggering error recovery mechanisms; triggering fault treatment mechanisms

– modified files or messages; phony OS account; sniffer in operation;
host flaky or crashing on logic bomb

• error recovery
– recovering from the error aims at: providing correct service despite the error

– recovering from effects of intrusions

• 31

61

Processing the errors deriving from intrusions

• backward recovery:
– the system goes back to a previous state known as correct and resumes
– system suffers DOS (denial of service) attack, and re-executes the

corrupted operation
– system detects corrupted files, pauses, reinstalls them, goes back

• forward recovery:
– or proceeds forward to a state that ensures correct provision of service
– system detects intrusion, considers corrupted operations lost and

increases level of security (threshold/quorums increase, key renewal)
– system detects intrusion, moves to degraded but safer op mode

• error masking
– redundancy allows providing correct service without any noticeable glitch
– systematic voting of operations; fragmentation-redundancy-scattering
– sensor correlation (agreement on imprecise values)

62

Error processing at work

• backward
recovery

• forward
recovery

• error masking

Redo after attack

“Plan B” after intrusion

Whatever happens...

• 32

63

Examples of error processing in communication

• Communication Error Processing:
– (a) Masking (Spatial);
– (b) Masking (Temporal);
– (c) Detection/Recovery

(a) (b) (c)

[k=1]

*

Ttout
[k=1]

ack ack

*

[k=1]

P2

P3

*

P1

P1

P2

P3

P4

P1

P2

P3

P4

Intrusion Tolerance

Fault Models
Classical methodologies

Error processing
Fault treatment

• 33

65

Fault Treatment facets

• Diagnosis
– determine cause of error, i.e., the fault(s): location and nature
– non-malicious or malicious syndrome (intrusion)?
– attack? --- to allow removal/retaliation
– vulnerability? --- to allow removal

• Isolation
– prevent new activation
– intrusion: prevent further penetration
– attack: disable further attacks of this kind (block the origin)
– vulnerability: passivate the cause of successful attack (e.g. patch)

• Reconfiguration
– so that fault-free components provide adequate/degraded service
– contingency plans to degrade/restore service

Intrusion Detection

Classical methodologies
ID as error detection
ID as fault diagnosis

• 34

67

Intrusion Detection

• Classically, ID encompasses all kinds of attempts to
detect the presence or the likelyhood of an intrusion

• ID can be performed in real-time, or off-line
• It is directed at any or all of: attacks (e.g. port scan

detection), vulnerabilities (e.g. scanning), and
intrusions (e.g. correlation engines)

• Definition of ID given by NSA (1998):
– “Pertaining to techniques which attempt to detect intrusion into a

computer or network by observation of actions, security logs, or
audit data. Detection of break-ins or attempts either manually or via
software expert systems that operate on logs or other information
available on the network.”

68

ID system classes

• Behavior-based (or anomaly detection) systems
– no knowledge of specific attacks
– provided with knowledge of normal behavior of monitored system,

acquired e.g. through extensive training of the system
– advantages: they do not require a database of attack signatures that

needs to be kept up-to-date
– drawbacks: potential false alarms; no info on type of intrusion, just

that something unusual happened

• Knowledge-based (or misuse detection) systems
– rely on a database of previously known attack signatures
– whenever an activity matches a signature, an alarm is generated
– advantage: alarms contain diagnostic information about the cause
– drawback: potential omitted or missed alarms, e.g. new attacks

• 35

69

ID: Error detection or fault diagnosis?

• classical IDS have two facets
• detecting errors as per the security policy specification
• diagnosing faults as per the system fault model
• consider the following example:

– Organization A has an intranet with an extranet connected to the public
Internet. It is fit with an IDS

– the IDS detects a port scan against one of the extranet hosts, coming
from the Internet

– the IDS detects a port scan against an internal host, coming from the
intranet

– what is the difference?

Intrusion Detection

Classical methodologies
ID as error detection
ID as fault diagnosis

• 36

71

ID as error detection

• addresses detection of erroneous states in a system’s
computation, deriving or not from malicious action

– e.g. modified files or messages, OS penetration

• this puts emphasis on the result, rather than on the
cause (AVI- attack, vulnerability, intrusion): the
observable failure of some component to provide
correct service

• the possible causes have been defined previously
when devising the fault model

• any detector of errors caused by malicious faults
should detect errors caused by non-malicious ones

– ex. a byzantine (component) failure detector in a distributed system,
detects an abnormal behavior of components: sending inconsistent
info to different participants. Whether or not it is caused by
malicious entities, is irrelevant

72

Detection mechanisms

• consider system activity
specified by patterns

• anomaly detection
– looks for deviation from
NORMAL ACTIVITY PATTERNS

• misuse detection
– looks for existence of
ABNORMAL ACTIVITY PATTERNS

• we can have hybrids
• Quality of Service

– false alarm rate
– omitted alarm rate

• 37

Intrusion Detection

Classical methodologies
ID as error detection
ID as fault diagnosis

74

ID as fault diagnosis

• error detection’s first impact is on automated fault tolerance
mechanisms

• regardless of the error processing mechanism (recovery or
masking), administration subsystems have a paramount action
w.r.t. fault diagnosis

• this facet of classical ID fits into fault treatment
• Intrusion diagnosis

– assessing the degree of success of the intruder in terms of corruption of
components and subsystems

• Vulnerability diagnosis
– determining the channels through which the intrusion took place

• Attack diagnosis
– finding out who/what performed the attack

• diagnosis can be done proactively, before errors happen
– by activating faults (e.g. vulnerability scanning) and post-processing

(forecasting their effects) one can get a metrics of resilience (subject to the
method coverage...)

• 38

75

CIDF (Common Intrusion Detection Framework)

• CIDF proposes a structure for
intrusion-detection systems:

• e-box (event generator)
gathers event information

• a-box (analysis box) analyses
event information, detecting
errors and diagnosing faults

• d-box (database) saves
persistent information for the
IDS

• r-box (response box) acts
upon the results of analysis

• in fact, r-box is not intrusion
detection, but error recovery
and fault treatment

Sensor

Event
Analyzer

Sensor

Event
Analyzer

Target

Sensor

Event
Analyser

Activity

e-box

r-box

a-box

Event
Database
Event

Database
Event

Database

d-box

Intrusion Tolerance (IT)
mechanisms and strategies

• 39

77

Classical security strategies

• Openess of system security policies
– The 4P policies: paranoid, prudent, permissive, promiscuous

• Zero-Vulnerabilities
– e.g. Trusted Computing Bases (TCB) assumed to be tamperproof

• Attack Prevention
– e.g. firewalls preventing direct access to inside resources

• Detection and Reaction to Intrusion
– e.g. the intrusion detection process, and countermeasures

• Disruption avoidance
– Maintaining availability and integrity against attacks

78

Classical fault tolerance strategies

• Fault Tolerance versus Fault Avoidance in HW-FT
– tradeoff between reliable but expensive components and less

performant and more complex mechanisms

• Tolerating Design Faults
– going beyond HW-FT, helpless with common-mode faults (e.g. SW)

• Perfect Non-stop Operation?
– when no perceived glitch is acceptable

• Reconfigurable Operation
– less expensive, when a glitch is allowed

• Recoverable Operation
– cheap, when a noticeable but acceptable service outage allowed

• Fail-Safe versus Fail-Operational
– safety track--- when a fault cannot be tolerated, two hypothesis:

shutdown, or contingency plan for degraded op. mode

• 40

79

Modeling malicious failures

• What are malicious failures?
– how do we model the mind and power of the attacker?

• Basic types of failure assumptions:
– Controlled failures : assume qualitative and quantitative restrictions

on compon. failures, hard to specify for malicious faults
– Arbitrary failures : unrestricted failures, limited only to the

“possible” failures a component might exhibit, and the underlying
model (e.g. synchronism)

• Fail-controlled vs. fail-arbitrary models in face of
intrusions

– FC have a coverage problem, but are simple and efficient
– FA are normally inefficient, but safe

80

The problem of time and timeliness

• Why can’t we have secure synchronous (real-time)
protocols?

• Synchronous models (timed):
– use time, a powerful construct to solve timed problems
– yield simple algorithms
– but susceptible to attacks on timing assumptions

• Solutions:
– don’t use time (asynchronous models) OR
– make indulgent timing assumptions, ones that resist a certain level

of threat (timed partially asynchronous models) OR
– protect time under “good” subsystems, i.e. make sure that timing

assumptions are never violated (real-time security kernels)

• 41

81

The problem of time and timeliness

• Asynchronous model (time-free):
– resist attacks on timing assumptions
– no deterministic solution of hard problems e.g. consensus, BA
– efficient probabilistic approaches
– does not solve timed problems (e.g., e-com, stocks)

• Partial Synchrony (timed):
– exploit the power of intermediate models
– accommodate several degrees of sync/async.
– lives with indulgent timing assumptions
– Ex: a message is delivered within 100ms with 90% probability; a

message may take a very long time to be delivered but I’ll know
accurately whether it is delayed or the sender crashed

• Real-Time security kernels
– protect time from attackers and other faults

82

Arbitrary failure assumptions

• probl. of coverage of controlled failure assumptions:
– all lies on the coverage of the fail-controlled subsystem assumptions

• operations of very high value and/or criticality:
– financial transactions of very high value
– contract signing; provision of long term credencials
– risk of failure due to violation of assumptions cannot be incurred

• arbitrary-failure resilient building blocks (e.g.
Byzantine agreement protocols):

– no assumptions on existence of security kernels or other fail-
controlled components

– time-free approach, i.e. no assumptions about timeliness

• 42

83

Fail-uncontrolled IT protocols

• Time-free
• Arbitrary failure environment
• Arbitrary failure protocols
• Used in: probabilistic Byzantine-agreement based set of protocols

Ci

Host A
Cj

Host B
Ck

Host C
Cl

Host D

Arbitrary Failure Protocols

84

Modeling malicious failures

• Intrusion-aware composite fault models
– the competitive edge over the hacker
– AVI: attack-vulnerability-intrusion fault model

• Combined use of prevention and tolerance
– malicious failure universe reduction
– attack prevention, vulnerability prevention, vulnerability removal, in

system architecture subsets and/or functional domains subsets

• Hybrid failure assumptions
– different failure modes for distinct components
– reduce complexity and increase performance, maintaining coverage

• Quantifiable assumption coverage
– fault forecasting (on AVI)

• 43

85

Did you say trusted?

• Sometimes components are tamper-proof, others
tamper-resistant...

– Watch-maker syndrome:
» --- “Is this watch waterproof?”
» --- “No, it’s water-resistant”
» --- “Anyway, I assume that I can swim with it!”
» --- “Well…yes, you can… but i wouldn't trust that very much"

• How can something trusted be not trustworthy?
– Unjustified reliance syndrome:

» --- “I trust Alice”
» --- “Well Bob, you shouldn’t, she’s not trustworthy”

• What is the difference? If we separate specification
from implementation, and provide notions of
justification and of coverage, all becomes clearer

86

Trust, Trustworthy, Tamperproof

• Trust
– Reliance. Belief that something is dependable

• Trustworthy
– Dependable. Property of a (sub)system that makes us justifiably rely

on it

• Tamperproof
– Property of a system/component of being shielded, i.e. whose attack

model is that attacks can only be made at the regular interface
– Coverage of the "tamperproof" assumption may not be perfect

• Example:
– Implementation of an authorisation service using Java Cards to

store private keys. We assume J.Cards are tamperproof, and so we
argue that they are trustworthy (they will not reveal these keys to an
unauthorised party). Hence we can justifiably argue that the service
is trusted, with the coverage given by our assumptions, namely, the
tamperproofness of JCards

• 44

87

On coverage and separation of concerns

• predicate P holds with a coverage Pr
– we say that we are confident that P has a probability Pr of holding

• environmental assumption coverage (Pre)
– set of assumptions (H) about the environment where system will run
– Pre = Pr (H | f) f- any fault

• operational assumption coverage (Pro)
– the assumptions about how the system/algorithm/mechanism proper

(A) will run, under a given set of environmental assumptions
– Pro = Pr (A | H)

Alice Bob

Luisa

PaulAlicePr(A) = Pro x Pre = Pr (A | H) x Pr (H | f)

88

Hybrid failure assumptions considered useful

• Classic hybrid fault models
– flat, use stochastic foundation to explain different behavior from same

type of components (i.e. k crash and w byzantine in vector of values)

• The problem of well-foundedness
– an intentional player defrauds these assumptions

• Architectural hybridation
– different assumptions for distinct component subsets
– behavior enforced by construction: trustworthiness

• 45

89

Intrusion tolerance with hybrid failure assumptions

• Composite fault model with hybrid failure assumptions:
– the presence and severity of vulnerabilities, attacks and intrusions

varies from component to component

• Trustworthiness:
– how to achieve coverage of controlled failure assumptions, given

unpredictability of attacks and elusiveness of vulnerabilities?

• Design approach:
– modular architectures
– combined use of vulnerability prevention and removal, attack

prevention, and component-level intrusion tolerance, to justifiably
impose a given behavior on some components/subsystems

• Trusted components:
– fail-controlled components with justified coverage (trustworthy), used

in the construction of fault-tolerant protocols under hybrid failure
assumptions

90

Intrusion tolerance with hybrid failure assumptions

• Using trusted components:
– black boxes with benign behavior, of omissive or weak fail-silent class
– can have different capabilities (e.g. synchronous or not; local or

distributed), can exist at different levels of abstraction

• Fault-tolerant protocols:
– more efficient than truly arbitrary assumptions protocols
– more robust than non-enforced controlled failure protocols

• Tolerance attitude in design:
– unlike classical prevention-based approaches, trusted components do

not mediate all accesses to resources and operations
– assist only crucial steps of the execution of services and applications
– protocols run in untrusted environment, local participants only trust

trusted components, single components can be corrupted
– correct service built on distributed fault tolerance mechanisms, e.g.,

agreement and replication amongst participants in several hosts

• 46

91

Fail-controlled IT protocols
with Local Security Kernels

• Trustworthy component - Local Security Kernel (LSK) (e.g. smart or Java
card; appliance board)

• Time-free
• Arbitrary failure environment + LSK
• Hybrid failure protocols
• Example usage: FT distributed authentication and authorisation protocols

Ci

Host A

LSK

Cj

Host B
Ck

Host C
Cl

Host D

LSK LSK LSK

Hybrid Failure Protocols

92

Intrusion tolerance with hybrid failure assumptions

• distributed security kernels (DSK):
– amplifying the notion of local security kernel, implementing

distributed trust for low-level operations
– based on appliance boards with a private control channel
– can supply basic distributed security functions

• how DSK assists protocols:
– protocol participants exchange messages in a world full of threats,

some of them may even be malicious and cheat
– there is an oracle that correct participants trust, and a channel that

they can use to get in touch with each other, even for rare moments
– acts as a checkpoint that malicious participants have to synchronise

with, and this limits their potential for Byzantine actions

• 47

93

Intrusion tolerance under partial synchrony

• real-time distributed security kernels (DSK):
– control channel might as well provide reliable clocks and timely

(synchronous) inter-module communication
– ensures implementation of strong paradigms (e.g. perfect failure

detection, consensus)

• protocols can now be timed
– timed despite the occurrence of malicious faults

• how DSK assists protocols:
– determine useful facts about time (be sure it executed something on

time; measure a duration; determine it was late doing something)

94

Fail-controlled IT protocols
with a Distributed Security Kernel

• Trustworthy subsystem – Distributed Security Kernel (DSK) (e.g. appliance
boards interconnected by dedicated network)

• Time-free, or timed with partial synchrony
• Arbitrary failure environment + (synchronous) DSK
• Hybrid failure protocols
• Example usage: FT transactional protocols requiring timing constraints

Ci

Host A
Cj

Host B
Ck

Host C
Cl

Host D

DSK

Hybrid Failure Timed Protocols

• 48

3
Some paradigms
under an IT look

96

Authentication, signatures, MACs

• Intrusion prevention device: enforces authenticity, integrity
• Coverage: signature/authentication method
• End-to-end problem: who am I authenticating? me or my PC?

• 49

97

Tunelling, secure channels

• Intrusion prevention device: enforces confidentiality, integrity
(authenticity)

• Coverage: tunelling method, resilience of gateway
• End-to-end problem: are all intranet guys good?

98

Firewalling

• Intrusion prevention device: prevents attacks on inside machines
• Coverage: semantics of firewall functions, resilience of bastions
• End-to-end problem: are all internal network guys good?

• 50

99

Communication and agreement protocols

• Intrusion tolerance device: error processing or masking (3f+1,
2f+1, f+2)

• Coverage: semantics of protocol functions, underlying model
assumptions

A lice Bob
Self-Enforcing Protocol

Luisa

Paul

100

Threshold cryptography

• Intrusion tolerance device: error processing/masking
(f+1 out of n)

• Coverage: crypto semantics, brute force resilience,
underlying model assumptions

• 51

101

Trusted Third Party (TTP) protocols

• Intrusion tolerance device: error processing/masking
• Coverage: semantics of protocol functions,

underlying model assumptions, resilience of TTP

A lic e B o b

P a u l

Trent
(Adjudicato r ,

Arbiter ,
Cert i f . Auth)

Trusted-Third -Party P rotocol

Strategies for construction
of IT subsystems

• 52

103

Recursive use of F. Prevention and F.Tolerance

• The TTP protocol revisited
• Work at subsystem level to achieve justifiable behaviour
• Architectural hybridation w.r.t. failure assumptions

Casdhrtg Casdhrtg

Casdhrtg

Alice Bob
Self-Enforcing Protocol

Luisa

PaulTTP

104

Strategies for construction of IT subsystems

• Arbitrary model – no assumptions
• High coverage – very little to “cover”

Alice Bob
Self-Enforcing Protocol

Luisa

Paul

• 53

105

Strategies for construction of IT subsystems

• Fail-controlled model -- unjustified environment
assumptions

• Fair coverage – no enforcement

Alice Bob

Luisa

PaulAlice

106

Strategies for construction of IT subsystems

• Fail-controlled model – little environment
assumptions; justified component assumptions

• High coverage – enforcement by Local Security Kernel

LSK

LSK

LSK

LSK

• 54

107

Strategies for construction of IT subsystems

• Fail-controlled model – little environment
assumptions; justified component assumptions

• High coverage – enforcement by Distr. Security Kernel

DSK

DSK

DSK

DSK

Example IT
projects and systems

(by no means exhaustive, but focusing
on works with a strong “IT” brand)

• 55

109

MAFTIA - Malicious and Accidental Fault
Tolerance for Internet Applications

Computer systems can fail for many reasons

MAFTIA is investigating ways of making computer systems more
dependable in the presence of both accidental and malicious faults

110

Objectives

• Architectural framework and conceptual model
• Mechanisms and protocols:

– dependable middleware
– large scale intrusion detection systems
– dependable trusted third parties
– distributed authorisation mechanisms

• Validation and assessment techniques
• Partners

– DERA/Qinetiq, Malvern (UK) – Tom McCutcheon / Sadie Creese
– IBM, Zurich (CH) – Marc Dacier / Michael Waidner
– LAAS-CNRS, Toulouse (F) – Y. Deswarte / D. Powell
– Newcastle University (UK)(Coord.) R. Stroud / Brian Randell
– Universität des Saarlandes (D) – Michael Steiner
– Universidade de Lisboa (P) - Paulo Veríssimo / Nuno F. Neves

• EU coordinator – Andrea Servida

http://www.research.ec.org/maftia

• 56

111

Architecture Overview
Host architecture

Applications

Activity
Support Services
Communication
Support Services
Multipoint
Network

O.S.

Hardware Local
Support

Distributed
Software

TTCB

Security
Kernels

Runtime
Environment
(JVM+ Appia)

AS

TTP

IDS

Untrusted
Hardware

Trusted
Hardware

Control
channel

AS - Authorisation Service, IDS - Intrusion Detection Service, TTP - Trusted Third Party Service

Payload
channel

(Internet)

112

Architecture Overview
Host architecture

Applications

Activity
Support Services
Communication
Support Services
Multipoint
Network

O.S.

Hardware Local
Support

Distributed
Software

TTCB

Security
Kernels

Runtime
Environment
(JVM+ Appia)

AS

TTP

IDS

Untrusted
Hardware

Trusted
Hardware

Control
channel

AS - Authorisation Service, IDS - Intrusion Detection Service, TTP - Trusted Third Party Service

Payload
channel

(Internet)

Øtrusted— vs. untrusted— hardware
§most of MAFTIA’s hardware is untrusted, but
small parts considered trusted in the sense of
tamperproof by construction

• 57

113

Architecture Overview
Host architecture

Applications

Activity
Support Services
Communication
Support Services
Multipoint
Network

O.S.

Hardware Local
Support

Distributed
Software

TTCB

Security
Kernels

Runtime
Environment
(JVM+ Appia)

AS

TTP

IDS

Untrusted
Hardware

Trusted
Hardware

Control
channel

AS - Authorisation Service, IDS - Intrusion Detection Service, TTP - Trusted Third Party Service

Payload
channel

(Internet)

Øsecurity kernels materialising fail-controlled subsystems
§trusted to execute a few functions correctly, albeit immersed in
an environment subjected to malicious faults
§Local security kernels (Java Card)
§Distributed security kernels (Trusted Timely Computing Base)

114

Trusted Timely Computing Base DSK
• TTCB is a distributed security kernel that provides a minimal set of trusted

and timely services
• Construction principles: interposition, shielding, validation
• Classic Trusted Computing Base aims at fault prevention, while the TTCB aims at

fault tolerance
• TTCB can be a: special hardware module (e.g. tamperproof device); secure

real-time microkernel running on a workstation or PC underneath the OS
• TTCB control channel has to be both timely and secure: virtual network with

predictable characteristics coexisting with the payload channel; separate
physical network

• 58

115

Architecture Overview
Host architecture

Applications

Activity
Support Services
Communication
Support Services
Multipoint
Network

O.S.

Hardware Local
Support

Distributed
Software

TTCB

Security
Kernels

Runtime
Environment
(JVM+ Appia)

AS

TTP

IDS

Untrusted
Hardware

Trusted
Hardware

Control
channel

AS - Authorisation Service, IDS - Intrusion Detection Service, TTP - Trusted Third Party Service

Payload
channel

(Internet)

Ørun-time environment extending OS
capabilities

§hiding heterogeneity by offering a
homogeneous API and framework for
protocol composition

116

Architecture Overview
Host architecture

Applications

Activity
Support Services
Communication
Support Services
Multipoint
Network

O.S.

Hardware Local
Support

Distributed
Software

TTCB

Security
Kernels

Runtime
Environment
(JVM+ Appia)

AS

TTP

IDS

Untrusted
Hardware

Trusted
Hardware

Control
channel

AS - Authorisation Service, IDS - Intrusion Detection Service, TTP - Trusted Third Party Service

Payload
channel

(Internet)

Ømodular and multi-layered middleware
Ø neat separation between different functional
blocks

• 59

117

Membership
and

Failure
Detection

Participant level

Site level

Physical Network

Multipoint
Network (MN)

Particip.
 n

Particip.
 m

Particip.
 p

Applications

Communication
Support

Services (CS)

Activity Support
Services (AS)

R
un

ti
m

e
E

nv
ir

on
m

en
t

(A
pp

ia
+J

V
M

+O
S

)

Modular Group Architecture

ØMultipoint Network
§Multipoint addressing and routing
§Basic secure channels and envelopes
§Management Communication prots
§Appia APIs for mcastIP, Ipsec, SNMP

ØCommunication Services
§Distributed Cryptography (threshold public key)
§Group Communication (reliability and order props)
§Byzantine Agreement
§Time and Clock Synchronisation

ØMain Activity Services
§Replication management
§Key Management
§Transactional Management

118

Group Communication on Asynchronous model
• Stack of protocols for (among other applications) intrusion-tolerant

replicated servers on an asynchronous wide-area setting
• Main characteristics of the model: asynchronous; static and open

groups; up to n/3 corrupted processes (f < n/3); threshold crypto;
manual and trusted key distribution

threshold cryptosystem and
digital signature scheme

provides confidentiality

ordering of client requests

agreement on request values

reliable and consistent broadcasts,
agreement on Y/N questions

Reliable Point-to-Point Links

Threshold Cryptography

Broadcast
Primitives

Multi-value Agreement

Atomic Broadcast

Secure Causal Atomic Broadcast

Binary
Agreement

• 60

119

Byzantine-Reliable Multicast on Timed Model with TTCB

M -RMulticast

P1

P3

P2

TTCB TTCB Agreement
Service

P4

tstart

5-Node Delivery Times

Byzantine Reliable
Multicast Protocol (1 Phase)

120

IT Transactions with Error Masking

Transaction
Manager

begin

op (tid)

commit/abort

prepare
commit/abort

Transaction
Manager

Transaction
Manager

Resource
Manager

Resource

Resource
Manager

Resource

Resource
Manager

Resource

Resource
Manager

Resource

Resource
Manager

Resource

Resource
Manager

Resource

prepare
commit/abort

corruption

corruption
corruption

• A CORBA-style transaction service, standard ACID properties

• Support for multiparty transactions

• Uses error masking to tolerate intrusions

• Application of hybrid failure assumptions

• 61

121

Authorization Server

fs2

f3

ps1 p4
u

JavaCard

Security
kernel

Security
kernel

Security
kernel

IT Authorisation Service

122

IT Intrusion Detection Service

• finding solutions to the problems of the high rate of false positive
and false negative alarms generated by existing solutions

• these false alarms can also be due to attacks against the IDS itself,
therefore the need to design an IDS which is itself tolerant to
intrusions

• study and evaluate how notions such as fault injection, diversity and
distributed reasoning can address the weaknesses of existing
solutions

• 62

123

Verifying MAFTIA protocols

Abstract Abstract
primitivesprimitives

Abstract Abstract
protocolprotocol

Abstract Abstract
goalsgoals

Concrete Concrete
primitivesprimitives

Concrete Concrete
protocolprotocol

Concrete Concrete
goalsgoals

abstractionabstraction

usesuses fulfilsfulfils

replace replace
primitivesprimitives

cryptographic cryptographic
semanticssemantics

fulfilsfulfilsusesuses

abstractionabstraction

Faithful Faithful
abstractionabstraction

Formal methods (e.g., CSP)Formal methods (e.g., CSP)

CryptographyCryptography

Formal Methods
(e.g., CSP)

Crypto Crypto

Crypto

OASISOASIS

ORGANICALLY ASSURED & SURVIVABLE
INFORMATION SYSTEMS

Dr. Jaynarayan Lala – jlala@darpa.mil, 703-696-7441
Organically Assured Survivable Information Systems,

OASIS Demonstration and Validation Program

Some Attacks will Succeed

3rd Generation
(Operate Through Attacks) Big Board View of Attacks

Real-Time Situation Awareness
& Response

Intrusion
Tolerance

Graceful
Degradation

Hardened
Core

Functionality

Performance

Security

• 63

125

OASIS
Intrusion Tolerant Architecture Objectives

Technical Approach Schedule

COTS
Servers

Acceptance
Monitors

Ballot
MonitorsProxy

Servers

P u B v A m S n

P 2 B 2 A 2 S 2

P 1 B 1 A 1 S 1

Audit
Control

Adaptive
Reconfiguration

request
responses
control

U
se

rs
/C

lie
nt

s

Pr
ot

ec
te

d
Pr

ot
ec

te
d

Phase II

Error Compensation,
Response, Recovery

Developing
Technology
Drops

Real-time Execution
Monitors,
Error Detection

Phase I

1/01 1/02 1/03

•Construct intrusion-tolerant architectures from
potentially vulnerable components
•Characterize cost-benefits of intrusion tolerance
mechanisms
•Develop assessment and validation
methodologies to evaluate intrusion tolerance
mechanisms

• Real-Time Execution Monitors: In-line reference monitors, wrappers,
sandboxing, binary insertion in legacy code, proof carrying code, secure mobile
protocols
•Error Detection & Tolerance Triggers: Time and Value Domain Checks,
Comparison and Voting, Rear Guards
•Error Compensation, Response and Recovery: Hardware and Software
Redundancy, Rollback and Roll-Forward Recovery
• Intrusion Tolerant Architectures: Design Diversity, Randomness, Uncertainty,
Agility
• Assessment & Validation: Peer Review Teams, Red Team, Assurance Case
(Fault Tree, Hazard Analysis, Formal Proofs, Analytical Models, Empirical
Evidence)

1/99 1/00

OASISOASIS

126

OASIS Projects
Project T itle Organization PI

Scaling Proof-Carrying Code to Production
Compilers and Security Policies

Princeton University Andrew Appel

Sandboxing Mobile Code Execution Environments Cigital Anup Ghosh
Containment and Integrity for Mobile Code Cornell University Fred Schneider

Integrity Through Mediated Interfaces Teknowledge Bob Balzer

Agile Objects: Component-based Inherent
Survivability

UC, San Diego Andrew Chien

A Distributed Framework for Perpetually Available
and Secure Information Systems

CMU Pradeep Khosla

New Approaches to Mobile Code: Reconciling
Execution Efficiency with Provable Security

UC, Irvine Michael Franz

A Binary Agent Technology for COTS Software
Integrity

InCert Software Corp. Anant Agarwal

Self-Protecting Mobile Agents NAI Labs Lee Badger

Intrusion Tolerant Software Architectures SRI International Victoria Stavridou
Computational Resiliency Syracuse University Steve Chapin

Intrusion Tolerance Using Masking, Redundancy
and Dispersion

Draper Laboratory Janet Lepanto

Dependable Intrusion Tolerance SRI International Alfonso Valdes

Intrusion Tolerant Distributed Object Systems NAI Labs Gregg Tally

Hierarchical Adaptive Control for QoS Teknowledge Jim Just
Intrusion Tolerant Server Infrastructure Secure Computing Corp Dick O’Brien

Randomized Failover Intrusion Tolerant Systems Architecture Technology Corp Ranga Ramanujan

A Comprehensive Approach for Intrusion Tolerance
Based on Intelligent Compensating Middleware

Telcordia Amjad Umar

OASISOASIS

• 64

127

OASIS Projects
Project T itle Organization PI

Engineering a Distributed Intrusion Tolerant
Database System Using COTS Components

University of Maryland,
Baltimore County

Peng Liu

Intrusion Tolerance by Unpredictable Adaptation BBN Technologies Partha Pal, Bill
Sanders

SITAR: A Scalable Intrusion-Tolerant Architecture
for Distributed Services

MCNC, Duke University Fengmin Gong,
Kishor Trivedi

Tolerating Intrusions Through Secure System
Reconfiguration

University of Colorado Alexander Wolf

Active Trust Management for Automonous Adaptive
Survivable Systems

MIT Howie Shrobe

Enterprise Wrappers (NT) Teknowledge Bob Balzer

Enterprise Wrappers (Unix) NAI Labs Mark Feldman
Information Assurance Science and Engineering
Project

CMU, SEI Tom Longstaff

Autonomix: Component, Network and System
Autonomy

WireX Communications, Inc. Crispin Cowan

An Aspect-Oriented Security Assurance Solution Cigital Tim Hollebeek

Dependence Graphs for Information Assurance of
Systems

Grammatech, Inc Tim Teitelbaum

Cyberscience SRI International Victoria Stavridou

OASISOASIS

128

OASIS technology groups

• Possible grouping by primary focus, for example

How to develop programs/systems
With fewer vulnerabilities?

How to organize intrusion
tolerant subsystems?

How to detect/resist/tolerate
component vulnerabilities?

How to understand
behavior of intrusion
tolerant systems?

New approaches to mobile code – Franz
Scaling PCC – Appel
Aspect-oriented security - McGraw

SITAR – Wang/Trivedi
IASET - Longstaff

Binary agent technology – Schooler
Sandboxing mobile code – Hollebeek
Agile objects – Chien
Wrappers
Autonomix - Cowan

HACQIT – Just
ITUA – Pal/Sanders
ITSA - Dutertre

ALL THESE LISTS ARE INCOMPLETE

OASISOASIS

• 65

129

Distributed
Tolerance

Proxy
(Diverse platform/OS)

Classic
Firewall

Challenge/
Response
Protocols

Symptomatic
anomaly detector

“Hardened”
EMERALD IDS

Proof-Based Triggers

Diversified Server Bank
HP/UX/Openview Server

Linux/Apache

Solaris/Enterprise Server

WinNT/IIS Server

Proxy
Alert Log

Firewall Filter Insertion
Dynamic Proxy Configuration
HTTP Service Management
Sensor Management

1

Policy
Activator

4

2

Tolerance Proxy Server

Report
Consolidation

Intrusion Tolerance by Dependable Proxy Server OASISOASIS

130

ITUA: Intrusion Tolerance by Unpredictability and Adaptation

General Architecture

Security Domain

s A1 2

host

host host

host

host

C
host

M

M S S

r1

r1

SM

Security Domain

Security Domain

3

4

5

1 Sensor-actuator loop
2 Rapid response
3 Subordinate group
4 Manager group
5 Replication group

Naming
Service

DII
Processor

Handler
Factory

TAO ORB

ITUA
GCS

r1

ORB

Handler for
ITUA object -1

Handler for
ITUA object -2

Handler for
ITUA object -n

...
Gateway handlers

Gateway IIOP

Create handlers

Replicated Object Architecture

OASISOASIS

• 66

131

Enclaves: IT support for group collaboration

Leader 3

Member Member

Leader 1 Leader 2 Leader N

• Middleware for secure group applications in insecure nets (Internet)
• Lightweight, software-only implementation (currently Java)
• Services provided:

– Secure group multicast (confidentiality and integrity: encryption with common
group key)

– Group management: user authentication; join and leave protocols; group-key generation,
distribution, refresh

OASISOASIS

132

COCA C.A. System Architecture

client

response delegate

server

server

server

server

server

server

server

quorum server failure
dissem. Byzantine Quorum

server compromise
threshold signature protocol

mobile attack
proactive secret sharing
(PSS)

asynchrony
asynchronous PSS

OASISOASIS

• 67

133

Hardening COTS Products Through Wrapper Mediation

• Wrap Program
– Detect access of integrity marked data & decode it
– Monitor User Interface to detect change actions

» Translate GUI actions into application specific modifications
– Detect update of integrity marked data

» Re-encode & re-integrity mark the updated data
• Repair any subsequent Corruption from History
• Build on existing research infrastructure

M

M

M

M

Mediation Cocoon

Environment =
Operating System
External Programs

Program

Change
Monitor

OASISOASIS

134

Code Producer Code Consumer

Safety
Theorem

Prover

Compiler

Checker OK

Execute
Source
Program

Policy

Safety
Theorem

Policy

load r3, 4(r2)
add r2,r4,r1
store 1, 0(r7)
store r1, 4(r7)
add r7,0,r3
add r7,8,r7
beq r3, .-20

Native Code

Safety Proof

Hints

∃-i(
∀-i(...
→-r (
...)

)
)

Scaling Proof-Carrying Code OASISOASIS

• 68

135

Agile Objects and Elusive Interfaces

• Integrated security mechanisms
with high performance
RPC/distributed objects (Elusive
Interfaces)

– Exploit computer manipulable
interfaces and data reorganization

• Adaptive security management
for Agile, highly decentralized
applications

– Rapidly and continuously changing
environment and configurations

Nasty Virus
Attack

Elevated Security
Barrier

Change of Protocol
and
Change of Interface

Migration

Monitoring

Computing

Memory

. . .

Core Svcs (Naming, Communication, File, etc.)

Distributed Application
Migration

Policy
Security
Policy

Migration

Monitoring

Computing

Memory

Migration

Monitoring

Computing

Memory

Local Services
(1 instance /
machine)

Network Services
(1 instance)

Agile Distributed
Application

OASISOASIS

Intrusion detector

Mediator
(Policy Enforcement)

User SQL Commands

Damage Assessor

Damage
Repairer

Damage Confinement

Main
database

Suspicious trans.

Isolating
engine 1

Isolating
engine n

...

merge

read

Distributed IT Database System Using COTS Components
Simple intrusion tolerance, multi-phase confinement, isolation

OASISOASIS

• 69

137

Further Reading
• L. Alvisi, D. Malkhi, E. Pierce, M. K. Reiter, and R. N. Wright, Dynamic Byzantine quorum systems,"

in Proc. Int’l Conference on Dependable Sys and Networks (FTCS-30/DCCA-8), pp. 283-292, 2000.
• Y. Amir et al. Secure group communication in asynchronous networks with failures: Integration and

experiments. In Proc. The 20th IEEE International Conference on Distributed Computing Systems
(ICDCS 2000), pages 330-343, Taipei, Taiwan, April 2000.

• G. Ateniese, M. Steiner, G. Tsudik: Authenticated group key agreement and friends. In Proceedings
of the 5th ACM Conference on Computer and Communications Security (CCS-98), pages 17-26,
New York, November 3-5 1998. ACM Press.

• Giuseppe Ateniese, Michael Steiner, and Gene Tsudik. New multi-party authentication services and
key agreement protocols. IEEE Journal of Selected Areas on Communications, 18, March 2000.

• Christian Cachin. Distributing Trust on the Internet. In Procs. of the Int’l Conf. on Depend. Systems
and Networks (DSN-2002), Gotteborg, Sweden, 2001.

• C. Cachin, K. Kursawe and V. Shoup, “Random oracles in Constantinople: Practical asynchronous
Byzantine agreement using cryptography”, in Proc. 19th ACM Symposium on Principles of
Distributed Computing (PODC), pp.123-32, 2000b.

• C. Cachin and J. A. Poritz, Hydra: Secure replication on the Internet," In Procs. of the Int’l Conf. on
Dependable Systems and Networks (DSN-2002), Washigton, USA, 2002.

• M. Castro and B. Liskov, Practical Byzantine fault tolerance," in Proc. Third Symp. Operating
Systems Design and Implementation (OSDI), 1999.

• T. D. Chandra and S. Toueg, Unreliable failure detectors for reliable distributed systems," Journal of
the ACM, vol. 43, no. 2, pp. 225-267, 1996.

• Nick Cook, Santosh Shrivastava, Stuart Wheater. Distributed Object Middleware to Support
Dependable Information Sharing between Organisations. In Procs. of the Int’l Conf. on Dependable
Systems and Networks (DSN-2002), Washigton, USA, 2002.

138

Further Reading
• M. Correia, Lau Cheuk Lung, Nuno Ferreira Neves, and P. Veríssimo. Efficient Byzantine-Resilient

Reliable Multicast on a Hybrid Failure Model. In Proc. of Symp. of Reliable Distributed Systems,
October 2002, Japan.

• Miguel Correia, Paulo Veríssimo, and Nuno~Ferreira Neves. The architecture of a secure group
communication system based on intrusion tolerance. In International Workshop on Applied
Reliable Group Communication, Phoenix, Arizona, USA, April 2001.

• M. Correia, P. Veríssimo, and N. F. Neves. The design of a COTS real-time distributed security
kernel. In proceedings of the EDCC-4, Fourth European Dependable Computing Conference,
Toulouse, France - October 23-25, 2002.

• H. Debar, M. Dacier, A. Wespi: Towards a taxonomy of intrusion detection systems. Computer
Networks, 31:805-822, 1999.

• Y. Desmedt: Society and group oriented cryptography: a new concept; Crypto ‘87, LNCS 293,
Springer-Verlag, Berlin 1988, 120-127.

• Y. Desmedt, Threshold cryptography," European Transactions on Telecommunications, vol. 5, no. 4,
pp. 449-457, 1994.

• Y. Deswarte, N. Abghour, V. Nicomette and D. Powell, “An internet authorization scheme using
smart card-based security kernels”, in Int’l Conf. on Research in Smart Cards (E-smart 2001),
(Cannes, France), Lecture Notes in Computer Science, pp.71-82, Springer-Verlag, 2001.

• Y. Deswarte, L. Blain, J.-C. Fabre: Intrusion tolerance in distributed systems. In Proc. Symp. on
Research in Security and Privacy, pages 110-121, Oakland, CA, USA, 1991. IEEE CompSoc Press.

• Durward McDonell, Brian Niebuhr, Brian Matt, David L. Sames, Gregg Tally, Szu-Chien Wang, Brent
Whitmore. Developing a Heterogeneous Intrusion Tolerant CORBA System. In Procs. of the Int’l
Conf. on Dependable Systems and Networks (DSN-2002), Washigton, USA, 2002.

• 70

139

Further Reading
• Bruno Dutertre, Hassen Saïdi and Victoria Stavridou. Intrusion-Tolerant Group Management in

Enclaves. In Procs. of the Int’l Conf. on Dependable Systems and Networks (DSN-2001), Gotteborg,
Sweden, 2001.

• J. Fraga and D. Powell, “A Fault and Intrusion-Tolerant File System”, in IFIP 3rd Int. Conf. on
Computer Security, (J. B. Grimson and H.-J. Kugler, Eds.), (Dublin, Ireland), Computer Security,
pp.203-18, Elsevier Science Publishers B.V. (North-Holland), 1985.

• R. Guerraoui, M. Hurn, A. Mostefaoui, R. Oliveira, M. Raynal, and A. Schiper, Consensus in
asynchronous distributed systems: A concise guided tour," in Advances in Distributed Systems (S.
Krakowiak and S. Shrivastava, eds.), vol. 1752 of LNCS, pp. 33-47, Springer, 2000.

• V. Hadzilacos and S. Toueg, Fault-tolerant broadcasts and related problems," in Distributed Systems
(S. J. Mullender, ed.), New York: ACM Press & Addison-Wesley, 1993. An expanded version as
Technical Report TR94-1425, Department of Computer Science, Cornell University, Ithaca NY, 1994.

• HariGovind V Ramasamy, Prashant Pandey, James Lyons, Michel Cukier, William H. Sanders.
Quantifying the Cost of Providing Intrusion Tolerance in Group Communication Systems, In Procs. of
the Int’l Conf. on Dependable Systems and Networks (DSN-2002), Washigton, USA, 2002.

• Matti A. Hiltunen, Richard D. Schlichting and Carlos A. Ugarte. Enhancing Survivability of Security
Services Using Redundancy. In Procs. of the Int’l Conf. on Dependable Systems and Networks
(DSN-2002), Gotteborg, Sweden, 2001.

• K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith, The SecureRing protocolsfor securing group
communication," in Proc. 31st Hawaii Int’l Conf. on System Sciences, pp. 317-326, IEEE, Jan. 1998.

• J. H. Lala, “A Byzantine Resilient Fault-Tolerant Computer for Nuclear Power Plant Applications”, in
16th IEEE Int. Symp. on Fault Tolerant Computing (FTCS-16), (Vienna, Austria), pp.338-43, IEEE
Computer Society Press, 1986.

140

Further Reading
• B. Madan, K. Goseva-Popstojanova, K. Vaidyanathan, K. Trivedi. Modeling and Quantification of

Security Attributes of Software Systems. In Procs. of the Int’l Conf. on Dep. Syst. and Networks
(DSN-2002), Washigton, USA, 2002.

• D. Malkhi and M. K. Reiter, An architecture for survivable coordination in large distributed systems,"
IEEE Transactions on Knowledge and Data Engineering, vol. 12, no. 2, pp. 187-202, 2000.

• Jean-Philippe Martin, Lorenzo Alvisi, Michael Dahlin. Small Byzantine Quorums. In Procs. of the Int’l
Conf. on Dependable Systems and Networks (DSN-2002), Washigton, USA, 2002.

• Roy A. Maxion and Tahlia N. Townsen, Masquerade Detection Using Truncated Command Lines. In
Procs. of the Int’l Conf. on Dep. Syst. and Networks (DSN-2002), Washigton, USA, 2002.

• F. Meyer and D. Pradhan, “Consensus with Dual Failure Modes,” presented at The 17th International
Symposium on Fault-Tolerant Computing Systems, Pittsburgh, PA, 1987, pp. 214--22.

• L. E. Moser, P. M. Melliar-Smith, and N. Narasimhan. The SecureGroup communication system. In
Proceedings of the IEEE Information Survivability Conference, pages 507–516, January 2000.

• Peter G. Neumann, “Practical Architectures for Survivable Systems and Networks,” Computer
Science Laboratory, SRI International, Menlo Park, CA, Technical Report
http://www.csl.sri.com/~neumann/private/arldraft.{pdf|ps}, October 1998.

• Birgit Pfitzmann and Michael Waidner. Composition and integrity preservation of secure reactive
systems. 7th ACM Conference on Computer and Communications Security, Athens, November
2000, ACM Press, New York 2000, 245-254.

• P. Porras, D. Schnackenberg, S. Staniford-Chen and M. Stillman, “The Common Intrusion Detection
Framework Architecture”, CIDF working group, http://www.gidos.org/drafts/architecture.txt,
(accessed: 5 September, 2001).

• 71

141

Further Reading
• D. Powell, G. Bonn, D. Seaton, P. Veríssimo and F. Waeselynck, “The Delta-4 Approach to

Dependability in Open Distributed Computing Systems”, in 18th IEEE Int. Symp. on Fault-Tolerant
Computing Systems (FTCS-18), (Tokyo, Japan), pp.246-51, IEEE Computer Society Press, 1988.

• M. K. Reiter: Distributing trust with the Rampart toolkit; Communications of the ACM, 39/4 (1996).
• F. B. Schneider, “Implementing fault-tolerant services using the state machine approach: a tutorial”,

ACM Computing Surveys, 22 (4), pp.299-319, 1990.
• P. Verissimo, A. Casimiro and C. Fetzer, “The Timely Computing Base: Timely Actions in the

Presence of Uncertain Timeliness”, in Proc. of DSN 2000, the Int. Conf. on Dependable Systems
and Networks, pp.533-52, IEEE/IFIP, 2000.

• Paulo Veríssimo, Nuno~Ferreira Neves, and Miguel Correia. The middleware architecture of
MAFTIA: A blueprint. In Proceedings of the IEEE Third Information Survivability Workshop (ISW-
2000), Boston, Massachusetts, USA, October 2000.

• Chenxi Wang, Jack Davidson, Jonathan Hill and John Knight. Protection of Software-Based
Survivability Mechanisms. In Procs. of the Int’l Conf. on Dependable Systems and Networks (DSN-
2002), Gotteborg, Sweden, 2001.

• J.~Xu, A.~Romanovsky, and B.~Randell. Concurrent exception handling and resolution in distributed
object systems. IEEE Trans. on Parallel and Distributed Systems, 10(11):1019--1032, 2000.

• L. Zhou, F. B. Schneider, and R. van Renesse, COCA: A secure distributed online certification
authority,Tech. Rep. 2000-1828, CS Dpt, Cornell University, Dec. 2000. Also ACM TOCS to appear.

142

Where to find us

•• NavigatorsNavigators GroupGroup
http://www.navigators.di.fc.ul.pt

• IT related research in the site:
• Look-up our research in the Fault and Intrusion Tolerance in Open

Distributed Systems research line
• Look-up recent papers authored by Veríssimo and Correia, and/or

referencing the MAFTIA project

• Feel free to email
• Paulo: pjv@di.fc.ul.pt

