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Objective of Tutorial 
 
There is a significant body of research on distributed computing architectures, 
methodologies and algorithms, both in the fields of dependability and fault tolerance, 
and in security and information assurance. Whilst they have taken separate paths until 
recently, the problems to be solved are of similar nature: keeping systems working 
correctly, despite the occurrence of mishaps, which we could commonly call faults 
(accidental or malicious); ensure that, when systems do fail (again, on account of 
accidental or malicious faults), they do so in a non harmful/catastrophic way. 
 
In classical dependability, and mainly in distributed settings, fault tolerance has been 
the workhorse of the many solutions published over the years. Classical security-related 
work has on the other hand privileged, with few exceptions, intrusion prevention, or 
intrusion detection without systematic forms of processing the intrusion symptoms. 
 
A new approach has slowly emerged during the past decade, and gained impressive 
momentum recently: intrusion tolerance. That is, the notion of tolerance to a wide set of 
faults encompassing intentional and malicious faults (we may collectively call them 
intrusions), which may lead to failure of the system security properties if nothing is 
done to react, counteract, recover, mask, etc., the effect of intrusions on the system 
state. In short, instead of trying to prevent every single intrusion, the latter are allowed, 
but tolerated: the system has the means to trigger mechanisms that prevent the intrusion 
from generating a system failure. 
 
The purpose of this tutorial is to expose the audience to these new concepts and design 
principles. The tutorial reviews previous results under the light of intrusion tolerance 
(IT), introduces the fundamental ideas behind IT, and presents recent advances of the 
state-of-the-art, coming from European and US research efforts devoted to IT. The 
program of the tutorial will address: a review of the dependability and security 
background; introduction of the fundamental concepts of intrusion tolerance (IT); 
intrusion-aware fault models; intrusion prevention; intrusion detection; IT strategies and 
mechanisms; design methodologies for IT systems; examples of IT systems and 
protocols. 
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• A lot of the material presented here derives from past experience with 
fault tolerant and secure systems, and from new work and challenging 
discussions, during the past three years, within the European IST 
MAFTIA project. I wish to warmly acknowledge the contributions of all 
members of the team, several of whom contributed results presented 
here, and collectively have represented a fenomenal thinking tank.

• Further reading on the concepts and design principles presented here 
can thus be found in:

– Paulo Veríssimo and Luís Rodrigues, Distributed Systems for System 
Architects, Kluwer Academic Publishers, 2001. 
http://www.navigators.di.fc.ul.pt/dssa/

– A. Avizienis, J.-C. Laprie and B. Randell, Fundamental Concepts of 
Dependability, Research Report N°01145, LAAS-CNRS, April 2001. 
http://www.laas.fr/

– P. Veríssimo and N. F. Neves, eds., Service and Protocol Architecture for the 
MAFTIA Middleware. Deliv. D23, Project MAFTIA IST-1999-11583, Tech.Rep. 
DI/FCUL TR-01-1, Univ. Lisboa Jan. 2001.                            
http://www.di.fc.ul.pt/tech-reports/abstract01-1.html

– D. Powell and R. Stroud, eds., MAFTIA Conceptual Model and Architecture, 
Deliv. D2, Project MAFTIA IST-1999-11583, Tech.Rep. DI/FCUL TR-01-10, Univ. 
Lisboa Nov. 2001.                                               
http://www.di.fc.ul.pt/tech-reports/abstract01-10.html
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The case for Intrusion Tolerance

• Distribution and fault tolerance go hand in hand:
– You distribute to achieve resilience to common mode faults
– You embed FT in a distributed system to resist higher fault probabil.

• Security and distribution go hand in hand:
– You break, split, and separate your information
– You make life harder to an attacker

• So it looks like we should be talking about 
(distributed) malicious fault tolerance, a.k.a. 

(Distributed) Intrusion ToleranceIntrusion Tolerance
• If this is so obvious, why hasn’t it happened earlier?

– Distributed systems present fundamental issues and limitations that 
took a long time to learn

– Classical fault tolerance tolerance follows a framework that is not 
completely fit to the universe of intentional and/or malicious faults

4

Dependability as a common framework

• Dependability is defined as “that property of a 
computer system such that reliance can justifiably be 
placed on the service it delivers”

• The service delivered by a system is its behaviour as 
it is perceptible by its user(s); a user is another 
system (human or physical) which interacts with the 
former

• Dependability grew under the mental framework of 
accidental faults

• But all that is defined w.r.t. dependability can be 
applied to malicious faults
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Intrusion Tolerance

• Traditionally, security has involved either:
– Trusting that certain attacks will not occur
– Removing vulnerabilities from initially fragile software
– Preventing attacks from leading to intrusions

• In contrast, the tolerance paradigm in security:
– Assumes that systems remain to a certain extent vulnerable
– Assumes that attacks on components or sub-systems can happen 

and some will be successful
– Ensures that the overall system nevertheless remains secure and 

operational

• Obviously, a complete approach combines tolerance 
with prevention, removal, forecasting, after all, the 
classic dependability fields of action!

1
Introduction to security and information assurance
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Security Properties

• Confidentiality
– the measure in which a service or piece of information is protected 

from unauthorized disclosure

• Authenticity
– the measure in which a service or piece of information is genuine, 

and thus protected from personification or forgery

• Integrity
– the measure in which a service or piece of information is protected 

from illegitimate and/or undetected modification

• Availability
– the measure in which a service or piece of information is protected 

from denial of authorized provision or access

8

Security Frameworks

• Secure Channels and Envelopes
– Communicating in a secure way
– Dispatching information in a secure way

• Authentication
– Ensuring what we deal with is genuine: end-users, data, servers, etc.

• Protection and Authorization
– Protecting resources from unauthorized access
– Ensuring the users are authorized to do just what they should

• Auditing and Intrusion Detection
– Following the system execution for a posteriori analysis
– Detecting anomalous usage in runtime
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Example Secure Networks and Architectures
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Introduction 
to 

fault tolerance and dependability
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The failure of computers

• Why do computers fail and what can we do about it?
[ J. Gray]

• Because:
– All that works, fails
– We tend to overestimate our HW e SW--- that’s called faith☺

• So:
– We had better prevent (failures) than remedy

• Dependability is ...
– that property of a computer system such that reliance can justifiably 

be placed on the service it delivers

• Why?
– Because (faith notwithstanding) it is the scientific way to quantify, 

predict, prevent, tolerate, the effect of disturbances that affect the 
operation of the system
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Does not get better with distribution

• A distributed system is the one that prevents you from working 
because of the failure of a machine that you had never heard of.

[ L. Lamport]

• Since:
– Machines fail independently, for a start
– They influence each other,
– They communicate through unreliable networks, with unpredictable

delays

• ...gathering machines renders the situation worse:
– The reliability (<1) of a system is the product of the individual 

component reliabilities, for independent component failures
– R(10 @ 0.99)= 0.9910= 0.90; R(10 @ 0.90)= 0.9010= 0.35

20

Can get much worse with malicious failures

• Failures are no longer independent 
– Human attackers are the “common-mode” link
– Components may perform collusion through distributed protocols

• Failures become harder
– Components producing malicious, e.g. inconsistent output, at wrong 

times, forged, etc.

• “Fault models”?
– How do you model the mind of an attacker?
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Faults, Errors and Failures

• A system failure occurs when the delivered service deviates 
from fulfilling the system function

• An error is that part of the system state which is liable to lead to 
subsequent failure 

• The adjudged cause of an error is a fault

• EXAMPLES:  
– Fault --- stuck-at ‘0’ RAM memory register
– Error --- what happens when the register is read after ‘1’ is written
– Failure --- the wrong reading (‘0’) is returned to the user buffer

• SOLUTIONS?
– Remove the faulty memory chip
– Detect the problem, e.g. using parity bits
– Recover from the problem, e.g. using error correcting codes (ECC)
– Mask the problem, replicating the memory and voting on the readings

22

Types of Faults

• Physical
• Design
• Interaction (*)
• Accidental vs. Intentional vs. Malicious (*)
• Internal vs. External
• Permanent vs. Temporary
• Transient vs. Intermittent

(*) Especially important in distributed systems and security
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Interaction Fault classification

• Omissive
– Crash

» host that  goes down
– Omission

» message that gets lost
– Timing

» computation gets delayed

• Assertive
– Syntactic

» sensor says air 
temperature is 100º

– Semantic
» sensor says air 

temperature is 26º when it 
is 30º

semantic

syntactic

timing

omission

crash

OMISSIVE ASSE
RTIVE

ARBITRARY

24

sequence  fault→ error→ failure

design/
operation

faultDesigner/
Operator

interaction
fault

error failure
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Achieving dependability

• Fault prevention
– how to prevent the occurrence or introduction of faults

• Fault tolerance
– how to ensure continued correct service provision despite faults

• Fault removal
– how to reduce the presence (number, severity) of faults

• Fault forecasting
– how to estimate the presence, creation and consequences of faults

26

fault
removal

Dependability measures

design/
operation

faultDesigner/
Operator

interaction
fault

error failure

fault 
tolerance

imperfect

error
processing

fault 
treatment

fault
prevention
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Measuring dependability

• Reliability
– the measure of the continuous delivery of correct service (ex. MTTF)

• Maintainability
– the measure of the time to restoration of correct service (ex. MTTR)

• Availability
– measure of delivery of correct service with respect to alternation 

between correct and incorrect service (ex. MTBF/(MTBF+MTTR))

• Safety
– the degree to which a system, upon failing, does so in a non-

catastrophic manner

• Integrity
– the measure in which a service or piece of information is protected 

from illegitimate and/or undetected modification

• Confidentiality
• Authenticity

28

The “Dependability Tree”

IMPAIRMENTS
• FAULTS
• ERRORS
• FAILURES

MEANS

• FAULT PREVENTION

• FAULT TOLERANCE

• FAULT REMOVAL

• FAULT FORECASTING

ATTRIBUTES

• RELIABILITY
• MAINTAINABILITY
• AVAILABILITY
• SAFETY
• CONFIDENTIALITY
• INTEGRITY
• AUTHENTICITY
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Foundations of 
(Modular and Distributed) 
Fault-Tolerant Computing
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Forms of redundancy

• Space redundancy
– several copies of the same component
– same information stored in several disks
– different nodes compute same result in parallel
– messages disseminated along different paths

• Time redundancy
– doing the same thing more than once, in same or different ways
– retransmission of lost messages
– repeating computations that have aborted 

• Value redundancy
– adding extra information about the data being stored or sent
– codes that allow the detection or correction of integrity errors
– parity bit or ECC added to memory chips or disk structures 
– frame check sequences or cyclic redundancy in xmitted data 
– cryptographic message signatures
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Error processing techniques

• error detection
– detecting the error after it occurs aims at: confining it to avoid propagation; 

triggering error recovery mechanisms; triggering fault treatment mechanisms

• error recovery
– recovering from the error aims at: providing correct service despite the error

backward recovery:
the system goes back to a previous state known as correct and resumes

forward recovery:
the system proceeds forward to a state where correct provision of service can 

still be ensured

• error masking
– the system state has enough redundancy that the correct service can be 

provided without any noticeable glitch

32

centralized

Foundations of modular and distributed fault tolerance

• Topological separation
– failure independence
– graceful degradation

• Replication
– software vs. hardware
– fine granularity
– Resource optimization

• incremental T/F by:
– class (omissive, semantic)
– number of faults
– number of replicas

» pairs, triples, etc.
– Type of replica control

» active, passive
» round robin, voting

I´m alive

distributed
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Example Fault Tolerant Networks and Architectures

34

Redundant Networks
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Redundant Media Networks

36

Redundant Storage and Processing

(a) (b)
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Error Detection and Masking

(a) (b)

V

38

Modular Distributed FT with Replica Sets
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Client-Server with FT Servers

Data
Network

Fault-Tolerant
Application

Servers

Client
PC or WS

40

FT Publisher-Subscriber

Data
Network

PERSISTENT
MESSAGE  BUS

Publishers
Fault-Tolerant

Publishing
Server

Subscribers
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Intrusion Tolerance (IT) concepts and terminology 

42

What measures the risk of intrusion?

• RISK is a combined measure of the level of threat to 
which a computing or communication system is 
exposed, and the degree of vulnerability it possesses:

RISK = VULNERABILITY X THREAT

• The correct measure of how potentially insecure a 
system can be (in other words, of how hard it will be to 
make it secure) depends:

– on the number and severity of the flaws of the system (vulnerabilities) 
– on the potential of the attacks it may be subjected to (threats)
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An example

• Consider the following two example systems:
– System Vault has a degree of vulnerability vvault=0.1, and since it has 

such high resilience, its designers have put it to serve anonymous 
requests in the Internet, with no control whatsoever to whoever tries 
to access it, that is, subject to a high level of threat, tvault=100. 

– System Sieve, on the other hand, is a vulnerable system, vsieve=10, 
and in consequence, its designers have safeguarded it, installing it 
behind a firewall, and controlling the accesses made to it, in what 
can be translated to a level of threat of tsieve=1. 

• Which of them offers a lower operational risk?
• Consider the product threat  x vulnerability: 

– with the imaginary values we attributed to each system, it equates to 
the same value in both systems (10), although system Vault is a 
hundred times less vulnerable than system Sieve. 

44

Should we bring the risk to zero? And... can we?

• This is classical prevention/removal
– of the number and severity of the flaws of the system (vulnerabilities) 
– of the potential of the attacks it may be subjected to (threats)

• We cannot make either arbitrarily low
– too costly and infeasible
– certain attacks come from the kind of service being deployed
– certain vulnerabilities are attached to the design of the system proper

• ...and the question is: should we?
• can’t we talk about acceptable risk?
• doesn’t the hacker also incur in a cost of intruding??!!
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Another example

• Is SSL secure?
– Secure Sockets Layer (SSL) reportedly ensures secure client-server 

interactions between browsers and WWW servers. Users have 
tended to accept that the interactions are secure (assumed low 
degree of vulnerability), without quantifying how secure. 

– Several companies have built their commerce servers around SSL, 
some of them to perform financially significant transactions on the 
Internet (high level of threat).

– Netscape's SSL implementation broken because of a bug that 
allowed to replicate session keys and thus decrypt any 
communication. The corrected version was then broken at least 
twice through brute-force attacks on the 40-bit keys version.

– This initial situation led to a high risk

46

Another example (cont.)

• Is SSL secure enough?
– Netscape reported that it would cost at least USD10,000 to break an 

Internet session on the second version of SSL, in computing time. 
– The cost of intruding a system versus the value of the service being 

provided allows the architect to make a risk assessment.  Someone 
who spends 10 000 EURO  to break into a system and get 100 EURO 
worth of bounty, is doing a bad business. 

– This defined the acceptable risk. Unfortunately, these estimates may 
fail: shortly after Netscape's announcement, a student using a single 
but powerful desktop graphics workstation, broke it for just USD600. 

– However, what went wrong here was not the principle and the 
attitude of Netscape, just the risk assessment they made, which was 
too optimistic. 
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What is Intrusion Tolerance?

• The tolerance paradigm in security:
– Assumes that systems remain to a certain extent vulnerable
– Assumes that attacks on components or sub-systems can happen 

and some will be successful
– Ensures that the overall system nevertheless remains secure and 

operational, with a measurable probability

• In other words:
– Faults--- malicious and other--- occur
– They generate errors, i.e. component-level security compromises
– Error processing mechanisms make sure that security failure is 

prevented

• Obviously, a complete approach combines tolerance 
with prevention, removal, forecasting, after all, the 
classic dependability fields of action!

Intrusion Tolerance

Fault Models
Classical methodologies

Error processing
Fault treatment
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Attacks, Vulnerabilities, Intrusions

• Intrusion
– an externally induced, intentionally malicious, operational fault, 

causing an erroneous state in the system

• An intrusion has two underlying causes:

• Vulnerability
– malicious or non-malicious weakness in a computing or 

communication system that can be exploited with malicious intention

• Attack
– malicious intentional fault introduced in a computing or comm’s 

system, with the intent of exploiting a vulnerability in that system

– without attacks, vulnerabilities are harmless

– without vulnerabilities, there cannot be successful attacks

• Hence: attack + vulnerability → intrusion → error → failure
– A specialization of the generic “fault,error,failure” sequence

50

Attack-Vulnerability-Intrusion composite fault model

AVI sequence : attack + vulnerability→ intrusion → error → failure

Intruder/
Designer/
Operator

vulnerability
(fault)

Intruder
attack
(fault)

intrusion 
(fault)

error failure
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attack
(fault)

intrusion

error 

vulnerability
(fault)

failure

Faults in Cascade

ALLOWED

ALLOWED

NOT ALLOWED !

ALLOWED

ALLOWED

intrusion failureerror 

intrusion failureerror 
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Who’s fault was it?

• Subjects undergo authentication, to prove an identity:
– they are who they say 

• Subjects receive authorization, in the measure of their privilege:
– allowed ops are defined by access rights on objects: <subject,object,rights>
– privilege is set of rights over a sub-set in the universe of object-oper. pairs

• This allows finer definitions of subject status, although a good 
approximation is: Outsider ⇔ Privilege = Ø

• outsider vs. insider derives from security perimeter assumption: 
– inadequate for open distr. syst.: insiders can/should have different privileges

• Theft of privilege: 
– an unauthorised increase in privilege, i.e., a change in the privilege of a user 

that is not permitted by the system’s security policy

• Abuse of privilege:
– a misfeasance, i.e., an improper use of authorised operations

• Usurpation of identity: 
– impersonation of a subject a by a subject i, who with that usurps a’s privilege
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Outsider vs Insider intrusions

• b is outsider w.r.t D:
– not authorized to perform any object-

operations on D

• a is insider w.r.t D:
– his privilege (A) intersects D
– authorized to perform some specified

object-operations

• b performs outsider intrusion on D
– privilege theft

• a performs insider intrusion on D
– privilege abuse
– maybe combined with privilege theft

• b usurps identity of a
– privilege usurpation

D: object-operation domain

B: user b 
privilege

A: user a 
privilege

insider intrusion  
(abuse of  priv.)

outsider intrusion
(identity usurpation)

outsider intrusion
(unauth. priv. increase)

Intrusion Tolerance

Fault Models
Classical methodologies

Error processing
Fault treatment
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Achieving dependability w.r.t. malicious faults
(the classical ways...)

• Attack prevention
– Ensuring attacks do not take place against certain components

• Attack removal
– Taking measures to discontinue attacks that took place

• Vulnerability prevention
– Ensuring vulnerabilities do not develop in certain components

• Vulnerability removal
– Eliminating vulnerabilities in certain components (e.g. bugs) 

INTRUSION PREVENTION

56

Examples

• Attack prevention
– selectively filtering access to internal parts of the system (e.g., if a 

component is behind a firewall and cannot be accessed from the 
Internet, attack from there is prevented)

– disabling JavaScript and/or Java prevents attacks by malicious 
scripts or applets

• Attack removal
– identifying source of an external attack and taking measures to 

terminate it

• Vulnerability prevention
– best practice in software development
– measures preventing configuration and operation faults

• Vulnerability removal
– of: coding faults allowing program stack overflow, files with root 

setuid in UNIX, naive passwords, unprotected TCP/IP ports
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AVI Composite fault model

Øsequence : attack + vulnerability→ intrusion→ failure

Intruder
attack
(fault)

intrusion 
(fault)

error failure

attack 
prevention

vulnerability
prevention

intrusion 
prevention

vulnerability
removal

Intruder/
Designer/
Operator

vulnerability
(fault)

58

vulnerability
removal

AVI Composite fault model

Øsequence : attack + vulnerability→ intrusion→ failure

Intruder/
Designer/
Operator

vulnerability
(fault)

Intruder
attack
(fault)

intrusion 
(fault)

error failure

attack 
prevention

vulnerability
prevention

intrusion 
prevention

intrusion 
tolerance
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Intrusion Tolerance

Fault Models
Classical methodologies

Error processing
Fault treatment

60

Processing the errors deriving from intrusions

• error detection
– detecting the error after it occurs aims at: confining it to avoid propagation; 

triggering error recovery mechanisms; triggering fault treatment mechanisms

– modified files or messages; phony OS account; sniffer in operation; 
host flaky or crashing on logic bomb

• error recovery
– recovering from the error aims at: providing correct service despite the error

– recovering from effects of intrusions
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Processing the errors deriving from intrusions

• backward recovery:
– the system goes back to a previous state known as correct and resumes
– system suffers DOS (denial of service) attack, and re-executes the 

corrupted operation
– system detects corrupted files, pauses, reinstalls them, goes back

• forward recovery:
– or proceeds forward to a state that ensures correct provision of service
– system detects intrusion, considers corrupted operations lost and 

increases level of security (threshold/quorums increase, key renewal)
– system detects intrusion, moves to degraded but safer op mode

• error masking
– redundancy allows providing correct service without any noticeable glitch
– systematic voting of operations; fragmentation-redundancy-scattering
– sensor correlation (agreement on imprecise values)

62

Error processing at work

• backward 
recovery

• forward 
recovery

• error masking

Redo after attack

“Plan B” after intrusion

Whatever happens...



• 32

63

Examples of error processing in communication

• Communication Error Processing: 
– (a) Masking (Spatial);
– (b) Masking (Temporal); 
– (c) Detection/Recovery

(a) (b) (c)

[k=1]

*

Ttout
[k=1]

ack ack

*

[k=1]

P2

P3

*

P1

P1

P2

P3

P4

P1

P2

P3

P4

Intrusion Tolerance

Fault Models
Classical methodologies

Error processing
Fault treatment
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Fault Treatment facets

• Diagnosis
– determine cause of error, i.e., the fault(s): location and nature
– non-malicious or malicious syndrome (intrusion)?
– attack? --- to allow removal/retaliation
– vulnerability? --- to allow removal

• Isolation
– prevent new activation
– intrusion: prevent further penetration
– attack: disable further attacks of this kind (block the origin)
– vulnerability: passivate the cause of successful attack (e.g. patch)

• Reconfiguration
– so that fault-free components provide adequate/degraded service
– contingency plans to degrade/restore service

Intrusion Detection

Classical methodologies
ID as error detection
ID as fault diagnosis
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Intrusion Detection

• Classically, ID encompasses all kinds of attempts to 
detect the presence or the likelyhood of an intrusion

• ID can be performed in real-time, or off-line
• It is directed at any or all of: attacks (e.g. port scan 

detection), vulnerabilities (e.g. scanning), and 
intrusions (e.g. correlation engines)

• Definition of ID given by NSA (1998):
– “Pertaining to techniques which attempt to detect intrusion into a 

computer or network by observation of actions, security logs, or
audit data. Detection of break-ins or attempts either manually or via 
software expert systems that operate on logs or other information 
available on the network.” 

68

ID system classes

• Behavior-based (or anomaly detection) systems
– no knowledge of specific attacks
– provided with knowledge of normal behavior of monitored system, 

acquired e.g. through extensive training of the system 
– advantages: they do not require a database of attack signatures that 

needs to be kept up-to-date
– drawbacks: potential false alarms; no info on type of intrusion, just 

that something unusual happened

• Knowledge-based (or misuse detection) systems
– rely on a database of previously known attack signatures
– whenever an activity matches a signature, an alarm is generated
– advantage: alarms contain diagnostic information about the cause
– drawback: potential omitted or missed alarms, e.g. new attacks
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ID: Error detection or fault diagnosis?

• classical IDS have two facets
• detecting errors as per the security policy specification
• diagnosing faults as per the system fault model
• consider the following example:

– Organization A has an intranet with an extranet connected to the public 
Internet. It is fit with an IDS

– the IDS detects a port scan against one of the extranet hosts, coming 
from the Internet

– the IDS detects a port scan against an internal host, coming from the 
intranet

– what is the difference?

Intrusion Detection

Classical methodologies
ID as error detection
ID as fault diagnosis
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ID as error detection

• addresses detection of erroneous states in a system’s 
computation, deriving or not from malicious action

– e.g. modified files or messages, OS penetration

• this puts emphasis on the result, rather than on the 
cause (AVI- attack, vulnerability, intrusion): the 
observable failure of some component to provide 
correct service

• the possible causes have been defined previously 
when devising the fault model

• any detector of errors caused by malicious faults 
should detect errors caused by non-malicious ones

– ex. a byzantine (component) failure detector in a distributed system, 
detects an abnormal behavior of components: sending inconsistent
info to different participants. Whether or not it is caused by 
malicious entities, is irrelevant

72

Detection mechanisms

• consider system activity 
specified by patterns

• anomaly detection
– looks for deviation from 
NORMAL ACTIVITY PATTERNS

• misuse detection
– looks for existence of
ABNORMAL ACTIVITY PATTERNS

• we can have hybrids
• Quality of Service

– false alarm rate
– omitted alarm rate
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Intrusion Detection

Classical methodologies
ID as error detection
ID as fault diagnosis
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ID as fault diagnosis

• error detection’s first impact is on automated fault tolerance 
mechanisms

• regardless of the error processing mechanism (recovery or 
masking), administration subsystems have a paramount action 
w.r.t. fault diagnosis

• this facet of classical ID fits into fault treatment
• Intrusion diagnosis

– assessing the degree of success of the intruder in terms of corruption of 
components and subsystems

• Vulnerability diagnosis
– determining the channels through which the intrusion took place

• Attack diagnosis
– finding out who/what performed the attack

• diagnosis can be done proactively, before errors happen
– by activating faults (e.g. vulnerability scanning) and post-processing 

(forecasting their effects) one can get a metrics of resilience (subject to the 
method coverage...)
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CIDF (Common Intrusion Detection Framework)

• CIDF proposes a structure for 
intrusion-detection systems:  

• e-box (event generator) 
gathers event information

• a-box (analysis box) analyses 
event information, detecting 
errors and diagnosing faults

• d-box (database) saves 
persistent information for the 
IDS

• r-box (response box) acts 
upon the results of analysis

• in fact, r-box is not intrusion 
detection, but error recovery 
and fault treatment

Sensor

Event
Analyzer

Sensor

Event
Analyzer

Target

Sensor

Event
Analyser

Activity

e-box

r-box

a-box

Event
Database
Event

Database
Event

Database

d-box

Intrusion Tolerance (IT) 
mechanisms and strategies
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Classical security strategies

• Openess of system security policies
– The 4P policies: paranoid, prudent, permissive, promiscuous

• Zero-Vulnerabilities
– e.g. Trusted Computing Bases (TCB) assumed to be tamperproof

• Attack Prevention
– e.g. firewalls preventing direct access to inside resources

• Detection and Reaction to Intrusion
– e.g. the intrusion detection process, and countermeasures

• Disruption avoidance
– Maintaining availability and integrity against attacks
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Classical fault tolerance strategies

• Fault Tolerance versus Fault Avoidance in HW-FT
– tradeoff between reliable but expensive components and less 

performant and more complex mechanisms

• Tolerating Design Faults
– going beyond HW-FT, helpless with common-mode faults (e.g. SW)

• Perfect Non-stop Operation?
– when no perceived glitch is acceptable

• Reconfigurable Operation
– less expensive, when a glitch is allowed

• Recoverable Operation
– cheap, when a noticeable but acceptable service outage allowed

• Fail-Safe versus Fail-Operational
– safety track--- when a fault cannot be tolerated, two hypothesis: 

shutdown, or contingency plan for degraded op. mode
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Modeling malicious failures

• What are malicious failures?
– how do we model the mind and power of the attacker?

• Basic types of failure assumptions:
– Controlled failures : assume qualitative and quantitative restrictions 

on compon. failures, hard to specify for malicious faults
– Arbitrary failures : unrestricted failures, limited only to the 

“possible” failures a component might exhibit, and the underlying 
model (e.g. synchronism)

• Fail-controlled vs. fail-arbitrary models in face of 
intrusions

– FC have a coverage problem, but are simple and efficient
– FA are normally inefficient, but safe
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The problem of time and timeliness 

• Why can’t we have secure synchronous (real-time) 
protocols?

• Synchronous models (timed):
– use time, a powerful construct to solve timed problems
– yield simple algorithms
– but susceptible to attacks on timing assumptions

• Solutions:
– don’t use time (asynchronous models) OR
– make indulgent timing assumptions, ones that resist a certain level 

of threat (timed partially asynchronous models) OR
– protect time under “good” subsystems, i.e. make sure that timing

assumptions are never violated (real-time security kernels)
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The problem of time and timeliness

• Asynchronous model (time-free):
– resist attacks on timing assumptions
– no deterministic solution of hard problems e.g. consensus, BA
– efficient probabilistic approaches
– does not solve timed problems (e.g., e-com, stocks)

• Partial Synchrony (timed):
– exploit the power of intermediate models
– accommodate  several degrees of sync/async. 
– lives with indulgent timing assumptions 
– Ex: a message is delivered within 100ms with 90% probability; a 

message may take a very long time to be delivered but I’ll know 
accurately whether it is delayed or the sender crashed

• Real-Time security kernels
– protect time from attackers and other faults
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Arbitrary failure assumptions

• probl. of coverage of controlled failure assumptions:
– all lies on the coverage of the fail-controlled subsystem assumptions

• operations of very high value and/or criticality: 
– financial transactions of very high value
– contract signing; provision of long term credencials
– risk of failure due to violation of assumptions cannot be incurred

• arbitrary-failure resilient building blocks (e.g. 
Byzantine agreement protocols): 

– no assumptions on existence of security kernels or other fail-
controlled components

– time-free approach, i.e. no assumptions about timeliness
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Fail-uncontrolled IT protocols 

• Time-free
• Arbitrary failure environment
• Arbitrary failure protocols
• Used in: probabilistic Byzantine-agreement based set of protocols

Ci

Host A
Cj

Host B
Ck

Host C
Cl

Host D

Arbitrary Failure Protocols
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Modeling malicious failures

• Intrusion-aware composite fault models
– the competitive edge over the hacker
– AVI: attack-vulnerability-intrusion fault model

• Combined use of prevention and tolerance
– malicious failure universe reduction 
– attack prevention, vulnerability prevention, vulnerability removal, in 

system architecture subsets and/or functional domains subsets

• Hybrid failure assumptions
– different failure modes for distinct components
– reduce complexity and increase performance, maintaining coverage

• Quantifiable assumption coverage
– fault forecasting (on AVI)



• 43

85

Did you say trusted?

• Sometimes components are tamper-proof, others 
tamper-resistant...

– Watch-maker syndrome: 
» --- “Is this watch waterproof?”
» --- “No, it’s water-resistant”
» --- “Anyway, I assume that I can swim with it!”
» --- “Well…yes, you can… but i wouldn't trust that very much"

• How can something trusted be not trustworthy?
– Unjustified reliance syndrome: 

» --- “I trust Alice”
» --- “Well Bob, you shouldn’t, she’s not trustworthy”

• What is the difference? If we separate specification 
from implementation, and provide notions of 
justification and of coverage, all becomes clearer
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Trust, Trustworthy, Tamperproof

• Trust
– Reliance. Belief that something is dependable

• Trustworthy
– Dependable. Property of a (sub)system that makes us justifiably rely 

on it

• Tamperproof
– Property of a system/component of being shielded, i.e. whose attack 

model is that attacks can only be made at the regular interface 
– Coverage of the "tamperproof" assumption may not be perfect

• Example:
– Implementation of an authorisation service using Java Cards to 

store private keys. We assume J.Cards are tamperproof, and so we 
argue that they are trustworthy (they will not reveal these keys to an 
unauthorised party). Hence we can justifiably argue that the service 
is trusted, with the coverage given by our assumptions, namely, the 
tamperproofness of JCards



• 44

87

On coverage and separation of concerns

• predicate P holds with a coverage Pr
– we say that we are confident that P has a probability Pr of holding

• environmental assumption coverage (Pre)
– set of assumptions (H) about the environment where system will run
– Pre = Pr (H | f) f- any fault

• operational assumption coverage (Pro)
– the assumptions about how the system/algorithm/mechanism proper 

(A) will run, under a given set of environmental assumptions
– Pro = Pr (A | H)

Alice Bob

Luisa

PaulAlicePr(A ) = Pro x Pre = Pr (A | H) x Pr (H | f)
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Hybrid failure assumptions considered useful 

• Classic hybrid fault models 
– flat, use stochastic foundation to explain different behavior from same 

type of components (i.e. k crash and w byzantine in vector of values)

• The problem of well-foundedness
– an intentional player defrauds these assumptions

• Architectural hybridation
– different assumptions for distinct component subsets
– behavior enforced by construction: trustworthiness
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Intrusion tolerance with hybrid failure assumptions 

• Composite fault model with hybrid failure assumptions:
– the presence and severity of vulnerabilities, attacks and intrusions 

varies from component to component

• Trustworthiness: 
– how to achieve coverage of controlled failure assumptions, given 

unpredictability of attacks and elusiveness of vulnerabilities? 

• Design approach:
– modular architectures
– combined use of vulnerability prevention and removal, attack 

prevention, and component-level intrusion tolerance, to justifiably 
impose a given behavior on some components/subsystems

• Trusted components:
– fail-controlled components with justified coverage (trustworthy), used 

in the construction of fault-tolerant protocols under hybrid failure 
assumptions
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Intrusion tolerance with hybrid failure assumptions

• Using trusted components:
– black boxes with benign behavior, of omissive or weak fail-silent class
– can have different capabilities (e.g. synchronous or not; local or 

distributed), can exist at different levels of abstraction

• Fault-tolerant protocols:
– more efficient than truly arbitrary assumptions protocols 
– more robust than non-enforced controlled failure protocols

• Tolerance attitude in design:
– unlike classical prevention-based approaches, trusted components do 

not mediate all accesses to resources and operations
– assist only crucial steps of the execution of services and applications
– protocols run in untrusted environment, local participants only trust 

trusted components, single components can be corrupted
– correct service built on distributed fault tolerance mechanisms, e.g., 

agreement and replication amongst participants in several hosts
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Fail-controlled IT protocols 
with Local Security Kernels

• Trustworthy component - Local Security Kernel (LSK) (e.g. smart or Java 
card; appliance board)

• Time-free
• Arbitrary failure environment + LSK
• Hybrid failure protocols
• Example usage: FT distributed authentication and authorisation protocols

Ci

Host A

LSK

Cj

Host B
Ck

Host C
Cl

Host D

LSK LSK LSK

Hybrid Failure Protocols
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Intrusion tolerance with hybrid failure assumptions

• distributed security kernels (DSK):
– amplifying the notion of local security kernel, implementing 

distributed trust for low-level operations
– based on appliance boards with a private control channel
– can supply basic distributed security functions

• how DSK assists protocols:
– protocol participants exchange messages in a world full of threats, 

some of them may even be malicious and cheat
– there is an oracle that correct participants trust, and a channel that 

they can use to get in touch with each other, even for rare moments
– acts as a checkpoint that malicious participants have to synchronise 

with, and this limits their potential for Byzantine actions
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Intrusion tolerance under partial synchrony

• real-time distributed security kernels (DSK):
– control channel might as well provide reliable clocks and timely

(synchronous) inter-module communication
– ensures implementation of strong paradigms (e.g. perfect failure

detection, consensus)

• protocols can now be timed
– timed despite the occurrence of malicious faults

• how DSK assists protocols:
– determine useful facts about time (be sure it executed something on 

time; measure a duration; determine it was late doing something)
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Fail-controlled IT protocols 
with a Distributed Security Kernel

• Trustworthy subsystem – Distributed Security Kernel (DSK) (e.g. appliance 
boards interconnected by dedicated network)

• Time-free, or timed with partial synchrony
• Arbitrary failure environment + (synchronous) DSK
• Hybrid failure protocols
• Example usage: FT transactional protocols requiring timing constraints

Ci

Host A
Cj

Host B
Ck

Host C
Cl

Host D

DSK

Hybrid Failure Timed Protocols
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3
Some paradigms
under an IT look
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Authentication, signatures, MACs

• Intrusion prevention device: enforces authenticity, integrity 
• Coverage: signature/authentication method
• End-to-end problem: who am I authenticating? me or my PC?
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Tunelling, secure channels

• Intrusion prevention device: enforces confidentiality, integrity
(authenticity)

• Coverage: tunelling method, resilience of gateway
• End-to-end problem: are all intranet guys good?

98

Firewalling

• Intrusion prevention device: prevents attacks on inside machines
• Coverage: semantics of firewall functions, resilience of bastions
• End-to-end problem: are all internal network guys good?
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Communication and agreement protocols

• Intrusion tolerance device: error processing  or  masking (3f+1,
2f+1, f+2)

• Coverage: semantics of protocol functions, underlying model 
assumptions

A lice Bob
Self-Enforcing Protocol

Luisa

Paul

100

Threshold cryptography

• Intrusion tolerance device: error processing/masking 
(f+1 out of n)

• Coverage: crypto semantics, brute force resilience, 
underlying model assumptions
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Trusted Third Party (TTP) protocols

• Intrusion tolerance device: error processing/masking
• Coverage: semantics of protocol functions, 

underlying model assumptions, resilience of TTP

A lic e B o b

P a u l

Trent
(Adjudicato r ,

Arbiter ,
Cert i f .  Auth)

Trusted-Third -Party P rotocol

Strategies for construction
of IT subsystems
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Recursive use of F. Prevention and F.Tolerance

• The TTP protocol revisited
• Work at subsystem level to achieve justifiable behaviour
• Architectural hybridation w.r.t. failure assumptions

Casdhrtg Casdhrtg

Casdhrtg

Alice Bob
Self-Enforcing Protocol

Luisa

PaulTTP
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Strategies for construction of IT subsystems

• Arbitrary model – no assumptions
• High coverage – very little to “cover”

Alice Bob
Self-Enforcing Protocol

Luisa

Paul
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Strategies for construction of IT subsystems

• Fail-controlled model -- unjustified environment 
assumptions

• Fair coverage – no enforcement

Alice Bob

Luisa

PaulAlice
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Strategies for construction of IT subsystems

• Fail-controlled model – little environment 
assumptions; justified component assumptions

• High coverage – enforcement by Local Security Kernel

LSK

LSK

LSK

LSK
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Strategies for construction of IT subsystems

• Fail-controlled model – little environment 
assumptions; justified component assumptions

• High coverage – enforcement by Distr. Security Kernel

DSK

DSK

DSK

DSK

Example IT 
projects and systems

(by no means exhaustive, but focusing 
on works with a strong “IT” brand)
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MAFTIA - Malicious and Accidental Fault 
Tolerance for Internet Applications

Computer systems can fail for many reasons

MAFTIA is investigating ways of making computer systems more 
dependable in the presence of both accidental and malicious faults

110

Objectives

• Architectural framework and conceptual model
• Mechanisms and protocols:

– dependable middleware
– large scale intrusion detection systems
– dependable trusted third parties
– distributed authorisation mechanisms

• Validation and assessment techniques
• Partners

– DERA/Qinetiq, Malvern (UK) – Tom McCutcheon / Sadie Creese
– IBM, Zurich (CH) – Marc Dacier / Michael Waidner
– LAAS-CNRS, Toulouse (F) – Y. Deswarte / D. Powell
– Newcastle University (UK)(Coord.) R. Stroud / Brian Randell 
– Universität des Saarlandes (D) – Michael Steiner
– Universidade de Lisboa (P) - Paulo Veríssimo / Nuno F. Neves

• EU coordinator – Andrea Servida

http://www.research.ec.org/maftia
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Architecture Overview
Host architecture

Applications

Activity
Support Services
Communication
Support Services
Multipoint
Network

O.S.

Hardware Local
Support

Distributed
Software

TTCB

Security
Kernels

Runtime 
Environment
(JVM+ Appia)

AS

TTP

IDS

Untrusted
Hardware

Trusted
Hardware

Control
channel

AS - Authorisation Service, IDS - Intrusion Detection Service, TTP - Trusted Third Party Service

Payload
channel

(Internet)
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Architecture Overview
Host architecture

Applications

Activity
Support Services
Communication
Support Services
Multipoint
Network

O.S.

Hardware Local
Support

Distributed
Software

TTCB

Security
Kernels

Runtime 
Environment
(JVM+ Appia)

AS

TTP

IDS

Untrusted
Hardware

Trusted
Hardware

Control
channel

AS - Authorisation Service, IDS - Intrusion Detection Service, TTP - Trusted Third Party Service

Payload
channel

(Internet)

Øtrusted— vs. untrusted— hardware 
§most of MAFTIA’s hardware is untrusted, but 
small parts considered trusted in the sense of 
tamperproof  by construction
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Architecture Overview
Host architecture

Applications

Activity
Support Services
Communication
Support Services
Multipoint
Network

O.S.

Hardware Local
Support

Distributed
Software

TTCB

Security
Kernels

Runtime 
Environment
(JVM+ Appia)

AS

TTP

IDS

Untrusted
Hardware

Trusted
Hardware

Control
channel

AS - Authorisation Service, IDS - Intrusion Detection Service, TTP - Trusted Third Party Service

Payload
channel

(Internet)

Øsecurity kernels materialising fail-controlled subsystems 
§trusted to execute a few functions correctly, albeit immersed in
an environment subjected to malicious faults
§Local security kernels (Java Card)
§Distributed security kernels (Trusted Timely Computing Base)
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Trusted Timely Computing Base DSK
• TTCB is a distributed security kernel that provides a minimal set of trusted 

and timely services
• Construction principles: interposition, shielding, validation
• Classic Trusted Computing Base aims at fault prevention, while the TTCB aims at 

fault tolerance
• TTCB can be a: special hardware module (e.g. tamperproof device); secure 

real-time microkernel running on a workstation or PC underneath the OS
• TTCB control channel has to be both timely and secure: virtual network with 

predictable characteristics coexisting with the payload channel; separate 
physical network
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Architecture Overview
Host architecture

Applications

Activity
Support Services
Communication
Support Services
Multipoint
Network

O.S.

Hardware Local
Support

Distributed
Software

TTCB

Security
Kernels

Runtime 
Environment
(JVM+ Appia)

AS

TTP

IDS

Untrusted
Hardware

Trusted
Hardware

Control
channel

AS - Authorisation Service, IDS - Intrusion Detection Service, TTP - Trusted Third Party Service

Payload
channel

(Internet)

Ørun-time environment extending OS
capabilities

§hiding heterogeneity by offering a 
homogeneous API and framework for 
protocol composition
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Architecture Overview
Host architecture

Applications

Activity
Support Services
Communication
Support Services
Multipoint
Network

O.S.

Hardware Local
Support

Distributed
Software

TTCB

Security
Kernels

Runtime 
Environment
(JVM+ Appia)

AS

TTP

IDS

Untrusted
Hardware

Trusted
Hardware

Control
channel

AS - Authorisation Service, IDS - Intrusion Detection Service, TTP - Trusted Third Party Service

Payload
channel

(Internet)

Ømodular and multi-layered middleware
Ø neat separation between different functional 
blocks
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Membership 
and

Failure
Detection

Participant level

Site level

Physical Network

Multipoint
Network (MN)
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Modular Group Architecture

ØMultipoint Network
§Multipoint addressing and routing
§Basic secure channels and envelopes
§Management Communication prots
§Appia APIs for mcastIP, Ipsec, SNMP

ØCommunication Services
§Distributed Cryptography (threshold public key) 
§Group Communication (reliability and order props) 
§Byzantine Agreement
§Time and Clock Synchronisation

ØMain Activity Services
§Replication management 
§Key Management
§Transactional Management
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Group Communication on Asynchronous model
• Stack of protocols for (among other applications) intrusion-tolerant 

replicated servers on an asynchronous wide-area setting 
• Main characteristics of the model: asynchronous; static and open

groups; up to n/3 corrupted processes (f < n/3); threshold crypto; 
manual and trusted key distribution

threshold cryptosystem and
digital signature scheme

provides confidentiality

ordering of client requests

agreement on request values

reliable and consistent broadcasts, 
agreement on Y/N questions

Reliable Point-to-Point Links

Threshold Cryptography

Broadcast 
Primitives

Multi-value Agreement

Atomic Broadcast

Secure Causal Atomic Broadcast

Binary
Agreement
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Byzantine-Reliable Multicast on Timed Model with TTCB

 
 

M -RMulticast 

P1 

P3 

 

P2 

TTCB TTCB Agreement 
Service 

P4 

tstart 

5-Node Delivery Times

Byzantine Reliable 
Multicast Protocol (1 Phase)
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IT Transactions with Error Masking

Transaction
Manager

begin

op (tid)

commit/abort

prepare
commit/abort

Transaction
Manager

Transaction
Manager

Resource
Manager

Resource

Resource
Manager

Resource

Resource
Manager

Resource

Resource
Manager

Resource

Resource
Manager

Resource

Resource
Manager

Resource

prepare
commit/abort

corruption

corruption
corruption

• A CORBA-style transaction service, standard ACID properties

• Support for multiparty transactions

• Uses error masking to tolerate intrusions

• Application of hybrid failure assumptions
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Authorization Server

fs2

f3

ps1 p4
u

JavaCard

Security
kernel

Security
kernel

Security
kernel

IT Authorisation Service
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IT Intrusion Detection Service

• finding solutions to the problems of the high rate of false positive 
and false negative alarms generated by existing solutions

• these false alarms can also be due to attacks against the IDS itself, 
therefore the need to design an IDS which is itself tolerant to 
intrusions

• study and evaluate how notions such as fault injection, diversity and 
distributed reasoning can address the weaknesses of existing 
solutions
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Verifying MAFTIA protocols

Abstract Abstract 
primitivesprimitives

Abstract Abstract 
protocolprotocol

Abstract Abstract 
goalsgoals

Concrete Concrete 
primitivesprimitives

Concrete Concrete 
protocolprotocol

Concrete Concrete 
goalsgoals

abstractionabstraction

usesuses fulfilsfulfils

replace replace 
primitivesprimitives

cryptographic cryptographic 
semanticssemantics

fulfilsfulfilsusesuses

abstractionabstraction

Faithful Faithful 
abstractionabstraction

Formal methods (e.g., CSP)Formal methods (e.g., CSP)

CryptographyCryptography

Formal Methods
(e.g., CSP)

Crypto Crypto

Crypto

OASISOASIS

ORGANICALLY ASSURED & SURVIVABLE
INFORMATION SYSTEMS

Dr. Jaynarayan Lala – jlala@darpa.mil, 703-696-7441
Organically Assured Survivable Information Systems, 

OASIS Demonstration and Validation Program

Some Attacks will Succeed

3rd Generation
(Operate Through Attacks) Big Board View of Attacks

Real-Time Situation Awareness
& Response 

Intrusion 
Tolerance

Graceful 
Degradation

Hardened 
Core

Functionality

Performance

Security
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OASIS
Intrusion Tolerant Architecture Objectives

Technical Approach Schedule

COTS
Servers

Acceptance
Monitors

Ballot
MonitorsProxy

Servers
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Phase II

Error Compensation,
Response, Recovery

Developing
Technology
Drops

Real-time Execution
Monitors, 
Error Detection

Phase I

1/01 1/02 1/03

•Construct intrusion-tolerant architectures from 
potentially vulnerable components
•Characterize cost-benefits of intrusion tolerance 
mechanisms
•Develop assessment and validation 
methodologies to evaluate intrusion tolerance 
mechanisms

• Real-Time Execution Monitors: In-line reference monitors, wrappers, 
sandboxing, binary insertion in legacy code, proof carrying code, secure mobile 
protocols
•Error Detection & Tolerance Triggers: Time and Value Domain Checks, 
Comparison and Voting, Rear Guards
•Error Compensation, Response and Recovery: Hardware and Software
Redundancy, Rollback and Roll-Forward Recovery
• Intrusion Tolerant Architectures: Design Diversity, Randomness, Uncertainty, 
Agility
• Assessment & Validation: Peer Review Teams, Red Team, Assurance Case 
(Fault Tree, Hazard Analysis, Formal Proofs, Analytical Models, Empirical 
Evidence)

1/99 1/00

OASISOASIS
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OASIS Projects
Project T itle Organization PI 

Scaling Proof-Carrying Code to Production 
Compilers and Security Policies 

Princeton University Andrew Appel 

Sandboxing Mobile Code Execution Environments Cigital Anup Ghosh 
Containment and Integrity for Mobile Code Cornell University Fred Schneider 

Integrity Through Mediated Interfaces Teknowledge Bob Balzer 

Agile Objects: Component-based Inherent 
Survivability 

UC, San Diego Andrew Chien 

A Distributed Framework for Perpetually Available 
and Secure Information Systems 

CMU Pradeep Khosla  

New Approaches to Mobile Code: Reconciling 
Execution Efficiency with Provable Security 

UC, Irvine Michael Franz 

A Binary Agent Technology for COTS Software 
Integrity 

InCert Software Corp. Anant Agarwal 

Self-Protecting Mobile Agents NAI Labs Lee Badger 

Intrusion Tolerant Software Architectures SRI International Victoria Stavridou 
Computational Resiliency Syracuse University Steve Chapin 

Intrusion Tolerance Using Masking, Redundancy 
and Dispersion 

Draper Laboratory Janet Lepanto 

Dependable Intrusion Tolerance SRI International Alfonso Valdes 

Intrusion Tolerant Distributed Object Systems NAI Labs Gregg Tally 

Hierarchical Adaptive Control for QoS Teknowledge Jim Just 
Intrusion Tolerant Server Infrastructure Secure Computing Corp Dick O’Brien 

Randomized Failover Intrusion Tolerant Systems Architecture Technology Corp Ranga Ramanujan 

A Comprehensive Approach for Intrusion Tolerance 
Based on Intelligent Compensating Middleware 

Telcordia Amjad Umar 

 

OASISOASIS
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OASIS Projects
Project T itle Organization PI 

Engineering a Distributed Intrusion Tolerant 
Database System Using COTS Components 

University of Maryland, 
Baltimore County 

Peng Liu 

Intrusion Tolerance by Unpredictable Adaptation BBN Technologies Partha Pal, Bill 
Sanders 

SITAR: A Scalable Intrusion-Tolerant Architecture 
for Distributed Services 

MCNC, Duke University Fengmin Gong, 
Kishor Trivedi 

Tolerating Intrusions Through Secure System 
Reconfiguration 

University of Colorado Alexander Wolf 

Active Trust Management for Automonous Adaptive 
Survivable Systems 

MIT Howie Shrobe 

Enterprise Wrappers (NT) Teknowledge Bob Balzer 

Enterprise Wrappers (Unix) NAI Labs Mark Feldman 
Information Assurance Science and Engineering 
Project 

CMU, SEI Tom Longstaff 

Autonomix: Component, Network and System 
Autonomy 

WireX Communications, Inc. Crispin Cowan 

An Aspect-Oriented Security Assurance Solution Cigital Tim Hollebeek 

Dependence Graphs for Information Assurance of 
Systems 

Grammatech, Inc Tim Teitelbaum 

Cyberscience SRI International Victoria Stavridou 
 

OASISOASIS
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OASIS technology groups

• Possible grouping by primary focus, for example

How to develop programs/systems
With fewer vulnerabilities?

How to organize intrusion 
tolerant subsystems?

How to detect/resist/tolerate 
component vulnerabilities?

How to understand 
behavior of intrusion 
tolerant systems?

New approaches to mobile code – Franz
Scaling PCC – Appel
Aspect-oriented security - McGraw

SITAR – Wang/Trivedi
IASET - Longstaff

Binary agent technology – Schooler
Sandboxing mobile code – Hollebeek
Agile objects – Chien
Wrappers
Autonomix - Cowan

HACQIT – Just
ITUA – Pal/Sanders
ITSA - Dutertre

ALL THESE LISTS ARE INCOMPLETE

OASISOASIS
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Distributed 
Tolerance

Proxy
(Diverse platform/OS)

Classic
Firewall

Challenge/
Response 
Protocols

Symptomatic
anomaly detector

“Hardened” 
EMERALD IDS

Proof-Based Triggers

Diversified Server Bank
HP/UX/Openview Server

Linux/Apache

Solaris/Enterprise Server

WinNT/IIS Server

Proxy
Alert Log

Firewall Filter Insertion
Dynamic Proxy Configuration
HTTP Service Management
Sensor Management

1

Policy
Activator

4

2

Tolerance Proxy Server

Report 
Consolidation

Intrusion Tolerance by Dependable Proxy Server OASISOASIS
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ITUA: Intrusion Tolerance by Unpredictability and Adaptation

General Architecture

Security Domain

s A1 2

host

host host

host

host

C
host

M

M S S

r1

r1

SM

Security Domain

Security Domain

3

4

5

1 Sensor-actuator loop
2 Rapid response
3 Subordinate group
4 Manager group
5 Replication group

Naming
Service

DII
Processor

Handler
Factory

TAO ORB

ITUA
GCS

r1

ORB

Handler for
ITUA object -1

Handler for
ITUA object -2

Handler for
ITUA object -n

...
Gateway handlers

Gateway IIOP

Create handlers

Replicated Object Architecture
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Enclaves: IT support for group collaboration

Leader 3

Member Member

Leader 1 Leader 2 Leader N

• Middleware for secure group applications in insecure nets (Internet)
• Lightweight, software-only implementation (currently Java)
• Services provided:

– Secure group multicast (confidentiality and integrity: encryption with common 
group key)

– Group management: user authentication; join and leave protocols; group-key generation, 
distribution, refresh 
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COCA C.A. System Architecture

client

response delegate

server

server

server

server

server

server

server

quorum server failure
dissem. Byzantine Quorum 

server compromise
threshold signature protocol

mobile attack
proactive secret sharing 
(PSS)

asynchrony
asynchronous PSS
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Hardening COTS Products Through Wrapper Mediation

• Wrap Program
– Detect access of integrity marked data & decode it
– Monitor User Interface to detect change actions

» Translate GUI actions into application specific modifications
– Detect update of integrity marked data 

» Re-encode & re-integrity mark the updated data
• Repair any subsequent Corruption from History
• Build on existing research infrastructure

M

M

M

M

Mediation Cocoon

Environment = 
Operating System
External Programs

Program

Change
Monitor
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Code Producer Code Consumer

Safety
Theorem

Prover

Compiler

Checker OK

Execute
Source
Program

Policy

Safety
Theorem

Policy

load r3, 4(r2)
add r2,r4,r1
store 1, 0(r7)
store r1, 4(r7)
add r7,0,r3
add r7,8,r7
beq r3, .-20

Native Code

Safety Proof

Hints

∃-i(
∀-i(...
→-r (
...)

)
)

Scaling Proof-Carrying Code OASISOASIS
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Agile Objects and Elusive Interfaces

• Integrated security mechanisms 
with high performance 
RPC/distributed objects (Elusive 
Interfaces)

– Exploit computer manipulable 
interfaces and data reorganization

• Adaptive security management 
for Agile, highly decentralized 
applications

– Rapidly and continuously changing 
environment and configurations

Nasty Virus
Attack

Elevated Security 
Barrier

Change of Protocol
and
Change of Interface

Migration

Monitoring

Computing

Memory

. . .

Core Svcs (Naming, Communication, File, etc.)

Distributed Application
Migration

Policy
Security
Policy

Migration

Monitoring

Computing

Memory

Migration

Monitoring

Computing

Memory

Local Services
(1 instance / 
machine)

Network Services
(1 instance)

Agile Distributed
Application
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Intrusion detector

Mediator
(Policy Enforcement)

User SQL Commands

Damage Assessor

Damage 
Repairer

Damage Confinement

Main
database

Suspicious trans.

Isolating
engine 1

Isolating
engine n

...

merge

read

Distributed IT Database System Using COTS Components
Simple intrusion tolerance, multi-phase confinement, isolation
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