2,035 research outputs found

    Ramified rectilinear polygons: coordinatization by dendrons

    Full text link
    Simple rectilinear polygons (i.e. rectilinear polygons without holes or cutpoints) can be regarded as finite rectangular cell complexes coordinatized by two finite dendrons. The intrinsic l1l_1-metric is thus inherited from the product of the two finite dendrons via an isometric embedding. The rectangular cell complexes that share this same embedding property are called ramified rectilinear polygons. The links of vertices in these cell complexes may be arbitrary bipartite graphs, in contrast to simple rectilinear polygons where the links of points are either 4-cycles or paths of length at most 3. Ramified rectilinear polygons are particular instances of rectangular complexes obtained from cube-free median graphs, or equivalently simply connected rectangular complexes with triangle-free links. The underlying graphs of finite ramified rectilinear polygons can be recognized among graphs in linear time by a Lexicographic Breadth-First-Search. Whereas the symmetry of a simple rectilinear polygon is very restricted (with automorphism group being a subgroup of the dihedral group D4D_4), ramified rectilinear polygons are universal: every finite group is the automorphism group of some ramified rectilinear polygon.Comment: 27 pages, 6 figure

    Manhattan orbifolds

    Get PDF
    We investigate a class of metrics for 2-manifolds in which, except for a discrete set of singular points, the metric is locally isometric to an L_1 (or equivalently L_infinity) metric, and show that with certain additional conditions such metrics are injective. We use this construction to find the tight span of squaregraphs and related graphs, and we find an injective metric that approximates the distances in the hyperbolic plane analogously to the way the rectilinear metrics approximate the Euclidean distance.Comment: 17 pages, 15 figures. Some definitions and proofs have been revised since the previous version, and a new example has been adde

    Embedding into the rectilinear plane in optimal O*(n^2)

    Get PDF
    We present an optimal O*(n^2) time algorithm for deciding if a metric space (X,d) on n points can be isometrically embedded into the plane endowed with the l_1-metric. It improves the O*(n^2 log^2 n) time algorithm of J. Edmonds (2008). Together with some ingredients introduced by J. Edmonds, our algorithm uses the concept of tight span and the injectivity of the l_1-plane. A different O*(n^2) time algorithm was recently proposed by D. Eppstein (2009).Comment: 12 pages, 13 figure

    Factorization homology and calculus à la Kontsevich Soibelman

    No full text
    International audienc

    Fast Clustering with Lower Bounds: No Customer too Far, No Shop too Small

    Full text link
    We study the \LowerBoundedCenter (\lbc) problem, which is a clustering problem that can be viewed as a variant of the \kCenter problem. In the \lbc problem, we are given a set of points P in a metric space and a lower bound \lambda, and the goal is to select a set C \subseteq P of centers and an assignment that maps each point in P to a center of C such that each center of C is assigned at least \lambda points. The price of an assignment is the maximum distance between a point and the center it is assigned to, and the goal is to find a set of centers and an assignment of minimum price. We give a constant factor approximation algorithm for the \lbc problem that runs in O(n \log n) time when the input points lie in the d-dimensional Euclidean space R^d, where d is a constant. We also prove that this problem cannot be approximated within a factor of 1.8-\epsilon unless P = \NP even if the input points are points in the Euclidean plane R^2.Comment: 14 page

    Grid Diagrams and Legendrian Lens Space Links

    Full text link
    Grid diagrams encode useful geometric information about knots in S^3. In particular, they can be used to combinatorially define the knot Floer homology of a knot K in S^3, and they have a straightforward connection to Legendrian representatives of K in (S^3, \xi_\st), where \xi_\st is the standard, tight contact structure. The definition of a grid diagram was extended to include a description for links in all lens spaces, resulting in a combinatorial description of the knot Floer homology of a knot K in L(p, q) for all p > 0. In the present article, we explore the connection between lens space grid diagrams and the contact topology of a lens space. Our hope is that an understanding of grid diagrams from this point of view will lead to new approaches to the Berge conjecture, which claims to classify all knots in S^3 upon which surgery yields a lens space.Comment: 27 pages, 20 figure
    corecore