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a b s t r a c t

In this paper, we present an optimal O(n2) time algorithm for deciding whether a metric
space (X, d) on n points can be isometrically embedded into the plane endowed with the
l1-metric. It improves theO(n2 log2 n) time algorithmof Edmonds (2008) [9]. Togetherwith
some ingredients introduced by Edmonds, our algorithm uses the concept of tight span and
the injectivity of the l1-plane. A different O(n2) time algorithm was recently proposed by
Eppstein (2009) [10].

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Deciding whether a finite metric space (X, d) admits an isometric embedding or an embedding with a small distortion
into a given geometric space (usually Rk endowed with some norm-metric) is a classical question in distance geometry,
which has some applications in theoretical computer science, visualization, and data analysis. The first question can be
answered in polynomial time whether Rk is endowed with the Euclidean metric due to classical results of Menger and
Schönberg [6]. On the other hand, by a result of Frechet [6], any metric space can be isometrically embedded into some Rk

with the l∞-metric. However, it is NP-hard to decide whether a metric space isometrically embeds into some Rk endowed
with the l1 (alias rectilinear or Manhattan) metric [2,6]. More recently, Edmonds [9] established that it is even NP-hard to
decide whether a metric space embeds into R3 with l∞-metric (a similar question for R3 with l1-metric is still open). In the
case of R2, both l1- and l∞-metrics are equivalent because the secondmetric can be obtained from the first one by a rotation
of the plane by 45◦ and then by a shrink by a factor 1

√
2
. The embedding problem for the rectilinear plane was investigated in

papers [3,12], which ultimately show that a metric space (X, d) embeds into the l1-plane if and only if any subspace with at
most six points does [3] (a similar result for embedding into the l1-grid was obtained in [4]). As a consequence, it is possible
to decide in polynomial time whether a finite metric space embeds into the l1-plane. Edmonds [9] presented an O(n2 log2 n)
time algorithm for this problem and very recently we learned that Eppstein [10] described an optimal O(n2) time algorithm
(for earlier algorithmic results, see also [5]). In this paper, independently of [10], we describe a simple and optimal algorithm
for this embedding problem, which is different from that of [10].

We conclude this introductory section with a few definitions. In what follows, we will denote by d1 or by || · ||1 the l1-
metric and by d∞ the l∞-metric. A metric space (X, d) is isometrically embeddable into a host metric space (Y , d′) if there
exists a map ϕ : X → Y such that d′(ϕ(x), ϕ(y)) = d(x, y) for all x, y ∈ X . In this case we say that X is a subspace
of Y . A retraction ϕ of a metric space (Y , d) is an idempotent nonexpansive mapping of Y into itself, that is, ϕ2

= ϕ : Y → Y
with d(ϕ(x), ϕ(y)) ≤ d(x, y) for all x, y ∈ Y . The subspace of Y induced by the image of Y under ϕ is referred to as a
retract of Y . Let (X, d) be a metric space. The (closed) ball and the sphere of center x and radius r are the sets B(x, r) = {p ∈

X : d(x, p) ≤ r} and S(x, r) = {p ∈ X : d(x, p) = r}, respectively. The interval between two points x, y of X is the set
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Fig. 1. Tight span of 3- and 4-point metric space.

I(x, y) = {z ∈ X : d(x, y) = d(x, z) + d(z, y)}. Any ball of (Rk, d∞) is an axis-parallel cube. A subset S of X is gated if
for every point x ∈ X there exists a (unique) point x′

∈ S, the gate of x in S, such that x′
∈ I(x, y) for all y ∈ S [8]. The

intersection of gated sets is also gated. A geodesic in a metric space is the isometric image of a line segment. A metric space
is called geodesic (orMenger-convex) if any two points are the endpoints of a geodesic.

For a point p of R2, denote by Q1(p), . . . ,Q4(p) the four quadrants of R2 defined by the vertical and horizontal lines
passing via the point p and labeled counterclockwise. Any interval I1(x, y) of the rectilinear plane (R2, d1) is an axis-parallel
rectangle which can be reduced to a horizontal or vertical segment. Any ball of (R2, d1) is a lozenge obtained from an axis-
parallel square by a rotation by 45◦. In the rectilinear plane, any half-plane defined by a vertical or a horizontal line is gated.
As a consequence, axis-parallel rectangles, quadrants, and strips of (R2, d1) are gated as intersections of such half-planes.

2. Tight spans

A metric space (X, d) is called hyperconvex (or injective) [1,11] if any family of closed balls B(xi, ri) with centers xi and
radii ri, i ∈ I, satisfying d(xi, xj) ≤ ri + rj for all i, j ∈ I has a non-empty intersection, that is, (X, d) is a geodesic space such
that the closed balls have the Helly property. Since the closed balls of (Rk, d∞) are axis-parallel boxes, the metric spaces
(Rk, d∞) and (R2, d1) are hyperconvex. It is well known [1] that (X, d) is hyperconvex iff it is an absolute retract, that is,
(X, d) is a retract of every metric space into which it embeds isometrically. As shown by Isbell [11] and Dress [7], for every
metric space (X, d) there exists the smallest injective space T (X) extending (X, d), referred to as the injective hull [11], or
tight span [7] of (X, d). The tight span of a finitemetric space (X, d) can be defined as follows. Let T (X) be the set of functions
f from X to R such that

(1) for any x, y in X, f (x) + f (y) ≥ d(x, y), and
(2) for each x in X, there exists y in X such that f (x) + f (y) = d(x, y).

One can interpret f (x) as the distance from f to x. Then (1) is just the triangle inequality. Taking x = y in (1), we infer
that f (x) ≥ 0 for all x ∈ X . The requirement (2) states that T (X) is minimal, in the sense that no value f (x) can be reduced
without violating the triangle inequality. We can endow T (X) with the l∞-distance: given two functions f and g in T (X),
define ρ(f , g) = max |f (x) − g(x)|. The resulting metric space (T (X), ρ) is injective and (T (X), ρ) is called the tight span
of (X, d). There is an isometric embedding of X into its tight span T (X). Moreover, any isometric embedding of (X, d) into an
injective metric space (Y , d′) can be extended to an isometric embedding of (T (X), ρ) into (Y , d′), i.e., (T (X), ρ) is the smallest
injective space into which (X, d) embeds isometrically.

In general, tight spans are hard to visualize. Nevertheless, if |X | ≤ 5, Dress [7] completely described T (X) via the
interpoint distances of X . For example, if |X | = 3, say X = {x, y, z}, then T (X) consists of three line segments joined at
a (Steiner) point, with the points of X at the ends of the arms (see Fig. 1(a)). The lengths of these segments are αx, αy, αz,
where αx := (y, z)x = 1/2(d(x, y)+d(x, z)−d(y, z)) is the Gromov product of xwith the couple y, z (αy and αz are defined
in a similar way). Notice that one of the values αx, αy, αz may be 0, in this case one point is located between two others.
If |X | = 4, then the generic form of T (X) is a rectangle R(X) endowed with the l1-metric, together with a line segment
attached by one end to each corner of this rectangle (see Fig. 1(b)). The four points of X are the outer ends of these segments.
The lengths of these segments and the sides of the rectangle can be computed in constant time from the pairwise distances
between the points of X; for exact calculations see [7]. It may happen that R(X) degenerates into a segment or a point.
Finally, there are three canonical types of tight spans of 5-point metric spaces precisely described in [7] (see also Fig. 2 for
an illustration). Each of them consists of four or five rectangles, five segments, and eventually one rectangular triangle, and
constitutes a two-dimensional cell complex. All sides of the cells can be computed in constant time as described in [7]. It was
also noticed in [7] that if for each quadruplet X ′ of a finite metric space (X, d) the rectangle R(X ′) is degenerated, then (X, d)
isometrically embeds into a (weighted) tree and its tight span T (X) is a tree-network (i.e., a Menger-convex metric space
obtained from a weighted tree by replacing each edge of the tree with a segment of the real line having the same length).

From the construction of tight spans of 3- and 4-point metric spaces immediately follows that any metric space (X, d)
with at most 4 points and its tight span (T (X), ρ) can be isometrically embedded into the l1-plane as shown in Fig. 1(b).
This is no longer true for metric spaces on 5 points: to embed, some cells of the tight span must be degenerated. If |X | = 4
and the rectangle R(X) is non-degenerated, one can easily show that R(X) isometrically embeds into the l1-plane only as
an axis-parallel rectangle. Therefore, if additionally the four line segments of T (X) are also non-degenerated, then up to a
rotation of the plane by 90◦, X and T (X) admit exactly two isometric embeddings into the l1-plane. If one corner of R(X)
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Fig. 2. The three canonical types of tight span of 5-point metric space.

is a point of X and the embedding of the rectangle R(X) is fixed, then there exist three types of isometric embeddings of X
and T (X) into the rectilinear plane: two segments of T (X) are embedded as axis-parallel segments and the third one as a
segmentwhose slope has to be determined. Analogously, if two incident corners of R(X) are points of X, the two segments of
T (X) are either embedded as axis-parallel segments, or one as a horizontal or vertical segment and another one as segment
whose slope has to be determined. Note also that from the combinatorial characterization of finite metric subspaces of the
l1-plane presented in [3] immediately follows that a tree-metric (X, d) is isometrically embeddable into the l1-plane if and only
if the tree-network T (X) has at most four leaves. Finally note that since (R2, d1) is injective, by minimality property of tight
spans, T (X) is an isometric subspace of the l1-plane for any finite subspace X of R2.

3. Algorithm and its correctness

3.1. Outline of the algorithm

Let (X, d) be a metric space with n points, called terminals. Set X = {x1, . . . , xn}. Our algorithm first finds in O(n2) time a
quadruplet P◦ of X whose tight span contains a non-degenerated rectangle R(P◦). If such a quadruplet does not exist, then
(X, d) is a tree-metric and T (X) is a tree-network. If this tree-network contains more than four leaves, then (X, d) cannot be
isometrically embedded into the l1-plane, otherwise such an embedding canbe easily derived. Given the required quadruplet
P◦,we consider any isometric embedding of P◦ and of its tight span into the l1-plane as illustrated in Fig. 4 and partition the
remaining points of X into groups depending on their location in the regions of the plane defined by the rectangle R(P◦) and
the segments of T (P◦). The exact location of points of X in these regions is uniquely determined except the four quadrants
defined by R(P◦). At the second stage, we replace the quadruplet P◦ by another quadruplet P by picking one furthest from
R(P◦) point of X in each of these quadrants. We show that the rectangle R(P◦) is contained in the rectangle R(P); moreover,
for any isometric embedding ϕ0 of P and T (P) into the l1-plane, the quadrants defined by two opposite corners are empty
(do not contain other terminals of X). Again the location of the points of X in all regions of the plane except the two opposite
quadrants is uniquely determined. To compute the location of the remaining terminals in these two quadrants we adapt the
second part of the algorithm of Edmonds [9]: we construct on these terminals a graph as in [9], partition it into connected
components, separately determine the location of the points of each component, and then combine them into a single chain
of components in order to obtain a global isometric embedding ϕ of (X, d) extending ϕ0 or to decide that it does not exist.

Now, we briefly overview the algorithms of Edmonds [9] and Eppstein [10]. Edmonds [9] starts by picking two diametral
points p, q of X . These two points can be embedded into the l1-plane in an infinite number of differentways. Each embedding
defines an axis-parallel rectangle Π whose half-perimeter is exactly d(p, q). Using the distances of p and q to the remaining
points of X, Edmonds computes a list ∆ of linear size of possible values of the sides of the rectangle Π . For each value δ
from this list, the algorithm of [9] decides in O(n2) time if there exists an isometric embedding of X such that one side of
the rectangle Π has length δ. For this, it partitions the points of X into groups, depending on their location in the regions
of the plane determined by Π . In order to fix the positions of points in one of these regions, Edmonds [9] defines a graph
whose connected components are also used in our algorithm.While sweeping through the list∆, the algorithmof [9] update
this graph and its connected components in an efficient way. Notice that the second part of our algorithm is similar to that
from [9], but instead of trying several sizes of the rectangle Π, we use the tight spans to provide us with a single rectangle,
ensuring some rigidity in the embedding of the remaining points. The algorithm of Eppstein [10] is quite different in spirit
from our algorithm and that of Edmonds [9]. Eppstein [10] first incrementally constructs in O(n2) time a planar rectangular
complexwhich is the tight span of the inputmetric space (X, d) or decide that the tight span of X is not planar. In the second
stage of the algorithm, he decides in O(n) time if this planar rectangular complex can be isometrically embedded into the
l1-plane or not.

3.2. Computing the quadruplet P◦

For each i = 1, . . . , n, set Xi := {x1, . . . , xi}.We start by computing the tight span of the first four points of X . If this tight
span is not degenerated thenwe return the quadruplet X4 as P◦.Now suppose that the tight span of the first i−1 points of X
is a tree-network Ai−1 with at most four leaves. This means that Ai−1 contains one or two ramification points (which are not
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Fig. 3. The tree-network Ai .

necessarily points of X) having degree at most 4, all remaining terminals of Xi−1 are either leaves or vertices of degree two
of Ai−1. We say that two terminals of Xi−1 are consecutive in Ai−1 if the segment connecting them in Ai−1 does not contain
other points of Xi−1. Note that Ai−1 contains at most n + 4 of consecutive pairs. For each pair xj, xk of consecutive terminals
of Xi−1 we compute the Gromov product αxi := (xj, xk)xi = 1/2(d(xi, xj) + d(xi, xk) − d(xj, xk)) of xi with {xj, xk}. Let {a, b}
be the pair of consecutive points of Xi−1 minimizing the Gromov product αxi = (a, b)xi . Let c be the point of the segment
[a, b] of Ai−1 located at distance αa := (b, xi)a from a and at distance αb := (a, xi)b from b (c may coincide with one of the
points a or b).

Denote by Ai the tree-network obtained from Ai−1 by adding the segment [xi, c] of length αxi . By running Breadth-First-
Search on Ai rooted at xi, we check if dAi(xi, xj) = d(xi, xj) for any terminal xj of Xi. If this holds for all xj ∈ Xi, then the tight
span of Xi is the tree-network Ai. If Ai contains more than 4 leaves, then we return the answer ‘‘not’’and the algorithm halts.
Otherwise, if i = n, then we return the answer ‘‘yes’’ and an isometric embedding of X and its tight span An in the l1-plane,
else, if i < n, we consider the next point xi+1. Finally, if xj is the first point of Xi such that dAi(xi, xj) ≠ d(xi, xj), then we
return the quadruplet {a, b, xi, xj} as P◦. We establish the following lemma.

Lemma 1. The tight span of the quadruplet {a, b, xi, xj} is non-degenerated (i.e., is not a tree-network).

Proof. Suppose byway of contradiction that T (P◦) is a tree. Since Ai−1 realizes Xi−1 and T (P◦) realizes P◦, the subtree of Ai−1
spanned by the terminals a, b, and xj is isometric to the subtree of T (P◦) spanned by the same terminals. On the other hand,
T (P◦) contains a point c ′ located at distance αxi , αa, and αb from xi, a, and b, respectively. This means that T (P◦) is isometric
to the subtree of Ai spanned by the vertices xi, a, b, and xj, (see Fig. 3) contrary to the assumption that dAi(xi, xj) ≠ d(xi, xj).
Hence, this inequality implies indeed that T (P◦) is not a tree. �

Finally note that dealing with a current point xi takes time linear in i, thus the whole algorithm for computing the
quadruplet P◦ runs in O(n2) time.

3.3. Classification of the points of X with respect to the rectangle of T (P◦)

Let P◦
= {p◦

1, p
◦

2, p
◦

3, p
◦

4} be the quadruplet whose tight span T (P◦) is non-degenerated. Let R◦ be one of the two possible
isometric embeddings of the rectangle R(P◦) of T (P◦) and consider a complete or a partial isometric embedding of T (P◦)
such that R(P◦) is embedded as R◦. Denote by Q ◦

1 ,Q ◦

2 ,Q ◦

3 ,Q ◦

4 the four (closed) quadrants defined by the four consecutive
corners q◦

1, q
◦

2, q
◦

3, q
◦

4 of R
◦ labeled in such a way that the point p◦

i must be located in the quadrant Q ◦

i , i = 1, . . . , 4. Let also
S◦

1 , S
◦

2 , S
◦

3 , and S◦

4 be the remaining half-infinite strips. Since we know how to construct in constant time the tight span of
a 5-point metric space, we can compute the distances from all terminals p of X to the corners of the rectangle R(P◦) (and
hence to the corners of R◦) in total O(n) time. With some abuse of notation, we will denote the l1-distance from p to the
corner q◦

i of R
◦ by d(p, q◦

i ). Since R◦ is gated, from the distances of p to the corners of R◦ we can compute the gate of p in R◦.
Consequently, for each point p ∈ X \ P◦ we can decide in which of the nine regions of the plane will belong its location ϕ(p)
under any isometric embedding ϕ of (X, d) subject to the assumption that R(P◦) is embedded as R◦. If ϕ(p) belongs to one
of the four half-strips or to R◦, then we can also easily find the exact location itself: this can be done by using either the gate
of p in R◦ or the fact that inside these five regions the intersection of the four l1-spheres centered at the corners of R◦ and
having the distances from respective corners to p as radii is a single point. So, it remains to decide the locations of points
assigned to the four quadrants Q ◦

1 ,Q ◦

2 ,Q ◦

3 , and Q ◦

4 . For any point p ∈ X which must be located in the quadrant Q ◦

i , the set
of possible locations of p is either empty (and no isometric embedding exists) or a segment sp of Q ◦

i consisting of all points
z ∈ Q ◦

i such that ‖z − q◦

i ‖1 = d(p, q◦

i ).

Lemma 2. For any quadruplet P ′
= {p′

1, p
′

2, p
′

3, p
′

4} of terminals such that p′

i is assigned to the quadrant Q ◦

i , i ∈ {1, 2, 3, 4}, the
rectangle R◦ belongs to the tight span T (P ′) of P ′.

Proof. For any point p′

i, i ∈ {1, 2, 3, 4} and any point r of R◦,we have ‖p′

i − r‖1 +‖r −p′

j‖1 = ‖p′

i −p′

j‖1,where j is selected
in such away that q◦

i and q◦

j are opposite corners of R
◦. From injectivity of the l1-plane and the characterization of tight spans

we conclude that all points of R◦ belong to T (P ′), establishing in particular that this tight span is also non-degenerated. �
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Fig. 4. Possible isometric embeddings of T (P).

Fig. 5. The partition of the plane into half-strips and quadrants.

3.4. The quadruplet P and its properties

Let P = {p1, p2, p3, p4} be the quadruplet of X, where pi is a point of X which must be located in the quadrant Q ◦

i and is
maximally distant from the corner q◦

i of R
◦. As we established in Lemma 2, the tight span of P is non-degenerated;moreover,

the rectangle R(P) contains the rectangle R(P◦). As we also noticed, there exists a constant number of ways in which we
can isometrically embed T (P) into the l1-plane. Further we proceed in the following way: we pick an arbitrary isometric
embedding ϕ0 of T (P) and try to extend it to an isometric embedding ϕ of the whole metric space (X, d) in the l1-plane. If
this is possible for some embedding of T (P), then the algorithm returns the answer ‘‘yes’’ and an isometric embedding of X,
otherwise the algorithm returns the answer ‘‘not’’. Let R denote the image of R(P) under ϕ0.

We call a terminal pi of P fixed by the embedding ϕ0 if either ϕ0(pi) is a corner of the rectangle R or the segment of T (P)
incident to pi is embedded by ϕ0 as a horizontal or a vertical segment; else we call pi free. The embedding of a free terminal pi
is not exactly determined but is restricted to a segment spi consisting of the points of the quadrant defined by qi and having
the same l1-distance to qi. We call the terminals pi, pi+1(mod 4) incident and the terminals pi, pi+2(mod 4) opposite.

From the isometric embedding of T (P) we conclude that at most one of two incident terminals can be free. Moreover, if
a terminal pi of P is fixed but is not a corner of R, then at least one of the two terminals incident to pi is also fixed. If all four
tips of T (P) are non-degenerated, then all four terminals of P are fixed. If only three tips of T (P) are non-degenerated then
at most one terminal of P is free, all remaining terminals are fixed. If only two tips of T (P) are non-degenerated, then either
they correspond to incident terminals, one of which is fixed and another one is free or to two opposite terminals which
are both free. Finally, if only one tip of the tight span is non-degenerated, then it corresponds to a free terminal, all other
terminals of P are corners of R and therefore are fixed (see Fig. 4 for the occurring possibilities).

Denote by Π the smallest axis-parallel rectangle containing R and the fixed terminals of P; Fig. 5 illustrates Π for two
cases from Fig. 4 (if a terminal is free, then the respective corner of R is also a corner ofΠ ). Let q1, q2, q3, q4 be the corners of
Π labeled in such away that qi is the corner of R corresponding to the point pi and to the corner q◦

i of R
◦.Denote byQ1, . . . ,Q4

the quadrants of R2 defined by the corners of Π and by S1, . . . , S4 the remaining half-infinite strips. Again, as in the case of
the quadruplet P◦, by building the tight spans of P ∪ {p} for all terminals p ∈ X \ P, we can compute in total linear time the
distances from all such points p to the corners of R (and to the corners of Π ). From these four distances and the distances
of p to the terminals of the quadruplet P we can determine in which of the nine regions Q1,Q2,Q3,Q4, S1, S2, S3, S4, Π of
the plane must be located p. Moreover, if p is assigned to the rectangle Π or to one of the four half-strips S1, S2, S3, S4, then
we can conclude that, in the region in which p assigned, the intersection of the four spheres centered at the terminals of P
and having the distances from respective points to p as radii is either empty or a single point. The sphere centered at a free
terminal pi is needed only to decide the location of p in the quadrantQ of the plane having the same apex a as the quadrantQi
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Fig. 6. On possible locations of terminals in Q1 and Q3 .

and which is opposite to Qi (a is a corner of Π ). But in this case, instead of considering the sphere of radius d(p, pi) centered
at ϕ0(pi) we consider the sphere of radius d(p, pi) − ‖ϕ0(pi) − a‖1 and centered at a : indeed, both these spheres have the
same intersection with Q .

Lemma 3. Among the four quadrants Q1,Q2,Q3, and Q4 defined by P, two opposite quadrants are empty, i.e., they do not contain
terminals of X \ P.

Proof. First note that by inspecting the different cases listed in Fig. 4 one can check that the two neighbors pi−1(mod 4) and
pi+1(mod 4) of a free point pi ∈ P are both fixed; let say p1 and p3 are fixed. Now, suppose by way of contradiction that a
terminal q ∈ X \ P must be located in the quadrant Q1. This means that its gate in the rectangle Π is the corner of Π

corresponding to p1. Since in any embedding ϕ of X that extends the chosen embedding of T (P◦) the terminal p1 is located
inQ ◦

1 ,we deduce thatQ1(ϕ(p1)) ⊆ Q ◦

1 .On the other hand, the inclusionQ1 ⊆ Q1(ϕ(p1)) follows directly from the definition
of Q1 and the fact that p1 is fixed. Now, from the inclusions Q1 ⊆ Q1(ϕ(p1)) ⊆ Q ◦

1 , we obtain that q ∈ Q ◦

1 and, since q is
closer to p1 than to q◦

1,we get a contradictionwith the choice of p1, establishing that indeedQ1 does not contain any point of
X \ P. The same argument shows that Q3 is empty as well. Note that actually we proved that any quadrant Qi corresponding
to a fixed terminal pi of P is empty. �

3.5. Locating in the non-empty quadrants Q1 and Q3

As we have showed in previous subsection, any isometric embedding ϕ of (X, d) extending the embedding ϕ0 of T (P)
each terminal p of X \ P is uniquely located in one of the nine regions defined by Π . Moreover, if p must be located in the
rectangle Π or in one of the four half-strips S1, . . . , S4, then this location ϕ(p) is uniquely determined from the distances to
the terminals of P and to the corners ofΠ .We also established in Lemma 3 that only one or two opposite quadrants defined
by Π , say Q1 and Q3, can host terminals of X \ P; see Fig. 6. We will show now how to find the exact location of the set X1
of terminals assigned to Q1 (the set X3 of terminals which must be located in Q3 is treated analogously).

Note that independently of how the extension ϕ of ϕ0 is chosen, for each terminal u ∈ X1, the l1-distance ‖ϕ(u) − q1‖1
from the location of u to the corner q1 of Π is uniquely determined, which we denote by ∆u. The value of ∆u can be easily
computed because q1 lies between ϕ(u) and ϕ(pi) for any pi ∈ P: for example, we can set ∆u := d(u, p1) − ‖ϕ0(p1) − q1‖1.
Then the set of all possible locations ϕ(u) of u ∈ X1 is the level segment su which is the intersection of Q1 with the sphere
S(q1, ∆u) of radius ∆u centered at q1.

To compute the locations of the terminals of X1 in the quadrant Q1, we adapt to the l1-plane the definition of a graph
(which we denote by G1 = (X1, E1)) defined by Edmonds [9] in the l∞-plane. Two terminals u, v ∈ X1 are adjacent in G1 if
and only if d(u, v) > |∆u − ∆v|. Equivalently u, v ∈ X1 with ∆u ≤ ∆v are adjacent in G1 iff u cannot be located between q1
and v : ϕ(u) /∈ I1(q1, ϕ(v)). Denote by C1, C2, . . . , Ck the connected components of the graph G1. They have the following
useful properties, which can be derived from Lemmata 3–5 of [9]:

Lemma 4. Each component Ci is rigid, i.e., once the location of any point u of Ci has been fixed, the locations of the remaining
points of Ci are also fixed (up to symmetry with respect to the line parallel to the bisector of Q1 and passing via u).

Lemma 5. The components C1, C2, . . . , Ck of the graph G1 can be numbered so that the points of each Ci appear consecutively in
the list of points u ∈ X1 sorted in increasing order of their distances ∆u to q1.

Lemma 6. For a component Ci of G1, let Bi be the smallest axis-parallel rectangle containing {ϕi(u) : u ∈ Ci} for an isometric
embedding ϕi of (Ci, d) in the l1-plane. Let bi be the upper right corner of Bi. Then the embedding of C1, C2, . . . , Ck preserves the
distances between all pairs of points lying in different components if and only if for every pair of consecutive components Ci and
Ci+1, the rectangle Bi+1 lies entirely in the quadrant Q1(bi).

The location in the quadrant Q1 of some terminals of X1 (and therefore of the connected components containing them)
can be fixed by terminals already located in the two half-strips incident to Q1. We say that a terminal u ∈ X1 is fixed by a
terminal p already located in S1∪S4 if the intersection of the segment su with the sphere S(ϕ(p), d(p, u)) is a single point. Note
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Fig. 7. ϕ(u) and ϕ(v) are fixed by ϕ(p∗) and ϕ(p∗).

Fig. 8. ϕ(v) is fixed by ϕ(p∗).

that if u ∈ X1 is fixed by a terminal located in S1, then u is also fixed by the uppermost terminal p∗ located in this half-strip.
Analogously, if u ∈ X1 is fixed by a terminal of S4, then u is also fixed by the rightmost terminal p∗ located in S4. Therefore by
considering the intersections of the segments su, u ∈ X1, with the spheres S(ϕ(p∗), d(p∗, u)) and S(ϕ(p∗), d(p∗, u)) we can
decide in linear time which terminals of X1 are fixed by p∗ and p∗ and find their location in Q1 (for an illustration, see Fig. 7).
According to Lemma 4, if a terminal of a connected component of G1 is fixed, then the location of the whole component is
also fixed (up to symmetry). Let Cj be the connected component of G1 containing the furthest from q1 terminal u ∈ X1 fixed
by p∗ or p∗, say by p∗ (therefore the location of Cj is fixed).

Lemma 7. All terminals of C1, C2, . . . , Cj−1 are fixed by p∗.

Proof. Indeed, pick such a terminal v. From Lemma 5 we conclude that ∆v ≤ ∆u and from the definition of G1 we deduce
that v must be located in the axis-parallel rectangle I1(q1, ϕ(u)), and therefore below u. Since u is fixed by p∗, u must be
located below p∗, whence v also must be located below p∗. We can easily see that the intersection of sv with the sphere
S(ϕ(p∗), d(p∗, v)) is a single point, i.e. v is also fixed by p∗ (see Fig. 8). �

It remains to locate in Q1 the terminals of the components Cj+1, Cj+2, . . . , Ck. We compute separately an isometric
embedding of each component Ci for i = j + 1, . . . , k. For this, we fix arbitrarily the location of the first two points u, v
of Ci in the segments su and sv so that to preserve the distance d(u, v) (the terminals of Ci are ordered by their distances
to q1). By Lemma 4 (3 of [9]), the location of the remaining points of Ci is uniquely determined and each point w of Ci will
be located in its level segment sw. Let ϕi be the resulting embedding of Ci. Denote by Bi the smallest axis-parallel rectangle
(alias box) containing the image ϕi(Ci) of Ci. Let ai and bi denote the lower left and the upper right corner of Bi. Note that
ai belongs to the l1-interval between q1 and the image ϕi(u) of any terminal u of Ci, while the l1-interval between q1 and bi
will contain the images of all terminals of Ci. Therefore if we set ∆ai := ∆u − ‖ai − ϕi(u)‖1 and ∆bi := ∆u + ‖ϕ(u) − bi‖1,
where u is any terminal of Ci, then in all isometric embeddings of (Ci, d) in which all terminals u ∈ Ci are located on su, the
points ai and bi must be located on the level segments sai and sbi , defined as the intersections of the quadrant Q1 with the
spheres S(q1, ∆ai) and S(q1, ∆bi).

By Lemmas 5 and 6 (4 and 5 of [9]), in order to define a single isometric embedding of the components Cj+1, . . . , Ck we
now need to assemble the boxes Bj+1, . . . , Bk (by moving their terminals along the level segments) in such a way that for
two consecutive components Ci and Ci+1, the box Bi+1 lies entirely in the quadrant Q1(bi).

Lemma 8. The box Bi+1, i = j, j + 1, . . . , k − 1, lies entirely in the quadrant Q1(bi) if and only if each pair of consecutive boxes
Bi, Bi+1 satisfies the inequality ∆bi ≤ ∆ai+1 .



2432 N. Catusse et al. / Theoretical Computer Science 412 (2011) 2425–2433

Fig. 9. On the assemblage of blocks Bj+1, . . . , Bk .

Proof. If ∆bi ≤ ∆ai+1 , then translating Bi+1 along the segment sai+1 ,we can locate its corner ai+1 in the quadrant Q1(bi) and
thus satisfy the embedding requirement. Conversely, if ∆bi > ∆ai+1 holds, then ai+1 cannot belong to the quadrant Q1(bi)
independently of the positions of ai+1 and bi on their level segments. �

This local condition depends only on the values of ∆ai , ∆bi and is independent of the actual location of the boxes
Bi, i = 1, . . . , k. As a result, the algorithm that embeds the boxes Bj+1, . . . , Bk is very simple. For each i = j, . . . , k − 1,
we compute the box Bi+1 and the values of ∆ai+1 and ∆bi+1 . If ∆ai+1 < ∆bi for some i, then return the answer ‘‘there is no
isometric embedding of (X, d) extending the embedding ϕ0 of T (P)’’. Otherwise, having already located the box Bi, by what
has been shown above, the intersection of the quadrant Q1(bi) with the level segment sai+1 is non-empty. Therefore we can
translate Bj+1 in such a way that its lower left corner ai+1 becomes a point of this intersection (Fig. 9).

In this way, we obtain an embedding of Cj+1, . . . , Ck and Bj+1, . . . , Bk satisfying Edmonds’s conditions formulated in
Lemmata 4–6, thus an isometric embedding of the metric space (

k
i=j+1 Ci, d) in Q1. Analogously, by constructing the graph

G3 = (X3, E3) and its components, either we obtain a negative answer or we return an isometric embedding of the metric
space defined by the non-fixed components of G3 in the quadrant Q3. Denote by ϕ the embedding of X which coincides
with ϕ0 on P, with these two embeddings on the non-fixed components of G1 and G3, and with the already computed
fixed locations of the terminals assigned to Π, to the half-strips S1, S2, S3, S4, and to the fixed connected components of the
graphs G1 and G3. In O(n2) we test if ϕ is an isometric embedding of (X, d) into the l1-plane. If the answer is negative, then
we return ‘‘there is no isometric embedding of (X, d) extending the embedding ϕ0 of T (P)’’, otherwise we return ϕ as an
isometric embedding. The algorithm returns the global answer ‘‘not’’ if for all possible embeddings ϕ0 of T (P) it returns the
negative answer. Fromwhatwe established follows that in this case (X, d) is not isometrically embeddable into the l1-plane.

3.6. Algorithm and its complexity

We conclude the paper with a description of the main steps of the algorithm and their complexity.

Algorithm Embedding into the l1-plane
Input: A metric space (X, d) on n points
Output: An isometric embedding ϕ of (X, d) into (R2, d1) or the answer ‘‘not’’ if it does not exist
Step 1. Find a quadruplet P◦ of X whose tight span contains a rectangle. If P◦ does not exist, then T (X) is a tree-network. If T (X) has more than 4 leaves,
then return ‘‘not’’, else return an embedding of T (X) and (X, d).
Step 2. Pick any embedding of T (P◦) and for each terminal of X \ P◦ determine in which of the nine regions of the plane it must be located. Using this
partition of X \ P◦, define the quadruplet P .
Step 3. Embed P and its tight span T (P) into the l1-plane in all possible differentways. Try to extend each of these embeddings to an isometric embedding of
(X, d) following the rules (a)–(g). If all of these attempts return the answer ‘‘not’’, then return the answer ‘‘not’’, else return one of the obtained embeddings.

(a) Given an embedding ϕ0 of T (P), for each terminal u of X \ P determine in which of the nine regions defined by the rectangle Π will be located u in any
isometric embedding extending ϕ0;

(b) Locate the terminals assigned to the rectangle Π and the four half-strips S1, S2, S3, S4;
(c) Define the sets of terminals X1 and X3 assigned to the quadrants Q1 and Q3, construct the graphs G1 = (X1, E1) and G3 = (X3, E3) and their connected

components;
(d) Find the terminals of X1 fixed by p∗, p∗ and their location in Q1 . Do a similar thing for X3;

(e) Find an isometric embedding of each component Ci ofG1 not containing already fixed terminals so that its terminals are located on their level segments.
Do a similar thing for G3;

(f) Test if the free components Cj+1, . . . , Ck of G1 satisfy the condition ∆bi ≤ ∆ai+1 for i = j + 1, . . . , k − 1. If not, then return the answer ‘‘not’’, else
locate consecutively the boxes Bj+1, . . . , Bk in such a way that ai+1 is located in Q1(bi) ∩ sai+1 and fix in this way the position of all terminals of X1. Do
a similar thing for the free components of G3;

(g) Verify if the resulting embedding of X extending ϕ0 is an isometric embedding of (X, d). If ‘‘yes’’, then return it as a resulting isometric embedding,
otherwise return the answer ‘‘there is no isometric embedding of (X, d) extending the embedding ϕ0 ’’.
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In Section 3.2 we established that the quadruplet P◦, if it exists, can be computed in O(n2) time. If P◦ does not exist, then
the tree-network An (constructed within the same time bounds) is the tight span of (X, d). Embedding An (if it has at most 4
leaves) in the l1-plane can be easily done in linear time. As shown in Section 3.3, Step 2 can be implemented in linear time.
There exists a constant number of ways in which the quadruplet P and its tight span can be isometrically embedded in the
l1-plane. Therefore, to show that Step 3 has complexity O(n2), it suffices to estimate the total complexity of Steps (a)–(g) for
a fixed embedding ϕ0 of T (P). Step (a) is similar to Step 2, thus its complexity is linear. The exact location of each terminal in
the half-strips or in Π is determined as the intersection of two spheres, therefore Step (b) is also linear. Defining the graph
G1 and computing its connected components can be done in O(|X1|

2) time. Thus Step (c) has complexity O(n2). Steps (d)
and (e) can be implemented in an analogous way as (b), thus their complexity is O(n). Testing the condition in Step (f) and
assembling the free components into a single chain is linear as well. Finally, Step (g) requires O(n2) time. Therefore, the total
complexity of the algorithm is O(n2). Summarizing, here is the main result of this paper.

Theorem 1. For a metric space (X, d) on n points, it is possible to decide in optimal O(n2) time if (X, d) is isometrically
embeddable into the l1-plane and to find such an embedding if it exists.

Acknowledgement

We wish to thank the referee for several useful suggestions which helped in improving the presentation.

References

[1] N. Aronszajn, P. Panitchpakdi, Extensions of uniformly continuous transformations and hyperconvexmetric spaces, Pacific J. Math. 6 (1956) 405–439.
[2] D. Avis, M. Deza, The cut cone, L1 embeddability, complexity and multicommodity flows, Networks 21 (1991) 595–617.
[3] H.-J. Bandelt, V. Chepoi, Embedding metric spaces in the rectilinear plane: a six-point criterion, Discr. Comput. Geom. 15 (1996) 107–117.
[4] H.-J. Bandelt, V. Chepoi, Embedding into the rectilinear grid, Networks 32 (1998) 127–132.
[5] G.E. Christopher, M.A. Trick, Faster decomposition of totally decomposable metrics with applications, Carnegie Mellon University, (1996), Preprint.
[6] M. Deza, M. Laurent, Geometry of Cuts and Metrics, Springer-Verlag, Berlin, 1997.
[7] A.W.M. Dress, Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups, Adv. Math. 53 (1984) 321–402.
[8] A. Dress, R. Scharlau, Gated sets in metric spaces, Aequat. Math. 34 (1987) 112–120.
[9] J. Edmonds, Embedding into l2

∞
is easy, embedding into l3

∞
is NP-complete, Discr. Comput. Geom. 39 (2008) 747–765.

[10] D. Eppstein, Optimally fast incremental Manhattan plane embedding and planar tight span construction, Electronic preprint arXiv:0909.1866v1,
(2009).

[11] J. Isbell, Six theorems about metric spaces, Comment. Math. Helv. 39 (1964) 65–74.
[12] S.M. Malitz, J.I. Malitz, A bounded compactness theorem for L1-embeddability of metric spaces in the plane, Discr. Comput. Geom. 8 (1992) 373–385.

http://arxiv.org/0909.1866v1

	Embedding into the rectilinear plane in optimal  O (n2)  time
	Introduction
	Tight spans
	Algorithm and its correctness
	Outline of the algorithm
	Computing the quadruplet Po
	Classification of the points of X with respect to the rectangle of T(Po)
	The quadruplet P and its properties
	Locating in the non-empty quadrants Q1 and Q3
	Algorithm and its complexity

	Acknowledgement
	References


