5 research outputs found

    Procedures for improved weather radar data quality control

    Get PDF
    [eng] Weather radar data and its downstream products are essential elements in weather surveillance and key parameters in the initialisation and validation of hydrological and meteorological models, among other downstream applications. Following the quality standards established by the European and global weather radar networking referents, the present thesis aims for the improvement of the base data quality control in the regional weather radar network operated by the Meteorological Service of Catalonia, the XRAD. This objective is accomplished through the analysis, development and implementation of new or existing procedures and algorithms for radar data quality assessment and improvement. Attending to the current radar technology and to the already implemented quality control procedures for the XRAD, the work is focused on the continuous evaluation of the radar system calibration status and on the correction of Doppler velocity data. The quality control algorithms and recommendations presented are easily translatable to any other operative weather radar networking environment. A Sun-based, fully automatic procedure for online monitoring the antenna alignment and the receiver chain calibration is adapted and operationally implemented for the XRAD. This Sun-monitoring technique was developed at the Royal Netherlands and Finnish Meteorological Institutes and is included in the quality control flow of numerous weather radar networks around the world. The method is modified for a robust detection and characterisation of solar interferences in raw data at all scan elevations, even when only data at relatively short ranges is available. The modified detection algorithm is also suitable for detecting interferences from wireless devices, which are stored for monitoring their incidence in the XRAD. The solar interferences detected, in turn, are input observations for the inversion of a two-dimensional Gaussian model that yields estimates of the calibration parameters of interest. A complete theoretical derivation of the model establishes its validity limits and provides analytical estimates of the effective solar widths directly from radar parameters. Results of application of this Sun-monitoring methodology to XRAD data reveal its ability to determine the accuracy of the antenna pointing and to detect changes in receiver calibration and radar system operation status. In order to facilitate the usage of the Sun-monitoring technique and the interpretation of its estimates, the methodology is reproduced under controlled conditions based on the distributions of solar observations collected by two of the XRAD radars. The analysis shows that the accuracy of the estimated calibration parameters is conditioned by the precision, number and distribution of the solar observations which constitute key variables that need to be controlled to ensure reliable estimates. In addition, the Sun-monitoring technique is compared under actual operative conditions with two other common techniques for quantifying the antenna azimuth and elevation pointing offsets. Pointing bias estimates gathered in a dedicated short-term campaign are studied in a direct inter- comparison of the methods that reflects the advantages and limitations in each case. The analysis of the bias estimates reported by the methods in the course of a one-year period reveals that the performance of the techniques depends on the antenna position at the time of the measurement. After this study, a reanalysis of the Sun-monitoring method results is proposed, which allows to additionally quantify the antenna pedestal levelling error. Finally, a post-processing, spatial image filtering algorithm for identification and correction of unfolding errors in dual-PRF Doppler velocity data is proposed. The correction of these errors benefits the usage of radar velocity data in downstream applications such as wind- shear and mesocyclone detection algorithms or assimilation in numerical weather prediction models. The main strengths of the proposed algorithm, in comparison with existing correction techniques, are its robustness to the presence of clustered unfolding errors and that it can be employed independently of post-processing dealiasing algorithms. By means of simulated dual-PRF velocity fields, the correction ability of the algorithm is quantitatively analysed and discussed with particular emphasis on the correction of clustered errors. The quality improvement in real dual-PRF data brought out by the new algorithm is illustrated through application to three selected severe weather events registered by the XRAD.[cat] Seguint els estàndards de qualitat establerts per a les xarxes de radars meteorològics de referència a nivell europeu i global, la present tesi té com a objectiu la millora del control de qualitat de les dades de la xarxa regional de radars meteorològics operada pel Servei Meteorològic de Catalunya (la XRAD). Atenent als procediments de control de qualitat ja implementats per a la XRAD, el treball es centra en l'avaluació contínua de l'estat del calibratge del sistema radar i en la correcció de les dades de velocitat Doppler. Es presenta l'adaptació i aplicació d’un procediment totalment automàtic basat en el Sol, que permet la quantificació remota dels errors d'alineació de l'antena i de calibratge en recepció del radar a la XRAD. El mètode ha estat modificat per a la detecció i caracterització robusta d'interferències solars a les dades primàries de radar. Les interferències solars són utilitzades per a la inversió d'un model físic que proporciona estimacions dels paràmetres de calibratge d'interès. L'algoritme de detecció modificat també és adequat per a la identificació d'interferències procedents de dispositius electrònics externs. Aquestes interferències són emmagatzemades per al seguiment de la seva incidència a la XRAD. La metodologia solar esmentada es modelitza en condicions controlades a partir de la distribució de les observacions solars recollides per dos dels radars de la XRAD. L'anàlisi mostra que la precisió, el nombre i la distribució de les observacions solars constitueixen variables clau que necessiten ser controlades per garantir estimacions fiables dels paràmetres de calibrage. A més, la tècnica solar es compara, sota condicions operatives reals, amb altres dues tècniques habitualment emprades per a la quantificació de l'error d'apuntament de l'antena. A partir d'aquest estudi, es proposa un nou mètode d'anàlisi de les interferències solars, el cual permet quantificar l'error d'anivellament del pedestal de l'antena. Finalment, es desenvolupa i valida un algoritme de filtrat d'imatges per a la identificació i correcció dels errors característics que es donen lloc a les dades dual-PRF de velocitat Doppler. Els punts forts de l'algoritme proposat, en comparació amb les tècniques de correcció existents, són la seva robustesa en la correció d'errors agrupats i que pot emprar- se amb independència dels algoritmes de dealiasing. La millora de la qualitat de les dades reals de velocitat s'il·lustra mitjançant l'aplicació de l’algoritme a tres episodis de temps sever enregistrats per la XRAD

    Radar spurious emission: measurement and impact on radio communication system performance

    Get PDF
    In this thesis is presented a useful and economic measuring principle with which radar spurious emissions can be investigated under field conditions without disturbing the function of the radar in any way. The method presented here consists of two parts: In the time-domain parameter study is presented, how the radar antenna rotation produces radar pulses to the measuring receiver. Also is presented, how receiver parameters are defined by availability and use of radar pulses in the measurement. In the frequency spectrum measurement part a new sweep measurement system is presented. In this measurement the YIG filter presented by ITU [1] is replaced by a similar multistage tunable band-stop filter, which meets similar filtering characteristics, this is more easy to use and a less expensive filter. It is explained how the needed measurement dynamics are achieved and how the measurement time is determined and optimized in different situations. A two part measuring approach like this has not been reported before. ITU recommendations for attenuation of radar spurious emissions are updated to 100 dB below the radar nominal frequency (NF) signal level. The fulfillment of these spurious level requirements sets a hard challenge for measuring dynamics: dynamics must be more than 110 dB. The author provides in this work a solution to this requirement. This measuring method produces results, with which one can conclude the relative power level of radar spurious emissions and its effect on other radio services. In this work the spectrum produced by a 5 GHz weather radar has been studied and the results have been applied to study radar impact to terrestrial digital radio relay systems (TDRRS). The achieved result is both very important and current, and it can be utilized in the planning of new radar systems as also in the planning of new radio networks operating in the frequency ranges adjacent to radar frequencies. Possible radio networks in addition to TDRRSs that can be interfered from radar spurious emissions are Wireless Local Area Networks (WLAN), Worldwide Interoperability for Microwave Area (WiMAX) and Ultra Wide Band (UWB) systems. These systems also can interfere with radar frequencies

    TV White Spaces: A Pragmatic Approach

    Get PDF
    190 pages The editors and publisher have taken due care in preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information contained herein. Links to websites imply neither responsibility for, nor approval of, the information contained in those other web sites on the part of ICTP. No intellectual property rights are transferred to ICTP via this book, and the authors/readers will be free to use the given material for educational purposes.  e ICTP will not transfer rights to other organizations, nor will it be used for any commercial purposes. ICTP is not to endorse or sponsor any particular commercial product, service or activity mentioned in this book. This book is released under the Attribution-NonCommercial-NoDerivatives ¦.þ International license. For more details regarding your rights to use and redistribute this work, see http://creativecommons.org/licenses/by-nc-nd/4.0/

    An analysis of regulatory frameworks for wireless communications, societal concerns and risk: the case of radio frequency (RF) allocation and licensing.

    Get PDF
    This thesis analyses how and why culture and geography influence the allocation and licensing of the radio frequency (RF) spectrum in different nations. Based on a broad study of 235 countries, an inter-disciplinary approach is used to explore regulatory frameworks and attitudes toward risk. In addition, detailed case studies of the UK, France, the US and Ecuador provide deeper insights into the main contrasting regulatory styles. Three alternative sociological theories are used to analyse and explain the results for both the in-depth and broad brush studies. The Cultural Theory of Mary Douglas and co-workers is first used to categorise countries in terms of perceptual filters. The empirical findings indicate some countries to be apparently exceptional in their behaviour. The theory of Bounded Rationality is used to investigate and explain these apparent irrationalities. Finally, Rational Field Theory shows how beliefs and values guide administrations in their RF regulation. A number of key factors are found to dominate and patterns emerge. The European RF harmonisation is unique. Following European unification, wireless regulation is divided into two major camps (the EU and the US), which differ in their risk concerns, approach to top-down mandated standards, allocation of RF spectrum to licence-exempt bands and type approval process. The adoption of cellular and TV standards around the world reflects geopolitical and colonial influence. The language of a country is a significant indicator of its analogue TV standard. Interestingly, the longitude of a country to a fair extent defines RF allocation: Africa and West Asia follow Europe, whereas the Americas approximate the US. RF regulation and risk tolerability differ between tropical and non-tropical climates. The collectivised/centralised versus the individualised/market-based rationalities result in different regulatory frameworks and contrasting societal and risk concerns. The success of the top-down European GSM and the bottom-up Wi-Fi standards reveal how the central- planning and market-based approaches have thrived. Attitudes to RF human hazards and spurious emissions levels reveal that the US, Canada and Japan are more tolerant of these risks than Europe. Australia, Canada, New Zealand, UK and USA encourage technological innovation. A practical benefit of this study is that it will give regulators more freedom to choose a rational RF licensing protocol, by better understanding the possibly self-imposed boundaries of cultural and geographical factors which are currently shaping allocation. Academically, there is utility in undertaking a cultural and geographic analysis of a topic that is mostly the domain of engineering, economic and legal analysts

    Television broadcast from space systems: Technology, costs

    Get PDF
    Broadcast satellite systems are described. The technologies which are unique to both high power broadcast satellites and small TV receive-only earth terminals are also described. A cost assessment of both space and earth segments is included and appendices present both a computer model for satellite cost and the pertinent reported experience with the Japanese BSE
    corecore