87 research outputs found

    Exploiting Unfounded Sets for HEX-Program Evaluation

    Get PDF
    HEX programs extend logic programs with external computations through external atoms, whose answer sets are the minimal models of the Faber-Leone-Pfeifer-reduct. As already reasoning from Horn programs with nonmonotonic external atoms of polynomial complexity is on the second level of the polynomial hierarchy, answer set checking needs special attention; simply computing reducts and searching for smaller models does not scale well. We thus extend an approach based on unfounded sets to HEX and integrate it in a Conflict Driven Clause Learning framework for HEX program evaluation. It reduces the check to a search for unfounded sets, which is more efficiently implemented as a SAT problem. We give a basic encoding for HEX and show optimizations by additional clauses. Experiments show that the new approach significantly decreases runtime

    Exploiting Unfounded Sets for HEX-Program Evaluation

    Full text link

    Rewriting recursive aggregates in answer set programming: back to monotonicity

    Get PDF
    Aggregation functions are widely used in answer set programming for representing and reasoning on knowledge involving sets of objects collectively. Current implementations simplify the structure of programs in order to optimize the overall performance. In particular, aggregates are rewritten into simpler forms known as monotone aggregates. Since the evaluation of normal programs with monotone aggregates is in general on a lower complexity level than the evaluation of normal programs with arbitrary aggregates, any faithful translation function must introduce disjunction in rule heads in some cases. However, no function of this kind is known. The paper closes this gap by introducing a polynomial, faithful, and modular translation for rewriting common aggregation functions into the simpler form accepted by current solvers. A prototype system allows for experimenting with arbitrary recursive aggregates, which are also supported in the recent version 4.5 of the grounder gringo, using the methods presented in this paper

    Kiel Declarative Programming Days 2013

    Get PDF
    This report contains the papers presented at the Kiel Declarative Programming Days 2013, held in Kiel (Germany) during September 11-13, 2013. The Kiel Declarative Programming Days 2013 unified the following events: * 20th International Conference on Applications of Declarative Programming and Knowledge Management (INAP 2013) * 22nd International Workshop on Functional and (Constraint) Logic Programming (WFLP 2013) * 27th Workshop on Logic Programming (WLP 2013) All these events are centered around declarative programming, an advanced paradigm for the modeling and solving of complex problems. These specification and implementation methods attracted increasing attention over the last decades, e.g., in the domains of databases and natural language processing, for modeling and processing combinatorial problems, and for high-level programming of complex, in particular, knowledge-based systems

    Derivation methods for hybrid knowledge bases with rules and ontologies

    Get PDF
    Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia InformáticaFirst of all, I would like to thank my advisor, José Júlio Alferes, for his incredible support. Right from the start, during the first semester of this work, when we were 2700 km apart and meeting regularly via Skype, until the end of this dissertation, he was always committed and available for discussions, even when he had lots of other urgent things to do. A really special thanks to Terrance Swift, whom acted as an advisor, helping me a lot in the second implementation, and correcting all XSB’s and CDF’s bugs. This implementation wouldn’t surely have reached such a fruitful end without his support. I would also like to thank all my colleagues and friends at FCT for the great work environment and for not letting me take myself too serious. A special thanks to my colleagues from Dresden for encouraging me to work even when there were so many other interesting things to do as an Erasmus student. I’m indebted to Luís Leal, Bárbara Soares, Jorge Soares and Cecília Calado, who kindly accepted to read a preliminary version of this report and gave me their valuable comments. For giving me working conditions and a partial financial support, I acknowledge the Departamento de Informática of the Faculdade de Ciências e Tecnologias of Universidade Nova de Lisboa. Last, but definitely not least, I would like to thank my parents and all my family for their continuous encouragement and motivation. A special thanks to Bruno for his love, support and patience

    Proceedings of the 11th Workshop on Nonmonotonic Reasoning

    Get PDF
    These are the proceedings of the 11th Nonmonotonic Reasoning Workshop. The aim of this series is to bring together active researchers in the broad area of nonmonotonic reasoning, including belief revision, reasoning about actions, planning, logic programming, argumentation, causality, probabilistic and possibilistic approaches to KR, and other related topics. As part of the program of the 11th workshop, we have assessed the status of the field and discussed issues such as: Significant recent achievements in the theory and automation of NMR; Critical short and long term goals for NMR; Emerging new research directions in NMR; Practical applications of NMR; Significance of NMR to knowledge representation and AI in general

    Why Philosophers Should Care About Computational Complexity

    Get PDF
    One might think that, once we know something is computable, how efficiently it can be computed is a practical question with little further philosophical importance. In this essay, I offer a detailed case that one would be wrong. In particular, I argue that computational complexity theory---the field that studies the resources (such as time, space, and randomness) needed to solve computational problems---leads to new perspectives on the nature of mathematical knowledge, the strong AI debate, computationalism, the problem of logical omniscience, Hume's problem of induction, Goodman's grue riddle, the foundations of quantum mechanics, economic rationality, closed timelike curves, and several other topics of philosophical interest. I end by discussing aspects of complexity theory itself that could benefit from philosophical analysis.Comment: 58 pages, to appear in "Computability: G\"odel, Turing, Church, and beyond," MIT Press, 2012. Some minor clarifications and corrections; new references adde

    Mustang Daily, June 4, 2009

    Get PDF
    Student newspaper of California Polytechnic State University, San Luis Obispo, CA.https://digitalcommons.calpoly.edu/studentnewspaper/7941/thumbnail.jp
    corecore