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Abstract

The raising popularity of the Semantic Web to describe concepts of the applications domains
has revealed some aspects that could not be dealt by the Web Ontology Language (OWL) but
are easily expressible in rule languages.

These limitations of OWL made clear the need of integrating nonmonotonic rule-based sys-
tems with monotonic ontologies in order to achieve the complete realisation of Semantic Web.
However, this integration cannot be done straightforwardly as it faces many semantic and com-
putational problems. These factors have sparked a heated debate which led to a research in
different directions.

Moreover, the combination of such two prominent subjects is not only useful in the Semantic
Web context. In fact, there are many use case applications, particularly applied to a biomedical
domain, where such interoperation between rules and ontologies is desirable.

In the first part of this thesis we present a structured overview of the current state of the art on
the subject of combining rules and ontologies. The objective is to describe several approaches
that have appeared on the last years, explaining how they achieve their different degrees of
integration.

We then focus on one specific proposal for the combination of rules and ontologies – MKNF
Well-Founded Semantics [34] – that possesses some desirable decidability and complexity prop-
erties.

To finish, we conclude with two prototype implementations for such approach – a first
bottom-up implementation based on the definition of the semantics; and a goal-driven imple-
mentation that, by being query-oriented, reduces the computational process to the set of atoms
of which the given query depend on. For these implementations we use XSB along with CDF,
an ontology management system complete for ALCQ extended with relational hierarchies and
product classes. This represents an important contribution as it may be the first implementa-
tions for hybrid knowledge bases that combine nonmonotonic rules and DL ontologies, where
the combination is such that both the rules can refer to predicates in the ontology, and the on-
tology can refer to predicates defined in the rules.

Keywords: Hybrid knowledge bases, Semantic Web, ontologies, description logics, rules,
logic programming, well-founded semantics, nonmonotonic reasoning.
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Resumo

A crescente popularidade da Web Semântica, para descrever conceitos de domínios aplica-
cionais, revelou diversos aspectos que não são suportados pela Web Ontology Language (OWL),
mas que são facilmente exprimíveis em linguagens de regras comuns.

Estas limitações do OWL tornaram clara a necessidade de integrar sistemas não-monotónicos
de regras com ontologias monotónicas, por forma a permitir alcançar todos os objectivos da
Web Semântica. No entanto, esta integração não pode ser efectuada directamente, pois enfrenta
vários problemas tanto computacionais como semânticos. Estes factores desencadearam um de-
bate aceso na comunidade, o que levou a que a investigação neste tema tenha tomado diversas
direcções.

Por outro lado, a combinação destes dois componentes não é apenas útil no contexto da Web
Semântica, uma vez que começam a surgir diversos de casos de uso – particularmente na área
de biomédica – onde esta interligação de regras com ontologias é desejável.

Na primeira parte deste documento apresentamos um resumo estruturado sobre o estado
actual das diferentes investigações para conciliar regras e ontologias. O objectivo desta primeira
parte é discutir as várias abordagens que surgiram nos últimos anos, descrevendo como são
alcançados os diferentes níveis de integração.

Posteriormente, enfatizamos uma das propostas mais sólidas até ao momento para combi-
nar regras com ontologias – MKNF well-founded semantics [34] – que possui propriedades de
decisão e complexidade desejáveis.

Para finalizar, apresentamos duas diferentes implementações para esta abordagem – uma
primeira implementação bottom-up baseada na definição da semântica considerada; e uma im-
plementação goal-driven que, por ser orientada para responder a uma determinada query reduz
o processo de computação ao conjunto de literais relevantes para a inferência da mesma. Para
estas implementações escolhemos utilizar o XSB em conjunto com um sistema de gestão de
ontologias – CDF – completo para a lógica de descrição ALCQ, estendida com hierarquias
relacionais e classes de produto. Estes dois protótipos são uma importante contribuição na me-
dida em que representam as primeiras implementações para bases de conhecimento capazes
combinar regras não-monótonicas com ontologias baseadas em lógicas de descrição, em que
esta combinação permite que as regras referenciem a predicados da ontologia e vice-versa.

Palavras-chave: Bases de conhecimento híbridas, Web Semântica, lógicas de descrição, re-
gras, programação em lógica, semântica bem-fundada, raciocínio não-monotónico.
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1 . Introduction

1.1 Context – Combining Ontologies and Rules

The combination of rules and ontologies has become a hot topic in the ongoing development of
the Semantic Web, as the need for a more powerful formalism arises [27, 28].

The growing popularity of the Semantic Web to describe concepts of the application do-
mains has revealed some aspects that could not be dealt by the OWL, but are easily expressible
in rule languages. In fact, there are several important modelling problems that are hard (if not
impossible) to solve using OWL alone, but are smoothly addressed by rule languages, such as:

1. Relation Expressivity. OWL can only express axioms that can be structured in a tree-like
way. Yet, there are many applications that require modelling general relational structures.
For example, the following rule:

hasAunt(x, y)← hasParent(x, z), hasSibling(z, y), Female(y)

destroys the tree model property and thus cannot be modelled in OWL, as it requires a
triangle to express the relationship between the person, the parent and the aunt [44].

2. Polyadic Predicates. In OWL it is only possible to express unary and binary predicates.
However, there are several situations where it would be desirable to define predicates of
arbitrary arity.

3. Integrity Constraints. In OWL, domain and range restrictions constrain the type of
objects that can be related by a role. For example, suppose that we want to state that “a
social security number must be known for each person":

Person v ∃hasSSN.SSN

However, adding a person without a social security number to the ontology will lead to
the inference that the person in question has some unknown social security number, which
is not the behaviour expected.

4. Modelling Exceptions. One of the main drawbacks of OWL is its inability to express
constraints and exceptions. For example, suppose we want to model that most people
have the heart on the left, but some people (called dextrocardiacs) have it on the right side
of the body [42]. This exception cannot be modelled in OWL, as:

Human v HeartOnLeft

Dextrocardiac v Human

Dextrocardiac v ¬HeartOnLeft

make the concept Dextrocardiac unsatisfiable.
1
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To express all of these concepts, it is necessary to go beyond first-order logic (FOL) and employ
some kind of nonmonotonic formalism. Logic Programming (LP) is seen as a way to overcome
several shortcomings of OWL, providing the necessary tools to model constrains and exceptions
over Description Logic (DL) knowledge bases.

The other motivation for the combination of rules and ontologies is to provide OWL with
the possibility to employ Closed World Reasoning.

LP and OWL are based on two opposite paradigms. A logic program is seen as a description
of a single world, over which knowledge is complete. This way, LP adheres to Reiter’s Closed
World Assumption (CWA) [46], where incomplete knowledge about a proposition is resolved
by turning it into falsity. Formally, if a theory T does not logically entail a ground atom A,
then its negation not A is concluded. On the other hand, ontologies, based on FOL sentences,
rest in the Open World Assumption (OWA). Here, conclusions about propositions which can
not be proven to be true in all possible worlds are kept open, and incomplete information is
treated agnostically. Under a theory T it might be that neither T |= A nor T |= ¬A holds for a
proposition A.

OWA is often reasonable in the Semantic Web context, where we have a wide set of knowl-
edge sources. Yet, in situations where one has complete knowledge over a given source, it
would be desirable to “turn on" the CWA, in order to attain the benefits of nonmonotonicity, but
without giving up OWL’s open world semantics in general.

As an illustration, consider Example 1.1 following next.

Example 1.1. Consider a scenario application for a Customs House where an ontology is used
to model and classify the aspects of imports and exports. An ontology with such characteristics
would embrace several hundreds of axioms. In these axioms, as an example, one can define
whether a shipment should be considered suspicious based on its country of origin. Intuitively,
we could think that a Scandinavian country is considered as a safe country 1.1, as well as state
Norway as a Scandinavian country, which would allow us to infer Norway as a safe country.
Moreover, shipments from the government should also not be inspected.

ScandinavianCountry v SafeCountry ScandinavianCountry(Norway)
GovShipment v ¬Inspect (1.1)

Still, it would be desirable to derive what actions to perform when receiving shipments. To
this end, the need to define rules over the ontology’s knowledge base comes arise in order to
cope with incomplete information and to specify priorities between actions. For instance, one
would like to define that a shipment from a not safe country should be inspected, which can be
done by using default negation from rules 1.2.

inspect(x)← hasShipment(x, country),not SafeCountry(country). (1.2)

However, even for countries considered as safe, a shipment should be inspected when their
content is abnormal regarding its origin. As an example, a shipment containing tropical fruit
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should be considered suspect if it is from a Scandinavian country. To express such “normality"
concept, it emerges the need to employ nonmonontonic formalisms in a way that what is normal
is stated directly in the knowledge base, and abnormality appears as the default negation of
normal.

In this sense, we recur to closed world assumption, considering that everything behaviour
that could not be inferred as normal should be seen as abnormal using default negation 1.3.

inspect(x)← hasShipment(x, country),not normal(x, country). (1.3)

Yet, if otherwise we employ open world assumption when some behaviourA is not expected
in the program, we wouldn’t be able to derive neither that A is normal nor that is abnormal and
consequently, it would not be possible to infer what action to perform, since our information for
A is incomplete.

Hybrid knowledge bases are defined as the union between nonmonotonic Logic Program-
ming with monotonic ontologies.

The combination of the two seeks to reap the best of both formalisms – the ability of LP to
express complex rules and the power of DLs to structure knowledge in terms of concepts and
relations.

However, achieving a conceptually clear integration of DLs and rules is not an easy task.
Since DLs are based on a tractable fragment of FOL, which is monotonic, and LP rules are
nonmonotonic, their semantics differs considerably, resulting in two paradigms which seem to
be fundamentally incompatible. Consequently, achieving a meaningful and intuitive combined
semantics is not straightforward. Moreover, the decidability issue is solved in each of DLs and
LP in a quite different way: in DLs decidability is achieved by restricting the form of possible
formulas (as those restriction pointed out in points 1-3 above), whilst still allowing potentially
infinite domains and first order quantifiers; whereas in LP decidability is accomplished by re-
stricting to finite domains. Given these differences, achieving an overall decidable and tractable
combined semantics represents a difficult challenge. These factors led to research on the topic
of ontologies and rules that has spawned into several different directions in very recent years,
and with numerous novel proposals for such a combined semantics.

The existing proposals for combined knowledge bases including DL ontologies and rules
can be divided into two main categories.

In a first category of proposals, the main concern is with points 1-3 above, while still keep-
ing decidability and, if appropriate, also tractability. I.e. they are concerned to allow some
special types of formulas that are usually possible in rules, connected together with constructs
typical from DLs. Normally they restrict some constructs to preserve decidability, and to avoid
raising (too much) the computational complexity. All these proposal, not addressing point 4, are
monotonic, and conforming to OWA. As such, since in the end all can be translated to FOL, the
issue of coming up with an intuitive combined semantics is not important for these approaches
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while those of decidability, tractability, and also accompanying implementations are the points
to solve.

The second category of proposals includes those that also aim at dealing with point 4 above,
and truly combine nonmonotonic rules with monotonic descriptions of ontologies. In the ex-
isting proposals in this category, the main concern up to now has been to come up with an
appropriate semantics for the combination and, to possibly simplify the decidability issue, by
constraining more the available constructs. Also, not surprisingly, not much work exists to this
date on tractability issues, proof procedures, and implementations. In fact, to the best of our
knowledge, no implementation exists for such proposals, except for those that, though in this
category, make strong syntactic restrictions on the way the combination is done. For example
such proposals, that we call “Hybrid integration”, may allow rules to make use of predicates
defined by the DL ontology, but not allow the DL ontology to refer to predicates defined in the
rules. On the other hand, the so called “Homogeneous integration” proposals allow both rules
to make use of predicates in the ontology, and the ontology to refer to predicates defined in the
rules.

1.2 Proposed work and contributions

In this dissertation we start by presenting a structured overview of the current state of the art
on the subject of combining rules and ontologies. This, in itself, is already a contribution, since
such a comprehensive state of the art does not exist for this recent subject of research, which,
nevertheless, already counts with a considerable number of published papers.

Afterwards, we focus on a recently proposed semantics for hybrid integration of rules and
ontologies – MKNF well-founded semantics [34] – that has some desirable decidability and
complexity properties, providing implementations for such semantics. This is an important con-
tribution as our two implementations represent the first implementations for knowledge bases
that combine nonmonotonic rules and DL ontologies, where the combination is such that both
the rules can refer to predicates in the ontology, and the ontology can refer to predicates defined
in the rules.

As we shall see in the state of the art survey, the definition of this semantics can be based
on a fixpoint operator that, being monotonic, readily provides a bottom-up procedure for con-
structing the result. Building such a bottom-up implementation for the semantics is not a trivial
task since the definition itself is parametric on an inference mechanism for the chosen DL. This
bottom-up implementation represents the second intermediate goal of this dissertation.

This work then continues to address its main goal: a prototypical goal-driven implementa-
tion for the MKNF well-founded semantics of hybrid knowledge bases.
The already mentioned bottom-up implementation computes, step by step, the whole model of
the hybrid knowledge base, i.e. it provides the whole set of propositional atoms that are true,
and that are false. In practical cases, specially for the Semantic Web, this is not what is wanted.
In fact, it would make little sense to compute the whole model of anything that is related to
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the World Wide Web. Instead, what one would like to do is to query the knowledge base for a
given predicate (or propositional atom) and find out whether that is true or false in it (or possi-
bly, come up with substitutions of variables that make it true). Such implementation relies on
top-down/goal-driven procedures. In this thesis we propose and implement such a procedure
for hybrid knowledge base under the MKNF well-founded semantics.

These implementations, for feasibility given the available time, do not deal with the whole
generality of MKNF well-founded semantics. As mentioned above, the proposal is parametric
on any given DL, and a corresponding inference mechanism. Hence, in this thesis we focus on
a particular DL: CDF [57], which is an ontology management system complete for ALCQ DL
extended with relational hierarchies and product classes. The choice of CDF is not only related
with its relative simplicity and the existence of implementations. It is also due to the fact that
it is implemented over XSB [26], which is the rule engine embraced for the development of
our solutions. In fact, XSB represents the natural choice for these implementations, as it con-
tains several features not usually found in logic programming systems, particularly the ability
to evaluate normal logic programs according to the Well-Founded Semantics.

In summary, the contributions of the thesis are:

• A comprehensive state of the art on the recent subject of combining rules and ontologies.

• A first bottom-up implementation of the MKNF well-founded semantics of hybrid knowl-
edge bases, by fixing a simple DL logic (CDF).

• A goal-driven implementation for hybrid knowledge bases under the MKNF well-founded
semantics using SLG resolution interleaved with CDF.

1.3 Structure of this document

The next chapters of this report are organised as follows: in Chapter 2 we introduce some
essential preliminaries. First, we recall the domain of logic programming in general, referring
to stable models and well-founded models in particular. After we review the ideas behind the
Semantic Web and particularly OWL and its underlying theory of Description Logics. The
current state of art is presented in Chapter 3 and Chapter 4, which we divide into Monotonic
Approaches (Chapter 3) and Nonmonotonic Approaches (Chapter 4) to combining rules and
ontologies. Afterwards we move forward to the main goals of this dissertation by presenting
two different implementations under the MKNF well-founded semantics (Chapter 5). Finally,
in Chapter 6 we conclude this document with some final considerations and the remaining
challenges for this work.





2 . Preliminaries

2.1 Logic Programming

Logic Programming (LP) is a family of nonmonotonic Knowledge Representation (KR) for-
malisms, generally written using some special and restricted syntax, known as rules. Contrary
to the first-order logic, LP uses negation as failure, i.e., if we fail to derive an atom p, then it is
assumed that not p is true.

An alphabet A is defined over a language L as a (finite or countable infinite) disjoint set
of constants predicate symbols, and function symbols. A term is defined recursively as either
a variable, a constant or a expression of the form f(t1, . . . , tn), where f is a function symbol
of A, and the tis are terms. An atom is an expression of the form p(t1, . . . , tn), where p is a
predicate symbol of A. A literal is either an atom or its negation.

A term (resp. atom, literal) is called ground if it does not contain variables. The set of all
ground terms of A is called the Herbrand universe of A. Respectively, the set of all ground
atoms of A is denoted as the Herbrand baseH.

A normal logic program is a finite set of rules of the following form:

H ← L1, . . . , Ln (n ≥ 0)

where H is an atom that represents the head of the rule, L1, . . . , Ln are literals, and the comma
operator is understood as conjunction.

Interpretations of a given program P can be viewed as “potential worlds” representing pos-
sible states of the knowledge. In this document, we consider two different kinds of interpreta-
tions: 2-valued and 3-valued interpretations. In the former, each atom can only be either true or
false. However, there are many cases in which the knowledge of the world is incomplete, and
one needs the ability to describe interpretations in which some atoms are neither true nor false.
For these cases a 3-valued interpretation is defined, where an atom can also be undefined.

Definition 2.1. (2-valued interpretation). A 2-valued interpretation I of a normal logic pro-
gram P is any subset of the Herbrand baseH of P .

Definition 2.2. (3-valued interpretation). A 3-valued interpretation I of a program P is rep-
resented by a set:

T ∪ not F

where T and F are disjoint subsets of the Herbrand base H of P . The set T contains all
ground atoms true in I , the set F contains all ground atoms false in I , and the truth value of the
remaining atoms is undefined.

Any interpretation can be equivalently viewed as a function I : H → V , where V = {0, 1
2
, 1}

defined by:
7
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• I(A) = 0 if A ∈ F

• I(A) = 1
2

if A ∈ U

• I(A) = 1 if A ∈ T

Definition 2.3. A partial interpretation is a consistent set of literals whose atoms are in H. A
total interpretation is a partial interpretation that contains every atom ofH, or its negation.

A logic programming semantics S is a function assigning, to each logic program P , the
set of literals “to infer”. For this purpose, several semantics for LP have been considered in
practice, where stable model semantics and well-founded semantics are considered the most
accepted ones.

2.1.1 Stable Model Semantics

The definition of stable model semantics was presented in [18] and refers to 2-valued logic,
where an atom can only have the values true or false. Its basic ideas came from the field of
nonmonotonic reasoning formalism. There, literals of the form not A are viewed as default
literals that may or may not be assumed.

Formally, stable model semantics are defined as:

Definition 2.4. (Gelfond-Lifschitz operator). Let P be a normal logic program and I a 2-
valued interpretation. The GL-transformation of P modulo I is the program P

I
obtained from

P by performing the following operations:

• remove from P all rules which contain a default literal not A such that A ∈ I

• remove from the remaining rules all default literals.

Since P
I

is a definite program, it has a unique least model J defined as Γ(I) = J .

It turns out that fixed points of the Gelfond-Lifschitz operator Γ for a program P are always
models of P [5]. This result led to the definition of stable model semantics.

Definition 2.5. (Stable model Semantics). A 2-valued interpretation I of a logic program P is
a stable model of P iff Γ(I) = I .

An atom A of P is true under the stable model semantics iff A belongs to all stable models
of P .

One of the main advantages of stable model semantics is its close relationship with known
nonmonotonic reasoning formalisms as they can be mapped to Reiter’s default extensions [45]
as well as Moore’s autoepistemic expansions [41].

However, stable model semantics still have some important drawbacks, as presented in [5],
that are enumerated next:
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• Some programs have no stable models.

• Even for programs with stable models, their semantics do not always lead to the expected
intended results. When a program has more than one stable how can we choose the
“correct” one?

• The computation of stable models is at-least NP-complete even within simple class of
programs, such as propositional logic programs.

• There are situations where a 2-valued interpretation is not expressive enough.

2.1.2 Well-Founded Semantics

The well-founded semantics has been first introduced in [17]. It overcomes the problems from
stable models semantics by a 3-valued interpretation, and assuring that every program has, a
unique partial well-founded (or 3-valued) model that can be computed in polynomial time.

For easing the exposition later in this report, rather than presenting here the original defini-
tion of [17] we present an alternative one based on the alternating fixpoint [2].

Definition 2.6. (Γ-operator). Let P be a normal logic program and I an interpretation. The
GL-transformation P

I
is the program obtained from P by performing the operations:

• remove from P all rules which contain a default literal not A such that I(A) = 1;

• replace in the remaining rules of P those default literals not A such that I(A) = 1
2

by u;

• remove from the remaining rules all default literals.

Definition 2.7. A set of objective literals T generates a partial stable model (PSM) of a normal
logic program P iff: (1) T = Γ2

P (T ); and (2) T ⊆ Γ(T ). The partial stable model generated by
T is the interpretation T ∪ not (H(P )− Γ(T )).

Theorem 2.1. (Well-Founded Semantics). Every non-contradictory program P has a least
partial stable model, the well-founded model of P that can be obtained by an iterative “bottom-
up” definition:

I0 = {}
Iα+1 = Γ2(Iα)

Iσ =
⋃
{Iα|α < σ} for limit ordinal σ

There exists a smallest ordinal λ for the sequence above, such that Iλ is the smallest fixpoint of
Γ, and the Well-Founded Model - WFM(P ) = Iλ ∪ (HP − Γ(I)λ)
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2.1.3 Relation between Stable Model Semantics and Well-Founded Semantics

The well-founded semantics and the stable model semantics are closely related. It is known
that if a logic program P has a 2-valued well-founded model (i.e., a total model) then this is the
unique stable model of P [17]. However, it turns out that the reverse is not always true, as there
are programs with only one stable model, and nevertheless with a partial well-founded model.

Furthermore, the well-founded semantics is sound w.r.t. the stable models semantics. I.e. if
an atom is true (resp. false) in the well-founded model, then it is also true (resp. false) in all
stable models.

Consider the following example from [5]:

Example 2.1. The program P :

a← not b

b← not a

c← not d

d← not e

p← a

p← b

has two stable models: I1 = {p, a, d} and I2 = {p, b, d}, and so, under the stable model
semantics, both p and d are true.

On the other hand, the well-founded model of P is {d,not e,not c}. In it, d is true, e and
c are false, and a, b and p are undefined.

2.2 Description Logics

Description logics (DLs) are a family of knowledge representation languages that represent
the knowledge of an application domain in a structured and formal way. In fact, DLs provide
tools for describing relevant concepts and properties of objects and individuals occurring in the
domain, as they inherit a formal and logic-based semantic given by a translation into first-order
logic.

If on the one hand, the price of using first-order logic as a modelling language is too high,
as not only the the structure of the knowledge is destroyed, but also the expressive power is
too expensive for obtaining decidable and efficient inference problems. On the other, DLs,
as a subset of first-order logic, are empowered with some more expressive operations than
propositional logical, but still maintaining efficiency when compared to first-order logic.

The building blocks of DL knowledge bases are concepts (or classes), roles and individuals.
Roughly speaking, concepts represent sets of objects, while roles define relationships between
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these objects. Finally, individuals express instantiated objects. Concepts such as Person are
called atomic and can be combined with concept constructors to obtain complex concepts. For
example, the concept ∃hasFather.Person describes those objects that are related through the
hasFather role with an object from the concept Person [9].

Furthermore, DLs are a family of logics, and depending on the chosen DL, one is able
to construct and express a set of concept constructors. These may be boolean connectivities,
existential and universal quantifiers, number restrictions, complex roles, etc. As a result, each
DL has different expressivity (and efficiency), and one is responsible to analyse the trade-off
correctly in order to choose the more appropriate DL for each case.

A typical DL knowledge base K comprises two components – a TBox T and an ABox
A. Briefly, a TBox contains inclusion axioms or definition of concepts similar to a database
scheme, while an ABox is a set of individual assertions of a particular world. These assertions
can be decomposed in two kinds: concept assertions of the form C(a) and role assertion with
the shape R(a, b).

For their relation with first-order logic, DLs employ open world assumption and, therefore,
are monotonic. Under Open World Assumption (OWA), failure on deriving a fact does not
imply that the fact is false. For example, assume we only know that Mary is a person. It is not
possible to conclude that neither Mary is a student, nor that she is not. We can only conclude
that our knowledge of the world is incomplete. In the same way, with monotonicity, adding
new information to our knowledge never falsifies a previous conclusion. Hence, including
Student(Mary) to our knowledge does not change any positive or negative conclusions that we
could make previously, but only adds new conclusions.

Today, DLs became the cornerstone of the Semantic Web, providing the logical foundation
for the Web Ontology Language – OWL.

2.2.1 SHOIN (D) and SHIF(D)

Herein we recall the foundations of two Description Logics that are the underpinning of the
Web Ontology Language OWL, which is be discussed at the end of this chapter.

Usually, the naming of Description Logics languages correspond to the constructors they
provide. In the case of SHOIN (D):

• S Role transitivity.

• H Role hierarchy.

• O Nominals ("oneOf" constructor).

• I Role inverses.

• N Unqualified number restrictions.

• D Datatypes.
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The logic SHIF(D) is slightly less expressive:

• S Role transitivity.

• H Role hierarchy.

• I Role inverses.

• F Functionality

• D Datatypes.

Here, functionality stands for the specific number restriction ≤ 1R, which is subsumed by
the unqualified number restrictions of SHOIN (D).

2.2.1.1 Syntax

Let A,RA,RD, and I be pairwise disjoint sets of concept names, abstract role names, datatypes
role names and individual names. The set of SHOIN (D) concepts is the smallest set that can
be built using the constructors in Table 2.1 [32].

The semantics of SHOIN (D) is given by means of an interpretation I = (∆I , ·I) consist-
ing of a non-empty domain ∆I , disjoint from the datatype domain ∆ID, and a mapping ·I , which
interprets atomic and complex concepts, roles, and nominals according to Table 2.1, where ] is
set cardinality.

An interpretation I = (∆I , ·I) satisfies a SHOIN (D) axiom under the conditions given in
Table 2.1. An interpretation satisfies a knowledge base K iff it satisfies each axiom in K; K is
satisfiable iff there exists such an interpretation, and unsatisfiable otherwise. A SHOIN (D)
concept C is satisfiable w.r.t. a knowledge base K iff there is an interpretation I with CI 6= ∅
that satisfies K. A concept C is subsumed by a concept D w.r.t. K iff CI v DI for each
interpretation I satisfying K. Two concepts are said to be equivalent w.r.t. K. A knowledge
base K1 entails a knowledge base K2 iff every interpretation of K1 is also an interpretation of
K2.

The description logic SHIF(D) is just SHOIN (D) without the oneOf constructor and
with the atleast and atmost constructors limited to 0 and 1.

2.2.2 ALCQ

The description logic ALCQ is obtained from the well-known Attribute Language with Com-
plements (ALC) [53] by including qualified number restrictions. ALC represents the smallest
propositional DL, and many description logics are defined as extensions of ALC by concepts
and role constructs. For example, the S in SHOIN and SHIF is translated to ALC to-
gether with transitivity roles. Consequently, the ALCQ DL is considerably simpler compared
to SHOIN and SHIF , enjoying from EXPTime-complete complexity. This DL is the one
employed by CDF, which is the ontology framework used for our implementations, and there-
fore next we present a brief recall of its basic syntax from [16].
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Constructor Name Syntax Semantics
atomic concept A A AI ⊆ ∆I

datatypes D D DD ⊆ ∆ID
abstract role RA R RI ⊆ ∆I ×∆I

datatypes role RD U UI ⊆ ∆I ×∆ID
individuals I o oI ∈ ∆I

data values v vI = vD

inverse role R− (R−)I = (RI)−

conjunction C1 u C2 (C1 u C2)I = CI1 ∩ CI2
disjunction C1 t C2 (C1 t C2)I = CI1 ∪ CI2
negation ¬C1 (¬C1)I = ∆I \ CI1
oneOf {o1, . . . } {o1, . . . }I = {oI1 , . . . }
exists restriction ∃R.C (∃R.C)I = {x ∈ ∆ | ∃y : (x, y) ∈ RI ∧ y ∈ CI}
value restriction ∀R.C (∀R.C)I = {x ∈ ∆ | ∀y : (x, y) ∈ RI → y ∈ CI}
atleast restriction ≥ nR (≥ nR)I = {x ∈ ∆ | ]({y : (x, y) ∈ RI}) ≥ n}
atmost restriction ≤ nR (≤ nR)I = {x ∈ ∆ | ]({y : (x, y) ∈ RI}) ≤ n}
datatype exists ∃U.D (∃U.D)I = {x ∈ ∆ | ∃y : (x, y) ∈ UI ∧ y ∈ DD

datatype value ∀U.D (∀U.D)I = {x ∈ ∆ | ∀y : (x, y) ∈ UI → y ∈ DD

datatype atleast ≥ nU (≥ nU)I = {x ∈ ∆ | ]({y : (x, y) ∈ UI}) ≥ n
datatype atmost ≤ nU (≤ nU)I = {x ∈ ∆ | ]({y : (x, y) ∈ UI}) ≤ n}
datatype oneOf {v1, . . . } {v1, . . . }I = {vI1 , . . . }
Axiom Name Syntax Semantics
concept inclusion C1 v C2 CI1 ⊆ CI2
object role inclusion R1 v R2 RI1 ⊆ RI2
object role transitiviy Trans(R) RI = (RI)+

datatype role inclusion U1 v U2 UI1 ⊆ UI2
individual inclusion a : C aI ∈ CI
individual equality a = b aI = bI

individual inequality a 6= b aI 6= bI

Table 2.1 Syntax and semantics of SHOIN (D)
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2.2.2.1 ALCQ Syntax

Let NC , NR be non-empty and pair-wise disjoint sets of concept names and role names respec-
tively. The set of ALCQ concepts is the smallest set such that: (i) every concept name A ∈ NC

is a concept, and (ii) if C, D are concepts and R is a role in NR, then ¬C, (C tD), (C uD),
(∃R.C), (∀R.C), (≥ nR.C), (≤ nR.C), with n a non-negative integer are also concepts.

An interpretation I = (∆I , ·I) consists of ∆I , a non-empty set of individuals, called the
domain of the interpretation and ·I an interpretation function which maps each atomic concept
A ∈ NC to a subset of ∆I , and each atomic role R, S ∈ NR to a subset of ∆I ×∆I such that,
for all ALCQ concepts the following must hold:

>I = ∆I ,

⊥I = ∅,
(C uD)I = CI ∩DI ,
(C tD)I = CI ∪DI ,

(¬C)I = ∆I\CI

(∀R.C)I = {x ∈ ∆I | for all t ∈ ∆I such that 〈s, t〉 ∈ RI then t ∈ CI},
(∃R.C)I = {x ∈ ∆I | there exists t such that 〈s, t〉 ∈ RI and t ∈ CI},

(≥ nR.C)I = {x ∈ ∆I | ]( {y : (x, y) ∈ RI} ) ≥ n},
(≤ nR.C)I = {x ∈ ∆I | ]( {y : (x, y) ∈ RI} ) ≤ n}

where ]S denotes the cardinality of the set S. For an interpretation I, a concept C is satisfiable
iff CI 6= 0, meaning that there exists an individual x ∈ CI as an instance of C, otherwise, C
is unsatisfiable. A concept C1 is subsumed by a concept C2, written as C1 v C2, iff for every
interpretation I, CI1 ⊆ CI2 .

2.3 Semantic Web and OWL

Nowadays our lives depend on a relatively simple artifact - the World Wide Web. The Web con-
tent consists mainly of distributed hypertext and is accessed by combining searching keywords
and link navigations. This simplicity is in fact the most crucial factor for its popularity, as all
kinds of users are able to use it and to participate with their own content.

Now, the explosion and growth of both the range and quantity of Web content has motivated
a more efficient way to locate and search resources. If humans have difficulty accessing web
contents, this problem is even more serious for automated processes. The Semantic Web aims
at machine-understandable web resources, whose information can then be shared and processed
by automated tools [29].

The notion of Ontology traces back to the work of Plato and Aristotle, where it represented
the study of being or existence and its basic categories and thus studied the structure of the
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world.
In the context of the Semantic Web, ontologies are expected to play an important role in

helping these automated processes to access information. Particularly, ontologies are meta-
data schemas, providing structured and controlled vocabulary of concepts and relations. By
defining shared and common domain theories, ontologies empower intelligent agents with tools
to interpret their meaning in a flexible but yet unequivocally way.

The Web Ontology Language (OWL) appears as a family of languages for modelling on-
tologies in the Semantic Web. OWL is endorsed by the World Wide Web Consortium (W3C)
and can be divided in three different semantics: OWL-Lite, OWL-DL and OWL-Full.

The first two variants are based on DLs and correspond syntactically to SHIF(D) and
SHOIN (D), respectively, making OWL-Lite a subset of OWL-DL. OWL-Full was designed
and modelled to provide full compatibility with RDF Schema which makes it undecidable and
consequently, unattractive to implement [42].

OWL-DL it is the mostly used sublanguage as it offers a high level of expressivity preserving
decidability. As mentioned before, SHOIN (D) provides full negation, disjunctive, and (in a
restricted form) universal and existential quantification of variables.

The characteristics of OWL have triggered the development of tools and reasoning systems
that contributed to its use, not only in the Semantic Web, but as a popular language for ontology
development in fields like Biology, Medicine, Geography, Geology, Astronomy, Agriculture
or Defense. In fact, the style of modelling supported by OWL has proven to be particularly
suitable for modelling taxonomic knowledge as it is possible to use open-world semantics to
express truths about known and unknown individuals, providing an elegant way of modelling
incomplete information.

Next, we focus on two different extensions made for OWL, which emerged from the need
to overcome problematic restrictions identified by its users.

2.4 OWL Extensions

2.4.1 OWL 1.1

The conservative initial design of the OWL made some features and reasoning methods to be
excluded. Some of these, like qualified number restrictions, were already supported by DL
systems when OWL was designed. Others, such as complex role inclusion axioms, could now
be supported (at least in part) as a result of recent advances in DL theory.

This idea led to the development of an incremental extension of OWL, provisionally called
OWL 1.1, which would exploit these recent developments in order to provide a more expressive
language, but still, retaining the OWL’s desirable computational properties [22]. It incorporates
the entire OWL DL syntax, only providing extensions to it. Hence, any legal OWL DL ontology
remains a legal OWL 1.1 ontology.

The features added in OWL 1.1 fall into four main categories, where the change of the DL
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employed is considered the most important.

1. Syntactic Sugar. OWL 1.1 provides two constructs that are simply syntactic sugar, to
make some common idioms easier to write: DisjointUnion and negative property
membership assertions, NegativeObjectPropertyAssertion and
NegativeDataPropertyAssertion.

2. SROIQ. OWL 1.1 provides extra DL expressive power, upgrading from SHOIN DL
that underlies OWL DL to SROIQ DL. Particularly, SROIQ consider complex roles
inclusion axioms of the form R ◦ S v R or S ◦ R v R to express propagation of
one property along another one. Furthermore, it is extended with reflexive, symmetric,
transitive, and irreflexive roles; as well as with disjoint roles, universal role, and constructs
∃R.Self , allowing, for instance, the definitions of concepts such as a “narcist". Finally, it
considers also negated role assertions in ABoxes and qualified number restrictions [30].

Besides a TBox and an ABox, SROIQ provides a so-called RBox to gather all state-
ments concerning roles. It is designed to be of similar practicability as SHIQ, supported
by many reasoners like KAON21 or RacerPro 2. As a result, the tableau algorithm for
SROIQ is roughly a combination of the algorithms forRIQ and SHOIQ.

3. Datatypes. OWL 1.1 allows user-defined datatypes, using a mechanism similar to what
is used in Protégé3.

4. Metamodelling constructors. OWL 1.1 provides Metamodelling based on the Meta Ob-
ject Facility (MOF) 4. MOF uses the Unified Modelling Language (UML) as a visual
notation. Particularly, MOF uses a very simple form of UML class diagrams that are ex-
pected to be intuitively understandable to readers that are familiar with the basic concepts
of object-oriented systems, even if they are not familiar with UML.

From the start, OWL 1.1 was intended to be an easy and incremental improvement to OWL.
However, it lead a movement towards a larger and deeper extension called OWL 2.0 that is
explained next.

2.4.2 OWL 2.0

OWL 2.0 is being developed by the W3C Web Ontology Working Group and it is expected to
be ready during 2009. In order to address the problems of the previous version, OWL 2 extends
the OWL 1 with a small but useful set of features that have been requested by users. The new
features include extra syntactic sugar, additional property and qualified cardinality construc-
tors, extended datatypes support, simple metamodelling, and extended annotations. OWL 2 is

1http://kaon2.semanticweb.org/
2http://www.racer-systems.com/
3http://protege.stanford.edu/
4http://www.omg.org/docs/formal/06-01-01.pdf

http://kaon2.semanticweb.org/
http://www.racer-systems.com/
http://protege.stanford.edu/
http://www.omg.org/docs/formal/06-01-01.pdf
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intended to be a superset of OWL 1, which means that OWL 2 will be backward compatible
with OWL 1.

The OWL 2 specification is divided into several profiles – OWL 2 EL, OWL 2 QL and
OWL 2 RL – each of which provides different expressive power and targets different application
scenarios [21]. The choice of profile will depend on the structure of the ontologies used in the
application as well as the reasoning tasks to be performed.

Apart from the profiles specified here, one can also define another possible profile of OWL
2. For example, it is possible to define a subset of the OWL 2 that corresponds to OWL 1 Lite
or OWL 1 DL.

2.4.2.1 OWL 2 EL

OWL 2 EL is based on the EL++ family of description logics, which have been designed to
allow for efficient reasoning with large terminologies [8]. It can be seen as a syntactic fragment
of OWL 1.1 DL that admits sound and complete reasoning in polynomial time [20].

The main advantage of EL++ is that it combines sufficient tractability with expressive power
to be employed in many important applications of ontologies. For instance, the Thesaurus of the
National Cancer Institute (NCI)5 ontology which comprises about 25000 classes, or the Gene
Ontology6 which formalises terms relating to genes and gene productions, fall within EL++. In
the same way, more than 95 % of the axioms of the GALEN7 ontology can also be expressed in
EL++. EL++ is discussed in more detail on Section 3.4.2.

2.4.2.2 OWL 2 QL

OWL 2 QL is based on the DL-LiteR family of DLs and has been designed to allow efficient
reasoning with large amounts of data structured with a relatively simple schemata. DL-LiteR is
an expressive DL containing the intersection of RDFS and OWL 2. It does not require the UNA,
since this assumption has no impact on the semantic consequences of a DL-LiteR ontology.
Thus, this choice avoids practicable problems involved in the explicit axiomatisation of UNA.

In this profile, query answering is the most important reasoning task and can be performed
in LogSpace with respect to the size of the asserted data. Like in OWL 2 EL, there are
polynomial time algorithms for consistency, subsumption and classification reasoning.

The expressive power of this profile is necessarily quite limited, although it includes most
of the main features of conceptual model, such as UML class diagrams and ER diagrams.

2.4.2.3 OWL 2 RL

OWL 2 RL is aimed for applications that require scalable reasoning without sacrificing too
much expressive power. It is designed to accommodate both OWL 2 applications that can trade

5 http://www.nci.nih.gov/cancerinfo/terminologyresources
6 http://www.geneontology.org/
7 http://www.openclinical.org/prj_galen.html

http://www.nci.nih.gov/cancerinfo/terminologyresources
http://www.geneontology.org/
http://www.openclinical.org/prj_galen.html
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the full expressivity of the language for efficiency, and RDF(S) applications that need some
added expressivity.

OWL 2 RL allows for most constructors of OWL. However, in order to allow rule-based
implementations of reasoning, the way these constructors can be used in axioms has been re-
stricted. These restrictions ensure that a reasoning engine only needs to reason with the indi-
viduals that occur explicitly in the ontology. This principle has been used before in DL-safe
rules.

Furthermore, OWL 2 RL specification also provides a set of first-order implications that
can directly be applied to an RDF graph in order to derive the relevant consequences. These
implications are reminiscent of the pD* semantics for OWL 1 and provide a useful starting
point for the implementation of forward-chaining reasoners for OWL 2 RL.

This way, it is possible to say that its design was inspired by Description Logic Programs[23]
and pD*[60].



3 . Monotonic Approaches

Monotonicity indicates that learning a new piece of knowledge cannot reduce the set of what
is known, meaning that adding a formula to a theory never produces a reduction of its set of
consequences.

Monotonic approaches are relatively simple approaches that, like OWL, only support mono-
tonic inference. Thus, they achieve a higher expressivity by allowing some special types of for-
mulas that are common in rules, connected with constructs of the DLs. Although, not dealing
with closed world reasoning, we shall see that this combination cannot be done straightfor-
wardly at the price of compromising decidability. As such, since in the end all can be translated
into FOL, these approaches are not aiming at presenting an intuitive combined semantics, but
rather achieving expressivity while still avoiding raising (too much) the computational com-
plexity.

Next, to illustrate the power of integrating rules and ontologies in a monotonic solution, we
present Example 3.1. Furthermore, since each approach has its particular expressivity, we will
use this example along this section to point out the differences between each solution as well as
show which axioms and rules can be expressed in each case.

Example 3.1. Consider a simple example concerning a Thai Restaurant. In this case, we could
use Description Logics to model characteristics of Thai dishes, for instance, stating that Thai
Curry is a Thai Dish and that every Thai Curry contains peanut oil. Moreover, we could add an
ABox expressing that Sebastian ordered a Thai Curry dish.

thaiCurry v ThaiDish (3.1)
ThaiDish v Dish (3.2)
thaiCurry v ∃contains.{peanutOil} (3.3)

T v ∀orderedDish.Dish (3.4)
sebastian :∃orderedDish.thaiCurry (3.5)

In addition, we could include some rules to our knowledge base with some statements that
can’t be expressed in a Description Logic Language as 3.6 and 3.7. The first rule states that
people that are allergic to nuts dislike nut products, whilst the latter expresses that people which
order a dish they dislike are unhappy. From this example, and by adding facts 3.8 and 3.9, we
can conclude that Sebastian is unhappy.

dislikes(x, y)← nutAllergic(x), nutProduct(y). (3.6)
unhappy(x)← orderedDish(x, y), dislikes(x, y). (3.7)
nutAllergic(sebastian). (3.8)
nutProduct(peanutOil). (3.9)

19
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3.1 AL-log

AL-log, Attributive Language and Datalog, [13] represents the first formal hybrid reasoning
system. This proposal is monotonic and integrates knowledge bases expressed in one of the
simplest kinds of DLs – ALC and positive Datalog programs. Afterwards, it was extended
based on the use of Disjunctive Datalog by [48].
AL-log can be divided into two subsystems called structural and relational. The former

allows the definition of structural knowledge about concepts, roles and individuals, while the
latter provides a suitable extension of Datalog in order to express relational knowledge about
objects described in the structural component. The interaction between the two components
is obtained by allowing constraints within Datalog clauses, thus requiring the variables in the
clauses to range over the set of instances of a specified concept.

3.1.1 The Structural Subsystem

The structural subsystem contains the definition of what is called anALC knowledge base. This
knowledge base is itself structured in a two-component system, the intensional component and
the extensional component. The intensional component, T , consists of concept hierarchies and
is-a relations between them, namely, inclusion statements of the form C v D, where C and
D are two arbitrary concepts. Moreover, the extensional component, A, specifies instance-of
relations, e.g. concept assertions of the form a : C and role assertions of the form aRb.

The features of the structural subsystem of AL-log can be characterized as follows. The
ALC knowledge base Σ, is a pair Σ = (T ,A), where T (the intensional level) is a set of
inclusions and A (the extensional level) is a set of assertions.

Citing from [13], an interpretation I is a model of Σ if it is both a model of T and a model
of A. By virtue of the unique name assumption, an O-interpretation for Σ is an interpretation
such that O ⊆ ∆I and for each a ∈ O, aI = a. An O-model is an O-interpretation that is a
model. Σ is satisfiable if it has a model.

3.1.2 The Relational System

The relational part of AL-log allows one to define Datalog programs enriched with constraints
of the form s : C where s is either a constant or a variable, and C is an ALC-concept. The
symbol & separates constraints from Datalog atoms in a clause.

Definition 3.1. A constrained Datalog clause is an implication of the form:

α0 → α1, . . . , αm&γ1, ..., γn

where m ≥ 0, n ≥ 0, αi are Datalog atoms and γj are constraints. A constrained Datalog
program Π is a set of constrained Datalog clauses.

For example, the following constrained Datalog clause [13]:



21

curr(X,Z) :- exam(X,Y),subject(Y,Z)&X:Student,Y:Course,Z:Topic

states that a student X has a topic Z in its curriculum if there exists a course Y such that X has
passed the exam and Z is a topic of Y .

3.1.3 Semantics of AL-log Knowledge Bases

An AL-log knowledge base B is the pair (Σ,Π) where Σ is an ALC knowledge base and Π is
a constrained Datalog program. In order to be acceptable, the knowledge base must satisfy the
following conditions:

• The set of Datalog predicate symbols appearing in Π is disjoint from the set of concept
and role symbols appearing in Σ.

• The alphabet of constants in Π coincides with the alphabet O of the individuals of Σ.
Furthermore, every constant in Π also appears in Σ

• For each clause in Π, each variable occurring in the constraint part occurs also in the
Datalog part.

Definition 3.2. An interpretation J for B = (Σ,Π) is defined as the union of an interpretation
I for Σ and a Herbrand interpretation H for ΠD, where ΠD is obtained from Π by deleting the
DL predicates.

An interpretation J = (I,H) is a model of B if I is a model of Σ and for each ground case
in Π, either one of the DL predicates is not satisfied by J or the non-DL part of the clause is
satisfied by J .

These properties allow for the extension of terminology and are thus related to the notion of
substitution from Datalog to AL-log in a straightforward manner [39]. Reasoning for AL-log
knowledge bases relies on constrained SLD-resolution, which is an extension of SLD-resolution
with tableau calculus for ALC to deal with constraints. A constrained SLD-derivation for a
query Q0 in B is a derivation constituted by:

• a sequence of queries Q0, ..., Qn;

• a sequence of constrained Datalog clauses E1, ..., En;

• a sequence of substitutions θ1, ..., θn

Where i ∈ 0, ...n− 1, Qi+1 is the resolvent of Qi and Ei+1 with substitution θi+1. n is called
the length of the derivation.

Definition 3.3. Let Q(O) be a query ← β1, ...m, βm&γ1, ..., γn to an AL-log knowledge base
B. A constrained SLD-refutation for Q(O) in B is a finite set {d1, ..., ds} of constrained SLD-
derivations for Q() in B such that:
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1. for each derivation di, 1 ≤ i ≤ s, the last query Q(ni) of di is a constrained empty clause;

2. for every model J of B, there exists at least one derivation di, 1 ≤ i ≤ s, such that
J � Q(ni)

This definition comes from the fact that a derivation of the empty clause with associated con-
straints does not represent a refutation, because what is actually inferable from such derivation
is that the query is true in those models of B that satisfy the constraints. Therefore, in order to
answer to a query it is necessary to collect enough derivations ending with a constrained empty
clause, such that every model of B satisfies the constraints associated with the final query of at
least one derivation.

Constrained SLD-resolution is decidable and runs in single non-deterministic exponential
time [39]. An answer σ to a query Q is a computed answer if there exists a constrained SLD-
refutation for Qσ in B (B ` Qσ). The set of computed answers is called the success set of Q in
B. Furthermore, given any query Q, the success set of Q in B coincides with the stable model
of Q in B, which provides an operational means for computing correct answers to queries.

Recall Example 3.1 presented earlier. This example cannot be fully stated in the particu-
lar case of AL-log, since this solution only allows axioms that are expressible in ALC DL.
This is in fact, a considerable expressibility restriction as ALC represents one of the simplest
DL. Consequently, in Example 3.1 it is not possible to express Axiom 4.3: thaiCurry v
∃contains.{peanutOil} as ALC does not support nominals.

3.2 Semantic Web Rule Language

Semantic Web Rule Language (SWRL) is a proposal, supported by W3C, for extending the
syntax of OWL-Lite and OWL-DL with Unary/Binary Datalog RuleML [31]. SWRL is a simply
extension of OWL DL model theory, with no nonmonotonic features involved. It extends the
set of OWL axioms by including Horn-like rules as well as empowers the same rules to be
combined with OWL knowledge bases.

As most other rule languages, SWRL rules are written as antecedent-consequent pairs. The
intended meaning can be read as: whenever the conditions specified in the antecedent (body)
hold, then the conditions specified in the consequent must also hold.

Both the antecedent and consequent consist of zero or more atoms. An empty antecedent is
treated as trivially true (i.e., satisfied by every interpretation), so the consequent must also be
satisfied by every interpretation. Symmetrically, an empty consequent is treated as trivially false
(i.e., not satisfied by any interpretation). Multiple atoms are treated in separate as a conjunction,
which means that all atoms must be satisfied. A rule can be identified by a URI reference.

Atoms can be shaped asC(x), P (x), sameAs(x, y), differentFrom(x, y) or builtIn(r, x, ...),
where C is an OWL description or data range; P is an OWL property;r is a built-in relation; x
and y are either variables, OWL individuals or OWL data values. In the context of OWL Lite,
descriptions of the form C(x) may be restricted to class names.
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Roughly speaking, an atom C(x) holds if x is an instance of the class description of data
range C; an atom P (x, y) holds if x is related to y by property P ; an atom sameAs(x, y) holds
if x is interpreted as the same object as y; an atom differentFrom(x, y) holds if x and y are
interpreted as different objects; finally, builtIn(r, x, ...) holds if the built-in relation r holds on
the interpretation of the arguments.

The semantics for SWRL is a straightforward extension of the semantics for OWL DL. The
idea is to define bindings, which are extensions of OWL interpretations that also map variables
to elements of the domain. A rule is satisfied by an interpretation only if every binding that
satisfies the antecedent also satisfies the consequent.

To illustrate, consider the following example from [31]. To state that the combination of the
hasParent and hasBrother properties implies the hasUncle property, the rule can be
written as:

hasParent(?x1,?x2) ∧ hasBrother(?x2,?x3) ⇒ hasUncle(?x1,?x3)

In the abstract syntax the rule would be written like:

Implies(Antecedent(hasParent(I-variable(x1) I-variable(x2)),
hasBrother(I-variable(x2) I-variable(x3)))

Consequent(hasUncle(I-variable(x1) I-variable(x3))))

Contrary to other solutions that propose an intermediate language contained within the in-
tersection of DLs and rules, SWRL presents itself as a comfortable unified platform to express
both in its intrinsic style. In fact, Example 3.1 presented earlier can be completely expressed
in SWRL without restrictions. However, by allowing the fully union between DLs and rules,
SWRL becomes undecidable. This way, SWRL retains the full power of OWL DL but faces the
standard trade off for expressivity: loss of efficiency.

SWRL is thus seen as a naive combination of OWL and rules which, nevertheless, was very
important to understand the need of concepts such as DL-Safety, that are explained later in
Chapter 4.

3.3 RIF

The W3C Rule Interchange Format (RIF) Working Group [24] is developing since December
2005 an effort to define a standard to help the exchange of rule sets among different systems.
Contrary to other approaches, RIF itself does not provide neither a translation algorithm nor an
explicit mapping between rule languages. The idea behind it relies on the concern that a Web
standard for just one rule language could block the progress in this area of research [12].

Moreover, RIF intends to be an interchange format for rules in alignment with the existing
standards in the Semantic Web architecture stack. However, creating a generally accepted in-
terchange format is not a trivial task. First, there are different understandings of what a rule is
(deductive rules, normative rules, production rules, reactive rules, etc.). Second, even with the
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same category of rules, systems often use incompatible semantics and syntaxes. As a solution,
RIF includes a framework of concepts, represented as tags in a markup language, that are used
to provide information about the meaning of a well-formed formula in a rule language. For
rule authors who wish to make their rules accessible across languages and platforms, the more
completely and precisely they tag their creations using RIF, the more likely their rules will be
capable of being automatically translated correctly.

The idea is that RIF defines a standard way to express the structure of each rule language.
Then, for each language, one would only have to write two translation algorithms: one from the
language to the RIF and vice-versa.

One of the main goals of this approach is to reuse and apply existing technologies and
standards, even when it makes the design job harder. As a consequence, RIF aims to obtain the
desired standardisation by interoperating with XML, RDF, SPARQL and OWL.

3.3.1 RIF Frameworks

The design of RIF is intended to provide general extensibility, as well as support for both back-
ward and forward compatibility. To support this idea, RIF’s architecture is based on the idea
of having multiple dialects, each with its own XML syntax and well-defined semantics. Each
dialect is a collection of components that work together, forming an interlingua [25].

To ensure a maximum degree of coherence among the various dialects, RIF defines frame-
works, i.e., general formalisms that can be specialised to particular dialects. Currently, the RIF
working group is focused on two families of dialects: logic based dialects and production rule
dialects. The former family covers rule systems that are based on logic programming, deduc-
tive database paradigms and first-order logic, while the latter is intended to account for many
commercial condition-action rule systems which is not related to the focus of this work and,
consequently, is not covered in this report.

3.3.2 RIF-FLD

The RIF Framework for Logic-based Dialects (RIF-FLD) is a formalism for specifying all logic-
based dialects of RIF. This framework is very general and captures most of the popular logic
rule languages found in Databases, Logic Programming, and on Semantic Web. The design
of RIF-FLD envisages the future standard logic dialects to be a specialisation or an extension
from FLD. RIF-FLD can be divided in three main components: syntactic framework, semantic
framework and XML serialisation framework that are explained next.

3.3.2.1 Syntactic framework

The syntactic framework defines the mechanisms for specifying the formal presentation syntax
of RIF’s logic dialects. This syntax is not intended to be concrete for all dialects, as it delib-
erately leaves out details such as the delimiters of the various syntactic components, escape
symbols, parenthesising, precedence of operators, etc. For instance, RIF-BLD (Basic Logic
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Dialect) is a specialisation of RIF-FLD, and it deliberately omits such details. This framework
defines six types of RIF terms that RIF dialects can choose to support:

• Constants and variables, common in most logic languages.

• Positional terms, which are usually in first-order logic. However they are defined in a
slightly more general way in order to enable dialects with higher-order syntax.

• Terms with named arguments, that are similar to positional terms, except from the fact
that each argument of a term is named and the order of the arguments is irrelevant. Terms
with named arguments generalize the notion of rows in relational tables, where column
headings correspond to argument names.

• Frame term, represents an assertion about an object and its properties. These terms cor-
respond to molecules of F-logic.

• Classification terms, used to define the subclass and class membership relationships. Like
frames, they are also borrowed from F-logic

• Equality terms, used to equate other terms

3.3.2.2 Semantic framework

The semantic framework defines the notion of a semantic structure or interpretation. Thus, it is
used to interpret formulas and to define logical entailment employing a number of mechanisms:

• Truth values. RIF-FLD accommodates dialects that support reasoning with inconsistent
and uncertain information. This way, it is designed to deal with multi-valued logics,
including the values true, false and possibly others.

• Data types. A symbol space whose symbols have a fixed interpretation in any semantic
structure is called a data type. For instance, symbols in the symbol space xsd:string
are always interpreted as sequences of unicode characters.

• Entailment. This notion is fundamental to logic-based dialects. Given a set of formulas
F , entailment determines which other formulas necessarily follow from F . This is the
main mechanism underlying query answering in databases, logic programming, and the
various reasoning tasks in Description Logic.

3.3.2.3 XML serialisation framework

Finally, XML serialisation framework defines the general principles for mapping the presenta-
tion syntax of RIF-FLD to the concrete XML interchange format. It includes a specification of
the XML syntax of RIF-FLD as well as the associated XML Schema document; and a specifi-
cation of a one-to-one mapping from the presentation syntax of RIF-FLD to its XML syntax.
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As a result, any valid XML document for a logic-based RIF dialect must also be a valid XML
document for RIF-FLD. In terms of the presentation-to-XML syntax mappings, this means that
each mapping for a logic-based RIF dialect must be a restriction of the corresponding mapping
for RIF-FLD.

3.3.3 RIF-BLD

As stated before, the Basic Logic Dialect of the Rule Interchange Format (RIF-BLD) is a spe-
cialisation from the syntax of the RIF-FLD and, currently, is the only which already has concrete
semantics. It corresponds to a syntactic variant of Horn rules with equality and with a standard
first-order semantics which most available rule systems can process. It has a number of ex-
tensions to support features such as objects and frames as in F-logic [33]. RDF-BLD is a web
language as it supports the use of IRIs as identifiers for concepts, XML Schema data types, as
well as a formalised compatibility with RDF and OWL. Nevertheless, RIF is designed to enable
interoperability among rule languages in general, and its uses are not limited to the Web.

RIF-BLD supports the following types of formulas:

• RIF-BLD condition is an atomic formula, a conjunctive or disjunctive combination of
atomic formulas, or an external atomic formula. All these can optionally have existential
quantifiers.

• RIF-BLD rule is a universally quantified RIF-FLD rule with the following restrictions:

– The conclusion of the rule is an atomic formula or a conjunction of atomic formulas.

– None of the atomic formulas mentioned in the rule conclusion are externally defined.

– The premise of the rule is a RIF-BLD condition.

– All free (non-quantified) variables in the rule must be quantified with Forall out-
side of the rule

• Universal fact is a universally quantified atomic formula with no free variables.

• RIF-BLD group is a RIF-FLD group that contains only RIF-BLD rules, universal facts,
variable-free implications, variable-free atomic formulas, and RIF-BLD groups.

• RIF-BLD document is a RIF-FLD document that consists of directives and a RIF-BLD
group formula.

As a monotonic approach, RIF-BLD does not allow any kind of reasoning combining open-
world and closed-world assumption, since negation (neither classical nor default) is not sup-
ported by RIF-BLD in either the rule conclusion or the premise.
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3.4 ELP

3.4.1 Description Logic Programs

Description Logic Programs (DLP) is a Knowledge Representation (KR) that is contained
within the intersection of DL and LP [23]. In contrast to SWRL, DLP restricts the syntax
of the supported OWL DL fragment to those axioms expressible in Horn rules [14]. This rep-
resentation is used as an intermediate KR which enables the combination between rules and
ontologies. This technique is named DLP-fusion and it allows the bidirectional mapping of
premises and inferences from DLP fragment of DL to LP, as well as from the DLP fragment of
LP to DL.

DLP-fusion enables one to “build rules on top of ontologies” as it enables the rule to have
access to DL ontological definitions for vocabulary primitives. Reversely, this technique also
enables to “build ontologies on top of rules” by providing ontological definitions to be supple-
mented by rules, or imported into DL from rules. Furthermore, it allows efficient LP inferencing
algorithms/implementations to be exploited over large-scale DL ontologies.

DLP provides a significant degree of expressiveness, substantially greater than the RDFS
fragment of Description Logics. DLP also capture a substantial fragment of OWL by including
the whole OWL fragment of RDFS, simple frame axioms and more expressive property axioms.

As for performance, DLP enjoys polynomial data complexity and ExpTime combined
complexity. DLP also provides a flexible choice for the future as it is a common fragment
of major paradigms, in principle, it is compatible with whatever paradigm will turn out to be
more popular. Extensions made for any more general language can be adopted for the fragment
in a straightforward manner. Modelling and reasoning tools available for OWL or F-Logic can
naturally deal with DLP, and interoperability is guaranteed to the largest extent possible.

However, regarding Example 3.1 presented earlier, since DLP is obtained in the intersec-
tion of DLs and Datalog, it is only possible to express axioms and rules that fall within this
intersection. As a result, neither of these could be expressed:

sebastian : ∃orderedDish.thaiCurry
dislikes(x, y)← nutAllergic(x), nutProduct(y).

unhappy(x)← orderedDish(x, y), dislikes(x, y).

In fact, the DLP does not increase the expressive power of OWL, which is one of the main
objectives for introducing rules [7].

3.4.2 ELP

ELP appears as a response to the ongoing standardisation of the new Web Ontology Language
OWL 2, reconciling EL++ and DLP in a new novel rule based KR.
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This approach can thus be seen as an extension of both formalism, which, however, still
preserves polynomial time by limiting the interactions between the expressive features. In an-
other way, ELP can also be defined as a decidable subset of SWRL as it is possible to indirectly
express such rules by means of the expressive features provide by SROIQ. Furthermore, large
parts of ELP can still be regarded as a subset of SROIQ.

The reasoning algorithms applied are based on a polynomial reduction of ELP knowledge
bases to a specific kind of Datalog programs that can be evaluated also in polynomial time.
Since the Datalog reduction as such is comparatively simple, it is important to understand the
implementation strategy for the EL++ profile of OWL 2. Particularly, ELP extends the DL
EL++ with local reflexivity, concept products, conjunctions of simple roles and limited range
restrictions.

Definition 3.4. An EL++ concept expression is a SHOQ concept expression that contains only
the following concept constructors: u,∃,⊥,>, as well as nominal concepts a

Besides the possibility of reusing optimisation methods from deductive databases, the com-
pilation of EL++ to Datalog also provides a practical approach for extending EL++ with DL-
Safe rules. Moreover, this integration of DL-Safe rules is not trivial since, in the absence of
inverse roles, it cannot be achieved by the usual approach for “rolling-up" nested expressions
and termination of the modified transformation is less obvious. However, this integration is
crucial. Indeed, even though reasoning with EL++ is possible in polynomial time, extending it
with further forms of rules (even if restricting to Datalog) readily leads to undecidability.

In addition to various forms of DL-safe rules, ELP also allows for special rules of the form
R(x, y) → C(y) expressing range restrictions on the role R. Such restrictions are neither
DL-safe Datalog nor DL rules, and, in general, they also lead to undecidability of EL++. Nev-
ertheless, it has recently been observed that range restrictions can still be admitted under certain
conditions [8].

Definition 3.5. A rule B → H is a basic ELP rule if:

• B → H is an extended EL++ rule

• the rule B′ → H ′ obtained from B → H by replacing all safe variables by some individ-
ual name is a DL rule.

An ELP rule base RB is a set of basic ELP rules together with range restriction rules of the form
R(x, y)→ C(y), that satisfies the following condition:

• If RB contains rules of the form R(x, y) → C(y) and B → H with R(t, z) ∈ H then
C(z) ∈ B.

Whenever a set of range restriction rules satisfies the above condition for some set of ELP rules,
we say that the range restrictions are admissible for this rule set.

A rule B → H is an ELPn rule for some natural number n > 2 if it is either an ELP rule,
or a DL-safe Datalog rule with at most n variables.
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As mentioned before, ELP subsumes other tractable languages like DLP, a formalism in-
troduced as the intersection of DL SHOIQ and Datalog. DLP can also be generalised using
DL rules. A DLP head concept is any SHOQ concept expression that includes only concept
names, nominals, u,>,⊥, and expressions of the form ≤ 1R.C, where C is an EL++ concept
expression. A DLP rule B → H is an extended DL rule such that all concept expressions in B
are EL++ concept expressions, and all concept expressions in H are DLP head concepts.

The combination of DLP and EL is ExpTime complete. Yet, DLP and EL++ inferences can
be recovered in ELP without losing tractability. As said earlier, ELP can be seen as extension
both of DLP and EL++, which follows the next theorem [8]:

Theorem 3.1. Consider any ground atom α of the form C(a) orR(a, b). Given a DLP rule base
RB and an EL++ description logic knowledge base KB, one can compute an ELP rule base RB’
in linear time, such that: If RB |= α then RB ∪KB |= α.

However, the resulting ELP rule base entails all individual consequences of RB and KB,
both not all consequences of their (unsafe) union. Consequently, it provides a means for com-
bining EL++ and DLP in a way that prevents intractability, while still allowing for a controlled
interaction between both languages. Simple atomic concept and role inclusions, for instance,
can always be considered as EL++ axioms, and all concept subsumptions entailed from the
EL++ part of a combined knowledge base do also affect classification of instances in the DLP
part. This way, DLP gains the terminological expressivity of EL++ while still having available
specific constructs that may only affect the instance level.

To illustrate, remember Example 3.1 presented above. This particular example can be fully
expressed in ELP. However, in order to maintain tractability, it requests for a safe interaction
only in Rule 3.7: unhappy(x)← orderedDish(x, y), dislikes(x, y).

3.4.3 Polytime ELP Reasoning with Datalog

Reasoning in ELP is supported by a transformation of the rule base into a Datalog program.
This transformation is only be briefly discussed next, and we refer [36] for more details. ELP
considers three disjoint sets of individual names NI , concept names NC , and role names NR.
NR is assumed to be the union of two disjoint sets of simple roles NS

R and non-simple roles N∩R .

• The first step consists in transforming EL++ rule base RB into an equisatisfiable EL++

RB’ in normal form. An EL++ rule base RB’ is in normal form if all concept atoms in
rule bodies are either concept names, >, or nominal concepts; all variables in a rule’s
head also occur in its body, and all rule heads contain only atoms of the following forms:

A(t) ∃R.B(t) R(t, u)

where A ∈ NC ∪ {{a}|a ∈ NI} ∪ {⊥}, B ∈ NC , R ∈ NR, and t, u ∈ NI ∪ V . This
transformation is achieved in polynomial time.
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• It is now possible to define a Datalog program P (RB), which is obtained as follows:

1. For each individual a occurring in RB the program P (RB) contains rules→ Ca(a)
and Ca(x)→ R≈(x, a).

2. For each concept name C and role name R occurring in P (RB), the program P (RB)
contains the rules:

→ R≈(x, x) R(z, x) ∧R≈(x, y)→ (z, y)

R≈(x, y)→ R≈(y, x) R(x, z) ∧R≈(x, y)→ R(y, z)

C(x) ∧R≈(x, y)→ C(y) R≈(x, y) ∧R≈(y, z)→ R≈(x, z)

3. For all rules B → H ∈ RB and R(x, y) ∈ H with R ∈ NS
R simple, P (RB)

contains a ruleB′ → SelfR(x) ∈ P (RB), whereB′ is obtained fromB by replacing
all occurrences of y with x, all occurrences of {a}(t) by Ca(t), and (finally) all
expressions S(x, x) with SelfR(x)

4. For each R ∈ NS
R and a ∈ NI , the program P (RB) contains the rule Ca(x) ∧

R(x, x)→ SelfR(x)

where the role name R≈ is the equality predicate.

• Furthermore, given an EL++ rule base RB in normal form, RB is unsatisfiable iff P (RB)
is unsatisfiable. The proof for this statement is not in the scope of this work and can
be checked in [36]. One can now see that the unsatisfiable problem is reduced to check
unsatisfiable in a Datalog program that can be check in polynomial time.

• Satisfiability of any ELPn rule base RB is decided in time polynomial in the size of RB
and exponential in n.

More precisely, RB is transformed into an equisatisfiable Datalog program P(KB) which
contains at most max(3, n) variables per rule, and this transformation is possible in poly-
nomial time in the size of RB. Furthermore, for any C ∈ NC , R ∈ NR, and a, b ∈ NI , we
find that:

– RB |= C(a) iff P(RB) |= C(a)

– RB |= {a}(b) iff P(RB) |= Ca(b)

– RB |= R(a, b) iff P(RB) |= R(a, b)



4 . Nonmonotonic Approaches

Contrary to monotonic approaches, nonmonotonic approaches are able to perform both open
and closed world reasoning over hybrid knowledge bases, as well as defining exceptions for DL
concepts. This way, nonmonotonic approaches are usually concerned with defining intuitive
and appropriate semantics in order to support the integration of the two components. However,
by allowing closed world reasoning, the decidability problem becomes even harder, and it is
necessary to define procedures that constrain the available constructors, in order to obtain a safe
interaction.

To illustrate the expressivity power of integrating rules and ontologies in a nonmonotonic
approach, next we recall and extend Example 3.1 from Chapter 3.

Example 4.1. Remember the simple example presented earlier of a Thai Restaurant. In this
case, we used Description Logics to model characteristics of Thai dishes, stating that Thai
Curry is a Thai Dish and that every Thai Curry contains peanut oil. Moreover, we also added an
ABox expressing that Sebastian ordered a Thai Curry dish. Now we can add an axiom stating
that pork satay is also a Thai dish and that an unhappy costumer does not leave tip.

thaiCurry v ThaiDish (4.1)
ThaiDish v Dish (4.2)
thaiCurry v ∃contains.{peanutOil} (4.3)

T v ∀orderedDish.Dish (4.4)
sebastian :∃orderedDish.thaiCurry (4.5)
porkSatay v ThaiDish (4.6)
Unhappy v ¬Tip (4.7)

At this moment, besides the previous rules monotonic rules from Example 3.1, we can add in
the rule component some nonmonotonic rules.

dislikes(x, y)← nutAllergic(x), nutProduct(y). (4.8)
unhappy(x)← orderedDish(x, y), dislikes(x, y). (4.9)
nutAllergic(sebastian). (4.10)
nutProduct(peanutOil). (4.11)
contains(x, peanutOil)← ThaiDish(x),not nutFree(x). (4.12)
nutAllergic(mark). (4.13)
orderedDish(mark, porkSatay). (4.14)

So, we defined a new nonmonotonic predicate nutFree in order to state that by default all Thai
dishes contain peanut oil. As a consequence, since Mark is also nut allergic and ordered a Thai
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dish, it will be inferred that Mark is unhappy and that he will leave no tip. However, if after-
wards we add to the knowledge base – nutFree(porkSatay), then neither Unhappy(mark)
nor ¬Tip(mark) will hold.

We can see that this example represents a typical nonmonotonic reasoning, as adding new in-
formation to our knowledge base (nutFree(porkSatay)) falsifies what was inferred previously
(Unhappy(mark) and ¬Tip(mark)). Such default rule like 4.12 could never be expressed pre-
viously by any monotonic approach presented previously in Chapter 3

Continuing along this chapter we subdivide these nonmonotonic approaches in two main
categories – hybrid and homogeneous – related to how flexible the integration between rules
and ontologies is made possible.

4.1 Hybrid integration

In a hybrid integration, rules are built on top of ontologies and act like restrictions that are made
over ontologies. In this sense, the combination between ontologies and rules is defined over
a strict semantic separation as they are treated as separated and independent components. In
order to assure decidability, the connection between both is performed through a safe interface,
which restricts the exchange of knowledge between the two sides. Ontologies are thus dealt as
external sources of knowledge that provide input to rules as an external oracle. On the other
hand, rules usually do not provide input to ontologies and, if they do, this input resumes to
assertions on ABoxes.

Regarding the expressivity of such solutions, recall the nonmontonic example presented
in the beginning of this chapter – Example 4.1. Such example cannot be fully expressed in
these approaches as their semantics does not support the ontology to define an axiom which
depends of a predicate from the rules component. In fact, since the ontology is seen as black
box, the rules may define a predicate that is stated in the ontology, but the reverse is not pos-
sible. As a result, it is not permitted to define an axiom like ¬Tip from Unhappy v ¬Tip
which directly depends on the predicate unhappy that is defined in the rules as unhappy(x)←
orderedDish(x, y), dislikes(x, y).

4.1.1 HEX Programs - dlv-hex

As a hybrid approach, HEX programs deal with ontologies as external sources that can be ac-
cessed by rules that also may provide input to the ontologies. The DL knowledge base presents
itself as a “black box” to the logic program. The user does not need to know its entire signature,
but rather a subset of its concepts and roles, in order to extend and query with them. This strict
separation avoids decidability issues that come along with a tighter integration of such diverse
formalisms [52].

HEX Programs [15] consist of an extension of the stable models semantics with higher-order
and external atoms. A higher-order atom allows one to quantify values over predicate names,
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and to freely exchange predicate symbols with constant symbols, like in the rule:

C(X)← subClassOf(D,C), D(X).

An external atom facilitates to determine the truth value of an atom through an external source
of computation. For instance, the rule:

t(Sub, Pred,Obj)← &RDF [in](Sub, Pred,Obj), uri(in)

computes the predicate t taking values from the predicate &RDF . The latter predicate extracts
RDF statements from the set of URI specified by means of in. The truth of an external atom is
delegated to an external computational source.

These external atoms empower the interaction with ontologies, allowing a bidirectional flow
of information to and from external sources of computation, such as, description logic reasoners.

Formally, HEX Programs are built on mutually disjoint sets C,X , and G of constant names,
variable names and external predicate names, respectively. Elements from X (resp. C) are
denoted with first letter in upper case (resp. lower case), and elements from G are prefixed with
“&". Constant names serve both as individual and predicate names. C may be infinite. Elements
from C ∪ X are called terms.

An external atom is of the form &g[Y1, . . . , Yn](X1, . . . , Xm), where Y1, . . . , Yn and X1,
. . . , Xm are two list of terms (called input and output list, respectively), and &g is an external
predicate name. Intuitively, an external atom provides a way for deciding the truth value of an
output tuple depending on the extension of a set of input predicates. A higher-order atom is a
tuple Y0(Y1, . . . , Yn), where Y0, . . . , Yn are terms and n ≥ 0 is the arity of the atom.

A HEX Program is a finite set P of rules of the form [10]:

α1 ∨ . . . αk ← β1, . . . , βn, not βn+1, . . . , not βm (m,n, k ≥ 0)

where α1, . . . , αk are higher-order atoms, and β1, . . . , βm are either higher-order atoms or ex-
ternal atoms. The operator not represents negation as failure. H(r) = {α1, . . . , αk} and
B(r) = B+(r) ∪ B−(r), where B+(r) = {β1, . . . , βn} and B− = {βn + 1, . . . , βm}. If
H(r) = ∅ and B(r) 6= ∅, then r is a constraint, and if B(r) = ∅ and H(r) 6= ∅, then r is a fact.

The semantics of HEX programs is given by a generalisation of the stable models semantics
by FLP-reduct [4], and consequently, query answering may yield none, one, or multiple models.

The Herbrand base of a HEX program P , denoted HBP , is the set of all possible ground
versions of atoms and external atoms occurring in P obtained by replacing variables with con-
stants from C. The grounding of a rule r, ground(r), is defined accordingly, and the grounding
of a program P is ground(P ) =

⋃
r∈P ground(r).

An interpretation relative to P is any subset I ⊆ HBP containing only atoms. I is said to be
a model of a atom a ∈ HBP , denoted I |= a, if a ∈ I . With every external predicate name &g ∈
G it is associate an (n+m+1)-ary Boolean function f&g (called oracle function) assigning each
tuple (I, y1, . . . , yn, x1, . . . , xm) either 0 or 1, where n = in(&g),m = out(&g), I ⊆ HBP and
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xi, yj ∈ C. I ⊆ HBP is a model of a ground external atom a = &g[y1, . . . , yn](x1, . . . , xm),
denoted I |= a, iff f&g(I, y1, . . . , yn, x1, . . . , xm) = 1.

Let r be a ground rule:

• I |= H(R) iff there is some a ∈ H(r) such that I |= a,

• I |= a for all a ∈ B+(r) and I 6|= a for all a ∈ B−(r),

• I |= r iff I |= H(r) whenever I |= B(r).

I is a model of a HEX program P , denoted I |= P , iff I |= r for all r ∈ ground(P ). P is
satisfiable if it has some model.

Given a HEX program P , the FLP-reduct of P with respect to I ⊆ HBP , denoted fP I , is
the set of all r ∈ ground(P ) such that I |= B(r). I ⊆ HBP is a stable model of P iff I is a
minimal model of fP I .

dlvhex1 is a prototype implementation of a solver for HEX programs, reusing and integrating
existing reasoning applications instead of writing them from scratch. Thus, dlvhex can be seen
as a reasoner framework rather than as a stand-alone inference engine [52].

As a computational aspect, recalling that NEXP denotes nondeterministic exponential time,
and CD, for complexity classes C and D, denotes complexity in C with an oracle for a problem
in D. Suppose that for every &g ∈ G, then the function f&g has complexity in C. Then,
deciding whether a HEX program P has some stable model has the complexity of NEXPNP

C

.

4.2 Homogeneous integration

The homogeneous integration tries to overcome the expressive limitations from the previous
combinations by completely eliminating the separation between ontologies and rules. They aim
at an intuitive and full combination of DL formulas and rules without restrictions, with a unique
vocabulary where predicates can be defined either using rules or using DL.

Once again, recall Example 4.1 defined earlier. Contrary to nonmonotonic approaches that
only accomplish an hybrid integration, solutions that we define here as homogeneous are able to
fully express such an example, since every predicate or axiom can be stated in any of the com-
ponents in an unrestricted way. Intuitively, each solution that we present along the remaining
section diverge from the others by its semantics and by complexity of its reasoning algorithms.

However, for these approaches, it is still not possible to perform such homogeneous com-
bination without compromising decidability, which led to a concept named DL-safe that is ex-
plained next.

1http://www.kr.tuwien.ac.at/research/dlvhex/

http://www.kr.tuwien.ac.at/research/dlvhex/
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4.2.1 DL-Safeness

As shown in Section 3.2, combining arbitrary first-order rules with decidable description logics,
even the ones who contain just the very basic DL constructs, easily leads to undecidable of the
the satisfiability problem.

One way of preserving decidability is to restrict this combination for rules called safe.

Definition 4.1. A DL rule r is DL-safe if each variable occurring in r also occurs in a non-DL-
atom in the body of r. A program P is DL-safe if all its rules are DL-safe.

Roughly speaking, a safe rule is a rule which is only applicable to known individuals, explic-
itly introduced in the ABox. In practice, DL-safeness is obtained by adding an assertion O(α)
for each known object α. For example [44], if Person, livesAt, and worksAt are concepts and
roles from the knowledge base, the following rule is not DL-safe:

Homeworker(x)← Person(x), livesAt(x, y), worksAt(x, y)

because the variables x and y occur in DL-atoms, but do not occur in a body atom with a
predicate outside of the knowledge base. This rule can be made DL-safe by adding O(x) and
O(y) to the body of the rule:

Homeworker(x)← Person(x), livesAt(x, y), worksAt(x, y), O(x), O(y)

DL-safety restricts the interchange of consequences between the component languages to
those consequences involving individuals explicitly introduced in the ABox. The impact of
this DL-safety restriction depends on the type of application used. For applications relying
mainly on extensional reasoning (such as metadata-based information retrieval), DL-safety does
not represent a serious restriction as the universe is usually limited to known objects. On the
contrary, in applications requiring intensional reasoning (such as natural language processing),
DL-safety has much more severe restrictions, as many conclusions drawn involve unnamed
objects [44].

4.2.2 DL+ log

DL+ log [50] is a general framework for the integration of Description Logics and disjunctive
Datalog which tries to overcome some of the limitations of DL-safeness condition through a
new safeness condition named weak safeness. This new condition realises a tighter form of
interaction between DL-KBs and rules, increasing the expressive power: conjunctive queries
(and unions of conjunctive queries) can be expressed in DL+ log.

Simultaneously,DL+ log is still decidable in many DLs by exploiting the deep relationship
between query containment in DLs and reasoning in DL+ log.
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4.2.2.1 Syntax

Next, we recall the DL + log syntax, which constitutes an extension of DL − log originally
proposed in [49].
DL+ log syntax defines three mutually disjoint predicate alphabets:

• an alphabet of concept names ΣC ;

• an alphabet of role names ΣR;

• an alphabet of Datalog predicates ΣD

An atom is an expression of the form p(X), where p is a predicate of arity n and X is a n-
tuple of variables and constants. If no variable symbol occurs in X , then p(X) is called ground
atom (or fact). If p ∈ ΣC ∪ ΣR the atom is called a DL-atom, while if p ∈ ΣD, it is called a
Datalog atom.

A Datalog¬∨ rule R is an expression of the form:

p1(X1) ∨ · · · ∨ pn(Xn)← r1(Y1), . . . , rm(Ym),not u1(W1), . . . ,not uh(Wh)

such that n ≥ 0, m ≥ 0, h ≥ 0, each pi(Xi), ri(Yi), ui(Wi) is an atom. The variables
occurring in the atoms p1(X1), . . . , pn(Xn) are called the head variables of R. If n = 0, R is
called a constraint. A Datalog¬∨ program is a set of Datalog¬∨ rules. If for allR ∈ P , n ≤ 1, P
is called a Datalog¬∨ program. If, for all R ∈ P , h = 0, P is called a positive disjunctive
Datalog program. If, for all R ∈ P , n ≤ 1 and h = 0, P is called a positive Datalog program.
If there are no occurrences of variable symbols in P , P is called a ground program.

Definition 4.2. Given a description logicDL, aDL-knowledge base with weakly-safe Datalog¬∨

rules B is a pair (K,B), where:

• K is a DL-KB, i.e., a pair (T ,A), where T is the TBox and A is the ABox;

• P is a set of Datalog¬∨ rules, where each rule R has the form:

p1(X1) ∨ · · · ∨ pn(Xn)← r1(Y1), . . . , rm(Ym), s1(Z1), . . . , sk(Zk),

not u1(W1), . . . ,not uh(Wh)
(4.15)

where n ≥ 0, m ≥ 0, k ≥ 0 h ≥ 0, each pi(Xi), ri(Yi), si(Zi), ui(Wi) is an atom and:

– each pi is either a DL-predicate or a Datalog predicate;

– each ri, ui is a Datalog predicate:

– each si is a DL-predicate

– (Datalog safeness) every variable occurring in R must appear in at least one of the
atoms r1(Yi), . . . , rm(Ym), s1(Z1), . . . , sk(Zk);
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– (weak safeness) every head variable of R must appear in at least one of the atoms
r1(Y1), . . . , rm(Ym).

InDL+log with weak safety it is possible to access unnamed individuals in classical atoms,
something which is not possible with the ordinary DL-Safe condition.

In this approach, the standard names assumption is employed in the definition of the seman-
tics: the interpretation ∆ corresponds one-to-one to a countable infinite set of constants C of the
signature.
DL+log comes with two types of semantics and exercises reasoning through stable models.

The first-order semantics is obtained by interpreting each rule of the form (4.15) as the following
first-order implication, where x is the set of free variables of the rule:

∀x : p1 ∨ · · · ∨ pn ⊂ r1 ∧ · · · ∧ rm ∧ s1 ∧ . . . sk ∧ ¬u1 ∧ · · · ∧ ¬uh (4.16)

For the definition of the nonmonotonic semantics, the following standard definitions for
datalog programs are needed. For PG, a ground Datalog program, and I an interpretation, the
GL-reduct of PG with respect to I , written GL(PG, I) is obtained by transforming each rule
R ∈ PG as follows:

• Delete R if it contains a negated atom not Bi such that I |= Bi;

• Delete all negated body atoms not Bi such that I 6|= Bi

An interpretation I is a model of a ground datalog program PG without not-atoms if it satisfies
the rules of PG when these are interpreted as implications (4.16). I is a minimal model if no
interpretation I ′ ⊂ I is a model of PG. For a ground datalog program PG possibly containing
not-atoms, an interpretation I is a stable model if it is the minimal model of GL(PG, I).

It is now possible to define the nonmonotonic semantics of DL + log. Let gr(P) be the
ground program obtained by replacing in each rule from P all variables with constants from
∆ in all possible ways. For an interpretation I and a set of predicates Σ, IΣ is the interpreta-
tion obtained by restricting I to the predicates in Σ. Furthermore, for PG a ground program,
Π(PG, I) is the projection of PG with respect to I and Σ is equal to the set of rules obtained by
transforming each rule R ∈ PG as follows:

• Delete R if a head atom Hi with a predicate from Σ exists in R such that I |= Hi;

• Delete each head atom Hi with a predicate from Σ if I 6|= Hi;

• Delete R if a body atom Bi with a predicate from Σ exists in R such that I 6|= Bi;

• Delete each body atom Bi with a predicate from Σ if I |= Hi.

I is a nonmonotonic model of a DL+ log knowledge base K if it is a FOL model of K and IΣD

is a stable model of Π(gr(P), IΣC∪ΣR
).
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4.2.3 MKNF

MKNF [43], Minimal Knowledge and Negation as Failure, strongly related to MBNF [38],
represents one of the most robust proposals made so far to integrate open and closed world
reasoning using the style of logic programming combined with DL knowledge bases.

It evaluates hybrid and homogeneous knowledge bases under a stable model semantics with
the support of DL-safety.

MKNF is an extension of first-order logic with two modal operators K and not, which
support closed world reasoning. The first is an epistemic operator and can be read as “is known",
while the second represents the negation by default.

In a similar way to DL+log, MKNF uses Standard Name Assumption, SNA, instead of the
standard Unique Name Assumption, UNA, present in nonmonotonic formalisms. Since DLs do
not assume UNA, the idea behind such concept is to provide a method that allows closed world
reasoning and simultaneously enable the DL to define synonyms. Hence, the authors consider
≈ as a congruent relation which makes the DL to assume that two individuals are the same.
Roughly speaking, this approach assume UNA at the level of logic programming to ensure that
not has an intuitive semantics; however, at the level of DL, ≈ is used to explicitly state equality
between individuals. Therefore, two individuals are only assumed to be equal if there is an
explicit evidence for doing so.

As an illustration, consider a small example scenario from [34].

Example 4.2. Consider an online store selling, among other things, CDs. Due to the fact
that many newly published CDs are simply compilations of already existing music, the owners
decide to offer their customers a special service: whenever somebody likes the compilation of
a certain artist he can search for more music of that artist published on albums. The service
shall however deny offering other compilations or products which are too similar to the already
owned CD. This similarly can be defined in various ways, but it is assumed for simplicity
that this is handled internally, e.g. by counting the number of identical tracks, and encoded
by predicate Dif(x, y). The internal database is organised as a hybrid MKNF knowledge base
including an ontology containing all available discs, their tracks and so on and whether they are
albums or compilations. The following shall provide the considered service:

Comp v ¬ Offer (4.17)
K Offer(x)← not owns(x),K owns(y),K Dif(x, y),K artist(x, z),K artist(y, z). (4.18)

Given the input of CDs the customer owns, rule (4.18) offers an album x in case the cus-
tomer does not own it, which is sufficiently different to a CD y he owns, where the artist z of
x is the same as the artist of y. Additionally, (4.17) is a DL statement (translatable into ∀x :
Comp(x)→ ¬ Offer(x)) enforcing that any CD which is a compilation shall never be offered.

MKNF employs several algorithms to check entailment for different classes of hybrid knowl-
edge bases. They consider a variety of cases, when the rules are positive, positive nondisjunc-
tive, stratified nondisjunctive and nonstratified nondisjuctive, where each case has the corre-
sponding complexity. Nevertheless, its basic idea consists in generating several possible models



39

and choose the minimal one.

4.2.3.1 MKNF notions

Next, we recall important notions from [43]. A hybrid MKNF knowledge base K consists of
a knowledge base O in any decidable description logic DL and a set P of MKNF rules of the
following form:

KH1 ∨ ... ∨KHn ← KB+
1 , ...,KB

+
m,notB−1 , ...,notB−k (4.19)

The sets {KHi},{KB+
i }{KB−i } are called the rule head, the positive body and the negative

body, respectively. A rule r is non-disjunctive if n = 1; r is positive if k = 0; r is a fact if
m = k = 0; r is safe if all variables in r occur in a positive body atom. A program P is a finite
set of MKNF rules. A hybrid MKNF knowledge base K is a pair (O,P), where O represents a
DL knowledge base.

As in SWRL, Hi, B+
i , and B−i are first-order atoms of the form p(t1, .., tn) where p is a

predicate and the ti are first-order terms. If ϕ is an MKNF formula, then ¬ϕ, ∃x : ϕ, Kϕ and
notϕ are MKNF formulas as well as ϕ1 ∧ ϕ2 for MKNF formulas ϕ1, ϕ2. The operators ∧,
∀,←, ≡ are shortcuts for the usual boolean combinations of the previously introduced syntax.
A formula of the form Kϕ is called a modal K -atom, a formula of the form notϕ is called a
modal not-atom, indiscriminately, modal K- and not-atoms are called modal atoms.

An occurrence of a modal atom in an MKNF formula is called strict if the atom does not
occur in scope of a modal operator. An MKNF formula without any free variables is a sentence
and ground if it does not contain variables at all. ϕ is modally closed if all modal operators are
applied only to sentences. ϕ is positive if it does not contain the operator not. ϕ is subjective if
all first-order atoms of ϕ occur within the scope of a modal operator. ϕ is flat if all occurrences
of modal atoms in ϕ are strict and ϕ is subjective. ϕ is objective if it does not contain modal
operators. Substituting the free variables xi in ϕ by terms ti is denoted ϕ[t1/x1, ..., tn/xn].

Recalling from [43], by the employment of standard names assumption it is assumed that,
apart from the constants occurring in the formulae, the signature contains a countably infinite
supply of constants not occurring in the formulae. The Herbrand Universe of such signature is
also called domain set ∆. An MKNF structure is a triple (I,M,N) where I is an Herbrand
first-order interpretation over ∆ and the equality predicate ≈ is interpreted in I and in each
interpretation from M and N as a congruence relation, i.e., it is reflexive, symmetric, transitive,
and it allows one to replace equals by equals. Satisfiability of MKNF sentences in an MKNF
structures (I,M,N) is defined as follows:

(I,M,N) |= p(t1, ..., tn) iff p(t1, ..., tn) ∈ I
(I,M,N) |= ¬ϕ iff (I,M,N) 6|= ϕ
(I,M,N) |= ϕ1 ∧ ϕ2 iff (I,M,N) |= ϕ and (I,M,N) |= ϕ2

(I,M,N) |= ∃x : ϕ iff (I,M,N) |= ϕ[α/x] for some α ∈ ∆
(I,M,N) |= K ϕ iff (J,M,N) |= ϕ for all J ∈M
(I,M,N) |= not ϕ iff (J,M,N) 6|= ϕ for some J ∈ N



40

An MKNF interpretation M is a non-empty set of Herbrand first-order interpretations over
∆ and models a closed MKNF formula ϕ, i.e. M |= ϕ, if (I,M,M) |= ϕ for each I ∈ M . An
MKNF interpretation M is an MKNF model of a closed MKNF formula ϕ if M models ϕ and
for each MKNF interpretation M ′ such that M ′ ⊃M and (I ′,M ′,M) 6|= ϕ for some I ′ ∈M ′.

An MKNF formula ϕ is MKNF satisfiable if an MKNF model of ϕ exists and MKNF unsat-
isfiable otherwise. Given MKNF formulas ϕ and ψ, ϕ MKNF entails ψ, written ϕ |=MKNF ψ,
if (I,M,M) |= ψ for each MKNF model M of ϕ and I ∈M .

The semantics ofK is obtained by translating it into a first-order MKNF formula as follows:

Definition 4.3. Let K = (O,P) be a hybrid MKNF knowledge base. π is an extension of r, P ,
and K as follows, where x is the vector of the free variables of r:

π(r) = ∀x : (KH1 ∧ ... ∧KHn ⊂ KB+
1 ∧ ... ∧KB+

m ∧ notB−1 ∧ ... ∧ notB−k )

π(P) =
∧
r∈P

π(r)

π(K) = Kπ(O) ∧ π(P)

A hybrid MKNF knowledge base K is satisfiable if and only if an MKNF model of πK exists.
Furthermore, K entails an MKNF formula ψ, written K |= ψ, if and only if π(K) |=MKNF ψ.

Definition 4.4. An MKNF rule r is DL-safe if every variable in r occurs in at least one non-DL-
atom K B occurring in the body of r. A hybrid MKNF knowledge base K is DL-safe if all its
rules are DL-safe.

In practice, DL-safeness is obtained by adding an assertion O(α) for each known object α
and then adding to the body of each MKNF rule r a non-DL atom KO(x) for all variables x
occurring in r.

Given a hybrid MKNF knowledge baseK = (O,P), the ground instantiation ofK is the KB
KG = (O,PG) where PG is obtained by replacing in each rule of P all variables with constants
from K in all possible ways. For a DL-safe hybrid KB K and a ground MKNF formula ψ,
K |= ψ, if and only if KG |= ψ.

4.2.3.2 Reasoning Algorithms

In [43] five different algorithms are presented for reasoning with different types of modally
closed MKNF formulae, as all these cases differ in the complexity of reasoning. The first
algorithm handles flat MKNF formulae, the second handles positive MKNF formulae, the third
handles positive non-disjunctive MKNF formulae, the fourth handles stratified non-disjunctive
MKNF formulae, and finally, the fifth handles non-stratified non-disjunctive MKNF formulae.

Given a non-ground hybrid MKNF knowledge base K, all these algorithms first compute
the ground knowledge base KG to obtain an MKNF theory without modal operators under
quantifiers.
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Satisfiability of some formula is usually demonstrated by constructing a model for the for-
mula. However, since an MKNF modelM of an MKNF formula σ is an infinite set of first-order
interpretations, for a practical algorithm, an appropriate finite representation of M is needed.
This way, in [43] there is no direct representation of M , but rather a first order formula ϕ such
that M is exactly the set of first-order models of ϕ; this is usually written as M = {I|I |= ϕ}.
The formula ϕ is uniquely defined through a partition (P,N) of modal atoms of σ into positive
and negative ones and it corresponds to the objective knowledge, written obP which can be com-
puted from the atoms chosen to be positive in a straightforward way. These can be formalised
as follows:

Definition 4.5. Let K = (O,P) be a hybrid MKNF knowledge base. The set of K-atoms of K,
written KA(K), is the smallest set that contains:

1. all K-atoms of PG,

2. a modal atom Kξ for each modal atom notξ occurring in PG.

For a subset P of KA(K), the objective knowledge of P is the formula obK,P = O∪
⋃

Kξ∈P ξ.
A partition (P,N) of KA(K) is consistent if obK,P 6|= ξ for each Kξ ∈ N .

Let ϕ be an MKNF formula and (P,N) a partition of KA(K). The formula ϕ[K, P,N ] is
obtained from ϕ by replacing each Kξ with true if Kξ ∈ P and with false otherwise.
ϕ[not, P,N ] is obtained from ϕ by replacing each notξ with true if Kξ ∈ N and with
false otherwise. Finally, ϕ[P,N ] = ϕ[K, P,N ][not, P,N ].

For a set of modal atoms S, SDL is the subset of DL-atoms of S,Ŝ = {ξ|Kξ ∈ S}, and
ŜDL = Ŝ ′ for S ′ = SDL.

Next, it we present the different strategies for computing (P,N).

• The General Case. As for disjunctive datalog, in the general case it is necessary to guess
a partition (P,N) of KA(K). This is captured by the algorithm in Figure 4.1. Here it is
applied the known technique from LP - stable models.

Assuming that the satisfiability of first-order formulae in Figure 4.1 is decidable with
complexity C, the complexity of the algorithm not-entails-DL(σ, ψ) is in EE , where E =
NP if E ⊆ NP, and E = C otherwise.

The idea is that the main algorithm for reasoning in MKNF knowledge bases raises the
complexity of the DL employed in one level. This means that, e.g., if the DL is tractable,
then this algorithm runs in NP.

• Positive Programs. For positive queries, it is not necessary to ensure the preference
semantics of MKNF. This way, the algorithm is the same as in Figure 4.1, only without
Condition (5), running with data complexity E .
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Algorithm: not-entails-DL(K, ψ)
Input:
K = (O,P): a DL-safe hybrid MKNF knowledge base
ψ: a ground formula (¬)KA
Output:
true if K 6|= ψ; false otherwise

let KG be the ground instantiation of K
if a partition (P,N) of KA(KG) ∪ {KA} exists such that

1. PG[P,N ] evaluates to true, and

2. O ∪ P̂DL is satisfiable, and

3. O ∪ P̂DL 6|= ξ for each Kξ ∈ NDL, and

4. for each Q(a1, ..., an) ∈ N̂ and Q(b1, ..., bn) ∈ P̂ , there is O ∪ P̂DL 6|= ai ≈ bi,
for some 1 ≤ i ≤ n

5. for γ = PG[not, P,N ] and each partition (P ′, N ′) of P such that N ′ 6= 0

(a) γ[P ′, N ∪N ′] evaluates to false, or

(b) O ∪ P̂ ′DL is unsatisfiable, or

(c) O ∪ P̂ ′DL |= ξ for some Kξ ∈ N ′DL, or

(d) for some Q(a1, ..., an) ∈ N̂ ′ and Q(b1, ..., bn) ∈ P̂ ′, there is O ∪ P̂ ′DL |= ai ≈ bi,
for all 1 ≤ i ≤ n

6. one of the following conditions holds:

(a) ψ = KA and KA 6∈ P , or
(b) ψ = ¬KA and KA ∈ P

then return true ;
else return false

Figure 4.1 Entailment in General hybrid MKNF KBs
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• Positive Nondisjunctive Programs. If K is nondisjunctive and positive, (P,N) is con-
structed deterministically in a bottom–up fashion. Each positive DL-safe non-disjunctive
hybrid MKNF knowledge base K has at most one MKNF model.

Definition 4.6. For K a positive non-disjunctive DL-safe hybrid MKNF knowledge base,
RK, DK, and TK are the operators defined on the subsets of KA(K) as follows:

RK(S) = S ∪ {KH|KG contains a rule of the form (4.19) such that KBi ∈ S for
each 1 ≤ i ≤ n}

DK(S) = {Kξ|Kξ ∈ KA(K) and O ∪ ŜDL |= ξ} ∪ {KQ(b1, ..., bn)|KQ(a1, ..., an)

∈ S\SDL and O ∪ ŜDL |= si ≈ bi, for 1 ≤ i ≤ n}
TK(S) = RK(S) ∪DK(S)

The operator TK is monotonic on the lattice of the subsets of KA(K) and has the least
fixpoint denoted with T ωK . For entailment checking, K |= KA iff obK,Tω

K
|= A, and

K |= ¬KA iff obK,Tω
K
6|= A. The data complexity of computing T ωK is in PC .

• Stratified Programs. In stratified programs deriving a K-atom by a rule in a stratum i
should not affect the values of modal atoms in strata below i.

This means that, when evaluating a stratum σi, the values of all not-atoms in σi have
already been computed. Hence, evaluating any subsequent stratum will not change the
values of any K- and not-atoms from any stratum σj . For ordinary datalog programs, a
stratification is defined by the strongly connected components of the dependency graph
associated with the program. However, MKNF programs can contain arbitrary first-order
formulae as atoms, which makes checking stratification more difficult.

Consider the following program σ as an example from [43]:

K(p ∨ q)← notp (4.20)
K(¬q)← K(p ∨ q) (4.21)

The dependency graph of σ would suggest a stratification in which (4.20) comes be-
fore (4.21). In fact, evaluating the rules in this order, the body of (4.20) is satisfied and
K(p ∨ q) is derived. This satisfies the body of (4.21), and so K(¬q) is derived as well.
Thus, the objective knowledge is now (p ∨ q) ∧ ¬q, which is equivalent to p. However,
the body of (4.20) is not satisfied any more, so the model M = {I|I |= p} is not mini-
mal. This program is not stratified as the evaluation of (4.21) changed the valued already
computed for (4.20). In fact, Algorithm 4.1 shows that σ has no MKNF models.

To compute models for stratified MKNF program σ [43] presents an algorithm that pro-
cesses strata sequentially:
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Definition 4.7. For a stratification σ1, . . . , σk of an MKNF program σ, the sequence of
subsets U0, . . . , Uk of KA(σ) is inductively defined as U0 = ∅ and, for 0 < i ≤ k,
Ui = T ωX i, where X i = Ui−1 ∪σ′i and σ′i is obtained from σi by replacing each atom notξ
with its value in Ui−1. Finally, Uω

σ = Uk.

The partition (Uω
σ ,KA(σ)\Uω

σ ) induces the MKNF model of a stratified program σ. The
data complexity of computing Uω

K is in PK.

• Non-disjunctive Non-stratified Programs. For the case when σ is a non-disjunctive pro-
gram and a stratification cannot be found, one still needs to guess the partition (P,N) to
determine the objective knowledge. However, σ[not, P,N ] is a positive non-disjunctive
MKNF program, which is possible to apply 4.6. Thus, the algorithm used is the same as
Algorithm 4.1, but replacing Condition (5) with T ωγ = P , running with data complexity
EPC .

4.2.4 3-Valued MKNF Semantics

The 3-valued MKNF semantics [34] defines a semantics that relates to MKNF, in the same way
as well-founded is related to stable models semantics.

As described earlier, in the previous proposal, even with polynomial DL, the addition of
rules turns reasoning in coNP. So, in order to overcome these limitations of stable models, the
main goal here is to provide a more efficient reasoning for MKNF by benefiting from the char-
acteristics of the well-founded semantics. Its major advantage relies on the definition of simpler
and lighter methods for calculating a model, which incorporates only the minimal necessary
true information.

Now, satisfiability is no longer defined as in [43], where modal atoms are allowed only to
be either true or false in a given MKNF structure. In [34] this framework is extended with a
third value u, denoting undefined, enabling the computational of the well-founded model of an
MKNF program that is a sound approximation of stable models.

The undefined value is only assigned to modal atoms; first-order atoms remain 2-valued due
to being interpreted solely in one first-order interpretation. Hence, a rule free hybrid knowledge
base shall be interpreted just as any DL base. The MKNF structure is extended as follows.

Definition 4.8. A 3-valued MKNF structure (I,M,N ) consists of a Herbrand first-order inter-
pretation I and two pairsM =< M,M1 > and N =< N,N1 > of sets of Herbrand first-order
interpretations where any first-order atom which occurs in all elements in M , N respectively,
also occurs in all elements of M1, respectively N1. It is called total if M =< M,M > and
N =< N,N >.

The evaluation of MKNF sentences is now defined with respect to the set {t,u,f} of truth
values with the given order f < u < t:
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• (I,M,N )(p(t1, . . . , tn)) =

{
t iff p(t1, . . . , tn) ∈ I
f iff p(t1, . . . , tn) 6∈ I

• (I,M,N )(¬ϕ) =


t iff (I,M,N )(ϕ) = f

u iff (I,M,N )(ϕ) = u

f iff (I,M,N )(ϕ) = t

• (I,M,N )(ϕ1 ∧ ϕ2) = min{(I,M,N )(ϕ1), (I,M,N )(ϕ2)}

• (I,M,N )(ϕ1 ⊃ ϕ2) =

{
t iff (I,M,N )(ϕ1 ≥ (I,M,N )

f otherwise

• (I,M,N )(∃x : ϕ) = max{(I,M,N )(ϕ[α/x])|α ∈ ∆}

• (I,M,N )(K ϕ) =


t iff (J,< M,M1 >,N )(ϕ) = t for all J ∈M
f iff (J,< M,M1 >,N )(ϕ) = t for some J ∈M1

u otherwise

• (I,M,N )(not ϕ) =


t iff (J,M, < N,N1 >)(ϕ) = f for some J ∈ N1

f iff (J,M, < N,N1 >)(ϕ) = t for all J ∈ N
u otherwise

This approach also extends the MKNF interpretations, since one set of first-order interpre-
tations is not sufficient to represent truth, falsity, and undefinedness of modal atoms.

Definition 4.9. An interpretation pair (M,N) consists of two MKNF interpretations M , N
with N ⊆ M , and models a closed MKNF formula ϕ, written (M,N) |= ϕ, if and only if
(I,< M,N >,< M,N >)(ϕ) = t for each I ∈ M . If there exists an interpretation pair
modelling ϕ, then ϕ is consistent.

M contains all interpretations which model only truth while N models everything which is
true or undefined. Evidently, just as in the two-valued case, anything not being modeled in N is
false by default.

Each modal operator is evaluated with respect to a pair of sets of interpretations. The idea
is that Kϕ is true if ϕ is true in all elements in M ; otherwise it is either false or undefined
depending on M1. If ϕ is true in all elements in M1 then Kϕ is undefined; otherwise false.
The case of notϕ is handled symmetrically with respect to (N,N1), the only difference is the
condition for true for modal K-atoms yields false for modal not-atoms.

The included subset relation between M and N ensures the consistency of the interpretation
pairs by not allowing a formula Kϕ to be true and false simultaneously within one interpre-
tation, and, enforcing that whenever a formula ϕ is false, then Kϕ is false as well and not
undefined.
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Definition 4.10. Any interpretation pair (M,N) is a partial (or 3-valued) MKNF model for a
given closed MKNF formula ϕ if:

1. (I,< M,N >,< M,N >)(ϕ) = t for all I ∈M and

2. (I ′, 〈M ′, N ′〉, 〈M,N〉)(ϕ) 6= t for some I ′ ∈ M ′ and each interpretation pair (M ′, N ′)
with M ⊆M ′ and N ⊆ N ′ where at least one of the inclusions is proper.

Definition 4.11. If there is a partial MKNF model of a given closed MKNF formula ϕ, then ϕ
is called MKNF-consistent and MKNF-inconsistent otherwise.

In [35] it is shown that any (2-valued) MKNF Model M corresponds exactly to a (3-valued)
partial one and vice-versa. In fact, the evaluation in MKNF structures (I,M,N) and total 3-
valued structures (I,< M,M >,< N,N >) is identical as nothing can be undefined in such a
3-valued structure.

Now, we present an order partial MKNF models ultimately claiming that the least element
of this order is the well-founded model.

Definition 4.12. Let ϕ be a closed MKNF formula and (M1, N1) and (M2, N2) be a partial
MKNF models of ϕ. Then (M1, N1) �k (M2, N2) iff M1 ⊆M2 and N1 ⊇ N2.

This order intuitively resembles the knowledge order where the least element contains the
smallest amount of derivable knowledge, i.e. the one which leaves as much possible undefined.

4.2.4.1 Reasoning in 3-valued MKNF

The well-founded model for normal logic programs cannot be computed by an alternating fix-
point of the operator used to define stable models. In [34] it is proceed similarly: operators
are defined in order to provide a stable condition for non-disjunctive hybrid MKNF knowledge
bases, and used to obtain an alternating fixpoint from which it is possible to reconstruct the
well-founded semantics.

Definition 4.13. Let K = (O,P) be a hybrid MKNF knowledge base, the ground instantiation
of K is the knowledge base KG = (O,PG) where PG is obtained by replacing in each rule of
P all variables with constants from K in all possible ways.

The set of K-atoms of K, written KA(K), is the smallest set that contains all K-atoms
occurring in PG, and a modal atom Kξ for each modal atom not ξ occurring in PG.

For a subset S of KA(σ), the objective knowledge of S is the formula obK,S = O∪
⋃

Kξ∈S ξ,
and ŜDL = {ξ|Kξ ∈ SDL} where SDL is the subset of DL-atoms of S. A (partial) partition
(T, F ) of KA(K) is consistent if obK,T 6|= ξ for each Kξ ∈ F .

The MKNF knowledge base must be modified in order to address the coherence problem.
If a first-order formula ϕ is false (as a consequence of the DL part) then it must also be false by
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default (i.e. notϕ must hold in the program part). For this, instead of representing the connec-
tion directly, [34] introduces new positive DL atoms which represent the falsity of an already
existing DL atom, and a further program, making these new atoms available for reasoning in
the respective rules.

Definition 4.14. Let K be a DL-safe hybrid MKNF knowledge base. K∗ is obtained from K by
adding an axiom ¬H v NH for every DL atom H(t1, . . . , tn) which occurs as head in at least
one rule inK whereNH is a new predicate not already occurring inK. Moreover, K̂ is obtained
from K∗ by adding notNP (t1, . . . , tn) to the body of each rule with a DL atom P (t1, . . . , tn)
in the head.

The idea is to haveNH(t1, . . . , tn) available as a predicate representing that ¬H(t1, . . . , tn)

holds. K∗ makes this connection explicit and K̂ introduces a restriction on each rule with a DL
atom in the head saying intuitively that the rule can only be used to conclude something if the
negation of its head does not hold already.

It is now possible to define a monotonic operator TK which allows reasoning from positive
hybrid MKNF knowledge bases.

Definition 4.15. For K a positive non-disjunctive DL-safe hybrid MKNF knowledge base,
RK, DK, and TK are defined on the subsets of KA(K̂) as follows:

RK(S) = S ∪ {KH | K contains a rule of the form: KH ← KA1,

. . . ,KAn such that KAi ∈ S for each 1 ≤ i ≤ n}
(4.22)

DK(S) = {Kξ |Kξ ∈ KA(K̂) and O ∪ ŜDL |= ξ} ∪ {KQ(b1, . . . , bn)|
KQ(a1, . . . , an) ∈ S \ SDL,KQ(b1, . . . , bn) ∈ KA(K̂), and

O ∪ ŜDL |= ai ≈ bi for 1 ≤ i ≤ n}

(4.23)

TK(S) = RK(S) ∪DK(S) (4.24)

The intuition is that RK derives immediate consequences from the rules while DK obtains
consequences using modal atoms and the statements contained in the DL part. Note that DK is
parameterised over the inference model of SDL. Since TK is monotonic, it has a unique least
fixpoint which is denoted TK ↑ ω, which is reached after a final number of iteration steps.

It is now necessary a transformation for non-disjunctive hybrid MKNF knowledge bases,
turning them into positive ones and thus allowing the application of the operator TK.

Definition 4.16. LetKG = (O,PG) be a ground non-disjunctive DL-safe hybrid MKNF knowl-
edge base and S ⊆ KA(KG). The MKNF transform KG/S = (O,PG/S) is obtained by PG/S
containing all rules KH ← KA1, . . . ,KAn for which there exists a rule:

KH ← KA1, . . . , An,notB1, . . . ,notBm

in PG with KBj 6∈ S for all 1 ≤ j ≤ m.
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This resembles the transformation known from stable models of logic programs and the
following operator using a fixpoint of TK is thus straightforward to understand.

Definition 4.17. Let K = (O,P) be a non-disjunctive DL-safe hybrid MKNF knowledge base
and S ⊂ KA(K̂):

ΓK(S) = TK∗G/S ↑ ω

ΓK alone is not sufficient as, even though considering all modal atoms from KA(K̂), the
applied knowledge base K∗ does not enforce notH(t1, . . . , tn) to hold if ¬H(t1, . . . , tn) holds.
So it is needed a similar operator that refers to K̂G.

Definition 4.18. Let K = (O,P) be a non-disjunctive DL-safe hybrid MKNF knowledge base
and S ⊆ KA(K̂):

Γ′K(S) = TbKG/S
↑ ω

Both Γ and Γ′ are shown to be antitonic [37] and form the basis for defining the well-founded
MKNF model. Here we present its alternating fixpoint computation.

P0 = ∅ N0 = KA(K∗)
Pn+1 = ΓK(Nn) Nn+1 = Γ′K(Pn)

Pω =
⋃

Pn Nω =
⋂

Nn

By finiteness of the ground knowledge base, the iteration stops before reaching ω. It was shown
in [37] that the sequences are monotonically increasing, decreasing respectively, and that Pω

and Nω, can be used to reconstruct the well-founded model. Furthermore, Pω and Nω can also
be classified as models T and TU , since Pω represent the model of all atoms that are True,
whilst Nω represent the model of all the atoms that are True and Undefined. The remaining
atoms that do not belong to Nω are false.

Theorem 4.1. Let K = (O,P) be a DL-safe hybrid MKNF knowledge base and let PK,N ⊆
KA(K) with PK being Pω and NK being Nω, both restricted to the modal atoms only occurring
in KA(K). Let (PK,NK) be defined as the well-founded partition.

Then the well-founded model of K is the pair (IP, IN) where:
IP = {I : I |= O ∪

⋃
Kξ ∈ PK

}

IN = {I : I |= O ∪
⋃

Kξ ∈ NK
}

All modal K-atoms in IP are true, all modal not-atoms are false and all other modal atoms
from IN are undefined.

Moreover, for an empty DL base, the well-founded partition corresponds to the well-founded
model for logic programs.
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The data complexity result of computing the well-founded partition is PC , where C is the
data complexity of the DL used. This means that if the description logic fragment is tractable,
this formalism can be computed with a data complexity of P. This is in contrast with the data
complexity for reasoning with (two-valued) MKNF models in non-disjunctive programs, which
is shown to be EPC , where E = NP if C ⊆ NP, and E = C otherwise. Consequently, computing
the well-founded partition generally ends up in a strictly smaller complexity class than deriving
one of maybe various MKNF models. However, M is a (two-valued) MKNF model of K iff
(M,M) is a 3-valued MKNF model of K and, furthermore, if (M,M) is the well-founded
MKNF model of K, then M is the only MKNF model of K.

We conclude this section with some motivation examples for the 3-valued MKNF Seman-
tics, showing how reasoning is performed in such cases.

Example 4.3. Consider the following insurance example taken from [35]:

NaturalDeath v Pay Suicide v ¬Pay

K Pay(x)← Kmurdered(x),K benefits(y, x),not responsible(y, x)

K Suicide(x)← not NaturalDeath(x),notmurdered(x)

Kmurdered(x)← notNaturalDeath(x),not Suicide(x)

This example relates to how a life insurance company decides to pay or not the insurance.
Additionally, we know that Mr. Bill, who owned a life insurance, was found dead in his living
room with the revolver still in his hand. Thus ¬NaturalDeath(bill) and the last two rules
offer us a choice between commitment of suicide or murder. The standard MKNF semantics
will immediately obtain two models in such scenario – one where pay(bill) is true and other
where pay(bill) is false. However, the three-valued framework assigns undefined to both, so
that we delay this decision until some evidence is evaluated. Until then, by the first rule, no
payment is possible.

Furthermore, the police, which is also investigating the death of Mr. Jones, reveals that the
known criminal Max is responsible for the murder, though not being detectable. So we cannot
conclude Suicide(jones), while responsible(max, jones) and murdered(jones) hold. Un-
fortunately, the person benefiting from the insurance is the nephew Thomas who left the country
many years ago.

So, given the following facts and ABox:

¬NaturalDeath(jones)

¬NaturalDeath(bill)

responsible(max, jones).

benefits(thomas, jones).

benefits(ann, bill).

murdered(jones).



50

The correspondent well-founded model is

T = {responsible(max, jones), benefits(thomas, jones), benefits(ann, bill),
murdered(jones),¬naturalDeath(bill),¬naturalDeath(jones), pay(jones)}
Tu = {responsible(max, jones), benefits(thomas, jones), benefits(ann, bill),
suicide(bill),murdered(jones),murdered(bill),¬naturalDeath(bill),

¬naturalDeath(jones), pay(bill), pay(jones)}

However, a private detective is hired and he finds out that, in fact, Thomas is Max. So we
add max ≈ thomas, stating that the person who killed Mr. Jones is the same that will benefit
from his death. This situation violates the first rule of the knowledge base, and thus pay(jones)
is no longer contained in the model. The correspondent well-founded model is:

T = {¬naturalDeath(jones),¬naturalDeath(bill), benefits(max, jones),

responsible(thomas, jones),murdered(jones), benefits(ann, bill),

benefits(thomas, jones), responsible(max, jones)}
Tu = {¬pay(bill), responsible(max, jones), benefits(thomas, jones),

benefits(ann, bill), suicide(bill),murdered(jones),murdered(bill),

responsible(thomas, jones), benefits(max, jones),¬naturalDeath(bill),

¬naturalDeath(jones), pay(bill)}

Example 4.4. Consider now the following customs house example:

NordicCountry v SafeCountry DangerCountry v Suspect

K suspiciousContent(x, country)← K hasShipment(x, country),not normal(x, country)

K suspiciousContent(x, country)← K hasShipment(x, country),K suspect(country)

K dangerCountry(x)← not safeCountry(X)

This example simulates, in a simplified way, how a customs house decides whether a specific
content is suspicious or not. Roughly, a content is suspicious if it comes from a country which
is suspect, or it contains something that is not normal for the country.
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So, afterwards we can have the following facts and ABox:

hasShipment(coconuts, norway).

hasShipment(coffee, brasil).

hasShipment(petrol, colombia).

normal(petrol, norway).

normal(codfish, norway).

normal(coconuts, brasil).

normal(coffee, brasil).

normal(coffee, colombia).

normal(petrol, colombia).

NordicCountry(Norway).

The well-founded model obtained from the evaluation of this Hybrid MKNF knowledge base:

T = {suspect(colombia), suspect(brasil), suspiciousContent(coffee, brasil),

suspiciousContent(petrol, colombia), dangerCountry(brasil), dangerCountry(colombia),

hasShipment(coconuts, norway), hasShipment(coffee, brasil),

hasShipment(petrol, colombia), normal(petrol, norway), normal(codfish, norway),

normal(coconuts, brasil), normal(coffee, brasil), normal(coffee, colombia),

normal(petrol, colombia), safeCountry(norway), nordicCountry(norway),

suspiciousContent(coconuts, norway)}
Tu = {suspect(colombia), suspect(brasil), suspiciousContent(coffee, brasil),

suspiciousContent(petrol, colombia), dangerCountry(brasil), dangerCountry(colombia),

hasShipment(coconuts, norway), hasShipment(coffee, brasil), hasShipment(petrol, colombia),

normal(petrol, norway), normal(codfish, norway), normal(coconuts, brasil),

normal(coffee, brasil), normal(coffee, colombia), normal(petrol, colombia),

safeCountry(norway), nordicCountry(norway), suspiciousContent(coconuts, norway)}

In this example, even though Norway is considered a safe country, it has a content that is not nor-
mal and consequently it is considered suspicious. On the other hand, since Brazil and Colombia
are not defined as safe countries, they are considered as suspects and all their shipment is con-
sidered suspicious.





5 . Implementation of derivation methods

Previously, we presented a wide overview on the most important approaches for combining rules
and ontologies, ending with the 3-valued MKNF Semantics. This semantics possesses some
desirable decidability and complexity properties, but still preserving a considerable expressive
power. In fact, the 3-valued MKNF Semantics is the first semantics able to address all the
motivations that we pointed in Chapter 1, and maintain the complexity correspondent to the
Description Logic employed.

So, now we continue to address the remaining proposed contributions by presenting a
bottom-up and a goal-driven implementation of the 3-valued MKNF Semantics. To the best
of our knowledge, these implementations represent the first implementations for knowledge
bases that tightly combine nonmonotonic rules and DL ontologies, where the predicates of the
rules can refer to propositions of the ontology, and these propositions may also refer to pred-
icates defined in the rules. To perform such implementations, and since the 3-valued MKNF
Semantics is parametric on any given DL, it was necessary to adopt a specific rule engine and an
ontology manager, which led us to embrace XSB and CDF. XSB represents the natural choice
for these implementations, first, because of its ability to compute queries according to the Well-
Founded Semantics (through SLG resolution [54]), and second because it already comprehends
an ontology management system – CDF [57]. On the other hand, CDF (Coherent Description
Framework) is implemented over XSB. This framework is complete for the ALCQ DL and
offers two types of instances each one with its associated complexity. Type-0 instances without
negation and disjunctive, represent an ontology for which reasoning can be done with poly-
nomial time algorithms; and Type-1 instances with full support for ALCQ – a DL for which
reasoning is performed in EXPTime-complete, that extends ALC with qualified number re-
strictions. Yet, the main advantage in choosing XSB and CDF, is that, instead of picking two
completely distinct systems that would suffer from the obvious integration problems, we adopt
an extensive system that already includes the frameworks to deal simultaneously with rules and
ontologies. Furthermore, these characteristics make it possible to perform the intended imple-
mentations given the particular time constraints of this thesis.

The definition of the 3-valued MKNF semantics is based on a fixpoint operator that, be-
ing monotonic, readily provides a bottom-up procedure for the calculus of the complete well-
founded model. This way, we first present a bottom-up implementation for such semantics de-
veloped under XSB and CDF. This first solution is mainly based on the implementation of the
several operators defined in the 3-valued MKNF semantics and represents the starting point of
our work. In fact, this implementation permitted us to start playing with MKNF concepts, allow-
ing the construction and experimentation of several examples. Moreover, this implementation
serves as an experience and a comparison for our second and main solution – the goal-driven
implementation for the MKNF well-founded semantics of hybrid knowledge bases.

The goal of the first implementation is to compute the whole model of the hybrid knowledge
base, step by step. This approach may in fact be an advantage for small, uniform and strongly
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interconnected knowledge bases. However, given the distributed infrastructure of the Semantic
Web, which at a global scale is mainly dynamic and heterogeneous, in most situations it is naïve
and unfeasible to compute the complete model of the knowledge base. Therefore, the need to
define query-answering procedures arises, in order to support the extraction of knowledge in
such context. These procedures intend to minimise the excess of computation by reducing the
calculus of the model to what is strictly necessary, forming our second proposed solution.

The rest of this chapter shall proceed as follows: we start by presenting an overview of the
platforms used for our implementations – XSB and CDF – referencing Tabling mechanisms and
SLG procedures. Afterwards, we move forward to the two main contributions of this disserta-
tion, a first bottom-up implementation and a goal-driven implementation.

5.1 Rule Engine – XSB

XSB [26] is an advanced logic based system, which extends the Prolog language by combining
intelligent database technology with optimised logic programming technology. Among these
features we highlight the SLG resolution and the handling of HiLog terms, that transform XSB
into a new paradigm for logic programming.

In a typical Prolog system, SLD Resolution represents the common logic programming
mechanism for the backtracking search through the tree of SLD refutations. However, the SLD
computational mechanism, is clearly inadequate and unsatisfying in several situations, as it does
not guarantee the termination.

In order to overcome the limitations of SLD resolution, rewriting techniques like Magic Sets
[11] have been developed to take advantage of the bottom-up scheme. Here, rules are rewritten
so that they may be implemented bottom-up (or forward chaining), in a way that cuts down on
the irrelevant facts that are generated.

XSB offers a different approach [51], as, rather than depending on rewriting techniques,
it extends SLD resolution in two ways: 1) adding tabling to make evaluations finite and non-
redundant, and 2) adding a scheduling strategy and delay mechanisms to treat general nega-
tion efficiently. The resulting strategy is polynomial and is called SLG resolution [55]. SLG
resolution, which is complete and finite for non-floundering programs with finite models, in-
dependently if they are stratified or not, empowers XSB with the ability to evaluate programs
according to the Well-Founded Semantics (WFS).

5.1.1 Tabling

Tabling [61] (also called as memoization or lemmatization) in Prolog is a technique that can get
rid of infinite loops for bounded-term-size programs and of possible redundant computations in
the execution of Prolog programs, and therefore addressing the inadequacies of SLD.

At first, tabling may seem like a simple idea: programs are evaluated by storing newly found
answers of current subgoals in a proper data space, called the table space. The method then uses
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this table to verify for repeated calls to subgoals – whenever such a repeated goal is found, the
subgoal’s answers are recalled from the table instead of being re-evaluated against the program
clauses.

From this simple description, one can easily see how tabling provides termination to various
classes of Horn clause programs. However, tabling can be used to far greater effect than ensur-
ing termination. One powerful feature of tabling is its ability to maintain other global elements
of computation in the “table”, such as information about whether one subgoal depends on an-
other, and whether this dependency is through negation. By preserving this global information,
tabling can be used to evaluate normal logic programs under the WFS. Here, the essential idea
is that global information about dependencies is used to determine the truth value of literals that
do not have derivation. If such literals are involved in a cyclic dependency through negation,
they are undefined under WFS; if not, the literals belong to an unfounded set and are false in
WFS. Furthermore, it can be shown that tabling allows non-floundering datalog programs with
negation to terminate with polynomial data complexity under the WFS.

XSB was the first Prolog system to augment top-down depth-first computation with tabling,
by using SLG Resolution [54] that we explain next.

5.1.2 SLG Resolution

SLG resolution is a tabling based method of resolution with polynomial time data complexity
and that is sound and search space complete for all non-floundering queries under the well-
founded semantics.

Summarily, SLG can be seen as a method that “partially evaluates” clauses relevant to a
query by reducing them with respect to the well-founded model. Each answer in SLG is in fact
a clause, whose body contains literals that would have to be true in order to derive the head.
Because answers are clauses, the table produced by query evaluation can be seen as a residual
program. After a query is marked as complete, if this residual is empty, the answer is classified
as unconditional, otherwise it is considered conditional and undefined.

To provide the reader the appropriate background on this subject, we follow next the refor-
mulated SLG proposed in [54].

Definition 5.1. An SLG evaluation consists in a sequence of forests of SLG trees. Nodes of
SLG trees have the form:

Answer_Template :- Delay_set | Goal_List

or fail. In the first form, the Answer_Template is an atom used to represent bindings made to
a tabled subgoal in the course of resolution along a computation path; the Delay_List contains
a set of literals that have been selected by a fixed-order literal selection strategy but whose
evaluation has been delayed; and the Goal_List is a sequence of unresolved literals. The second
form is called a failure node. A node N is called an answer when it is a leaf node for which
Goal_List is empty. If the Delay_Set of an answer is empty it is termed an unconditional
answer, otherwise, it is a conditional answer.



56

Definition 5.2. (Delay Literals). A negative delay literal in the Delay_Set of a node N has the
form not D, where D is a ground atom. Positive delay literals have the form DCall

Answer, where A
is an atom whose truth value depends on the truth value of some answer Answer for the subgoal
Call. If θ is a substitution then (DCall

Answer)θ = (Dθ)CallAnswer.

Positive delay literals contain information so that they may be simplified when a particular
answer to a given call becomes unconditionally true or false. It is useful to define answer
resolution so that it takes into account the form of delay literals.

Definition 5.3. (Answer Resolution). Let N be a node A :- D | L1, . . . , Ln, where n > 0. Let
Ans = A′ :- D′| be an answer whose variables have been standardised apart from N , N is SLG
resolvable with Ans if ∃i, 1 ≤ i ≤ n, such that Li and A′ are unifiable with an mgu θ. The SLG
resolvent of N and Ans on Li has the form:

(A :- D | L1, . . . , Li−1, Li+1, . . . , Ln)θ

if D′ is empty, and

(A :- D, D | L1, . . . , Li−1, Li+1, . . . , Ln)θ

where D = Li if Li is negative, and D = Li
Li

A′ otherwise.

A set of subgoals is completely evaluated when it can produce no more answers. Formally,

Definition 5.4. A set S of subgoals in a forest F is completed evaluated if at least one of the
conditions hold for each S ∈ S

1. The tree for S contains an answer S :- | ; or

2. For each node N in the tree for S:

(a) The selected literal LS of N is completed or in S; or

(b) There are no applicable NEW SUBGOAL, PROGRAM CLAUSE RESOLUTION,
POSITIVE RETURN, DELAYING or NEGATIVE RETURN operations for N .

Once a set of subgoals is determined to be completely evaluated, the COMPLETION oper-
ation marks the root node of the trees of each subgoal.

Definition 5.5. (Supported Answer). Let F be a SLG forest, S a subgoal in F , and Answer
be an atom that occurs in the head of some answer of S. Then Template is supported by S in F
if and only if:

1. S is not completely evaluated; or

2. there exists an answer node Answer :- Delay_Set | of S such that for every positive delay
literal DCall

Ans , Ans is supported by Call.
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An SLG evaluation consists of a (possibly transfinite) sequence of SLG forests. In order to
define the behaviour of an evaluation at a limit ordinal, it is needed the notion of a least upper
bound for a set of SLG trees. If a global ordering on literals is assumed, then the elements in
the Delay_Set of a node can be uniformly ordered, and under this ordering a node of a tree can
be taken as a term to which the usual definition of variance apply. In particular, nodes of SLG
trees are treated as identical when they are variant.

A rooted tree can be viewed as a partially ordered set in which each node N is represented
as {N,P}, in which P is a tuple representing the path from N to the root of the tree. When
represented in this manner, it is easily seen that when T1 and T2 are rooted trees, T1 ⊆ T2 iff T1

is a sub-tree of T2. Furthermore, if T1 and T2 have the same root, their union can be defined as
their set union, for T1 and T2 taken as sets.

Definition 5.6. Given a program P , an atomic query Q and a set of tabling operations, a tabled
evaluation E is a sequence of SLG forests F0,F1, . . . ,Fβ such that:

• F0 is the forest containing a single tree Q :- | Q

• For each successor ordinal, n + 1 ≤ β, Fn1 is obtained from Fn by an application of a
tabling operation.

• For each limit ordinal α ≤ β, Fα is defined as the set of trees T such that

– The root of T , S :- |S is the root of some tree in a forest Fi, i < α; and

– T = ∪{Ti|Ti ∈ Fi, i < α and Ti has root S :- |S }

If no operation is applicable to Fα, Fα is called a final forest of E . If Fβ contains a leaf node
with a non-ground selected negative literal, it is floundered.

SLG forests are related to interpretations in the following manner.

Definition 5.7. Let F be a forest. Then the interpretation induced by F , IF has the following
properties.

• A (ground) literal A ∈ IF iff A is in the ground instantiation of some unconditional
answer Ans :- | in F .

• A (ground) atom not A ∈ IF iffA is in the ground instantiation of a completely evaluated
subgoal in F , and A is not in the ground instantiation of any answer in F

An atom S is successful in F if the tree for S has an unconditional answer S. S is failed in F if
S is completely evaluated in F and the tree for S contains no answers. An atom S is successful
(failed) in IF if S ′ (not S ′) is in IF for every S ′ in the ground instantiation of S. A negative
delay literal not D is successful (failed) in a forest F forest if D is failed (successful) in F .
Similarly, a positive delay literal DCall

Ans is successful (failed) in a F if Call has an unconditional
answer Ans :- | in F .
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We will now define SLG operations as follows.

Definition 5.8. (SLG Operations). Given a forest Fn of a SLG evaluation of program P
and query Q, where n is a non-limit ordinal, Fn+1 may be produced by one of the following
operations.

1. NEW SUBGOAL: Let Fn contain a non-root node

N = Ans :- Delay_Set |G, Goal_List

where G is the selected literal S or not S. Assume Fncontains no tree with root subgoal
S. Then add the tree S :- |S to Fn.

2. PROGRAM CLAUSE RESOLUTION: Let Fn contain a root node N = S:- |S and C be a
program clause Head :- Body such that Head unifies with S with mgu θ. Assume that in
Fn, N does not have a child Nchild = (S:- | Body)θ. Then add Nchild as a child of N .

3. POSITIVE RETURN: Let Fn contain a non-root node N whose selected literal S is pos-
itive. Let Ans be an answer node for S in Fn and Nchild be the SLG resolvent of N and
Ans on S. Assume that in Fn, N does not have a child Nchild. Then add Nchild as a child
of N .

4. NEGATIVE RETURN: Let Fn contain a leaf node

N = Ans :- Delay_Set | not S, Goal_List.

whose selected literal not S is ground.

(a) NEGATION SUCCESS: If S is failed in F , then create a child for N of the form:
Ans :- Delay_Set | Goal_List.

(b) NEGATION FAILURE: If S succeeds in F , then create a child for N of the form
fail.

5. DELAYING: Let Fn contain a leaf node N = Ans :- Delay_Set | not S, Goal_List, such
that S is ground in Fn, but S is neither successful nor failed in Fn. Then create a child
for N of the form Ans :- Delay_Set, not S | Goal_List.

6. SIMPLIFICATION: Let Fn contain a leaf node N = Ans :- Delay_Set | , and let L ∈
Delay_Set

(a) If L is failed in F then create a child fail for N .

(b) If L is successful in F , then create a child Ans :- Delay_Set’ | for N , where
Delay_Set’ = Delay_Set −L.
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7. COMPLETION: Given a completely evaluated set S of subgoals, mark the trees for all
subgoals in S as completed.

8. ANSWER COMPLETION: Given a set of unsupported answers UA, create a failure node
as a child for each Ans ∈ UA.

An interpretation induced by a forest has its counterpart for SLG. Using these concepts we
can relate SLG to SLG evaluations.

Theorem 5.1. Let F a forest in a terminated SLG evaluation of a query Q to a program P , and
A an atom such that A :- A is the root of some tree in F . Then

WFM(P )|A = IF |A

We refer the proof of this theorem to [56]. This theorem implies the correctness of SLG,
and as such, proving correctness w.r.t. SLG will ensure the correctness w.r.t. the well founded
model.

Example 5.1. Consider the following example from [55]

:- table t/0, p/0, q/0, r/0, s/0

t :- not p.
p :- q.
q :- not r.
r :- q, s.
s :- r.

As can be seen from Figure 5.1, the evaluation of the query t encounters a negative loop
containing q and r. In order to determine the truth value of q and r in the well-founded model,
the fixed left-to-right literal selection strategy must be broken so that other literals in the clause
for r may be resolved. A DELAYING operation is applied to node 5, moving the selected literal
not r from the goal list to the delay list. Now, node 8 is a leaf that has no more unresolved
literals in its goal list, so it is termed an answer (for q), but since its delay list is not empty, it is
termed a conditional answer. This conditional answer is resolved against the selected literals of
nodes 3 and 7. When a conditional answerA :-DL| is resolved against a selected literal L, SLG
does not propagate the elements of the delay list DL, but rather delays the selected literal, L, to
indicate that a conditional answer was used for resolution. In non-propositional programs, this
delayed literal may be subject to further unification operations so that positive delayed literals
are annotated with the answer used for resolution, A, along with the root subgoal of the tree to
which the answer belongs.
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Figure 5.1 SLG Forest upon execution of the query ?- t.

Figure 5.2 Subgoal Depedency Graph induced by execution of the query ?- t.

In this example, ANSWER RETURN adds the delayed literal qqq to the delay list of node 3
producing a conditional answer for p (node 9). Similarly, ANSWER RETURN of the conditional
answer q :- not r | is used for the selected literal of node 7 producing node 10. The evaluation
then calls s, and recursively, r. Through a COMPLETION operation their trees are marked as
complete. Upon the completion of r with no answers, since r is known to be false in the well-
founded model, the answer q :- not r | can be made unconditional. SLG SIMPLIFICATION
operation is used to propagate truth values to delayed literals. Using SIMPLIFICATION, the
delayed literal not r is removed from the delay list of q’s answer making this answer uncondi-
tional (node 13). The derivation of this unconditional answer enables a further SIMPLIFICA-
TION operation to remove the delayed literal in the answer p :- qqq | for p. Finally, since p’s
truth value is now established, a NEGATION RETURN operation can be performed to fail the
computational path leading to node 1 of the forest, and through COMPLETION operations, the
remaining subgoals also become completed leading to the final forest represented in Figure 5.1.
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Figure 5.3 A High-Level Architecture of CDF

5.2 DL Framework – CDF

The Coherent Description Framework (CDF) [57] allows various sorts of support for man-
agement of formal ontologies from within XSB. This system is complete for the ALCQ DL,
described before in Section 2.2.2, extended with relational hierarchies and product classes.

Since CDF is implemented over XSB, its architecture, represented in Figure 5.3, is already
an advantage for a hybrid system – CDF stores knowledge in a CDF Instance consisting of in-
formation in the form of Prolog facts (called extensional facts), Prolog rules (called intensional
rules), or in various database-resident formats. Furthermore, because of the tight integration of
the two systems, CDF’s implementation has also access to XSB’s tables, that, as we shall see,
will be particularly important in passing residual answers in the goal-driven implementation.

This way, there were two main reasons related to the choice of CDF. First, CDF represents a
polynomial DL which empowers our solution of polynomial complexity (in the case of Type-0
instances), and second because, by its architecture, CDF has already means to define dependen-
cies between rules and ontologies via intensional rules.

5.2.1 CDF Overview

CDF instances are divided in Type-0 and Type-1, each of which with its own interface. Type-0
instances are useful for storing large amounts of information as consistency and implication
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in this kind of instances enjoy from polynomial complexity. These instances describe classes
by existential and universal relations, qualified number restrictions, and relational hierarchies,
allowing a direct product construction for objects and classes. However, they do not support
negation and disjunction.

Type-1 instances extend Type-0 instances to describe classes using negation and disjunction
and thus permit descriptions that are equivalent to an expressive description logic. Reasoning
in this kind of expressive instances is done via the CDF theorem prover with a higher degree of
complexity, now raised to EXPTime-complete.

One of the main advantages of CDF is the possibility to define intensional rules. A CDF
instance is built up of extensional facts and intensional rules. Extensional facts allow to express
ordinary description logic facts (ABoxes) and concepts (TBoxes and RBoxes). On the other
hand, intensional rules are defined as XSB rules and, therefore, may use any XSB’s language
or library features, including tabling, database, and internet access. Intensional rules are called
on demand, making them suitable for implementing functionalities from lazy database access
routines to definitions of primitive types, as well as, to call prolog facts directly on the ontology.

5.2.1.1 CDF Syntax in a Nutshell

The basis of any description logic are Classes, Roles and Objects, which in CDF are defined,
respectively, by class identifiers, denoted as cid/2, relation identifiers, rid/2, and object identi-
fiers as oid/2.

The Type-0 CDF instances correspond to ALCQ DL without negation and disjunction, and
for that, using the following constructors:

• isa/2 – defines relations between classes and classes and between classes and objects:

isa(cid(class1,o1),cid(class2,o1)).
isa(oid(object,o1),cid(class,o1)).

Corresponding in DL notation to: Class1 v Class2 and object : Class.

• allAttr/3 – indicates a typing for relations, but it does not require the existence of such
a relationship. For instance, the next statement express that all objects that belong to the
class person if they have a relation of the type hasChild, then this is to the class person.

allAttr(cid(person,fam),rid(hasChild,fam),cid(person,fam).

Which in DL syntax corresponds to: Person v ∀hasChild.Person.

• hasAttr/3 – contrary to allAttr/3, this require that such relation exist between classes
or objects. The next example shows that an object of a the class person has a relation
hasMother to the class mother, and that the object john has a mother which is mary:

hasAttr(cid(person,fam),rid(hasMother,fam),cid(mother,fam)).
hasAttr(oid(john,fam),rid(hasMother,fam),oid(mary,fam)).
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That is translated to Person v ∃hasChild.Person and (john,mary) : hasMother.
This predicate provides a simple but powerful mechanism for inheritance of typing among
CDF Classes.

• classHasAttr/3 – the hasAttr/3 relation described above implies that every subclass
of person has a relation to the class mother. However, classes may have relations that
do not hold for their subclasses or members. For example, a finite set may have a given
cardinality, but its proper subsets will have a different cardinality. Such relations are
termed as class relations and defined by classHasAttr/3

• minAttr/4, maxAttr/4 – These predicates define cardinality on roles. For instance, the
next statement defines that a person has at least, and only one mother:

minAttr(cid(person,fam),rid(hasMother,fam),cid(mother,fam),1).
maxAttr(cid(person,fam),rid(hasMother,fam),cid(mother,fam),1).

Which in DL is expressed by:

Person v ≤ 1hasMother.Mother

Person v ≥ 1hasMother.Mother

Type-1 CDF instances differ from Type-0 CDF instances as they provide full support to
ALCQ. This way, Type-1 instances allow a new kind of constructor: necessCond/2, that em-
powers Type-1 instances with disjunction and negation. For that, Type-1 instances have a new
kind of identifier: virtual identifier, denoted by the functor vid/1. A virtual identifier indicates
that rather than denoting a class by its name, it is denoted by a class expression whose syntax is
given next.

Definition 5.9. Let L be an ontology language. A CDF class expression C over L is formed
by one of the following constructions in which A is a class or object identifier, C1 and C2 class
expressions, R a relation identifier, and n a natural number.

C ← A|not C1|C1, C2|C1;C2|all(R,C1)|exists(R,C1)|atLeast(n,R,C1)|atMost(n,R,C1)

Corresponding, in DL notation to:

C ← A|¬C1|C1 u C2|C1 t C2|∀R.C1|∃R.C1|(≤ nR.C1)|(≥ nR.C1)

For instance, the following CDF instance:

necessCond(cid(s,ont),vid(’;’(cid(p,ont),cid(q,ont))))
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defines a class S that in DL syntax corresponds to S .
= P tQ.

All the predicates, both in Type-0 and Type-1 CDF instances, can be extensional and inten-
sional. Extensional instances are defined as facts and must be explicit in a cdf_extensional.P file
and must be invoked with load_extensional_facts(folder). Intensional instances are Prolog-like
rules and must be defined in the file cdf_intensional.P and called as load_intensional_rules(folder).

isa_ext(oid(john,fam),rid(hasFather,fam),oid(david,fam)).
hasAttr_int(oid(X,fam),rid(hasFriend,fam),oid(Y,fam)) :-

hasAttr(oid(X,fam),rid(hasSibling,fam),oid(Y,fam)).

Here, the first statement represents a fact saying that david is the father of john, while the latter
defines that siblings are friends. So, when we ask some query such as:

?- hasAttr(oid(X,fam),rid(hasSibling,fam),oid(Y,fam)).

The CDF system will check if X and Y can unify with some fact defined as hassAttr_ext/3
fact, or if there is such rule in the intensional part such that:

hasAttr_int(oid(X,fam),rid(hasSibling,fam),oid(Y,fam))

5.2.1.2 The CDF Theorem Prover

In the current CDF version, a tableaux-style prover is used for entailment and to check consis-
tency of class expressions. At a high level, the CDF prover first translates a class expression
CE to a formula ψ in an ontology language. It then attempts to construct a model for ψ: if it
succeeds, CE is consistent; otherwise CE is inconsistent (since the prover can be shown to be
complete). The CDF prover has access to the relational and class hierarchies of a CDF instance
during its execution. As a result, only the main classes and relations of an identifier need to be
entered in class expressions.

Consistency in CDF can be checked using the follow system predicates:

• checkIdConsistency/1 – In checkIdConsistency(IdList), IdList is
a (list of) class or object identifier(s) which is taken as a conjunction. The Predicate
succeeds if IdList is consistent in the current CDF instance.

• consistentWith/2 – In consistentWith(Id,CE), Id can either be a class or
an object identifier and CE is a class expression. This predicate checks whether CE is
logically consistent with all that is known about Id in the current CDF instance. This de-
termines whether there is a model of the current CDF instance that satisfies the expression
Id, CE.

• allModelsEntails/2 – In allModelsEntails(Id,CE), Id is a class or ob-
ject identifier and CE is a class expression. allModelsEntails/2 succeeds if CE
is entailed by what is known about Id in the current CDF instance. In other words,
allModelsEntails/2 determines whether in all models of the current CDF instance,
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if an element is in Id then it is also in CE. It does this by checking the inconsistency of
Id, CE.

Moreover, entailment can be performed by querying the ontology directly via the predicates
isa/2 and hasAttr/3. For instance, the query isa(oid(Obj,N1),cid(Class,N2))
obtains all objects Obj that belong to a given class Class. This query does not only return
what is explicitly defined as a class for a object, but also derives to what classes the object
belongs to. So, if we have the following knowledge base:

isa_ext(oid(jones,fam),cid(professor,fam)).
isa_ext(cid(professor,fam),cid(person,fam)).

intuitively, Jones is a professor and every professor is a person. When checking entailment for
Jones we obtain:

?- isa(oid(X,fam),cid(Y,fam)).

X = jones, Y = professor;

X = jones, Y = person;
no.

Analogously, we can use similar queries to retrieve entailment between classes, objects and rela-
tions. The query isa(cid(Class1,N1),cid(Class2,N2)) returns all classes (Class1)
that are a subset of some other class (Class2); and isa(oid(Obj1,N1),oid(Obj2,N2))
returns all congruence relations between objects. Likewise, we can use hasAttr/3 to check
entailment between relations.

For a more detailed list of queries, we refer to Section 5.3, where we present all the queries
performed by our solution in order to obtain entailment between classes, objects and relations.

5.3 Bottom-Up Implementation

Previously, in Section 4.2.4 we described the 3-Valued MKNF Semantics [34] that allows
knowledge to be inter-definable between rules and any parametric ontology. As a contribution
for this dissertation, we present herein a bottom-up implementation for such semantics.

This solution computes the well-founded model of a hybrid knowledge base with rules and
ontology via an iterative fixpoint. The rules are defined as Prolog-rules that use the infix operator
“<-”:

H <- Body.

and with the ontology defined in the CDF syntax.
Given the interdependency of our knowledge base, as rules can have predicates that are de-

fined on the ontology, and vice-versa, the main idea is, to infer knowledge simultaneously from
both parts, iteratively, until a fixpoint is reached. For this goal, the 3-valued MKNF Semantics



66

in the Definition 4.15 defines three operators, RK, DK, TK, that are used in the calculus of the
two iterative fixpoints Γ and Γ′. Similarly, this solution correspond to the implementation of
these operators and these fixpoints, where the proof of correctness is in accordance with the
proof for 3-valued MKNF Semantics in [35]. Moreover, given the complexity results from
[35], it follows easily that our solution is empowered with polynomial complexity in the case
of Type-0 ontologies.

To illustrate how our solution correspond to the definition in 4.2.4, recall the following
operators defined previously in Page 47:

RK(S) = S ∪ {KH | K contains a rule of the form: KH ← KA1,

. . . ,KAn such that KAi ∈ S for each 1 ≤ i ≤ n}
DK(S) = {Kξ |Kξ ∈ KA(K̂) and O ∪ ŜDL |= ξ} ∪ {KQ(b1, . . . , bn)|

KQ(a1, . . . , an) ∈ S \ SDL,KQ(b1, . . . , bn) ∈ KA(K̂), and

O ∪ ŜDL |= ai ≈ bi for 1 ≤ i ≤ n}
TK(S) = RK(S) ∪DK(S)

Identically, the core of our solution relies on these three operators (r_op/5, d_op/3 , t_op/6)
and two different sets – S and P – that represent the result of each fixpoint, where the first is
the result of the inner fixpoint, and the latter the result of the outer of the double fixpoint of Γ
and Γ′ (cf. Page 48).

• r_op/5 – given a S, P, a list of rules, and a flag, returns the Heads of the rules which can
be proven. The Head H of a rule H ← A1, .., An, not B1, not Bm is added to S if:

1. A1, ..., An ∈ S, ¬∃ B1, ..., Bm ∈ P , flag = false or

2. A1, ..., An ∈ S, ¬∃ B1, ..., Bm ∈ P , ¬H 6∈ P , flag = true.

In this operator, the flag is used to assure the difference between Γ and Γ′. Instead of
implementing two different operators that are roughly the same, we opted by stating this
difference via a parameter flag. In fact, Γ′ compared to Γ only adds an extra-restriction,
by assuring that if a propositionH is defined as explicitly false in the ontology, then not H
must hold as well. This is done by forcing all the rules with the head H to be ignored in
case ¬H holds. Consequently, when flag = true, an extra condition is checked – we
only add H to our model if the previous conditions hold and if ¬H does not belong to
our set P .

• d_op/3 – given S and a list of rules, returns the new information that can be derived from
the ontology. Since S represents the current knowledge, this operator starts by asserting
S in the ontology as an ABox:

1. Unary terms – p(t) are translated as an object t that belongs to a class p:
isa(oid(t, ont), cid(p, ont)).
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2. Binary terms – p(t1, t2) correspond to a relation p between the object t1 to t2:
hasAttr(oid(t1, ont), rid(p, ont), oid(t2, ont)).

Note that, since in an ontology it is only possible to express unary and binary terms, all
the remaining terms like: p(t1, t2, . . . , tn), where n > 2, are ignored by the ontology.

CDF does not offers any method for computing the complete model of the ontology. So,
in order to retrieve all the information from the ontology, we need to perform a set of
queries, that are translated to our program in the following way:

1. Getting all objects that belong to a given class, which is obtained by querying:
isa(oid(Obj, ont), cid(Class, ont)), translated as Class(Obj).

2. Obtained all relations between objects:
hasAttr(oid(Obj1, ont), rid(Relation, ont), oid(Obj2, ont)) as
Class(Obj1, Obj2).

3. Retrieving all the congruence relations between objects:
isa(oid(Obj1, ont), oid(Obj2, ont)). When this congruence restriction is satisfied,
it will trigger the predicate assertEqObjects/2, that will add a copy from all rules
and facts of Obj1 for Obj2, and vice-versa.

4. Collecting all objects that explicit do not belong to a given class:
isa(oid(Obj, ont), vid(not(cid(Class, ont)))) as
not Class(Obj).

• t_op/6 – calls d_op/3 and r_op/5 at each iteration.

Classical negation from the ontology is passed through the program by adding the predicate
not P (t1, . . . , tn) as a fact. This not as a fact can only be derived by the ontology and is used
to assure that P (t1, . . . , tn) does not hold if ¬P (t1, . . . , tn) is derived in the DL. In fact, the
difference between the two fixpoints Γ and Γ′ is to specifically guarantee this condition. So
in Γ′ a head H of a given rule is only added if ¬H 6∈ P . As stated before, in our solution
this condition is ensured by a flag that can be either true or false in the operators defined
previously.

Corresponding to Γ and Γ′ we define dofixpointS/3 that given P and a flag, returns the
set S. For that, it calls t_op/6 to derive new knowledge iteratively. So S starts as empty and
grows at each step until the fixpoint is reached. Now ΓK(Γ′K(S)) is done via dofixpointP/2
that given the result S of dofixpointS/3 with the flag = true passes this S as P again
to dofixpointS/3 with the flag = false and does this until the fixpoint is achieved. This
latter operator, dofixpointP/2 acts as a well-founded model operator, returning as an ar-
gument two sets: T and TU . These two sets correspond to PK and NK respectively from
Definition 4.18. The first set (T ) represents everything that is true in the well-founded model;
while the latter (TU ) represents everything that is true or undefined. The remaining predicates
that do not belong to TU are false in the model. The basic idea of the algorithm can be seen in
Figure 5.4.
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Input: The set of all rules: Rules
Output: The set of all atoms that are true – P , and the set of all atoms that are true and

undefined – S.
P = [];1

while ( P 6= P’ ) do2

P’ = P;3

S = [];4

S’ = t_op(S, P, Rules, true);5

while ( S 6= S’ ) do6

S = S’;7

S’ = t_op(S, P, Rules, true);8

end9

P = S;10

S = [];11

S’ = t_op(S, P, Rules, false);12

while ( S 6= S’ ) do13

S = S’;14

S’ = t_op(S, P, Rules, false);15

end16

P = S;17

end18

Figure 5.4 General Bottom-Up Algorithm
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5.3.1 Treatment of non-ground rules

The definition presented in Section 4.2.4 is only concerned with ground rules. However, when
this definition is extended to rules that are non-ground, it is necessary to face the floundering
problem related to the treatment of non-ground rules with negation in Prolog.

To give the reader a better understanding of this problem, let us consider a really simple
Prolog program:

s(a).
s(b).
q(a).

p(X) :- not q(X), s(X).

The last rule states that p(X) is true if q(X) cannot be proven true on the program and if s(X)
is true. If we inquire the program with the following queries, we obtain the answer presented:

?- p(a).
no

?- p(b).
yes

?- p(X).
no

The first two answers are as expected – p(a) is false because q(a) is true; and p(b) is true
since q(b) cannot be derived in our program. However, the general query p(X) fails, when
we would expect it to generate the answer p(b). The reason for this problem relies on the
implementation of the negation in Prolog which is known to be correct only for ground literals
[40].

In fact, assuming closed world assumption, the negative goal not q(X) in Prolog is inter-
preter as not ∃x : q(x). That is, a request to find a term t such that q(t) fails from the program.
Thus, we would like Prolog to return bindings for the variable X which allow the call q(X) to
succeed. Unfortunately, the negation in Prolog is not able to generate such bindings for vari-
ables, but only to test whether a subgoal succeeds or fails. Consequently, in our example, X
is unified with a, producing the answer no, and losing the remaining answers. To avoid this
behaviour, the negation operator must only be applied to ground literals and when it does not,
the program is said to flounder.

Identically, this problem arises when computing the bottom-up model. Consider, for in-
stance the following program:

a(X) <- not b(X), p(X).

b(jones) <- true.
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p(jones) <- true.
p(bill) <- true.

When computing this program in a bottom-up fashion way, as described in the previous section,
we obtain the following model:

T = [p(bill), p(jones), b(jones)]

Tu = [p(bill), p(jones), b(jones)]

However, a(bill) should also be contained on the model as its body – p(bill) and not b(bill)
succeed as well.

To understand the problem, recall that Head is added to the model if the rule Head ←
A1, . . . An,¬B1, . . . ,¬Bn exists and if B1, . . . Bn /∈ P . Nevertheless, for the rule a(X), we
have to prove that b(X) does not belong to P . Since this negation can only be applicable to
ground predicates, jones is instantiated with X and b(jones) ∈ P , making the rule to fail.
Because we are testing a negative condition, Prolog cannot generate further bindings for X and
the remaining answers are lost.

5.3.1.1 Solution

Solving the floundering problem is far from being a trivial task, and therefore, it is not in the
scope of our work. However, this can be ignored if the programmer provides bindings to the
variables before applying the negation-as-failure operator. For instance, consider the following
program:

s(a).
s(b).
q(a).

p(X) :- s(X), not q(X).

Although this program looks equivalent, now the previous problem does no longer apply. The
reason is that s(X) occurs before the negation, generating bindings to X , which will be ground
in q(X).

Furthermore, we recall that a 3-valued MKNF Hybrid Knowledge Base must respect the
concept of DL-safe, described in Section 4.2.1. DL-safeness limits the application of the rules
to known individuals. In practice, this means that the predicates O(x1), O(x2), . . . , O(xn),
which are only defined in the Rules-component, are added to each rule, for each variable xn
occurring in the given rule.

Consequently, we can assume that a positive predicate occurs in each rule for each variable,
and therefore, if we impose these positive predicates to appear before the negative ones, then
the positives will generate bindings for each variable and the negation is only applied to ground
literals forcing the program to not flounder. This way, to avoid the problem, before applying
any operation, our solution performs this ordering by a pre-processment of the rules.
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5.3.2 Usage

A Hybrid Knowledge base is defined over a XSB-Prolog knowledge base together with an
ontology specified over CDF. This is translated to the need of defining three different files for
the hybrid knowledge base to be loaded as a whole:

• rules.P – containing the set of Prolog rules and Prolog facts. A rule is defined with the
operator “<-” as:

Head <- Body.

and
Head <- true.

representing a fact. As stated before, each rule must respect DL-safeness, in order to the
Hybrid Knowledge Base to be DL-safe.

• cdf_extensional.P – comprising ordinary ontology facts and concepts defined over the
CDF syntax described in 5.2.1.1.

• cdf_intensional.P – including intensional rules that are defined as Prolog-like rules:

Head :- Body.

but where the Head represents a particular ontology fact or concept that holds when the
Body holds as well. The Body is a set that can refer to any library feature as well as any
CDF predicate.

An atom A can be defined as a predicate, as a proposition, or both. Moreover any predicate
can be defined over a proposition as well as any proposition can be defined over a predicate. So,
all atoms are freely stated either in rules.P or/and in cdf_extensional.P /cdf_intensional.P ,
and thus, it is the responsibility of our algorithm to check where A is defined in order to retrieve
the correct well-founded MKNF model.

5.3.3 Examples

Next we will show how the examples, presented before in Section 4.2.4, are mapped into XSB
and CDF syntax, in order to be evaluated by our bottom-up algorithm.

Example 5.2. Recall the following insurance example – Example 4.3 from [35]:

NaturalDeath v Pay Suicide v ¬Pay
K Pay(x)← Kmurdered(x),K benefits(y, x),not responsible(y, x)

K Suicide(x)← not NaturalDeath(x),notmurdered(x)

Kmurdered(x)← notNaturalDeath(x),not Suicide(x)

This MKNF knowledge base is then translated to CDF syntax:
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isa_ext(cid(naturalDeath,ont),cid(pay,ont)).
isa_ext(cid(suicide,ont),vid(not(cid(pay,ont))).

And to the following set of rules:

pay(X) <- murdered(X), benefits(Y,X), not responsible(Y,X), p(X),
p(Y).

suicide(X) <- not naturalDeath(X), not murdered(X), p(X).
murdered(X)<- not naturalDeath(X), not suicide(X), p(X).

Note that the predicate p(X) is an auxiliary predicate that is only defined in the rules. This
way, this predicate was introduced in order to assure that the rules are only applied to known
individuals, and thus assuring the DL-safety in our program.

Now, inserting ¬NaturalDeath(jones),¬NaturalDeath(bill) as an ABox:

isa_ext(oid(bill,ont),vid(not(cid(naturalDeath,ont)))).
isa_ext(oid(jones,ont),vid(not(cid(naturalDeath,ont)))).

And the following facts:

responsible(max,jones) <- true.
benefits(thomas,jones) <- true.
benefits(ann,bill) <- true.
murdered(jones) <- true.

p(jones) <- true.
p(thomas) <- true.
p(bill) <- true.
p(ann) <- true.

isa_ext(oid(max,ont),oid(thomas,ont)).

Example 5.3. Recall now the customs house example – Example 4.4:

NordicCountry v SafeCountry

DangerCountry v Suspect

With the following set of rules:

K suspiciousContent(x, country)← K hasShipment(x, country),not normal(x, country)

K suspiciousContent(x, country)← K hasShipment(x, country),K suspect(country)

K dangerCountry(x)← not safeCountry(X)

Which is translated for the following TBox in the CDF syntax:



73

isa_ext(cid(nordicCountry,ont),cid(safeCountry,ont)).
isa_ext(cid(dangerCountry,ont),cid(suspect,ont)).

And to the following set of DL-Safe rules:

suspiciousContent(X,Country) <- hasShipment(X,Country),not normal(X,
Country), c(Country), s(X).

suspiciousContent(X,Country) <- hasShipment(X,Country), suspect(
Country), c(Country), s(X).

dangerCountry(X) <- not safeCountry(X), c(X).

If we now add NordicCountry(Norway) to the ABox:

isa_ext(oid(norway,ont),cid(nordicCountry,ont)).

And the set of facts:

hasShipment(coconuts,norway) <- true.
hasShipment(coffee,brasil) <- true.
hasShipment(petrol,colombia) <- true.
normal(petrol,norway) <- true.
normal(codfish,norway) <- true.
normal(coconuts,brasil) <- true.
normal(coffee,brasil) <- true.
normal(coffee,colombia) <- true.
normal(petrol,colombia) <- true.

c(brasil) <- true.
c(colombia) <- true.
c(norway) <- true.
s(petrol) <- true.
s(coffee) <- true.
s(coconuts) <- true.
s(codfish) <- true.

As expected, our bottom-up implementation evaluates both examples as described in Sec-
tion 4.2.4. The source code of our implementation along with these and additional examples
can be downloaded in http://pessoa.fct.unl.pt/asg19136/bottomup.zip.

5.4 Goal-driven Implementation

In the previous section we presented a bottom-up implementation for the 3-valued MKNF Se-
mantics which computes the complete well-founded model for a given hybrid knowledge base,
step by step, via an iterative monotonic fixpoint. However, given the sheer size and distributed
nature of the Semantic Web, deriving all consequences of a knowledge base is mainly a naïve

http://pessoa.fct.unl.pt/asg19136/bottomup.zip
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and, in most cases, an impractical task. This way, considering the context of the Semantic Web,
when the goal is to answer a specific query, there is a need to define lighter mechanisms relying
on top-down/goal-driven procedures in order to minimise the computation to the set of literals
of which the given query depend on.

In Section 5.1.2 we presented SLG resolution, employed by XSB, that already evaluates
logic programs according to the well-founded semantics via a goal-driven procedure. However,
now it is necessary to consider that a query can depend on both rules and ontology, where
the dependency is such that a rule can use predicates that are defined in the ontology and the
ontology can use propositions that are also defined in the rules.

Herein we present our main contribution, which is the first implementation of a hybrid
knowledge base with such properties. Our solution makes use of XSB’s SLG Resolution for the
evaluation of a query, together with tableaux mechanisms supported by CDF theorem prover
to check entailment on the ontology. It maintains the full compatibility corresponding to the
3-valued MKNF Semantics presented in Section 4.2.4. In particular, if our hybrid knowledge
base does not contain any rules, we obtain the same as having our ontology defined in CDF, and
if our ontology is empty, the result is the well-founded model for the given program.

5.4.1 Description

In our algorithm, a query is evaluated through SLG resolution until it depends on a given propo-
sition defined in the ontology. Then the computational is passed to the ontology, which will use
tableaux mechanisms to test this proposition, which may itself depend on some other rule lit-
eral. Nevertheless, this query-evaluation procedure cannot be done straightforwardly in order
to assure completion/termination.

In its essence, a tableau algorithm decides the satisfiability of A w.r.t. a KB O by trying
to construct a common model for A and O, called a completion graph. If it succeeds, A is
satisfiable, otherwise A is unsatisfiable. As stated before, in Section 5.2.1.2, the CDF theorem
prover only constructs a model for the classes and relations of a specific identifier. So given a
query Q, the CDF theorem prover constructs a model for all the properties of the object related
to Q and checks if Q is contained in that model.

Now, given the particular integration between rules and the ontology, we have to consider
the knowledge inferred in the rules for this satisfiability test, as a proposition can depend on
some predicate of the rules, which however may rely on other ontology proposition. Thus,
considering that a query relates to a particular object, the main idea of our solution is to compute,
iteratively, a model for this object, deriving at each iteration new information about the given
object either in the ontology (via CDF’s tableau algorithm), or in the rules (via SLG procedures),
until a fixpoint is reached.

We start by considering the special case of positive knowledge bases without default nega-
tion in the rules:

Example 5.4. Consider the following DL-safe Hybrid MKNF Knowledge Base and the query
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third(X):

K third(X)← K p(X),K second(X).

f irst(callback).

p(callback).

F irst v Second

The evaluation of the query starts to find the rule for third(X) which the body depends
on the predicates p(X) and second(X). The predicate p, only defined in the rules, assures
DL-safety, restricting the application of the rules to known individuals. Thus, the call p(X)
returns true for X = callback. However, now the call third(callback) (since X was ground
to callback by p) depends on a proposition from the ontology – second. So the computation
calls CDF theorem prover which starts to derive a model for all the properties of the object
callback. Yet, in this computation, the proposition second itself depends on a predicate defined
in the rules – first. As a result, it is intuitive for such examples that the evaluation of the
query third(callback) must be done iteratively – the call third(X) should hold (as in SLG
procedures) until p(X) and second(X) is resolved. Furthermore, second(X) needs first to
prove first(callback) from the rules. Finally, since second(callback) succeeds, the conditional
answer third(callback) becomes unconditional and succeeds for X = callback.

So, the idea of our solution is that the two components use each other as a way to derive new
knowledge, interchanging what they know at each moment to the other component. This way,
our algorithm goes by computing a model for the given object related to the query, iteratively,
by inquiring both components. At the end of each iteration, the two components share the
knowledge inferred. However, since it is possible to define n-ary predicates and roles, the query
may not depend only on one object, but rather in a group of objects. Therefore, the model must
be constructed taking into account a sets of object that the query depends on. This is done by
maintaining a table with this set of objects that need to be computed in order to answer a given
query. In a top-down fashion, this set increases as new dependency relations between objects
are disclosed. The iteration stops when it is not possible to derive anything more about these
objects, i.e., when all objects have reached the fixpoint.

Definition 5.10. Let K = (O,P) be a DL-safe hybrid MKNF knowledge base. Consider
P+ a subset of P containing only positive rules. Let O′ and P ′ correspond to the subset of
O and P+, respectively, necessary to compute in order to answer a query Q. Let R be the
model obtained by the Rules-Component and D the model obtained by the DL-Component.
The function Tableaux relates to the application of tableaux algorithms to infer a model for the
ontology. SLG relates to SLG procedures used by XSB to evaluate the queries correspondent
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to P ′. The model is obtained as follows:

D0 = Tableaux(O′) R0 = SLG(P ′)
D1 = Tableaux(O′ ∪R0) R1 = SLG(P ′ ∪D0)

...
...

Dn = Tableaux(O′ ∪Rn−1) Rn = SLG(P ′ ∪Dn−1)

where n is odd and ≥ 2. The iteration stops when a fixpoint in Rn is reached.

This definition resembles the definition of the operator TK presented in [34]. Similarly,
since we are considering only positive rules, the operators SLG and Tableaux are monotonic
and thus, by the Knaster-Tarski theorem [59], the program yields a least fixpoint. Furthermore,
the program respects DL-safeness, which means that MKNF rules are grounded with respect to
the set of individuals (constants), and thus the program is finite and the fixpoint can be obtained
in a finite number of steps.

Nevertheless, given the disparity of the essence of the components, as rules adhere to closed-
world assumption, while the ontology assumes open-world assumption, this iteration is not
enough when adding negation. As an illustration, consider the following example.

Example 5.5. Consider the following DL-safe Hybrid MKNF Knowledge Base and the query
third(X):

K third(X)← K p(X),K second(X).

K fourth(X)← K p(X),dlnot third(X).

f irst(callback).

p(callback).

F irst v Second Fourth v Fifth

Now in Example 5.5, we have a predicate fourth that is defined at the expense of the
negation of third. Since this predicate is defined in the rules, the negation is closed world,
that is, fourth should only succeed if it is not possible to prove third in our knowledge base.
Consequently, if we employ SLG resolution blindly, we would consider fourth as true, even
though third could be proven afterwards, when considering all the knowledge inferred by the
ontology. Likewise, the rules may pass to the ontology knowledge, that after some iterations,
no longer applies – Fifth should only succeed in the case that fourth is true, which is defined
over closed world assumption.

From Example 5.5 it follows a need to treat nots carefully, as a not requires to be con-
stantly re-evaluate by the inference of new knowledge. Recall the definition of the 3-valued
MKNF semantics. In this semantics, an operator Γ is defined in order to address the problem
of closed-world negation. Roughly, Γ is defined as the application of TK until achieving a fix-
point. Applying Γ twice is a monotonic operation and thus yields as well a least fixpoint by the
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Knaster-Tarski theorem. In each dual application of Γ two different models follow – a mono-
tonically increasing model of trues (i.e. true predicates and propositions), and an monotonically
decreasing model of trues and undefineds.

In a similar way, our solution requires the computation of two fixpoints. An inner fixpoint
where we apply the Definition 5.10, and an outer fixpoint for the evaluation of nots. These inner
and outer fixpoint correspond to the definition of TK and ΓK, respectively. In ΓK, the evaluation
of closed-world negation is made by a reference to the last model obtained by ΓK. Identically,
in our solution, not(A) succeeds if, in the last outer iteration, A was not proven.

Example 5.6. As an illustration of the need of the application of the two fixpoints, consider the
following DL-safe Hybrid MKNF Knowledge Base and the query c(X):

K c(X)← Kp(X),K a(X),not b(X)

p(object)

a(object).

A v B

Considering the query c(X), X is grounded to object by the predicate p which, again,
assures DL-safety. In a first inner iteration, a(object), p(object) and c(object) succeed; simul-
taneously, the ontology is not able to prove anything since the proposition A does not hold. In
the end of this iteration, the two components share knowledge as described in Definition 5.10.
In a second inner iteration the rules maintain what they inferenced before and the ontology
derives A. After sharing this knowledge, there is no more to infer by either components, and
a fixpoint is reached. When the inner fixpoint is reached, we end the first outer iteration. So
now, the second outer iteration will start the computation of the inner iteration again and, in this
iteration, nots are evaluated given the last outer iteration. As a consequence, c(object) fails,
since b(object) is proved in the latter iteration. The inner iteration fixes by inferring p(object),
a(object) and b(object), which is in fact the correct model for the object object. Afterwards, the
outer iteration needs one more computational in order to stop, returning the model described.
Since c(object) is in the model, the query c(X) returns true for X = object.

Summarily, in order to resolve a query, our solution uses SLG procedures in each inner
iteration of the model to derive knowledge from the rules-component and tableaux mechanisms
to infer knowledge from the ontology. To derive negation as failure of an atom A we use the
predicate dlnot(A), which succeeds if A was not proven in the last outer iteration. Contrary
to the bottom-up approach, this computation is limited to the objects related to the query and
performed via the predicates known/2, and allModelsEntails/2 as described in Figure 5.5.
The first predicate infer knowledge from the rules-component using SLG procedures, whilst
the latter derives knowledge from the DL-component via tableaux reasoning. The predicates
definedClass/2 and definedRole/3 represent the domain of all classes and roles defined
over a DL-safe MKNF Hybrid Knowledge Base. We assume that these predicates are defined
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explicitly by the programmer, but they could also be inferred via DL-safe restriction. In fact, by
bounding our program to DL-Safe rules, every rule in the hybrid knowledge base must contain
a positive predicate that is only defined in the rules. This predicate limits the evaluation of the
rules to known individuals. In practical, this means that we can infer the set of individuals that
are applicable to each rule, that is, our domain.

Furthermore, since we can only express unary and binary relations in DL syntax, for the
remaining n-ary predicates, SLG resolution is used as usual.

This process is described in the algorithm of Figure 5.5. In it, we obtain two different models
related to the application of the operator Γ of the 3-valued MKNF semantics [34]. An optimistic
model, containing the predicates and propositions that might be true; and a sceptical model
comprising the predicates and propositions that necessarily hold. These models correspond to
models of TU (trues and undefineds) and T , respectively that, given the architecture of our
algorithm, are obtained in different outer iterations. As in the application of Γ, the T model is
monotonically increasing, while TU is monotonically decreasing.

Finally, after computing the models and achieving the fixpoint, our algorithm returns the
evaluation of known(Query, Iteration − 1), where Iteration represents the iteration where
the outer fixpoint was accomplished. Since the first outer model obtained corresponds to the
first iteration in the TU model, this outer fixpoint will be obtained in a TU iteration. Thus,
in order to check if the query is true, we need to check if it contained in the model inferred
in Iteration − 1. If this is not the case, the query is evaluated as undefined if it derived in
Iteration, and false otherwise.

Next, we provide a detailed description of each component of the algorithm. We start by
reviewing how knowledge is inferred by the Rules-component and the DL-component. After-
wards, we focus on how the interaction of the two components is performed, finishing with a
description of how the fixpoint model is obtained.

5.4.1.1 Rules-Component

The knowledge is derived from the Rules-Component via the predicates known/2 and dlnot/2,
where SLG resolution is employed as usual. Therefore, the evaluation of Term in rules is
roughly the execution of the call Term in the program. Intuitively, the for the predicate
known(Term,MajIter,MinIter) to succeed, Term has to succeed in the given MajIter
and MinIter. Yet, even if the call cannot be proven in the rules, it still can be true if the ontol-
ogy derives Term, and hence, the predicate known(Term,MajIter,MinIter) also succeeds
if lastAllModelsEntails(Term) is true, i.e., if Term was derived in the last inner iteration of
the ontology.

However, we still have to assure that if ¬A holds, then not A holds as well. In SLX
[1], a top-down procedure for extended logic programs, this is guaranteed by forcing on TU-
trees to prove not ¬A when proving A. Identically, when we try to derive the predicate
known(Term,MajIter,MinIter) in a outer TU iteration, i.e., when the iteration MajIter
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Input: A query Query
Output: True value of the input query
addObjects(Query,Table);1

foreach Object in Table do2

MajIter, MinIter = 0;3

S = {};4

P = {};5

repeat6

P1 = P ;7

repeat8

S1 = S foreach Class in definedClass(Object,Class) do9

Term = Class(Object);10

S1 = S1∪ known(Term, MajIter, MinIter);11

S1 = S1∪ allModelsEntails(Term, MajIter, MinIter);12

S1 = S1∪ allModelsEntails(not Term, MajIter, MinIter);13

end14

foreach Role in definedRole(Object,Object1,Role) do15

Term = Role(Object,Object1);16

S1 = S1∪ known(Term, MajIter, MinIter);17

S1 = S1∪ allModelsEntails(Term, MajIter, MinIter);18

S1 = S1∪ allModelsEntails(not Term, MajIter, MinIter);19

end20

MinIter++;21

until S = S1 ;22

P = S;23

MajIter++;24

until P = P1 ;25

end26

if known (Query,Final-1,Final) then27

return true28

else29

if known(Query,Final,Final) then30

return undefined31

else32

return false33

end34

end35

Figure 5.5 General Top-Down Algorithm
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is even, we first check if the ontology derived ¬Term in the last model. If so, then the call
known(Term,MajIter,MinIter) automatically fails. This restriction is imposed by the
predicate prev_neg/2.

The predicate known/2 correspond to the following code:

:- table known/2.
known(Term,MajIter,MinIter):-
( (MinIter = 0 ; MajIter mod 2 =:= 1) -> true; prev_neg(Term,

MajIter,MinIter) ),
(Term, Term =.. [_Class,Obj],
get_object_iter(Obj,MajIter,MinIter)

;
Term =.. [Class,Obj],
lastAllModelsEntails(oid(Obj,mknf),cid(Class,mknf))).

prev_neg(Term,MajIter,MinIter) :-
Term =..[Class,Obj], !,
Iter1 is MinIter-1,
tnot(allModelsEntails(oid(Obj,mknf),not(cid(Class,mknf)),MajIter,

Iter1)).

On the other hand, the predicate dlnot(Term, Iter) succeeds if by closed world assump-
tion, the given Term fails. This predicate correspond thus to how Negation as Failure is
represented in our implementation for 3-valued MKNF Hybrid Knowledge Bases. However,
as we described earlier, this evaluation cannot be done straightforwardly. In fact, in order
to assure monotonicity, the evaluation of a dlnot must take into account the result of the
last outer iteration. In practical, this means that for dlnot(Term, Iter) to succeed, the call
tnot(known(Term, Iter − 1,MinIter)) has to succeed as well, i.e., the tabled predicate
known(Term, Iter − 1,MinIter) has to fail. Furthermore, since we are evaluating dlnots
by looking at the last outer iteration, we avoid both positive and negative loops, guaranteeing
that the evaluation always terminates.

As described before, each outer iteration represent a variation in a T and TU model. that
relates to the operators Γ and Γ′ of the 3-valued MKNF Semantics definition [34]. As a result,
T models are monotonically increasing whilst TU models are monotonically decreasing. To
assure this monotonicity, the way dlnot/2 is first evaluated is very important. To assure that the
first TU model is the largest model, we compel all dlnots to succeed in the first outer iteration.

Afterwards, in the following iterations, dlnot/2 is defined as the failure of known/3 in the
last outer iteration:

dlnot(_Term,0):- !.

dlnot(Term,MajIter):-
Term =.. [Class,Obj],

LastIter is MajIter - 1,
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get_fixpoint_iter(Obj,LastIter,FinIter),
tnot(known(Term,LastIter,FinIter)).

5.4.1.2 DL-Component

A given proposition is evaluated according to the ontology via a satisfiability proof using a
tableau algorithm. This algorithm is implemented by CDF’s theorem prover and can be called
by the predicate rec_allModelsEntails/2. Roughly, rec_allModelsEntails(Id, CE) suc-
ceeds if, in all models, the object Id is satisfiable with the class expression CE.

As in the rules, the given set of objects is tested in the ontology in order to infer new
knowledge at each inner iteration of the algorithm. For this purpose, we define the predicate
allModelsEntails/3 which references CDF’s theorem prover at each iteration. Intuitively,
allModelsEntails(Id, CE, Iter) succeeds if the negation of the class expression CE is un-
satisfiable, that is, if the query to CDF theorem prover: rec_allModelsEntails(Id, not(CE))
fails:

:- table allModelsEntails/4.
allModelsEntails(Id,CE,_MajIter,_MinIter):-

(rec_allModelsEntails(Id,not(CE)) -> fail ; true).

As a result, the predicate allModelsEntails(Id, CE,MajIter,MinIter) succeeds if the nega-
tion of the class expression CE is unsatisfiable.

This predicate allModelsEntails/4 is used to perform queries, employing CDF theorem
prover, for the set of objects included on the table and which belong to the domain specified
by the predicate definedClass/3 for Class and Role. These queries allow us to construct a
model with a set of properties for a given object:

allModelsEntails(Object, Class(Object),Iteration)
allModelsEntails(Object, Role(Object,Object1),Iteration)
allModelsEntails(Object, not Class(Object),Iteration)
allModelsEntails(Object, not Role(Object,Object1),Iteration)

i.e., all the classes and roles that the object explicitly belong (or not) to.

5.4.1.3 Interaction

Earlier, we gave the idea about how the knowledge is shared from the ontology to the rules – the
predicate known(Term,MajIter,MinIter), which evaluates in the rules-component whether
a given Term is true, would also check, in the case that Term does not succeed, if this Term
was true in the last inner iteration of the ontology model. This test is made via the predicate
lastAllModelsEntails/2 that, roughly, goes to the last inner iteration of the ontology model
and verifies if in that given iteration, allModelsEntails/2 succeeded for that same Term.

Symmetrically, we need to assure that the knowledge inferred by the rules is also passed
through the ontology. To address this, we make use of a CDF feature – cdf_intensional. As
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described before in Section 5.2, the architecture of a CDF instance can be divided into two parts
– extensional facts and intensional predicates. In the extensional fact, we can define ordinary
concepts, roles and facts. However, in intensional predicates one is able to define this ontology’s
concepts, roles and facts in a Prolog-like rule. Particularly, cdf_intensional allows us to define
that a given Class(Object) holds if it was true in the rules in the last inner iteration of the
model. This is:

isa_int(oid(Obj,NS),cid(Class,NS1)):-
ground(Obj),ground(Class),!,
Call =.. [Class,Obj],
last_known(Call).

isa_int(oid(Obj,NS),cid(Class,NS)):-
ground(Obj),var(Class),!,
definedClass(Call,Class,Obj),
last_known(Call).

Equivalently for relations, a Role(Object1, Object2) is true if it was true in the rules in the last
iteration:

hasAttr_int(oid(Obj1,NS),rid(Role,NS1),oid(Obj2,NS2)):-
ground(Obj1), ground(Obj2), ground(Role),!,
Call =.. [Role,Obj1,Obj2],
last_known(Call).

hasAttr_int(oid(Obj1,NS),rid(Role,NS1),oid(Obj2,NS2)):-
ground(Obj1), ground(Obj2), var(Role),!,
definedRole(Call,Role,Obj1,Obj2),
last_known(Call).

The predicate last_known(Call) succeeds if, in the last inner iteration of the model obtained by
the rules the Call succeeded. Note that it is only possible to express unary and binary relations
in the ontology, and therefore, all the n-ary terms (where n > 2) are ignored in the ontology.

5.4.1.4 Related Objects

A desirable property for our algorithm is that it only computes a model in the ontology for
objects that are relevant for solving the given query. Intuitively, an object is relevant if it might
be essential to the establishment of the evaluation of the query. In a top-down manner, this set of
objects increases as new dependency relations between objects are disclosed. This is performed
via get_object_iteration/3. For every object in Term, known(Term,MajIter,MinIter)
refers to the tabled predicate get_object_Iter(Id,MajIter,MinIter). If the object with an
Id is defined in the table, then it just returns the correspondent MajIter and MinIter, that is,
it maps to which outer and inner iteration stands the computation of Id; else, the given Id is
asserted to the table and with MajIter and MinIter equal to 0.

Our algorithm checks for each object with an Id in the tabled get_object_iteration/3 if a
fixpoint is achieved. When this happens, the given object is marked as final. The iteration stops
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when all objects presented in the table are final, that is, when all objects have reached a fixpoint.

5.4.1.5 Iterations

Earlier we classified the iterations in two, accordingly to an inner and an outer fixpoint. An inner
iteration represents the core of the computation per se. Here, in each iteration our algorithm de-
rives simultaneously knowledge from the rules-component and the DL-component as described
in Figure 5.5. This is done by the predicate computeObjectPrimitives_1/3, which by non-
deterministically calls known/2, and allModelsEntails/2 for each class and role defined by
the predicate definedClass/2 and definedRole/3.

computeObjectPrimitives_1(Obj,MajIter,MinIter):-
definedClass(Term,_F,Obj),
known(Term,MajIter,MinIter),
fail.

computeObjectPrimitives_1(Obj,MajIter,MinIter):-
definedClass(_Term,Class,Obj),
allModelsEntails(oid(Obj,mknf),cid(Class,mknf),MajIter,MinIter),
fail.

computeObjectPrimitives_1(Obj,MajIter,MinIter):-
definedClass(_Term,Class,Obj),
allModelsEntails(oid(Obj,mknf),not(cid(Class,mknf)),MajIter,MinIter

),
fail.

computeObjectPrimitives_1(Obj,MajIter,MinIter):-
definedRole(Term,_Role,Obj,_Obj2),
known(Term,MajIter,MinIter),
fail.

computeObjectPrimitives_1(Obj,MajIter,MinIter):-
definedRole(_Term,Role,Obj,Obj2),
allModelsEntails(oid(Obj,mknf),exists(rid(Role,mknf),oid(Obj2,mknf)

),MajIter,MinIter),
fail.

computeObjectPrimitives_1(Obj,MajIter,MinIter):-
definedRole(_Term,Role,Obj,Obj2),
allModelsEntails(oid(Obj,mknf),not(exists(rid(Role,mknf),oid(Obj2,

mknf))),MajIter,MinIter),
fail.
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computeObjectPrimitives_1(_Obj,_MajIter,_MinIter).

On the other hand, an outer iteration is only needed to “fix” our knowledge in order to allow
a correct evaluation of dlnots. Consequently, the purpose of this iteration is to call the inner
iteration, which will store the result of each evaluation (to be used further by dlnot) via the use
of XSB tabling.

After computing all the knowledge possible from a given iteration, we have to check if the
object has reached an inner fixpoint, which is done by check_inner_fixpoint/1. If the latter
predicate does not succeed, then the variable MinIter is incremented and the algorithm tries
to infer new knowledge again. Otherwise, we have to check if the object has achieved an outer
fixpoint as well. If this is the case, then the object is marked in the table as Final via the
aid of the predicate finalize_object/1. Else, the variable MajorIter is incremented and the
computation restored.

This description is translated to the following code:

computeObjectPrimitives(Id,MajIter,MinIter):-
((var(MajIter) ; var(MinIter)) -> get_object_iter(Id,MajIter,

MinIter) ; true),
computeObjectPrimitives_1(Id,MajIter,MinIter),
checkAllObjects(Id,MajIter,MinIter),
(check_inner_fixpoint(Id) ->

(check_outer_fixpoint(Id) ->
finalize_object(Id)
; minor_finalize_object(Id,NewMajIter),

computeObjectPrimitives(Id,NewMajIter,0))
; increment_minor_object(Id,MajIter,NewMinIter),
computeObjectPrimitives(Id,MajIter,NewMinIter)).

Finally, the predicate checkAllObjects/1 is our way to impose that the computation only stops
when all objects (defined in the table) have reached a fixpoint. Therefore, it succeeds if all the
remaining objects are marked as Final. Otherwise, it calls computeObjectPrimitive/3 for
these objects.

5.4.2 Usage

As in the bottom-up solution, the hybrid knowledge base must be defined by three different files
in XSB and CDF located in a given folder, in order to be loaded as a whole. However, given
the nature of this implementation, the content of each file is slightly different when compared
to the bottom-up implementation.

• rules.P – containing the set of Prolog rules and Prolog facts. A rule is defined as standard
Prolog rules as follows:

Head :- known(A1),. . .,known(An), dlnot(B1),. . .,dlnot(Bm).
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Where n,m ≥ 0, and An represent positive and Bm negative predicates. The predicates
known/1 and dlnot/1 are thus employed by our solution for passing the computation to
SLG resolution. A rule fact is defined as standard XSB facts like:

Head.

Similar to the bottom-up solution, each rule must respect DL-safeness, in order to the
Hybrid Knowledge Base to be DL-safe.

• cdf_extensional.P – comprising ordinary ontology facts and concepts defined over the
CDF syntax described in Section 5.2.1.1.

• cdf_intensional.P – including intensional rules that are defined as Prolog-like rules:

Head :- Body.

but where the Head represents a particular ontology fact or concept that holds when the
Body holds as well. This Body can refer to any CDF proposition or XSB library feature.
However, contrary to the bottom-up implementation, Body can also call back directly
any (n-ary) predicate from the ontology via the use of known/1 and its negation with
dlnot/1.

As an implementation of a homogeneous integration semantics, any atom A can be defined as
a predicate, or as a proposition or both. Also, any predicate can be defined over a proposition
as well as any proposition can be defined over a predicate. This results in an interchangeability
between rules.P , cdf_extensional.P and cdf_intensional.P , where any atom can be defined
freely in any of these files. Inference in predicates defined in rules.P is performed via SLG
resolution, whilst in cdf_extensional.P/cdf_intensional.P CDF theorem prover evaluates
propositions accordingly to a tableau algorithm.

Similar to the first implementation, it is the responsibility of our algorithm to retrieve where
the given A (typically needed for answer-resolution) is defined in order to evaluate correctly the
given query.

5.4.3 Examples

Next, we continue by presenting some examples to illustrate the behaviour of our algorithm.

Example 5.7. Consider the following DL-safe Hybrid Knowledge Base and the query one(X).

K one(X)← K p(X),not two(X).

K two(X)← K p(X),not one(X).

p(obj).

¬Two(obj)

This hybrid knowledge base is translated to the following syntax in XSB.
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one(X) :- known(p(X)), dlnot(two(X)).
two(X) :- known(p(X)), dlnot(one(X)).
p(obj).

And to the following syntax in CDF.

necessCond_ext(oid(obj,mknf),vid(not(cid(two,mknf)))).

In order to answer to the query, our solution starts to call the rule one(X). This calls p(X) which
grounds X to obj, adding it to the table, by asserting the predicate get_object_iter(obj, 0, 0).
Afterwards, it computes iteratively a model for obj, following the Definition 5.10 and consider-
ing all its properties and relations until a fixpoint is achieved. Subsequently, it will continue by
performing this computational until an outer fixpoint is accomplished.

Next, we give a trace of the evaluation of the query one(obj), by describing what and why
is inferred in each outer iteration.

Iter = 0 As a consequence of our special evaluation of dlnots in the two first iterations, in
this first outer iteration, since we are computing the larger optimistic model, all dlnots
succeed. Yet, as we are computing a TU model, an atom A does not succeed in the case
that ¬A is represented in the ontology. Hence, from the evaluation of ¬Two(obj) the
predicate known(two(obj), 0, final) fails. On the other hand, since p(obj) holds and all
dlnots are forced to succeed, known(one(obj), 0, final) succeeds as well.

M0 = {known(one(obj), 0, final), known(p(obj), 0, final),

allModelsEntails(oid(obj,mknf), notcid(two,mknf), 0, final)}

Iter = 1 The result from the previous iteration is used for the evaluation of dlnots. As a result,
dlnot(one(obj), 1) fails as known(one(obj), 1) holds in the last model. Symmetrically,
dlnot(two(obj), 1) succeeds as tnot(known(two(obj), 0, final) succeeds as well. Ac-
cordingly, known(one(obj), 1, final) and known(p(obj), 1, final) holds in the rules,
and the ABox: ¬Two(obj) is inferred by the ontology

M1 = {known(one(obj), 1, final), known(p(obj), 1, final),

allModelsEntails(oid(obj,mknf), notcid(two,mknf), 1, final)}

Iter = 2 This latter iteration is only needed for a verification of the fixpoint. In fact, the call
dlnot(two(obj), 2) still fails as known(two(obj), 2, final) is derived in the last itera-
tion. From this, the predicate known(one(obj), 2, final) continues to hold. On the other
hand, known(p(obj), 2, final) and ¬Two(obj) succeed as they are stated as facts in our
knowledge base.

M2 = {known(one(obj), 2, final), known(p(obj), 2, final),

allModelsEntails(oid(obj,mknf), notcid(two,mknf), 2, final)}
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Finally, we look to what is obtained in our models to decide the result of the query one(X).
Since known(one(obj) holds, our solution returns true for X = obj.

Example 5.8. Next, we present an example with multiple objects given the query third(p1):

first(p1).
third(p1):- known(second(p2)), known(first(p1)).).

isa_ext(cid(second,mknf),cid(p2,mknf)).

The algorithm starts by adding get_object_iter(p1, 0, 0), computing all its properties. However,
the evaluation of known(third(p1)) is depends on the value of known(second(p2)). Since our
algorithm does not know p2, it is added to the table by asserting get_object_iter(p2, 0, 0).
Consequently, the solution will start to evaluate p2 accordingly to its properties and the compu-
tation only stops until p2 has reached a fixpoint as well. Thus, we force the algorithm to derive
Second(p2) from the ontology that will make known(second(p2)) to succeed. As a result,
known(third(p1)) succeeds as well.

Since the knowledge base is positive, all this is inferred in the first iteration. The latter two
iterations are needed to assure that the fixpoint is achieved.

M0 = M1 = M3 = {known(first(p1), _, final), known(third(p1), _, final),
known(second(p2), _, final),
allModelsEntails(oid(p1,mknf), cid(first,mknf), _, final),
allModelsEntails(oid(p1,mknf), cid(third,mknf), _, final),
allModelsEntails(oid(p1,mknf), cid(first,mknf), _, final)}

5.4.4 Discussion and validation

In [3] it is presented a goal-driven procedure for Hybrid MKNF knowledge bases, which capture
reasoning within the ontology, as an interaction with an external oracle. This oracle assumes all
rule literals necessary to the computation of a proposition to be true, returning the computation
to the SLG-based rule engine by passing a set with all possible sets of rule-literals that, if
assumed true, prove the given query. It is then the task of the rule engine to check whether
any of these possibilities is the case, without the need of any further call to the DL-reasoner for
the same query. However, this procedure has some drawbacks: if the first rule-atom found by
the DL-reasoner happens to be false, the computation will continue until the DL-reasoner finds
all (possibly too many) possibilities, just to fail afterwards when the rule engine takes the lead
again.

For our solution, this restriction is overcome giving the particular integration between the
rule engine (XSB) and the ontology framework (CDF). In fact, CDF is implemented over XSB
and, therefore, it enjoys from most of XSB properties, as the ability to define rules and tabling.
As a result, CDF can access directly to tabled XSB predicates, as well as their residual.
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Nevertheless, avoiding the excess of computation of the DL-reasoner comes at the price of
renouncing to a pure goal-driven procedure. If by one hand, when reasoning in Description
Logics via the use of tableaux procedures, the construction of the model is essential, on the
other hand, our evaluation of a predicate on the rules-component is not completely top-down.
As we discussed in Section 5.4.1.1, default negations are evaluated in accordance to the model
inferred in the last outer iteration. This holds a need for computing a second fixpoint, and to
decide the truth value of dlnots similar to the bottom-up fashion way.

Yet, it is this resemblance to the definition of the bottom-up approach, the underpinning of
our idea of correction. In fact, even though we have not presented a formal proof of soundness
and completeness for our algorithm, we gave along the description an informal intuition of its
correction by referring to a similarity between the two implementations. Particularly, it is unde-
niable the correspondence between the core of our computation represented in Definition 5.10
and the Definition 4.15 from the 3-valued MKNF definition, and between the operators Γ / Γ′

and our inner / outer fixpoints. As a result, one can define our goal-driven implementation as an
optimisation of the bottom-up approach where the computation is limited to the set of relevant
objects, and the evaluation of positive predicates is performed by the use of SLG resolution..

Still, at this moment, not much work exists in providing concrete applications for reasoning
in hybrid knowledge bases that comprise rules and ontologies. Implementations like dlvhex
[52] are able to reason in hybrid knowledge bases, but always limiting the interaction between
the two components. Consequently, our implementation is the first implementation where rules
and ontologies are interleaved and interact with no restrictions, leaving us without a point of
comparison. Even so, inspired by the results of the bottom-up implementation, we developed
an exhaustive test suit to reinforce the robustness of our solution. This implementation along
with a fragment of the test suit is available for download at the XSB CVS repository and will
possibly be integrated as a package in the next XSB release.



6 . Conclusions

Motivated primarily by the demand to complete the Semantic Web architecture with the in-
tegration of monotonic ontologies and nonmonotonic rule languages, we developed two novel
implementations for reasoning in hybrid knowledge bases that are accordant to the MKNF Well-
Founded Semantics.

Moreover, implementations with such characteristics are not only useful in the Semantic
Web context. In fact, several use case applications have been presented [19], [47], [58], [6] with
requirements for a close and safe combination between ontologies and rules.

Contrary to other implementations developed so far, our implementations are able to handle
hybrid knowledge bases where rules and ontologies are fully integrated, that is, the combination
is such that both the rules can refer to predicates in the ontology, as the ontology can refer to
predicates defined in the rules. However, this combination is far from being trivial – since we are
combining two completely different systems, as rules employ closed world assumption, whereas
ontologies adhere to open world assumption, negation (both explicit and default) cannot be
treated straightforwardly. Nevertheless, given the properties of the semantics employed, the
implementations are able to preserve the complexity of CDF Description Logics, maintaining
tractability for Type-0 instances, and EXPTime-complete for Type-1 instances.

The first implementation we presented herein refers to a bottom-up implementation mainly
based on the application of the operators defined in the MKNF Well-Founded Semantics. Still,
our solution extends the definition of the semantics by allowing the programmer to define non-
ground rules, as long as they respect the condition of DL-Safeness. As a bottom-up imple-
mentation, it works by applying rules and entailment to the given facts and ABoxes to infer
new facts, repeating this process until no more facts are derivable, i.e., when a fixpoint is ac-
complished. In the end, it computes the whole set of predicates and propositions that are true,
false and undefined, concerning a given hybrid knowledge base. This approach is particularly
efficient for small and uniform hybrid knowledge bases as redundant derivations are avoided.

On the other hand, the goal-driven implementation makes use of XSB’s SLG Resolution
together with CDF’s theorem prover to answer a specific query. From this, one can see that the
gist of this second implementation is slightly different – being a goal-driven implementation,
it is query-oriented, only computing predicates and propositions of a given object as they are
requested by the algorithm. Hence, this latter implementation assumes that not everything needs
to be computed in order to answer a query, which makes it more suitable for the distributed
nature and immeasurable size of the Web.

In the beginning of this report we presented a wide set of approaches in the matter of com-
bining rules and ontologies and, up until now, not much work exists in providing practical
implementations for these approaches. Our solutions intend to reduce this gap between theoret-
ical proposals and tangible applications. We believe that our two implementations represent a
relevant contribution, first by achieving an important milestone in the Semantic Web architec-
ture layer, and second by paving the way for the arising of several applications that desire to
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reap the benefits of such combination.
For future work, an important challenge is to abstract the implementation to handle any

given DL reasoner. Currently, our solution suffers from embracing two systems that are roughly
the same. It would be interesting to present an implementation that could cope with popular DL
reasoners like KAON21, Pellet2 or Fact++3.

Another riveting challenge is to enhance the performance of the CDF theorem prover by
restricting the set of propositions to be computed. For instance, this could be accomplished by
building a dependency graph between the predicates and propositions of the hybrid knowledge
base.

These two challenges lead to research in two opposite directions – the first seeks to define an
abstract framework in order to handle multiple DL reasoners, whilst the latter needs to exploit
of the specifications of CDF theorem prover to minimise the computational power.

1http://kaon2.semanticweb.org/
2http://clarkparsia.com/pellet/
3http://owl.man.ac.uk/factplusplus/

http://kaon2.semanticweb.org/
http://clarkparsia.com/pellet/
http://owl.man.ac.uk/factplusplus/
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