5,218 research outputs found

    Spatial and Temporal Habitat Use of an Asian Elephant in Sumatra

    Get PDF
    Increasingly, habitat fragmentation caused by agricultural and human development has forced Sumatran elephants into relatively small areas, but there is little information on how elephants use these areas and thus, how habitats can be managed to sustain elephants in the future. Using a Global Positioning System (GPS) collar and a land cover map developed from TM imagery, we identified the habitats used by a wild adult female elephant (Elephas maximus sumatranus) in the Seblat Elephant Conservation Center, Bengkulu Province, Sumatra during 2007–2008. The marked elephant (and presumably her 40–60 herd mates) used a home range that contained more than expected medium canopy and open canopy land cover. Further, within the home range, closed canopy forests were used more during the day than at night. When elephants were in closed canopy forests they were most often near the forest edge vs. in the forest interior. Effective elephant conservation strategies in Sumatra need to focus on forest restoration of cleared areas and providing a forest matrix that includes various canopy types

    Fall feeding aggregations of fin whales off Elephant Island (Antarctica)

    Get PDF
    From 13 March to 09 April 2012 Germany conducted a fisheries survey on board RV Polarstern in the Scotia Sea (Elephant Island - South Shetland Island - Joinville Island area) under the auspices of CCAMLR. During this expedition, ANT-XXVIII/4, an opportunistic marine mammal survey was carried out. Data were collected for 26 days along the externally preset cruise track, resulting in 295 hrs on effort. Within the study area 248 sightings were collected, including three different species of baleen whales (fin whale (Balaenoptera physalus), humpback whale (Megaptera novaeangliae), and Antarctic minke whale (Balaenoptera bonaerensis) and one toothed whale species, killer whale (Orcinus orca). More than 62% of the sightings recorded were fin whales (155 sightings) which were mainly related to the Elephant Island area (116 sightings). Usual group sizes of the total fin whale sightings ranged from one to five individuals, also including young animals associated with adults during some encounters. Larger groups of more than 20 whales, and on two occasions more than 100 indivuduals, were observed as well. These large pods of fin whales were observed feeding in shallow waters (< 300 m) on the north-western shelf off Elephant Island, concordant with large aggregations of Antarctic krill (Euphausia superba). This observation suggests that Elephant Island constitutes an important feeding area for fin whales in early austral fall, with possible implications regarding the regulation of (krill) fisheries in this area

    Utilisation of intensive foraging zones by female Australian fur seals.

    Get PDF
    Within a heterogeneous environment, animals must efficiently locate and utilise foraging patches. One way animals can achieve this is by increasing residency times in areas where foraging success is highest (area-restricted search). For air-breathing diving predators, increased patch residency times can be achieved by altering both surface movements and diving patterns. The current study aimed to spatially identify the areas where female Australian fur seals allocated the most foraging effort, while simultaneously determining the behavioural changes that occur when they increase their foraging intensity. To achieve this, foraging behaviour was successfully recorded with a FastLoc GPS logger and dive behaviour recorder from 29 individual females provisioning pups. Females travelled an average of 118 ± 50 km from their colony during foraging trips that lasted 7.3 ± 3.4 days. Comparison of two methods for calculating foraging intensity (first-passage time and first-passage time modified to include diving behaviour) determined that, due to extended surface intervals where individuals did not travel, inclusion of diving behaviour into foraging analyses was important for this species. Foraging intensity 'hot spots' were found to exist in a mosaic of patches within the Bass Basin, primarily to the south-west of the colony. However, the composition of benthic habitat being targeted remains unclear. When increasing their foraging intensity, individuals tended to perform dives around 148 s or greater, with descent/ascent rates of approximately 1.9 m•s-1 or greater and reduced postdive durations. This suggests individuals were maximising their time within the benthic foraging zone. Furthermore, individuals increased tortuosity and decreased travel speeds while at the surface to maximise their time within a foraging location. These results suggest Australian fur seals will modify both surface movements and diving behaviour to maximise their time within a foraging patch

    Creative or Not? Birds and Ants Draw with Muscle

    Get PDF
    In this work, a novel approach of merging two swarm intelligence algorithms is considered – one mimicking the behaviour of ants foraging (Stochastic Diffusion Search [5]) and the other algorithm simulating the behaviour of birds flocking (Particle Swarm Optimisation [17]). This hybrid algorithm is assisted by a mechanism inspired from the behaviour of skeletal muscles activated by motor neurons. The operation of the swarm intelligence algorithms is first introduced via metaphor before the new hybrid algorithm is defined. Next, the novel behaviour of the hybrid algorithm is reflected through a cooperative attempt to make a drawing, followed by a discussion about creativity in general and the ’computational creativity’ of the swarm

    Elephant cognition in primate perspective

    Get PDF
    On many of the staple measures of comparative psychology, elephants show no obvious differences from other mammals, such as primates: discrimination learning, memory, spontaneous tool use, etc. However, a range of more naturalistic measures have recently suggested that elephant cognition may be rather different. Wild elephants sub-categorize humans into groups, independently making this classification on the basis of scent or colour. In number discrimination, elephants show no effects of absolute magnitude or relative size disparity in making number judgements. In the social realm, elephants show empathy into the problems faced by others, and give hints of special abilities in cooperation, vocal imitation and perhaps teaching. Field data suggest that the elephant’s vaunted reputation for memory may have a factual basis, in two ways. Elephants’ ability to remember large-scale space over long periods suggests good cognitive mapping skills. Elephants’ skill in keeping track of the current locations of many family members implies that working memory may be unusually developed, consistent with the laboratory finding that their quantity judgements do not show the usual magnitude effects.Publisher PDFPeer reviewe

    The foraging distribution of Cape gannets in relation to Addo Elephant National Park Marine Protected Area

    Get PDF
    Seabirds are considered to be the sentinels of the ocean, as they are able to locate their prey in spite of the great heterogeneity of the marine environment. During the breeding season, these central-place foragers not only need to find prey to maintain themselves but also to feed their young. The changes in the distribution of their prey due to environmental and human activity factors can affect their individual and population health. In order to protect the local biodiversity, the Addo Elephant National Park Marine Protected Area was proclaimed in 2019 in Algoa Bay, Eastern Cape, South Africa. Bird Island (Algoa Bay) hosts the largest Cape gannet (Morus capensis) colony in the world and lies within Addo Elephant Nation Park Marine Protected Area. This Marine Protected Area aims to offer refuge to a vast variety of species and promote fisheries sustainability. This study is focused on the foraging distribution of Cape gannets in relation to Addo Elephant National Park Marine Protected Area. The deployment of adult Cape gannets with GPS devices during the rearing season of 2021, enabled the analysis of their foraging range, behaviour, and the speculation on possible enhancements in their foraging effort as a result of the implementation of this Marine Protected Area. These top predators showed a variety of distributions, but the majority of the birds stayed in the vicinity of Algoa Bay. Their behaviour was classified and feeding grounds related to the Marine Protected Area were identified. Comparison to previous data from 2010 until 2020 indicated a fluctuating foraging range, but showed a possible reduction in the gannet distribution since the Marine Protected Area implementation. Last, an area of high activity was identified and paired with results from previous studies. In conclusion, this location could be proposed as an additional Marine Protected Area after further investigation. This research provides an assessment of the foraging distribution of Cape gannets that can be used for their management, but also for the monitoring of the Addo Elephant National Park Marine Protected Area

    Home Range and Ranging Behaviour of Bornean Elephant (Elephas maximus borneensis) Females

    Get PDF
    BACKGROUND: Home range is defined as the extent and location of the area covered annually by a wild animal in its natural habitat. Studies of African and Indian elephants in landscapes of largely open habitats have indicated that the sizes of the home range are determined not only by the food supplies and seasonal changes, but also by numerous other factors including availability of water sources, habitat loss and the existence of man-made barriers. The home range size for the Bornean elephant had never been investigated before. METHODOLOGY/PRINCIPAL FINDINGS: The first satellite tracking program to investigate the movement of wild Bornean elephants in Sabah was initiated in 2005. Five adult female elephants were immobilized and neck collars were fitted with tracking devices. The sizes of their home range and movement patterns were determined using location data gathered from a satellite tracking system and analyzed by using the Minimum Convex Polygon and Harmonic Mean methods. Home range size was estimated to be 250 to 400 km(2) in a non-fragmented forest and 600 km(2) in a fragmented forest. The ranging behavior was influenced by the size of the natural forest habitat and the availability of permanent water sources. The movement pattern was influenced by human disturbance and the need to move from one feeding site to another. CONCLUSIONS/SIGNIFICANCE: Home range and movement rate were influenced by the degree of habitat fragmentation. Once habitat was cleared or converted, the availability of food plants and water sources were reduced, forcing the elephants to travel to adjacent forest areas. Therefore movement rate in fragmented forest was higher than in the non-fragmented forest. Finally, in fragmented habitat human and elephant conflict occurrences were likely to be higher, due to increased movement bringing elephants into contact more often with humans

    From white elephants to space elephants

    Get PDF
    • …
    corecore