57 research outputs found

    EmoEEG - recognising people's emotions using electroencephalography

    Get PDF
    Tese de mestrado integrado em Engenharia Biomédica e Biofísica (Sinais e Imagens Médicas), Universidade de Lisboa, Faculdade de Ciências, 2020As emoções desempenham um papel fulcral na vida humana, estando envolvidas numa extensa variedade de processos cognitivos, tais como tomada de decisão, perceção, interações sociais e inteligência. As interfaces cérebro-máquina (ICM) são sistemas que convertem os padrões de atividade cerebral de um utilizador em mensagens ou comandos para uma determinada aplicação. Os usos mais comuns desta tecnologia permitem que pessoas com deficiência motora controlem braços mecânicos, cadeiras de rodas ou escrevam. Contudo, também é possível utilizar tecnologias ICM para gerar output sem qualquer controle voluntário. A identificação de estados emocionais é um exemplo desse tipo de feedback. Por sua vez, esta tecnologia pode ter aplicações clínicas tais como a identificação e monitorização de patologias psicológicas, ou aplicações multimédia que facilitem o acesso a músicas ou filmes de acordo com o seu conteúdo afetivo. O interesse crescente em estabelecer interações emocionais entre máquinas e pessoas, levou à necessidade de encontrar métodos fidedignos de reconhecimento emocional automático. Os autorrelatos podem não ser confiáveis devido à natureza subjetiva das próprias emoções, mas também porque os participantes podem responder de acordo com o que acreditam que os outros responderiam. A fala emocional é uma maneira eficaz de deduzir o estado emocional de uma pessoa, pois muitas características da fala são independentes da semântica ou da cultura. No entanto, a precisão ainda é insuficiente quando comparada com outros métodos, como a análise de expressões faciais ou sinais fisiológicos. Embora o primeiro já tenha sido usado para identificar emoções com sucesso, ele apresenta desvantagens, tais como o fato de muitas expressões faciais serem "forçadas" e o fato de que as leituras só são possíveis quando o rosto do sujeito está dentro de um ângulo muito específico em relação à câmara. Por estes motivos, a recolha de sinais fisiológicos tem sido o método preferencial para o reconhecimento de emoções. O uso do EEG (eletroencefalograma) permite-nos monitorizar as emoções sentidas sob a forma de impulsos elétricos provenientes do cérebro, permitindo assim obter uma ICM para o reconhecimento afetivo. O principal objetivo deste trabalho foi estudar a combinação de diferentes elementos para identificar estados afetivos, estimando valores de valência e ativação usando sinais de EEG. A análise realizada consistiu na criação de vários modelos de regressão para avaliar como diferentes elementos afetam a precisão na estimativa de valência e ativação. Os referidos elementos foram os métodos de aprendizagem automática, o género do indivíduo, o conceito de assimetria cerebral, os canais de elétrodos utilizados, os algoritmos de extração de características e as bandas de frequências analisadas. Com esta análise foi possível criarmos o melhor modelo possível, com a combinação de elementos que maximiza a sua precisão. Para alcançar os nossos objetivos, recorremos a duas bases de dados (AMIGOS e DEAP) contendo sinais de EEG obtidos durante experiências de desencadeamento emocional, juntamente com a autoavaliação realizada pelos respetivos participantes. Nestas experiências, os participantes visionaram excertos de vídeos de conteúdo afetivo, de modo a despoletar emoções sobre eles, e depois classificaram-nas atribuindo o nível de valência e ativação experienciado. Os sinais EEG obtidos foram divididos em epochs de 4s e de seguida procedeu-se à extração de características através de diferentes algoritmos: o primeiro, segundo e terceiro parâmetros de Hjorth; entropia espectral; energia e entropia de wavelets; energia e entropia de FMI (funções de modos empíricos) obtidas através da transformada de Hilbert-Huang. Estes métodos de processamento de sinal foram escolhidos por já terem gerado resultados bons noutros trabalhos relacionados. Todos estes métodos foram aplicados aos sinais EEG dentro das bandas de frequência alfa, beta e gama, que também produziram bons resultados de acordo com trabalhos já efetuados. Após a extração de características dos sinais EEG, procedeu-se à criação de diversos modelos de estimação da valência e ativação usando as autoavaliações dos participantes como “verdade fundamental”. O primeiro conjunto de modelos criados serviu para aferir quais os melhores métodos de aprendizagem automática a utilizar para os testes vindouros. Após escolher os dois melhores, tentámos verificar as diferenças no processamento emocional entre os sexos, realizando a estimativa em homens e mulheres separadamente. O conjunto de modelos criados a seguir visou testar o conceito da assimetria cerebral, que afirma que a valência emocional está relacionada com diferenças na atividade fisiológica entre os dois hemisférios cerebrais. Para este teste específico, foram consideradas a assimetria diferencial e racional segundo pares de elétrodos homólogos. Depois disso, foram criados modelos de estimação de valência e ativação considerando cada um dos elétrodos individualmente. Ou seja, os modelos seriam gerados com todos os métodos de extração de características, mas com os dados obtidos de um elétrodo apenas. Depois foram criados modelos que visassem comparar cada um dos algoritmos de extração de características utilizados. Os modelos gerados nesta fase incluíram os dados obtidos de todos os elétrodos, já que anteriormente se verificou que não haviam elétrodos significativamente melhores que outros. Por fim, procedeu-se à criação dos modelos com a melhor combinação de elementos possível, otimizaram-se os parâmetros dos mesmos, e procurámos também aferir a sua validação. Realizámos também um processo de classificação emocional associando cada par estimado de valores de valência e ativação ao quadrante correspondente no modelo circumplexo de afeto. Este último passo foi necessário para conseguirmos comparar o nosso trabalho com as soluções existentes, pois a grande maioria delas apenas identificam o quadrante emocional, não estimando valores para a valência e ativação. Em suma, os melhores métodos de aprendizagem automática foram RF (random forest) e KNN (k-nearest neighbours), embora a combinação dos melhores métodos de extração de características fosse diferente para os dois. KNN apresentava melhor precisão considerando todos os métodos de extração menos a entropia espectral, enquanto que RF foi mais preciso considerando apenas o primeiro parâmetro de Hjorth e a energia de wavelets. Os valores dos coeficientes de Pearson obtidos para os melhores modelos otimizados ficaram compreendidos entre 0,8 e 0,9 (sendo 1 o valor máximo). Não foram registados melhoramentos nos resultados considerando cada género individualmente, pelo que os modelos finais foram criados usando os dados de todos os participantes. É possível que a diminuição da precisão dos modelos criados para cada género seja resultado da menor quantidade de dados envolvidos no processo de treino. O conceito de assimetria cerebral só foi útil nos modelos criados usando a base de dados DEAP, especialmente para a estimação de valência usando as características extraídas segundo a banda alfa. Em geral, as nossas abordagens mostraram-se a par ou mesmo superiores a outros trabalhos, obtendo-se valores de acurácia de 86.5% para o melhor modelo de classificação gerado com a base de dados AMIGOS e 86.6% usando a base de dados DEAP.Emotion recognition is a field within affective computing that is gaining increasing relevance and strives to predict an emotional state using physiological signals. Understanding how these biological factors are expressed according to one’s emotions can enhance the humancomputer interaction (HCI). This knowledge, can then be used for clinical applications such as the identification and monitoring of psychiatric disorders. It can also be used to provide better access to multimedia content, by assigning affective tags to videos or music. The goal of this work was to create several models for estimating values of valence and arousal, using features extracted from EEG signals. The different models created were meant to compare how various elements affected the accuracy of the model created. These elements were the machine learning techniques, the gender of the individual, the brain asymmetry concept, the electrode channels, the feature extraction methods and the frequency of the brain waves analysed. The final models contained the best combination of these elements and achieved PCC values over 0.80. As a way to compare our work with previous approaches, we also implemented a classification procedure to find the correspondent quadrant in the valence and arousal space according to the circumplex model of affect. The best accuracies achieved were over 86%, which was on par or even superior to some of the works already done

    Brain Computer Interfaces and Emotional Involvement: Theory, Research, and Applications

    Get PDF
    This reprint is dedicated to the study of brain activity related to emotional and attentional involvement as measured by Brain–computer interface (BCI) systems designed for different purposes. A BCI system can translate brain signals (e.g., electric or hemodynamic brain activity indicators) into a command to execute an action in the BCI application (e.g., a wheelchair, the cursor on the screen, a spelling device or a game). These tools have the advantage of having real-time access to the ongoing brain activity of the individual, which can provide insight into the user’s emotional and attentional states by training a classification algorithm to recognize mental states. The success of BCI systems in contemporary neuroscientific research relies on the fact that they allow one to “think outside the lab”. The integration of technological solutions, artificial intelligence and cognitive science allowed and will allow researchers to envision more and more applications for the future. The clinical and everyday uses are described with the aim to invite readers to open their minds to imagine potential further developments

    Applications of non-invasive brain-computer interfaces for communication and affect recognition

    Get PDF
    Doctor of PhilosophyDepartment of Electrical and Computer EngineeringDavid E. ThompsonVarious assistive technologies are available for people with communication disorders. While these technologies are quite useful for moderate to severe movement impairments, certain progressive diseases can cause a total locked-in state (TLIS). These conditions include amyotrophic lateral sclerosis (ALS), neuromuscular disease (NMD), and several other disorders that can cause impairment between the neural pathways and the muscles. For people in a locked-in state (LIS), brain-computer interfaces (BCIs) may be the only possible solution. BCIs could help to restore communication to these people, with the help of external devices and neural recordings. The present dissertation investigates the role of latency jitter on BCIs system performance and, at the same time, the possibility of affect recognition using BCIs. BCIs that can recognize human affect are referred to as affective brain-computer interfaces (aBCIs). These aBCIs are a relatively new area of research in affective computing. Estimation of affective states can improve human-computer interaction as well as improve the care of people with severe disabilities. The present work used a publicly available dataset as well as a dataset collected at the Brain and Body Sensing Lab at K-State to assess the effectiveness of EEG recordings in recognizing affective states. This work proposed an extended classifier-based latency estimation (CBLE) method using sparse autoencoders (SAE) to investigate the role of latency jitter on BCI system performance. The recent emergence of autoencoders motivated the present work to develop an SAE based CBLE method. Here, the newly-developed SAE-based CBLE method is applied to a newly-collected dataset. Results from our data showed a significant (p < 0.001) negative correlation between BCI accuracy and estimated latency jitter. Furthermore, the SAE-based CBLE method is also able to predict BCI accuracy. In the aBCI-related investigation, this work explored the effectiveness of different features extracted from EEG to identify the affect of a user who was experiencing affective stimuli. Furthermore, this dissertation reviewed articles that used the Database for Emotion Analysis Using Physiological Signals (DEAP) (i.e., a publicly available affective database) and found that a significant number of studies did not consider the presence of the class imbalance in the dataset. Failing to consider class imbalance creates misleading results. Furthermore, ignoring class imbalance makes comparing results between studies impossible, since different datasets will have different class imbalances. Class imbalance also shifts the chance level. Hence, it is vital to consider class bias while determining if the results are above chance. This dissertation suggests the use of balanced accuracy as a performance metric and its posterior distribution for computing confidence intervals to account for the effect of class imbalance

    Proceedings of the 3rd International Mobile Brain/Body Imaging Conference : Berlin, July 12th to July 14th 2018

    Get PDF
    The 3rd International Mobile Brain/Body Imaging (MoBI) conference in Berlin 2018 brought together researchers from various disciplines interested in understanding the human brain in its natural environment and during active behavior. MoBI is a new imaging modality, employing mobile brain imaging methods like the electroencephalogram (EEG) or near infrared spectroscopy (NIRS) synchronized to motion capture and other data streams to investigate brain activity while participants actively move in and interact with their environment. Mobile Brain / Body Imaging allows to investigate brain dynamics accompanying more natural cognitive and affective processes as it allows the human to interact with the environment without restriction regarding physical movement. Overcoming the movement restrictions of established imaging modalities like functional magnetic resonance tomography (MRI), MoBI can provide new insights into the human brain function in mobile participants. This imaging approach will lead to new insights into the brain functions underlying active behavior and the impact of behavior on brain dynamics and vice versa, it can be used for the development of more robust human-machine interfaces as well as state assessment in mobile humans.DFG, GR2627/10-1, 3rd International MoBI Conference 201

    Deep Learning Techniques for Electroencephalography Analysis

    Get PDF
    In this thesis we design deep learning techniques for training deep neural networks on electroencephalography (EEG) data and in particular on two problems, namely EEG-based motor imagery decoding and EEG-based affect recognition, addressing challenges associated with them. Regarding the problem of motor imagery (MI) decoding, we first consider the various kinds of domain shifts in the EEG signals, caused by inter-individual differences (e.g. brain anatomy, personality and cognitive profile). These domain shifts render multi-subject training a challenging task and impede robust cross-subject generalization. We build a two-stage model ensemble architecture and propose two objectives to train it, combining the strengths of curriculum learning and collaborative training. Our subject-independent experiments on the large datasets of Physionet and OpenBMI, verify the effectiveness of our approach. Next, we explore the utilization of the spatial covariance of EEG signals through alignment techniques, with the goal of learning domain-invariant representations. We introduce a Riemannian framework that concurrently performs covariance-based signal alignment and data augmentation, while training a convolutional neural network (CNN) on EEG time-series. Experiments on the BCI IV-2a dataset show that our method performs superiorly over traditional alignment, by inducing regularization to the weights of the CNN. We also study the problem of EEG-based affect recognition, inspired by works suggesting that emotions can be expressed in relative terms, i.e. through ordinal comparisons between different affective state levels. We propose treating data samples in a pairwise manner to infer the ordinal relation between their corresponding affective state labels, as an auxiliary training objective. We incorporate our objective in a deep network architecture which we jointly train on the tasks of sample-wise classification and pairwise ordinal ranking. We evaluate our method on the affective datasets of DEAP and SEED and obtain performance improvements over deep networks trained without the additional ranking objective

    Emotion and Stress Recognition Related Sensors and Machine Learning Technologies

    Get PDF
    This book includes impactful chapters which present scientific concepts, frameworks, architectures and ideas on sensing technologies and machine learning techniques. These are relevant in tackling the following challenges: (i) the field readiness and use of intrusive sensor systems and devices for capturing biosignals, including EEG sensor systems, ECG sensor systems and electrodermal activity sensor systems; (ii) the quality assessment and management of sensor data; (iii) data preprocessing, noise filtering and calibration concepts for biosignals; (iv) the field readiness and use of nonintrusive sensor technologies, including visual sensors, acoustic sensors, vibration sensors and piezoelectric sensors; (v) emotion recognition using mobile phones and smartwatches; (vi) body area sensor networks for emotion and stress studies; (vii) the use of experimental datasets in emotion recognition, including dataset generation principles and concepts, quality insurance and emotion elicitation material and concepts; (viii) machine learning techniques for robust emotion recognition, including graphical models, neural network methods, deep learning methods, statistical learning and multivariate empirical mode decomposition; (ix) subject-independent emotion and stress recognition concepts and systems, including facial expression-based systems, speech-based systems, EEG-based systems, ECG-based systems, electrodermal activity-based systems, multimodal recognition systems and sensor fusion concepts and (x) emotion and stress estimation and forecasting from a nonlinear dynamical system perspective
    corecore