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Abstract

Various assistive technologies are available for people with communication disorders.

While these technologies are quite useful for moderate to severe movement impairments,

certain progressive diseases can cause a total locked-in state (TLIS). These conditions in-

clude amyotrophic lateral sclerosis (ALS), neuromuscular disease (NMD), and several other

disorders that can cause impairment between the neural pathways and the muscles. For

people in a locked-in state (LIS), brain-computer interfaces (BCIs) may be the only possible

solution. BCIs could help to restore communication to these people, with the help of external

devices and neural recordings.

The present dissertation investigates the role of latency jitter on BCIs system performance

and, at the same time, the possibility of affect recognition using BCIs. BCIs that can

recognize human affect are referred to as affective brain-computer interfaces (aBCIs). These

aBCIs are a relatively new area of research in affective computing. Estimation of affective

states can improve human-computer interaction as well as improve the care of people with

severe disabilities. The present work used a publicly available dataset as well as a dataset

collected at the Brain and Body Sensing Lab at K-State to assess the effectiveness of EEG

recordings in recognizing affective states.

This work proposed an extended classifier-based latency estimation (CBLE) method using

sparse autoencoders (SAE) to investigate the role of latency jitter on BCI system perfor-

mance. The recent emergence of autoencoders motivated the present work to develop an

SAE based CBLE method. Here, the newly-developed SAE-based CBLE method is applied

to a newly-collected dataset. Results from our data showed a significant (p < 0.001) negative

correlation between BCI accuracy and estimated latency jitter. Furthermore, the SAE-based

CBLE method is also able to predict BCI accuracy.



In the aBCI-related investigation, this work explored the effectiveness of different features

extracted from EEG to identify the affect of a user who was experiencing affective stimuli.

Furthermore, this dissertation reviewed articles that used the Database for Emotion Analysis

Using Physiological Signals (DEAP) (i.e., a publicly available affective database) and found

that a significant number of studies did not consider the presence of the class imbalance in

the dataset. Failing to consider class imbalance creates misleading results. Furthermore,

ignoring class imbalance makes comparing results between studies impossible, since different

datasets will have different class imbalances. Class imbalance also shifts the chance level.

Hence, it is vital to consider class bias while determining if the results are above chance. This

dissertation suggests the use of balanced accuracy as a performance metric and its posterior

distribution for computing confidence intervals to account for the effect of class imbalance.
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Chapter 1

Introduction

The increasing number of research articles on Brain-Computer Interfaces (BCIs) in the past

few years manifests the potential of BCIs both in medical and non-medical applications.

BCI technologies are now moving from the lab into industrial and commercial applications.

However, these technologies are still in the initial stage, and require effort and skill to achieve

accuracy and usability. In this dissertation, an attempt to further improve BCI performance

will be made in two different applications. The first application is BCIs as a communication

tool, and the second is BCIs as an affective measurement tool. In this chapter, a few basic

definitions and terminologies related to BCI, and to this dissertation, are provided. This

chapter also presents the motivation of this dissertation work and an introduction to the

experimental environment.

1.1 Fundamentals

1.1.1 Electroencephalography (EEG)

The first electrical current variations and spontaneous current variations due to visual stim-

ulation in rabbits and monkeys were reported by Caton (1875). Later these findings were

confirmed in other independent studies by Beck and Cybulski (1891) for rabbits and dogs.

But the most credit goes to Berger (1929) because of his first-ever report of recording human

1
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Figure 1.1: This figure shows EEG electrode placement on the scalp used during EEG data
recording. The orange-colored circle is used to indicate electrode positions used in Fig. 1.3.

EEG records the electrical activity of large, synchronously firing populations of neuron

using electrodes placed along the scalp (Niedermeyer and da Silva, 2005). EEG has many

applications because of its non-invasive nature. Typically, EEG has a magnitude range of

10− 50µV . Electrode placement in the EEG cap usually follows the standard international

10/20 or 10/10 systems, approved by the American Clinical Neurophysiology Society (ACNS;

former American Electroencephalographic Society). The international 10/20 system provides

a method for placing a relatively small number of electrodes (typically 21). An extended

10/20 system and 10/10 system were introduced to facilitate a higher number of electrodes,

and has been accepted as standard by ACNS (Society, 1994). The EEG data used in this

dissertation were recorded using the extended 10/20 electrode placement system. The exact

electrode placement map is shown in Fig. 1.1.

2



1.1.2 Brain-Computer Interfaces (BCIs)

BCIs use brain signals to provide a direct method of interaction with computers and other

devices (Wolpaw et al., 2002) without using peripheral nerves and muscles. BCIs are also

sometimes referred to as brain-machine interfaces (BMIs) (Tonet et al., 2008; Lee et al.,

2009; Nicolas-Alonso and Gomez-Gil, 2012) in the literature.

Fig. 1.2 shows a general diagram of the BCI system. The first level, called the transducer

(TR) level, includes signal processing and classification. The next level, which converts

transducer output into a control output, is referred to as the control interface (CI) (Dal Seno

et al., 2010; Thompson et al., 2014); for example, in a BCI for spelling, the task of the CI

is to combine the classification outputs from the TR level to find the target character. The

CI may also incorporate other assistive tools such as a word prediction program in the P300

speller BCI (Ryan et al., 2010). A third level, consisting of the human experience of using

the BCI, has been suggested by Thompson et al. (2014).

USER

Signal Acquisition

Preprocessing

Feature Extraction

Feature Translation

CONT OL I T RF C

Applications

Commands

Signal Processing Classification

Figure 1.2: A basic design diagram of a brain-computer interface system. The signals pro-
duced by the brain activity are recorded from the scalp using an EEG cap. The signals are
preprocessed (e.g., bandpass filtering), and features are extracted (e.g., spectral density, brain
rhythms, or raw EEG signals). Classifiers translate these features into certain predefined
classes, and the CI uses those classes to translate into commands (e.g., a right-hand mo-
tor intent can be translated into “move the cursor right”). At the same time, the CI also
sends feedback to the user so that the user can modulate his/her brain activity for better
performance.

3



P300 Event Related Potentials

Event-related potentials (ERPs) are tiny voltage fluctuations in the brain’s electrical activity

in response to specific events (e.g., sensory, motor, or cognitive) or stimuli (Blackwood

and Muir, 1990). BCIs for communication mostly uses a particular type of ERPs that are

commonly known as P300 or P3 ERPs. P300 ERPs are a type of ERPs that are the brain

responses elicited by rare stimuli, with a characteristic positive polarity approximately 300ms

post-stimulus (Fabiani et al., 1987). However, the measured ERPs are mixed with unrelated

brain activity, as well as interference from non-neuronal sources (eye-blinks, eye-movements,

muscle movements) and instrumental noise. These factors lead to the well-known difficulty

in recovering ERPs from single trials. The ERPs are buried under the background EEG

signals (D’Avanzo et al., 2011) and that background EEG has a much larger amplitude than

ERPs.

Therefore, ERPs have a very low signal-to-noise ratio (SNR) and, additionally, may

contain stimulus artifacts caused by the repetitive presentation of visual stimuli (Martens

et al., 2009). Hence, the P300 is hard to identify in single-trials. The most common P3 ERPs

visualization method depends on averaging multiple trials. Averaging helps to obtain the

P300 by suppressing the background EEG signals as the P300 is time-locked to the stimulus

onset (Romero et al., 2015; Nelson and McCleery, 2008). Fig. 1.3 shows a typical P300 ERP

at a few electrode locations averaged over 440 target trials.

P300 Speller

One of the most well-known types of BCI is the P300 or the P3 Speller introduced by Farwell

and Donchin (1988), which uses the P300 ERPs.

In classical P3 Speller implementations, a grid matrix of 6 × 6 or more characters and

commands are presented to the user. Columns and rows are highlighted/intensified in ran-

dom order while the user focuses on the desired character. The probability of the intensified

row or column containing the target character in one sequence of 12 flashes, six rows, and

six columns, is 1/6. This low probability creates an oddball paradigm (Fabiani et al., 1987),
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Figure 1.3: Example of typical P300 responses at a few selected electrode locations. The
selected electrode locations are shown in Fig. 1.1 as orange colored circle. These responses
were constructed using the average of 440 target trials.

i.e., a rare event that will elicit a P300 response. A classical P300 speller display matrix

implemented in BCI2000 (Schalk et al., 2004) is shown in Fig. 1.4.

Figure 1.4: 6 × 6 grid matrix of a classical P3 speller display. This screen capture of a
P300 speller display was captured in the BCI2000 environment (Schalk et al., 2004).
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1.2 Motivation

BCIs can help to restore communication for people with severe movement impairments such

as amyotrophic lateral sclerosis (ALS), neuromuscular disease (NMD), brainstem stroke,

cerebral palsy, and spinal cord injury (McFarland and Wolpaw, 2011). This kind of alter-

native form of communication would help to improve quality of life and may also reduce

the cost of intensive care (Nicolas-Alonso and Gomez-Gil, 2012). These factors explain the

increasing interest in such technologies. Fig. 1.5 shows the growing number of BCI related

research articles from the year 2001 to 2019. The orange line in Fig. 1.5 indicates the num-

ber of BCI related articles while the blue line shows the number of EEG-based BCI articles

indexed in Google Scholar.
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Figure 1.5: Number of BCIs related publication. The graph shows number of publications
from Google Scholar using “Brain-Computer Interfaces” and “Brain-Computer Interfaces”
+ “EEG” as keywords.

This dissertation will attempt to explore two different applications of BCIs: (i) P3 speller

for communication and (ii) affect (i.e., emotion) recognition. For the P3 speller part, this

dissertation work will concentrate on the role of P3 latency variability on BCIs performance.
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Spelling accuracies are plotted against added normally-distributed P3 latencies (i.e., sim-

ulated jitters) in Fig. 1.6. More details of this simulated latency work can be found in

Thompson et al. (2019). Fig. 1.6 shows evidence of the relationship between P3 latency

variations and spelling accuracy and thus motivated to further investigate the relationship.
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Figure 1.6: Normally-distributed added latency jitter versus P3 spelling accuracy.

1.2.1 P300 Speller Experiment

The P300 Speller (Farwell and Donchin, 1988) is one of the prevalent applications of BCIs,

and can serve as a communication tool for patients with the diseases as mentioned earlier

(Sellers and Donchin, 2006). Due to the very low SNR of P300 ERPs, a common technique

of extracting P300 ERPs is based on signal averaging. However, the ERPs can vary in terms

of latency and amplitude due to mental fatigue, stress, attention, and several other medical

conditions (Boksem et al., 2005; Mowla et al., 2018a). In some cases averaging may be useful,

but the averaging does not allow us to do single-trial analysis. Research has shown that P300

latency variability is strongly related to the cognitive function and provides a measure of

cognitive health (Polich and Herbst, 2000). Hence, averaging causes the loss of important

information related to P300 variability.

In this dissertation, the goal of the P300 speller experiment is to develop and validate a

method of estimating single-trial P300 latency in order to calculate variability.
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Single-trial estimation of the P300 will help to understand the underlying cognitive pro-

cess of ERPs and also to improve the speed of BCI systems. In this experiment, data were

collected while participants performed the copy-spelling task using BCI2000’s (Schalk et al.,

2004) row-column P300 speller paradigm. Each participant completed nine copy-spelling

tasks in three sessions on different days. In each session, participants copy-spelled three sen-

tences. Chapter 3 consists of further details on this experiment, including the sentences used

and participants’ demographics. Fig. 1.7 shows a participant performing the copy-spelling

task of the P3 experiment.

Figure 1.7: Visualization of the experimental setup for P300 speller.

1.2.2 Affective Computing Experiment

Understanding the human mind is a capability people would like to have, and is an active

field of research. Studies have shown that affect (emotion), cognition, and decision-making
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processes are interrelated with a complex network (Schwarz, 2000). Hence affective state has

an essential role in human decision making process (Forgas, 1995). The ability to manage

affective states is related to the skills of logical reasoning, learning, and extracting critical

information (Salovey and Mayer, 1990). However, to achieve the ability to manage affective

states requires an understanding of affective responses.

The first question that needs to be answered is “how can we understand affective re-

sponses?” The answer to this question is not straightforward, because affect involves several

internal and external processes of the human body and organs. Rather, it is easier to answer

a question like, “what are the physiological indicators that can be used to detect affective

states?” Numerous studies have attempted to answer this question because it was a major

topic of interest for affective computing researchers (Cacioppo and Tassinary, 1990). Sev-

eral indicators can be used for affect recognition, such as pupil diameter (Oliva and Anikin,

2018), heart rate variability (Quintana et al., 2012), skin conductance (Nakasone et al.,

2005), temperature (Levenson et al., 1992), voice tone (Petrushin, 1999), muscle tension,

facial expressions (Pantic and Rothkrantz, 2000) and many others. But these indicators

will fail to recognize true affect if someone can disguise his or her emotions (Picard et al.,

2001). Hence, estimation of affective states is a challenging task and requires other sources

of physiological signals which are hard to alter.

The obvious choice is neural signals, because the brain is the center of processing all these

emotions and feelings. Specifically, the thalamus, hypothalamus, hippocampus, cingulate

cortex, and the amygdala are considered to be responsible for emotion processing (Dalgleish,

2004). Hence, it should be possible to detect affect from neurophysiological signals. Systems

that do this are named affective brain-computer interfaces (aBCIs) (Mühl et al., 2014). These

aBCIs can be based on invasive or non-invasive technologies. However, to estimate affective

state, one might not choose to implant electrodes on his or her brain. Thankfully, with

the advent of few completely non-invasive brain imaging techniques, it became possible to

record brain signals without any surgical procedure. The available methods are magnetic

resonance imaging (fMRI), positron emission tomography (PET), electroencephalography

(EEG) and magnetoencephalography (MEG). Among them, fMRI and PET have a high
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spatial resolution but low temporal resolution because of their dependence on metabolic

changes. On the other hand, EEG and MEG have a high temporal resolution but low spatial

resolution.

EEG-based systems are preferable for multiple reasons. The first is the unobtrusive

nature of the EEG based systems. Second, the ability to be recorded using wearable devices

which makes the system mobile. Finally, EEG acquisition systems are cheaper and less

complicated than other techniques (Mühl et al., 2015). Because of these advantages, EEG

based systems are a practical choice for aBCIs. The next task, before using aBCIs for

detecting affect is to express different affective states on a measurable scale. For this purpose,

Russell (1980) proposed an emotional state model known as the circumplex model based on

the dimensions of valence and arousal dimension.

Figure 1.8: Visualization of the experimental setup for affective computing.

In the affective computing experiment, a set of visual stimuli was presented to the partic-

ipants and simultaneously EEG data was recorded. This experiment used the international

affective picture system (IAPS) (Lang et al., 2008) images as the stimuli. For the interfacing

purpose, the BCI2000 (Schalk et al., 2004) was used to present picture stimuli to the sub-
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jects. Each picture was displayed for 6.7 seconds and a blank display followed for 20 more

seconds for participants’ self report on a printed self-assessment manikins (SAM) (Bradley

and Lang, 1994) for each stimulus to rate them in valence, arousal, and dominance on a

discrete 5-point scale. Fig. 1.8 shows a simplified flow diagram of the experimental setup.

1.3 Outline

The first goal of this dissertation was to investigate the relationship of the P3 latency vari-

ations with BCI performance and utilize that relationship to improve BCI performance. A

method using classifier-Based Latency Estimation (CBLE) and wavelet transform to enhance

the P3 speller performance is introduced in Chapter 2 to accomplish the first goal. Further, a

state-of-art classification technique using sparse autoencoders (SAE) is used and compared

with least squares (LS) and step-wise linear discriminant analysis (SWLDA) methods for

CBLE. The comparison is presented in Chapter 3. The second goal of this dissertation

was to explore the potentials of the BCIs system to recognize emotion. Chapter 4 explores

the usability of BCIs in the area of affective computing and emotion recognition. Finally,

Chapter 5 includes the concluding remarks, future directions based on the presented work,

limitations of the proposed methodology in various chapters, and contributions.
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Chapter 2

Enhancing P300-BCI Performance

Using Latency Estimation

Copyright notice: The following text is reformatted from “Enhancing P300-BCI performance

using latency estimation.” as published in Brain-Computer Interfaces. The text appear here

with permission from Taylor & Francis, who owns all copyright to the work. The final and

published version of this chapter can be found in (Mowla et al., 2017).

In this chapter, the Classifier-Based Latency Estimation (CBLE) and wavelet transform

was used to enhance the P3 speller performance. The CBLE method uses a classifier to

estimate the latency variance. Hence a second-level classifier was used to classify the target

characters. Least squares (LS), step-wise linear discriminant analysis (SWLDA), and support

vector machine (SVM) classifiers were used in this chapter as the second-level classifier.

2.1 Introduction

Brain-Computer Interfaces (BCIs) use brain signals to provide a direct method of interac-

tion with computers and other devices (Wolpaw et al., 2002). BCIs can help to restore

communication for people with severe movement impairments such as amyotrophic lateral

sclerosis (ALS), neuromuscular disease (NMD), brainstem stroke, cerebral palsy, and spinal
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cord injury (McFarland and Wolpaw, 2011). One of the most common BCI applications is

the P300 or P3 Speller indroduced by Farwell and Donchin (Farwell and Donchin, 1988),

which uses event-related potentials (ERPs), including the P300 – a positive deflection ap-

proximately 300ms post-stimulus. In classical P3 Speller implementations, a grid matrix of

6 × 6 or more characters and commands are presented to the user. Subsets of the matrix,

usually rows and columns, are flashed in a random order (c.f. (Townsend et al., 2010)). The

probability of the flashed row/column containing the target character is 1/6, which creates

a rare event that will elicit a P300 response. A classifier can detect those elicited P300

responses and identify target characters (Fabiani et al., 1987). With a few exceptions (e.g.

(Kindermans et al., 2014a,b)), classifiers must be trained on data from each participant, as

all event-related potentials (ERPs) including the P300 are participant-specific.

Researchers have tried different feature extraction and classification methods for the P3

Speller in search of better performance (see e.g. (Krusienski et al., 2006)). Early research

used step-wise linear discriminant analysis (SWLDA) and showed that SWLDA performed

well as a P3 Speller classifier (Sellers and Donchin, 2006; Donchin et al., 2000; Krusienski

et al., 2008). For the 2003 BCI competition data, support vector machines (SVM) (Kaper

et al., 2004; Rakotomamonjy and Guigue, 2008) outperformed other classifiers, though the

performance was dependent on proper tuning parameters. Other recent works used Bayesian

Linear Discriminant Analysis (BLDA) and Fisher’s Linear Discriminant Analysis (FLDA)

(Hoffmann et al., 2008) and Convolutional Neural Network (CNN) (Cecotti and Graser,

2011) for classification. All these above-mentioned works reported some improvement on

performance compared with prior studies.

Early research on the P300 found that P300 latency and reaction time varies between

people (McCarthy and Donchin, 1981; Kutas et al., 1977). Magliero found that the latency

of the P300 depends on the stimulus evaluation process (Magliero et al., 1984). These and

other studies have shown that P300 latency varies, and that this variation is related to

age, cognitive disabilities and other factors (Picton, 1992; Polich, 2007). Latency varies

within-user, within the same session (Fjell et al., 2009; Thompson et al., 2012) and even

trial to trial (Blankertz et al., 2011). Hence, P300 latency can affect classifier performance
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and BCI speed (Polich and Herbst, 2000). Though P300 latency is an important factor

for the P3 Speller, only a few very recent studies have attempted to explicitly calculate or

correct for P300 latency. Researchers used Bayesian methods (D’Avanzo et al., 2011) and

spatiotemporal filtering methods (Li et al., 2009) to estimate properties of single-trial event-

related potentials (ERPs), including latency estimates. But, surprisingly only one study has

been found in the literature which attempted to correct latency jitter (Walhovd et al., 2008),

using a maximum-likelihood estimation (MLE) method. In Thompson et al. (2012), we

proposed a classifier-based latency estimation (CBLE) method to estimate the P300 latency.

In that work, the latency estimates were primarily used to predict BCI performance from

small datasets.

In this study, we used a wavelet transform of the CBLE scores as input features to another

classifier, improving overall BCI performance. As for the CBLE method it relies upon, this

new technique should be helpful regardless of the classifier used. The new technique should

dynamically account for latency variation on a per-flash basis, unlike previous work such as

Iturrate et al. (2014), which showed improved BCI performance from a static correction for

the average latency in different tasks.

2.2 Experimental Data and Methods

2.2.1 Data Description

An earlier study by Thompson et al. (2012) demonstrated a classifier-based latency esti-

mation technique to estimate and predict BCI accuracy from small datasets, which will be

discussed later in section 2.2.3. Some of the data used here were previously reported in

(Thompson et al., 2012, 2009), and all other data were taken using the same protocol. This

protocol involved three separate visits (sessions) for each participant. There are three data

files per session, with an additional training file in the first session. This study includes data

from all files from sessions one, two and three. Results are shown separately for the average

for files from session one and the average for files from sessions two and three combined. The
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participants included 9 people with ALS, 4 people with NMD, and 20 control participants

with no motor impairments. Only people who completed the study are included.

EEG data were collected using a 16-electrode cap from ElectroCap International, with

mastoid reference and ground. The electrodes were fixed in the cap at F3, Fz, F4, T7, T8,

C3, Cz, C4, Cp3, Cp4, P3, Pz, P4, PO7, PO8, and Oz according to the 10-20 electrode place-

ment system. The data were amplified and digitized at 256 Hz using a g.USBamp (Guger

Technologies). Stimulus presentation and recording was controlled through the BCI2000

software platform.

Online classification was performed using least squares (LS). The training file was used to

create a participant-specific classifier that was used in all three sessions. A heuristic based

on training accuracy was used to set the number of times each row and column flashed

(sequences). Each data file contains at least 23 characters of BCI typing; users corrected

mistakes using a backspace selection within the BCI, so the number of characters varies

between files. For additional details, see Thompson et al. (2012).

2.2.2 Classifier Basics and Terminology

Perhaps because classifiers and machine learning techniques have broad application domains,

their terminology is not yet perfectly standardized. In this work, we will be discussing three

classifiers - Least Squares (LS), Step-Wise Linear Discriminant Analysis (SWLDA), and Sup-

port Vector Machine (SVM). The earlier CBLE work (Thompson et al., 2012) demonstrated

better performance on the dataset used here using LS classification method. A comparison

study (Krusienski et al., 2006) showed that SWLDA provides the best overall performance

characteristics for practical P300 Speller classification. Another related study showed that

the linear SVM classifier performed better in identifying P300 ERPs compared to Fisher

linear discriminant analysis (FLDA) (Combaz et al., 2012). Hence this study will examine

these three (LS, SWLDA, Linear-SVMs) classification methods as the second-level classifier.

Each method is a linear classifier, meaning that it works by taking a weighted sum of the

inputs (features). This weighted sum will be called a “score.” This process is done once per
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“observation” or measurement, in our case once per “flash.” In typical binary classification

tasks, the sign function is applied to the score for each observation, in order to estimate the

class “label” - whether the observation in question belongs to the positive or negative class.

The classifiers we use differ primarily in how the weights (which then are used to calculate

the score) are chosen. The score, ŷ, is calculated using the following equations (Murphy,

2012) :

LS: ŷ(x) = XŴLS where, X =

[
1 x

]
and ŴLS = (XTX)−1XTy (2.1)

LDA: ŷ(x) = wT (x− x0) where, w =
∑−1(µ1 − µ0) and

x0 =
1

2
(µ1 + µ0)− (µ1 − µ0)

log(π1/π0)

(µ1 − µ0)T
∑−1(µ1 − µ0)

π is the prior probability of membership in each class

(2.2)

SVM: ŷ(x) = ŵ0 +
N∑
i=1

αik(xi,x) Where, αi = λiyi, λ is the `1 regularization term. (2.3)

P3 Spellers are unusual among binary classification tasks, because each row and column

is flashed multiple times while the user is trying to produce a single output character. The

sign function is therefore not used, and instead the scores (ŷ) for the multiple observations

of each row and column are averaged. Then the maximum-scoring row and column are

chosen. Note that as these three classifiers are all linear (we used a linear kernel for the

SVM), this process is equivalent to averaging the features from multiple observations prior

to classification.

2.2.3 CBLE

Traditional P300 classification uses a single time window locked to the stimulus presentation,

for example, the EEG signal 0 to 800 ms post-stimulus (Krusienski et al., 2006). Classifier
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(b) Non-target characters.

Figure 2.1: Sample classifier scores as function of time shift of participant K143 (participant
with ALS).

based latency estimation (CBLE) creates many copies of that time window, each offset by

an integral number of amplifier samples; for example, if the sampling rate was 1kHz, one

window might be -1 to 799 ms, and another 1 to 801 ms. The “first-level classifier” (here,

LS) is applied to the data in each window, producing a score as described above. Thus, the

method produces a vector of scores, with one element per time shift used.

In Thompson et al. (2012), the time shift that produced the maximum score was used

as an estimate for the latency difference between the new P300 response and the average

P300 response from training data. The variance of that latency difference estimate on target

characters was used to predict BCI performance. The vector of scores was not used directly,

although we did note that there are strong differences in the shape of the scores for target

and non-target characters. In this work, by contrast, we wanted to use the full vector of

scores directly, to aid in detection of the P300 response.

Fig. 2.1 shows the CBLE scores as a function of time shift from a participant with ALS,

for several representative flashes. Fig. 2.2(a) shows the average across all flashes, which

reflects the overall shape of the responses to target flashes. The CBLE scores from most

target flashes show a peak near 0 time shift; different flashes produce different peak times.

This is an indication of latency jitter and also shows how latency jitter can affect the P300
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classifier performance. For non-target characters there are no visible peaks which is also

expected behavior in this paradigm. A few naive approaches were to (i) align all the single-

trials based on CBLE and use the aligned trials to train a second-level classifier, (ii) use the

CBLE outputs along with the non-aligned trials as extra features for a second-level classifier

and (iii) use the CBLE scores alone to train a second-level classifier. We tested each of

these approaches on pilot data and found the third approach more useful than the others.

However, latency jitter is still visible in the fact that the CBLE scores peak at non-zero

time shift; we wanted to reduce the number of features for the end classifier and also reduce

the latency jitter. Given the characteristic shape of the CBLE scores for target flashes, we

thought a frequency domain transform such as wavelets would be valuable.

2.2.4 Wavelet Transforms

Wavelet transforms are generally used for decomposing signals into multiple time-frequency

domains. However, they also can be used for feature reduction. We accomplished both

purposes by computing the wavelet approximation coefficients of CBLE scores. For a signal

with N − 1 samples, x(t) = {x(1), . . . , x(N − 1)}, the approximation coefficients can be

calculated from equation 2.4 (Chun-Lin, 2010):

Wφ[j0, k] =
1√
N

∑
n

x(n)Φj0,k(n) (2.4)

There are many wavelet families; we applied different mother wavelet transformations on

session 1 data for several participants, and that found the Daubechies-4 mother wavelet,

particularly the 5 level wavelet decomposition, produced good results while significantly

reducing the number of features. To find the approximation coefficients of last level we

used MATLAB default appcoef.m fuction. Fig. 2.2(b) shows the averages of approximation

coefficients of CBLE score vectors, for target and non-target flashes.
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Figure 2.2: Averages of classifier scores which are shown in Fig. 2.1(a) & Fig. 2.1(b) and
wavelet approximation coefficient for target and non-target characters.

2.2.5 Second-level Classifier

Wavelets reduced the dimensionality of the CBLE scores while still showing a difference

between target and non-target characters, but a classifier is still needed to make decisions

based on the wavelet coefficients. We investigated three classifiers (LS, SWLDA, and SVM)

as “second-level” classifiers, which were given only the wavelet coefficients as input features.

The scores from these second-level classifiers were used in the typical P3 Speller fashion - each

flash was scored by the second-level classifier, and the scores for each row and column were

averaged individually. The row and column with the highest average score was designated

as the selected output character. Both first- and second-level classifiers were trained using

only the training data file.

2.2.6 Performance Measurement

Because the goal of this work is improving communication accuracy and speed, a performance

metric capturing throughput was chosen. Although Information Transfer Rate is often used

for the P3 Speller, we have chosen BCI utility (Dal Seno et al., 2010), in line with the

suggestions in (Thompson et al., 2014, 2013). BCI utility (U) is calculated using the formula

of equation 2.5:
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Table 2.1: Performance in different sessions for participants with ALS. Bolded participants
show consistent improvement.

participants K143 K145 K146 K147 K152 K155 K156 K158 K160

Average Accuracy Online 91.61 58.89 96.3 95.15 90.26 59.9 93.05 88 70.57

in Session 1 (%) Wavelet 92.85 63.33 95.37 93.86 91.34 65.2 93.05 87.97 72.5

Utility change(%) 2.97 30.77 -2.00 -2.84 2.67 62.69 0.00 -0.08 9.4

Average Accuracy Online 92.15 77.94 89.7 88.65 50 59.09 86.98 61.91 30.08

in Session 2 and 3 (%) Wavelet 93.05 80.1 88.35 90.43 53.4 62.99 88.16 62.86 36.37

Utility change(%) 2.14 7.76 -3.40 4.62 157.1 18.19 3.17 6.97 NE1

1 NE: Utility does not exists.

U =
2p− 1

c
, this is only valid for (2p− 1) > 0, i.e, p > 0.5 (2.5)

where c is the time per selection, and p is the probability of correctly selecting a symbol

or character in the interface. We calculated this probability by assuming it was constant for

all characters and within the duration of each file. Backspaces, if required to produce correct

text, were counted as correct selections for calculating accuracy. These accuracies were then

averaged together if multiple files were used (as an example, if we report average session 1

accuracy).

BCI utility (U) is a useful metric in that it correctly calculates the rate of corrected

characters per unit time. In other words, BCI utility (U) is a measure of “corrected typing

speed,” or how quickly a person can produce corrected text.

2.3 Results

Table 2.1 shows the online accuracies and accuracies after the proposed method for a subset

of participants to demonstrate how BCI Utility changes with the change of accuracies. For

readability, we limited the table to only participants with ALS as they come from a potential

end-user population. Bolded participant identifiers indicate consistent improvement across

sessions, which was found for the five of the six participants with online accuracies at or
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Figure 2.3: Changes in BCI Utility for participants with ALS versus online test accuracy
in different sessions. Upper-triangle and lower-triangle indicates the BCI Utility increased
and decreased, respectively. The diamond indicates no change. Participant IDs are shown
only for improved performance, to allow the reader to assess consistency of improvement.

below 90%.

Fig. 2.3 shows the improvement of BCI Utility for participants with amyotrophic lateral

sclerosis (ALS) after using the proposed technique. The technique shows greater improve-

ment for participants with lower online accuracy. Improvement of performance is also con-

sistent in other sessions as shown in Fig. 2.3(b). Note participant K160 is not plotted in

Fig. 2.3(b) despite the improvement shown in Table 2.1 because this participant’s online

utility was zero and the percentage change become mathematically undefined. Mean change

in BCI Utility in session 1 is 11.5% and in session 2 and 3 is 24.57%.

Fig. 2.4 shows the improvement for participants with neuromuscular disease (NMD).

Again, larger benefit is shown for individuals with lower online accuracy. In session 2 and 3,

the performance improved for all four participants, but are larger in value for lower online

accuracies. Mean BCI Utility change for session 1 is 16.35% and for session 2 and 3 is 32.29%.

Fig. 2.5 shows the effect of the proposed technique on 21 control participants. Unlike

participants with ALS and NMD, there is no obvious pattern. Mean BCI Utility change in

session 1 is 2.03% and in session 2 and 3 is 16.59%.

Overall we had data from 33 participants. In session 1, 18 participants showed improved

21



30 40 50 60 70 80 90 100

Original Accuracy (%)

0

20

40

60

80

100

C
h
an

g
es

 i
n
 B

C
I 

U
ti

li
ty

 (
%

)

Session 1: NMD Participants

K185

K190

K223

(a)

30 40 50 60 70 80 90 100

Original Accuracy (%)

0

20

40

60

80

100

C
h
an

g
es

 i
n
 B

C
I 

U
ti

li
ty

 (
%

)

Session 2 & 3: NMD Participants

K185

K190

K191

K223

(b)

Figure 2.4: Changes in BCI Utility for participants with NMD versus online test accuracy
in different sessions. Upper-triangle and lower-triangle indicates the BCI Utility increased
and decreased, respectively. Participant IDs are shown only for improved performance, to
allow the reader to assess consistency of improvement.
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Figure 2.5: Changes in BCI Utility for control participants versus online test accuracy
in different sessions. Upper-triangle and lower-triangle indicates the BCI Utility increased
and decreased, respectively. Diamonds indicate unchanged performance. Participant IDs are
shown only for improved performance, to allow the reader to assess consistency of improve-
ment.
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Figure 2.6: Box plots of the BCI Utility changes for LS, SWLDA and SVM on different
sessions.

performance with the new method, with a mean of 13% increase in BCI Utility. Nine

participants showed decreased performance, with a mean decrease of -2.89% in BCI Utility.

Five participants had no change in performance. Among these five, one participant had very

low online accuracy and the other four had online accuracies around 98%. Overall mean

change in BCI Utility for session 1 for all participants is 6.5%.

In session 2 and 3, two participants (K118, K160) had original accuracies of 32% and

30%. While their accuracy improved by 2 and 6 percentage points, neither showed non-

zero BCI Utility with or without the new method. Twenty-three additional participants

showed increased performance, with mean BCI Utility changes of 27.5%. Seven participants’

performance worsened with a mean of -1.6% utility change. Overall mean of utility changes

in session 2 and 3 is 20.75%.

We have also compared the performance of LS, SWLDA and SVM binary classifiers as the

second-level classifier. The results are shown in Fig. 2.6. In session 1, both LS and SWLDA

classifiers have median change above 0, and first quartile at or very near 0, indicating that

approximately 75% of the subjects experienced improvement or at least no decrease. For

SVM on session 1, the median is nearer to zero but the quartile is below zero. On session 2

and 3, the box plots are more similar between classifiers.

Finally, Fig. 2.7 shows the changes in BCI Utility versus the standard deviation of CBLE-
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Figure 2.7: Changes in BCI Utility versus sCBLE (the standard deviation of CBLE-
estimated P300 latency from target flashes).

estimated latency for all 288 files. The Fig. demonstrates that the changes in performance

are located at areas with higher estimated latency jitter.

Here, we have reported data for 32 participants overall. Modeling performance change

as a binomial random variable with ”success” being increased performance, the maximum

likelihood estimate (MLE) of increased performance probability is 0.67 with 95% confi-

dence interval of [0.54 0.78]. This can be interpreted as the technique being more likely

to help than do nothing or decrease performance. Using the two-sided p-value gives us

p2 =
∑64

s=43Bin(s|64, 0.5) +
∑21

s=0Bin(s|64, 0.5) = 0.0081 < 0.01.

If we define success more generously, as improving or at least not changing performance,

the MLE is 0.75 with 95% confidence interval of [0.63 0.85]. Two-sided p-value in this case

is given by p2 =
∑64

s=48Bin(s|64, 0.5) +
∑16

s=0Bin(s|64, 0.5) = 0.000077 < 0.001.

2.4 Discussion

From previous studies, it is obvious that P300 latency varies between individuals, between

sessions for the same individual, and most importantly between trials even for the same
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individual and session (McCarthy and Donchin, 1981; Kutas et al., 1977; Fjell et al., 2009;

Thompson et al., 2012; Blankertz et al., 2011). The effect of latency variations between

individuals can be compensated by using subject-specific classification, and training on the

same day can address some of the between-session variations. But trial-to-trial variations in

latency make the classification task difficult and also affect BCI performance. This motivated

us to find a technique to correct latency variation and thus minimize the effect of latency

jitter on performance. Previously, the classifier-based latency estimation (CBLE) method

has been used to predict BCI performance (Thompson et al., 2012). Here, CBLE-estimated

latency has been used to improve BCI performance.

At the beginning of the investigation, we used CBLE-estimated latency to “correct” for

latency jitter on a trial-by-trial basis, and used the corrected trials as the “second-level”

classifier’s features. However, the improvement in performance was not significant enough

to merit reporting - without knowledge of the class labels, correcting for latency had the

unfortunate effect of maximizing the classifier score for examples that did not contain P300’s,

leading in many cases to less separable score distributions. Further investigations using

feature reduction techniques, such as wavelet transforms, provided better results. We found

that wavelet approximation coefficients of CBLE scores are also different for target and non-

target characters (Fig. 2.2(b)). That findings motivated us to use wavelet approximation

coefficients as features for our “second-level” classifier. For that “second-level” classifier,

we have compared LS, SWLDA and SVM. Though the performance for all three classifiers

was almost equal, it is notable that a comparitively simple classification technique, LS, was

found to be equally or more effective than SWLDA and SVM. This provides an insight that

using better feature transformation methods may give better results even while using simple

classification techniques.

The proposed technique appears to be helpful only for participants with lower accuracies

and higher estimated latency jitter, which are strongly correlated (Thompson et al., 2012).

The largest improvements were found among participants with ALS and NMD. Part of this is

because the BCI Utility metric highlights the importance of relatively small absolute changes

in accuracy when the accuracy is low. For example, one participant with ALS had an increase
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of accuracy of 4.4%, resulting in a 30.76% improvement in BCI Utility. However, BCI Utility

is measuring the capability of a person to produce corrected text - in other words, it is an

ecologically valid measure of communication throughput. While the accuracy changes are

small, for users who struggle with the BCI (accuracies in the 50-70% range), even small

changes can show large improvements in usability.

The two-sided p-value we have found demonstrates that the proposed technique statisti-

cally improves BCI performance. It should be noted that for some subjects, the performance

was already good enough that there was no need or room for improvement in accuracy. In

this case, it is desirable that our performance improvement technique would not decrease

performance for these individuals. Hence, we have also computed the two-sided p-value for

the performance improving or at least not changing the performance. That p-value was

also statistically significant and demonstrates that this method is more likely to help or do

nothing than to hurt performance.

While the improvements here are not large in magnitude (and not the orders of magni-

tude of improvement that are necessary to restore natural speech, for example), it is notable

that the improvements are much larger in our pool of participants from potential user pop-

ulations. The method does not completely compensate for the effects of latency jitter found

in (Thompson et al., 2012), and significant improvement is still required beyond this work

to bring all users to equal performance.

We believe the power of this method lies in its ability to correct for latency variation. Our

previous work has shown that latency variation as measured by CBLE is strongly inversely

correlated to BCI performance (Thompson et al., 2012). This has a compounding effect for

individuals with high online accuracies. If the online accuracy was near 100%, not only is

there little room for improvement in an absolute sense, but the participant almost certainly

demonstrated little latency variation. Since this method provides improvement by removing

latency variation, these individuals will see little benefit from this method. However, it

should be noted that target populations for BCI often experience lower performance than

controls, so this is not a critical weakness of this method.

Finally, it is noted that on this dataset LS appears to perform better than SWLDA, even
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without CBLE. This is in contrast with (Krusienski et al., 2006), and may be due to the

fact that the number of stimulus presentations for each participant was chosen based on LS

performance.

2.5 Limitations

CBLE itself has been demonstrated to be at least partially classifier independent (Thompson

et al., 2012). Therefore, it is possible that this boosting method could be applied with other

first-level classifiers being used to estimate the latency. However, we have not tested this

claim here. We did use a SWLDA-based CBLE with this approach, but the results were not

different enough to merit inclusion.

This is an offline analysis of existing data, and the method is not yet ready for online

implementation.

2.6 Conclusion

This work demonstrates an improvement in information throughput using a technique that

can be used with many classifiers, including the relatively simple LS classifier used here.

Interestingly, the improvement is the largest for participants with marginal accuracies, those

for whom the typical techniques produced some communication but not ideal performance.

This suggests that the technique helps to offset, but does not eliminate, the negative effect

of latency jitter on classification. Further work on removing latency jitter should continue

providing improved performance for individuals for whom current-generation BCIs do not

perform well.
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Chapter 3

Comparison of Classification

Techniques to Predict BCI Accuracy

Using CBLE

Copyright notice: The following text is reformatted from “A Comparison of Classification

Techniques to Predict BCI Accuracy Using Classifier-Based Latency Estimation.” as sub-

mitted for publication (Mowla et al., 2020a).

In this chapter, an extended CBLE method using sparse autoencoders (SAE) is proposed

and compared with LS- and SWLDA-based CBLE. The objective of this study is to com-

pare different classification techniques to predict BCI accuracy using the variance of CBLE

estimates. Here, the newly-developed SAE-based CBLE and previously used methods are

applied to a newly-collected dataset. Results showed a significant (p < 0.001) negative cor-

relation between BCI accuracy and estimated latency jitter. This study showed that whole

CBLE worked regardless of the method and electrode count; the effect of the number of

electrodes on BCI performance was classifier-dependent.
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3.1 Introduction

Brain-computer interfaces (BCIs) are an alternative communication technology for people

with severe neuromuscular disorders such as amyotrophic lateral sclerosis, cerebral palsy,

stroke, or spinal cord injury. BCIs are defined as systems that record brain signals, interpret

and translate those signals into an output device to perform user-desired actions (Shih et al.,

2012). One type of BCI is the P300 speller, first introduced by Farwell and Donchin (Farwell

and Donchin, 1988), which gained significant attention from BCIs researchers due to its

short training period and good performance (Bianchi et al., 2019). As the name suggests,

the P300 speller uses the P300 event-related potential (ERP), which is elicited by rare and

task-relevant stimuli (Donchin et al., 2000). In the standard P300 speller system, the user

observes different characters and commands in a matrix format and the columns and rows

are flashed in a random order. The user will count the number of times the target character is

flashed. An oddball paradigm is created due to the low probability of a flashed row/column

containing the target, which therefore elicits P300 ERPs.

However, the P300 is not a perfectly stereotypical waveform. Its amplitude and latency

vary widely for different users (Guger et al., 2009), and even for the same user in different

sessions (Fjell et al., 2009). These variations are influenced by many factors, such as age,

gender (Polich and Kok, 1995), fatigue, exercise (Yagi et al., 1999) and attention (Polich,

2007). One major effect of P300 latency variation is decreased system performance (Thomp-

son et al., 2012; Aricò et al., 2014).

Because of such variations in P300 amplitude and latency, several studies have proposed

methods to estimate characteristics of the P300 potential including latency (e.g., D’Avanzo

et al. 2011; Li et al. 2009). But, fewer studies have examined the effect of this jitter on

P300 Speller performance; to our knowledge, the first was our paper on classifier-based

latency estimation (CBLE) (Thompson et al., 2012). A later study by another group also

independently confirmed a negative link between latency jitter and BCI performance (Aricò

et al., 2014). Later, the CBLE estimates and a wavelet transform were used to provide the

latency jitter information to a second-level classifier (Mowla et al., 2017). The combination
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resulted in an enhanced BCI performance. The potential of the CBLE method to predict

BCI performance made us interested in investigating a non-linear classifier based CBLE

method and the prediction accuracy of CBLE on a different dataset.

CBLE uses the classifier’s sensitivity to latency variability to estimate P300 latency. In

our previous work, it was claimed that i) CBLE is classifier independent and ii) CBLE can

be used to predict BCI accuracy. A comparison of least-squares (LS) and stepwise linear

discriminant analysis (SWLDA) was used to support the first statement. However, both LS

and SWLDA are linear classifiers, and SWLDA has the same solution subspace with LS for

binary classification problems (Ye, 2007; Lee and Kim, 2015). Hence classifier independence

was indicated, but not verified, particularly for non-linear classifiers.

In this work, we will extend our previous CBLE investigations using a sparse autoencoder

(SAE), and will examine if classifier independence holds for this non-linear classifier. Both

previously-used classification methods (LS, SWLDA) as well as the new non-linear method

(SAE) will be used with a new P300 dataset to further verify the ability of CBLE to predict

BCI accuracy. The motivation behind choosing these three classification methods are:

i) LS provided the best overall performance on the dataset used in CBLE’s original article

(Thompson et al., 2012),

ii) In a classifier comparison study (Krusienski et al., 2006) SWLDA provided the overall

best performance, and

iii) A recent study (Vařeka and Mautner, 2017) showed that SAE provided the best overall

performance on their dataset for P300 speller. But SAE has never been used to estimate

latency jitter to our knowledge.
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Figure 3.1: A Visual interface of the 6 × 6 matrix used in this study. A row or column
intensifies for 67 ms, followed by a 100 ms pause. The front-most image shows an intensifi-
cation of the column containing the character “T”. This is the current target, so a P300 is
expected to be elicited by this intensification.

3.2 Methods

3.2.1 Experimental Setup

Data were collected from each participant in three sessions, i.e., on three different days,

using BCI2000’s (Schalk et al., 2004) row-column P300 speller paradigm. Each session

was comprised of copying three sentences. For each sentence, each row/column was either

intensified or replaced with Einstein’s face for 67 ms (stimulus duration) with an inter-

stimulus interval of 100 ms. The stimulus onset asynchrony (SOA) was therefore 167 ms. A

complete set of 12 intensification or replacements is called a sequence. For each character,

we recorded data for 10 sequences. The copied sentences are shown in Table 3.1. The data

from the first sentence in session 01 was used as training data to train the online classifiers

and the data for remaining sentences were used as test data. The bolded sentences (one for

each session) used Albert Einstein’s iconic tongue face image instead of flashing.

EEG data were recorded using a Cognionics Mobile-72 EEG system with a sampling

frequency of 600Hz. The Mobile-72 EEG system is a high-density mobile EEG system with

active Ag/AgCl electrodes placed according to the modified 10-20 system. Reference and
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Table 3.1: Sentences copied by the participants.

Session Sentence to spell

THE QUICK BROWN FOX

01 THANK YOU FOR YOUR HELP

THE DOG BURIED THE BONE

MY BIKE HAS A FLAT TIRE

02 I WILL MEET YOU AT NOON

DO NOT WALK TOO QUICKLY

YES. YOU ARE VERY SMART

03 HE IS STILL ON OUR TEAM

IT IS QUITE WINDY TODAY

ground were on the right and left mastoids, respectively.

3.2.2 Participants

Nine healthy volunteers participated in this study. Data from two participants have been ex-

cluded due to their poor online and offline performance. Among the remaining participants,

six were male and one female, with an average age of 20.86 ± 4.56 years. Two participants

had previous brain-computer interface experience. Participants were provided informed con-

sent and the recording process was performed in accordance with Kansas State University’s

Institution Review Board (IRB) protocol No. 8320.

3.2.3 EEG Pre-processing

Data were filtered using a finite impulse response (FIR) bandpass filter with corner frequen-

cies at (0.5−70.0) Hz, then split into epochs of 750 ms post-stimulus. The epochs were then

downsampled by a factor of 30 using a moving average and downsample operation.

Two different sets of electrodes were used for classification. The first set was all 64

electrodes, while the other set was composed of 32 electrodes selected based on data from
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each participant. To select the electrodes, the average P300 ERPs was produced by taking

the difference of the average responses to target and non-target epochs on the training data.

The power spectral density (PSD) of the resulting average ERP was used to select the 32

channels with the largest 3 Hz signal power (which should include the P300 response).

3.2.4 Classification Strategy

Detecting the presence of the P300 ERP is a binary classification problem, and most classi-

fiers use the following general equation:

ŷ(x) = ŵT .f(x) + b (3.1)

where x is the feature vector, w is the weight vector and f(.) is the transformation function.

This transformation function f(.) can be a nonlinear function, linear function, or simple

identity function. For example, the sparse autoencoder classifier uses a logistic sigmoid

function. ŷ(x) is called the classifier’s “score”, and is used to decide the class of each

“observation” or measurement. Since we expect the presence of P300 for one row and one

column in each sequence, the target character is selected by

R̂ = arg max
r

6∑
r=1

S∑
s=1

ŷ(xrow) (3.2)

Ĉ = arg max
c

6∑
c=1

S∑
s=1

ŷ(xcol) (3.3)

Here R̂ and Ĉ are the predicted row and column, respectively. S is the number of sequences

for each character. This classification strategy prevails in the P300 classification literature

and is used in numerous studies (e.g., Krusienski et al. 2006; Rakotomamonjy and Guigue

2008).
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Classifier-Based Latency Estimation (CBLE)

Standard P300 classification uses a single time window (e.g., 0 ms to 800 ms post-stimulus

(Krusienski et al., 2006)) time-locked to each stimulus presentation. The Classifier-Based

Latency Estimation (CBLE) method (Thompson et al., 2012) uses many time-shifted copies

of the post-stimulus epochs, and finds the time shift that corresponds to the maximum

score. The statistical variance of the CBLE is denoted vCBLE and is used as the predictor

of the BCI’s performance. In this study, BCI accuracy is predicted for each participant

using the vCBLE estimates of that participant and the regression coefficients of the rela-

tionship between vCBLE and accuracy. The regression coefficients are obtained from the

relationship between vCBLE and accuracy from all other participants (i.e., equivalent to

leave-one-participant-out cross validation).

Least squares (LS)

LS is a linear classifier, meaning that it works by taking a weighted sum of the inputs

(features).

ŷ(x) = ŵT
LS[x 1] (3.4)

where ŴLS is estimated from the training data and corresponding class labels (y) using the

following equation:

ŴLS = (XTX)−1XTy (3.5)

Step-Wise Linear Discriminant Analysis (SWLDA)

Step-Wise Linear Discriminant Analysis (SWLDA) is an extension of Fisher’s linear discrim-

inant (Fisher, 1936) and was found very effective for P300 classification (Krusienski et al.,

2008). SWLDA trains a linear discriminant analysis (LDA) classifier using a stepwise for-

ward and backward regression method. Based on the F-test statistic, the step-wise method

progressively adds the most correlated features in the discriminant model and removes the

least correlated features during the forward and backward regression, respectively. LDA
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finds the optimal features using the following equations:

ŷ(x) = wT (x− x0) (3.6)

where

w =Σ−1(µ1 − µ0), and

x0 =
1

2
(µ1 + µ0)− (µ1 − µ0)

log(π1/π0)

(µ1 − µ0)TΣ−1(µ1 − µ0)

where Σ is the covariance matrix, π is the prior probability of membership in each class,

and µ is the mean vector. In our case, we used p< 0.05 as a threshold to consider a

feature statistically significant, and p> 0.10 to remove the least significant features. Also,

the maximum number of features to be included was restricted to 60 features according to

(Krusienski et al., 2008).

Sparse autoencoder

A single autoencoder (AE) is a fully-connected, two-layer neural network model which con-

sists of one encoding layer and one decoding layer. The dimension of the encoding layer is

the same as the dimension of the input features. The dimension of the decoding layer is,

in general, less than the dimension of the encoding layer. The task of an AE is to encode

the input features (x) to a hidden representation (z) with the aim to later reconstruct the

input features (x) from z by minimizing the reconstruction error. For an input vector x, the

encoder layer maps the vector x to another vector u such that

ū = f (1)(W (1)x̄+ b̄(1)) (3.7)

Here, f is the transfer function of the encoder, W is the weight matrix, b is the bias vector and

the superscript ∗(1) denotes layer 1. In our work, we will use a modified version of AE which

is commonly known as sparse autoencoders (SAE). In SAE, sparsity is induced by adding
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a regularizer term to the cost function to limit over-fitting. The sparsity regularization

(Olshausen and Field, 1997) term, Ωsparsity is defined by the using the Kullback-Leibler

divergence of the average activation value, ρ̂i of a neuron i and its desired value, ρ,

Ωsparsity =
L∑
j=1

KL(ρ‖ρ̂i)

=
L∑
j=1

ρ log
ρ

ρ̂i
+ (1− ρ) log

1− ρ
1− ρ̂i

(3.8)

Here, L is the number of the neuron in the hidden layer. Kullback-Leibler divergence (Kull-

back and Leibler, 1951) is a measure of how similar or different two distributions are. Adding

the sparsity regularization term requires ρ and ρ̂i to be very similar to minimize the cost func-

tion. Another regularization, known as L2 regularization, is also used to prevent Ωsparsity

from becoming small due only to higher values of weights. L2 regularization, Ωweights is

defined as:

Ωweights =
L∑
i=1

N∑
j=1

D∑
k=1

w2
jk (3.9)

Here, N is the number of observations and D is the dimension of the input (number of

variables). Then the sparse autoencoder method uses the following cost function to estimate

the parameters:

J(w, b) =
1

N

N∑
j=1

D∑
k=1

(xdn − x̂dn)2 + λΩweights + βΩsparsity (3.10)

where λ is the L2 regularization coefficient and β is the sparsity regularization coefficient.

The SAE decoding layer reconstructs the input features and attempts to minimize the cost

function shown in eq (3.10). Once the SAE is trained, the decoding layer is removed and

the encoded features are used as input to a softmax classifier. Softmax classifiers are a

generalized version of the logistic classifier, and provide the probability that input features
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belong to certain class.

ŷ(x) = p(y = 1|z) =
ez

Tw1∑2
i=1 e

zTwi
(3.11)

These probabilities are treated as the classifier scores as mentioned in the equation 3.1.

Parameter selection

LS has no parameters to optimize, and SWLDA parameters were selected from the literature

(Krusienski et al., 2008). This work used 200 hidden units with λ = 0.004 and β = 4. We

empirically chose the number of hidden units and the values of regularization coefficients.

We also investigated the performance of stacked-SAEs (i.e., multiple layers of sparse au-

toencoders) and found negligible or no improvement in spelling performance. During the

investigation of stacked-SAEs, we used data from all participants. Given the significant in-

crease in computational complexity with stacked-SAEs, and the corresponding negligible or

no improvement in performance, we used single-layer SAEs in this investigation.

3.2.5 Performance Evaluation

To evaluate the classifier performance we have computed the system spelling accuracy on

each test sentence. Though the information transfer rate (ITR) (Wolpaw et al., 1998) or

BCI utility metric (Dal Seno et al., 2010) are commonly used metrics for system performance

evaluation, these metrics will only differ in the number of sequences are different for different

participants or methods. Since we have used a fixed number of sequences (10 sequences) per

character for all participants, a comparison using spelling accuracy will reflect the equivalent

comparison using ITR or Utility metric. Comparing ITR or Utility metric for a fixed number

of sequences for all participants is redundant if spelling accuracy is reported.

The accuracy for each method will be compared using multiple statistical tests. Firstly,

accuracy for each method is compared using the Friedman test (Friedman, 1937) to find the

difference between accuracy for different methods. The Friedman test (Friedman, 1937, 1940)

is the non-parametric alternative to repeated-measures Analysis of Variance (ANOVA) that

uses a group ranking method. The Friedman test is recommended method for comparisons
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between classifiers (Demšar, 2006) because of its robustness to outliers and the fact that it

does not assume normality of the sample means. If the Friedman test detects a significant

difference between the obtained accuracy for different methods, a post hoc analysis is required

to find which pairs in the group have significant differences.

For the post hoc analysis, we used mean rank based multiple comparison methods

(Hochberg and Tamhane, 1987). Mean ranks post-test is recommended as post hoc Friedman

test in many articles (e.g., Demšar 2006; Marascuilo and McSweeney 1967) and books (Gib-

bons and Chakraborti, 2011; Kvam and Vidakovic, 2007). However, alternative tests are also

suggested in the literature (Benavoli et al., 2016). In (Benavoli et al., 2016), they discussed

several drawbacks of mean ranks-based post hoc analysis and suggested to use a sign-test or

the Wilcoxon signed-rank test (Wilcoxon, 1945) to overcome the identified drawbacks. The

Wilcoxon signed-rank test is also suggested as an alternative for comparing two classifiers

in (Demšar, 2006). Based on the results of the Friedman test, besides mean ranks based

comparison, a post hoc analysis using the Wilcoxon signed ranks test (Wilcoxon, 1945) also

performed as suggested in (Demšar, 2006) for multiple accuracy comparison. In our study,

we used the Wilcoxon signed-rank test for multiple comparisons post hoc analyses, adjusting

the p-value with the conservative Bonferroni correction method.

For the above statistical analysis, we used MATLAB as the primary analysis platform.

For the Friedman test, friedman.m function of the Statistical toolbox was used. For the

multiple comparison method, multcompare.m function was used. In case of the Wilcoxon

signed-rank test based multiple comparison post hoc analysis, signrank.m function and

a custom MATLAB implementation following the procedure described in (Benavoli et al.,

2016) were used.

3.3 Results

As explained in section 3.2.3, we have assessed BCI performance using two different sets

of electrodes. LS(64), SWLDA(64), and SAE(64) will denote the classification results us-

ing data from all 64 electrodes, while LS(32), SWLDA(32), and SAE(32) will denote the

39



classification results using data from 32 electrodes.

3.3.1 Friedman Test with Post Hoc Analysis

In our case, the null hypothesis of the Friedman test is “no significant difference between the

accuracies of each method.” The Friedman test yielded a p−value of < 10−17, which allowed

us to reject the null hypothesis.

Fig. 3.2 shows a graphical representation of the results from the post hoc analysis. It

shows the mean ranks for each method from the Friedman test and the confidence intervals of

the ranks from the post hoc analysis. This figure illustrates the significant or non-significant

differences between each method. For instance, the rank of the method LS(64) is significantly

lower than the ranks of all other methods. The mean rank of SWLDA(64) is significantly

better than the rank of LS(64), LS(32), and SAE(32).

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Mean ranks (Friedman Test)

SAE(32)

SAE(64)

SWLDA(32)

SWLDA(64)

LS(32)

LS(64)

Pairwise Multiple Comparisons of Mean Rank Sums

Figure 3.2: Post hoc analysis: Mean ranks of BCI accuracy with confidence intervals for
each methods using multiple comparison method (Hochberg and Tamhane, 1987). Higher
numerical rank indicates better performance.
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3.3.2 Wilcoxon Signed-Ranks Test

Table 3.2 shows the p-values of pairwise multiple comparisons using the Wilcoxon signed-

ranks test. The effect of the number of electrodes and the classification methods are reported

in section 3.3.3 and 3.3.4, respectively, based on the results showed in Fig. 3.2 and Table

3.2.

Table 3.2: Adjusted (Bonferroni correction (Hochberg and Tamhane, 1987)) P -values of
pairwise multiple comparisons using Wilcoxon signed-ranks test.

Methods LS(64) LS(32) SWLDA(64) SWLDA(32) SAE(64)

LS(32) 1.55e−04
∗∗∗

- - - -

SWLDA(64) 1.33e−08
∗∗∗

8.29e−05
∗∗∗

- - -

SWLDA(32) 3.67e−06
∗∗∗

3.34e−04
∗∗∗

0.543 - -

SAE(64) 2.09e−08
∗∗∗

0.0047∗∗ 1 1 -

SAE(32) 1.77e−04
∗∗∗

1 0.0013∗∗ 0.149 0.068

∗ Adjusted p < 0.05; ∗∗ Adjusted p < 0.01; ∗∗∗ Adjusted p < 0.001.

3.3.3 Effect of Number of Electrodes

All three classification methods were examined using EEG recordings from all electrodes

and a reduced number of electrodes. Here, we will report the statistical test results for all

channels vs the reduced number of channels. From the Table 3.2,

1. LS: The accuracy using all channels is significantly worse than using a reduced set of

channels.

2. SWLDA: The set of all channels performed better than the reduced channel set, but

the difference was not significant.

3. SAE: The set of all channels performed better than the reduced channel set, with the

difference close to but above the usual significance threshold (adjusted p = 0.068, below
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0.05 without Bonferroni correction).

3.3.4 Effect of Classification method

Here we will focus on the differences between different classification methods from Fig. 3.2

and Table 3.2. We compared the best-performing channel set for each method to ensure a

fair comparison. Therefore, results for LS(32) were compared to SWLDA(64) and SAE(64).

1. LS vs SWLDA: SWLDA significantly outperformed LS (adjusted p-value 8.29e−05).

The results from Table 3.2 and Fig. 3.2 are congruent in this case.

2. SWLDA vs SAE: SWLDA slightly outperformed SAE, but the different was highly

non-significant (p-value 1).

3. SAE vs LS: SAE significantly outperformed LS (adjusted p-value 0.0047). The signifi-

cant difference is also observed in Fig. 3.2.

3.3.5 Relation Between BCI Accuracy and P300 Latency Varia-

tions

Fig. 3.3 shows the relationship between BCI accuracy and the variance of CBLE using LS,

SWLDA and SAE classifiers. To prevent over-cluttering, Fig. 3.3 includes only results using

all electrodes. From this figure, it is evident that BCI performance is highly negatively

correlated with the variance of CBLE. The negative correlation is consistent for all three

classification methods. For LS, the correlation coefficient is −0.85 (p < 10−15), for LDA

correlation coefficient is −0.90 (p < 10−20), and for SAE correlation coefficient is −0.87

(p < 10−17).

3.3.6 Predicting BCI Accuracy Using CBLE

Fig. 3.4 shows the predicted accuracy using variances of CBLE (vCBLE) for LS, LDA,

and SAE classifiers, respectively. BCI accuracy is predicted for each participant using the
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Figure 3.3: Accuracy plotted against the variance of classifier-based latency jitter estimates
(vCBLE) using LS, SWLDA and SAE classifiers.

relationship between vCBLE and accuracy from all other users. Predicted accuracy using

vCBLE for all the classifiers are significantly correlated with the actual accuracy. The root

mean square errors (rmse) for three classifiers are rmseLS = 13.43, rmseLDA = 13.65, and

rmseSAE = 14.27, the coefficients of determination are R2
LS = 0.713, R2

LDA = 0.798, and

R2
SAE = 0.755. While these metrics leave some room for improvement, the randomness inher-

ent in observing accuracy from a small number of characters prevents reaching perfect pre-

diction. Even for “ideal” prediction (where the system correctly guesses the exact binomial

parameter for each dataset), the resulting error would be expected to be rmseideal = 8.0−8.4

and R2 = 0.9− 0.93 based on our simulations.

3.4 Discussion

From the results shown in section 3.3.3, we observed that the effect of the number of elec-

trodes is classifier-dependent. LS performed better with features from fewer electrodes
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Figure 3.4: Predicted BCI accuracy from vCBLE are plotted against true accuracy for three
different classifiers. P1, P2, P3, P4, P5, P6, and P7 are indicating each participant.

whereas both SWLDA and SAE performed better with features from all available electrodes

(though the SWLDA and SAE effects were not statistically significant). This is consistent

with theory - both SWLDA and SAE use inherent feature reduction techniques and should

be less prone to the curse of dimensionality.

On our current dataset, the performance of SWLDA is significantly better than the

performance of LS classification, which is congruent with the reported findings in (Krusienski

et al., 2006). But SAE failed to prove better than the performance of SWLDA which is in

contrast with the results in (Vařeka and Mautner, 2017). Furthermore, the required training
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time for SAEs is often outweighing their performance (Vařeka and Mautner, 2017). Overall,

SWLDA may be a better choice for P300 speller BCIs in terms of combined performance

and practicability.

For our P300 speller dataset, we have observed a high negative correlation between P300

latency jitter and classification accuracy. This finding is consistent with our previously

reported results in the earlier CBLE study, as well as the findings reported in another

independent study (Aricò et al., 2014).

3.4.1 Limitations

CBLE is based on an assumption that the ERP complex shifts with a single latency which

is estimated on a single-trial basis. This prevents any study of latency variation between

different ERP components such as P3a and P3b. The same assumption prevents the study

of single-trial spatial latency variations, if such variations exist.

3.5 Summary

From the results presented in section 3.3.3, we can conclude that the effect of the number of

electrodes on performance is relative to the classification methods. LS classification works

well with less features (data from fewer electrodes); SWLDA and SAE work well with a

higher number of features (data from all available electrodes). Overall, SWLDA was the best

classifier on our dataset, and also had the strongest correlation between BCI performance

and vCBLE.

The similitude of the results from this dataset and the results reported in the CBLE

original work strongly establishes that i) the P300 BCI system performance is negatively

correlated with latency variations, ii) CBLE can be used to predict BCI accuracy. Moreover,

the similar vCBLE and accuracy correlation supports the claim that CBLE is classifier

independent.
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Chapter 4

Affective Brain-Computer Interfaces:

A Tutorial to Choose Performance

Measuring Metric

Copyright notice: The following text is reformatted from “Affective Brain-Computer Inter-

faces: A Tutorial to Choose Performance Measuring Metric.” as submitted for publication

Mowla et al. (2020b).

4.1 Introduction

The term affective (Picard et al., 1995) is a psychological concept referring to the experience

of human emotion or feeling. Brain-computer interfaces (BCIs) are usually defined as a direct

means of communication between the brain and external devices or systems which enable

the brain signal to control some external activity (Wolpaw et al., 2002). Yet BCIs also

allow investigation of brain activity and analysis of brain state. Affective Brain-Computer

Interfaces (aBCIs) can be defined as a human affect estimation system from brain signals

using BCIs. The interest in automatic detection of people’s affective states has increased

over the last few decades. Studies have shown that affective states play an important role
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in human decision making (Forgas, 1995). The ability to manage one’s affective states is

also related to the ability of logical reasoning, learning and extracting important information

(Salovey and Mayer, 1990). According to Goleman’s model of emotional intelligence, having

knowledge of your own affective states is a key factor behind personal and professional success

(Goleman, 1996).

However, estimation of the affective state is a difficult task for several reasons. Human

subjects do not always reveal their true emotions, and often inflate their degree of happiness

or satisfaction in self-reports (Strack et al., 1990). Additionally, there is some ambiguity in

understanding and defining affective states (Picard et al., 2001).

Facial expression analysis is one of the most popular methods (Pantic and Rothkrantz,

2000) for estimating affective states, but it is possible to deliberately fake facial expressions

unrelated to one’s true inner affective state. Therefore, as Picard argued, the estimation

may have a high error rate if someone has the ability to disguise his or her emotion (Picard

et al., 2001).

With the improvements in brain imaging techniques, there is a growing interest in re-

lationships between affective states and brain activities. Investigating affective states using

electroencephalogram (EEG) is becoming popular among researchers because EEG is one

of the most convenient, non-invasive forms of recording brain activity. EEG also has high

temporal resolution, which makes it a preferable candidate for fast affective state estimation

(Niemic and Warren, 2002). Before using EEG-based BCIs to estimate affective states, one

major challenge is to model affective states in a measurable and understandable scale. A

current, widely accepted affective state model is the circumplex model of affect (Fig. 4.1),

which was initially proposed by J. A. Russel (Russell, 1980). Finding distinct physiological

patterns for each affective state has also always been a major topic of interest for affective

computing researchers (Cacioppo and Tassinary, 1990). Picard argued that emotion consists

of more complex, underlying processes rather than outward physiological expression (Picard

et al., 2001).

Interest in EEG-based emotion recognition has increased over time and is still growing.

Searching “EEG emotion recognition” in Google scholar gives 115000 results in March 2020.
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Among them, there are 2100 just in the first quarter of 2020. Because these projects rely on

individuals’ emotional responses, the distribution of affective states (classes) is often uneven.

However, most of these articles do not mention the class imbalance percentage but instead

only report classification accuracy as a performance measuring metric. This creates a serious

ambiguity and makes the results incomparable between works. For example, a publicly

available database for emotion recognition known as the DEAP database (Koelstra et al.,

2012) has been cited over 1600 times on March 2020, and using “EEG emotion recognition”

search keywords within the DEAP-citing articles gives more than 1330 results. Out of those

1330 articles, at least 170 articles have included the DEAP dataset in their analysis. Out of

those 170 articles, only approximately 33 articles mentioned or considered class imbalance.

Classification accuracy, without considering class imbalance, is misleading for reasons we will

present in this paper. Additionally, out of those 170 articles, only approximately 30 articles

discussed statistical significance. This raised a few serious research questions:

1. Are those classification accuracies better than unskilled classifiers?

2. If so, are those accuracies significantly better than chance?

3. In the presence of class imbalance, what is the correct chance level?

4. What performance evaluation metric should be used in affect classification?

The main goal of this work is to investigate these questions. As a case study, we will

use our investigations into EEG-based detection of binary (high/low) valence, arousal, and

dominance in response to different sets of stimuli. For this investigation, we use both our

own data as well as the previously mentioned, publicly available DEAP database (Koelstra

et al., 2012).

Affective states can be elicited through visual (Lang et al., 2008), auditory (Lang and

Bradley, 1999), and audio-visual stimuli (Baveye et al., 2015), among other methods. The

emotional experience is more profound when visual presentations are combined with auditory

stimuli, intermediate under visual stimuli and minimal during auditory stimuli (Güntekin

and Başar, 2014). In our experiment, we used visual stimuli, the International Affective
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Figure 4.1: An example of the circumplex model where emotions are expressed in the valence
and arousal dimensions. Valence refers to how pleasant or unpleasant an emotion is, and
arousal refers to how exciting or boring it is. Words are placed according to direct circular
scaling coordinates for 28 affect words from Russel’s article (Russell, 1980).

Picture System (IAPS) (Lang et al., 2008), to evoke emotions. The DEAP database used

audio-visual stimuli.

4.2 Related Work

In the field of affect recognition, a huge number of studies have been conducted on emotion

recognition using EEG signals. With the improvement of dry electrodes, EEG is nearing or

at the point of being a practical, out of the lab solution for affect recognition. More detailed

EEG-based emotion recognition reviews can be found in (Wagh and Vasanth, 2019; Garćıa-

Mart́ınez et al., 2019). One major problem in EEG-based emotion recognition research is

the lack of publicly available datasets. Consequently, researchers use their own data and as

a result studies become more difficult to compare. To solve this problem, a few researchers

developed publicly available datasets including the DEAP (Koelstra et al., 2012), USTC-
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ERVS (Wang et al., 2014) and MAHNOB-HCI datasets (Soleymani et al., 2011). Among

these datasets, the DEAP is the most cited and used for emotion recognition. Thus, we were

motivated to use the DEAP dataset in this work.

Studies where DEAP was used as the benchmark dataset mostly used support vector

machine (SVM) (Piho and Tjahjadi, 2018; Li et al., 2018; Soleymani et al., 2017; Zheng

et al., 2017; Wang et al., 2017; Özerdem and Polat, 2017; Verma and Tiwary, 2017) for

classification. The second most-used classification technique was the k-nearest neighbor

(kNN) classifier (Piho and Tjahjadi, 2018; Zheng et al., 2017; Özerdem and Polat, 2017).

Other classification techniques, such as deep convolutional neural network (Li et al., 2017),

decision tree (Garćıa-Mart́ınez et al., 2016), linear discriminate analysis (LDA) (Al Zoubi

et al., 2018), logistic regression (Zheng et al., 2017), discriminative graph regularized extreme

learning machine (GELM) (Zheng et al., 2017), back-propagation neural networks (BPNN)

(Purnamasari et al., 2017), probabilistic neural networks (PNN) (Purnamasari et al., 2017),

and multilayer perceptron (MLP) (Verma and Tiwary, 2017) have also been used to classify

emotion on the DEAP dataset. Features used in these studies are statistical features: mean,

standard deviation, variance, zero crossing rate (Verma and Tiwary, 2017; Liu et al., 2018;

Torres-Valencia et al., 2017; Menezes et al., 2017), Hjorth parameters (Li et al., 2018; Mert

and Akan, 2018), fractal dimension (Liu et al., 2018; Nakisa et al., 2018), Shannon entropy

(Liu et al., 2018), spectral entropy (Verma and Tiwary, 2017; Liu et al., 2018), kurtosis

(Hemanth et al., 2018), skewness (Yin et al., 2017a), different EEG band powers (Torres-

Valencia et al., 2017; Yoon and Chung, 2013), relative power spectral density (PSD) for delta,

theta, alpha, beta and gamma frequency bands (Wang et al., 2015), differential entropy (DE),

differential asymmetry (DASM), rational asymmetry (RASM), asymmetry (ASM) (Zheng

et al., 2017), wavelet coefficients (Özerdem and Polat, 2017), and higher order crossings

(HOC) (Piho and Tjahjadi, 2018).

In the DEAP dataset, emotions are expressed in valence, arousal, and dominance dimen-

sions on discrete 9-point scales. To design the classification model those scales need to be

labeled. Here also, inconsistencies exist between different studies. Not only are different

numbers of classes chosen by different groups, but even within the same number of classes
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the thresholds are different. In these previously mentioned studies on the DEAP, classi-

fication labels were created by splitting the ratings into 3-class (1-3:negative, 4-6:neutral,

and 7-9:positive) (Jirayucharoensak et al., 2014), 3-class (1-4.5:negative, 4.5-5.5:neutral, 5.5-

9:positive) (Verma and Tiwary, 2017), 2-class (High/low, 4.5-9: high) (Daimi and Saha,

2014), 2-class (negative ≤ 5 < positive) (Wang et al., 2015), 2-class (negative < 5 ≥ posi-

tive) (Wang et al., 2017; Padilla-Buritica et al., 2016; Gupta et al., 2016), and 2-class (1-3:

low and 7-9: high) (Menezes et al., 2017). Hence, the class imbalance in all these studies are

different based on their individual approach when generating class labels.

Even though all these above-mentioned studies used the DEAP dataset, where signif-

icant class imbalance exists, very few studies have considered it while reporting results.

Studies where class imbalance was considered mainly reported the F1 score (Koelstra et al.,

2012; Soleymani et al., 2017; Garćıa-Mart́ınez et al., 2016; Padilla-Buritica et al., 2016; Yin

et al., 2017b) and a few other studies used receiver operating characteristic (ROC) (Piho

and Tjahjadi, 2018; Menezes et al., 2017), area under ROC (AUC) (Li et al., 2018) and

balanced accuracy (Clerico et al., 2018) along with accuracy metric. But AUC can be a

misleading metric for a comparative study especially in the presence of variable class im-

balance (Lobo et al., 2008) and computing the F1 score for multiclass classification is also

not straightforward. For multiclass problems, F1 can be computed using macro-averaging or

micro-averaging (Van Asch, 2013). The difference between macro- and micro-averaged F1

can be large; if studies do not report which was used then comparing results is impossible.

For example, (Gupta et al., 2016) reported classification accuracies of 67% and 69% and F1

scores of 0.67 and 0.69 for valence and arousal, respectively. It is not clear how these F1

scores were calculated. F1 scores for both classes were not considered in that study which

makes the study incomparable and provides misleading results.

To eliminate those above-mentioned problems we are suggesting to use balanced accu-

racy as the classification performance evaluation metric in high/low valence, arousal and

dominance classification. To our knowledge, this has only been used in (Clerico et al., 2018).

However, that study did not consider the lower bound of the credible intervals for balanced

accuracy; here in this study we will further discuss using the posterior distribution of bal-
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anced accuracy to compute credible intervals and perform statistical significance testing.

4.3 Data Description

In this work, we have used data from the publicly available DEAP dataset and EEG record-

ings from our lab.

4.3.1 Database for Emotion Analysis Using Physiological Signals

(DEAP)

The DEAP is a publicly available, multimodal dataset consisting of 32-channel EEG, elec-

trooculography (EOG), electromyography (EMG), galvanic skin response, respiration, plethys-

mograph, and temperature data (Koelstra et al., 2012). These signals were collected from

thirty-two healthy participants, with an equal male-female ratio and an average age of 24.9

years. Data were recorded at a sampling rate of 512Hz and then pre-processed.

Minute-long music videos were used as emotional stimuli. After each video, participants

were provided enough time to rate those videos for valence, arousal, and dominance on a

discrete 9-point scale using self-assessment manikins (SAM) (Bradley and Lang, 1994). Each

participant viewed forty videos.

4.3.2 Data collected at Brain and Body Sensing (BBS) lab

The BCI2000 (Schalk et al., 2004) system was used to present picture stimuli to the partici-

pants. Each picture was displayed for 6.7 seconds, followed by a 20.8s pause for participants’

self-report. A total of 244 pictures were selected from IAPS (Lang et al., 2008) images; the

average valence and arousal ratings reported in the IAPS manual of the selected pictures are

shown in Fig. 4.2. Pictures were presented in six blocks, with breaks for participant com-

fort. EEG data were recorded using a Cognionics Mobile-72 EEG system with a sampling

frequency of 600Hz. The Mobile-72 EEG system is a high-density mobile EEG system with
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active Ag/AgCl electrodes placed according to the modified 10-20 system. Reference and

ground were on the right and left mastoids, respectively.
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Figure 4.2: Visualization of the average valence and arousal ratings (from the IAPS manual)
(Lang et al., 2008) of picture sets used to collect data at the BBS lab.

In total, we had nine participants. Data from two participants have been excluded due to

one data entry error and one battery failure. All participants were healthy college students

with an age range of 21 to 22 years. Each participant was shown 244 pictures through two

or three different sessions. Each participant rated each stimulus for valence, arousal, and

dominance on a discrete 5-point scale using self-assessment manikins (SAM) (Bradley and

Lang, 1994).

4.3.3 Pre-processing

For the DEAP, both raw and pre-processed data are available for use. In this work, we will

use this Matlab-ready preprocessed version of the data. Pre-processing includes common-

average referencing, down-sampling to 128Hz, band-pass filtering with the cut-off frequency

at (4.0− 45.0) Hz, and eye blink artifact removal via independent component analysis. The
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data contain 32 channels of EEG plus an additional eight channels of other physiological

signals and the length of the time segment for each trial is 60 seconds. We have only used

EEG recordings for classification. Data were then transformed into scalp surface Laplacian

or current-source density (CSD) because it has been argued that CSD transformation gives a

more sensitive index of individual variations in frontal asymmetry than other EEG recording

montages and also helps to reduce non-frontal contributions to the frontal asymmetry (Velo

et al., 2012; Allen and Reznik, 2015).

The data collected at the BBS lab was filtered using a finite impulse response (FIR)

bandpass filter at (4.0− 45.0) Hz. Data were then transformed into scalp surface Laplacian

or current-source density (CSD). To transform the EEG recordings into surface Laplacian, we

used the CSD toolbox (Kayser and Tenke, 2006) which provides a Matlab implementation

and uses the spherical spline algorithm (Perrin et al., 1989) to estimate the surface Laplacian.

4.4 Methods

In our study, we will use x(t) ∈ RT as the time series of a recording from a single electrode

with N samples. The first and second derivatives of x(t) with respect to time are x′(t) and

x′′(t), respectively. Standard deviation of x(t), x′(t) and x′′(t) are denoted as σx, σd, and

σdd, respectively. Class labels are denoted by c ∈ {1, 2, . . . , C} and predicted class labels are

denoted by y when classifying. H denotes entropy.

4.4.1 Feature Sets

Frequency domain features

Power spectral density and signal power at different frequency bands are popular for EEG-

based affective state classification and have been used as features in several studies (Lin et al.,

2010; Jenke et al., 2014). Spectral density and band powers can be computed using various

algorithms, including Fast Fourier Transform, short-Time Fourier Transform, or Welch’s

power spectral density estimations algorithm. Here, we have used Welch’s power spectral
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density (PSD) estimation method (Welch, 1967) and then computed power in each band

powers from the resulting PSD. The frequency ranges used for EEG bands varies slightly

between different studies. In our analysis, the frequency ranges we have used are theta: (4-8)

Hz, alpha: (8-12) Hz, beta-1: (12-18) Hz, beta-2: (18-30) Hz, gamma: (31- 63) Hz.

In a few studies, it has been argued that frontal EEG asymmetry can be a moderator

and mediator of affective states (Coan and Allen, 2004; Allen et al., 2004). Frontal alpha

asymmetry is mostly used as a discriminator between depressed and healthy individuals

(van der Vinne et al., 2017). However, it also can be used for affective state classification.

Here, we will use both frontal EEG asymmetry (1-50 Hz) and frontal alpha asymmetry (8-12

Hz) as features for classifying affective states. If Rp represents the signal power of electrodes

located at the right frontal lobe and Lp represents the signal power of electrodes located at

the left frontal lobe then frontal EEG asymmetry can be calculated from

Frontal asymmetry = ln
(Rp

Lp

)
(4.1)

Another form of the frontal asymmetry is the normalized version of equation (4.1) and is

written as

Frontal asymmetry = ln
(Rp − Lp
Rp + Lp

)
(4.2)

Here, we have used equation (4.1) to find the frontal asymmetry. We have computed sepa-

rately the frontal asymmetry index (FAI) and frontal alpha asymmetry index (FAAI). The

frequency range of 0− 64Hz is used to compute FAI and the alpha band is used for FAAI.

We also used frontal theta beta ratios (TBR) as frequency domain features even though

TBR has not been used previously for affective classification. But it has been reported to be

related to affective traits (Putman et al., 2010). Because of their relation with affective traits,

this study will examine the capability of frontal TBR in affect recognition. To compute the

frontal TBR we used equation (4.3)

TBR = ln
( θp
βp

)
(4.3)
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here θp represents the theta band power and βp represents the beta band power of electrodes

located at the frontal lobe. Frequency ranges for beta-1 and beta-2 are used in βp to compute

TBR1 and TBR2, respectively.

Hjorth parameters

Hjorth parameters are time-domain features of EEG recording, proposed by Hjorth (1970).

Hjorth parameters have been recently used in several studies (Mert and Akan, 2018; Jenke

et al., 2014) as features for affective state estimation. The parameters are Activity, Mobility,

and Complexity. Activity is simply the variance of the time signal. If the signal is denoted as

x(t), then Activity = σ2
x and is the measure of the squared standard deviation of amplitudes.

Mobility measures the standard deviation of the slope with respect to the standard deviation

of the amplitude. Mobility is defined as the square root of the ratio between the variances

of the first derivative and the time signal. Complexity is a measure of how much the time

signal deviates from a pure sine shape and is defined as the ratio between the mobility of

the first derivative of the time signal and the mobility of the time signal.

Mobility =
σd
σx

Complexity =
σdd/σd
σd/σx

Here, we have used mobility and complexity as features. For each trial, there will be an

equal number of mobility and complexity values and the number equals the EEG electrode

number.

Entropy

Entropy is a measure of disorder in a system. In the case of EEG, entropy measures the

irregularity in the signal. Spectral entropy of EEG recordings has been used to discriminate

different affective states in other studies (Vakkuri et al., 2004) and it recently has been used

in recognition of emotional states (Zheng et al., 2017). In this work, we will use spectral
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entropy (SE), which is the normalized Shannon entropy of the power spectrum.

Spectral Entropy = −
∑N

i=1 p(X = i) log2 p(X = i)

log2N
(4.4)

where X is denoting the power spectrum of the time series x(t), p(X) is the spectral distri-

bution such that
∑N

i=1 p(X = i) = 1, and N is the number of frequency bins.

4.4.2 Classification

The ultimate goal for emotion estimation is a many-class classification or continuous-output

regression. However, for this initial investigation, we focused on the easier binary classifi-

cation problem, following multiple literature examples (Wang et al., 2017; Menezes et al.,

2017; Wang et al., 2015; Daimi and Saha, 2014; Padilla-Buritica et al., 2016; Gupta et al.,

2016). Thus, we use a two-class classification system for valence, arousal, and dominance.

Participants in our experiments rated each axis from 1 to 5, we have labeled ratings < 3 as

low valence, arousal, and dominance and ratings ≥ 3 as high valence, arousal, and domi-

nance. One participant never rated arousal less than 3, so for this participant (number 6) we

shifted the split point from 3 to 4. In the DEAP database, participants rated each axis from

1 to 9; we have labeled ratings < 5 as low and ratings ≥ 5 as high following the original

work (Koelstra et al., 2012) and some other related studies (Liu et al., 2018; Clerico et al.,

2018; Mohammadi et al., 2017).

In this study, support vector machine (SVM) and K-nearest neighbor (kNN) classifiers

were used to test the affect recognition from EEG data. For our data, we will use 10-

fold cross-validation. In case of DEAP data, we will use “Leave-One-Out” cross-validation

technique. Which means at each step of the cross-validation, one sample was used as the

test set and the rest were used as training set. The reason of using “Leave-One-Out” cross-

validation in lieu of “K-fold” cross-validation is to maintain the congruity with other studies

(Koelstra et al., 2012; Soleymani et al., 2017; Daimi and Saha, 2014; Clerico et al., 2018).

These classifiers are the most commonly used techniques among published reports using
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the DEAP dataset (e.g., Piho and Tjahjadi, 2018; Özerdem and Polat, 2017; Verma and

Tiwary, 2017; Liu et al., 2018; Menezes et al., 2017; Wang et al., 2015; Clerico et al., 2018;

Mohammadi et al., 2017).

Support vector machines (SVMs)

SVM uses a kernel trick and a separating hyperplane to create the support vectors. SVMs

can be used for both regression and classification. In SVMs, with the observation vector x

the predicted class label can be found using (Murphy, 2012)

f̂(x) = sgn
(
ŵ0 +

N∑
i=1

αik(xi,x)
)

(4.5)

Where, αi = λiyi, λ is the `1 regularization term and k(xi,x) is the kernel function. For

Gaussian kernel or radial basis function (RBF) kernel -SVM, the kernel function is defined

by

k(xi,x) = exp
(
− 1

2
(xi − x)TΣ−1(xi − x)

)
(4.6)

Here we have used the MATLAB built-in function fitcsvm for SVM classifier with a

medium Gaussian/RBF kernel. In fitcsvm ‘Gaussian’ and ‘RBF’ kernel are used inter-

changeably.

K-Nearest Neighbours (KNN)

kNN is a simple classification algorithm where an example is classified based on the plurality

vote of its k number of nearest neighbors. The nearest neighbours are chosen by a dis-

tance metric. Distance metrics can be City block distance, Chebychev distance, Minkowski

distance, Euclidean distance or Mahalanobis distance. Here we have used the built-in MAT-

LAB function knnsearch using Euclidean distance with k = 9 using Euclidean distance. The

kernel and hyperparameters for both classifiers are chosen empirically using a 15% test set

partition strategy.
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4.5 Performance Metrics

The most commonly used classification performance measurement metric is accuracy. Nev-

ertheless, accuracy can be misleading, especially with the presence of class imbalance. In

these situations, classifiers can learn from class label proportion rather than the features,

a property sometimes known as “unskilled classification”. In biased datasets, the unskilled

performance is equal to the class imbalance. Thus, the same reported accuracy should be

interpreted differently based on class bias. For example, consider a study reporting 80%

accuracy in a two-class classification. This may be good performance on a balanced dataset

but is at or below unskilled classification levels for biases ≥ 80%.

Comparing the performance of a similar classification task with different proportions of

class labels is difficult. To make this kind of comparison meaningful, researchers suggest

using other performance measuring metrics such as the Kappa statistic or area under ROC

curve (AUC) for imbalanced data. But since the multiclass ROC curve analysis is not well

developed (Lachiche and Flach, 2003), AUC is not recommended for multiclass problems

(Sokolova and Lapalme, 2009). Moreover, the accuracy metric is the most widely used, and

the most intuitive solution would be to make the accuracy metric meaningful by scaling

down the baseline to be the performance of an unskilled classifier. One way to scale the

baseline is to compute the balanced accuracy (Velez et al., 2007) where the accuracy in each

class is considered separately.

4.5.1 Balanced Accuracy

If there are m number of classes, the balanced accuracy (Velez et al., 2007) is defined as

Balanced Accuracy =
1

m

m∑
k=1

Ckk
nk

(4.7)

Here, nk is the total number of observations in class k and Ckk is the number of correctly

classified observations in that same class label.

Since our focus is on two-class classification, here, k=2. If the classifier performs equally
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well on both classes then the balanced accuracy will be exactly equal to the conventional

accuracy (Velez et al., 2007; Brodersen et al., 2010). Since balanced accuracy is the average

accuracy of each class, it is unaffected by the class imbalance and is more meaningful than

the traditional accuracy metric. Further, it has the convenient property that an unskilled

classifier always achieves 1/k accuracy regardless of class imbalance.

Although the traditional accuracy metric is a scaled binomial random variable, researchers

often use a normal posterior distribution to compute credible intervals. The assumption be-

hind the posterior normal distribution comes from the central limit theorem, where for a

sufficiently large number of observations (n ≥ 30), a binomial distribution can be approx-

imated using the normal distribution. Nonetheless, this approximation becomes unreliable

for small n. Particularly in the case of imbalanced data, the number of observations for

the minority class can be smaller than the required number for the normal approximation.

Therefore, finding chance performance and the credible interval of the misclassification rate

for balanced accuracy is not as straightforward as it is in the case of traditional accuracy.

For the two-class classification case, it is a combination of two separate distributions. In a

multi-class scenario, accuracy in each class will have a separate distribution.

Credible Intervals of Balanced Accuracy

If the probability of predicting correct classes of a classifier denoted by A with a prior dis-

tribution p(A), then the posterior is expressed as p(A|D) on observed data D. Lets assume

y = 1 and y = 0 for correct and incorrect predictions, respectively. Now the classifica-

tion predictions can be written as y1, y2, . . . , yn which resembles the results of a Bernoulli

experiment. So we can write

p(yk|A) = Bern(yk|p(A)

= Ayk(1−A)1−yk (4.8)
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If the total number of success (correct predictions) of a Bernoulli trial y1, y2, . . . , yn is c, then

it follows a Binomial distribution.

p(c|A, n) = B(c|A, n)

=

(
n

c

)
An(1−A)n−c (4.9)

This suggests choosing Beta density as the prior of A since it is the conjugate prior of the

Binomial distribution. This implies

p(A) = Beta(A|a, b)

= Beta(A|1, 1) (4.10)

Now the posterior can be written using Bayes theorem as

p(A|c, n) =
p(c|A, n)p(A)

p(c)

=
B(c|A, n)× Beta(A|1, 1)

p(c)
(4.11)

From equation 4.11, we obtain the posterior p(A|c, n) = Beta(A|c + 1, n − c + 1) and the

posterior (1− α)100% credible interval is (Carrillo et al., 2014)

[
F−1Beta(c+1,n−c+1)(α/2);F−1Beta(c+1,n−c+1)(1− α/2)

]
(4.12)

where F−1Beta(·)(·) is the inverse density function of the Beta distribution and for 95% credible

interval, α = 0.05. In a multiclass scenario, each class has the distribution shown in equation

(4.11). To find the posterior of the balanced accuracy m−fold convolution is used for m

classes. Numerical approximations are used to compute the posterior since analytical forms

are not available for the m−fold convolution. In this work we have used a Matlab routine

to compute the credible intervals of balanced accuracy provided in (Brodersen et al., 2010).
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4.5.2 F1 Measure

Another alternative performance evaluation metric is the F1-measure which has been used

in some papers using the DEAP dataset (Koelstra et al., 2012; Soleymani et al., 2017; Daimi

and Saha, 2014). The F-measure was originally proposed by Van Rijsbergen (Van Rijsbergen,

1979) and is defined as (Chinchor, 1992)

Fβ =
(β2 + 1)PR

β2P +R
(4.13)

where P and R denotes precision and recall and are defined as P = tp/(tp + fp), R =

tp/(tp+fn) (tp→ true positive, fp→ false positive, fn→ false negative). β is a parameter

to control balance between P and R. When β = 1, F1 becomes the harmonic mean of

precision and recall. Hence the F1 measure is

F1 =
2PR

P +R
(4.14)

Since P and R are calculated considering one class as a positive class, P and R have to be

calculated per class and hence the F1 measure as well. P and R per class can be calculated

in two ways: microaveraging and macroaveraging. Microaveraging aggregates the individual

true positives, false positives, and false negatives of each classes to calculate the P and R.

miP =

m∑
k=1

Ckk

m∑
k=1

Ckk +
m∑
k=1

m∑
j=1
j 6=k

Cjk

miR =

m∑
k=1

Ckk

m∑
k=1

Ckk +
m∑
k=1

m∑
j=1
j 6=k

Ckj

miF1 =
2 ·miP ·miR
miP +miR

(4.15)
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An alternative technique is known as macroaveraging. In macroaveraging, P and R are

calculated for each classes and then F1 for each class is computed using P and R of individual

classes, and finally the macroaverage is the simple average of individual class F1 scores.

Pk =
Ckk

Ckk +
m∑
j=0
j 6=k

Cjk

=
Ckk
m∑
j=1

Cjk

Rk =
Ckk

Ckk +
m∑
j=0
j 6=k

Ckj

=
Ckk
m∑
j=1

Ckj

maF1 =
1

m

m∑
k=1

2 · Pk ·Rk

Pk +Rk

(4.16)

The difference between miF1 and maF1 can be significant. Macro-averaging gives equal

weight to each class, whereas micro-averaging gives equal weight to each per-class classifi-

cation decision. Since F1 measure ignores true negatives, the influence of large classes is

higher than small classes in micro-averaging (Manning et al., 2010). However, the F1 mea-

sure’s harmonic means suggest that the averaging should be over the per-class classification

decision of each instances. And in that case macro-averaging is not consistent with the orig-

inal definition of the F1 measure (Powers, 2015). Hence we yet do not have a convincing

argument for choosing between miF1 and maF1 for multiclass classification.

4.6 Results

Because we have used seventeen different feature sets, it is not feasible to show all results

here. To summarize the results, the classification results are averaged over all participants

for each feature set. Those average classification accuracies, and other performance metrics

for different feature sets, are presented in Fig. 4.3, Fig. 4.4 and Table 4.1. All the results

presented here are for the SVM classifier since it performed better than the kNN approach.
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4.6.1 DEAP Dataset
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Figure 4.3: Average classification rate of all participants in valence, arousal and dominance
recognition for different features using DEAP dataset.

Fig. 4.3(a) shows the average classification accuracies and balanced accuracies for differ-

ent feature sets using SVM. The mean classification rates for all features are 0.604, 0.637, and

0.648 for valence, arousal, and dominance, respectively. These results are very comparable

with the results reported in DEAP original work (Koelstra et al., 2012) and other related

studies (Soleymani et al., 2017; Daimi and Saha, 2014). But then if we check the balanced

accuracies on the right side of the Fig. 4.3(a), we will observe very different results. The

mean classification rate in balanced accuracies for all feature are 0.544, 0.521, and 0.531 for

valence, arousal and dominance respectively. These results are very different than the results

with the simple accuracy metric except for valence recognition. The average class bias rate

in these three dimensions are 0.59, 0.64 and 0.66 for valence, arousal, and dominance.

Fig. 4.3(b) shows the average macro- and micro-averaged f1 measure for different feature

sets using SVM. The mean macro-f1 for all feature are 0.49, 0.45 and 0.46 for valence,

arousal, and dominance, respectively. On the contrary, the mean micro-f1 for all feature are

0.59, 0.62 and 0.63 for valence, arousal, and dominance, respectively. The best classification

rate in the valence dimension is achieved using beta band power as a feature, as we found

using balanced accuracy. For valence, the average across all participants macro-f1 for BetaP
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feature is 0.53 and the micro-f1 is 0.61. For arousal, the average across all participants

macro-f1 for ThetaP feature is 0.48 and the micro-f1 is 0.63. For dominance, the average

across all participants’ macro-f1 for the TBR1 feature is 0.50 and the micro-f1 is 0.65.

Table 4.1: The average for all participants classification rate in terms of balanced accuracy
and the lower bound of the 95% credible intervals of balanced accuracies for different feature
sets.

Features Valence Arousal Dominance

Balanced Lower bound Balanced Lower bound Balanced Lower bound

Accuracy (BAcc) of BAcc Accuracy (BAcc) of BAcc Accuracy (BAcc) of BAcc

PASI 0.5448 0.4297 0.5279 0.4227 0.5317 0.4262

FAI 0.5222 0.4089 0.5118 0.4130 0.5219 0.4178

TBR1 0.5479 0.4267 0.5247 0.4235 0.5568 0.4435

TBR2 0.5381 0.4198 0.5109 0.4090 0.5220 0.4142

ThetaP 0.5388 0.4211 0.5371 0.4336 0.5302 0.4206

AlphaP 0.5432 0.4286 0.5238 0.4281 0.5492 0.4432

BetaP 0.5732 0.4531 0.5303 0.4263 0.5370 0.4247

GammaP 0.5585 0.4381 0.5282 0.4265 0.5409 0.4323

TBR-C 0.5663 0.4482 0.5318 0.4263 0.5550 0.4439

TABG 0.5578 0.4401 0.5090 0.4122 0.5349 0.4301

Hjorth 0.5323 0.4159 0.5268 0.4268 0.5204 0.4104

PASI+FASI 0.5473 0.4355 0.5214 0.4207 0.5338 0.4307

Avg-Entropy 0.5158 0.4177 0.5200 0.4312 0.5176 0.4269

PSD 0.5525 0.4451 0.5148 0.4259 0.5292 0.4361

BARatio 0.5230 0.4077 0.5016 0.4054 0.5115 0.4059

All 0.5517 0.4447 0.5069 0.4178 0.5229 0.4290

All-PCA 0.5365 0.4160 0.5166 0.4086 0.5484 0.4329

Table 4.1 shows the average balanced accuracies and lower bound of the 95% credible

intervals of balanced accuracies for different feature sets using equation (4.12). All results

are for the SVM classifier. The highest obtained balanced accuracy across all dimensions

is 0.5732, achieved for valence recognition using beta band power. Unfortunately, the av-

erage lower limit of the credible intervals, in this case, is not above 0.5 (random chance).

Though the average provides an overall recognition rate, it does not reflect the performance

of individual participants. Explaining results for all features would be cumbersome; here

we will explain classification results for each participant for only the best feature in each

dimension. For valence, beta band power worked best. Using this feature, the balanced
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accuracy obtained for a participant (s10) with 0.75 and the lower bound of the credible in-

terval is 0.622, which means that the valence classification rate is significantly above chance

for this participant. Out of 32 participants, balanced accuracy is greater than 0.5 for 23

participants. For 8 of these participants, the lower bound of the credible interval is greater

than 0.5. For arousal, theta band power worked best. Using the thetaP feature, the high-

est balanced accuracy obtained for a participant (s17) is 0.73 and the lower bound of the

credible interval is 0.60, which means the arousal classification rate is significantly above

chance for this participant. For 21 participants, observed balanced accuracy is greater than

0.5. However, only 4 participants were the lower bound of the credible interval greater than

0.5. For dominance, theta beta-1 ratio worked best. Using TBR1, the highest balanced

accuracy obtained for a participant (s17) was 0.74 with a lower bound of 0.61, which means

the dominance classification rate is significantly above chance for this participant. For 24

participants, balanced accuracy is greater than 0.5. Yet again, only for 4 participants was

the lower bound of the credible interval greater than 0.5.

Table 4.2 shows the affect recognition rate in terms of balanced accuracy, micro and macro

averaged F1 score and also compared with the original work (Koelstra et al., 2012) and some

other related studies. These compared studies used Gaussian naive Bayes classifier (Koelstra

et al., 2012) and Gaussian/RBF kernel SVM (Soleymani et al., 2017; Daimi and Saha, 2014;

Clerico et al., 2018) for affective classification. Rather than presenting the best results in

Table 4.2: The classification rate in terms of balanced accuracy and micro and macro F1
scores of affect recognition compared to the DEAP dataset original work and related studies.
The results shown here are average of all participants for beta band power (BetaP) features.

Valence Arousal Dominance

bAcc miF1 maF1 bAcc miF1 maF1 bAcc miF1 maF1

Koelstra et al., 2012 – – 0.563 – – 0.583 – – –

Daimi and Saha, 2014 – – 0.550 – – 0.570 – – 0.552

Soleymani et al., 2017 – – 0.645 – – 0.570 – – 0.533

Clerico et al., 2018 0.604 – – 0.583 – – 0.564 – –

Current study 0.573 0.610 0.530 0.530 0.620 0.460 0.537 0.630 0.460
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each dimension, we chose to present results for one specific feature set for consistency. The

results presented under the current study are for beta band power (BetaP) feature using an

SVM classifier. Note that our comparison studies seem to have picked the best result in each

dimension for their reported results (only Clerico et al., 2018 unambiguously stated this).

4.6.2 Data from BBS lab
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Figure 4.4: Average classification rate of all participants in valence, arousal and dominance
recognition for different features using BBS data.

The data collected at the BBS lab using IAPS came from seven participants. For 2-

class classification, the average class-bias were 0.60, 0.72, and 0.82 for valence, arousal, and

dominance, respectively. For valence with SVM, the best 2-class classification results were

obtained using gamma-band power considering the average of all participants. The obtained

accuracy was 0.62 and the balanced accuracy was 0.54. The macro and micro averaged f1

scores were 0.49 and 0.60, respectively.

For arousal with SVM, the best 2-class classification results were obtained using the

power asymmetry index (PASI) considering the average of all participants. The obtained

accuracy was 0.73 and the balanced accuracy was 0.54. The macro and micro averaged f1

scores were 0.50 and 0.71, respectively.

For dominance with SVM, the best 2-class classification results were obtained using beta
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band power considering the average of all participants. The obtained accuracy was 0.82 and

the balanced accuracy was 0.52. The macro and micro averaged f1 scores were 0.46 and 0.82,

respectively.

4.7 Discussion

For the DEAP, the average class bias or majority class percentage in a 2-class classification

scenario for valence, arousal and dominance are 0.59, 0.64 and 0.66 respectively. We have

argued that class imbalance is important to understand the results of the classifier and should

be reported. Performance metrics that include or account the class-biases are thus preferred

to use. Any metric that ignores class imbalance will mislead readers. To illustrate this,

consider the results from Table 4.1 where balanced accuracies and its lower bound of the

95% credible interval were presented for different feature sets for DEAP data using SVM. The

best average classification accuracy for all participants in the valence dimension was 0.602

using beta band power as a feature, whereas the balanced accuracy, in this case, was 0.573.

Without knowing the class bias and considering the accuracy metric, one might think the

result is promising. But the lower bound of the 95% credible interval of balanced accuracy

shows that the classification rate can not be claimed as statistically significant.

However, class imbalance for each participant for all three-dimension (valence, arousal,

dominance) would be cumbersome and impractical to report. The biases mentioned earlier

were averaged across all participants. Since affective state estimation is a participant-specific

task, averaged results do not reflect individual performances. So comparisons using aver-

age results are not meaningful. Hence, we need something else which can address both the

class imbalance problem and make the average performance meaningful. Considering those

above-mentioned problems, balanced accuracy is a promising candidate since the baseline

performance for balance accuracy is the same (50%) across all dimensions(valence, arousal,

dominance) for all participants. Thus, balanced accuracy will make results easier to under-

stand and compare. For example, just looking at the results in Table 4.1, we can easily

conclude that the valence recognition rate is better than arousal and dominance recognition.
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Statistical comparison between the balanced accuracies for valence, arousal and dominance

presented in Table 4.1 is done by using MATLAB inbuilt function ttest2. Two-sample

t-test resulted in the rejection of the null hypothesis (two groups are equal) when comparing

valence and arousal. The valence recognition rate is significantly better than the arousal and

dominance recognition rate with p-values 0.035 and 7.44e−06. The dominance recognition

rate is also significantly better than arousal with p-value of 0.031. These three two-sample

t-tests suggested that valence has the highest recognition rate and arousal has the lowest for

the DEAP dataset.

Averages for all participants of the balanced accuracies, macro, and micro f1 measure

were compared with other related studies in Table 4.2. Since they have not discussed the

methods of statistical analysis, here we will use our obtained results shown in Table 4.1

for discussion. Our average balanced accuracies are very similar to the highest balanced

accuracy reported in (Clerico et al., 2018). They claimed that all the reported balanced

accuracies were better than random voting classifiers with p < 0.05. This statement is true

if we perform statistical analysis considering results from all participants as a group rather

than individual participants. The number of participants with balanced accuracy above 0.5

is 25 for valence using all frequency band powers, 21 for arousal and 20 for dominance. In

this case the probability that overall balanced accuracy is above chance are 0.66, 0.66 and

0.63 with intervals (0.47 − 0.82), (0.47 − 0.82), and (0.44 − 0.79) for valence, arousal and

dominance, respectively. But the significance of the experiment as a whole does not capture

the significance of each participant’s performance. Hence, just based on these statistics we

are not comfortable to claim the accuracies are above chance. Rather we suggest using the

probability of individual participants’ performances being above chance to claim the results

are significant. Using the number of participants that are significantly above chance, we

have 6 for valence, 3 for arousal and 4 for dominance out of 32 participants. That tells

us that the probabilities of a participant’s classification accuracy being significantly above

chance for valence, arousal and dominance are 0.19, 0.09 and 0.13 bounded by (0.07− 0.36),

(0.02 − 0.25) and (0.04 − .29), respectively. These are not very encouraging, as valence is

only above the typical 0.05 threshold. This low rate of significant performance may be of
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concern for the EEG based affective computing community, and as a community, we need

to be more careful while reporting results.

4.8 Conclusion

In this work, experimental results for affective state estimation performance were shown

using the publicly available DEAP database and our own data. Our results with DEAP

data were also compared with the results reported in a few related studies (Soleymani et al.,

2017; Daimi and Saha, 2014; Clerico et al., 2018). Among these studies, Clerico et al.

(2018) used balanced accuracy as the performance measuring metric and others used macro

averaged f1 score. Some other studies (Yin et al., 2017a,b) also reported f1 score for the

low valence/arousal/dominance class. But since their f1-score was computed using only one

class, the results are not comparable. In most of the related studies, only classification

accuracy has been reported (e.g. (Mohammadi et al., 2017; Atkinson and Campos, 2016)),

which makes the results hard to interpret in the presence of class bias and also incomparable

with other studies.

In conclusion, we suggest using balanced accuracy and its posterior distribution as the

performance evaluation metric for emotion estimation. Though F1 measure is a popular

choice, it is not yet well established which F1 measure (macro/micro) we should use for

multiclass classification. As our results demonstrate, that choice is important. Further, if

macro-averaging is chosen, the statistical significance of the metric is not well understood.

In contrast to the F1 measure, balanced accuracy has several advantages. First, balanced

accuracy does not have a “preferred class” and is thus comparable between groups. Second,

the credible bounds can be calculated using known formulas. Third, the extension to large

numbers of classes is straightforward. Fourth and finally, balanced accuracy is insensitive to

class bias and always has the intuitive 1/k chance performance for unskilled classifiers.

We note that traditional accuracy metrics would have classified the performance of many

more of our participants as statistically significant, relative to the number classified this way

by balanced accuracy. Nevertheless, we maintain that balanced accuracy is far less mis-
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leading, and that the traditional accuracy metric substantially over-estimates performance

is these unbalanced datasets.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

Brain-Computer Interfaces (BCIs) have immense potential as an alternative tool for com-

munication and control. It has already been long established that this kind of technology

has considerable medical implications for patients with severe motor disabilities. The recent

trend of integrating BCIs with augmented reality (AR) and virtual reality (VR) environ-

ment, and video-game environment (Lécuyer et al., 2008; Van Erp et al., 2012) manifests the

higher potentials of BCIs in non-medical applications. In my opinion, this is “the” technol-

ogy which will make science fiction into reality and allow us to control our environment by

just thinking about it. To reach that far, however, we, the researchers, need to improve the

BCIs from their current stage. In this dissertation, a small effort was made to enhance the

BCIs further and make them usable.

This dissertation also attempted to incorporate BCIs with affective computing. Affective

computing is also an emerging field of research that will enable computers to understand

human affect. The area is increasing by combining various multidisciplinary approaches such

as facial image analysis, heart rate detection, skin temperatures, and similar other measures.

But BCIs also can be very useful in this area.
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5.2 Contributions

Major contributions of this dissertation are summarized below and the outcomes (i.e., pub-

lications) of this dissertation-related research are listed in section 5.2.4.

5.2.1 Performance Enhancement of P300 Speller

To enhance the P3 BCI’s performance, classifier-based latency estimation (CBLE) and a

wavelet transform were used to provide information about latency jitter to a second-level

classifier. Three second-level classifiers were tested: least squares (LS), step-wise linear

discriminant analysis (SWLDA), and support vector machine (SVM). Of these three, LS

and SWLDA performed better than the original online classifier. The resulting combination

demonstrated improved detection of brain responses for many participants, resulting in better

BCI performance.

5.2.2 Comparison of Classification Techniques to Predict BCI Ac-

curacy Using CBLE

To investigate the role of latency jitter on BCI system performance, Thompson et al. (2012)

proposed the classifier-based latency estimation (CBLE) method. In (Thompson et al.,

2012), CBLE was based on the least-squares (LS) and stepwise linear discriminant analysis

(SWLDA) classifiers. This dissertation extends the CBLE method using sparse autoencoders

(SAE). Here, the newly-developed sparse autoencoder-based CBLE method was applied to

a newly-collected dataset. Findings include a significant (p < 0.001) negative correlation

between BCI accuracy and estimated latency jitter. Furthermore, the SAE-based CBLE

method was used to predict BCI accuracy and the resulting coefficient of determination (R2)

was 0.755. In contrast to Vařeka and Mautner (2017), we have not observed an improve-

ment in P300 classification accuracy using sparse autoencoders. This confirms the findings

of Krusienski et al. (2006), that SWLDA provides the best overall performance for P300

classification.
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5.2.3 Performance Assessment of Affective BCIs

Automatic recognition of affective states has a wide variety of applications, such as human-

computer interaction scenarios where users’ affective state is important, emotion sensitive

automatic tutoring systems, and entertainment and gaming programs where the program

can respond based on the users affective state. But the current research on EEG-based

affect recognition lacks a proper evaluation metric, which made the results from different

studies incomparable. To remove that hindrance, an evaluation method based on using

balanced accuracy was proposed with a detailed analysis using other candidate metrics (e.g.,

F1 measure, area under curve). The proposed methodology will serve as a tutorial guideline

for EEG based affective computing research.

5.2.4 Publications

1. Mowla et al., 2016. “Boosting BCI accuracy using wavelet enhanced CBLE scores

as a classifier feature.” Proceedings of the 6th International Brain-Computer Interface

Meeting.

2. Mowla et al. (2017). “Enhancing p300-BCI performance using latency estimation”,

Brain-Computer Interfaces, pages 1–9.

3. Mowla et al. (2018b). “Evaluation and Performance Assessment of the Brain-Computer

Interface System”, chapter 33, pages 634–649. CRC Press, 2018.

4. Mowla et al. (2020a). “Estimation of inter-trial p300 latency variability using an

autoencoder-based CBLE method”. Manuscript submitted for publication.

5. Mowla et al. (2020b). “Affective brain-computer interfaces: Balanced accuracy as the

performance measuring metric”. Manuscript submitted for publication.
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5.3 Limitations

Limitations are provided in each chapter. Overall the main limitations are: (i) BCIs for

communication are intended for users with neuromuscular disorders, but the data collected

at the BBS lab are from healthy college students. (ii) Another unavoidable limitation of

the affective experimental design is to stimulate consistent affective state across subjects.

Since emotional feelings are very subjective, it is very difficult to generalize ratings for each

stimulus (Coan and Allen, 2007). For example, a snake picture can be arousing to one person

whereas someone else might not be aroused at all. Another person may experience a feeling

of fear looking at a snake picture whereas someone else may feel affectionate.

5.4 Future Work

The experiments described in Chapter 3 and 4 are still being conducted. The P3 experiment

consists of two stimulus presentation paradigms. One is standard row/column intensifica-

tion, and another one is replacing the row/column with Albert Einstein’s iconic tongue face

picture. Due to the small number of participants, this dissertation work did not attempt

to compare the differences in BCI performance between these two paradigms. One of the

major future tasks is to compare the variances of estimated latency using the proposed SAE

based CBLE method for these two paradigms.

The affective experiment is also ongoing using sound stimuli. The primary future task

of this part will be to compare affect recognition using picture and sound stimuli for the

same participant. But before analyzing the effectiveness of sound and image as stimuli, the

first task will be to explore other EEG features further. An alternative approach to using

balanced accuracy would be to use random or selective oversampling to produce synthetically

balanced datasets. A future research project could be comparison of the effectiveness of these

approaches.

The affective classification results reported in this dissertation demonstrate that the tra-

ditional feature sets are not very useful in identifying human affect from EEG. That suggest
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investigating the effectiveness of non-traditional EEG features in identifying affect. A poten-

tial analysis method could be using brain connectivity patterns for different affective stimuli.

The effective connectivity refers to the directional influence that one neural system exerts

over another (Friston, 2009). Effective connectivity involves inferred causality and describes

the directional effects of one neural system over another. Since the connectivity measure de-

picts the directional effect from one location to another, a 64-channel EEG data will produce

642 − 64 = 4032 directional interactions in each time-frequency combination, which makes

such analysis very computationally expensive. A significant challenge in this future direction

will be to determine how to use the connectivity features for affect recognition.
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