95 research outputs found

    Is the timed-up and go test feasible in mobile devices? A systematic review

    Get PDF
    The number of older adults is increasing worldwide, and it is expected that by 2050 over 2 billion individuals will be more than 60 years old. Older adults are exposed to numerous pathological problems such as Parkinson’s disease, amyotrophic lateral sclerosis, post-stroke, and orthopedic disturbances. Several physiotherapy methods that involve measurement of movements, such as the Timed-Up and Go test, can be done to support efficient and effective evaluation of pathological symptoms and promotion of health and well-being. In this systematic review, the authors aim to determine how the inertial sensors embedded in mobile devices are employed for the measurement of the different parameters involved in the Timed-Up and Go test. The main contribution of this paper consists of the identification of the different studies that utilize the sensors available in mobile devices for the measurement of the results of the Timed-Up and Go test. The results show that mobile devices embedded motion sensors can be used for these types of studies and the most commonly used sensors are the magnetometer, accelerometer, and gyroscope available in off-the-shelf smartphones. The features analyzed in this paper are categorized as quantitative, quantitative + statistic, dynamic balance, gait properties, state transitions, and raw statistics. These features utilize the accelerometer and gyroscope sensors and facilitate recognition of daily activities, accidents such as falling, some diseases, as well as the measurement of the subject's performance during the test execution.info:eu-repo/semantics/publishedVersio

    International Conference on NeuroRehabilitation 2012

    Get PDF
    This volume 3, number 2 gathers a set of articles based on the most outstanding research on accessibility and disability issues that was presented in the International Conference on NeuroRehabilitation 2012 (ICNR).The articles’ research present in this number is centred on the analysis and/or rehabilitation of body impairment most due to brain injury and neurological disorders.JACCES thanks the collaboration of the ICNR members and the research authors and reviewers that have collaborated for making possible that issue

    An Efficient Home-Based Risk of Falling Assessment Test Based on Smartphone and Instrumented Insole

    Get PDF
    The aim of this study is to improve and facilitate the methods used to assess risk of falling among older people at home. We propose an automatic version of One-Leg Standing (OLS) test for risk of falling assessment by using a Smartphone and an instrumented insole. For better clinical assessment tests, this study focuses on exploring methods to combine the most important parameters of risk of falling into a single score. Twenty-three volunteers participated in this study for evaluating the effectiveness of the proposed system which includes eleven elderly participants: seven healthy elderly (67.16 ± 4.24 years), four Parkinson disease (PD) subjects (70 ± 12.73 years); and twelve healthy young adults (28.27 ± 3.74 years). Our work suggests that there is an inverse relationship between OLS score proposed and risk of falling. Proposed instrumented insole and application running on Android could be useful at home as a diagnostic aid tool for analyzing the performance of elderly people in OLS test

    Analysis of Android Device-Based Solutions for Fall Detection

    Get PDF
    Falls are a major cause of health and psychological problems as well as hospitalization costs among older adults. Thus, the investigation on automatic Fall Detection Systems (FDSs) has received special attention from the research community during the last decade. In this area, the widespread popularity, decreasing price, computing capabilities, built-in sensors and multiplicity of wireless interfaces of Android-based devices (especially smartphones) have fostered the adoption of this technology to deploy wearable and inexpensive architectures for fall detection. This paper presents a critical and thorough analysis of those existing fall detection systems that are based on Android devices. The review systematically classifies and compares the proposals of the literature taking into account different criteria such as the system architecture, the employed sensors, the detection algorithm or the response in case of a fall alarms. The study emphasizes the analysis of the evaluation methods that are employed to assess the effectiveness of the detection process. The review reveals the complete lack of a reference framework to validate and compare the proposals. In addition, the study also shows that most research works do not evaluate the actual applicability of the Android devices (with limited battery and computing resources) to fall detection solutions.Ministerio de Economía y Competitividad TEC2013-42711-

    Experimental study for determining the parameters required for detecting ECG and EEG related diseases during the timed-up and go test

    Get PDF
    The use of smartphones, coupled with different sensors, makes it an attractive solution for measuring different physical and physiological features, allowing for the monitoring of various parameters and even identifying some diseases. The BITalino device allows the use of different sensors, including Electroencephalography (EEG) and Electrocardiography (ECG) sensors, to study different health parameters. With these devices, the acquisition of signals is straightforward, and it is possible to connect them using a Bluetooth connection. With the acquired data, it is possible to measure parameters such as calculating the QRS complex and its variation with ECG data to control the individual’s heartbeat. Similarly, by using the EEG sensor, one could analyze the individual’s brain activity and frequency. The purpose of this paper is to present a method for recognition of the diseases related to ECG and EEG data, with sensors available in off-the-shelf mobile devices and sensors connected to a BITalino device. The data were collected during the elderly’s experiences, performing the Timed-Up and Go test, and the different diseases found in the sample in the study. The data were analyzed, and the following features were extracted from the ECG, including heart rate, linear heart rate variability, the average QRS interval, the average R-R interval, and the average R-S interval, and the EEG, including frequency and variability. Finally, the diseases are correlated with different parameters, proving that there are relations between the individuals and the different health conditions.info:eu-repo/semantics/publishedVersio

    Clinical Decision Support Systems with Game-based Environments, Monitoring Symptoms of Parkinson’s Disease with Exergames

    Get PDF
    Parkinson’s Disease (PD) is a malady caused by progressive neuronal degeneration, deriving in several physical and cognitive symptoms that worsen with time. Like many other chronic diseases, it requires constant monitoring to perform medication and therapeutic adjustments. This is due to the significant variability in PD symptomatology and progress between patients. At the moment, this monitoring requires substantial participation from caregivers and numerous clinic visits. Personal diaries and questionnaires are used as data sources for medication and therapeutic adjustments. The subjectivity in these data sources leads to suboptimal clinical decisions. Therefore, more objective data sources are required to better monitor the progress of individual PD patients. A potential contribution towards more objective monitoring of PD is clinical decision support systems. These systems employ sensors and classification techniques to provide caregivers with objective information for their decision-making. This leads to more objective assessments of patient improvement or deterioration, resulting in better adjusted medication and therapeutic plans. Hereby, the need to encourage patients to actively and regularly provide data for remote monitoring remains a significant challenge. To address this challenge, the goal of this thesis is to combine clinical decision support systems with game-based environments. More specifically, serious games in the form of exergames, active video games that involve physical exercise, shall be used to deliver objective data for PD monitoring and therapy. Exergames increase engagement while combining physical and cognitive tasks. This combination, known as dual-tasking, has been proven to improve rehabilitation outcomes in PD: recent randomized clinical trials on exergame-based rehabilitation in PD show improvements in clinical outcomes that are equal or superior to those of traditional rehabilitation. In this thesis, we present an exergame-based clinical decision support system model to monitor symptoms of PD. This model provides both objective information on PD symptoms and an engaging environment for the patients. The model is elaborated, prototypically implemented and validated in the context of two of the most prominent symptoms of PD: (1) balance and gait, as well as (2) hand tremor and slowness of movement (bradykinesia). While balance and gait affections increase the risk of falling, hand tremors and bradykinesia affect hand dexterity. We employ Wii Balance Boards and Leap Motion sensors, and digitalize aspects of current clinical standards used to assess PD symptoms. In addition, we present two dual-tasking exergames: PDDanceCity for balance and gait, and PDPuzzleTable for tremor and bradykinesia. We evaluate the capability of our system for assessing the risk of falling and the severity of tremor in comparison with clinical standards. We also explore the statistical significance and effect size of the data we collect from PD patients and healthy controls. We demonstrate that the presented approach can predict an increased risk of falling and estimate tremor severity. Also, the target population shows a good acceptance of PDDanceCity and PDPuzzleTable. In summary, our results indicate a clear feasibility to implement this system for PD. Nevertheless, long-term randomized clinical trials are required to evaluate the potential of PDDanceCity and PDPuzzleTable for physical and cognitive rehabilitation effects

    Comparing auditory, visual and vibrotactile cues in individuals with Parkinson’s disease for reducing risk of falling over different types of soil

    Get PDF
    Introduction: Several researches have demonstrated the positive benefits of auditory and visual cueing in the gait improvements among individuals with Parkinson’s disease (PD). However, few studies have evaluated the role of vibrotactile cueing when compared to auditory and visual cueing. In this paper, we compare how these stimuli affect the risk of falling while walking on six types of soil (concrete, sand, parquet, broken stone, and two types of carpet). Methods: An instrumented Timed Up and Go (iTUG) test served to evaluate how audio, visual and vibrotactile cueing can affect the risk of falling of elderly. This pilot study proposes twelve participants with PD (67.7 ± 10.07 years) and nine age-matched controls (66.8 ± 8.0 years). Both groups performed the iTUG test with and without cueing. The cueing frequency was set at 10% above the cadence computed at the lower risk level of falling (walking over the concrete). A computed risk of falling (ROFA) index has been compared to the TUG time (total TUG duration). Results: The index for evaluating the risk of falling appears to have a good reliability (ICC > 0.88) in this pilot study. In addition, the minimal detectable change (MDC) suggests that the proposed index could be more sensitive to the risk of falling variation compared to the TUG time. Moreover, while using the cueing, observed results suggest a significant decrease in the computed risk of falling compared to ‘without cueing’ for most of types of soil especially for deformable soils, which can lead to fall. Conclusion: When compared to other cueing, it seems that audio could be a better neurofeedback for reducing the risk of falling over different walking surfaces, which represent important risk factors for persons with gait disorder or loss functional autonomy

    Signal processing for the measurement of the results of the timed-up and go test using sensors

    Get PDF
    Dissertação de Mestrado apresentada à Escola Superior de Tecnologia do Instituto Politécnico de Castelo Branco para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Desenvolvimento de Software e Sistemas Interativos.Os recentes avanços tecnológicos e o crescente uso dos dispositivos móveis tem permitido o surgimento de vários estudos em diferentes áreas da vida humana. Estes dispositivos estão equipados com diversos sensores que permitem adquirir diferentes parâmetros físicos e fisiológicos de diferentes indivíduos. Os dispositivos móveis apresentam-se com cada vez mais soluções, funcionalidades e capacidade de processamento. A presença de sensores nos dispositivos móveis, como o acelerómetro, magnetómetro e giroscópio, permite a aquisição de sinais relacionados com atividade física e movimento do ser humano. Em acréscimo, dado que estes dispositivos incluem possibilidade de ligação via Bluetooth, outros sensores podem ser utilizados em conjunto com os sensores incluídos no dispositivo móvel. O desenvolvimento deste tipo de sistemas inteligentes com sensores é um dos temas abordados no desenvolvimento de sistemas de Ambient Assisted Living (AAL). Diversas áreas da medicina têm beneficiado com estes avanços, proporcionando cuidados de saúde à distância, mas o foco desta dissertação é um dos testes funcionais focados na fisioterapia, o Timed-Up and Go test. O Timed-Up and Go test define-se como um teste muito utilizado por fisioterapeutas na recuperação de lesões e é constituído por seis fases, onde o individuo se encontra sentado numa cadeira, levanta-se, caminha três metros, inverte a marcha, caminha três metros e volta a sentar-se na cadeira. O âmbito desta dissertação consiste na análise estatística e com inteligência artificial dos dados recolhidos durante a execução do Timed-Up and Go test com recurso a diversos sensores, sendo que para isso foi desenvolvida uma aplicação móvel que permite adquirir os dados de diversos sensores durante a execução do teste com pessoas idosas institucionalizadas. A dissertação foca-se na criação de um método de análise dos resultados do Timed-Up and Go test com recurso ao acelerómetro e magnetómetro do dispositivo móvel e um sensor de pressão, ligado a um dispositivo BITalino, posicionado na cadeira. Ao mesmo tempo, foram recolhidos sinais de sensores de Eletrocardiografia e Eletroencefalografia, conectados a outro dispositivo BITalino, para análise de diferentes problemas de saúde. Assim, implementaram-se métodos estatísticos e de inteligência artificial para a análise dos dados recolhidos a partir destes sensores com recurso ao procedimento experimental inicialmente executado. Inicialmente, foi realizada a revisão da literatura relacionada com o Timed- Up and Go test e o uso de sensores, sendo que a revisão de literatura terminou com a identificação das doenças passíveis de serem identificadas com recurso aos sensores inerciais. Seguidamente, apresentou-se a proposta de arquitetura a ser utilizada para a recolha dos dados, tendo em conta os sensores anteriormente referidos. Os dados presentes neste estudo foram recolhidos de 40 idosos institucionalizados da região do Fundão (Portugal), equipados com um dispositivo móvel e um dispositivo BITalino, bem como os restantes sensores. Por fim, passou-se então à análise dos dados recolhidos que foi dividida em 3 estágios, começando pela análise do acelerómetro, magnetómetro e sensor de pressão para identificação dos parâmetros do Timed-Up and Go test, utilizando métodos estatísticos para a análise dos dados recolhidos. No segundo estágio foram implementados métodos estatísticos para correlacionar as doenças passiveis de serem detetadas por sensores de Eletrocardiografia e Eletroencefalografia. Por fim, no terceiro estágio foram implementados métodos de inteligência artificial, i.e., redes neuronais artificiais, para relacionar as doenças do foro cardíaco e nervoso com os dados dos diferentes indivíduos de modo a aferir as suas características. Como trabalho futuro, os resultados apresentados nesta dissertação podem servir para a criação de sistemas de baixo-custo, e de acesso a todos os cidadãos, que permitam a deteção mais atempada de determinados distúrbios e possam servir de auxílio aos profissionais de saúde no diagnóstico e tratamento de doenças

    An Overview of Smart Shoes in the Internet of Health Things: Gait and Mobility Assessment in Health Promotion and Disease Monitoring

    Get PDF
    New smart technologies and the internet of things increasingly play a key role in healthcare and wellness, contributing to the development of novel healthcare concepts. These technologies enable a comprehensive view of an individual’s movement and mobility, potentially supporting healthy living as well as complementing medical diagnostics and the monitoring of therapeutic outcomes. This overview article specifically addresses smart shoes, which are becoming one such smart technology within the future internet of health things, since the ability to walk defines large aspects of quality of life in a wide range of health and disease conditions. Smart shoes offer the possibility to support prevention, diagnostic work-up, therapeutic decisions, and individual disease monitoring with a continuous assessment of gait and mobility. This overview article provides the technological as well as medical aspects of smart shoes within this rising area of digital health applications, and is designed especially for the novel reader in this specific field. It also stresses the need for closer interdisciplinary interactions between technological and medical experts to bridge the gap between research and practice. Smart shoes can be envisioned to serve as pervasive wearable computing systems that enable innovative solutions and services for the promotion of healthy living and the transformation of health care
    • …
    corecore