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Resumo 

Os recentes avanços tecnológicos e o crescente uso dos dispositivos móveis 
tem permitido o surgimento de vários estudos em diferentes áreas da vida 
humana. Estes dispositivos estão equipados com diversos sensores que permitem 
adquirir diferentes parâmetros físicos e fisiológicos de diferentes indivíduos. Os 
dispositivos móveis apresentam-se com cada vez mais soluções, funcionalidades e 
capacidade de processamento. A presença de sensores nos dispositivos móveis, 
como o acelerómetro, magnetómetro e giroscópio, permite a aquisição de sinais 
relacionados com atividade física e movimento do ser humano. Em acréscimo, 
dado que estes dispositivos incluem possibilidade de ligação via Bluetooth, outros 
sensores podem ser utilizados em conjunto com os sensores incluídos no 
dispositivo móvel. O desenvolvimento deste tipo de sistemas inteligentes com 
sensores é um dos temas abordados no desenvolvimento de sistemas de Ambient 

Assisted Living (AAL). Diversas áreas da medicina têm beneficiado com estes 
avanços, proporcionando cuidados de saúde à distância, mas o foco desta 
dissertação é um dos testes funcionais focados na fisioterapia, o Timed-Up and Go 

test. O Timed-Up and Go test define-se como um teste muito utilizado por 
fisioterapeutas na recuperação de lesões e é constituído por seis fases, onde o 
individuo se encontra sentado numa cadeira, levanta-se, caminha três metros, 
inverte a marcha, caminha três metros e volta a sentar-se na cadeira.  

O âmbito desta dissertação consiste na análise estatística e com inteligência 
artificial dos dados recolhidos durante a execução do Timed-Up and Go test com 
recurso a diversos sensores, sendo que para isso foi desenvolvida uma aplicação 
móvel que permite adquirir os dados de diversos sensores durante a execução do 
teste com pessoas idosas institucionalizadas.  A dissertação foca-se na criação de 
um método de análise dos resultados do Timed-Up and Go test com recurso ao 
acelerómetro e magnetómetro do dispositivo móvel e um sensor de pressão, ligado 
a um dispositivo BITalino, posicionado na cadeira. Ao mesmo tempo, foram 
recolhidos sinais de sensores de Eletrocardiografia e Eletroencefalografia, 
conectados a outro dispositivo BITalino, para análise de diferentes problemas de 
saúde. Assim, implementaram-se métodos estatísticos e de inteligência artificial 
para a análise dos dados recolhidos a partir destes sensores com recurso ao 
procedimento experimental inicialmente executado. 

Inicialmente, foi realizada a revisão da literatura relacionada com o Timed-

Up and Go test e o uso de sensores, sendo que a revisão de literatura terminou 
com a identificação das doenças passíveis de serem identificadas com recurso aos 
sensores inerciais. Seguidamente, apresentou-se a proposta de arquitetura a ser 
utilizada para a recolha dos dados, tendo em conta os sensores anteriormente 
referidos. Os dados presentes neste estudo foram recolhidos de 40 idosos 
institucionalizados da região do Fundão (Portugal), equipados com um dispositivo 
móvel e um dispositivo BITalino, bem como os restantes sensores. Por fim, passou-



se então à análise dos dados recolhidos que foi dividida em 3 estágios, começando 
pela análise do acelerómetro, magnetómetro e sensor de pressão para 
identificação dos parâmetros do Timed-Up and Go test, utilizando métodos 
estatísticos para a análise dos dados recolhidos. No segundo estágio foram 
implementados métodos estatísticos para correlacionar as doenças passiveis de 
serem detetadas por sensores de Eletrocardiografia e Eletroencefalografia. Por 
fim, no terceiro estágio foram implementados métodos de inteligência artificial, 
i.e., redes neuronais artificiais, para relacionar as doenças do foro cardíaco e 
nervoso com os dados dos diferentes indivíduos de modo a aferir as suas 
características.  

Como trabalho futuro, os resultados apresentados nesta dissertação podem 
servir para a criação de sistemas de baixo-custo, e de acesso a todos os cidadãos, 
que permitam a deteção mais atempada de determinados distúrbios e possam 
servir de auxílio aos profissionais de saúde no diagnóstico e tratamento de 
doenças. 
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Resumo Alargado 

 

Introdução 

 

Este capítulo resume, de forma alargada e em Língua Portuguesa, o trabalho 
de investigação descrito na dissertação de mestrado intitulada de “Signal 

processing for the measurement of the results of the Timed-Up and Go test using 

sensors”. Inicialmente, este capítulo descreve o enquadramento da dissertação, 
o problema abordado e os objetivos desta dissertação de mestrado, bem como o 
enquadramento da mesma e as principais contribuições. Seguidamente, será 
apresentado um resumo de cada um dos capítulos desta dissertação, que 
correspondem às principais contribuições da mesma. O capítulo termina com a 
apresentação das principais conclusões desta dissertação, bem como a 
apresentação de algumas linhas de investigação para o futuro. 

 

Enquadramento da dissertação 

 

O crescente desenvolvimento tecnológico tem criado novas oportunidades de 
investigação nas mais diversas áreas da vida humana, sendo que muitas dessas 
áreas eram completamente heterogéneas, mas hoje apresentam cada vez mais 
pontos em comum [1]–[4]. O surgimento e desenvolvimento de sistemas com 
sensores cada vez de maiores capacidades e com mais funcionalidades tem vindo 
a permitir alargar amplamente o âmbito deste tipo de estudos [5]–[11].  

O desenvolvimento rápido e cada vez maior no mercado de dispositivos móveis, 
nomeadamente dos smartphones que hoje apresentam maiores capacidades de 
processamento e cada vez mais funcionalidades e sensores incorporados [12]–[14], 
tais como acelerómetro, magnetómetro, giroscópio, entre outros, apresenta-se 
como uma excelente oportunidade ao desenvolvimento das mais diversas soluções 
nas mais diferentes áreas da vida humana [15]–[20]. Devido ao seu tamanho e fácil 
capacidade de desenvolvimento de aplicações, os sensores presentes nos 
dispositivos móveis apresentam-se como sensores com grandes e inúmeras 
capacidades que permitem o surgimento de oportunidades de desenvolvimento de 
soluções nas mais diversas áreas do conhecimento [6], [8], [21], [22]. 

O uso de sensores é útil em diversas áreas. Como os sensores permitem adquirir 
diversos parâmetros físicos e fisiológicos [5], [9], [19], [23]–[26], a fisioterapia é 
uma das áreas em eles podem ser úteis,  conjuntamente com dispositivos móveis 
para aquisição de dados e cálculo automático dos resultados, contribuindo para 
uma identificação mais precisa dos resultados em vários testes [27]–[31]. Alguns 



dos testes mais comuns da fisioterapia que podem ser implementados com recurso 
a sensores são: 

• O Heel-Rise Test é destinado a patologias relacionadas com doença venosa 
crónica, disfunções na perna na zona dos gémeos, ruturas ou tendinites no 
tendão de Aquiles, lesões desportivas, patologias neurológicas e ou 
degenerativas [32], [33]; 

• O Functional Reach Test é destinado a recuperações de patologias 
relacionada com lesões dos membros superiores, patologias neurológicas 
e/ou degenerativas e lesões desportivas [21], [34]; 

• O Ten Meter Walk Test procura ajudar na recuperação de patologias 
relacionadas como alterações de equilíbrio, patologias neurológicas e/ou 
degenerativas, lesões dos membros inferiores e doença venosa crónica [35], 
[36]; 

• Os Eight hop Test e Up-down hop Test contribuem para a recuperação em 
doenças relacionadas com membros inferiores e alterações no equilíbrio 
[37]; 

• Os Side hop Test e Single hop Test auxiliam na recuperação de doenças 
relacionadas com o sistema neurológico [37]; 

• O Chair Stand Test auxilia na recuperação de lesões dos membros 
inferiores, alterações de equilíbrio e patologias neurológicas [38], [39]; 

• O Arm Curl Test contribui para a recuperação de lesões nos membros 
superiores e patologias neurológicas [37]; 

• O Chair Sit and Reach Test auxilia a recuperação de patologias nos membros 
inferiores e/ou superiores, bem como patologias neurológicas [37]; 

• O Timed-Up and Go Test ajuda na recuperação de patologias relacionadas 
com o equilíbrio, patologias do foro neurológico, patologias do foro 
degenerativo, lesões dos membros inferiores e doença venosa crónica [40]–
[44]. O Timed-Up and Go Test apresenta-se como a base de estudo desta 
dissertação. É um teste de fisioterapia constituído por seis fases, onde o 
individuo se encontra sentado numa cadeira, levanta-se, caminha três 
metros em frente, inverte a marcha, caminha três metros na direção 
contrária e volta a sentar-se na cadeira [40]–[44].  

O âmbito desta dissertação consiste na implementação de um método 
automático para a análise das diferentes variáveis recolhidas durante a realização 
do Timed-Up and Go Test usando de sensores de baixo-custo e sensores de 
dispositivos móveis. Estes sensores são utilizados para aquisição de dados para 
posterior cálculo das diferentes características dos sinais para identificar 
movimentos irregulares durante o teste com recurso a métodos estatísticos. No 
final, são usados métodos de inteligência artificial para a possível identificação 
das doenças de forma automática. 

 

 

 



Descrição do problema e Objetivos desta dissertação 

 

Atualmente, a medição da performance e resultados do Timed-Up and Go Test 
é difícil e necessita a utilização de vários instrumentos. Dada a existência de 
diversos equipamentos que permitem a medição automática dos resultados, i.e., 
sensores e dispositivos móveis, esta dissertação pretende instrumentalizar a 
realização do Timed-Up and Go Test em indivíduos idosos. A instrumentação deste 
tipo de teste apresenta-se como um desafio para aumentar a eficácia nos 
diagnósticos e estabelecer padrões de doenças para auxiliar os profissionais de 
saúde no seu tratamento. 

Os sensores incluídos nos dispositivos móveis permitem a deteção de 
movimentos pela identificação de padrões com os dados dos mesmos. Estas 
potencialidades fizeram surgir oportunidades para criar métodos mais precisos 
para a deteção de doenças recorrendo a dispositivos de baixo-custo, abrindo um 
leque de estudos possível que serviu de base a esta dissertação. 

Dada a facilidade de desenvolvimento de aplicações móveis que permitem a 
interação de diversos sensores para a deteção de movimentos, as mesmas podem 
ser utilizadas em benefício dos profissionais de saúde para o auxílio do diagnóstico 
e registo de recuperação do indivíduo. É cada vez mais frequente o 
desenvolvimento de soluções de cooperação entre os profissionais da tecnologia e 
os profissionais de saúde, sendo que existem diversos estudos que relacionam a 
fisioterapia e os sensores disponíveis em dispositivos móveis. 

O objetivo principal desta dissertação consiste na recolha e análise de dados 
provenientes de diferentes tipos de sensores para a monitorização do Timed-Up 

and Go Test, permitindo a identificação de padrões de indivíduos e/ou doenças. 

Tal como qualquer trabalho, esta dissertação tem objetivos mais específicos 
que detalham o objetivo principal. Assim, os objetivos específicos desta 
dissertação são: 

1. Estudo do estado da arte, combinando o uso dos sensores embutidos em 
dispositivos móveis e a análise dos resultados do Timed-Up and Go Test, 
para identificar os métodos e características utilizados para a análise dos 
resultados do teste; 

2. Estudo do estado da arte que relaciona a identificação de doenças com 
sensores inerciais de forma a possibilitar a criação de padrões e ajudar no 
diagnóstico de diferentes doenças; 

3. Proposta de modelo conceptual da análise do Timed-Up and Go Test de 
modo a realizar o mesmo com idosos institucionalizados da região; 

4. Desenvolvimento de uma aplicação móvel para aquisição dos dados que 
combine a aquisição dos dados dos sensores de dispositivos móveis e dois 



BITalinos [45] com sensores de Eletroencefalografia, Eletrocardiografia e 
de pressão; 

5. Análise dos dados recolhidos e extração das diferentes características dos 
sinais recolhidos; 

6. Processamento dos dados estatisticamente e com redes neuronais artificiais 
de forma a identificar padrões de doenças ou padrões entre indivíduos. 

 

Principais Contribuições 

 

Esta secção descreve resumidamente as principais contribuições científicas do 
trabalho de pesquisa apresentado nesta dissertação as quais resultaram em 
publicações científicas em conferências e revistas internacionais. 

A primeira contribuição desta dissertação consiste na análise do estado da arte 
relativo aos estudos publicados em literatura que são baseados no Timed-Up and 

Go Test e o uso dos sensores inerciais presentes nos dispositivos móveis para o 
cálculo das diferentes características dos sinais dos sensores e, 
consequentemente, obtenção dos resultados do teste [46]. 

A segunda contribuição desta dissertação apresenta o estudo do estado de arte 
com o objetivo de demonstrar a capacidade dos sensores presentes em dispositivos 
móveis para a deteção de determinadas doenças relacionadas com o movimento, 
sistema neurológico e sistema cardíaco [47]. 

A terceira contribuição desta dissertação consiste na apresentação do modelo 
concetual para implementação do sistema experimental para a análise de 
resultados obtidos a partir do Timed-Up and Go Test, apresentando o desenho do 
sistema e o posicionamento dos sensores para a realização do trabalho 
experimental [30]. 

A quarta contribuição desta dissertação consiste na apresentação e análise 
estatística dos resultados do trabalho experimental com recurso ao acelerómetro 
e magnetómetro do dispositivo móvel, e ao sensor de pressão ligado ao dispositivo 
BITalino colocado na cadeira, apresentando as caraterísticas da população 
envolvida nas experiências, limitações e condicionantes do cálculo dos dados [48]. 

A quinta contribuição desta dissertação consiste na apresentação e análise 
estatística dos resultados do trabalho experimental com recurso aos sensores de 
Eletrocardiografia e Eletroencefalografia para detetar as suas variações no 
decorrer do teste, apresentando as caraterísticas da população envolvida nas 
experiências, limitações e condicionantes do cálculo dos dados [49]. 



Por fim, a sexta e última contribuição consiste na utilização de algoritmos de 
inteligência artificial para a identificação automática de idade e doenças da 
população durante a realização do Timed-Up and Go Test [50].  

 

Estado da arte 

 

Esta dissertação de mestrado iniciou com a pesquisa do estado da arte relativa 
aos diversos conceitos, tais como a relação da realização do Timed-Up and Go Test 
com os sensores embutidos em dispositivos móveis, tendo-se de seguida analisado 
a relação entre as doenças identificadas e os sensores inerciais usados. 

 

Revisão sistemática da utilização de dispositivos móveis para o Timed-Up and 

Go Test 

 

Os idosos fazem parte de um dos grupos essenciais onde o avanço da tecnologia 
pode beneficiar a qualidade de vida [26], [51]–[53], sendo que cerca de 9% da 
população mundial tem 65 anos ou mais [54]–[56]. Nos países desenvolvidos, como 
é o caso de Portugal, a esperança média de vida está acima de 70 anos, podendo 
estes sistemas ter uma maior dispersão e utilização [56]. Esta população merece 
especial atenção, pois tem aumentado drasticamente o número de idosos, 
estimando-se que, em 2050, o número de idosos atinja os 2 biliões de indivíduos 
com mais de 60 anos [57], [58]. Contudo, a tecnologia traz inúmeras opções para 
a melhoria das condições de saúde desta população [59], [60], sendo que o número 
de pesquisas nesta área tem vindo a aumentar com o passar dos anos [3], [4]. 

De acordo com a literatura, os idosos foram questionados sobre a utilização de 
dispositivos móveis para estes fins, referindo que apenas usam os telemóveis para 
situações de emergência, tais como chamadas de voz, sendo que minoritariamente 
enviam mensagens de texto e realizam chamadas de vídeo [51], [61]. Atualmente, 
os dispositivos móveis têm um alto poder de processamento, vários sensores e 
várias formas de ligação a outros dispositivos, i.e. Bluetooth, Wi-Fi, entre outros 
[62]. Estes dispositivos incorporam vários sensores, e.g. acelerómetro, 
magnetómetro e giroscópio, que dada a sua natureza podem ser utilizados para 
apoiar vários procedimentos de avaliação clínica, identificação e auxílio das 
atividades de vida diária, e deteção de situações de risco, i.e. quedas [9], [12]–
[14], [63]–[67]. Assim, verifica-se que a cooperação entre os profissionais de saúde 
e profissionais da tecnologia é benéfica para o desenvolvimento de métodos 
eficientes [1]. 



O Timed-Up and Go Test é um método clínico que permite a avaliação da 
funcionalidade dos membros inferiores, mobilidade e risco de quedas [68]. 
Durante este teste, a pessoa realiza as seguintes ações: levanta-se da cadeira, 
caminha 3 metros, inverte o sentido da marcha, caminha 3 metros na direção 
inversa e senta-se na cadeira. A duração típica deste teste é de, no máximo, 12 
segundos. Este teste tem tido algumas evoluções com a criação de diferentes 
variantes, tais como Timed-Up and Go test normal, Extended Timed-Up and Go 

test, Smart Insole Timed-Up and Go test, e Instrumented Timed-Up and Go test 
[69]–[73]. 

As questões de pesquisa desta revisão de literatura centram-se na forma como 
os sensores inerciais de baixo-custo podem ser utilizados para melhorar a 
monitorização do teste, nos métodos de análise que podem ser implementados 
com dispositivos móveis, e na prevenção do risco de quedas. 

Assim, foi efetuada uma pesquisa em várias bases de dados, tais como IEEE 
Xplore, ACM Digital Library, BMC e PubMed, pesquisando artigos científicos 
relativos às variantes do Timed-Up and Go test, que implementem soluções com 
base nos sensores disponíveis em dispositivos móveis, que tenham sido publicados 
entre 2010 e 2018 e que definam corretamente a população em estudo. 

Os diferentes estudos foram analisados tenho em conta o ano de publicação, a 
população em estudo, o objetivo do estudo, os dispositivos utilizados, os sensores 
utilizados, a implementação realizada e as doenças que estavam presentes na 
população. 

Foram analisados 28 estudos. Maioritariamente, os estudos analisados eram 
recentes, tendo 46% deles sido realizados entre 2017 e 2018, existindo uma grande 
dispersão nos restantes anos. Em relação ao tipo de dispositivo utilizado, 
verificou-se que 71% utilizou o smartphone e 29% utilizaram outros dispositivos 
móveis. Por sua vez, relativamente aos sensores, o acelerómetro é utilizado em 
97% dos estudos, o giroscópio é utilizado em 68% dos estudos e o magnetómetro é 
utilizado em 25% dos estudos. Somente 29% dos estudos apresentam a precisão do 
estudo. Em relação às doenças presentes na população estudada, 18% analisaram 
indivíduos com Parkinson, 14% com síndrome de fragilidade, 50% por cento dos 
estudos foram realizados em pessoas saudáveis e 18% com outros tipos de doenças. 

Na análise dos dados foram extraídas as diferentes características do sinal dos 
diferentes sensores e categorizadas em cinco categorias, são elas: quantitativa, 
quantitativa + estatística, equilíbrio, transições de estado e estatística de dados 
não tratados. As características mais utilizadas na literatura foram duração do 
teste, número de passos, tamanho do passo, aceleração, velocidade angular 
máxima, velocidade da marcha, média dos dados em bruto, desvio padrão dos 
dados em bruto, entre outros. 



Durante o estudo, os diversos autores identificaram diversos problemas, tais 
como movimentos ou trajetórias involuntárias, efeitos de medicamentos ou 
deficiências, o facto de a distância reduzida do teste poder afetar a fiabilidade 
dos resultados, e a medição e cálculo das características estar dependente de 
condições pessoais ou ambientais.  

Na grande maioria dos estudos, o principal objetivo consistia no cálculo do risco 
de quedas, sendo este teste importante para pessoas debilitadas ou com 
dificuldades físicas. 

 

Revisão sistemática da Identificação de Doenças com base no uso de Sensores 

Inerciais 

 

Atualmente, 9% da população mundial tem mais de 64 anos e 10% dessas 
pessoas terão deficiências [54], [56]. Este facto leva a impactos relevantes na 
economia e na saúde, nomeadamente nos cuidados de saúde primários [57], [58]. 
Portugal não é exceção e está incluído nos 5 países com mais idosos em todo o 
mundo, mas está no topo da lista de países com menos nascimentos na Europa 
[74], [75]. Dada a desproporcionalidade entre os nascimentos e o envelhecimento 
da população, é cada vez mais importante o desenvolvimento de novas estratégias 
que recorram à tecnologia pra promover a saúde e o bem-estar dos cidadãos [76]. 

Nesta revisão de literatura, as questões de pesquisa centram-se no número de 
pessoas envolvidas nos estudos com o uso de sensores inerciais, nas doenças 
detetadas com os dados desses sensores, e nos métodos que são utilizados para 
essa deteção. 

A pesquisa foi efetuada nas bases de dados IEEE Xplore, ACM Digital Library, 
ScienceDirect, MEDLINE e PubMed, identificando estudos que realizam o 
reconhecimento de doenças com recurso usando sensores inerciais, que tenham 
sido publicados entre 2008 e 2020 e que indicavam o número de participantes 
envolvidos no estudo. 

Foram encontrados 13 estudos, os quais foram analisados tendo em conta o ano 
de publicação, a população em estudo, o objetivo do estudo, os sensores 
utilizados, as doenças detetadas e a precisão de cada estudo. 

Os estudos analisados foram publicados de forma dispersa entre os anos de 
2008 e 2018, sendo que o maior número de estudos foi publicado em 2014. Em 
média, os diferentes estudos consideraram os dados adquiridos por um número 
diferente de pessoas entre 5 e 85 pessoas, onde o maior número de indivíduos 
aumenta a confiabilidade do estudo. A análise dos diversos estudos permitiu 



verificar que 31% utilizaram o giroscópio, 8% utilizaram o magnetómetro, 8% 
utilizaram o recetor de GPS, 8% utilizaram o sensor de eletromiografia e 8% 
utilizaram o sensor de eletrocardiografia. O sensor mais utilizado foi o 
acelerómetro em 85% dos estudos. Em relação às doenças, 54% dos estudos 
identificam a doença de Parkinson. Os restantes distúrbios são identificados 
apenas em um estudo cada e são radiculopatia lombar, fraqueza, epilepsia, 
doença bipolar, andadores idiopáticos, esclerose múltipla, arritmia e apneia do 
sono. 

Os métodos de inteligência artificial mais implementados para análise dos 
dados recolhidos são Random Forest, Support Vector Machine (SVM), Naive Bayes, 
k-Nearest Neighbor (kNN), Decision Tree-based method (PART), C4.5 Decision 

Tree e K-means. 

O acelerómetro é usado para deteção de diversas doenças com maior 
prevalência na doença de Parkinson pela sua capacidade de identificação das 
derivações angulares que os indivíduos com este tipo de doença apresentam em 
movimento. 

A análise destes trabalhos permitiu identificar as potencialidades do uso de 
sensores inerciais na deteção de doenças, as potencialidades do conceito 
mHealth, as doenças mais detetadas com este tipo de sensores e quais os métodos 
de inteligência artificial usados pelos investigadores para aumentar a inteligência 
dos sistemas apresentados para a sua deteção.  

 

Proposta de Sistema para a Análise dos Resultados do Timed-Up and Go 

Test 

 

Após a revisão de literatura relativa aos diversos conceitos, a arquitetura do 
método de análise proposto para estimação automática dos resultados do Timed-

Up and Go Test, e respetiva identificação de doenças relacionadas, foi definida e 
apresentada, incluindo os diversos conceitos abordados na revisão de literatura. 

 

Medição automática dos resultados do Timed-Up and Go Test utilizando 

dispositivos móveis 

 

O método proposto tem por objetivo a investigação centrada na 
instrumentalização do Timed-Up and Go Test com base em sensores embebidos 
num dispositivo móvel comum e a utilização de sensores de Eletroencefalografia 
e Eletrocardiografia ligados a um dispositivo BITalino [45] aplicado a idosos. 



Assim, o problema abordado consiste na utilização de dispositivos de baixo 
custo para facilitar e aumentar a precisão dos diagnósticos com base no Timed-Up 

and Go Test utilizando sensores inerciais como principal mecanismo de medição. 
Este problema é ao mesmo tempo uma oportunidade que assenta no facto de a 
população idosa estar a aumentar o seu número quando comparado com a 
população jovem. A utilização de métodos não invasivos para medições dos 
parâmetros físicos e fisiológicos desta população, pode aumentar a sua aceitação 
[77], [78], facilitando a promoção da qualidade de vida da população [79], [80]. 

A aquisição de dados centra-se na execução do Timed-Up and Go Test com um 
telemóvel à cintura, um sensor de pressão posicionado na cadeira, e conectado a 
um BITalino, e os sensores de Eletroencefalografia e Eletrocardiografia, 
posicionados no individuo, ligados a outro dispositivo BITalino. Do telemóvel são 
capturados os sinais do acelerómetro e do magnetómetro com recurso a uma 
aplicação móvel. A aplicação móvel agrega igualmente os dados dos dispositivos 
BITalino, guardando os todos os dados em ficheiros de texto, fazendo 
posteriormente o seu envio para a Cloud. 

Como métodos de análise é proposta a extração de diferentes características 
como: tempo de reação, tempo do teste, tempo de ida, tempo de regresso, tempo 
de viragem, velocidade, força, potência, frequência cardíaca, variabilidade 
cardíaca, variabilidade da atividade cerebral, entre outros parâmetros. 

No final, são implementados diversos métodos de análise estatística [81], [82] 
e métodos de inteligência artificial, tal como redes neuronais artificiais [83]–[86]. 
Verificou-se que a execução do teste tem diferentes condicionantes, tais como 
consumo de bateria, ligação entre os diferentes dispositivos, limitações da 
Application Programming Interface (API) do dispositivo BITalino [45] e necessidade 
de ligação à Internet para armazenamento dos dados na Cloud. 

 

Resultados do Sistema para a Análise dos Resultados do Timed-Up and Go 

Test 

 

Por fim, os detalhes da implementação do método para análise dos resultados 
do Timed-Up and Go Test foram apresentados, utilizando os diversos sensores 
disponíveis nos dispositivos móveis e sensores ligados ao dispositivo BITalino, 
sendo a análise dos dados efetuada com recurso a métodos estatísticos e de 
inteligência artificial. 

Tecnologias de computação móvel para avaliação de saúde e mobilidade: 

Análise da Implementação do Timed-Up and Go Test com idosos 

 



Cada vez mais, a população mundial está envelhecida devido a um decréscimo 
do número de nascimentos e a existência de cada vez mais idosos [87]–[90]. O 
aparecimento dos sensores em dispositivos utilizados diariamente possibilitou a 
criação de soluções adaptadas aos cuidados de saúde primários [91]. Outro dos 
fatores relevantes é o facto de a esperança média de vida ter aumentado, sendo 
que isso tornou importante a criação de soluções que melhorem a qualidade de 
vida [92]. 

Os diferentes sensores incluídos nos dispositivos móveis possibilitam a 
aquisição de parâmetros físicos e fisiológicos dos indivíduos, permitindo adaptar 
as soluções aos diferentes ambientes e condições de saúde dos idosos, sendo que 
alguns dos sensores mais presentes neste tipo de dispositivos são o acelerómetro 
e o magnetómetro. Estes sensores permitem analisar a marcha, entre outros 
parâmetros relativos a cada indivíduo [32], [93]–[96]. 

Assim, criou-se um método para a medição automática dos resultados do 
Timed-Up and Go Test com os sensores disponíveis num dispositivo móvel utilizado 
diariamente. Com estes dados será possível identificar diversos padrões de 
doenças presentes nos indivíduos e que direta ou indiretamente estejam 
relacionadas com o simples facto de andar. Para além disso, os dados recolhidos 
permitiram estabelecer comparações entre indivíduos de diferentes instituições, 
procedendo às análises por idade, instituição e diferentes doenças. 

O estudo foi realizado com recurso a um dispositivo móvel com sistema 
operativo Android. Foi posicionado um sensor de pressão, ligado a um dispositivo 
BITalino [45], numa cadeira onde o idoso se senta antes de realizar o teste e o 
dispositivo móvel foi colocado numa bolsa à cintura do idoso. Os testes referentes 
às diferentes fases do Timed-Up and Go Test foram realizados com indivíduos 
entre os 60 e os 97 anos de diferentes instituições, extraindo os seguintes dados 
dos diferentes sensores: 

• Sensor de pressão: Tempo de reação; Tempo total do teste; 
• Acelerómetro: Tempo de reação; Tempo total do teste; Instante de 

viragem; Duração da viragem; Tempo de ida; Tempo de Retorno; média de 
aceleração de ida; média da aceleração de regresso; média da velocidade 
de ida; média da velocidade de regresso; média da força de ida; média da 
força de regresso; média da potência de ida; média da potência de 
regresso; 

• Magnetómetro: Tempo total do teste; Instante de viragem segundo o eixo 
do z; Instante de viragem segundo o módulo da aceleração. 

Os dados foram recolhidos com um dispositivo móvel com sistema operativo 
Android com uma taxa de recolha de dados de 1 kHz e uma precisão de 16 bits. 
Contudo, um dos maiores constrangimentos foi a necessidade de ligação à Internet 
para sincronização dos diferentes ficheiros capturados para a plataforma Firebase. 



Outro problema estava relacionado com as falhas nas ligações Bluetooth entre os 
diferentes dispositivos, mas foi um dos pontos que foi contornado com regular 
verificação. 

Para a realização do teste foram identificados vários requisitos, 
nomeadamente o individuo devia ter capacidade de caminhar e se levantar, 
necessidade de uma cadeira, necessidade de uma fita métrica para estabelecer o 
limite de 3 metros para a experiência, instrumentalização dos idosos e colocação 
do cinto com o dispositivo móvel. O estudo foi realizado por 40 idosos 
institucionalizados da região do Fundão (Portugal). 

Os resultados do teste foram avaliados estatisticamente, analisando o cálculo 
do tempo de viragem pelo estudo do módulo da aceleração ou do eixo do z 
estimado com o magnetómetro. Assim, três análises comparativas foram 
realizadas com as diferentes recolhas, tais como por idade, por doença e por 
instituição. 

De acordo com os resultados agrupados por idades (existiam 3 intervalos de 
idades), tendo em conta os valores recolhidos com o sensor de pressão, de 60 a 
74 anos, o tempo de reação é, em media, de 7,175 segundos e o tempo total é, 
em media, 27,709 segundos, de 75 a 89 anos verificou-se, em média, 8,528 
segundos para o tempo de reação e 40,881 segundos para o tempo total do teste, 
e em idosos com 90 ou mais anos de idade verificou-se, em médio, um tempo de 
reação de 8,153 segundos e o tempo total de 34,795 segundos.  

Por sua vez, tendo em conta os valores recolhidos pelo magnetómetro, o 
momento de viragem utilizando o valor da aceleração é de 22,182 segundos para 
indivíduos entre os 60 e 74 anos, 17,64 segundos para indivíduos entre os 75 e 89 
anos e 20,783 segundos em indivíduos com 90 ou mais anos, e o momento de 
viragem tendo em conta o valor absoluto do eixo do z é de 22,384 segundos para 
indivíduos entre os 60 e 74 anos, 23,27 segundos para indivíduos entre os 75 e 89 
anos e 20,281 segundos em indivíduos com 90 ou mais anos. Finalmente, tendo em 
conta os dados do magnetómetro, em média, o tempo total do teste é 29,262 
segundos para indivíduos entre os 60 e 74 anos, 36,288 segundos para indivíduos 
entre os 75 e 89 anos e 33,091 segundos em indivíduos com 90 ou mais anos. 

No caso da análise por doenças, as mesmas foram distribuídas por dois grupos, 
sendo um deles relacionado com a mobilidade e o outro não. Não se identificaram 
diferenças no tempo total do teste relacionadas com as doenças. Contrariamente, 
o instante de viragem já se encontra diferenciado entre as doenças relacionadas 
com mobilidade ou não, mas a média é estatisticamente igual. 

Os dados foram adquiridos com diferentes particularidades entre pessoas e 
instituições, sendo que proporcionaram a obtenção de resultados bastante 
diversificados e heterogéneos. As diversas limitações encontradas podem ser 



classificadas em 3 grupos: relacionadas com o estado físico dos indivíduos, o 
ambiente da experiência e as condições técnicas. Cada um dos grupos tem maior 
ou menor influência nos resultados, mas, no geral, os resultados obtidos foram 
satisfatórios.  

 

Estudo experimental para a identificação de doenças relacionadas ao ECG e 

EEG durante o Timed-Up and Go Test 

 

Hoje em dia, os dispositivos móveis incorporam diferentes sensores que podem 
ser utilizados para a medição de diversos parâmetros físicos e fisiológicos durante 
a realização do Timed-Up and Go Test [97].  

O Timed-Up and Go Test possibilita a identificação de vários problemas de 
saúde, tais como equilíbrio, mobilidade, risco de queda, doença de Parkinson, 
esclerose lateral amiotrófica e outras patologias ortopédicas, cardiovasculares e 
cerebrais [44], [98]–[102]. Contudo, a utilização dos sensores de 
Eletroencefalografia e Eletrocardiografia em conjunto com a realização do Timed-

Up and Go Test possibilita também a identificação de problemas associados aos 
sistemas cardíaco e nervoso [103]–[107]. 

Um sensor de Eletrocardiografia e um sensor de Eletroencefalografia foram 
conectados a um dispositivo BITalino [45]. O sensor de Eletrocardiografia deteta 
a duração e a variação no tamanho das ondas de Eletrocardiografia que podem ser 
usadas para identificar anormalidades da frequência cardíaca. Por sua vez, o 
sensor de Eletroencefalografia é usado para a captura da atividade cerebral e está 
posicionado em uma configuração bipolar com dois elétrodos de medição para a 
deteção de sinais elétricos. 

Os dados recolhidos foram analisados estatisticamente de modo a identificar 
correlações entre as características da população, e doenças presentes na mesma, 
com os dados dos sensores de Eletrocardiografia e Eletroencefalografia. 

A população analisada foi a mesma do estudo anterior e que tem várias 
doenças, tais como Arritmia cardíaca, Insuficiência cardíaca, Diabetes Melitos tipo 
II, Depressão, Síndrome de vertigem, Osteoartrite, Osteoporose, Hiperuricemia, 
Gonartrose bilateral e Doença pulmonar obstrutiva crónica. 

Os dados de Eletrocardiografia e Eletroencefalografia foram processados, 
procedendo-se à extração de diferentes características. São elas: 

• Eletrocardiograma: Variabilidade da frequência cardíaca; frequência 
cardíaca; média da amplitude do intervalo QRS; média da amplitude do 
intervalo R-R; média da amplitude do intervalo R-S; 



• Eletroencefalograma: frequência dos picos do sinal; variabilidade dos picos 
do sinal. 

Foram realizadas diferentes análises tendo em conta a posição dos sensores, 
doenças presentes população em estudo, idade e condições do teste. Para a 
análise dos resultados, foram realizadas estatísticas descritivas, testes de 
normalidade e deteção de outliers. Além disso, foi realizada uma comparação 
estatística entre eles, analisando e comparando os resultados pelas médias de 
cada instituição, pessoa, idade e doenças da saúde. 

Assim, na generalidade, verificou-se que: 

• a hipertensão arterial pode ser identificada quando a amplitude do 
intervalo QRS for menor que 700 ms; 

• A arritmia ou insuficiência cardíaca é identificada pelas irregularidades do 
batimento cardíaco com a existência de grande variabilidade; 

• A doença de Parkinson e a gonartrose bilateral podem ser identificadas por 
uma elevada amplitude do intervalo QRS e uma amplitude do intervalo R-R 
superior a 2000 ms. 

Não há doenças relacionadas ao Eletroencefalografia relatadas pela população. 
No entanto, verifica-se que a variabilidade da atividade cerebral aumenta com a 
idade. Além disso, a atividade cerebral é menor em pessoas com doença de 
Parkinson. 

Por fim, é verificado que a população é muito heterogénea, levando a valores 
muito diferentes. Também as condições de realização do teste devem ser 
melhoradas para a obtenção de melhores resultados. Contudo, foi possível 
estabelecer um termo de comparação com a literatura, verificando que os valores 
estão alinhados. 

 

Estudo exploratório sobre técnicas de aprendizagem máquina com dados de 

ECG e EEG 

 

Cada vez mais têm surgido métodos não evasivos de adquirir sinais de 
Eletrocardiografia e Eletroencefalografia, permitindo o desenvolvimento de 
sistemas de baixo custo relacionados com a área da medicina com o uso da 
tecnologia [108], [109]. Estes sistemas permitem uma primeira fase de diagnóstico 
sem necessidade de intervenção médica, mas existem diversos desafios 
relacionados com o posicionamento dos sensores e/ou dispositivos móveis [8], 
[110], [111]. Diferentes estudos têm sido realizados com recurso a técnicas de 
visão computacional e aprendizagem máquina, analisando diversos parâmetros 
físicos, fisiológicos e biológicos em idosos [51], [52], [112]–[114]. 



Assim, pretendeu-se implementar redes neuronais artificiais para identificar 
padrões e identificar as diferentes doenças presentes no estudo realizado com 
recurso ao Timed-Up and Go Test [30], [115]. O teste foi realizado com idosos 
institucionalizados dos concelhos do Fundão e a Covilhã, implementando métodos 
para a extrapolação das idades, instituições, doenças e grupos de doenças. 

Inicialmente, foram extraídas as diferentes características dos sinais por cada 
execução do teste, tais como frequência cardíaca, variabilidade da frequência 
cardíaca, média da amplitude do intervalo QRS, média da amplitude do intervalo 
R-R, média da amplitude do intervalo R-S, frequência dos picos do sinal de 
Eletroencefalografia e variabilidade dos picos do sinal de Eletroencefalografia. 

Após a classificação manual da amostra tendo em conta as informações clínicas 
dos idosos que realizaram o teste, foi implementado e validado o método de redes 
neuronais com o software WEKA [116]. Os parâmetros que foram definidos são os 
seguintes: 

• Taxa de aprendizagem: 0,3; 
• Momento: 0,2; 
• Normalização de atributos e classes; 
• Valor da semente: 0; 
• Tempo de treino: 500ms; 
• Limite de validação: 20. 

Após a validação verificou-se que que os indivíduos poderiam ser reconhecidos 
pelas instituições, onde apenas os indivíduos do Centro Comunitário das Lameiras 
não foram identificados corretamente. Relativamente às idades, somente os 
indivíduos com 74, 85 e 86 anos não foram reconhecidas corretamente.  

Quanto ao reconhecimento das doenças, elas não foram identificadas 
corretamente, pois a amostra era composta por um pequeno número de 
indivíduos. No entanto, as doenças foram categorizadas, verificando-se que as 
doenças cardíacas eram corretamente identificadas. 

 

 

 

Principais Conclusões  

 

O foco desta dissertação está relacionado com a instrumentalização do Timed-

Up and Go Test aplicado à fisioterapia com recurso a sensores de dispositivos 
móveis, e.g., acelerómetro, magnetómetro e giroscópio, e sensores de pressão, 
Eletrocardiografia e Eletroencefalografia ligados a dispositivos BITalino. Foi 



proposta a arquitetura do sistema para aquisição dos dados e foi implementada 
uma aplicação para aquisição dos diversos sinais provenientes dos sensores. As 
diferentes características dos sinais dos diferentes sensores foram analisadas para 
extrapolar diferentes conclusões sobre a realização do teste. 

Assim, durante esta dissertação foram adquiridos sinais usando vários sensores 
durante a realização do Timed-Up and Go Test, aplicando análise estatística e 
métodos de inteligência artificial para a identificação das diferentes fases do teste 
e validação da execução do mesmo. 

Esta dissertação foi executada em diferentes fases, em que, inicialmente, foi 
realizado o estudo do estado da arte sobre a instrumentação do Timed-Up and Go 

Test. Esta análise consistiu na análise das características, métodos e sensores 
previamente utilizados na literatura. Adicionalmente, foram analisados diversos 
estudos na deteção de doenças relacionadas com o movimento. 

Foi proposta a  arquitetura do sistema com diferentes sensores e dispositivos, 
definindo o Timed-Up and Go Test e o posicionamento dos sensores durante o 
mesmo. 

De seguida, o sistema foi implementado e diversos testes foram realizados, 
procedendo-se ao cálculo das características do sinal dos diferentes sensores, 
analisando as diferentes limitações previamente apresentadas. 

Assim, com o acelerómetro, magnetómetro e sensor de pressão foram 
identificadas as seguintes características: tempo de reação, tempo do final da 
aquisição de dados, tempo total do teste, instante de viragem, tempo de viragem, 
tempo de ida, tempo de regresso, média da aceleração de ida e de regresso, média 
da velocidade de ida e de regresso, média da força de ida e de regresso, e média 
da potência de ida e de regresso. Por sua vez, com os sensores de 
Eletrocardiografia e Eletroencefalografia foram identificadas as seguintes 
características: Variabilidade da frequência cardíaca, frequência cardíaca, média 
da amplitude do intervalo QRS, média da amplitude do intervalo R-R, média da 
amplitude do intervalo R-S, frequência dos picos do sinal de Eletroencefalografia 
e variabilidade dos picos do sinal de Eletroencefalografia. 

Para a análise dos dados foram utilizados diferentes métodos estatísticos, como 
a ANOVA, o coeficiente de correlação de Pearson, testes comparativos, entre 
outros, e métodos de inteligência artificial, tal como redes neuronais artificiais. 
Contudo, estas experiências revelaram algumas limitações associadas à 
capacidade da bateria, armazenamento limitado, ligação à Internet para o envio 
dos ficheiros para o servidor e ligação Bluetooth para a aquisição dos dados 
provenientes dos dispositivos BITalino. 



Esta dissertação terminou com a implementação preliminar de métodos de 
inteligência artificial para a deteção de padrões de doenças e relacionando as 
diferentes variáveis de Eletrocardiografia e Eletroencefalografia. Assim, foi 
possível verificar que é possível detetar e identificar doenças e idade com 
diferentes características do sinal. 

 

Direções Para Trabalho Futuro 

 

Os resultados obtidos nesta dissertação são promissores. No entanto, é 
importante aumentar o número de testes, devendo ser realizadas experiências 
com uma população mais diversificada de diferentes regiões do país ou até do 
mundo. Para esta análise devem ser calculadas diferentes características do sinal 
dos diferentes sensores, tentando reduzir os efeitos da gravidade terreste. 

Em continuação do trabalho iniciado nesta dissertação, outros métodos de 
inteligência artificial devem ser implementados em acréscimo às redes neuronais 
artificiais, mais como Deep Learning, Adaboost, Support Vector Machine (SVM), 

Decision Tree, entre outros. Assim, poder-se-á obter melhores resultados na 
deteção de doenças e identificação dos parâmetros do Timed-Up and Go test. 
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Abstract 

The recent technological advances and the growing use of mobile devices have 
allowed the emergence of several studies in different areas of human life. These 
devices are equipped with various sensors that enable the acquisition of different 
physical and physiological parameters from different individuals. The 
development of intelligent systems with sensors is one of the topics addressed by 
Ambient Assisted Living (AAL) systems. Several areas of medicine have benefited 
from these advances providing long distance clinical healthcare. Still, the focus of 
this dissertation is one of the functional tests focused on physiotherapy, the 
Timed-Up and Go test. 

Mobile devices present themselves with more and more solutions, 
functionalities and processing capacity. The presence of sensors in mobile devices, 
such as the accelerometer, magnetometer and gyroscope, allows the acquisition 
of signals related to physical activity and human movement. Also, as these devices 
include the possibility of connecting via Bluetooth, other sensors can be used in 
conjunction with the sensors included in the mobile device. For this dissertation, 
the BITalino device was used to connect sensors such as the pressure sensor, the 
Electrocardiography sensor and the Electroencephalography sensors. 

The scope of this dissertation consists of the statistical analysis and with the 
artificial intelligence of the data collected during the execution of the Timed-Up 
and Go test using several sensors. For this purpose, a mobile application was 
developed that allows the acquisition of data from several sensors during the 
execution of the test with institutionalized older adults. 

The Timed-Up and Go test is defined as a test widely used by physiotherapists 
in the recovery of injuries and consists of 5 phases, where the individual is sitting 
in a chair, walks three meters, reverses the gait, walks three meters and comes 
back to sit in the chair. 

The main focus of this dissertation is the creation of a method for analyzing 
the results of the Timed-Up and Go test using the accelerometer and 
magnetometer of the mobile device and a pressure sensor positioned on the chair 
using the BITalino device. At the same time, signals from Electrocardiography and 
Electroencephalography sensors connected to another BITalino device were 
collected for the analysis of different health problems. Thus, statistical and 
artificial intelligence methods were implemented for the study of these sensors 
using the experimental procedure initially performed. 

Initially, the literature review related to the Timed-Up and Go test and the use 
of sensors was performed, and the literature review ended with the identification 
of diseases that could be identified using inertial sensors. Then, the architecture 
proposal to be used for data collection was presented, taking into account the 
sensors mentioned above. The data available in this study were collected by 40 



institutionalized elderly people from the Fundão municipality (Portugal), 
instrumented with a mobile device and a BITalino device, as well as the other 
sensors. Finally, the collected data was then analyzed, which was divided into 
three stages, starting with the analysis of the accelerometer, magnetometer and 
pressure sensor to identify the parameters of the Timed-Up and Go test, using 
statistical methods for data analysis. In the second stage, statistical methods were 
implemented to correlate the diseases that could be detected by 
Electrocardiography and Electroencephalography sensors. Finally, in the third 
stage, artificial intelligence methods were applied, i.e., artificial neural 
networks, to relate cardiac and nervous diseases with the data of different 
individuals to assess their characteristics. 

As a future work, the results presented in this dissertation serve as a path to 
the creation of a low-cost and access system for all citizens, which allows for the 
timelier detection of specific disorders and can assist health professionals in the 
diagnosis and disease treatment. 

Keywords 

Timed-Up and Go test, sensors, mobile device, physical teraphy, data 
processing. 
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Signal processing for the measurement of the results of the Timed-Up and Go test using sensors 

1. Introduction 

 

This master's dissertation addresses the problem of implementing an automatic 
analysis method of the Timed-Up and Go Test, using the sensors available on the 
mobile device, such as the accelerometer, magnetometer and the gyroscope, and 
other sensors connected to BITalino devices, such as the pressure sensor, 
electrocardiogram and electroencephalogram. 

As a result, this dissertation proposes a method that combines the use of the 
proposed sensors to analyze the execution parameters of the Timed-Up and Go 
test and the related diseases. The focus, scope and research objectives of this 
dissertation are presented in this chapter, followed by the main contributions and 
organization of the dissertation. 

 

1.1. Focus and Scope Dissertation 

The growing technological development has created new research 
opportunities in the most diverse areas of human life, where it is heterogeneous 
with several points in common [1]–[4]. The emergence and development of 
systems with sensors and the increasing capabilities of the related devices have 
improved the scope and implementation of such studies [5]–[11]. 

The rapid and increasing development in the mobile devices market, namely 
smartphones, smartwatches, and tablets, has led to the development of mobile 
devices with several functionalities, including higher power processing, memory, 
sensors, and battery capabilities [12]–[14]. The sensors included in these devices 
are mainly the accelerometer, magnetometer, gyroscope, and Global Positioning 
System (GPS) receiver, among others. This presents an excellent opportunity to 
develop diverse solutions in different areas of human life [15]–[20]. Thus, because 
of their size and the facility of application development capabilities, the sensors 
available in off-the-shelf mobile devices are sensors with large and countless 
capacities that have led to a new number of new research opportunities [6], [8], 
[21], [22]. 

Sensors are useful in several areas, including the acquisition of several physical 
and physiological parameters [5], [9], [19], [23]–[26]. For instance, physiotherapy 
is one of the areas in which they can be useful, contributing to a more accurate 
identification of the results in several tests. The different measurements may be 
performed with the acquisition of data from the sensors available in the off-the-
shelf mobile devices or from other sensors. These mobile devices also allow the 
different measurements to be carried out locally can send the data over a network 
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connection for further processing in a remote server. In any case, the main goal 
is the automatic measurement of the results and situations related to physical 
activities or movements [27]–[31]. 

Different types of measurements can be performed with the sensors available 
in the off-the-shelf mobile devices. As the focus of this dissertation of related to 
the physical therapy subject. Thus, some of the most common physical therapy 
tests that can be implemented with sensors are as follows: 

• The Heel-Rise test is intended for pathologies related to chronic venous 
disease, dysfunctions in the leg around the twins, ruptures or tendonitis in 
the Achilles tendon, sports injuries, and neurological and/or degenerative 
pathologies [32], [33]; 

• The Functional Reach test is intended for the recovery of pathologies 
related to the injuries of the upper limbs, neurological and/or degenerative 
pathologies and sports injuries [21], [34]; 

• The Ten Meter Walk test seeks to help in the recovery of the related 
pathologies, such as balance changes, neurological and/or degenerative 
pathologies, lower limb injuries and chronic venous disease [35], [36]; 

• The Eight Hop test and the Up-down Hop test contribute to the recovery 
from lower limb-related diseases and changes in balance [37]; 

• The Side Hop test and the Single Hop test assist in the recovery of diseases 
related to the neurological system [37]; 

• The Chair Stand test assists in the recovery of lower limb injuries, balance 
changes and neurological pathologies [38], [39]; 

• The Arm Curl test contributes to the recovery of injuries in the upper limbs 
and neurological pathologies [37]; 

• The Chair Sit and Reach test assists in the recovery of pathologies in the 
lower and/or upper limbs, as well as neurological pathologies [37]; 

• Finally, the Timed-Up and Go test helps in the recovery of pathologies 
related to balance, neurological pathologies, degenerative pathologies, 
lower limb injuries and chronic venous disease [40]–[44]. The Timed-Up and 
Go test presents itself as the basis for the study reported in this 
dissertation. It is a physical test consisting of six phases, where the 
individual is seated in a chair, gets up, walks three meters in front, reverses 
the gait, walks three meters in the opposite direction and sits back in the 
chair [40]–[44].  

The scope of this dissertation included the implementation of an automatic 
method for the analysis of the different variables present in the data acquired 
from the different sensors during the performance of the Timed-Up and Go test 
by using low-cost sensors and the sensors available in off-the-shelf mobile devices. 
These sensors were used to acquire data for a later calculation of the different 
features of the signals to identify irregular movements during the test with 
statistical methods. At the end, artificial intelligence methods were used for the 
automatic identification of pattern from the different diseases. 
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1.2. Description of the problem and objectives of this dissertation 
 

Currently, the measurement of the performance and results of the Timed-Up 
and Go test is difficult and requires the use of several instruments. Given the 
existence of various types of equipment that allow the automatic measurement 
of results, i.e., sensors and mobile devices, this dissertation intends to 
instrumentalize the performance of the Timed-Up and Go test in older adults. The 
instrumentalization of such a test presents itself as a challenge to increase the 
effectiveness of the diagnoses and to establish disease patterns to assist health 
professionals in the treatment of different diseases. 

The sensors included in the off-the-shelf mobile devices allow the detection of 
movements by identifying patterns with the data acquired. These potentialities 
have led to opportunities to create more accurate methods for the detection of 
diseases by using low-cost devices, opening a range of possible studies that served 
as the basis for this dissertation. 

Given the ease of development of mobile applications that allow the 
interaction of several sensors for the detection of movements, these applications 
can be used for the benefit of health professionals to assist in the diagnosis and 
recording of an individual's recovery. It is increasingly common to develop 
collaborative solutions between technology and healthcare professionals, and 
several studies related to physical therapy and sensors available on mobile devices 
have been conducted thus far. 

The main objective of this dissertation was to collect and analyze data from 
different types of sensors, including the accelerometer, the magnetometer, the 
pressure sensor, the Electroencephalography sensor, and the Electrocardiography 
sensor, to monitor the performance of the Timed-Up and Go test, allowing the 
creation of patterns of individuals and/or diseases. The inclusion of the last two 
sensors was related to the existence of different diseases related to cardiology 
and neurology in the older adults and might affect the performance of the test. 

Therefore, this dissertation had more specific objectives that refined the main 
objective. These specific objectives of this dissertation were as follows: 

1. Study the state-of-the-art technology that combines the use of sensors 
embedded in mobile devices and analyzes the results of the Timed-Up and 
Go test to identify the methods and characteristics used for the 
development of the test results; 

2. Study the state-of-the-art technology related to the identification of 
diseases with inertial sensors to enable the creation of patterns and help in 
the diagnosis of different diseases; 
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3. Propose a conceptual model for the analysis of the Timed-Up and Go test 
for its implementation with the institutionalized older adults from Fundão 
and Covilhã municipalities (Portugal); 

4. Develop a mobile application for data acquisition that combines the 
acquisition of data from the sensors of mobile devices and two BITalino 
devices [45] with Electroencephalography, Electrocardiography and 
pressure sensors; 

5. Analyse the acquired data and extract the different characteristics of the 
acquired signals; 

6. Process the acquired data with statistical methods to combine the results 
from the different sensors and measure the different parameters of the 
test; 

7. Analyze the acquired data with artificial neural networks and statistical 
methods for the identification of patterns by age, institution, diseases, and 
classification of diseases. 

1.3. Main Contributions 
 

This section briefly describes the main scientific contributions resulting from 
the research work presented in this dissertation. The first contribution of this 
dissertation consists of analyzing the state-of-the-art technology regarding studies 
published in the literature that are based on the Timed-Up and Go test and the 
use of inertial sensors present in mobile devices for the calculation of the different 
characteristics of the sensor signals and, consequently, obtaining the test results 
[46]. 

The second contribution of this dissertation presents the study on the state-of-
the-art technology to demonstrate the capacity of sensors present in mobile 
devices for the detection of certain diseases related to movement, neurological 
and cardiac systems [47]. 

The third contribution of this dissertation consists of the presentation of the 
conceptual model for the implementation of the experimental system to analyze 
the results obtained from the Timed-Up and Go Test [30]. 

The fourth contribution of this dissertation consists of the presentation and the 
statistical analysis of the results of the experimental work,obtained  using the 
accelerometer and the magnetometer of the mobile device, and the pressure 
sensor connected to the BITalino device placed on the chair. It also presents the 
characteristics of the population involved in the experiences, limitations and 
conditioning factors for the data calculation [48]. 

The fifth contribution of this dissertation consists of the presentation and the 
statistical analysis of the results of the experimental work, obtained using the 
Electrocardiography and Electroencephalography sensors to detect its variations 
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during the test, presenting the characteristics of the population involved in the 
experiences, limitations and conditions of the data calculations [49]. 

Finally, the last contribution consists of the use of artificial intelligence 
algorithms for the automatic identification of age, diseases, and groups of diseases 
of the population during the performance of the Timed-Up and Go test [50]. 
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2. State-of-the-Art 

 

This chapter presents the state-of-the-art of this Master’s Dissertation, and it 
is composed by two articles, each presented in its section. These two articles are 
focused in a review of the Timed-Up and Go Test with technological equipment. 

 

 

2.1. Is The Timed-Up and Go Test Feasible in Mobile Devices? A 
Systematic Review 

 

 

The following article is the first part of the chapter 2. 
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Abstract: The number of older adults is increasing worldwide, and it is expected that by 2050 over

2 billion individuals will be more than 60 years old. Older adults are exposed to numerous pathological

problems such as Parkinson’s disease, amyotrophic lateral sclerosis, post-stroke, and orthopedic

disturbances. Several physiotherapy methods that involve measurement of movements, such as

the Timed-Up and Go test, can be done to support efficient and effective evaluation of pathological

symptoms and promotion of health and well-being. In this systematic review, the authors aim to

determine how the inertial sensors embedded in mobile devices are employed for the measurement

of the different parameters involved in the Timed-Up and Go test. The main contribution of this

paper consists of the identification of the different studies that utilize the sensors available in mobile

devices for the measurement of the results of the Timed-Up and Go test. The results show that mobile

devices embedded motion sensors can be used for these types of studies and the most commonly used

sensors are the magnetometer, accelerometer, and gyroscope available in off-the-shelf smartphones.

The features analyzed in this paper are categorized as quantitative, quantitative + statistic, dynamic

balance, gait properties, state transitions, and raw statistics. These features utilize the accelerometer

and gyroscope sensors and facilitate recognition of daily activities, accidents such as falling, some

diseases, as well as the measurement of the subject’s performance during the test execution.

Keywords: older adults; inertial sensors; physical exercises; physiotherapy; systematic review;

timed-up and go test measurement

1. Introduction

People with disabilities or older adults are two essential groups that can benefit from technology

advancements. Currently, around 9% of the world’s population is aged 65 and above, and approximately

10% of the world’s population lives with a disability [1,2]. Consequently, in countries with life expectancy

over 70 years old, people spend on average about eight years, or 11.5 per cent of their life span, living

with disabilities [1]. The increasing number of older adults is another cause for the growing number of

people with impairments [1].
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The number of older adults is increasing worldwide, and it is expected that by 2050, two

billion individuals will be older than 60 years [3,4]. In parallel, the proliferation of information and

communications technology brings numerous applications to the development and implementation of

numerous methods for enhanced personalized healthcare systems [5,6]. Furthermore, the research

interest in mobile computing technologies that focus on novel healthcare applications to promote

public health and well-being is also increasing [7–9].

The use of mobile devices by older people was evaluated with the use of questionnaires and

interviews [10]. In general, most older people only uses mobile phones for emergency situations, i.e.,

voice calls, and only a few of them use these devices for SMS and video calls [11,12]. Furthermore,

mobile devices incorporate high processing power, numerous sensors, and connectivity methods for

short-range and long-range communications [13]. Mobile devices are used in the implementation

of numerous methods for clinical evaluation and personalized healthcare [14–17]. Several mobile

sensors such as accelerometers, magnetometers, and gyroscopes that are incorporated in the majority

of today’s smartphones can be used to support numerous clinical evaluation procedures such as

activity recognition and fall detection [18–22]. The continuous technological enhancements on mobile

sensing promote novel applications for enhanced living environments and well-being; however,

the collaboration between information and communications technology and medical researchers is

mandatory for the efficient applicability of these methods [23].

The development of these solutions is related to the progress of the Ambient Assisted Living

(AAL) domain, fueled using different types of sensors, that should not be intrusive and at the same

time correctly positioned to acquire reliable data [24]. There are plenty of studies that demonstrate

the applicability of mobile device sensors for recognition of different physical and physiological

parameters, including the recognition of Activities of Daily Living (ADL) [25,26], environments [27],

or even for reduction of false alarms in intensive care units [28]. Likewise, mobile devices have been

used for the measurement of the results of the Heel-Rise test [29], proving that the implementation of

physiotherapy tests is feasible with the mobile device sensors.

The Timed-Up and Go (TUG) test is a quick and straightforward clinical method for assessment of

lower extremity function, mobility, and fall risk [30]. During it, the person is performing the following

actions: getting up from the chair, walking for 3 meters, turning around, walking another 3 meters in a

reverse direction, and sitting down on the chair. The typical duration of this test is a maximum of

12 seconds.

This method has been used to evaluate numerous individuals with pathological problems such as

Parkinson’s disease, amyotrophic lateral sclerosis, post-stroke, and orthopedic disturbances [30,31].

Therefore, clinicians would benefit from the implementation of mobile sensors to support efficient and

effective methods for pathological symptom evaluation to promote agile interventions for enhanced

public health [32].

A specific example of how a sensor-enhanced version of the TUG test outperformed the stopwatch

version at classifying fall risk is provided in [33], demonstrating that measuring accelerometry during

the TUG test improved the classification of fallers to 87% (compared with 63% using duration alone).

Other publications, such as [34], have reported considerably higher scores of the stopwatch TUG test.

An additional justification for performing TUG tests on a smartphone instead of the simple smartwatch

version is the automated data collection and measurement [35] that can facilitate additional long-term

analysis that could discover trends in the results of a single patient. This could lead to early detection

of health issues and concerns before they come to a serious level [36].

Nowadays, artificial intelligence is taking a major role in the medical field. Numerous emerging

applications of artificial intelligence methods have been designed and developed for enhanced patient

treatment [37]. The TUG test has also been used to measure the functional performance of patients

during their recovery process using unsupervised machine learning methods by several studies [38–41].

The calculation of features can be integrated with the feature engineering and selection process in a

systematic way for supervised learning problems, such as in [25,42].
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The main contribution of this paper is synthesizing the existing body of knowledge and identifying

common threads and gaps that would open new research directions about the application of TUG tests

on mobile devices. Furthermore, this literature review provides a comparison between the duration of

the TUG test and the features used.

This work presents a systematic review of studies published between 2010 and 2018, focused on

the application of the available sensors in off-the-shelf mobile devices to AAL and physical therapy,

and specifically for the automation of the measurements performed during the TUG test [43]. The

Timed-Up and Go test is especially important for the treatment and diagnosis of Parkinson disease and

fall risk prediction [44–46]. For this purpose, this test analyzes the movement and recognizes different

patterns related to various diseases, facilitating identifying future risky situations. The Timed-Up

and Go test is executed in five distinct phases: (1) the individual sits in a chair (see Figure 1a); (2) the

individual walks 3 meters (see Figure 1b); (3) the individual reverses the gait (see Figure 1c); (4) the

individual walks back (see Figure 1d); and, finally, (5) the individual sits back in the chair (see Figure 1e).

Throughout this test, the movements and speed can be measured using the embedded inertial sensors

in smartphones. As a result, it is possible to identify patterns that highlight issues related to falls of

older adults. It is noteworthy that several results presented, in general, calculations of the individuals’

angles of movements or the speed and acceleration throughout the test. Several statistical methods

and people of different ages were used for differentiating and defining patterns, which allowed for

validation of the studies [47–52].

Figure 1. Timed-Up and Go test execution phases. (a) the individual sits in a chair; (b) the individual

walks 3 meters; (c) the individual reverses the gait; (d) the individual walks back; (e) the individual sits

back in the chair.
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There are different types of TUG tests, including the standard TUG test, the Extended TUG test,

the Smart Insole TUG test, and the Instrumented TUG test. The TUG test consists of a set of five

phases, as represented in Figure 1 [43]. The Extended TUG test also includes a set of five stages [53],

including standing up from a chair, walking for a ten meters distance, turning around, walking back to

the chair and sitting down. The Smart Insole TUG (SITUG) test implements the TUG test with a Smart

Insole device to provide real-time and fine-grained results in a more multifaceted analysis for the fall

risk evaluation [54]. The Instrumented TUG (ITUG) test uses sensors to perform quantitative data

extraction during the TUG test [55].

This remainder of the paper is organized as follows. Section 2 defines the applied methodology,

explaining the research questions, the inclusion criteria, and the search strategy. Section 3 presents

the results of this systematic review, which are subsequently discussed in Section 4. Finally, Section 5

concludes the paper.

2. Materials and Methods

2.1. Research Questions

The primary research questions of this review were as follows: (RQ1) In what ways are low-cost

inertial measurement unit (IMU) sensors used to enhance TUG? (RQ2) Which methods for analysis of

the TUG test results can be implemented on mobile devices? (RQ3) In what ways can IMU sensors

improve the automation of TUG for assessing fall risk?

2.2. Inclusion Criteria

The inclusion criteria of studies and assessing methods for measurement of the results of the

TUG test were: (1) Studies that measure the parameters of the TUG test using sensors; (2) Studies that

present different approaches relative to the TUG test; (3) Studies that utilize at least motion or magnetic

sensors; (4) Studies that focus on the use of sensors embedded in mobile devices; (5) Studies that

were published between 2010 and 2018; (6) Studies which correctly define the participants population;

(7) Studies written in English.

2.3. Search Strategy

The team searched for studies meeting the inclusion criteria in the following electronic databases:

IEEE Xplore, ACM Digital Library, BMC, and PubMed. The research terms used to write this systematic

review were: “Time-Up and Go test”, “sensors”, and “mobile devices”. Every study was independently

evaluated by eight reviewers, and its suitability was determined with the agreement of all parties. The

studies were examined to identify the different approaches relative to the measurement of the results

of TUG test, using the onboard sensors available in an off-the-shelf mobile device.

2.4. Extraction of Study Characteristics

The following data were extracted from the studies and presented in Table 1: year of publication,

population, purpose, devices used, sensors available, raw data available, source code available,

implementation, and studied diseases. We contacted the corresponding author of each study by email

and asked for the source code and raw data. The implementation column groups the articles in two

categories: “Calculation of the features” and “Implementation of machine learning methods”. The

“Calculation of the features” includes analytical features, such as angular velocity, which is not directly

measured by the sensors, but rather derived from the original sensory measurements while considering

the time factor. In general, the applicable statistical metrics on such sensors for this domain as well

as their mathematical definition are provided in [42]. The second group of articles goes beyond and

utilizes such features as inputs to machine learning models which are automatically trained and tuned.
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Table 1. Study analysis.

Paper
Year of

Publication
Population Purpose of the Study Devices Sensors

Raw Data
Available

Source Code
Available

Implementation
Studied
Diseases

Yang et al.
[56]

2018
10 patients aged

between 19 and 44
years old

Prevention of fall risks in the
elderly subjects with the TUG

test
Smartphone

Accelerometer
Gyroscope

Magnetometer
no no

Calculation of
the features

Healthy
people

Bao et al. [57] 2018
12 subjects aged

between 65 and 85
years old

Shows the efficacy of the balance
training to help the elderly, using

the TUG test
Smartphone

Accelerometer
Gyroscope

no no
Calculation of

the features
Healthy
people

Yang et al.
[54]

2018
6 subjects with
unknown age

Appreciate the feasibility of the
TUG test and using a complex

system
Smartphone

Accelerometer
Gyroscope

yes yes

Implementation
of machine

learning
methods

Healthy
people

Silva et al.
[58]

2018
18 older adults aged
between 68 and 78

years old

Methodology to prevent and
identify fall risks, using sensors

and based on the TUG test
Smartphone

Accelerometer
Gyroscope

no no
Calculation of

the features

Rheumatic
diseases;

chronic pain;
hypertension;

dizziness;
polypharmacy

Hellmers
et al. [59]

2018
157 subjects aged

between 70 and 85
years old

Automated analyses using
inertial measurement units and

the TUG test
Smartphone

Accelerometer
Gyroscope

Magnetometer
no no

Calculation of
the features

Parkinson
disease

Chigateri
et al. [60]

2018
23 older adults aged
75 years old or over

Measure the fall risk using
sensors and the TUG test

Mobiles
devices

Accelerometer no no
Calculation of

the features
Healthy
people

Mellone et al.
[61]

2018
49 subjects aged

between 43 and 75
years old

Validate a method for measuring
the TUG test

Smartphone Accelerometer no no
Calculation of

the features
Parkinson

disease

Madhushri
et al. [62]

2017
10 geriatric patients

aged between 78
and 86 years old

Mobility assessment with the
TUG test

Smartphone
Gyroscope

Accelerometer
no no

Calculation of
the features

Mobility
problems

Beyea et al.
[63]

2017
12 individuals aged
between 21 and 64

years old

A mobile device using sensors
and the TUG test separated in
the different phases of the test

Mobiles
devices

Accelerometer
Gyroscope

Magnetometer
no no

Calculation of
the features

Healthy
people

Coni et al.
[64]

2017
239 subjects aged

between 65 and 93
years old

Study the decline associated
with the evolution of age using

the TUG test and sensors
Smartphone

Accelerometer
Gyroscope

no no

Implementation
of machine

learning
methods

Healthy
people

Salarian et al.
[65]

2017
28 subjects aged

between 52 and 68
years old

Instrumented the TUG test using
sensors in people with

Parkinson’s disease

Mobiles
devices

Accelerometer no no
Calculation of

the features
Parkinson

disease
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Table 1. Cont.

Paper
Year of

Publication
Population Purpose of the Study Devices Sensors

Raw Data
Available

Source Code
Available

Implementation
Studied
Diseases

Suppa et al.
[66]

2017
28 patients aged

between 63 and 77
years old

Inspect and associate the gait in
people with Parkinson’s disease

using the TUG test and the
sensors

Mobiles
devices

Microsoft
Kinect

Accelerometer
Gyroscope

no no

Implementation
of machine

learning
methods

Parkinson
disease

Madhushri
et al. [67]

2016
2 patients with
unknown age

Application for mobility
assessment helping the elderly to

use the TUG test
Smartphone

Accelerometer
Gyroscope

no no
Calculation of

the features
Mobility
problems

Cippitelli
et al. [68]

2016
20 subjects aged

between 22 and 39
years old

Quantify the possibility of the
falls using data captured with

sensors and tested with TUG test

Computer
mobile
devices

Microsoft
Kinect

Accelerometer
yes no

Implementation
of machine

learning
methods

Healthy
people

Williams et al.
[69]

2015
5 subjects aged

between 21 and 36
years old

The system that helps the
subjects in stroke rehabilitation

using the TUG test
Smartphone

Accelerometer
Gyroscope

Magnetometer
no no

Calculation of
the features

Healthy
people

Cuesta-Vargas
et al. [70]

2015
30 subjects over 65

years old

Evaluation of the people and
their mobility difficulty using

sensors embedded in the
smartphone and using the TUG

test.

Smartphone Accelerometer no no
Calculation of

the features
Frailty

syndrome

Milosevic
et al. [71]

2015
7 subjects with
unknown age

Application to automate
instrumented the TUG test using

sensors
Smartphone

Accelerometer
Gyroscope

no no
Calculation of

the features
Parkinson

disease

Dzhagaryan
et al. [72]

2015
4 subjects with
unknown age

Wearable system for older adults
using the TUG test

Small
wearable

computing;
smartphone

Accelerometer
Gyroscope

Magnetometer
no no

Calculation of
the features

Healthy
people

Greene et al.
[73]

2014
124 older adults
aged between 69
and 83 years old

The mobile platform using
inertial and pressure sensors to

check the mobility of older
adults, using the TUG test

Mobiles
devices

Accelerometer
Gyroscope

no no

Implementation
of machine

learning
methods

Frailty
syndrome

Galán-Mercant
et al. [74]

2014
30 subjects aged
over 65 years old

Quantify and describe the
acceleration, angular velocity
and the motions of the body
using a smartphone and the

TUG test

Smartphone Accelerometer no no

Implementation
of machine

learning
methods

Frailty
syndrome

Galán-Mercant
et al. [75]

2014
18 subjects aged
over 70 years old

Quantify and define the
magnitude of inertial sensors

using a smartphone test
assessment, based on the TUG

test

Smartphone
Accelerometer

Gyroscope
Magnetometer

no no
Calculation of

the features
Frailty

syndrome



Signal processing for the measurement of the results of the Timed-Up and Go test using sensors 

Electronics 2020, 9, 528 7 of 21

Table 1. Cont.

Paper
Year of

Publication
Population Purpose of the Study Devices Sensors

Raw Data
Available

Source Code
Available

Implementation
Studied
Diseases

Greene et al.
[76]

2014
21 patients aged

between 18 and 60
years old

Examine the consistency of the
quantifiable measures derivate of

sensors and utilizing the TUG
test

Smartphone
Accelerometer

Gyroscope
no no

Calculation of
the features

Multiple
sclerosis

Galán-Mercant
et al. [53]

2014
5 subjects aged over

65 years old

Analyze and quantify the
reliability criterion-related with

the utilization of sensors and
using the extended TUG test

Smartphone Accelerometer yes no

Implementation
of machine

learning
methods

Healthy
people

Tacconi et al.
[77]

2014
3 subjects with
unknown age

System to analyze the human
falls using the TUG test

Smartphone Accelerometer no no
Calculation of

the features
Healthy
people

Mellone et al.
[22]

2014
200 subjects aged
over 65 years old

Smartphone solutions to prevent
and detect the human falls using

the TUG test
Smartphone

Accelerometer
Gyroscope

no no

Implementation
of machine

learning
methods

Healthy
people

Bernhard
et al. [78]

2012
384 subjects aged

between 40 and 89
years old

Analyses the effectiveness of
mobile devices using sensors

and the TUG test
Smartwatch

Accelerometer
Gyroscope

Magnetometer
no no

Calculation of
the features

Parkinson’s
disease;
stroke;

epilepsy; pain
syndromes;

multiple
sclerosis;
tumors;

polyneuropathy;
vertigo;

dementia;
meningitis;
encephalitis

Palmerini
et al. [79]

2011
49 subjects aged

between 28 and 87
years old

Motion analysis systems
incorporated in a smartphone, to
study the possibility of falls for
people with Parkinson’s disease
using the TUG test and inertial

sensors

Smartphone Accelerometer no no
Calculation of

the features
Healthy
people

King et al.
[80]

2010
28 subjects with
unknown age

Predict the risks of falls, using a
BSN attached with inertial
sensors using the TUG test

Mobiles
devices

Accelerometer
Gyroscope

no no
Calculation of

the features
Healthy
people
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3. Results

As illustrated in Figure 2, our review identified 265 papers that included twenty-four duplicates,

which were removed. The remaining 241 works were evaluated in terms of title, abstract, and keywords,

resulting in the exclusion of 95 citations. The main criterion for the exclusion of papers was because

95 articles were not related to the applicability of mobile sensors available in an off-the-shelf mobile

device. We performed the full-text evaluation of the remaining 146 papers, excluding 118 articles that

did not match the defined inclusion criteria. The remaining 28 papers were included in the qualitative

synthesis and quantitative synthesis. In summary, our review examined 28 documents.

Figure 2. Flow diagram of identification and inclusion of papers.

We refer the interested readers to the original cited works to find relevant information about the

details of the TUG test measurements analyzed in this review. As shown in Table 1, all studies were

performed with mobile devices. The studies analyzed were published between 2010 and 2018 with

one study in 2010 (4%), one study in 2011 (4%), one study in 2012 (4%), seven studies in 2014 (25%),

four studies in 2015 (14%), two studies in 2016 (7%), six studies in 2017 (21%), and seven studies in

2018 (25%). The analyzed studies indicate that 20 studies used smartphones (71%) and eight used

other types of mobile devices (29%). Therefore, related to the sensors used in the analyzed studies,

the studies indicate the sensors used were the accelerometer in 27 studies (97%), the gyroscope in

19 studies (68%), and the magnetometer in seven studies (25%). Moreover, only eight studies (29%)

present the accuracy of the results obtained with the different experiments related to the TUG test.

Finally, the analysis of the diseases by the different studies was researched, where 14 studies (50%)
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performed the TUG test with healthy people, 5 studies (18%) analyzed people with Parkinson’s disease,

four studies (14%) analyzed people with frailty syndrome, and, the remaining 5 studies (18%) analyzed

people with other diseases.

The following sections present the results categorized by the different diseases listed in Table 1.

3.1. Healthy People

The authors of [56] implemented a method to assess the subject’s balance, proposing four

environment adapters designed to evaluate the ability to adapt to walking in complex environments

associated to a compatible system that provides, in real-time, characteristics spatially related to walking.

Thus, the authors proposed a four environment-adapting TUG test to asses one’s aptitude to adjust

gait in multifaceted environments and a compatible system called Smart Insole TUG (SITUG) [56].

These report an average precision of 92% and 23% in the segmentation of the 5 phases of the TUG

test [56]. The features used in the study are the duration, the threshold of the forefoot, the limit of

the rearfoot, the full contact time, the foot-ground contact time, the non-foot-ground contact time, the

initial contact time, the gait cycle time, the gait cycle count, the gait cycle pace, the stride length and

the sole average pressures [56]. The results show that SITUG reports an accuracy of over 92% in the

recognition of the different phases of the test [56].

In [57], the authors evaluated the efficacy of long-term balance training with and without inertial

sensors. Participants attended the sessions at home with one 45-minute session per week, using

smartphone balance trainers that provided written, graphic, and video guidance, and monitored trunk

sway [57]. The sensors, including gyroscopes and accelerometers, were used to measure angular

changes [57]. They also estimated the duration of the TUG test as well as the gait speed, fast gait speed,

sit-to-stand duration, and others [57].

The authors of [54] proposed a SITUG test to obtain the motor performance information in

complex environments, to identify the probability of falls. The authors calculated the time variance,

reporting an average accuracy of 94.1% in the extraction of subcomponents within a stride, and 93.13%

in deriving the stride length based on the distance travelled [54]. Thus, the five phases of the test

were recognized with an accuracy of around 90%, using pressure features, spatial features, temporal

features, and spatial-temporal features [54].

In [60], the authors proposed the assessment of automatic real-time feedback provided by a

shoe-mounted inertial-sensor-based gait therapy system is feasible in individuals with gait impairments

after incomplete spinal cord injury. A way to identify parameters associated with gait was proposed,

implementing several tests, including the TUG test with an accelerometer sensor [60]. The median

overall agreement between the processed accelerometer data and the annotated video was an

approximate match of 92.8% and 95.1% for walking episodes in scripted and unscripted activities,

respectively [60]. In addition, based on the duration of each activity, the results reported an accuracy

of 92.2% for recognition of the non-walking event and 88.7% for the recognition of walking activity

Beyea et al. [63] developed a protocol to acquire the Inertial Measurement Unit (IMU) data and

measure the results of two versions of the TUG test, such as a test with 3 meters walking and another

with 5 meters walking to compare the performance based on the different durations. The authors

recognized the different phases of the test and calculate the average of the acceleration and the time of

the TUG test [63]. Finally, the authors calculated the total time of the test and walking times, reporting

an accuracy of 87% in the recognition of the different phases of the test [63].

In [64], the authors proposed research on the functional decline associated with ageing and its

differences through a set of sensor-based measures by using the Instrumented TUG test, recognizing

the different activities. The authors also examined the decline related to age-related and gender-related

variances through a set of sensor-based measures [64].

Based on the TUG test, Cippitelli et al. proposed fall detection algorithms using the Inertial

Measurement Units (IMUs) and an RGB depth sensor (Microsoft Kinect) [68]. The authors identified

the sit-to-stand, walk, turn, walk, and turn-to-sit phases [68]. The authors also evaluated the maximum
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inclination of the torso angle and the time required to perform the movement [68]. They implemented

three algorithms, where the first algorithm reports an accuracy of 79%, the second one presents an

accuracy of 90%, and the latest algorithm shows an accuracy of 99% [68]. The orientation angle must

be around 90◦ during a not very extensive period to check the fall [68].

In [69], a system to rehabilitate patients who have suffered a stroke was proposed, implementing

the Smart Insole TUG test at the individuals’ own homes. They measured the angles, stride length,

total distance traveled, average velocity, and execution time of the TUG test, and identified the sitting

and standing activities [69]. This system, featuring a simple configuration and a relatively low cost,

provides feedback to the user, showing that it is possibly even better than current physiotherapy

methods [69]. The system also checks the health status of knees [69]. The results show that the

difference between the app’s timer and the mobile devices represents a difference a Root Mean Square

Error (RMSE) of 0.907 [69].

In [72], the authors introduced a wearable system titled Smart Button designed to assist the

mobility of older adults and assess people with Parkinson’s and the elderly with regards to the

movement, balance, strength limits, and risks of falling, while calculating the highest and lowest

accelerations as well as the angular velocity. The parameters extracted from the TUG test are total

duration of the TUG test, active TUG test, and lift-up phase of the sit-to-stand transition, the length of

the lean forward period, and the duration of the lift-up phase of the sit-to-stand, maximum change,

and maximum angular velocity during the trunk angle in the lean-forward, maximum angular velocity

during the lift-up, duration of the stand-to-sit transition, duration of the prepare-to-sit in the stand-to-sit,

duration of the sit-down phase in the stand-to-sit, and number of steps during the walking phase [72].

The authors of [53] proposed the evaluation of the reliability and concurrent criterion validity of

the acceleration using a smartphone application, inertial sensors, and the Extended TUG test. They

implemented the Bland–Altman method with the data acquired from the accelerometer available in

the mobile devices to obtain the different results [53]. Thus, they identified the sit-to-stand, gait-go,

turn, gait-come, and stand-to-sit activities with the features available in a previous study protocol and

the angles of the movement [53].

Based on a mobile platform, the authors of [77] presented a system for the study of falls and

mobility, using the data captured by an inertial sensor and the Extended TUG test for validation. They

calculated several features, including total, gait, sit-to-stand, and stand-to-sit durations, Root Mean

Square (RMS) of sit-to-stand and stand-to-sit, maximum acceleration, mean cadence, cadence standard

deviation, and cadence coefficient of variation [77]. The algorithm chosen was the single-threshold

algorithm, and several simulations were made for the detection of falls, including forward fall, lateral

fall, backward fall, fall sliding against a wall final position vertical, fall slipping against a wall, and

falling out the bed actions [77].

A study presented by [22] is based on the techniques for the implementation of FARSEEING

using smartphones to detect falls and prevent falls. The inertial sensors are used in the smartphone to

calculate the probabilities of fall. For this application, they created a mobile application to perform the

tests and use the TUG test as a study centre [22]. Based on the orientation of the device, the authors

proposed a wearable system to identify the reasons for the falls using inertial sensors and the TUG

test [22]. The results show the total duration and the maximum acceleration during the trial [22].

The authors proposed a method that uses accelerometer available in the smartphone as a

measurement system for people with Parkinson’s disease using the TUG test [79]. They extracted

different features, including the duration, RMS, preparatory RMS and jerk of the sit-to-stand transition,

the mean and standard deviation of step duration, phase coordination index, mean phase of gait phase,

and maximum value of acceleration during the stand-to-sit period, recognizing the different stages [79].

The authors of [80] used a body sensor network (BSN) to detect the equilibrium to forecast

falling. They extracted the mean, variance, number of peaks, and time as features to quantify 3100

amplitudes related to left–right movements, 2600 magnitudes related to up–down movements, and
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2450 amplitudes related to forward–back actions [80]. For this purpose, they calculated the Tinetti

score and the maximum and minimum amplitudes with the TUG test [80].

3.2. Parkinson Disease

The authors of [59] authors proposed the use of wearables for the assessment of gait and balance

features in a clinical setting with an inertial measurement unit to use in people with Parkinson’s disease

for the evaluation of the possibility of falls using the TUG test. They extracted the auto-correlation,

mean, pitch, standard deviation, RMS, energy, signal magnitude area (SMA), signal vector magnitude

(SVM), spectral entropy, and correlation as features for the recognition of the different activities during

the TUG test [59]. They reported that the use of self-learning methods presents a maximum acceleration

of 12 m/s2 and an angular velocity of 3 m/s [59].

The study presented in [61] evaluated the efficiency of the smartphone and its inertial embedded

sensors in the implementation of the TUG test, and validation of the measurement of activity in frail

elder people using inertial sensors. They extracted the total duration, jerk and range of sit-to-stand

transition of the trial, the mean, and standard deviation of the step time, among others [61]. The

reported results showed a balance when the smartphone was used and the McRoberts Hybrid device,

which demonstrates that embedded sensors and smartphones are a viable alternative to more expensive

equipment [61].

The study in [65] proposed the use of the instrumented TUG test with inertial sensors to improve

the TUG test evaluation in several situations, employing automatic detection and separation of

subcomponents, detailing the analysis of each of them and achieving a higher sensitivity than the TUG

test. The Instrumented TUG test was different concerning the angular velocity duration of the turn,

and the turning duration, and the time to perform turn-to-sit [65].

Suppa et al. [66] used the TUG test to examine and compare the gait in patients with Parkinson’s

disease for the recognition of freezing of gait based on the duration of the TUG test, and implemented

treatment for the disease, reporting accuracy of 98% in recognition of the different phases of the test.

In [71], the authors presented a mobile application named sTUG that completely automated the

ITUG test, measuring the total duration of the TUG test, sit-to-stand transition, and lean forward and

lift phases in the sit-to-stand. Also, other features were measured, including the maximum change

of the trunk angle, and maximum angular velocity during the lean forward and lift-up phases, the

duration of the stand-to-sit transition, and the prepare-to-sit and sit-down periods in the stand-to-sit

transition [71].

3.3. Frailty Syndrome

The authors of [70] implemented a method for the measurement of the Extended TUG test with a

smartphone, identifying kinematic variables obtained with the inertial sensors, measuring the averages

of time and the acceleration during the TUG test. The highest accuracy in discrimination between frail

and non-frail elderly was reported as a value around 72.8% in recognition of the different phases of the

test [70].

Based on the use of inertial sensors available on a mobile platform and other pressure sensors, the

authors of [73] discussed the falls of older adults and the causes of serious injuries using the TUG test.

The authors recognized different activities with 52 features quantifying the temporal, spatial, turning,

and rotational characteristics [73]. The reported precision of the TUG test was a minimum accuracy of

78.11% in recognition of the different activities, and a minimum accuracy of 72.31% in recognition of

the different phases of the test [73].

Galán-Mercant et al. [74] developed a method to measure and describe the angular velocity and

acceleration variations and the trunk deviation with the Extended TUG test, to analyze the changes

between healthy and frail individuals, and to identify the different activities. The significant difference

between the groups in the sub-phases of sit-to-stand and stand-to-sit was in the vertical axis and
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vector, where the minimum acceleration in the stand-to-sit phase was –2.69 m/s2 in the frail elderly

and –5.93 m/s2 in the non-frail elderly [74].

The authors of [75] used the smartphone application using inertial sensors as a measurement

device to measure. They described the magnitude of acceleration values with frail and non-frail

individuals. The features extracted are the maximum and minimum values of the acceleration of each

axis [75]. Finally, they reported that the most significant differences were verified in the use of the

accelerometer with eyes closed and the feet parallel with a maximum acceleration on the lateral axis

of (p < 0.01), minimum acceleration peak on the lateral axis (p < 0.01), and peak acceleration of the

resulting vector (p < 0.01) [75].

3.4. Other Diseases

The authors of [58] extracted several features for the recognition of the different phases of the

Instrumented TUG test, including RMS, standard deviation, median deviation, interquartile range

(IQR), skewness, kurtosis, number of times the magnitude signal crosses the mean value, maximum

and second maximum frequencies of the fast Fourier transform (FFT), maximum and second maximum

amplitudes of the FFT, minimum, maximum, average of the peak height, energy, and entropy.

The authors of [62] developed a customized three-segment form to quantify body forces and

evaluate the optimization of each sit-to-stand transition. The evaluation of the model was performed

by testing the action and optimal transition time for 10 older adults, comparing their best performance

with the best performance of the model to use the results to evaluate possible improvements in the

mobility of individuals [62]. They calculated the real angles and the averages of the sit-to-stand

transition time and the actions of 10 geriatric patients 80 years old [62]. Using mobile phone inertial

sensors and a smartphone mounted on the chest, the total power and action of each stand up during the

test verified the force action derives between 170 joules at 0.2 seconds and 250 joules at 2 seconds [62].

Madhushri et al. proposed a smartphone application for assessing flexibility in the aged population

using inertial sensors [67]. They also presented a set of applications to evaluate the implementation of

the Smart Insole TUG test with older adults, extracting several parameters from the inertial sensors [67].

The parameters extracted include the duration of the TUG test, the sit-to-stand transition, the lean

forward phase, the stand-to-sit shift, the prepare-to-sit period, the sit-down phase, and the lift up

phase, the total time of walk, the maximum change of trunk angle during the lean forward phase, the

maximum angular velocity during the lean forward and the lift up phases, the total number of steps

during walking, and before turn [67]. The average error for the implementation of the Smart Insole

TUG test is around 2% [67].

The authors of [76] implemented the TUG test with inertial sensors for the assessment of the

disability status in people with sclerosis disease, measuring the time of the different phases, the angular

velocity peaks as well as other spatiotemporal and statistic features. Moreover, this study also examines

the reliability of the TUG test [76]. The authors tried to verify the existence of some diseases like

Parkinson’s and its evaluation [76].

The authors of [78] explored options using wearables, which can provide more objective

information for the evaluation of hospitalized neurological patients, with an assessment procedure that

gets acceptance in the communities. Based on the TUG test, the authors validated the use of inertial

sensors embedded in a smartphone, extracting the angles of the movement [78].

4. Discussion

As it emerges from this systematic review, we can verify the importance that mobile devices have

for studies related to the health of elderly subjects. Among the most evaluated variables or features, it

has been identified that the studies in this area go a long way towards temporal measures, such as

duration, and for angular measures, such as the angular velocity. Finally, it should be noticed that the

sensors embedded in mobile devices are an inexpensive way to carry out studies of this importance,

i.e., the accelerometer, gyroscope, and magnetometer. Also, they reported a high level of efficiency and
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they are used in numerous research studies. However, several artificial intelligence methods such as

machine learning can be used for enhanced TUG test data analysis.

The TUG test consists of the execution of different activities. After the analysis, it was verified

that the most used sensor in the literature is the accelerometer. Also, the most used features in the

research are the duration of the test, the average of the angles obtained with the raw data, the edges

of the movement, the number of steps, the maximum change of the trunk angle, the threshold, and

the full contact time. In the normal TUG test, the most widely used features for the measurement of

the different parameters of the test are the duration, the mean and standard deviation, and the RMS

of the raw data extracted from the embedded sensors the mobile device (Table 2). Secondly, in the

Extended TUG test, the most used features for the measurement of the different parameters of the test

are the duration, the acceleration, and the number of steps extracted from the data acquired by the

sensors available in the mobile devices (Table 2). Finally, in the Smart Insole TUG test, the most used

features for the measurement of the different parameters of the test are the duration and the stride

length extracted from the data acquired by the sensors available in the mobile devices (Table 2). The

most used features are highlighted in Table 2.

Table 2. Features relative to the different types of Timed-Up and Go tests.

Features Interpretation
Number of Studies

TUG Extended TUG Smart Insole TUG

Duration

Quantitative

6 3 6

Number of steps 2 1

Stride length 2

Step time 1

Orientation 1

Position 1

Step length 1

Cadence 1

Turning duration 1

Time to perform turn-to-sit 1

Reaction time 1

Contact times (i.e., initial, forefoot, rearfoot,
full, foot-ground, and non-foot-ground)

1

Distance 1

Threshold 1

Standard deviation of the step time

Quantitative +
Statistic

1

Cadence standard deviation 1

Cadence coefficient of variation 1

Mean cadence 1

Averages of time 1

Mean stride length 1

Medio-lateral and medio-lateral interstride
autocorrelations

1

Maximum change of the trunk angle 1

Acceleration

Dynamic balance

2

Maximum angular velocity 2 1 1

Average speed 1

Averages of the sit-to-stand transition 1

Real velocity 1

Average velocity 1

Angular velocity of arm-swing 1

Gait speed

Gait properties

2

Gait duration 1

Gait cycle time 1

Gait cycle count 1

Gait cycle pace 1
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Table 2. Cont.

Features Interpretation
Number of Studies

TUG Extended TUG Smart Insole TUG

Real angles of the sit-to-stand transition

State transitions

2

Range of sit-to-stand transition 1

Jerk 1

Mean of raw data

Raw statistic

3

Standard deviation 3

Root mean square (RMS) 3 1

Signal energy 2

Signal magnitude area (SMA) 2

Signal vector magnitude (SVM) 2

Spectral entropy 2

Variance 1

Number of peaks 1

Median deviation 1

Interquartile range (IQR) 1

Skewness 1

Kurtosis 1

Number of times the magnitude signal crosses
the mean value

1

Maximum frequency of the FFT 1

Maximum amplitude of the FFT 1

Minimum average 1

Maximum average 1

Average of the peak height 1

Energy 1

Entropy 1

Angles 1

Maximum change of trunk angle 1

The Interpretation column in Table 2 shows the category of the feature: quantitative, which

explains some aspects of the TUG test or another physical characteristic; quantitative + statistic, which

denotes a derived quantitative feature with some statistical operation; dynamic balance, which mainly

describes the dynamic balance of the person; gait properties, which can help in describing the gait

specifics and can help in identifying some gait abnormalities; state transitions, which contribute to

better discerning different states and transitions from between them; and raw statistic, which denotes

features calculated with a statistical function directly on the raw sensory data.

The main strengths of the methods rely in the capability to demonstrate that it is possible to

establish that people with different diseases can perform this test, obtaining different results. The data

acquired from the sensors allows accurate calculation of different results of this test, where the use of

low-cost sensors may help in the obtention of results by the healthcare professionals belonging to the

physiotherapy domain.

There is no information available regarding the confidentiality and protection of data acquired

during the experiments. We performed a rigorous evaluation of each study to verify the existence of a

validation of the study protocol by a human subject research ethics committee, but the information

was not conclusive. Thus, we contacted the authors and research group to obtain more clarifications

about the data protection of each study, but we have not yet received the responses.

The results of this review demonstrate that the data acquired from the sensors available in

off-the-shelf mobile devices may be used to identify patterns in the acquired data depending on

different diseases. Consequently, it is possible to reveal patterns of the diseases related to the test by

grouping persons with different diseases. On the one hand, the results show that the data acquired

from the sensors available in off-the-shelf mobile devices facilitate the detection of different diseases

such as Parkinson’s disease, amyotrophic lateral sclerosis, post-stroke, and orthopedic disturbances.
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On the other hand, the TUG test can be performed reliably by the patients without having to visit

physiotherapists. Likewise, physiotherapists can monitor the progress of a disease by having an

integrated and reliable log of patient’s TUG test results for an extended period of time.

However, there is no correlation between the most used features for each type of analysis and each

study. Also, any research uses the most used features at the same time, and the studies have different

purposes, including the measurement of various parameters and recognition of the different activities.

The measurement of the general TUG test has some limitations, as presented in [45]. By

instrumenting the TUG test with sensors and by extracting multiple features in addition to the duration,

we aim to overcome these issues:

• Falling risk in healthy older populations may not affect the measurement of the duration;

• The user may perform the different phases with other involuntary movements or trajectories;

• The effects of the medication therapy and movement deficiencies may not be detected;

• The high reliability and discrimination of the health may not be evaluated in only 3 meters;

• The measurement of the results of the test depends on the personal and environmental conditions;

• The conditions of the chair may also introduce the possibility of different results.

Generally, all studies use multiple features in a single recognition model. Despite the fact that

some features are redundant to some extent, which could be intuitively understood solely by their

mathematical definition, the recognition systems use them. The motivation is that while only a few

of them are most important for recognition of a task, for an alternative task, some others would be

useful. For example, for simply scoring the TUG test, the duration is usually enough. However, for fall

detection, other features become important. Even more features are required for detection of more

complex Activities of Daily Living.

Even though most studies do not provide specific ranges of the values of certain features to

help in understanding the classifications, for any “black box” classification model, there are methods,

such as local interpretable model-agnostic explanations (LIME) [81] or SHAP (shapley additive

explanations) [82], which efficiently provide insights in the classification process.

Several studies have been performed, but a framework for the use of the TUG test for the

recognition of different diseases and automation of the calculation of the various parameters of the test

with low-cost sensors is still not available. Finally, the creation of a standard for the evaluations of the

physical conditions with this type of test is essential.

As a result of the review of the related works, we believe that a standard for conducting the

TUG test on mobile devices can be defined. Most importantly, multiple approaches show that

simple statistical features based on the raw time-domain data is sufficiently accurate. Therefore, such

computation is feasible on mobile devices with limited computing and battery capacity. For this test,

more complex approaches, such as ones relying on deep learning models, are not recommended.

Another recommendation is that mobile devices performing this test need to be integrated with the

electronic health records of patients and to be available for their doctor, when required and after the

approval of the patient. Of course, this raises many other technical challenges related to privacy

and security. However, this can be proved instrumental in allowing the doctor to identify complex

emerging patterns, such as progress of a disease, and to be able to act upon it proactively, instead

of reactively.

5. Conclusions

This systematic review analyzes, verifies, and identifies the use of inertial sensors available in the

mobile devices to detect movements and reactions during the TUG test. The use of sensors together

with these tests allows drawing essential conclusions about how to prevent falls in the elderly or those

with a disabling disease, and how measures can be created that can help avoid these events. In general,

several approaches to the topic of typical use of technology (mobile devices and sensors) and health

areas are reported in the literature. Motion sensors with more demanding architecture can capture
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more data more accurately and with greater efficiency. Thus, combined with a constant evolution

of mobile technology and mobile devices, it is possible to achieve a continually growing number of

events previously mentioned due to the increased life expectancy. Finally, the test that was the central

target of this analysis is an adequate test, with excellent use for its ease of implementation and it does

not require large equipment or technological devices to be carried out. Along with mobile devices

using open source technologies, the TUG is very accessible to all.

Twenty-eight studies were examined, and the main findings are summarized as follows:

• (RQ1) Most of the low-cost IMU sensors used in the TUG tests are the gyroscope, magnetometer,

and accelerometer. These sensors are widely used in the physiotherapy domain and can be used

to detect all the five phases of the TUG test, which can be identified by sensors available onboard

off-the-shelf mobile devices. Moreover, mobile sensors can be a low-cost approach for the TUG

test and consecutively to clinical diagnostics of several diseases. The data collected by mobile

sensors can be analyzed to create patterns for the evaluation of different diseases.

• (RQ2) The methods and features most used to measure the results are related to the time of the

TUG test, the angular velocity and the angular analysis of the body movements, and the number

of steps performed.

• (RQ3) One of the main purposes of the TUG test is to help in the recognition of the probability of the

risk of falls, where eight studies present the relation between it and the TUG test in elderly people.

In conclusion, the literature review identified numerous studies reporting applicability of the

TUG test for multiple evaluations in the medical domain, namely for detection of different diseases

such as Parkinson’s disease, amyotrophic lateral sclerosis, post-stroke, and orthopedic disturbances.

The reviewed studies claim that the embedded sensors on mobile devices increase the reliability of

the test. Therefore, the ubiquitous mobile devices present a low-cost, efficient, and reliable tool for

performing the TUG test.

In the future, personal digital life coaches can be designed to evaluate different parameters of

the subjects’ physical conditions for medical and recreational use. Such systems, depending on the

application scenario, would rely on multiple machine learning algorithms to cope with computational

and battery limitations, while aiming to provide exceptional accuracy.
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Abstract: Inertial sensors are commonly embedded in several devices, including smartphones, and

other specific devices. This type of sensors may be used for different purposes, including the

recognition of different diseases. Several studies are focused on the use of accelerometer signals for the

automatic recognition of different diseases, and it may empower the different treatments with the use

of less invasive and painful techniques for patients. This paper aims to provide a systematic review of

the studies available in the literature for the automatic recognition of different diseases by exploiting

accelerometer sensors. The most reliably detectable disease using accelerometer sensors, available in

54% of the analyzed studies, is the Parkinson’s disease. The machine learning methods implemented

for the automatic recognition of Parkinson’s disease reported an accuracy of 94%. The recognition of

other diseases is investigated in a few other papers, and it appears to be the target of further analysis

in the future.

Keywords: accelerometer; wearable electronic devices; diseases; monitoring; ambulatory; automatic

identification; parkinson’s disease

1. Introduction

Ageing is presently a critical challenge worldwide, which is particularly relevant in developed

countries [1–3]. In total, 9% of the population is over 64 years old worldwide, and 10% will have

disabilities [4,5]. Ageing will lead to relevant impacts on the economy and society, associated with

costs in healthcare [6,7]. The scenario in Portugal is not different, as it is in the top five countries with

older adults worldwide [8–10]. It is relevant to mention that Portugal was the country with the highest

birth rate in Europe, 45 years ago [11,12]. However, Portugal is now at the top of the list with fewer

births in Europe [13,14]. Accordingly, the dependency of older adults associated with a low birth rate

will lead to even more social impacts and demands for the design and development of novel and

efficient strategies to promote the health and well-being of citizens [15].

Electronics 2020, 9, 778; doi:10.3390/electronics9050778 www.mdpi.com/journal/electronics
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The Ambient Assisted Living (AAL) concept includes multiple research domains to design

improved software tools and healthcare systems for enhanced living environments [16,17]. However,

different challenges still exist in the design of AAL technologies associated not only with the reception

of these tools by older adults but also related to privacy and security [18–20].

Healthcare systems combine different software and hardware systems to provide multiple services

not only to promote the quality of life of patients but also to support healthcare staff [21,22]. Personal

healthcare devices are used for several telemedicine tasks using portable systems to monitor the

patient’s physical signs [23,24]. These devices can observe distinct parameters, such as blood pressure,

oxygen, and medication intake, but they are also used to supervise patients’ behavior and detect

falls [25,26].

Presently, mobile devices such as smartphones and tablets include high power processing

properties and incorporate multiple non-invasive sensors that are used to design efficient and

cost-effective healthcare solutions [27,28]. Mobile healthcare applications also support patient

participation in their disease prevention and management and consequently contribute to relevant

cost savings [29–31]. Moreover, mobile devices incorporate multiple short-range and long-range

communication protocols such as GPRS (General Packet Radio Service), 3G, HSDPA (High-Speed

Downlink Packet Access), 4G, 5G, Bluetooth, NFC (Near-field communication) and Wi-Fi. These

communication technologies facilitate patient monitoring in hospitals, medical facilities, and in patient’s

homes [32–34]. Furthermore, wearable devices currently include the same sensors as smartphones and

are consequently used to supervise cardio-metabolic [35], and electroencephalogram (EEG) signals [36],

in a non-invasive manner [37–39]. To summarize, mobile devices must be seen today as an essential

and crucial part of personalized healthcare procedures not only for monitoring activities but also for

clinical evaluation and disease detection [40–42].

The accelerometer, magnetometer, and gyroscope sensors incorporated in mobile devices or other

commercial board modules are compatible with different interfaces, such as I2C, UART (Universal

Asynchronous Receiver-Transmitter) and PWM (Pulse Wave Modulation). They can be applied in the

context of enhanced healthcare, such as activity recognition and automatic disease detection [43–45].

The accelerometer is used in numerous clinical evaluation tasks, both incorporated in wearable-based

systems or using mobile devices [46,47]. Countless people suffer from multiple diseases, causing a

variety of consequences on their physical activity and mobility, such as postural instability and gait

disturbances, which can lead to independence reduction and loss of movement [48–51]. Consequently,

the use of automated processes for disease evaluation plays a significant role in enhanced public health.

The cross-domain knowledge sharing combining computer science and healthcare can lead to

the design of effective systems for enhanced personalized healthcare assessment, which can also

be supported by artificial intelligence methods to create novel techniques for automated disease

recognition. On the other hand, this multidisciplinary approach can provide novel solutions to face the

worldwide challenges related to ageing and the quality of personalized healthcare [52–55].

This paper presents a review of state-of-the-art accelerometry-based systems and methods for the

automatic identification of various diseases. We aim to provide a comprehensive understanding of the

different healthcare conditions that can be recognized, monitored, and evaluated using accelerometry

devices and artificial intelligence techniques.

The main contribution of this paper is the synthesis of the existing body of knowledge, presenting

the collective outcomes and limitations that must be analyzed to point out new research directions.

Furthermore, we compare different methods and extract the most significant insights from the analyzed

literature. As a result, this paper aims to provide a practical background not only to academics or

computer science engineers but also to healthcare professionals.

The structure of this document is the following: Section 2 presented the strategy used to conduct

this systematic review and describe the research questions, and the criteria for the literature section.

The results are shown in Section 3, and they are later discussed in Section 4. Finally, the conclusions

are presented in Section 5.
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2. Materials and Methods

Systematic reviews use formal explicit methods, of what exactly was the question to be answered,

how evidence was searched for and assessed, and how it was synthesized to reach the conclusion.

The “Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement” [56]

is one of the most widely used methodologies for achieving this, therefore we have applied it in this

work. For this type of studies, it is essential that they are statistical valid with enough individuals in a

studied population. In continuation, the diseases that can be detected with these sensors is important

to define a method for the recognition, where the recognition differs by each disease. The authors

have conducted a systematic review of papers published after 2008 to provide a comprehensive,

but not limited analysis considering 12 years of studies regarding the automatic detection of studies

using inertial sensors. Finally, the use of artificial intelligence methods is important for the automatic

recognition and measurement, and this review intends to discover which as the methods used in

the literature.

2.1. Research Questions

The primary research questions of this review were as follows: (RQ1) How many people are

involved in the different studies related to the use of the inertial sensors? (RQ2) Which diseases

can be detected with inertial sensors? (RQ3) Which artificial intelligence methods are used for the

identification or recognition of different diseases?

2.2. Inclusion Criteria

The inclusion criteria of studies and assessing methods for the automatic identification of various

diseases using the accelerometer sensor were: (1) Studies that perform recognition of diseases related

to the movement; (2) Studies that use at least an accelerometer sensor; (3) Studies that were published

between 2008 and 2020; (4) Studies that defined the number of participants; (5) Studies written

in English.

2.3. Search Strategy

The team searched for studies meeting the inclusion criteria in the following electronic databases:

IEEE Xplore, ACM Digital Library, ScienceDirect, MEDLINE, and PubMed. The research terms used to

identify relevant articles for this systematic review are: “diseases”, “accelerometer”, and “automatic

identification” or “automatic recognition”. Initially, we employed a tool that leverages Natural

Language Processing algorithms [57] to remove duplicate articles and narrow down the potentially

relevant articles. Afterwards, five reviewers independently evaluated every study, and its suitability

was determined with the agreement of all parties. The studies were examined to identify the different

diseases that can be identified with the use of data acquired from the accelerometer sensor.

2.4. Extraction of Study Characteristics

The following information was extracted from various articles analyzed and presented in

Tables 1 and 2: year of publication, population, purpose, sensors used, diseases detected, accuracy,

and outcomes of the different studies. The corresponding authors of the various papers were contacted

to obtain more information about the different studies. We evaluated the identified studies based

on the qualities related to the research questions, considering the number of participants (an explicit

number should be stated in the study), the sensory devices (also need to be explicitly mentioned),

which diseases are being automatically identified, and which artificial intelligence algorithms were

applied for automatic recognition of the disease. Based on these parameters, the studies’ quality was

assessed. In general, the most detected disease is Parkinson’s disease and other diseases related to the

various walking patterns.
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Table 1. Study analysis.

Paper
Year of

Publication
Population Purpose of the Study Sensors Diseases Detected Accuracy

Viteckova et al.
[58]

2020
26 healthy adults and 25

subjects with
Parkinson’s disease

Compare and quantify the
results of repeated performance
over time and the performance
of healthy and sick people with

Parkinson’s disease

Accelerometer
and Gyroscope

Parkinson N/A

Sharif
Bidabadi et al.

[59]
2019

30 healthy subjects and 56
patients with Lumbar

radiculopathy and related
ankle dorsiflexion

weakness with observable
foot drop

Use of inertial measurement
unit using machine learning

methods to distinguish
gait disturbances

Accelerometer,
Gyroscope, and
Magnetometer

Lumbar
radiculopathy and

related to ankle
dorsiflexion weakness
with observable foot

drop

93.18%

Stamate et al.
[60]

2018
22 individuals with
Parkinson’s disease

Develop an application to
create an extensive data set of

motor characteristics of
individuals with

Parkinson’s disease

Accelerometer Parkinson 95%

Joshi et al.
[61]

2017
15 patients with

Parkinson’s disease and 16
healthy control subjects

Method to analyze gait
variables for

Parkinson’s patients
Accelerometer Parkinson 90.32%

Ribeiro et al.
[62]

2016
Five volunteers with recent

episodes of Epilepsy

Development of a technique
using machine learning, to

automatically recognize people
with epilepsy

Accelerometer Epilepsy 99%

Djuric-Jovicic et al.
[63]

2014
12 patients with idiopathic

Parkinson’s disease

Method for the detection of
walking disorders for people

with Parkinson

Accelerometer
and Gyroscope

Parkinson 98.55%

Gruenerbl et al.
[64]

2014 12 bipolar disorder patients

Demonstrate how smartphones
can be used to aid the diagnosis

of people with
psychiatric disorders

Accelerometer
and GPS
receiver

Bipolar 80%

Pendharkar et al.
[65]

2014

Ten children with
idiopathic toe walkers and

ten children with a
normal gait

Automated classification of
heel accelerometer data

Accelerometer
Idiopathic Toe

Walkers
97.9%

Kugler et al.
[66]

2013
Five healthy adults and five

subjects with
Parkinson’s disease

Make an automatic
classification between healthy
individuals and people with

Parkinson’s disease using
walking electromyography

Accelerometer
and

electromyography
(EMG) sensor

Parkinson N/A

Barth et al.
[67]

2012
17 healthy adults and 18

subjects with
Parkinson’s disease

System to analyze the motor
function of the hand and to
walk to differentiate healthy

people and people with
Parkinson’s disease

Accelerometer
and Gyroscope

Parkinson 97%

Alaqtash et al.
[68]

2011
Ten healthy adults and four

relapsing-remitting
multiple sclerosis patients

Wearable system for the
acquisition of gait parameters

Accelerometer Multiple Sclerosis N/A

Phan et al.
[69]

2008
30 subjects with recent

symptoms of arrhythmia or
sleep apnea

Accelerometer system to
compare efficiency in detecting

heart disease, compared to
traditionally used tools

Accelerometer
and

electrocardiography
(ECG) sensor

Arrhythmia or
sleep apnea

N/A

Garcia
Ruiz et al.

[70]
2008

28 patients with idiopathic
Parkinson’s disease

Analysis of the utility and
correlation of Active

Appearance Model (AAM)
with timed tests and Unified
Parkinson’s Disease Rating
Scale (UPDRS) scores with

people with
Parkinson’s disease

Accelerometer Parkinson N/A
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Table 2. Study outcomes.

Paper Outcomes

Viteckova et al. [58]

The authors intended to use the instrumented Timed-Up and Go test, repeatedly in young adults and people
with Parkinson’s disease to make comparisons and test the efficiency of the method. Various related features
were calculated, with the test time and the other parameters related to walking and angular velocity. An Xbus
Mater was used for data acquisition, which includes 5 accelerometers with a sampling rate of 100 Hz.

Sharif Bidabadi et al. [59]

The study aimed to investigate disorders related to falls in people with low back problems and used machine
learning algorithms. Machine learning was implemented to use an accelerometer to acquire data. The results
showed that the performance was better with the use of the three classifiers Random Forest, Support Vector
Machine (SVM), and Naive Bayes. In contrast, when the wrapper feature technique was used, the highest
accuracy was 93.18% with the Random Forest classifier. The accelerometer used is a three-axis accelerometer
to measure the different directions of movement.

Stamate et al. [60]

A cloud application called Unified Parkinson’s Disease Rating Scale (UPDRS) was presented as a tool for
people with Parkinson’s disease. The system features a workflow compatible with various formats of audio,
video, and text media. It consists of an Android application for testing, a cloud system for saving data, and a
data mining tool kit for medical intelligence that incorporates quantitative data and semi-structured and
longitudinal analyzes, groupings, and classifications. The data was acquired by the accelerometer embedded
in 9 different phone models with a sampling rate of 50 Hz.

Joshi et al. [61]

The authors implemented a wavelet analysis method combined with the SVM method for Parkinson’s
patients. Various parameters related to walking were calculated, namely stride interval, swing interval, and
stance interval (from both legs). The results showed an accuracy of 90.32%. The data was acquired by a
three-axis accelerometer with specificity of 93.75%.

Ribeiro et al. [62]

The study used machine learning methods for the automatic recognition of people with epilepsy. Five
machine learning methods were used to determine the most efficient among Naive Bayes, k-Nearest
Neighbors (kNN), C4.5, Support Vector Machine (SVM), and Decision Tree-based-method (PART). The results
showed that kNN had the highest computational cost, and PART and C4.5 had the lowest. Furthermore, the
sensor used by the system was a three-axis accelerometer.

Djuric-Jovicic et al. [63]

The authors presented a method to identify the problem of falls in people with Parkinson’s disease. Several
types of stride were considered, and some features (namely Shank Movement Displacement, stride duration,
and shank transversal orientation) were calculated. The results showed the highest performance of the
algorithm was achieved when using a type of FOG stride with 100% accuracy. The data was acquired by a
three-axis accelerometer with a minimum specificity of 87.8%.

Gruenerbl et al. [64]

The authors intended to use smartphones to help diagnose people with mental disorders such as depression
and bipolar disorder. Inertial sensors and Global Positioning System (GPS) traces were used in the developed
system. The results showed an accuracy level of 80%. The accelerometer used has a fixed sampling rate of
5Hz.

Pendharkar et al. [65]

The authors presented a method called Idiopathic Toe-Walking (ITW) to detect walking problems in children.
The sensor used in this system was the accelerometer, with the two signals of horizontal and vertical
acceleration decomposed to avoid overlap. The results showed that Blind Source Separation (BSS) techniques
combined with a K-means classifier could distinguish gait from foot to normal pace in children with ITW
with an accuracy of 97.9%. The sensor used is a dual-axis accelerometer.

Kugler et al. [66]

The authors presented a method of automatic recognition of people with Parkinson’s disease. An
accelerometer and an electromyography sensor were used to recognize and validate the walking parameters.
When cross-validation to leave a subject out was used, the sensitivity and specificity values were the highest at
0.90, the best-rated features were the kurtosis and the mean frequency, and the best features had a significant
difference in kurtosis of (p = 0.013). The authors used a three-axis accelerometer with a specificity of 90%.

Barth et al. [67]

The study featured a combined hand and leg analysis system for recognizing people with Parkinson’s disease.
Pressure sensors were used in conjunction with the accelerometer to analyze the hand. Moreover, gyroscope
and accelerometer sensors were used to analyze the foot. The results were crossed between healthy
individuals and people with Parkinson’s disease, showing that when the AdaBoost classifier was used, the
efficiency of the system reached 97%. These authors used a three-axis accelerometer, reporting a specificity
between 88% and 100%.

Alaqtash et al. [68]

The authors presented a wearable sensor system for the acquisition of parameters related to walking by using
a fuzzy computational algorithm, with healthy individuals and a group of patients with multiple sclerosis.
The results showed that this system could be beneficial for the identification of problems related to walking
showing the differences between healthy people and people with multiple sclerosis. This experiment used a
dual-belt instrumented treadmill, which includes several three-axis accelerometers.

Phan et al. [69]

A system using the accelerometer was presented to detect diseases of the respiratory system and the heart.
The system was positioned on the chest by using a belt. The study compared the use of traditional sensors
such as an electrocardiogram (ECG) with a system implemented using an accelerometer. The results showed
that the system provided identical results when the heart rate graph with the QRS complex was presented.
This experiment considered the use of dual-axis accelerometer with high sensitivity.

Garcia Ruiz et al. [70]

The authors presented a method called ActiTrac for people with Parkinson’s disease. The technique had the
right level of efficiency in observing the motor part of the subjects participating in the study. The results
showed that the mean activity significantly correlated with the total and the motor UPDRS scores.
The accelerometer embedded in the ActiTrac device is a three-axis accelerometer.
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3. Results

As presented in Figure 1, our review identified 98 papers that included one duplicate, which

was removed. The remaining 97 studies were evaluated in terms of title, abstract, and keywords,

resulting in the exclusion of 50 citations. The main criteria for excluding the papers were because 50

articles were not related to automatic recognition/identification of diseases with the accelerometer

sensor. The full-text evaluation of the remaining 47 papers was performed, excluding 34 items that

did not match the defined inclusion criteria. The excluded articles were not focused on automatic

recognition of diseases by using accelerometer sensors, or because the diseases cannot be identified

only with the accelerometer. As the focus of this study consists of the recognition of diseases related

to the accelerometer sensor, i.e., diseases related to the movement, these articles must be excluded.

The remaining 13 studies were presented in the qualitative and quantitative synthesis. In summary,

our review examined 13 research articles.

Figure 1. Flow diagram of identification and inclusion of papers.

After the analysis, the different research works are presented in Tables 1 and 2. For a more detailed

analysis, the authors have also analyzed the year of each study and the location of the authors involved

in the research. Also, the original studies are cited to obtain more detailed information. As shown in

Tables 1 and 2, we analyzed the studies that provided an automatic recognition of the different diseases

in studies that uses the accelerometer sensor. The studies analyzed were published between 2008 and
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2020 with three studies in 2014 (23%), two studies (15%) in 2008 and 2018, and one study (7%) in 2011,

2012, 2013, 2016, 2017, 2019, and 2020, as presented in Figure 2.

Figure 2. Distribution of the studies by different years of publication.

On average, the different studies considered the data acquired by a different number of people

between 5 and 85 persons (27 ± 22 individuals), where the higher number of individuals increases

the reliability of the study. The sensors used were studied, verifying that all searched items used

the accelerometer sensors. Also, other studies combined the use of the gyroscope sensor (31%),

the magnetometer sensor (8%), the GPS receiver (8%), the electromyography (EMG) sensor (8%), and

the electrocardiography (ECG) sensor (8%). Finally, Parkinson’s disease is the most detected disease

with the accelerometer sensor, which was recognized in seven studies (54%). The remaining disorders

are only identified in one study each: lumbar radiculopathy and related ankle dorsiflexion weakness

with observable foot drop, epilepsy disease, bipolar disorder, idiopathic toe walkers, multiple sclerosis,

arrhythmia, and sleep apnea. In general, the accuracies reported are reliable, reporting 94% accuracy

(on average), but four studies (31%) did not present the accuracy of the recognition. Only two studies

considered the use of dual-axis accelerometer (15%), where the remaining studies are using three-axis

accelerometer (85%), because this type of sensors is the most common in the different devices.

The remaining results are categorized by the recognition of the different diseases, considering

the detection of Parkinson’s disease (Section 3.1), and other diseases (Section 3.2), because the other

healthcare diseases recognized are residual.

3.1. Parkinson’s Disease

The authors [58] presented the repeated use of instrumented Timed Up and Go test in adults

and patients with Parkinson’s under different conditions using accelerometer data. Multiple features

have been calculated over the different experiences including total time, gait sub-component, peak,

the velocity of arm swing, range of motion of arm swing, arm swing asymmetry, cadence, gait cycle

time, double support, stride length, stride velocity, stride time variability, stride length variability,

peak trunk rotation velocity, trunk rotation, range of motion, turn sub-component, average turning

velocity, peak turning velocity, sit-to-stand sub-component, average, trunk velocity, peak trunk velocity,

duration, and trunk inclination.

The authors [60] developed an application for evaluating people with Parkinson’s disease.

The system consists of three different elements, such as an Android application for capturing sensor

data, iCloud-based technologies to store the data, and data mining techniques to obtain a better analysis

of the captured data. Different parameters were analyzed during the experiments, including rest

tremor, postural tremor, action tremor pronation-supination movements leg agility, finger tapping,

and gait.

The authors [61] proposed a non-invasive method for classifying Parkinson’s disease.

Using wavelet analysis combined with the Support Vector Machine (SVM), this method has a
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high accuracy value. Several walking parameters were analyzed, namely stride interval, swing interval,

and stance interval (from both legs). The study presents some limitations that were identified in the

realization of the experiments, among which the group of people chosen did not have the same age

range, the same range of weights and types, which may have influenced the results. On the other hand,

as the gait rhythm was calculated based on a portable system, other parameters of walking analysis

could be added, and different frequencies, which may have influenced the level of accuracy presented.

Another limitation identified by the study’s authors was the level of correlation between gait features,

and the inertial unit of measurement (IMU) may be implemented in the future in Parkinson’s or healthy

individuals with the advantage of avoiding the lack of gait cycles. The Force Sensor data obtained the

data in low sampling, but it did not achieve the high precision rate required in a study of this type.

The authors [63] presented an algorithm for the detection and classification of disorders during

gait in people with Parkinson’s disease. These types of disorders are classified as difficult to detect.

The algorithm separates normal and abnormal gait using the statistical method of Pearson’s correlation.

The data processing features several types of stride, including normal, short minus, short plus, freezing

of gait (FOG) with tremor, FOG minus, and FOG with complete block engine. In general, they were

being identified in 100% of the experiences of individuals with Parkinson’s disease, namely 95% in

Normal FOG and a minimum of 78% in Short FOG. Different types of classifications are presented

for the performance of the algorithm related to sensitivity, specificity, accuracy, and precision, with

the stride of the FOG type reported the best score of 100% in all parameters. Some other features are

extracted such as Shank Movement Displacement, Stride Duration, and Shank Transversal Orientation.

The authors [66] presented a method to assist in the monitoring and progression of patients

with Parkinson’s, using the accelerometer and electromyography as sensors for data extraction.

The control group used to carry out the experiments consisted of elements with Parkinson’s disease

and healthy, to validate the results of the study, and prove the effectiveness in detecting the disease.

The electrodes were positioned bilaterally on anterior tibialis and gastrocnemius medialis and lateralis,

while accelerometers on both heels and were used to segment the steps. Features of the Statistical and

frequency type were extracted and then used to train the SVM classifier and automatic recognition

of the disease. The results show that the best features were kurtosis and mean frequency, with a

marked difference in the case of kurtosis that sensitivity and specificity were higher up to 0.90 using

leave-one-subject-out cross-validation.

The authors [67] presented a combined analysis method for people with Parkinson’s disease.

The accelerometer, gyroscope, and pressure sensors were positioned at the patient’s hand to acquire

parameters related to gait. Several features of the signal sequence type were used, including mean,

variance, regression line gradient, the standard deviation of minima, maxima minima difference,

autocorrelation maximum, integral, and root mean square. Also, features related to frequency analysis

were used, including dominant frequency, energy ratio, energy in the frequency band, and regression

line of widowed energy in the frequency band. Moreover, the features related to step features were

extracted, including the falling gradient of the stance phase. The results show an accuracy level of 97%

in the combined analysis. On the other hand, it shows an accuracy of 89% in isolation and 91% in the

gait analysis.

The authors [70] presented a system called ActiTrac for patients with Parkinson’s to validate the

classification of ambulatory activity monitor. Also, devices with accelerometers were used to record the

strength of the muscles and the accelerations in position changes. The results obtained show reliability

when correlated with Unified Parkinson’s Disease Rating Scale (UPDRS) rigidity and bradykinesia

subscores. Still, it does not show reliable results with the presence of tremor subscores. The Perdue

Pegboard test, finger dexterity, and walking test are correlated with the duration of illness, but it is

associated not with the clinical stage.
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3.2. Other Diseases

The authors [59] presented a method to classify foot drop gait characteristics using machine

learning algorithms in individuals with problems with lumbar radiculopathy. Different machine

learning methods were used in this study. The ones that presented the best results in terms of accuracy

were Random Forest, SVM, and Naive Bayes classifiers with 88.45%, 86.87%, and 86.08%, respectively,

were applying the wrapper feature selection technique, it presents the best accuracy equals to 93.18%.

Three inertial units of measurement (IMU) sensors were used for the acquisition of gait data. After that,

the signal is transmitted via wireless. The sensors were positioned to the segments of the foot, stem,

and thigh of the affected limb for patients (leg with falling foot) and the right leg for non-patients.

The authors [62] presented a method of machine learning for people with epileptic problems.

A Wearable device was used to carry out the study considering F-Score and Accuracy metrics.

The system used an Arduino board, Bluetooth communication, and an accelerometer connected to the

Arduino. The machine learning techniques used were k-Nearest Neighbor (kNN), Decision Tree-based

method (PART), and C4.5 Decision Tree. Still, kNN has a higher computational cost when compared to

PART and C4.5 Decision Tree and PART a lower computational cost than C4.5 Decision Tree. The main

objective of this work is to simplify and reduce the computational cost in recognition of day-to-day

activities. Thus, a method was proposed to distinguish the different events of each day.

The authors [64] presented a study to analyze the use of smartphones in the diagnosis of

people with mental disorders in people with bipolar disorder. The sensors used in this study were

the accelerometer and the Global Positioning System (GPS) receiver, which obtained the following

conclusions: patients with depression move less often, and more slowly, on the other hand, manic

patients tend to run frequently and quickly. When we talk about travel patterns, people with this type

of disorder travel less and with a less constant time pattern. The results show a recognition accuracy of

80% and a precision of 96% and a recall of 94% in recognition of state changes.

The authors [65] presented a method for analyzing gait in children. A technique called Blind

Source Separation is used with Idiopathic Toe Walkers (ITW) children to identify gait parameters and

detect walking problems in children. The sensor used in this system was the accelerometer having

decomposed the two signals of horizontal and vertical acceleration so that there was no overlap.

The results show that Blind Source Separation (BSS) techniques together with a K-means classifier can

distinguish gait from foot to normal pace in children with ITW. The results show an average accuracy

of 97.9%.

The authors [68] proposed an application with wearable sensors to analyze the walking parameters

of healthy individuals with multiple sclerosis. An artificial intelligence algorithm called the fuzzy

computational algorithm was applied. This algorithm was classified as being very promising for the

health areas in helping to detect disorders related to the gait of individuals. The presented results

did not report the classification accuracy, which is a limitation. On the other hand, the presented

graphs allow us to perceive its efficiency as it is easily understood as the different results between

healthy people and individuals with sclerosis. As future work, the authors present the possibility

of developing methods that make it possible to make a quick analysis of disorders related to gait in

individuals, efficient, low cost with more types of approaches. The accelerometer is the sensor used

in this study, demonstrating once again the capabilities to analyze parameters related to acceleration

force during gait.

The authors [69] presented a system for analyzing cardiorespiratory function using the

accelerometer coupled to the chest using a belt. The authors state that this method may be useful

to identify some diseases. The sensor detects the acquisition of data in different states (Normal,

Apnea, and Deep Breathing) and vertical (sitting, standing) or horizontal (lying) postures, being

the signal compared to frequency measurements performed by the electrocardiogram. The results

show the efficiency of using the accelerometer in the detection of respiratory waves and heart rates.

Presenting itself as an effective method in the discovery of some heart diseases such as arrhythmia or

sleep apprehension.
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4. Discussion

The data acquired from the accelerometer sensors allow the development of methods for the

identification of different healthcare conditions, namely the diseases related to movement. Based on

the various analyzed studies, we conclude that Parkinson’s disease is the most identified disease with

the accelerometer sensors. Some other disorders are marginally researched: lumbar radiculopathy

and related ankle dorsiflexion weakness with observable foot drop, epilepsy disease, bipolar disorder,

idiopathic toe walkers, multiple sclerosis, arrhythmia, and sleep apnea. The accelerometer acquires

different data related to the acceleration of the movement that allows the identification of abnormalities

during walking activity.

However, the accelerometer is available on different devices, including mobile devices and other

specific types of equipment, such as the Bitalino device [71]. There are various problems related to the

data acquisition that is mainly associated with the synchronism of the data transmission, the failures

in the data acquisition, the sensitivity of the accelerometer used, positioning of the mobile device

during the data acquisition, and other different hardware and software problems related to the devices

used [72,73].

The accelerometer presents itself as a sensor with a multitude of uses in the acquisition of data

related to the force and angular speed exercised by people during gait. It opens several opportunities for

the automatic recognition of different diseases, and, consequently, the creation of disease patterns [74].

The acquisition of data from the accelerometer sensor combined with artificial intelligence methods

allows for the recognition of different diseases, and the work of the healthcare professionals will be

improved. Various machine learning techniques can be used, including k-Nearest Neighbor (kNN),

Decision Tree-based method (PART), C4.5 Decision Tree, and kNN. However, these techniques need

high processing capabilities, and, in most of the cases, the authors only compared the different features

extracted from the accelerometer signal without the implementation of artificial intelligence techniques.

The different studies are dispersed by different countries with more incidence in Germany,

the United Kingdom, the United States, Brazil, and Australia that concentrated more than five authors

of the various studies (see Figure 3).

Figure 3. Geographical distribution of the different studies analyzed.

Numerous opportunities in this area have arisen, namely the detection of diseases, where the use

of artificial intelligence methods facilitates its recognition. The use of automatic methods increases and

speeds up the discovery of all parameters that may indicate the presence of specific disease and the

individual’s condition [55].
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The increase in the percentage of older adults mainly in the western world and some standard

protocols between research centers and those responsible for nursing homes has resulted in an increase

in the number of studies to people where diseases, such as Parkinson’s disease. Consequently, in the

short term, this improves the speed of detecting this type of disorder and speeding up treatments.

As future work, we intend to identify different diseases based on the performance of the Timed-Up

and Go test as the continuation of the work presented at [75,76]. The recognized disorders will be

mainly related to the different abnormalities of movement, and other healthcare problems related to

the lower limbs.

5. Conclusions

This systematic review paper presented a state-of-the-art analysis of the use of accelerometry-based

systems that have emerged for the automatic recognition of multiple diseases. The authors aimed to

provide a comprehensive understanding of the different healthcare conditions that can be evaluated

using accelerometry devices. Moreover, we presented an analysis of the artificial intelligence techniques

applied and their accuracy. The analyzed articles were published between 2008 and 2020. Most of the

analyzed studies were conducted in 2014 (23%) and 2018 (15%). These studies were carried out by

scholars from different countries with more incidence in Germany, the United Kingdom, the United

States of America, Brazil, and Australia.

We analyzed 13 studies and obtained the following answers to the research questions considered:

• (RQ1) How many people are involved in the different studies related to the use of the inertial sensors?

The number of volunteers involved in the studies analyzed ranged from 5 to 85 (27± 22 individuals),

where the increasing number of individuals increase the reliability of the study.

• (RQ2) Which diseases can be detected with inertial sensors? Several diseases could be detected

using accelerometer sensors such as Parkinson’s, lumbar radiculopathy, and the related ankle

dorsiflexion weakness with a noticeable foot drop, epilepsy, bipolar disorder, idiopathic toe

walkers, multiple sclerosis, arrhythmia, and sleep apnea.

• (RQ3) Which artificial intelligence methods are used for the identification or recognition of different

diseases? The artificial intelligence methods used for disease identification are Random Forest,

SVM, Naive Bayes, kNN, C4.5, PART, and BSS, and K-means.

Furthermore, we concluded that the data from other sensors such as gyroscope, magnetometers,

GPS receivers, EMG, and ECG were combined with the accelerometer data to identify multiple diseases.

Parkinson’s disease was the most studied disease using accelerometer sensors, representing 54% of the

analyzed papers. Additionally, the average accuracy reported by the studies using artificial intelligence

methods was 94% (on average).

In conclusion, multidisciplinary approaches creating a synergy between computer science and

medical sciences can lead to the design of effective architectures that improve the processes related to the

identification of different diseases. These architectures can incorporate artificial intelligence methods

to create novel techniques for automated disease recognition and provide enhanced personalized

health solutions to face the overall concern of healthcare in older adults and address the global

ageing challenge.
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ABSTRACT

The Timed-Up and Go test is a very used test in the physiotherapy

area. For the measurement of the results of the test, we propose

to use a smartphone with several embedded sensors, including ac-

celerometer, magnetometer, gyroscope, a Bitalino device with the

Electromyography (EMG) and Electrocardiography (ECG) sensors,

and a second Bitalino device with a pressure sensor connected and

positioned in the back of the chair. This architecture allows to cap-

ture several types of data from the sensors easily. In this paper, we

present a structured method to implement the measurement of the

di!erent parameters involved in the Timed-up and Go test, for ac-

quiring, processing and cleaning the collected measurements. This

data will help in the classi"cation of the test results initially, and

later on to discover more complex patterns and related conditions,

such as equilibrium changes, neurological pathologies, degenerative

pathologies, lesions of lower limbs and chronic venous diseases.
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1 INTRODUCTION

The development of solutions related to health problems and care

of elderly people carries several challenges for the adoption of

technology [1, 17, 19].

Regarding to their size, portability and ease of use, ubiquitous

systems such as smartphones become quite interesting because

they facilitate access to data for use in the health area. On the

other hand, the validation of these data becomes di#cult due to

the reluctance of the medical sta! to adopt them, and the di#culty
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of obtaining clinical and scienti!c validation. Mobile devices can

make a great contribution to this area, being smartphones equipped

with Android operating system market leaders widely used in this

type of studies [15], and because smartphones have several sensors,

including accelerometer, magnetometer and gyroscope.

The development of these systems pertains to the domain of

Ambient Assisted Living (AAL) systems [2, 5, 21], that can be useful

for monitoring the elderly.

The purpose of this study consists in the de!nition of a technolog-

ical architecture supporting a method for the automatic recognition

of the di"erent parameters collected during the Timed-Up and Go

test, including the recognition of di"erent diseases. The diseases

related to the test are mainly equilibrium changes, neurological

and degenerative pathologies, lesions of lower limbs and chronic

venous disease.

The motivation of the study is to use these data and methods to

create disease patterns, based on the Timed-Up and Go test results,

to implement simple methods to aid in the identi!cation of diseases.

This paper de!nes the sensors and the architecture enabling

the measurement of the di"erent parameters, and supporting ap-

proaches based on linear analysis and arti!cial intelligence, thus

being able to use the sensors’ data to create patterns that can iden-

tify possible associated diseases and establish standards with the

data acquired for this research.

This paragraph !nalizes the introduction, and the remaining

sections are organized as follows: Section 2 presents the related

work, including di"erent types of data acquired, di"erent methods

used for data acquisition, frameworks and techniques used in these

types of studies. The study design of the test, the position of the

sensors on the body and the system architecture for data acquisition,

processing and classi!cation are presented in Section 3. Finally,

Section 4 presents the discussion and conclusion of this study.

2 RELATEDWORK

2.1 Data Acquisition

Sensors available in the mobile devices allow for the acquisition of

di"erent physical and physiological data, which may lead to mea-

suring all the parameters encompassed in the Timed-Up and Go test

[22, 25]. There are di"erent frameworks that allow the acquisition

of the sensors’ data e#ciently, taking in account the limitations of

these devices, including: Acquisition Cost-Aware Query Adapta-

tion (ACQUA) framework [10], Orchestrator framework [9], BBQ

approach [12], Jigsaw framework [11], LittleRock prototype [16]

and ErdOS framework [23]. Data acquisition should be performed

with lightweight methods in order to reduce the constraints related

to the battery and processing capabilities [14]. However, the data

acquisition is performed e#ciently without the use of frameworks

with e#cient techniques, and it is the most popular method in the

literature [13].

2.2 Data Processing

Data processing includes two types of structured architectures,

namely the Device Data Processing Architecture and the Server

Data Processing Architecture [3].

The !rst one was designed with the purpose of acquiring the data

of the sensors of the mobile devices and process them locally. This

type of architecture is compatible with the use of mobile devices

for the implementation of solutions that allow their execution in

mobility, implementing lightweight methods in devices with low

power processing, battery, storage and memory capabilities. On

the other hand, Server Data Processing Architecture consists of

sending the data to a remote server using high capabilities at the

computation level and allowing for the treatment of larger amounts

of data.

Data cleaning is one of the parts of the data processing that

consists in the application of !lters and statistical methods to adjust

the values acquired from the sensors [7]. The data cleaning process

is performed with temporal characteristics of the data acquired.

2.3 Feature Extraction and Data Classi!cation

In this type of studies, the most used features are the duration, mean

of raw data, standard derivation, signal magnitude area, energy,

velocity, number of steps and others [8, 24].

After the extraction of features, its selection can be performed

systematically and automated according di"erent parameters as

presented in [26].

In [6, 20], the risk of falls with the use of sensors embedded in the

Smartphone and/or a wristband was performed. Several features

were tested and classi!ed such as Root Mean Square (RMS), median,

standard deviation, skewness, kurtosis, maximum frequency of

Fast Fourier Transform (FFT), maximum amplitude of FFT, FFT

amplitude, average, average peak height, energy and entropy of

motion and magnetic sensors, with methods for the calculation of

features and their classi!cation according to the results acquired in

each test.

The authors of [24] aimed to make a test to calculate the proba-

bility of falls in complex environments, having the stride, the stride

length, distance travelled and features of the spatial type of distance

and target pressure to analyze to the level of their accuracy.

Finally, the authors refer to elderly individuals with di"erent

types of pathologies, being the measurement target of study the

length of the step, duration of the posture, the balance or the angle

of the foot on the soil [19].

3 METHODS AND EXPECTED RESULTS

3.1 Study design

The experimental setup will be applied to institutionalized peo-

ple aged between 60- and 80-years with movement capacity. The

development of this solution is related to the Ambient Assisted

Living (AAL) systems [2, 5, 21], establishing a cooperation between

several institutions, including the Polytechnic Institute of Castelo

Branco, Portugal, Universidade da Beira Interior, Covilhã, Portugal,

and Marche Polytechnic University, Ancona, Italy.

Timed-Up and Go test is composed by six phases, including: the

individual seated; the individual rises from the chair; the individual

walks for three meters; the individual turns around; the individual

walks for three meters towards the chair and the individual returns

to sit.

The test environment, presented in Figure 1, will be composed

of a smartphone with an accelerometer, a magnetometer and a

gyroscope. In addition, a pressure sensor will be positioned on the

participants’ waist, and an ECG and Electroencephalography (EEG)
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sensors are placed on the participants’ body. All these sensors are

connected to a Bitalino device.

The ECG is used to capture the variation of the heart rate and

the EEG is used to capture the variation of the cerebral activity

during the experiments. The sensors embedded in the smartphone:

accelerometer, magnetometer and gyroscope are used to determine

the body motion during the experiments, for example to verify if a

participant is walking. The pressure sensors will be used to validate

if the user is rising from the chair.

Figure 1: Positioning of the sensors during the test.

3.2 System Architecture

The system architecture, presented in Figure 2, is composed by

several modules, comprehending the acquisition of the data from

the sensors selected, the processing of the data acquired, that in-

cludes the stages to clean and extract the features from the data

acquired, and the classi!cation of the data. The classi!cation is an

important stage and it will help in the identi!cation of di"erent

diseases and/or abnormalities present in the data acquired. The

pressure sensor, ECG and EEG sensors will be used only to label the

data in laboratory environment, so next in real time deployment it

will not needed.

3.3 Methods for Data Acquisition

The acquisition of data in this system includes an accelerometer,

a gyroscope, a magnetometer, a pressure sensor, an ECG sensor

and an EEG sensor. The data acquired is saved on !les that will be

stored in a remote server with security and privacy requirements

for further analysis.

3.4 Methods for Data Processing and Feature

Extraction

After obtaining the data, they will be processed with the application

of a low-pass !lter. The low-pass !lter helps in removing short-

term #uctuations and provides a smoother form of signal. The data

processing also comprehends the extraction of the di"erent features,

which include average, standard deviation, number of steps, time

of the Timed-Up and Go test, time for each phase of the test, peaks

and others. The most used features are mainly statistical features.

Figure 2: Di!erent phases of the method implemented.

However, this study also makes use of Bitalino devices to obtain

di"erent types of data, including Electromyography (EMG), ECG

and pressure sensors.

3.5 Methods for Data Classi"cation

Based on the features extracted, a signal pattern will be established

with machine learning methods, mainly Arti!cial Neural Networks

(ANN) to validate the exercise and allow for the recognition of

di"erent types of diseases, including equilibrium changes, neuro-

logical pathologies, degenerative pathologies, lesions of lower limbs

and chronic venous disease.

It comprehends the use of several sensors, implementing algo-

rithms that incorporate techniques with linear analysis, ANN, Deep

Neural Networks (DNN), Support Vector Machine (SVM) or other

methods. The analysis of the ECG and the EEG features can identify

some medical conditions to prevent some risk situations that can

be detected with the test.

These methods should be implemented without the need for a

network connection, implementing the di"erent classi!cation of

patterns with local processing techniques implemented as light-

weight methods onboard the smartphone.

The classi!cation of the data will be based on the creation of

patterns of individuals and associated diseases, or to verify if indi-

viduals with the same or similar limitations appear to have similar

values and if they are within a standard deviation that will later

allow for evidence for medical sta" who may indicate that these

individuals may have certain pathologies or not.

4 DISCUSSION AND CONCLUSIONS

This paper presents an approach for collecting and measuring sen-

sors’ data related to the Timed-Up and Go test by using smart-

phones, as well as the system architecture and di"erent methods of

collecting and processing the acquired data.

The data processing presents some problems when using mo-

bile devices. If we use the device’s data processing architecture,

we will have problems at the level of the limit of storage, power

processing and battery. On the other hand, if we use the Server

Data Processing Architecture, we will have to consider that a good
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network connection will be necessary to transfer data with quality.

The position of the sensors and the mobile device in relation to

the body as well as the well-built environment are very important,

causing some di!erences during the data acquisition. In addition,

each mobile device can present a di!erent level of accuracy in data

acquisition.

Based on the method presented in [18], the proposed system is

di!erentiated with the use of the sensors embedded in a mobile

device and the EEG, the ECG and pressure sensors connected to

a Bitalino device, because it provides low-cost sensors. The other

study proposed the use of a high cost device named bioPlux that

is more intrusive than the proposed devices, including the use of

EMG sensors, placed in the femoral rectus, femoral biceps, Iliocostal

lumbar and rectus abdominis, and an accelerometer sensor, placed

on the head.

One of the most important phases for this study is the acquisition

of data and the way it is processed and classi"ed. From this point of

view, it is possible to draw conclusions that could be very important

for the study. The analyzed features of the collected data could

identify patterns of diseases, and one can verify the usefulness of

this type of studies in the clinical practice.

As future work, we aim to create a Personal Digital Life Coach

[4] in the "elds of physical therapy, sports and others, for people

aiming at analyzing their physical conditions, using and including

methods of arti"cial intelligence with the objective of recognition

of di!erent types of pathologies.
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Abstract: Due to the increasing age of the European population, there is a growing interest in

performing research that will aid in the timely and unobtrusive detection of emerging diseases.

For such tasks, mobile devices have several sensors, facilitating the acquisition of diverse data.

This study focuses on the analysis of the data collected from the mobile devices sensors and a

pressure sensor connected to a Bitalino device for the measurement of the Timed-Up and Go test.

The data acquisition was performed within different environments from multiple individuals with

distinct types of diseases. Then this data was analyzed to estimate the various parameters of the

Timed-Up and Go test. Firstly, the pressure sensor is used to extract the reaction and total test time.

Secondly, the magnetometer sensors are used to identify the total test time and different parameters

related to turning around. Finally, the accelerometer sensor is used to extract the reaction time,

total test time, duration of turning around, going time, return time, and many other derived metrics.

Our experiments showed that these parameters could be automatically and reliably detected with a

mobile device. Moreover, we identified that the time to perform the Timed-Up and Go test increases

with age and the presence of diseases related to locomotion.

Keywords: Timed-Up and Go test; sensors; mobile devices; accelerometer; magnetometer; pressure

sensor; feature detection; diseases; older adults

Sensors 2020, 20, 3481; doi:10.3390/s20123481 www.mdpi.com/journal/sensors
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1. Introduction

1.1. Background

The increasing age of the world population has promoted research in several areas and advances

in different types of sensors, which have contributed to the evolution of healthcare assessment

methodologies [1]. The increased life expectancy has led to growing interest and the need for solutions

that can improve the quality of life of the elderly. In Europe, the aging rate was 125.8% in 2017,

and 94.1% in 2001 [2–5].

Mobile computing technologies made it possible to aid individuals with different health

statuses. They now include multiple sensors, which can be used for a verity of diverse functions [6].

The magnetometer and the accelerometer are essential because they facilitate the acquisition of physical

and biological data from the user [7–9]. Moreover, these sensors can support the analysis of bodily

functions like gait [10,11]. Furthermore, combining mobile computing technologies with external

sensors can promote older people’s quality of life [12]. However, in such studies, there are challenges

related to choosing adequate tests, and interpretation and analysis of the collected data [13–17].

Embedded sensors may help to monitor the different functional tests with the detection of

different types of movements [18–22]. The Timed-Up-and-Go test is a quick and straightforward

clinical test for assessing lower extremity performance related to balance, mobility and fall risk in the

elderly population and people with pathologies (i.e., Parkinson’s disease, amyotrophic lateral sclerosis,

in post-stroke patients, in patients with orthopedic pathologies, and cardiovascular incidents) [23–28].

Aging effects can be identified with the Timed-Up-and-Go test, and it could be supplemented with

smart technology to be used in clinical practice [29]. The automation of the measurement of sensor

data when performing the Timed-Up and Go test can be valuable, particularly in older adults [30,31].

Some approaches, such as [32], make it possible to perform the Timed-Up and Go test using low-cost

devices in a real-time setting with reduced needs of processing capabilities to be used in commonly

used devices.

1.2. Motivation

The Timed-Up and Go test can provide a practical analysis of the degree of prevalence and level of

certain diseases [33]. With this test, clinicians can assess physical conditions by evaluating the way the

individual walks, and the time it takes to perform the analysis. Therefore, this test allows the medical

team to assess whether the individual has an accelerated degree of disease development or is in the

initial state [34].

Furthermore, the Timed-Up and Go test can be used in individuals with neurological diseases [35].

This test allows for the evaluation of their reaction time. It is possible to assess whether they get up

quickly or still stop for a long time. Moreover, it is possible to evaluate whether the individual walks

in a straight line or cannot maintain the correct direction [36,37]. Therefore, this test can also provide a

practical assessment of cognitive problems that do not allow him to follow the right path.

This test is widely used in assessing a patient’s recovery process associated with diseases that have

affected their mobility [38]. The data collected in this test support the evaluation of patient recovery to

establish standards related to the reaction time, test time, angular derivation, and walking strength

that an individual with different degrees of the disease might have [39].

This paper’s motivation is to present a cost-effective method for the automatic measurement of

the Timed-Up and Go test using sensors available on common smartphones. This document also states

the calculation of numerous features that aim to create a reliable dataset for pattern recognition on

specific health symptoms. Moreover, this study provides a comparative analysis of different subjects,

which live in nursing homes separated by age, institution, and various diseases of people, finalizing

with the comparison with the other results available in the literature to state the useful contribution of

the proposed approach.
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Finally, the major challenge with this is related to the definition of the best positioning of the sensors

for the correct data acquisition. Thus, it affects the measurement of the different results of the Timed-Up

and Go test, e.g., in case the experiments are performed under adverse conditions, the probability of

having the incorrect measurement of the results is very high. Technological constraints may also affect

the data acquisition and processing, such as low memory, power processing, connectivity, network,

and battery constraints of the mobile devices [40,41]. Previously, we explored and presented the

positioning of the sensors available in a mobile device or connected in a Bitalino device with the

preliminary results in [42,43].

1.3. Prior Work

There are some studies available in the literature that involved the calculation of the different

features related to the Timed-Up and Go test for further conclusions about the performance of the test.

The inertial sensors, e.g., accelerometer, magnetometer, and gyroscope, available in a mobile device

may be used to evaluate the benefits of the training based on the Timed-Up and Go test, calculating the

velocity and the time of a sit-to-stand transition [44].

Fall risk assessment based on wearable inertial sensors was performed based on an instrumented

Timed-Up and Go test in [45], relying on a variety of features, as summarized in Table A1. The types of

gait and balance were evaluated with a similar set of features in [46]. The accelerometer sensor was

used for the identification and measurement of the duration of each stage of the Timed-Up and Go test

in individuals with spinal cord injury [47]. The different phases were also evaluated in [48] with an

accelerometer sensor, measuring the mobility angles, and the average of the sit-to-stand transition

time in frail elderly individuals with Parkinson’s disease. In [49], the measurement of the Timed-Up

and Go test results was performed with an accelerometer sensor for fall risk assessment. The different

phases of the test for people with Parkinson’s disease were analyzed in [50] and [51]. In [52], patients

with Parkinson’s disease were analyzed during a walking activity to measure the duration of the test.

A smartphone application suite for assessing mobility is presented in [53]. Whether the individual was

sitting during the Timed-Up and Go test is investigated in [32]. The authors of [54] perform analysis,

mainly focusing on people with frailty syndrome. A wearable system for assessing mobility in older

adults is presented in [55], relying on a variety of statistical features. Similarly, a wearable system for

measuring the probability of human falls is introduced in [56], while [17] is concerned with identifying

the reasons for falls. In [57], the authors show that the mobile device accelerometer can study and

analyze the Romberg test’s kinematic between frail and non-frail older adults.

In summary, Parkinson’s disease was analyzed in six studies [46,48,50–52,58], Arthrosis [45,53]

and Frailty syndrome [54,57] in two studies, and Dizziness [45], hypertension [45], polypharmacy [45],

and spinal cord injury [47] in one study each.

1.4. Structure of the Study

The remainder of this paper is organized as follows: Section 2 presents the methods used for the

development of the proposed analysis, including the study design and participants, description of the

Timed-Up and Go test, the data acquisition and processing methods used, and the statistical analysis

performed in this study. The mobile application developed for data acquisition, the requirements,

and the statistical analysis are presented in Section 3. Furthermore, Section 4 offers a discussion on the

main findings, limitations, and comparison with our study’s prior work. In the end, Section 5 presents

the conclusions of this study.

2. Methods

2.1. Study Design and Participants

We selected Android as the operating system for data collection software development as it is

open-source software and a market leader. Moreover, we chose the external Bitalino sensors for their



Vasco Ponciano 

Sensors 2020, 20, 3481 4 of 22

appropriate use in research projects in this research domain [59]. This technology could facilitate the

creation of significant datasets for health assessment that can be used to support decision-making in

medical diagnostics. The mobile device was incorporated in a sports belt to be worn on the waistline.

The start of the Timed-Up and Go test was indicated by a sound alarm using the mobile application.

The chair incorporated a pressure sensor to register the moment when the older adult re-acted to

this sound. The volunteer had to walk for 3 m, go back, and sit down again. All the data were

collected on the mobile device, and, after test finalization, a text file was sent to the Cloud by using

the FireBase service. Different mobile devices were used for data acquisition to compare the different

frequencies of the data acquisition, which verified that the XIAOMI MI 6 was one of the devices that

more accurately acquired the different types of data. As the experiments were controlled, we used the

same device for final data acquisition and analysis. The data acquisition showed an influence of the

environment and varied with the place for data acquisition. It was associated with the study of older

adults with different health conditions and ages and resulted in the creation of a dataset with diverse

and heterogeneous data.

The data acquired were processed with the Java programming language to extract the different

features for the statistical analysis. Firstly, the pressure sensor is used to measure the reaction and total

test time. Secondly, the magnetometer sensors are used to extract the total test time, turning around

instant by the magnitude of the vector and turning around instant by the absolute value of the z-axis.

Finally, the accelerometer sensor is used to extract the reaction time, total test time, duration of turning

around, going time, return time, and the averages of the acceleration, velocity, force, and power during

going and returning time.

The proposed method was tested on 40 older adults with an age of 60- to 97-years-old (83.8 ± 7.95),

privileging gender equality from four institutions, such as Centro Comunitário das Lameiras, Lar Aldeia

de Joanes, Lar Minas, Lar da Misericórdia, and others. The “others” corresponds to an open group

from different locations. They have several types of health complications, such as Parkinson’s disease,

scoliosis, mobility, and cardiovascular problems, and dementia complications (presented in Table A2).

The volunteers were institutionalized in nursing homes in the center of Portugal. The selection process

was conducted in close collaboration with the nursing team. However, the inclusion criteria relied

on mobility capabilities to perform the test. The individuals are randomly selected, and there is no

relationship between the individuals and the team of this study. The volunteers were informed about

all the specifications and goals of the experiments.

Furthermore, they signed an ethical agreement allowing us to share the results of the tests in an

anonymous form. The agreement also provided the participants’ informed consent considering the

risks and the objective of the study. Ethics Committee from Escola Superior de Saúde Dr. Lopes Dias

at Polytechnic Institute of Castelo Branco approved the study with the number 114/CE-ESALD/2019.

Moreover, other information such as age and weight were provided to support the conclusions

of the study. These data were guaranteed to be used in an anonymous form. The data were then

measured using a feature extraction method that will be explained in Section 2.2.

Only consistent data were considered in these results. The experiments were held between

October and December 2019, and each volunteer underwent the test at three different times. These tests

were conducted in an isolated environment to avoid any distractions, which could impact the results.

Each institute provided the chair used in the experiments. The volunteers had different health states,

some of them still healthy, had diseases related to the spine, such as multiple sclerosis, diseases related

to the heart, arrhythmia, or angina pectoris, or illnesses associated with the mental health, such as

Parkinson’s. These people had various health statuses and distinct degrees of progress for each

disease, which indicated that the population’s health status was variable. Thus, the data collected

were heterogeneous.

The mobile application acquired the data from the sensors at intervals of milliseconds, but it

was converted to seconds to improve its readability. The collection process started with an audible

signal. This sound signal represented the beginning of the data capture, which was recorded in
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text files and sent over the Internet using the Firebase service. Initially, the data were saved in text

files. The accelerometer and magnetometer were tri-axis sensors, represented in four columns in the

different files, including timestamps and one column for each axis of the sensors (x, y, and z). Further,

the pressure sensor acquired the force performed with the user sitting on the chair. These sensors were

complementary for the measurement of the different parameters of the Timed-Up and Go test.

2.2. Description of the Timed-Up and Go Test and Data Acquisition and Processing

The Timed-Up and Go test was developed in 1991 to examine functional mobility in the

elderly [60,61]. This test allows the recognition of other different diseases, mainly related to walking

activities. It has certain phases where it is possible to obtain different readings and calculations of

various features, such as sitting on the chair, lifting from the chair, walking for three meters, reversing

the march, walking another three meters toward the chair, and sitting on the chair.

The data acquisition was performed with a mobile device equipped with accelerometer and

magnetometer sensors, placed in a belt at the waist of the person, and two Bitalino devices, i.e., one

with a pressure sensor placed on the back of the chair, and the other with one ECG and one EEG sensor

placed in a belt at the chest of the individual.

Currently, only the data acquired from the pressure sensor and the sensors available in the mobile

device are processed. Thus, different calculations are performed, including reaction time, time of the

end of data acquisition, the total time of the test, turning instant, turning time, walking time, returning

time, the average of the acceleration, speed, force, and power. The measurements of the speed, strength,

and power are essential to detect some abnormalities in the actions of older adults.

2.3. Statistical Analysis

After the acquisition of the data from the sensors available in off-the-shelf mobile devices and the

sensors connected to the Bitalino device, the data analysis was performed. Firstly, the data acquired

by the pressure sensor were processed, extracting the reaction time and the total test time. Secondly,

the data obtained by the magnetometer sensor were processed, extracting the start time, the end time,

the instant and acceleration value of turning around by the Euclidean norm, and the instant and

acceleration value of turning around by the minimum absolute value of the acceleration. Thirdly, the

data acquired by the accelerometer sensor were processed, extracting the start, reaction, end, and total

test times, the instant and duration of turning around, time of walking the first three meters, time to

walk back to the chair, and the mean of the acceleration, velocity, force, and power during the walk for

the first three meters and during the walk back to the chair.

After measuring the different variables, a statistical comparison between them was performed,

analyzing and comparing the results to the averages of each institution, person, and healthcare disease.

Also, descriptive statistics, normality tests, and the detection of outliers were performed. After checking

the conditions and making sure we can apply ANOVA, we used it to compare averages between

institutions and age groups. Thirdly, the results were analyzed by each disease. The ANOVA test was

used for the dependence between the different variables to test the relation between the results obtained

and the sample characteristics. ANOVA is a statistical test that allows the discovery of potential

differences or relations between different variables useful in testing with the distinct features of human

beings [62,63]. It will enable the assessment of possible ties and dependencies between different

variables. As the Timed-Up and Go test is a physical test related to people’s physical conditions,

different variables may be affected.

3. Results

3.1. Data Acquisition with a Mobile Application

The mobile application was developed for Android devices using the Android Studio Integrated

Development Environment (IDE). The mobile application has two main functionalities. On the one
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hand, this mobile application performs a continuous data collection using the built-in magnetometer

and accelerometer sensors. The data are collected with a sampling rate of 1 kHz and 16 bits of precision.

On the other hand, the mobile application handles the communication technologies required to receive

data through Bluetooth from the Bitalino device with a pressure sensor but is also responsible for

sending the collected data to the Firebase service for storage. The analysis showed that the mobile

devices with embedded sensors provide reliability and automation in the Timed-Up and Go test, unlike

traditional measurement methods that require manual measuring.

3.2. Requirements

There are two different types of requirements verified for the performance of the experiments,

i.e., one related to the environment and the other to the individual. For the execution of the Timed-Up

and Go test, the individual should have the possibility to walk, stand-up, and sit-down on the chair

independently. It needs a chair, a tape-measure for the identification of the place related to the three

meters to walk, and an adhesive tape to mark the site where the individual should reverse the gait.

Also, electrodes to position the EEG and ECG sensors in the individual, an adhesive tape to fix the

pressure sensor on the chair, and two sports belts to carry the mobile device and the Bitalino device

are used.

3.3. Comparison of Different Acquired Data

There are a few options to measure the turning around instant, which are:

• The minimum value or amount of the magnitude of the vector of the accelerometer, calculated

after the reaction time;

• The minimum absolute value of the z-axis of the magnetometer, calculated after the reaction time.

Based on the presented steps for the calculation of the turning around instant, the first moment of

mobility, and the start time of the test can be measured by the accelerometer and the pressure sensor.

Incidentally, the analysis performed in this paper includes several values. These are:

• Pressure sensor: reaction time, whole test time;

• Magnetometer: total acquisition time, turning around instant by the magnitude of the vector,

turning around moment by the absolute value of z-axis;

• Accelerometer: reaction time, total test time, duration of turning around, going time, return

time, the average acceleration during going time, the average acceleration during return time,

the average velocity during going time, the average speed during return time, the average force

during going time, the average force during return time, the average power during going time,

the average power during return time;

Next, the presentation of these results by age (Section 3.3.1), by institution (Section 3.3.2), and by

disease (Section 3.3.3) will be performed.

3.3.1. Results by Age

After checking the requirements, we used the ANOVA test. We found out that there is no statistically

significant difference (alpha = 0.05) between the three age groups for all variables/measurements of

interest. Figure 1 shows the mean values for the different age ranges for the reaction time and total

test time variables obtained with the pressure sensor. Thus, the results of the F-test, through the

respective limited probability associated with the test statistic allowed us to conclude that the average

values between the three age groups are statistically equal for the analysis for the magnetometer

sensor, such as Pr (F > F-test) = 0.231 > 0.05 for the total test time variable, and Pr (F > F-test) = 0.815

> 0.05 for the reaction time variable. Therefore, we accept the null hypothesis that the averages are

statistically equal. Although the averages are statistically equal, it is interesting to note that both for

the reaction time and for the total variable test time, it is the younger individuals who have shorter
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3.3.2. Results by Institution

Aiming to investigate any differences between the participating institutions in this study,

we performed a set of ANOVA tests where alpha = 0.5. In cases when there is a statistically significant

difference (p < alpha), we applied Tukey’s multiple comparison tests to identify homogeneous

institutions. For conciseness, we only list the parameters which are statistically significantly different

between the institutions (p < alpha).

Namely, the variables with a significant difference in the mean for different institutions are: total

test time (s), the conclusion is that there are significant differences between institutions (p-value =

0.03 < alpha = 0.05). The total test time (s) by the pressure sensor, the turning around instant by the

absolute value of z-axis (s) by the magnetometer, the total and return test times (s), the averages of

velocity during going and returning time (m/s), and the averages of power during going and returning

time (J), the total test, going and returning times (s), the average of velocity during return time (m/s),

the total test and return times (s), and the averages of velocity and power during going time (m/s) by

accelerometer and magnetometer.

Also, we concluded that the average values of all institutions are statistically equal for the reaction

time, duration of turning around, the averages of acceleration, velocity, force, and power during going

and returning times. The results of this analysis can show that more generic features are statistically

equal in different institutions, and therefore might be useful for drawing general conclusions that

apply to older adults in general.

3.3.3. Results by Disease

At this stage, approximately 40 different pathologies associated with the subjects were identified.

Some individuals have only one pathology, but others have more diseases and from very diverse

areas, as shown in Table 1. Of the 40 individuals involved in the study, there are 11 patients

with one pathology, nine patients with two pathologies, five patients with three pathologies,

five patients with four pathologies, two patients with five pathologies, and only one patient with

6, 7, and 9 pathologies. We can also see the number of individuals identified by pathology and the

classification of the respective pathologies by respective categories. This analysis reflects the great

diversity of pathologies vs. individuals under study, which may make it difficult and even compromise

inferential statistical analysis.

Table 1. Distribution of the different diseases involved in the study.

Number of Occurrences Related with Mobility

Osteoarticular diseases
(Total of 17 individuals)

Arthrosis 4 Yes
Scoliosis 2 Yes

Leg amputation 2 Yes
Bilateral gonarthrosis 2 Yes

Osteoarthritis 4 Yes
Lumbar hernias 1 Yes

Prosthesis in the right humeral 1 Yes
Osteoporosis 4 Yes

Cardiovascular diseases
(Total of 18 individuals)

Arterial hypertension 16 No
Cardiac arrhythmia 4 No

Arteriosclerotic coronary disease 1 No
Heart failure 5 Yes

Acute myocardial infarction 1 No
Chronic Venous Insufficiency of

the lower limbs
1 No

Lung diseases
(Total of four individuals)

Pulmonary fibrosis 1 No
Chronic obstructive pulmonary

disease
2 Yes

Chronic bronchitis 2 Yes



Signal processing for the measurement of the results of the Timed-Up and Go test using sensors 

Sensors 2020, 20, 3481 9 of 22

Table 1. Cont.

Number of Occurrences Related with Mobility

Neurological and
balance disease

(Total of six individuals)

Parkinson 3 Yes
Dementia 1 Yes

Chronic headaches 1 No
Sequelae of surgery to brain injury 1 No

Psychiatric illnesses
(Total of six individuals)

Post-traumatic stress 1 No
Depression 5 No

Nephro-urological
disease

(Total of nine
individuals)

Hypocoagulated 1 No
Anemia 3 No

Chronic kidney disease 3 No
Prostate cancer 4 No

Digestive system and
abdominal wall disease

(Total of three
individuals)

Umbilical hernia 2 No
Inguinal hernia 1 Yes

Cirrhosis 1 No
Gastroenteritis 1 No

Metabolic disorder
(Total of 10 individuals)

Hyperuricemia 2 No
Diabetes mellitus Type II 9 No

Also, it was not possible to read all sensors in the same way for all individuals, resulting in different

numbers of samples for the different variables under study. As presented in Table 2, two groups were

formed with the pathologies under analysis, including one for diseases directly related to mobility,

and others with the other conditions found in the population.

Table 2. Distribution of the different diseases found in the population by its relation to mobility.

Related to Mobility Not Related to Mobility

- Arthrosis

- Scoliosis

- Leg amputation

- Bilateral gonarthrosis

- Osteoarthritis

- Lumbar hernias

- Prosthesis in the right humeral

- Osteoporosis

- Heart failure

- Chronic obstructive pulmonary disease

- Chronic bronchitis

- Parkinson

- Dementia

- Inguinal hernia

- Arterial hypertension

- Cardiac arrhythmia

- Arteriosclerotic coronary disease

- Acute myocardial infarction

- Chronic Venous Insufficiency of the lower limbs

- Pulmonary fibrosis

- Chronic headaches

- Sequelae of surgery to brain injury

- Post-traumatic stress

- Depression

- Chronic anemia

- Hypocoagulated

- Anemia

- Chronic kidney disease

- Prostate cancer

- Umbilical hernia

- Cirrhosis

- Gastroenteritis

- Hyperuricemia

- Diabetes mellitus Type II

In Figure 3, we can observe the mean and the standard deviation values for reaction time and total

test time measured by the pressure sensor by groups of diseases related to mobility and not directly

related to movement. Through using the Student’s t-test to compare two groups of independent

samples, it was possible to assess whether there are statistical differences in the level of measurements

made between individuals with diseases related to mobility and not associated with movement.
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Figure 3. Analysis of reaction time and total test time with a pressure sensor.

First, we concluded the variances are homogeneous (Pr (F > F-test) = 0.079 > 0.05). With the

Student’s t-test, it was possible to conclude that the reaction time (s) between the two groups of

diseases not related and related to mobility is equal (Pr (|T| > t-test) = 0.838 > 0.05), and the average is

statistically similar to 37.133 (s). Hence, it can be said that the 13 individuals with pathologies not

related to mobility take less time to perform the test (36.044 vs. 38.222), but this difference is not

statistically significant.

Furthermore, the same conclusions can be achieved from the total test time (s) that has identical

variances between the groups of diseases not related and related to mobility ((Pr (F > F-test) = 0.960 >

0.05)), and the average is statistically equal (Pr (|T| > t-test) = 0.710 > 0.05).

In Figure 4, it is possible to observe the mean values for the total test time (s), turning around

instant by the magnitude of the vector (s) and turning around instant by the absolute value of the

z-axis (s) by magnetometer sensor by diseases related or not related to mobility.

Figure 4. Analysis of total test time turning around instant by the magnitude of the vector and turning

around instant by the absolute value of the z-axis with the magnetometer sensor.

With the application of the Student’s t-test for comparing the variables measured in the

magnetometer sensor, by diseases related or not related to mobility, it was concluded that there

are no significant differences in measurements between diseases related to mobility and not related to

mobility. However, we can verify the following conclusions:
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• The total test time (s) has homogeneous variances between the groups of diseases not related and

related to mobility (Pr (F > F-test) = 0.459 > 0.05), and the average is statistically equal (Pr (|T| >

t-test = 0.490 > 0.05);

• The turning around instant by the magnitude of the vector (s) has non-homogeneous variances

between the groups of diseases not related and related to mobility (Pr (F > F-test) = 0.029 < 0.05),

but the average is statistically equal (Pr (|T| > t-test = 0.642 > 0.05);

• The turning around instant by the absolute value of the z-axis (s) has homogeneous variances

between the groups of diseases not related and related to mobility (Pr (F > F-test = 0.628 > 0.05),

and the average is statistically equal (Pr (|T| > t-test = 0.961 > 0.05).

4. Discussion

4.1. Main Findings

The Timed-Up and Go test performed by the elderly population showed a considerable diversity

of data because the participants had different types of diseases. The various physical states of each

participant in the study demonstrated that the evaluation of the test was reliable with the use of sensors.

Thus, the sensors available in the off-the-shelf mobile devices allowed practical data acquisition and

further conclusions in real-time. Further, we used a pressure sensor for the reliable detection of the

mobility of getting up from the chair. Thus, for additional findings, we extracted several features from

the accelerometer and the magnetometer available in off-the-shelf mobile devices, and pressure sensors

connected to the Bitalino device.

We anonymously collected the age and different diseases of people to consider during the

test’s application in older adults. The data were analyzed from different viewpoints, including the

measurements by each person, institution, and disease. It was proven that environmental conditions

were essential for the reliability of the analysis of the results.

The conditions of the performance of the test, data acquisition, and network connection were

adverse in two institutions, namely Lar Aldeia de Joanes and Lar Minas, as presented in Table 3.

Considering the measurements performed by the data acquired from the magnetometer sensor, only

the data obtained for 32 persons were reliable for further analyses. The relevant report was presented

in Table 3. Thus, it is verified that the time measured by the magnetometer sensors was lower than

the time measured with the data acquired from the pressure sensor. Considering the measurements

performed using the data received from the accelerometer sensor, we concluded that the use of only

the accelerometer sensor invalidated some tests in the calculation of the turning around instant.

Only 16 persons performed the experiments with reliability, Table 3 presents the data. However, fusing

these data with the measurements performed by the magnetometer sensor and using the turning

around moment measured by the magnitude of the vector, we found that 22 persons performed the

experiments with reliability. By using the turning around instant measured by the absolute value

of the z-axis, we found that 33 persons performed the examinations successfully. Considering the

measurements performed using the data acquired from the accelerometer sensor, we found that the use

of only the accelerometer sensor invalidated some tests in terms of the calculation of the turning around

instant. Thus, only three institutions performed the experiments with reliability, and only people with

nine diseases were analyzed. However, fusing these data with the measurements performed by the

magnetometer sensor, we concluded that the six institutions performed the experiments with reliability.

Therefore, we find that the return time was higher than the going time with higher acceleration, velocity,

force, and power during the return time. Thus, we concluded that the return time was higher than

the going time with higher acceleration, velocity, force, and power during the return time. With the

fusing of these data with the measurements performed by the magnetometer sensor and using the

turning around moment measured by the magnitude of the vector, we analyzed 16 diseases. Using the

turning-around instant measured using the absolute value of the z-axis, we analyzed 27 illnesses.
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Table 3. Relation between sensors and results obtained.

Sensors Parameters
Analysis

By Age By Institution By Diseases

Pressure sensor

Reaction time -

It is higher in Lar
Aldeia de Joanes and
Lar Minas (14.860 s),

and lower in Lar
Nossa Senhora de

Fátima (5.948 s)

It is higher in persons with
sequelae of surgery to brain injury

(16.830 s), and lower in persons
with pulmonary fibrosis, acute

myocardial infarction, and
hypocoagulated (3.477 s)

Total test time

It is lower in an
individual of

60-years-old with
scoliosis (21.070 s)

-
It is higher in an individual with a

leg amputation and diabetes
mellitus Type II (92.950 s).

Magnetometer
sensor

Total test time

It is lower in an
individual of

60-years-old with
scoliosis (19.761 s)

It is lower in Centro
Comunitário das

Lameiras (28.778 s),
and higher in

institutions with
poor conditions

(74.053 s)

It is higher in people with
osteoarticular pathology and a
prosthesis in the right humeral
(66.947 s), and lower in people

with arthrosis (24.528 s)

Turnaround
measured by the
magnitude of the

vector

The time is higher
in an individual of
89-years-old with

problems related to
mobility (51.742 s)

The instant is lower
in Lar da

Misericórdia (2.591 s)

The instance is higher in people
with congestive heart failure

(28.886 s), and lower in people
with osteoarticular pathology and

prosthesis in the right humeral
(3.836 s), and the time is higher in
people with lumbar hernias and a

gastric ulcer (30.643 s)

Turning around
instant measured
by the absolute

value of the z-axis

It is higher in
participants with
osteoarthritis of

87-years-old
(39.649 s).

It is lower in Centro
Comunitário das

Lameiras (8.433 s),
and it is higher in Lar

Nossa Senhora de
Fátima (39.649 s).

It is lower in people with
osteoarticular pathology and a
prosthesis in the right humeral

(8.704 s), and it is higher in people
with osteoarthritis (39.649 s)

Accelerometer
sensor

Times
Average of 10.521 s in reaction time, 45.538 s in total test time, 13.272 s in going

time, and 21.944 s in return time

Turning around In average, the duration is 0.436 s, and the instant is 23.566 s

Acceleration Average of 9.96 m/s2 in going time, and −11.43 m/s2 in return time.

Velocity Average of 15.12 m/s in going time, and −5.51 m/s in return time.

Force Average of 713.37 N in going time, and −1886.03 N in return time.

Power Average of 6233.21 J in going time, and −8491.09 J in return time.

Some individuals reported an inconsistency between the different diseases and the results obtained

by the values acquired using the various sensors, and this inconsistency could be attributed to the

adverse conditions of the data acquisition. In general, older adults have more than one disease.

Still, the best results obtained with the magnetometer were obtained in people with arthrosis disease,

where the person only has arthrosis, and the other people have several diseases. The same problem

was observed in the case of people with osteoarticular pathology, and prosthesis in the right humeral,

where the going time was lower than that for the other people. In conclusion, the sensors might report

bad data, and the findings might be argued. The other problem was that people with osteoarticular

pathology and prostheses in the right humeral reported better results in the measurement of turning

around than people with lumbar hernias and gastric ulcers. They were attributed to the fact that people

with gastric ulcers had more than one disease, and people with several diseases reported higher times

than the others.
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To ensure that these data collection methodologies can be used to assess physical and functional

performance in the clinic, this data should be valid, reliable, and with proper responsiveness, as has

been demonstrated by the Timed-Up and Go test in a variety of conditions [64,65].

4.2. Limitations

As presented in Table 4, there are three possible origins of limitations found, such as individuals,

environment, and technical. The older adults and environments for the different tests are heterogeneous.

However, other technical barriers related to the Internet and Bluetooth connection availability,

and synchronization between the various devices were found. The individuals performed the

examination three consecutive times to avoid some problems, and the acquisition started at the same

time in all devices.

Table 4. Relation between the origin and limitations of the study.

Origin Limitation

Individuals Different health conditions.

Environment The experiments were performed in uncontrolled environments.

Technical

The Internet connecting is needed for data synchronization.

Bluetooth connected reported some failures.

A large volume of data needs to be processed in the mobile device.

Data cannot be processed in real-time.

Sometimes it was not possible to consistently synchronize the timestamps of the acquired
data, because Bitalino does not have real timestamps.

4.3. Comparison with Prior Work

Different studies analyzed the performance of the Timed-Up and Go test with sensors to measure

the various parameters. Still, only two studies [45,50] show the values of the measured parameters.

These studies are not comparable with the values obtained in our study, because they only calculate

the power. There are multiple literature surveys of the Timed-Up and Go test [60,64,66], but they do

not explicitly consider the inclusion of older adults. It is also evident because of the discrepancy in the

reported values of high power, which is uncommon for older adults who usually have low energy.

As the people of other studies are younger, the power/energy used to perform the Timed-Up and Go

test is higher than in our research, reporting −28,934.32 J. However, it depends on the health diseases

and age of older adults in the study. The age range of participants in our study is higher than the

studies available in the literature.

Among the other approaches that use mobile devices for automation of the Timed-Up and Go

text, the most prominent ones are [32,45,49,67]. Similarly, our study also measures the duration of the

Timed-Up and Go test and identify the different stages. Unlike them, our study is mainly performed

by older adults, uses multiple sensors to monitor the various movements, and measures parameters

including power, velocity, acceleration, force, reaction time, and others, to measure the performance of

the test more accurately. The main differences and advantages of our study are presented in Table 5.



Vasco Ponciano 

Sensors 2020, 20, 3481 14 of 22

Table 5. Comparison of the studies in the literature with our study.

Study Differences Compared to Our Study Advantages of Our Study

[45]

The study is related to the fall risk assessment,
and our research is associated with the analysis of
the performance of the Timed-Up and Go test for

the creation of patterns by age, disease,
and institution.

Our study proved that a relation between
diseases related to mobility and the

performance of the Timed-Up and Go test
exists, allowing the creation of different

patterns with the inertial sensors.

[49]

The study identified the different phases of
Timed-Up and Go sensors. The authors also

calculated the Minimal Detectable Change based
on the speed, where we identified the various

stages, and measured the force, power, and
acceleration of the movement.

The older adults sometimes performed more
force and power than the other population.

The measurement of these parameters is vital
to identify the reliability of the test in the

different repetitions.

[32]

The study tracks the different stages of the
Timed-Up and Go test, and the angles of the knee

and ankle. Our study identified the different
phases and made other measurements.

Our study is focused on older adults that
commonly have different pathologies,

performing different measurements and
relationships between diseases.

[67]
The authors implemented machine learning

methods for the distribution of the individuals in
different groups to cluster the types of diseases.

Our study performed the analysis of the
different features extracted with a focus on

the diseases related to the movement.

5. Conclusions

The Timed-Up and Go test is an easy test used to measure different types of mobility. This study

considered performed the analysis of older adults. This test consists of the individual sitting on the

chair, getting up from the chair, walking three meters, reversing the direction of the walking, walking

another three meters to back to the chair, and sitting on the chair.

The automatic measurement of the Timed-Up and Go test with mobile devices is possible,

validating the different parts of the test. This work considers the data acquired from the various sensors

available in the mobile device, including the accelerometer and magnetometer sensors, where the

magnetometer sensors help in the detection of the changes of the direction during the test, where the

accelerometer sensors allow the measurement of the acceleration, velocity, force, and power. A Bitalino

device with a pressure sensor in the chair is used to detect the mobility’s start. Another Bitalino

device was used to acquire the electrocardiography (ECG) and electroencephalography (EEG) for

future processing.

This work aimed to analyze the data obtained in different elderly institutions with various

conditions. It was verified that data acquisition conditions influenced data acquisition. The different

diseases of the individuals also affect the results of the performance of the Timed-Up and Go test.

Through the automatic calculation of the features, different values were obtained. Thus, various

analyses were carried out by age, institution, and type of disease, which allowed the measurement

of exciting results. It was verified that this study allows the possibility to create different patterns of

physical states of people. However, several constraints may have influenced the experiment’s results,

including the test environment and the reception conditions of the network. The data are somewhat

heterogeneous because we are analyzing older adults with different health conditions. The statistical

grouping by different age ranges allows us to show the influence that age may have on the test results.

The Timed-Up and Go test has been demonstrated to be an accessible and clinically relevant test to

assess mobility, balance, and risk of falls in the elderly and other populations with health problems.

With the rise of chronic health conditions, it is fundamental to create accessible, valid, and reliable

online instruments that evaluate and record physical health performance, like the Timed-Up and

Go test. It is also vital to guarantee that the follow up gives a real evolution of this performance

with some health treatments, such as physiotherapy. Future work may recognize different diseases

with the values acquired during the experiments, considering the ECG and EEG sensors. The values



Signal processing for the measurement of the results of the Timed-Up and Go test using sensors 

Sensors 2020, 20, 3481 15 of 22

obtained with the ECG sensor allow for the detection of dysrhythmias, ischemia, driving disorders,

ST-segment abnormality, cavity overload, pericarditis, pericardial effusions, ion disorders, and

congenital heart diseases. On the other hand, the values obtained with the EEG sensor allows the

detection of convulsions, metabolic encephalopathies, structural encephalopathies, degenerative

diseases, infections, sleep disorders, and memory changes.

This pilot study proved to be a great way to help diagnose different types of diseases, whether

they involve the individual’s motor capacity, whether cardiac or neurological. In the future, the use of

low-cost systems and mobile sensors may help an evolution in medicine for the diagnostics of different

diseases in people.
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Appendix A

This section presents Table A1 related to the features extracted in different studies. Also, it presents

Table A2 related to the description of the population of the study.

Table A1. Studies vs. Features extracted.

Features Studies
Number

of Studies

Duration of the test [17,32,49,51,52,54,55,58] 8

Maximum [17,45,56–58] 5

Mean [46,49,54,56,58] 5

Duration of each stage [17,47,50,51,56] 5

Root Mean Square (RMS) [45,46,56,58] 4

Standard deviation [45,46,56,58] 4

Velocity [32,44] 2

Time of sit-to-stand transition [44,48] 2

Minimum [45,57] 2

Energy [45,46] 2

Entropy [45,46] 2

Mobility angles [32,48] 2

Time of stand-to-sit [53,55] 2

Time of prepare-to-sit [53,55] 2

Time of sit-down [53,55] 2

Time of lift-up [53,55] 2

Maximum change of the trunk angle [51,55] 2

Maximum angular velocity during the lean forward and lift-up phases [51,55] 2

Median deviation [45] 1
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Table A1. Cont.

Features Studies
Number

of Studies

Skewness [45] 1

Interquartile range (IQR) [45] 1

Kurtosis [45] 1

Maximum and second maximum frequencies and amplitudes of the
Fast Fourier Transform (FFT)

[45] 1

Number of times that the amplitude of the magnitude of the vector of
accelerometer signal crosses the mean value

[45] 1

Mean of peak height [45] 1

Correlation [46] 1

Pitch [46] 1

Signal Magnitude Area (SMA) [46] 1

Signal Vector Magnitude (SVM) [46] 1

Angular velocity of the mobility of the arm [50] 1

Time to perform turn-to-sit [50] 1

Time of lean forward phase [53] 1

Time of the walking phase [53] 1

Maximum angular velocities during lean forward and lift-up phases [53] 1

Maximum change of trunk angle during the lean forward phase [53] 1

Total number of steps during the walking phase and before the turn [53] 1

Stride length [32] 1

Distance traveled [32] 1

Length of the lean forward period [55] 1

Number of steps during [55] 1

Coefficient of variation [56] 1

Jerk [58] 1

Table A2. Description of the population of the study and test conditions.

Institution
Person

ID
Diseases

Diseases
Related to
Mobility

Age
(Years)

Test Conditions

Centro Comunitário
das Lameiras

1 Arthrosis Yes 85

Chair without supports. Spacious
place. Floor with the right

conditions. Good mobile network
coverage. A physical therapist

monitored the test.

Centro Comunitário
das Lameiras

2 Gastroenteritis No 92

Centro Comunitário
das Lameiras

3
Arterial hypertension;

Arthrosis
Yes 85

Centro Comunitário
das Lameiras

4
Arterial hypertension;
Cardiac arrhythmia

No 92

Centro Comunitário
das Lameiras

5

Arterial hypertension;
Cardiac arrhythmia;

Diabetes mellitus Type II;
Scoliosis

Yes 92

Centro Comunitário
das Lameiras

6 Scoliosis Yes 85

Centro Comunitário
das Lameiras

7 Osteoporosis Yes 83

Centro Comunitário
das Lameiras

8 Arthrosis Yes 87



Signal processing for the measurement of the results of the Timed-Up and Go test using sensors 

Sensors 2020, 20, 3481 17 of 22

Table A2. Cont.

Institution
Person

ID
Diseases

Diseases
Related to
Mobility

Age
(Years)

Test Conditions

Others 9 Scoliosis Yes 60 Excellent quality of mobile
network coverage. Tight space in
the kitchen. Chair with supports.Others 10

Right leg amputation;
Diabetes mellitus Type II

Yes 77

Lar Aldeia de Joanes 11 N/D - N/D

Weak mobile network coverage.
Test site with the right physical
conditions. The test was carried
out in a place with other older
adults. Chair with supports.

Lar Minas 12 Arterial hypertension No 88
Mobile network coverage does
not exist. Test site with Good

physical condition of the test site.
The test was carried out in a living

room with other older adults.
Chair with supports.

Lar Minas 13

Arterial hypertension;
Cardiac arrhythmia;

Arteriosclerotic coronary
disease; Heart failure

No 84

Lar Minas 14 N/D - 65

Lar da Misericórdia 15 N/D - 91

The basement of a building with
little mobile network coverage.

Chair with supports. Flat ground
with a slight slope.

Lar da Misericórdia 16 N/D - 84

Lar da Misericórdia 17
Hernioplasty in 2010;

Sarcoidosis
No 87

Lar da Misericórdia 18

Chronic obstructive
pulmonary disease;
Chronic bronchitis;

Osteoarthritis

Yes 73

Lar da Misericórdia 19

Cirrhosis; Anemia;
Chronic kidney disease;

Umbilical hernia;
Inguinal hernia

Yes 79

Lar da Misericórdia 20
Right leg amputation;

Umbilical hernia;
Arterial hypertension

Yes 88

Lar da Misericórdia 21
Prostate Cancer;

Parkinson’s disease;
Post-traumatic stress

Yes 76

Lar da Misericórdia 22
Arterial hypertension;

Diabetes mellitus Type II
No 86

Lar da Misericórdia 23

Prostate Cancer;
Osteoporosis; Chronic

Venous Insufficiency of
the lower limbs; Chronic

bronchitis

Yes 92

Lar da Misericórdia 24

Diabetes mellitus Type II;
Arterial hypertension;

Depression; Sequelae of
surgery to brain injury

No 83

Lar da Misericórdia 25

Diabetes mellitus Type II;
Vertigo syndrome;
Chronic headaches;

Osteoarthritis; Prosthesis
in the right humeral;

Osteoporosis; Arterial
hypertension

Yes 81

Lar da Misericórdia 26
Arterial hypertension;

Anemia
No 91

Lar da Misericórdia 27

Osteoarthritis;
Depression; Heart

failure; Arterial
hypertension;
Osteoporosis

Yes 89

Lar da Misericórdia 28 N/D - N/D



Vasco Ponciano 

Sensors 2020, 20, 3481 18 of 22

Table A2. Cont.

Institution
Person

ID
Diseases

Diseases
Related to
Mobility

Age
(Years)

Test Conditions

Lar da Nossa
Senhora de Fátima

29
Diabetes mellitus Type

II;
No 86

The test location was narrow.
The mobile network coverage was

of good quality. The floor and
width of the test site were very

tight. The chair had no supports.

Lar da nossa senhora
de Fátima

30

Dementia of vascular
etiology; Prostate Cancer;

Arterial hypertension;
Vertigo syndrome

Yes N/D

Lar da nossa senhora
de Fátima

31
Depression;

Osteoporosis
Yes 83

Lar da Nossa
Senhora de Fátima

32
Diabetes mellitus Type II;

Osteoarthritis
Yes 87

Lar da Nossa
Senhora de Fátima

33

Diabetes mellitus Type II;
Arterial hypertension;

Heart failure;
Hyperuricemia;

Depression; Bilateral
gonarthrosis

Yes N/D

Lar da nossa senhora
de Fátima

34 Prostate cancer No 88

Lar da Nossa
Senhora de Fátima

35

Heart failure; Chronic
obstructive pulmonary

disease; Bilateral
gonarthrosis

Yes 97

Lar da nossa senhora
de Fátima

36
Diabetes mellitus Type II;

Arterial hypertension
No 71

Lar da nossa senhora
de Fátima

37 Arterial hypertension No 74

Lar da Nossa
Senhora de Fátima

38
Osteoarthritis; Lumbar

hernias; Depression;
Gastric ulcer

Yes 82

Lar da Nossa
Senhora de Fátima

39

Heart failure; Arterial
hypertension;

Pulmonary fibrosis;
Hyperuricemia; Anemia;
Chronic kidney disease;

Cardiac arrhythmia;
Acute myocardial

infarction;
Hypocoagulated

Yes N/D

Lar da nossa senhora
de Fátima

40 Chronic kidney disease No 90

N/D: The values were not reported by the older adults.
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Abstract: The use of smartphones, coupled with different sensors, makes it an attractive solution

for measuring different physical and physiological features, allowing for the monitoring of various

parameters and even identifying some diseases. The BITalino device allows the use of different

sensors, including Electroencephalography (EEG) and Electrocardiography (ECG) sensors, to study

different health parameters. With these devices, the acquisition of signals is straightforward, and it

is possible to connect them using a Bluetooth connection. With the acquired data, it is possible to

measure parameters such as calculating the QRS complex and its variation with ECG data to control

the individual’s heartbeat. Similarly, by using the EEG sensor, one could analyze the individual’s

brain activity and frequency. The purpose of this paper is to present a method for recognition of the

diseases related to ECG and EEG data, with sensors available in off-the-shelf mobile devices and

sensors connected to a BITalino device. The data were collected during the elderly’s experiences,

performing the Timed-Up and Go test, and the different diseases found in the sample in the study.

The data were analyzed, and the following features were extracted from the ECG, including heart

rate, linear heart rate variability, the average QRS interval, the average R-R interval, and the average

R-S interval, and the EEG, including frequency and variability. Finally, the diseases are correlated

with different parameters, proving that there are relations between the individuals and the different

health conditions.

Keywords: diseases; electrocardiography; electroencephalography; timed-up and go test; sensors;

mobile devices; feature detection; diseases; older adults

Computers 2020, 9, 67; doi:10.3390/computers9030067 www.mdpi.com/journal/computers



Vasco Ponciano 

Computers 2020, 9, 67 2 of 21

1. Introduction

1.1. Background

Currently, the world’s population is increasingly aging, promoting research in several medical

areas [1]. Due to the increase in life expectancy, the research studies focused on the elderly population are

essential to improve the quality of life of the elderly. There are 157 elderly persons per hundred young

people, so we can verify that the number of older adults is around 64% higher than young people [2–5].

Commonly, older adults have different types of pathologies. The automatic identification of these

diseases based on the data acquired during the Timed-Up and Go test may allow different preliminary

treatments [5–7]. The future generation of older adults will use mobile devices intensively [8,9], allowing

the possibility of recognizing different types of diseases with these devices [10–15]. The evolution and

high proliferation of the technological equipment with varying kinds of sensors allow the growth of

the development of novel medical solutions [16], promoting the elderly to independent living with

remote medical control [17].

Several sensors are embedded in mobile devices, but other sensors may be used in conjunction with

the internal sensors to provide different measurements related to various physical and physiological

parameters [18,19]. Regarding the analysis of different variables of the Timed-Up and Go test,

the accelerometer and magnetometer sensors embedded on mobile devices may be used in conjunction

with external sensors to perform complementary measurements [20–22].

Previous works show that the accelerometer and magnetometer sensors may support the analysis

of the individuals’ functionality, including the gait [23,24]. However, one of the significant problems in

this type of study consists in the synchronization of the acquisition of the different types of data from

the sensors embedded on mobile devices, and the other sensors connected by over-the-air connection,

including Electrocardiography (ECG) and Electroencephalography sensors (EEG) [25–29]. In addition

to this challenge, data processing may include the fusion of the data acquired from different sources.

One of the most common tests for the assessment of the performance of the lower limbs is the

Timed-Up and Go test, where the analysis of the data acquired from different sources allows the

recognition of several healthcare problems, including balance, mobility, fall risk, Parkinson’s disease,

amyotrophic lateral sclerosis, and other orthopedic, cardiovascular and brain pathologies [30–35].

The use of ECG and EEG sensors in conjunction with Timed-Up and Go tests allows cardiac

problems and other problems associated with the nervous system to be monitored for the first analysis

of emergency [25–29]. One of the low-cost solutions that may be used in conjunction with mobile

devices is the BITalino device and its sensors [36]. The BITalino device is an example of biomedical

equipment that is scalable and versatile, used for the acquisition of different biosignals transmitted by

Bluetooth. The ECG sensors detect the duration and variation in size of the ECG waves used for the

abnormalities of heart rate. Furthermore, the EEG sensor is used for the capture of the brain activity

and it is positioned in a bipolar configuration with two measurement electrodes for the detection

of electrical potentials. Combining smartphones with these devices and sensors may allow for the

acquisition of cardiac signals, realizing the relationship of these signals with diseases associated with

the heart, and the recognition of different healthcare problems.

In this work, we build upon previous studies [37,38] related to the acquisition of data from the

accelerometer and magnetometer sensors available on the off-the-shelf mobile devices, pressure sensors

available in the back of the chair, and ECG and EEG sensors, for the detection of different types of

movement, and cardiac and brain problems. This paper aims to design and develop a method for

the acquisition, analysis, and identification of different patterns of diseases with low-cost sensors.

To facilitate this, the proposed solution uses embedded smartphone sensors and additional ones

connected to a BITalino device [36] to identify patterns in measured ECG and EEG signals during

Timed-Up and Go test and find their relation to existing illnesses of patients. We show that such

correlation exists and that it can be used to identify emerging medical conditions, so they can be treated

from early on.
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1.2. Motivation

This research is supported by the ability to accurately identify various parameters during

the Timed-Up and Go test [39]. However, the use of mobile devices to help the capture of the

various sensors poses several additional restrictions associated with the memory, power processing,

among others [40,41]. The data captured during the Timed-Up and Go test are essential for further

measurements, where we intend to create a large dataset from different sensors used for additional

measures of various diagnostics in medicine.

Different diseases may be recognized by the use of the Timed-Up and Go test [42], allowing

healthcare professionals to assess different healthcare conditions of older adults. This implementation

may be first aid or preliminary detection of various diseases in an initial state [43]. As it is an easy test,

it may be performed with people with neurological disorders [44], allowing the pattern recognition of

different diseases. Several parameters may be measured for the detection of cardiac diseases, including

the heart rate, linear heart rate variability, the amplitude of complex QRS, and amplitudes of R-R and

R-S intervals, for the detection of different diseases.

1.3. Prior Work

The ECG and EEG signals have been used in the past for the recognition of different diseases.

The authors of [45] filtered the acquired ECG data and applied a differential transfer function to the

signal. The authors of [45] also squared the ECG signal to obtain information about the waveform

and to calculate the heart rate. According to the authors of [45], a heart rate below 60 bpm is related

to the presence of a bradycardia disease. A tachycardia is identified with a heart rate higher than

100 bpm. In continuation, the premature ventricular contraction is recognized for an amplitude of the

QRS complex higher than 120 ms [45]. Bradycardia and tachycardia diseases are not identified, but the

heart rate is not between 60 and 100 bpm, the premature atrial contraction may be recognized [45].

The detection of different diseases, including normal sinus rhythm, premature atrial beat,

atrial fibrillation, supraventricular tachyarrhythmia, pre-excitation, premature ventricular contraction,

ventricular bulge, ventricular triplet, ventricular tachycardia, idioventricular rhythm, fusion ventricular

block beat of the left branch, block beat of the right branch, were recognized with neural networks with

features related to the normalization, maximum pooling, flattening, density, among others, related to

several sliding windows [46]. The measurement of the P-R interval and the amplitude of QRS were

also used for the recognition of cardiovascular death [47].

In [48], the authors recognized primary and secondary pulmonary hypertension with the amplitude

of the P wave in the II derivation, the frontal mid axis of the QRS complex, duration of the QRS complex,

deviations of the R and S waves in leads I and V6 and the T wave configurations in the precordial leads,

where the best correlation was obtained with the value of the frontal mid-axis of the QRS complex.

The authors of [49] developed a method to detect atrial fibrillation based on the absence of P

wave, irregular heart rate, and other variables related to the atrial activity. The implementation of the

Pan Tompkins algorithm was used to detect arrhythmias with features related to frequency and time

domains [50]. The detection of the coronary artery disease was recognized by the amplitude of QRS

interval, and depressions S-T and T wave [51].

With the use of neural networks, the authors of [52,53] also detected various cardiac diseases,

including left bundle branch block, right bundle branch block, premature ventricular contraction,

Wolff–Parkinson–White syndrome, myocardial ischemia, and myocardial injury, with the duration of P,

S, T and QRS, P-R and Q-T intervals, P, R and T amplitudes, and S-T segment.

Parkinson’s disease may be detected with different features, including R-R, P-R, QRS, and Q-T

intervals, and the heart rate measured and corrected by Q-T interval, analyzing the Spearman correlation

coefficient [54]. Based on different features, including heart rate, P, T and QRS intervals, P durations,

and P-R, QRS, Q-T and corrected Q-T intervals, ventricular activation time, and frontal plane axis,

the authors of [55] recognized left and right ventricular hypertrophies.
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Related to the EEG signal, the authors of [56] implemented machine learning methods for the

recognition of various diseases, including Alzheimer’s disease, with different statistical, amplitude,

and frequency-based features. On the other hand, the authors of [57] implemented machine learning

methods with time–domain features. Epilepsy is detected by various studies with machine learning

methods, including Support Vector Machine (SVM), adaptive neuro-fuzzy inference system, and linear

classifier, based on different features based on wavelet coefficients, including 2nd order cumulants

(mean± standard deviation), asymmetry, kurtosis, spectral, Renvi, Kolmogorov–Sinai, variance, energy,

and the maximum and minimum values of the power spectral density [58–61].

Based on signal strength, window strength, and sample entropy, Alzheimer’s disease is correctly

recognized with linear discriminant analysis [62]. Finally, acute ischemic stroke is detected by the

densities of the power spectrum acquired by different devices [63]. As presented in Table 1, the diseases

recognized by the ECG and EEG sensors are distributed by the number of the studies analyzed.

Table 1. Studies vs. Diseases.

Diseases Studies Number of Studies

ECG

Arrhythmia (i.e., atrial fibrillation, supraventricular
tachyarrhythmia, pre-excitation, ventricular tachycardia,

idioventricular rhythm, left and right branch block,
and Wolff–Parkinson–White syndrome)

[46,49,50,53] 4

Premature ventricular contraction [45,46,53] 3

Primary and secondary pulmonary hypertension; coronary artery
disease; myocardial ischemia; myocardial injury; Parkinson’s

disease; left and right ventricular hypertrophies
[48,51,53–55] 1

EEG

Epilepsy [58–61] 4

Alzheimer’s disease [56,62] 2

Brain abnormalities; acute ischemic stroke. [63] 1

1.4. Purpose of the Study

The hypothesis of this research is that Android smartphones complemented by affordable external

ECG and EEG sensors can provide a reliable method for the identification of different diseases.

In particular, the paper aims to identify the different waves from the ECG and EEG sensors, calculate

various metrics based on them, and verify that each disease has distinct features that can facilitate

its identification.

The presentation of a method for recognizing the diseases related to ECG and EEG data with

sensors, available in off-the-shelf mobile devices, and sensors connected to a BITalino device during

the performance of the Timed-Up and Go test is the main contribution of this paper. This document

presents the measurement of different features to create a reliable dataset for the recognition of the

various diseases present in the sample in analysis. Additionally, this paper presents a state-of-the-art

review of the methods used in the literature to identify illnesses related to ECG and EEG signals.

The use of mobile devices proves its usability in these types of studies.

The data were previously acquired from people aged between 60 and 97 years old with several

diseases. Clinicians already identified the disorders of each participant for the success of this study

related to automatic identification, including arterial hypertension, depression, cardiac arrhythmia,

coronary artery disease, and Parkinson’s disease. These diseases are only recognized with ECG sensors,

where the EEG sensor is only used to detect possible abnormalities. The data acquisition was performed

by institutionalized people in the Centre region of Portugal, explicitly in the municipalities of Fundão

and Covilhã.
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The data acquisition was performed during the performance of the Timed-Up and Go test with

Android devices. The accelerometer and magnetometer data from the embedded sensors feature on

the mobile device, pressure sensor data are placed on the back of the chair, and the EEG and ECG

sensors are connected to the individual for the data acquisition. The mobile application simultaneous

acquire the data from the different sensors, where, after data acquisition, the various text files were

uploaded to the Cloud by using the FireBase service.

Commonly, ECG and EEG data are captured while the subject is stationary. Contrary to that,

The Timed-Up and Go test involves movement. Be that as it may, there are approaches such as [63] which

show that, even in cases when the subject is moving, recognition of different diseases related to ECG and

EEG data [64] is still possible. This would be convenient for the users to perform these measurements

while having light movement during other tests. Moreover, there also be some advantages to this

approach because it can emphasize some emerging medical conditions that may become more apparent

during movement. This subject is related to Internal Medicine, and the recognition of different diseases

in an early stage is excellent for the treatment of different diseases [65,66].

After the data acquisition, the ECG and EEG data were processed, and the different features

were extracted. The features extracted from the ECG sensors were the heart rate, the linear heart rate

variability, the average QRS interval, the average R-R interval, and the average R-S interval. Next,

the features extracted from the EEG sensor were frequency and variability.

The different features were correlated with the institutions, and the diseases present in the sample.

Initially, the correlation between the values extracted from the sample and the diseases identified by

the healthcare professionals was performed, verifying that they are commonly determined by different

parameters, except the coronary artery disease and bilateral gonarthrosis. Applying different statistical

tests, we also proved different correlations between diseases, and parameters extracted, as presented

in Section 4.1.

1.5. Structure of the Study

The remaining sections of this paper are organized as follows: Section 2 presents the methods

used for the analysis of the data acquired from ECG and EEG sensors during the performance of

the Timed-Up and Go test by older adults. The study design and participants’ description of the

Timed-Up and Go test, the data processing and acquisition processing, and the statistical analysis are

presented in Section 3. In continuation, Section 4 discusses the main findings and limitations of the

study. The comparison with prior work is also shown in Section 4. Finally, the conclusions of this

study are presented in Section 5.

2. Methods

2.1. Study Design and Participants

For the acquisition of data related to the Timed-Up and Go test, this study is designed to use one

mobile device with accelerometer and magnetometer sensors, and two BITalino devices with pressure,

ECG, and EEG sensors. The mobile device is used for data acquisition and to send the collected data to

the server. Several environments may be recognized, but our focus is related to healthcare. This study

is a trial to check if, during the performance of the test, we can identify different types of diseases.

This study’s target is related to the population with cardiac and brain problems institutionalized

in retirement homes and aged between 60 and 90 years. The sample for the analysis was selected in

collaboration with the people responsible in the retirement homes. The requirement is related to the

possibility of having mobility capabilities to perform the test. The volunteers were informed of all the

rules to complete the test and the instrumentation. They signed the ethical agreement to publish the

results of the experiments in an anonymous form.

The tests were performed with a XIAOMI MI6 with the Android operating system, but the

different environment variables vary between the various institutions, which influences the data
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acquisition. The different individuals performed the test between October and December 2019 several

times. Initially, the test was performed by 40 older adults, however, due to the over-the-air connection

constraints, the ECG and EEG signals were only reliable acquired from 14 individuals with mean

age 83.1 and a standard deviation of 7.4. The various healthcare diseases were presented in Table 2.

The different volunteers have different types of diseases, including multiple sclerosis, diseases related

to the heart, such as arrhythmia, or illnesses associated with mental health, such as Parkinson’s disease.

Of the participants, 50% had a chair with supports and also 50% of them had good mobile network

coverage. Only 14% of the patients were monitored by a physical therapist. The physical condition

of 14% was good, 43% were narrow and tight, and 43% had a slope. Thus, the acquired data are

heterogeneous. Parkinson’s disease is commonly classified as an illness related to mental health,

but the derivations of ECG sensors frequently detect it.

The sample selected has different cardiac and brain problems that result in the creation of a

dataset with varying types of data that will be processed, as presented in Section 2.2. The essential

diseases analyzed were arterial hypertension, depression, cardiac arrhythmia, coronary artery disease,

and Parkinson’s disease. The mobile application acquired the data from different sensors with different

delays. The accelerometer and magnetometer sensors receive the data every 1 ms, and the pressure,

ECG, and EEG sensors acquire the data every 10 ms. The EEG and ECG values taken into account in

this study are related to the alpha channel of the sensor. The electrodes of the EEG sensors were placed

in the electrically neutral location (left) and measurement electrodes (right), and another electrode

in a region of low muscular activity as reference. The two electrodes of ECG sensor were placed at

the wrist of the individual. The ECG and EEG sensors connected to the BITalino device has only one

channel for the acquisition of the data [36]. The data acquisition process starts with an acoustic signal,

which signals the start of the data acquisition.

2.2. Description of the Timed-Up and Go Test and Data Acquisition and Processing

In 1991, the Timed-Up and Go was created to help the healthcare professionals for the measurement

of the risk of falls [60]. The Timed-Up and Go test is composed of various phases: sitting on the chair,

lifting from the chair, walking for three meters, reversing the direction of walking, walking another

three meters towards the chair, and sitting on the chair.

During the test’s performance, some technical issues influence the acquisition of signals by the

BITalino device, such as the failure of the sensors data acquisition, the Bluetooth connection is lost,

among others. This makes it more complicated to perform realistic studies on the field with actual

patients, therefore the number of valid data points was reduced. The acquisition of different types

of data was performed with a mobile device and two BITalino devices. The sensors used for the

measurement of the results of the test and other complementary sensors may be used for the analysis

of different parameters of healthcare diseases.

2.3. Statistical Analysis

After the acquisition of the data from the sensors, available in off-the-shelf mobile devices, and the

sensors connected to the BITalino device, the data analysis was performed. The main goal is to analyze

the data acquired from the ECG and EEG sensors during the performance of the Timed-Up and Go test

for helping in recognition of the diseases associated with these sensors. Firstly, the ECG data were

processed for the extraction of heart rate, linear heart rate variability, the average of QRS interval, the

average of R-R interval, and the average of R-S interval. Finally, the EEG sensor as processed for the

extraction of its frequency and variability.

After measuring the different variables, descriptive statistics, normality tests, and detection of

outliers were performed. In addition, a statistical comparison between them was performed, analyzing

and comparing the results by the averages of each institution, person, age, and healthcare diseases.
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Table 2. Description of the population of the study and test conditions.

Person ID Diseases Age (Years Old)

Test Conditions

Chair with Supports
Good Mobile

Network Coverage
Physical Conditions

Monitored by
Physical Therapist

1 Arterial hypertension; Arthrosis 85 No Yes Good Yes

2
Arterial hypertension; Cardiac arrhythmia; Arteriosclerotic

coronary disease; Heart failure
84 Yes No Good Yes

3 Right leg amputation; Umbilical hernia; Arterial hypertension 88 Yes No With Slope No

4 Prostate Cancer; Parkinson’s disease; Post-traumatic stress 76 Yes No With Slope No

5 Arterial hypertension; Diabetes mellitus Type II 86 Yes No With Slope No

6
Heart failure; Diabetes mellitus Type II; Arterial hypertension;

Depression; Sequelae of surgery to brain injury
83 Yes No With Slope No

7
Heart failure; Diabetes mellitus Type II; Vertigo syndrome;

Chronic headaches; Osteoarthritis; Prosthesis in the right humeral;
Osteoporosis; Arterial hypertension

81 Yes No With Slope No

8
Osteoarthritis; Depression; Heart failure; Arterial

hypertension; Osteoporosis
89 Yes No With Slope No

9
Dementia of vascular etiology; Prostate Cancer; Arterial

hypertension; Vertigo syndrome
N/D No Yes Narrow and tight No

10
Diabetes mellitus Type II; Arterial hypertension; Heart failure;

Hyperuricemia; Depression; Bilateral gonarthrosis
N/D No Yes Narrow and tight No

11
Heart failure; Chronic obstructive pulmonary disease;

Bilateral gonarthrosis
97 No Yes Narrow and tight No

12 Diabetes mellitus Type II; Arterial hypertension 71 No Yes Narrow and tight No

13 Arterial hypertension 74 No Yes Narrow and tight No

14
Arterial hypertension; Pulmonary fibrosis; Hyperuricemia;

Anemia; Chronic kidney disease; Cardiac arrhythmia; Acute
myocardial infarction; Hypocoagulated

N/D No Yes Narrow and tight No

N/D: The values were not reported.
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3. Results

3.1. Data Acquisition

The data were acquired by a mobile application installed in an Android device. It was developed

with Android Studio. As presented in Figure 1, the mobile application is composed of components for

data acquisition, storage, and send it to a FireBase server. The mobile application acquired data from

the onboard sensors, i.e., accelerometer and magnetometer, and two BITalino devices connected by

Bluetooth. The BITalino devices receive different sensors’ data at a sampling rate of 10 kHz and 16 bits

of precision. The data acquired by onboard sensors are collected with a sampling rate of 1 kHz and

16 bits of precision. Firstly, the ECG sensor was attached to the user in three positions with electrodes on

the arm. Finally, the EEG sensor was positioned on the head with two electrodes. This position of the

sensors was discussed with healthcare professionals related to medicine and physiotherapy subjects.

Figure 1. Mobile application.

On the one hand, this mobile application performed a continuous data collection using the built-in

magnetometer and accelerometer sensors. The data were collected with a sampling rate of 1 kHz and

16 bits of precision. On the other hand, the mobile application handled the communication technologies

required to receive data through Bluetooth from the BITalino device with a pressure sensor. Still, it was

also responsible for sending the collected data to the FireBase service for storage.

3.2. Requirements

The requirements for performing the experiments were related to the environment and the

individual. The individual must have the mobility to complete the test. For the performance of the

Timed-Up and Go test, the material and equipment needed consists of a chair, a tape measure to identify
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the distance to walk, adhesive tape to mark the end of the three meters, where the individual should

reverse the gait, two sports belts, where one is for the mobile device and another one for the BITalino

device to measure ECG and EEG data, two BITalino devices and one mobile device. The ECG and EEG

sensors consisted of the use of electrodes placed in the individual before the test (i.e., three electrodes

for ECG sensor, and two electrodes for EEG sensors).

3.3. Validation

The data acquired from the ECG and EEG sensors allowed us to measure different parameters

found in the literature, namely:

• ECG sensor: Heart Rate; Linear Heart Rate Variability; Average of QRS interval; Average of R-R

interval; Average of R-S interval.

• EEG sensor: Frequency; Variability.

In the subsequent sections, the results of the comparison between age and the different variables

measured (Section 3.3.1), finalizing this section with the descriptive statistics of the experiments by

diseases (Section 3.3.2).

3.3.1. Results by Age

The average age of this group of individuals is 83 years old, varying between a minimum of 71 and

a maximum of 97 years of age. The standard deviation is approximately 7 years old, and the respective

coefficient of variation (CVs) is 9%, so we can consider the average as a good central indicator of the

sample. Thus, in order to study the parameters analyzed by age, we started by organizing individuals

into two groups separated by the average sample value, namely individuals aged 83 years or less and

individuals aged over 83 years. The age frequency distribution can be seen in Table 3 as ≤83 years old

and >83 years old.

Table 3. Frequencies of the different ages.

Class of Age Frequency Percent (%) Valid Percent (%)

Valid

[71; 83] 5 35.7 45.5
(83; 97] 6 42.9 54.5
Total 11 78.6 100.0

missing N/D 3 21.4

Total 14 100.0

For the analysis of the signification differences between the averages of age groups, the Student

t-test was used to compare the average values. The assumptions of normality were validated, and the

equality of variances was tested using the Levene F-test, and it was concluded that the variances

between the two age groups for all parameters under analysis are equal (Pr (F > F-test) = p-value > 0.05)

(Table 4).

Initially, we processed the ECG and EEG sensor data to identify the different variables. In Table 3,

we can also observe the results of the Student’s t-test, through the respective limited probability

associated with the test statistic (p-value) and the mean values for the different age ranges for the heart

rate, linear heart rate variability, the average of QRS interval, the average of R-R interval, and the

average of R-S interval variables obtained with the ECG sensor, and the frequency, and variability

obtained with the EEG sensor, of the 11 individuals separated by age. Following the results by age,

there are no homogeneous groups found in the sample.

Through the results of the t-student test, we can conclude that, statistically, there are no differences

between the means of the two age groups for someone of the analyzed parameters ((Pr (|T| > t-test) =

p-value > 0.05); that is, age is not discriminating anything within each parameter
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Table 4. Average values of the Electroencephalography (EEG) and Electrocardiography (ECG) sensors

by age for the 14 studied participants.

Parameters N
Class Age

(Years Old)
Mean ± Standard

Deviation
Standard Error

of Mean
Minimum Maximum

p-Value

F-Test Student t-Test

Heart Rate
5 [71; 83] 90.8 ± 5.6 2.5 86 99

0.295 0.3326 (83; 97] 95.5 ± 8.8 3.6 84 107

Linear Heart Rate Variability (%)
5 [71; 83] 108.2 ± 16 3.8 73 120

0.698 0.8986 (83; 97] 104.5 ± 19.5 4.5 58 121

Average of QRS interval (ms)
5 [71; 83] 654.8 ± 55.5 13.1 578 763

0.347 0.6336 (83; 97] 646.6 ± 40.3 9.3 599 714

Average of R-R interval (ms)
5 [71; 83] 1365.3 ± 371.3 87.5 1018 2013

0.729 0.8956 (83; 97] 1543.9 ± 390.9 89.7 899 2169

Average of R-S interval (ms)
5 [71; 83] 464.6 ± 181.9 42.9 279 683

0.669 0.1896 (83; 97] 233.8 ± 139.9 32.1 16 396

Frequency of EEG
5 [71; 83] 290.5 ± 132.8 31.3 111 434

0.237 0.9166 (83; 97] 243.6 ± 58.9 13.5 151 313

Variability of EEG (%)
5 [71; 83] 88.9 ± 15.8 3.7 64 109

0.239 0.4806 (83; 97] 103.6 ± 27.8 6.4 31 122

3.3.2. Results by Disease

Finally, we processed the ECG and EEG sensor data to identify the different variables. In Table 5,

the average values are presented for the heart rate, linear heart rate variability, the average of QRS

interval, the average of R-R interval, and the average of R-S interval variables obtained with the ECG

sensor, and the frequency, and variability obtained with the EEG sensor of the individuals separated by

disease. This analysis was performed with the disorders present in more than one person. Following

the results by illness, there are no homogeneous groups found in the sample.

Table 5. Descriptive statistics of the ECG and EEG sensors by disease for the 14 studied participants.

Parameter Disease N
Mean ± Standard

Deviation
Standard Error

of Mean

95% Confidence
Interval for Mean

Minimum Maximum
Lower
Bound

Upper
Bound

Heart Rate

Arterial hypertension 12 93.5 ± 7.2 2.1 89.0 98.1 84 107
Cardiac arrhythmia 2 86.5 ± 0.7 0.5 80.2 92.9 86 87

Heart failure 6 90.7 ± 6.0 2.5 84.4 97.0 84 97
Diabetes mellitus Type II 5 93.2 ± 5.7 2.6 86.1 100.3 86 100

Depression 3 89.0 ± 7.0 4.0 71.6 106.4 84 97
Vertigo syndrome 2 94.0 ± 0.0 0.0 94.0 94.0 94 94

Osteoarthritis 2 89.0 ± 7.1 5.0 25.5 152.5 84 94
Osteoporosis 2 89.0 ± 7.1 5.0 25.5 152.5 84 94

Hyperuricemia 2 92.0 ± 7.1 5.0 28.5 155.5 87 97
Bilateral gonarthrosis 2 97.0 ± 0.0 0.0 97.0 97.0 97 97

Chronic obstructive pulmonary disease 1 92.0 ± 7.1 5.0 28.5 155.5 87 97

Linear Heart Rate
Variability (%)

Arterial hypertension 12 98.4 ± 20.9 6.0 85.1 111.7 58.00 122.00
Cardiac arrhythmia 2 100.0 ± 22.6 16.0 −103.3 303.3 84.00 116.00

Heart failure 6 117.4 ± 4.4 1.8 112.7 122.1 110.00 122.00
Diabetes mellitus Type II 5 104.0 ± 21.8 9.7 77.0 131.0 73.00 122.00

Depression 3 119.4± 3.4 2.0 111.0 127.8 115.60 122.00
Vertigo syndrome 2 103.7 ± 23.1 16.4 −104.1 311.4 87.30 120.00

Osteoarthritis 2 120.4 ± 0.5 0.4 115.9 124.8 120.00 120.70
Osteoporosis 2 120.4 ± 0.5 0.4 115.9 124.8 120.00 120.70

Hyperuricemia 2 103.0 ± 26.9 19.0 −138.4 344.4 84.00 122.00
Bilateral gonarthrosis 2 116.0 ± 8.5 6.0 39.8 192.2 110.00 122.00

Chronic obstructive pulmonary disease 1 97.0 ± 18.4 13.0 −68.2 262.2 84.00 110.00

Average of QRS
interval (ms)

Arterial hypertension 12 634.2 ± 33.0 9.5 613.2 655.1 579.6 686.1
Cardiac arrhythmia 2 644.1 ± 42.4 30.0 262.9 1025.3 614.1 674.1

Heart failure 6 647.4 ± 39.6 16.2 605.9 688.9 614.1 713.5
Diabetes mellitus Type II 5 637.0 ± 29.3 13.1 600.6 673.4 617.3 686.1

Depression 3 645.9 ± 27.8 16.0 577.0 714.9 620.0 675.2
Vertigo syndrome 2 637.7 ± 26.5 18.7 400.1 875.3 619.0 656.4

Osteoarthritis 2 647.1 ± 39.7 28.1 290.1 1004.1 619.0 675.2
Osteoporosis 2 647.1 ± 39.7 28.1 290.1 1004.1 619.0 675.2

Hyperuricemia 2 647.1 ± 38.3 27.1 303.4 990.8 620.0 674.1
Bilateral gonarthrosis 2 666.8 ± 66.1 46.8 72.7 1260.8 620.0 713.5

Chronic obstructive pulmonary disease 1 693.8 ± 27.9 19.7 443.5 944.1 674.1 713.5

Average of R-R
interval (ms)

Arterial hypertension 12 1419.1 ± 285.1 82.3 1238.0 1600.2 899 1725
Cardiac arrhythmia 2 1507.0± 203.7 144.0 −322.7 3336.7 1363 1651

Heart failure 6 1433.8 ± 415.2 169.5 998.1 1869.6 1018 2169
Diabetes mellitus Type II 5 1385.2 ± 282.5 126.3 1034.5 1735.9 1018 1678

Depression 3 1255.0 ± 52.7 30.4 1124.1 1386.0 1198 1302
Vertigo syndrome 2 1371.5 ± 499.9 353.5 −3120.1 5863.1 1018 1725

Osteoarthritis 2 1108.0 ± 127.3 90.0 −35.6 2251.6 1018 1198
Osteoporosis 2 1108.0 ± 127.3 90.0 −35.6 2251.6 1018 1198

Hyperuricemia 2 1314.0 ± 69.3 49.0 691.4 1936.6 1265 1363
Bilateral gonarthrosis 2 1717.0 ± 639.2 452.0 −4026.2 7460.2 1265 2169

Chronic obstructive pulmonary disease 1 1766.0 ± 569.9 403.0 −3354.6 6886.6 1363 2169
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Table 5. Cont.

Parameter Disease N
Mean ± Standard

Deviation
Standard Error

of Mean

95% Confidence
Interval for Mean

Minimum Maximum
Lower
Bound

Upper
Bound

Average of R-S
interval (ms)

Arterial hypertension 12 336.1 ± 147.3 42.5 242.5 429.6 15.77 683.00
Cardiac arrhythmia 2 336.0 ± 21.2 15.0 145.4 526.6 321.00 351.00

Heart failure 6 314.3 ± 214.7 87.6 89.0 539.6 15.77 683.00
Diabetes mellitus Type II 5 405.4 ± 160.3 71.7 206.4 604.4 277.00 683.00

Depression 3 208.9 ± 169.7 98.0 −212.6 630.5 15.77 334.00
Vertigo syndrome 2 515.5 ± 236.9 167.5 −1612.8 2643.8 348.00 683.00

Osteoarthritis 2 349.4 ± 471.8 333.6 −3889.6 4588.4 15.77 683.00
Osteoporosis 2 349.4 ± 471.8 333.6 −3889.6 4588.4 15.77 683.00

Hyperuricemia 2 314.0 ± 52.3 37.0 −156.1 784.1 277.00 351.00
Bilateral gonarthrosis 2 266.0 ± 15.6 11.0 126.2 405.8 255.00 277.00

Chronic obstructive pulmonary disease 1 303.0 ± 67.9 48.0 −306.9 912.9 255.00 351.00

Frequency of EEG

Arterial hypertension 12 249.7 ± 88.9 25.7 193.2 306.1 111 434
Cardiac arrhythmia 2 225.5 ± 24.7 17.5 3.1 447.9 208 243

Heart failure 6 301.5 ± 67.5 27.6 230.7 372.3 243 434
Diabetes mellitus Type II 5 283.8 ± 115.5 51.6 140.4 427.2 111 434

Depression 3 277.7 ± 6.0 3.5 262.7 292.6 272 284
Vertigo syndrome 2 381.0 ± 75.0 53.0 −292.4 1054.4 328 434

Osteoarthritis 2 353.0 ± 114.6 81.0 −676.2 1382.2 272 434
Osteoporosis 2 353.0 ± 114.6 81.0 −676.2 1382.2 272 434

Hyperuricemia 2 246.0 ± 53.7 38.0 −236.8 728.8 208 284
Bilateral gonarthrosis 2 291.5 ± 10.6 7.5 196.2 386.8 284 299

Chronic obstructive pulmonary disease 1 253.5 ± 64.4 45.5 −324.6 831.6 208 299

Variability of EEG (%)

Arterial hypertension 12 90.7 ± 25.6 7.4 74.4 107.0 31.00 122.00
Cardiac arrhythmia 2 93.5 ± 23.3 16.5 −116.2 303.2 77.00 110.00

Heart failure 6 108.8 ± 10.8 4.4 97.5 120.2 89.00 122.00
Diabetes mellitus Type II 5 96.0 ± 13.38 6.0 79.4 112.6 85.00 112.00

Depression 3 114.3 ± 6.8 3.9 97.4 131.2 109.00 122.00
Vertigo syndrome 2 84.0 ± 7.1 5.0 20.5 147.5 79.00 89.00

Osteoarthritis 2 105.5 ± 23.3 16.5 −104.2 315.2 89.00 122.00
Osteoporosis 2 105.5 ± 23.3 16.5 −104.2 315.2 89.00 122.00

Hyperuricemia 2 94.5 ± 24.75 17.5 −127.9 316.9 77.00 112.00
Bilateral gonarthrosis 2 111.5 ± 0.7 0.5 105.2 117.9 111.00 112.00

Chronic obstructive pulmonary disease 1 94.0 ± 24.0 17.0 −122.0 310.0 77.00 111.00

4. Discussion

4.1. Main Findings

During the performance of the Timed-Up and Go test, we used ECG and EEG sensors to acquire

the data and correlate the presence of mental and cardiac diseases. The sample of this study includes

a diversity of people with different disorders. Thus, the experimental set was composed of sensors

available in the off-the-shelf mobile device, i.e., accelerometer and magnetometer, and a pressure, ECG,

and EEG sensors connected to a BITalino device. These sensors are practical to use and non-invasive,

allowing the acquisition of different types of data. The data were acquired since the individual gets up

from the chair and returns to the initial position.

This test was applied to older adults, who anonymously provided their age and information

about their diseases for further analysis of the data acquired. The study of the data was performed

considering three viewpoints: the viewpoint by age, by the institution, and by diseases related to

cardiac and neurological problems. Between the persons analyzed, none of them reported neurological

disorders. They reported illnesses that can be detected with ECG and EEG sensors, including arterial

hypertension, arrhythmia, heart failure, coronary artery disease, Parkinson’s disease, and others.

By the end, the environmental conditions may have also affected the results of the test. The ECG values

for the arrhythmia and heart failure are similar, and the values for identifying Parkinson’s disease,

and bilateral gonarthrosis are identical.

Therefore, we performed two types of analysis. These are the relation of the data acquired by the

different sensors and the diseases reported by the individuals. After that, the statistical correlation

between the data obtained and the disorders said.

Starting with the analysis of the data reported by the individuals, and based on the information

related to the previous works, arterial hypertension may be identified with the amplitude of QRS

interval lower than 700 ms, where most of the analyzed individuals reported this disease, except the

persons 4 and 11.
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In continuation, the identification of persons with arrhythmia or heart rate failure is identified

by the irregularities of the heartbeat. Thus, the linear heart rate variability may be used to recognize

these types of diseases, verifying if it is higher than 100%. Most of the persons reported these diseases,

such as the persons 2, 6, 7, 8, 10, and 11.

Finally, the identification of Parkinson’s disease and Bilateral gonarthrosis can be performed with

the high average of QRS interval and an average R-R interval of more than 2000 ms, allowing the easy

recognition of persons 4 and 11. However, person 10 also has bilateral gonarthrosis, but it is not very

well recognized because other diseases are present in this person. In this case, the differences in the

data related to the Bilateral gonarthrosis and other diseases are minored.

Due to the different conditions of the test’s performance, arterial hypertension is more verified in

persons of different ages, except the persons with 76 and 97 years old. Additionally, comparing the

different ages, arrhythmia, or heart rate failure is only verified with the increasing, where the persons

with age equal to 81, 83, 84, 89, and 97 years old. A pattern of persons with coronary artery disease

cannot be identified with the comparison of the different ages. In addition, analyzing the different

ages, Parkinson’s disease, and Bilateral gonarthrosis can be verified in persons aged 76 and 97.

Generally, the difference is correctly identified with the various parameters and constraints during

the data acquisition. There are no diseases related to the EEG reported by the population, but it is

verified that the variability of brain activity increases with age. Additionally, brain activity is lower in

people with Parkinson’s disease.

For the diseases and parameters, the two-way analysis of variance test (two-way ANOVA) was

performed with the aim of verifying the interaction between the two factors, in order to understand

the presence of a disease affected by the values recorded by ECG and EEG sensors.

The model that includes the sources of disease variation and the interaction parameters vs.

diseases is highly significant (Pr (F > F test) = 0 for both sources of variation), which means that there

is an interaction between both parameters and disease factors.

Through the analysis of the confidence intervals for the mean of interaction between Heart Rate

with Diseases, it is possible to conclude that there are no significant differences between the mean

values of this interaction (Figure 2).

Figure 2. The 95% confidence interval for mean of interaction between Heart Rate with Diseases.

Through the analysis of the confidence intervals for the mean of interaction between Linear Heart

Rate Variability with Diseases, it is possible to conclude that there are no significant differences between

the mean values of this interaction (Figure 3).

Through the analysis of the confidence intervals for the mean of interaction between Average of

QRS interval with Diseases, it is possible to conclude that there are no significant differences between

the average values of this interaction (Figure 4).

Through the analysis of the confidence intervals for the mean of interaction between Average

of R-R interval with Diseases, it is possible to conclude that there are significant differences between

the average values of this interaction. In fact, the average values recorded in patients with Bilateral

gonarthrosis is statistically higher than the values recorded in patients with arterial hypertension,

depression, Diabetes mellitus Type II, Osteoarthritis and Osteoporosis (Figure 5). On the other hand,
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in the case of these last two diseases, the averages of QRS interval values are expected to be statistically

equal but lower, followed by depression.

Figure 3. The 95% confidence interval for mean of interaction between Linear Heart Rate Variability

with Diseases.

Figure 4. The 95% confidence interval for mean of interaction between Average of QRS interval

with Diseases.

Figure 5. The 95% confidence interval for mean of interaction between Average of R-R interval

with Diseases.

Through the analysis of the confidence intervals for the mean of interaction between Average of

R-S interval with Diseases, it is possible to conclude that there are no significant differences between

the average values of this interaction (Figure 6). Even so, the average value of this parametron in

vertigo syndrome is highlighted. On the other hand, we highlight similar intermediate values for

arterial hypertension, cardiac arrhythmia, heart failure, osteoarthritis, osteoporosis and hyperuricemia,

as opposed to depression with a lower value.

Through the analysis of the confidence intervals for the mean of interaction between Frequency

of EEG with Diseases, it is possible to conclude that there are no significant differences between the

average values of this interaction (Figure 7). Even so, the average value of this parametron n in

vertigo syndrome disease stands out with higher values, followed by osteoarthritis and osteoporosis.

In contrast, cardiac arrhythmia, hyperuricemia, and arterial hypertension.
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Figure 6. The 95% confidence interval for mean of interaction between Average of R-S interval

with Diseases.

Figure 7. The 95% confidence interval for mean of interaction between Frequency of EEG with Diseases.

Through the analysis of the confidence intervals for the mean of interaction between Variability of

EEG with Diseases, it is possible to conclude that there are no significant differences between the mean

values of this interaction (Figure 8).

Figure 8. The 95% confidence interval for mean of interaction between Variability of EEG with Diseases.

In Figure 9, we can verify the estimated marginal averages resulting from the interaction between

parameters and diseases. The parameters of heart rate, linear heart rate variability, average of QRS

amplitude, and EEG variability are practically constant for the diseases analyzed.
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Figure 9. Marginal estimated means of the interaction between diseases and parameters.

In the case of arterial hypertension, cardiac arrhythmia, Diabetes mellitus Type II, Vertigo

Syndrome and Hyperuricemia, the values of Average of R-S interval are higher than the values of

Frequency EEG. For depression and Bilateral gonarthrosis, the reverse is true.

We can also verify that when these two parameters are the same, we are in the presence of heart

failure, osteoarthritis or osteoporosis.

Following the Average of R-R interval, we observed that a large difference between this parameter

and the Average of R-S interval can mean the presence of Bilateral gonarthrosis disease, cardiac

arrhythmia or arterial hypertension. Lower differences can mean the presence of osteoporosis,

osteoarthritis, depression or hyperuricemia.

4.2. Limitations

In carrying out the experiments, the capture and calculation of the different features posed some

challenges. Thus, the elderly had very different health states, which meant that the acquired values

showed high heterogeneity. The environment for the performance of the test also varies, causing

different variations on the data.

As the acquired data were stored in the FireBase service, which needs an available Internet

connection that sometimes is not possible in real-time. Additionally, as we were using the BITalino

device to acquire the data from pressure, ECG, and EEG sensors, the use of the over-the-air connection,

i.e., Bluetooth, failed sometimes, causing some inconsistencies in the data. If detected, the individuals

repeated the experiments to obtain reliable data. Commonly, all participants performed the experiments

three consecutive times.

Finally, another limitation present in the different experiments was related to data processing and

storage, which may be difficult to perform in real-time on the mobile device. The BITalino device

does not include the timestamps, but it includes a control bit every 10 ms, where we consider its

capture after the start of the data acquisition. The data acquisition was started with an acoustic signal,
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where the data started to acquire. The major challenge was related to the synchronization of the data

acquisition, which was sometimes not possible.

4.3. Comparison with Prior Work

Based on the studies analyzed in Section 1.3, 24 diseases were recognized in the 17 research studies,

but the majority lack the presentation of detailed parameters for the detection. Still, the majority

(20 diseases) does not present the details about the recognition, providing only information about the

use of artificial intelligence. Between the diseases reported in the literature, Cardiovascular death [47] is

detected by the measurement of the P-R interval, and the amplitude of QRS complex. Next, the Primary

and secondary pulmonary hypertension [48] is detected with the Frontal mid-axis of the QRS complex.

Coronary artery disease [51] is detected by the Amplitude of QRS complex, and depressions of S-T and

T-wave. A couple of diseases, i.e., Left and right bundle branch block, premature ventricular contraction,

Wolff–Parkinson–White syndrome, myocardial ischemia, and myocardial injury are detected by the

authors of [53] with durations of P-wave, S-wave, T-wave, QRS interval, P-R interval, Q-T interval,

and S-T segment, and the amplitudes of P-wave, R-wave, and T-wave. Parkinson’s disease and

Bilateral gonarthrosis are detected by the authors of [54] with the duration of R-R interval, P-R interval,

QRS interval, and Q-T interval. In [55], left and right ventricular hypertrophies are detected with the

measurement of heart rate, amplitudes of P-wave, T-wave, and QRS interval, and durations of P-wave,

P-R interval, QRS interval, Q-T interval, and corrected Q-T interval. In continuation, Alzheimer’s

disease [56,57,62] is commonly detected with statistical, amplitude and frequency-based features,

and signal strength, window strength, and sample entropy. Acute ischemic stroke [63] is detected with

densities of the power spectrum. Finally, Epilepsy [58–61] is detected with the 2nd order cumulants

(mean± standard deviation), asymmetry, kurtosis, spectral, Renvi, Kolmogorov–Sinai, variance, energy,

and the maximum and minimum values of the power spectral density. Between the four diseases that

have details about the recognition, i.e., Bradycardia, Tachycardia, Premature ventricular contraction,

and Premature atrial contraction, one of them was available in our dataset as presented in Table 6.

We also verified the normal values of the different parameters for further comparison [67–69].

Table 6. Values of the different features measured by different studies.

Study Diseases Parameters
Values in the

Literature
Average Values

Obtained in our Study
Normal Values in
Healthy Adults

[45] Bradycardia Heart rate <60 bpm N/A
>60 bpm
<92 bpm

[45] Tachycardia Heart rate >100 bpm N/A
>60 bpm
<92 bpm

[45]
Premature ventricular

contraction
Duration of QRS interval >120 ms N/A

>75.5 ms
<108.0 ms

[45] Premature atrial contraction Heart rate
>60 bpm
<100 bpm

N/A
>60 bpm
<92 bpm

[49] Atrial fibrillation
Duration of P-wave N/D N/A

>80 ms
<120 ms

Heart rate Irregular N/A
>60 bpm
<92 bpm

[50] Arrhythmia Heart rate variability N/D >100% N/A
- Heart rate failure Heart rate variability N/A >100% N/A

- Arterial hypertension Duration of QRS interval N/A <700 ms
>75.5 ms
<108.0 ms

[54] Parkinson’s disease;
Bilateral Gonarthrosis

Duration of R-R interval N/A >2000 ms
>600 ms
<1200 ms

Duration of QRS interval N/A >700 ms
>75.5 ms
<108.0 ms

N/A: Not Available. N/D: Not Defined.

However, the diseases highlighted in Table 6 were present in our dataset, which verified different

conditions for its recognition.

Considering the values available in Table 6, it is possible to verify the effects of different diseases

and the age of people analyzed in the different studies. The values presented by the authors of [45] are
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correlated between older adults and healthy adults. The values presented by the authors of [49] are

not comparable as the authors did not present the values obtained. The authors of [50] also did not

present the values of heart rate variability, but a pattern was verified with our study. Comparing the

values reported in other studies to the ones reported in our study, it is evident that the durations of

R-R and QRS intervals are higher in older adults. This is an interesting observation that could have

policy implications. For example, some policies might be enhanced to include additional analysis with

ECG and EEG during Timed Up and Go tests to hopefully detect some emerging medical conditions

before they become too serious. However, in some cases, our dataset may not be enough for the

identification of the right patterns, as verified in the recognition of Coronary artery disease. To do that,

more individuals with different disorders are needed. Likewise, if some medical condition is identified

with the proposed approach, it should be validated with a more traditional clinical method to avoid

false positives.

5. Conclusions

The use of functional tests with systems that allow the acquisition of biological signals presents

an optimal combination when we want to conclude investigations of this type, and the main goals of

this study were to design and develop a method for the acquisition, analysis, and identification of

different patterns of diseases with low-cost sensors.

As it was included in research on the results of the Timed-Up and Go test, it was only possible to

collect the ECG and EEG signals from a small number of individuals. In the future, this study should

be extended to a larger sample to investigate other dependencies. The reported values are in line with

other studies in the literature.

In this sense, the Timed-Up and Go test, with all its phases and aspects, presents itself as a

great example because it allows the analysis of data related to movement and therefore applied to

physiotherapy. On the other hand, the measurement of physical effort and the measurement of signals

related to the cardiac and neurological systems can also be calculated and analyzed.

The ECG and EEG data allow us to know and analyze the functioning of the heart and brain

during the effort. The use of statistical methods of analysis based on the variance in each individual,

considering their physical state, allows us to know and build a set of relationships and patterns for

each of the diseases related to the cardiac and neurological system.

The presented results show that it is possible to find correlations between existing diseases and

different features extracted from ECG and EEG signals collected during Timed-Up and Go tests.

The applied statistical methods suggest that investigation of this type can be critical in helping doctors

and in the first analysis of a patient. It shows patterns in the analyzed diseases, showing that people

with the same diseases have very similar values, which is very encouraging considering the aim

of the study—to detect emerging medical conditions early on. The main contribution of this paper

is that the proposed solution was developed end-to-end and uses affordable sensors and devices,

and computational methods that are easily deployed on mobile devices with limited computing power

and battery capacity.

In the future, and as the development of this research, it will be important to apply

artificial intelligence and machine learning methods to allow the calculation and identification

of diseases automatically.
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5. Conclusion 

 

The focus of this master's dissertation is related to the instrumentation of the 

Timed-Up and Go test for the field of physical therapy. It was performed with the 

use of sensors available in off-the-shelf mobile devices, e.g., accelerometer, 

magnetometer and gyroscope, and the pressure, Electrocardiography and 

Electroencephalography sensors connected to the BITalino devices. The different 

characteristics of the signals from the various sensors were analyzed to 

extrapolate the different conclusions related to the performance of the test. The 

use of such devices can be an excellent complement to the devices currently used 

because they are incredibly reliable and available at a low price as compared to 

specific devices. 

Mobile devices embed several sensors, including accelerometer, 

magnetometer, gyroscope, and Global positioning System (GPS) receiver. These 

sensors allow the acquisition of different types of physical and physiological 

parameters. The sensors connected to the BITalino devices were connected over 

Bluetooth, presenting themselves as an excellent complement to the sensors 

embedded in the mobile devices, because due to the ease of programming, they 

allowed an increase in the number of functionalities that the mobile devices 

already had.  

The main objective of this work described in this dissertation was the creation 

of a method that allowed the instrumentation of the Timed-Up and Go test by 

using sensors. It also enabled the acquisition of different sensors’ signals for the 

automatic calculation of features related to the movement, comparing the results 

with diseases that the individuals who participated in the study had thus allowing 

the creation of standards for each disorder.  

Thus, during this dissertation, several signals were acquired using various 

sensors during the performance of the Timed-Up and Go test, by applying 

statistical analysis and artificial intelligence methods to identify the different 

phases of the test and validate its execution. 

This dissertation was carried out in different phases, in which, initially, the 

study on the state-of-the-art technology for the instrumentalization of the Timed-

Up and Go test was carried out. This analysis consisted of the analysis of the 

characteristics, methods and sensors previously used in the literature. Moreover, 

several studies on the detection of diseases related to movement were analyzed. 

Then, the architecture of the proposed system with different sensors and 

devices was developed, defining the Timed-Up and Go test and the positioning of 

the sensors during the same. 

Then, the system was implemented, and several tests were performed, 

proceeding to the calculation of the signal characteristics of the different sensors 



Vasco Ponciano 

and analyzing the different limitations previously presented. This dissertation 

includes the presentation of the results, the study design, the difficulties 

encountered during the data acquisition in various environments and a statistical 

analysis with the performance of the results of the multiple features, with various 

perspectives per person, per institution and by disease for the pressure sensors, 

accelerometers, and magnetometers. It proves the effectiveness of the method 

and how mobile devices can be quite useful in such investigations, as well as the 

varied conclusions drawn from the multiplicity and heterogeneity of the data 

present, as we used older adults for the experiments and therefore with varying 

degrees and physical states. Next, this dissertation presented the calculation, 

study design, difficulties in data acquisition, methods of data acquisition, 

processing and results for the experiments carried out and the use of the data 

acquired from the Electroencephalography and Electrocardiography sensors. It 

concluded that it was possible to obtain data related to cardiac and cerebral 

activities, to compare them from different perspectives such as by individuals, 

their diseases and the space where these data were acquired. The obtained results 

were used to calculate the duration of each QRS complex, which it was verified 

that is was correlated with the different health diseases present in the population. 

It ends with the validation of the acquired data for diseases related to the heart 

and brain by using Artificial Neural Networks algorithms. It was possible to 

conclude that machine learning algorithms could be used for calculating and 

identifying diseases and to determine the reliability of the datasets that were 

used. Thus, an accuracy of between 89% and 96% implied a very high percentage 

of reliability and efficiency in the recognition of the different variables, which 

allowed us to conclude that this type of data and the method were very reliable. 

Thus, with the accelerometer, magnetometer and pressure sensor, the 

following characteristics were identified: reaction time, end of data acquisition 

time, total test time, turning time, turning time, going time, return time, the 

average of going and return acceleration, average of going and return speed, the 

average of going and return force, and the average of going and return power. In 

turn, with the Electrocardiography and Electroencephalography sensors, the 

following characteristics were identified: Heart rate variability, heart rate, the 

average amplitude of the QRS interval, the average amplitude of the RR interval, 

the average amplitude of the RS interval, frequency of the peaks of the 

Electroencephalography signal and variability of the electroencephalography 

signal peaks. 

For the data analysis, different statistical methods were used, such as ANOVA, 

Pearson's correlation coefficient, and comparative tests, along with artificial 

intelligence methods, such as artificial neural networks. 

However, these experiments revealed some limitations regarding the battery, 

limited storage, Internet connection for sending files to the server and Bluetooth 

connection for the acquisition of data from BITalino devices. 
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This study ended with the preliminary implementation of the artificial 

intelligence methods for detecting disease patterns and relating the different 

variables of Electrocardiography and Electroencephalography. Thus, we could 

verify whether it was possible to detect and identify diseases and age with the 

varying characteristics of the signal.  

The concept of mobile Health has attracted considerable interest and has 

gained increasing importance from professionals from the related areas.  This area 

will present major developments in the near future, and, with this work, we hope 

to contribute to it. 

 

5.1. Future Work  
 

The results obtained in this dissertation are promising. However, it is essential 

to increase the number of tests, and experiments should be carried out with a 

more diverse population from different regions of the country or even the world. 

For such an analysis, different signal characteristics of the various sensors must 

be calculated, trying to reduce the effects of Earth’s gravity. 

In continuation of the work initiated in this dissertation, other artificial 

intelligence methods will be implemented in addition to machine learning 

methods, such as Deep Learning, Adaboost, Support Vector Machine (SVM) and 

Decision Tree methods. Thus, better results can be obtained for detecting diseases 

and identifying the parameters of the Timed-Up and Go test. 


