4,446 research outputs found

    Data analytics 2016: proceedings of the fifth international conference on data analytics

    Get PDF

    Enhanced online programming for industrial robots

    Get PDF
    The use of robots and automation levels in the industrial sector is expected to grow, and is driven by the on-going need for lower costs and enhanced productivity. The manufacturing industry continues to seek ways of realizing enhanced production, and the programming of articulated production robots has been identified as a major area for improvement. However, realizing this automation level increase requires capable programming and control technologies. Many industries employ offline-programming which operates within a manually controlled and specific work environment. This is especially true within the high-volume automotive industry, particularly in high-speed assembly and component handling. For small-batch manufacturing and small to medium-sized enterprises, online programming continues to play an important role, but the complexity of programming remains a major obstacle for automation using industrial robots. Scenarios that rely on manual data input based on real world obstructions require that entire production systems cease for significant time periods while data is being manipulated, leading to financial losses. The application of simulation tools generate discrete portions of the total robot trajectories, while requiring manual inputs to link paths associated with different activities. Human input is also required to correct inaccuracies and errors resulting from unknowns and falsehoods in the environment. This study developed a new supported online robot programming approach, which is implemented as a robot control program. By applying online and offline programming in addition to appropriate manual robot control techniques, disadvantages such as manual pre-processing times and production downtimes have been either reduced or completely eliminated. The industrial requirements were evaluated considering modern manufacturing aspects. A cell-based Voronoi generation algorithm within a probabilistic world model has been introduced, together with a trajectory planner and an appropriate human machine interface. The robot programs so achieved are comparable to manually programmed robot programs and the results for a Mitsubishi RV-2AJ five-axis industrial robot are presented. Automated workspace analysis techniques and trajectory smoothing are used to accomplish this. The new robot control program considers the working production environment as a single and complete workspace. Non-productive time is required, but unlike previously reported approaches, this is achieved automatically and in a timely manner. As such, the actual cell-learning time is minimal

    A Real-Time Path Planner for a Smart Wheelchair Using Harmonic Potentials and a Rubber Band Model

    Get PDF
    We present an efficient path planner for smart wheelchairs based on harmonic potential fields. While the use of harmonic fields can always guarantee finding an existing path, they are extremely computational intensive and a sufficiently detailed map of the environment may lead to an unfeasible solution for the path. Also, since our target application is for the navigation of a smart wheelchair, for people with severe disabilities, the path provided by the harmonic field is frequently too sharp and needs to be smoothened. In order to address the first problem, we propose a parallel algorithm implemented using Graphics Processor Units (GPUs) on the Compute Unified Device Architecture (CUDA) platform. And for the second problem, we developed a rubber band model that provides extra forces to be added to the attracting forces of the harmonic fields. This model assumes that the path is an elastic line, a rubber band, connecting the source and destination points. This rubber band simulates the internal tension forces trying to tighten the line. As the result section demonstrates, both the original path from the harmonic field alone and the path smoothened by the rubber band model have approximate the same length, but the first path contains many bumps, sharp angles, and zig-zags, while the second one provides a much more comfortable ride for the passenger of the wheelchair. Either one is executed in real-time, allowing the proposed method to be used for real navigation of smart wheelchairs

    Review of Intelligent Control Systems with Robotics

    Get PDF
    Interactive between human and robot assumes a significant job in improving the productivity of the instrument in mechanical technology. Numerous intricate undertakings are cultivated continuously via self-sufficient versatile robots. Current automated control frameworks have upset the creation business, making them very adaptable and simple to utilize. This paper examines current and up and coming sorts of control frameworks and their execution in mechanical technology, and the job of AI in apply autonomy. It additionally expects to reveal insight into the different issues around the control frameworks and the various approaches to fix them. It additionally proposes the basics of apply autonomy control frameworks and various kinds of mechanical technology control frameworks. Each kind of control framework has its upsides and downsides which are talked about in this paper. Another kind of robot control framework that upgrades and difficulties the pursuit stage is man-made brainpower. A portion of the speculations utilized in man-made reasoning, for example, Artificial Intelligence (AI) such as fuzzy logic, neural network and genetic algorithm, are itemized in this paper. At long last, a portion of the joint efforts between mechanical autonomy, people, and innovation were referenced. Human coordinated effort, for example, Kinect signal acknowledgment utilized in games and versatile upper-arm-based robots utilized in the clinical field for individuals with inabilities. Later on, it is normal that the significance of different sensors will build, accordingly expanding the knowledge and activity of the robot in a modern domai

    Artificial Intelligence-Based Drug Design and Discovery

    Get PDF
    The drug discovery process from hit-to-lead has been a challenging task that requires simultaneously optimizing numerous factors from maximizing compound activity, efficacy to minimizing toxicity and adverse reactions. Recently, the advance of artificial intelligence technique enables drugs to be efficiently purposed in silico prior to chemical synthesis and experimental evaluation. In this chapter, we present fundamental concepts of artificial intelligence and their application in drug design and discovery. The emphasis will be on machine learning and deep learning, which demonstrated extensive utility in many branches of computer-aided drug discovery including de novo drug design, QSAR (Quantitative Structure–Activity Relationship) analysis, drug repurposing and chemical space visualization. We will demonstrate how artificial intelligence techniques can be leveraged for developing chemoinformatics pipelines and presented with real-world case studies and practical applications in drug design and discovery. Finally, we will discuss limitations and future direction to guide this rapidly evolving field

    The Sources of Economic Energy.

    Get PDF
    The time and space so loved by philosophers and poets, burden and delight of physicists and astronomists, for a long time have been more for economists elements of inconvenience than of analysis. All this finds a justification in the mechanistic logic which also regulates the great economic theories. But the “Newtonian†general economic theory, fascinating though it is and irreplaceable in conferring rigour to theoretical formulations and reducing to a simplified form the apparently (or real) chaos of the great systems, in its necessarily high flying it is unsuitable to interpreting the local level where, instead, it is indispensable to keep one’s feet on the ground, to move in the territory following the infinite combinations of the surrounding countryside, to worm oneself into the maze of economic and social interrelations which make it unique and unrepeatable.The long journey began with the Solow type neoclassical growth models, characterised by the production function with decreasing returns and with perfect market forms, passing through endogenous growth models, now reaches territorialised forms, which have the advantage of being less abstract than neoclassical models, in that they operate in imperfect markets, but which do not manage to keep the growth rate under control, which is always given as positive. From “implosive†models we pass to “explosive†models.Forceably including local interrelations into classical production functions is not successful in overcoming the basic contradictions between Newtonian determinism and localistic indeterminism, with the result that the classical elegance is lost without acquiring localistic concreteness Now the new physicists are trying again with the String Theory, above all in the M version or the Theory of Everything. But this fascinating theory does not yet allow us to understand some fundamental things, for example it does not tell us why particles align in a certain way, in a certain order and with a certain potential. Adapting concepts and paths elaborated by post-Newtonian physics, the economist could do much less and a bit more. Much less because he is not required to solve in any way the mysteries of the universe, a bit more because, perhaps, he can describe without contradictions, using known economic science, what physicists, in their field, are not able to describe: he can tell us, using formal models why at a certain point in time and space a determined productive set composed of a well defined number of “economics quanta†relative to material and immaterial elements, of which is known the magnitude, order and force, behaves like a string and begins to “vibrate†setting off the chain reaction of economic development.

    A Machine Learning Enhanced Scheme for Intelligent Network Management

    Get PDF
    The versatile networking services bring about huge influence on daily living styles while the amount and diversity of services cause high complexity of network systems. The network scale and complexity grow with the increasing infrastructure apparatuses, networking function, networking slices, and underlying architecture evolution. The conventional way is manual administration to maintain the large and complex platform, which makes effective and insightful management troublesome. A feasible and promising scheme is to extract insightful information from largely produced network data. The goal of this thesis is to use learning-based algorithms inspired by machine learning communities to discover valuable knowledge from substantial network data, which directly promotes intelligent management and maintenance. In the thesis, the management and maintenance focus on two schemes: network anomalies detection and root causes localization; critical traffic resource control and optimization. Firstly, the abundant network data wrap up informative messages but its heterogeneity and perplexity make diagnosis challenging. For unstructured logs, abstract and formatted log templates are extracted to regulate log records. An in-depth analysis framework based on heterogeneous data is proposed in order to detect the occurrence of faults and anomalies. It employs representation learning methods to map unstructured data into numerical features, and fuses the extracted feature for network anomaly and fault detection. The representation learning makes use of word2vec-based embedding technologies for semantic expression. Next, the fault and anomaly detection solely unveils the occurrence of events while failing to figure out the root causes for useful administration so that the fault localization opens a gate to narrow down the source of systematic anomalies. The extracted features are formed as the anomaly degree coupled with an importance ranking method to highlight the locations of anomalies in network systems. Two types of ranking modes are instantiated by PageRank and operation errors for jointly highlighting latent issue of locations. Besides the fault and anomaly detection, network traffic engineering deals with network communication and computation resource to optimize data traffic transferring efficiency. Especially when network traffic are constrained with communication conditions, a pro-active path planning scheme is helpful for efficient traffic controlling actions. Then a learning-based traffic planning algorithm is proposed based on sequence-to-sequence model to discover hidden reasonable paths from abundant traffic history data over the Software Defined Network architecture. Finally, traffic engineering merely based on empirical data is likely to result in stale and sub-optimal solutions, even ending up with worse situations. A resilient mechanism is required to adapt network flows based on context into a dynamic environment. Thus, a reinforcement learning-based scheme is put forward for dynamic data forwarding considering network resource status, which explicitly presents a promising performance improvement. In the end, the proposed anomaly processing framework strengthens the analysis and diagnosis for network system administrators through synthesized fault detection and root cause localization. The learning-based traffic engineering stimulates networking flow management via experienced data and further shows a promising direction of flexible traffic adjustment for ever-changing environments

    Neural Networks Based Path Planning and Navigation of Mobile Robots

    Get PDF

    Learning Quasi-Static 3D Models of Markerless Deformable Linear Objects for Bimanual Robotic Manipulation

    Full text link
    The robotic manipulation of Deformable Linear Objects (DLOs) is a vital and challenging task that is important in many practical applications. Classical model-based approaches to this problem require an accurate model to capture how robot motions affect the deformation of the DLO. Nowadays, data-driven models offer the best tradeoff between quality and computation time. This paper analyzes several learning-based 3D models of the DLO and proposes a new one based on the Transformer architecture that achieves superior accuracy, even on the DLOs of different lengths, thanks to the proposed scaling method. Moreover, we introduce a data augmentation technique, which improves the prediction performance of almost all considered DLO data-driven models. Thanks to this technique, even a simple Multilayer Perceptron (MLP) achieves close to state-of-the-art performance while being significantly faster to evaluate. In the experiments, we compare the performance of the learning-based 3D models of the DLO on several challenging datasets quantitatively and demonstrate their applicability in the task of shaping a DLO.Comment: Under review for IEEE Robotics and Automation Letter
    • …
    corecore