A Machine Learning Enhanced Scheme
for Intelligent Network Management

Submitted by Yuan Zuo to the University of Exeter
as a thesis for the degree of
Doctor of Philosophy in Computer Science
In September 2019

This thesis is available for Library use on the understanding that it is
copyright material and that no quotation from the thesis may be

published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has
been identified and that no material has previously been submitted and

approved for the award of a degree by this or any other University.

November 2019

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements. This
dissertation contains fewer than 65,000 words including appendices, bibliography, footnotes,

tables and equations and has fewer than 150 figures.

Submitted by Yuan Zuo to the University of Exeter
as a thesis for the degree of

Doctor of Philosophy in Computer Science

In September 2019

November 2019

Acknowledgements

Firstly, I would like to acknowledge the constructive and insightful academic support from
my first supervisor, Prof Geyong Min. His perspective suggestions and guidance substantially
help me tackle challenging problems in my research. It is a great honor to work with him
and I would like express my appreciation to Prof Geyong Min.

Secondly, I would like to show my gratitude to my second supervisor, Dr Yulei Wu,
who is enthusiastic and positive to my work and always provides far-sighted and profound
suggestions. His working attitude with high responsibility and seriousness inspires me and
makes a decent example. I really appreciate Dr Wu’s kind and professional help with my
research when I get stuck at some point.

I would like to show my special thanks to my colleagues in the Innovation Center office,
who accompany me and help me with any troubles. The special friendship makes me realize
how kind and wonderful they are. I have spent four years at University of Exeter, where
I enjoy the studying and living, and have a meaningful memory. I would also like to say
thank you to my cooperators working in Huawei technology company, who are patient and
professional to make the practical project done without compromising functionality and
performance. I also would like to thank you to those who help and care about me while not
mentioned here.

Lastly, I am really grateful to my parents who love me and offer full support all the time.
Their education and encouragement gives me faith in a quest for knowledge and pursuing my
Ph.D. Without their love and understanding, there is no way for me to reach this far.

Publications

* Zuo, Y., Wu, Y., Min, G., & Cui, L. (2019). Learning-based network path planning for
traffic engineering. Future Generation Computer Systems, 92, 59-67;

e Zuo, Y., Wu, Y., Min, G., Huang, C., & Zhang, X. (2017). Distributed Machine
Learning in Big Data Era for Smart City. In From Internet of Things to Smart Cities
(pp. 151-177). Chapman and Hall/CRC;

* Huang, C., Wu, Y., Zuo, Y., Pei, K., & Min, G. (2018). Towards Experienced Anomaly
Detector through Reinforcement Learning. In Thirty-Second AAAI Conference on
Artificial Intelligence;

* Huang, C., Wu, Y., Yuan, Z., & Min, G. (2017). Toward Practical Anomaly Detection
in Network Big Data. In Big Data and Computational Intelligence in Networking (pp.
411-432). Chapman and Hall/CRC;

* (Under Review) Zuo, Y., Wu, y., Min, G., Pei, K., Huang, C., & Wang, H. (2019) A
New Anomaly Detection Framework for Micro-services Architecture Systems Using
Temporal Service Execution Logs and Spatial Service Query Traces. The IEEE
Transactions on Cognitive Communications and Networking (TCCN);

Abstract

The versatile networking services bring about huge influence on daily living styles while
the amount and diversity of services cause high complexity of network systems. The
network scale and complexity grow with the increasing infrastructure apparatuses, networking
function, networking slices, and underlying architecture evolution. The conventional way is
manual administration to maintain the large and complex platform, which makes effective
and insightful management troublesome. A feasible and promising scheme is to extract
insightful information from largely produced network data. The goal of this thesis is to use
learning-based algorithms inspired by machine learning communities to discover valuable
knowledge from substantial network data, which directly promotes intelligent management
and maintenance. In the thesis, the management and maintenance focus on two schemes:
network anomalies detection and root causes localization; critical traffic resource control and
optimization.

Firstly, the abundant network data wrap up informative messages but its heterogeneity
and perplexity make diagnosis challenging. For unstructured logs, abstract and formatted log
templates are extracted to regulate log records. An in-depth analysis framework based on
heterogeneous data is proposed in order to detect the occurrence of faults and anomalies. It
employs representation learning methods to map unstructured data into numerical features,
and fuses the extracted feature for network anomaly and fault detection. The representation
learning makes use of word2vec-based embedding technologies for semantic expression.

Next, the fault and anomaly detection solely unveils the occurrence of events while failing
to figure out the root causes for useful administration so that the fault localization opens a
gate to narrow down the source of systematic anomalies. The extracted features are formed
as the anomaly degree coupled with an importance ranking method to highlight the locations
of anomalies in network systems. Two types of ranking modes are instantiated by PageRank
and operation errors for jointly highlighting latent issue of locations.

Besides the fault and anomaly detection, network traffic engineering deals with network
communication and computation resource to optimize data traffic transferring efficiency.
Especially when network traffic are constrained with communication conditions, a pro-active

path planning scheme is helpful for efficient traffic controlling actions. Then a learning-based

traffic planning algorithm is proposed based on sequence-to-sequence model to discover
hidden reasonable paths from abundant traffic history data over the Software Defined Network
architecture.

Finally, traffic engineering merely based on empirical data is likely to result in stale
and sub-optimal solutions, even ending up with worse situations. A resilient mechanism
is required to adapt network flows based on context into a dynamic environment. Thus, a
reinforcement learning-based scheme is put forward for dynamic data forwarding considering
network resource status, which explicitly presents a promising performance improvement.

In the end, the proposed anomaly processing framework strengthens the analysis and di-
agnosis for network system administrators through synthesized fault detection and root cause
localization. The learning-based traffic engineering stimulates networking flow management
via experienced data and further shows a promising direction of flexible traffic adjustment

for ever-changing environments.

List of Abbreviations

Al Artificial Intelligence

ANN Artificial Neural Network

API Application Program Interface

AR Auto Regression

ATM Asynchronous Transfer Mode

CNN Convolutional Neural Network

CEGAR Counterexample Guided Abstraction Refinement
CSI Channel State Information

DBSCAN Density-Based Spatial Clustering of Applications with Noise

DBN Deep Belief Net

DDPG Deep Deterministic Policy Gradient
DM Dependency Matrix

DL Deep Learning

DRL Deep Reinforcement Learning
EM Expectation-Maximization
GNU GNU Is Not Unix

GPU Graphic Processor Unit

GRU Gated Recurrent Unit

HMM Hidden Markov Model

HPC High Performance Computing

HVFT High Volume Flexible Time

xii

List of Abbreviations

ICN
ii.d.
IoT

IP
IPLoM
NDN
NLP
NN
NTF
NUM
MDP
MPLS
LCS
LSTM
OCC
OSPF
OSVM
QoE
QoS
RBF
RNN
RL
RTT
SDN
SDR
SDWN
SIG

Information Centric N etworking
Independent and Identical Distributed
Internet of Things

Internet Protocol

Iterative Partitioning Log Mining
Named Data Networking

Natural Language Processing
Neural Networks

Non-negative Tensor Factorization
Network Utility Maximization
Markov Decision Process
Multi-Protocol Label Switching
Longest Common Subsequence
Long Short Term Memory
One-Class Classification

Open Shortest Path First

One-class Support Vector Machine
Quality of Experience

Quality of Service

Radial Basis Function

Recurrent Neural Networks
Reinforcement Learning

Round Trip Time

Software Defined Network
Software Defined Router

Software Defined Wireless Network

Structure-of-Influence Graph

xiii

SLCT
SR
STE
TE
TEM
TF-IDF

VoIP

Simple Logfile Clustering Tool

Segment Routing

Statistical Template Extraction

Traffic Engineering

Trace Error Matrix

Term Frequency-Inverse Document Frequency

Voice over Internet Protocol

Table of Contents

List of Figures Xix
List of Tables xxi
1 Introduction 1
I.1 Overview e 1

1.2 Network Environment and Scenarios 2

1.3 Motivation oL e e e e e 3
1.3.1 Intelligent Anomaly and Fault Analysis 3

1.3.2 Traffic Engineering from Hidden Knowledge 4

1.4 Challenges. e e 4

1.5 Contributions 6

1.6 Overview of This Thesis 7

2 Literature Review 9
2.1 Log Analysis for Network Maintenance 10
2.1.1 Log data Preprocessing for Analysis 11

2.1.2 Statistics-based Network Fault Diagnosis 17

2.1.3 Finite State Machine-based Network Fault Diagnosis 21

2.1.4 Deep Learning-based Network Anomaly and Fault Diagnosis . . . 22

2.2 Traffic Engineering for Network Management 25
2.2.1 Classic Traffic Engineering for Network Management 25

2.2.2 Deep Learning-based Traffic Engineering 27

3 Network Systematic Event Discovery and Anomaly Detection 35
3.1 Introduction L 35

3.2 An Overview of System Structure 36

3.3 Event Template Extraction 37

3.4 Partitioning-based Log Template Extraction 38

xXvi

Table of Contents

3.4.1 Bulk Recursive Partitioningo 39

34.2 Segmented Library Iteration 41

3.5 Transaction-level Representation Learning 43
3.6 Service Query Tracing Representation Learning 45
3.7 Integrated Anomaly Detection Based on Temporal-Spatial Data Representation 47
3.8 Experiment Results and Analysis 49
3.8.1 Evaluation of Template Extraction 50

3.8.2 Evaluation of Transactional Topic Representation 51

3.8.3 Evaluation of Tracing Representation 52

3.8.4 Evaluation of Anomaly Detection 52

39 Summary 53
4 Network System Fault Localization and Ranking 55
4.1 Introduction 55
4.2 Overview of Fault Localization Framework 56
4.3 Ranking Based on Anomaly Degree 57
4.4 Trace Error Matrix and Dependency matrix 60
4.5 Localizing Services by Significance Ranking 62
4.6 Experiments e 64
4.6.1 Experimental Environmentand Data 65

4.6.2 Anomaly Degree Analysis 66

4.6.3 TheRootCause Analysis 68

47 Summary e e e e e e 70
5 Network Traffic Resource Management 71
5.1 Introduction L 71
5.2 The Proposed Framework, 72
5.2.1 Problem formulation 72

5.2.2 The Inspired Forwarding Path Model 73

5.3 Background Techniques 75
5.3.1 Recurrentneural network L0000 75

5.3.2 The Encoder-Decoder structure 76

5.3.3 The sequence-to-sequence model 77

5.3.4 Attention mechanism 78

5.35 Beamsearch 79

5.4 Experiments and Analysis Lo 80

5.4.1 The seq2seq model training process 81

Table of Contents Xvii

6

5.4.2 SDN emulation experiments with learning-based controller 86

5.5 Summary ... 88

Dynamic Network Traffic Engineering: A Reinforcement Learning Perspective 89

6.1 Introduction 89
6.2 Preliminaries 90
6.2.1 Overview of Reinforcement Learning 90
6.22 DeepQ-learning 93
6.3 Problem Formulation 94
6.4 ProposedScheme 95
6.4.1 Constrained Path Planning 97
6.4.2 Dynamic Node-level Prediction 97
6.5 Experiments 98
6.5.1 Evaluation of Constrained Path Planning 100
6.5.2 Evaluation of Dynamic Path Planning 101
6.6 Summary e 102
Conclusion and Future Work 105
7.1 Conclusions 105
7.2 FutureWork L 107

References 109

List of Figures

1.1

3.1

3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1

52
53
54
5.5
5.6
5.7

Data-driven Work Flow in Large-scale Distributed Network. 3

The Proposed Framework for Runtime System Anomaly Detection in A

Micro-services Architecture Lo 36
Embedding Learning of Word2vec and Doc2vec 44
Transaction Execution Behavior Representation 45
A User Request from Front-end to Back-end Path 46
A Case of The OSVM to Train Samples against The Origin 48
Visualization of Transactional Representation 51
Visualization of All Samples with Ground Truth Labels 52
Visualization of Anomaly Detection Labels 53
Framework of Fault Root Cause Localization 56
Visualization of Recurrent Neural Networks Structure 58
Tracing Graph Based on Systematic Query Dependence 63
The Topological Interaction with Each Fundamental Services. 65

The Training Accuracy of Normal Instance Creation and Deletion Task Samples 66
The Anomaly Degree of Normal Instance Creation and Deletion Task Samples 67

The Anomaly Degree of Abnormal Instance Creation Task Samples 67

A High-level Illustration of The Proposed Forwarding Method Based on

Seq2SeqModel 74
A Simple Architecture of RNN. 76
An Abstract Structure of Seq2SeqModel.o 77
An Illustration of Attention Mechanism 78
An Example of Beam Search with Beam Width-7 80
The Topology of Europe GEANT Network 82

The Topology of 10x10 Grid Network 82

XX List of Figures
6.1 Classic Reinforcement Learning Process in A Feedback Loop 91
6.2 Deep Reinforcement Learning in SDN Networking 95
6.3 The Experiment Diagram of Constrained Path Planning 99
6.4 The Experiment Diagram of Dynamic Path Planning 99
6.5 The Throughput Gaining Based on One Node Constrained Path Planning . . 101
6.6 The Throughput Gaining Based on Dynamic Forwarding Path Planning . . 102

List of Tables

2.1
2.2
23

2.4

3.1
3.2
3.3

4.1

5.1
5.2
5.3

54

5.5

5.6

5.7

5.8
59

Raw Log Message Samples Collected in BlueGene/LL Supercomputer
Template/Pattern Examples 0oL,
Recent Efforts Based on Deep Learning for Network Anomaly and Fault
Analysis e
Recent Efforts Based on Deep Learning for Traffic Engineering

Log Datasets in Experiments
Transactional Data Description

Template Extraction Results
OpenStack Services and PageRank Values

Data Size By Path Length of One-node Constrain
Data Size of The Training and Testing Set of One-node Constrain
The Accuracy of The Training and Evaluating of The Proposed Model in
The GEANT Network
The Accuracy of The Training and Evaluating of The Proposed Model in
The Grid Network
The Accuracy of The Training and Testing in Two-node Constraint Experi-
ments and Dataset Size, Beam Width=5.
Experiment Results of One-node Constraint in The GEANT Network

Experiment Results of One-node Constraint in The Grid Network
Experiment Results of Two-node Constraint in The GEANT Network

Experiment Results of Two-node Constraint in The Grid Network

Chapter 1

Introduction

1.1 Overview

The emerging versatile networking services [1] has greatly improved daily life styles while
making the current Internet environment increasingly hierarchical and complicated. With the
advent of novel applications, e.g., video streaming, VoIP and etc., the global servicing policy
demands network system rapid scaling and being compatible with stale-fashioned facilities.
It imposes massive stress on its effective management. Human force-based administration
inevitably exposes of its serious low-efficiency defect due to the complexity raised by large-
scale distributed network systems. The distributed and paralleled architecture can easily
disorder the informative records by concurrent executions and isolate one integrated function
as separated parts.

A network management system dedicates to a productive networking environment with
stable fundamental mechanisms [2]. It is usually via its core functions, e.g., monitoring,
analysis, alerting and etc., to provide reliable and elastic networking services. In order to
maintain smooth operation status and provide high quality services, the networking anomaly
and fault analysis becomes one of the primary task of benign network management, which
has drawn substantial attention to researchers [3, 4]. It has become unrealistic and wasteful
to manually discover useful and hidden clues from intensely intersected histories. Because
of costly manual recognition, the automation of analysis and processing is a straightforward
approach to gain overwhelmingly efficient performance of anomaly detection.

The anomaly and fault analysis focuses on abnormal networking behaviors detection and
root cause localization [5] through elaborating dissection of system intrinsic knowledge and
dynamic status data. It is of special significance since one serious incident occurrence has
a large change to result in heavy performance reduction, further serious local malfunction

and even a catastrophic global collapse. There is no doubt that in large-scale distributed

2 Introduction

networking environment, application-oriented manual analysis with ad-hoc auxiliary toolkits
and expertise fails to match the speed of the ever-changing system utility. The common
wisdom to relieve the processing pressure is to take full advantage of machine status record
data with state-of-the-art analysis automation enabled by data mining and machine learning
algorithms [2, 6]. The existing data-driven efforts endeavor to build models based on specific
applications to perceive the implicit value of data. Although notable performance has been
reached, there still lacks a compatible regulation to fuse multiple data sources and synthesize
a joint data representation from the perspective of broader scenarios. One core intention of
this thesis is to concentrate on anomaly and fault analysis under the large-scale distributed
network circumstance.

Technically, the anomaly and fault analysis is a reactive process to networking man-
agement, since the analyzer awaits status records data and discovers information of special
interest. To pro-actively keep benign operation state of a system, the adaptive network re-
source management mechanism is required, such as Traffic Engineering. Traffic Engineering
(TE) is crucial for enhancing the utility and performance of networks in the era of big data
[7, 8]. It has been a hot topic in recent research trend [7—11], due to the increasing demands
on dynamic network maintenance, management and Quality-of-Service (QoS) guarantee [8].
Increasing network service demands generate considerable data, while the data entail infor-
mative patterns describing the features and in turn will benefit the learning-based methods.
This thesis will consider the serious challenges of applications for large-scale and complex

network traffic engineering.

1.2 Network Environment and Scenarios

Generally, the network management solution targets at a complex, highly correlated and
inconsistent background environment, as shown in Fig. 1.1. As generalizing to broader
applications, the work flow can be separated into three planes, networking infrastructure
plane, data collection and retrieval plane, and general purpose analysis plane. From Fig. 1.1,
the first networking plane consists of infrastructures and active apparatuses, upon which
key status and operation data collectors are embedded and deployed. On the left side, users
connect to the Internet via portable and wired desktop-based devices, where user access,
queries and reports are retrieved through data collection interfaces. Similarly, on the right side,
service providers respond to users with complete results, where system execution sequences
are stored in service behavior data warehouse. As interaction middle layer, network base
station, routers, switches and etc., couple the two sides as a complete network connection

process, where communication traces are tracked and retrieved into communication tracing

1.3 Motivation 3

warehouse. Within the data retrieval plane, data warehouses are supposed to be maintained
uniformly by off-the-shelf database techniques to keep efficiency of subsequent analysis

access.

Data Representation Data Data-driven
Preparation Learning Fusion Applications

D % Spatial g X, X =
r g/i> Features Q/> e @ Q/> 2dad
D’ %’emporal - f@‘\

Features S ==

Analysis Plane

Data Analysis Interfaces

Data Retrieval Plane User Behavior Communication Tracing Service Behavior
Data Warehouse Data Warehouse Data Warehouse

Data Collection Interfaces

Networking Plane

Fig. 1.1 Data-driven Work Flow in Large-scale Distributed Network.

The separated planes unambiguously illustrates a universal purpose analysis architecture
from underlying meta-data collection through customized data storage and preparation to
analysis engine. Based on the current underlying stale and novel collection mechanisms, data
obtained are organized in terms of various formats and are stored in easy-access database
for regular retrieval. As aforementioned, current efforts are inclined to either base on an
empirical deterministic model or expert experiences, which weakens the generalization
capacity. The top layer in Fig. 1.1 displays an overview of potential streaming pipeline-like
work flow consisting of extracting spatial-temporal characteristics and incorporating data

heterogeneity for the downstream insightful analysis and decision tasks.

1.3 Motivation

1.3.1 Intelligent Anomaly and Fault Analysis

The scale of network environment, for example, the typical micro-services architecture
[12-15], can easily hide small-size troubles with ambiguous symptoms in various locations
and the informative data can flood into downstream tasks. One of the crucial tasks is anomaly

and fault deep analysis consisting of occurrence detection and root localization [16], which

4 Introduction

guarantees reliability and robustness of a system. To accomplish this task, informative
messages are indispensable and produced endlessly while excessive data can in turn flood
into analyzers preventing immediate issue discovery and settlement. The information is
likely to be temporal in text-formed logs and time-series, or spatial in tracing records and
locations, which can be heavily twisted and entangled. As such, intelligent and fast processing
mechanisms are in urgent need to obtain in-depth understanding of implicit attributes to

discover latent failures by abundant data.

1.3.2 Traffic Engineering from Hidden Knowledge

Another vital issue in network management is traffic engineering that involves in optimizing
the data transferring in network environment. The traffic often appear in a large-scale
distributed network system, i.e., the SDN, with controllable switches and routers. When
the volume of traffic increases promptly exceeding the growth of apparatuses, the stale-
fashioned and locally-optimal traffic engineering will inevitably reduce the performance of
networking [10, 11]. On the other hand, substantial event records and trace data are also kept,
which probably entails hidden knowledge to globally perceive the complex situation. The
knowledge that can be inferred from experiences is able to assist in-depth prediction, planning
and decisions to optimize network utility. The processing mechanism driven by knowledge
and history data are undoubtedly beneficial to global and adaptive traffic engineering by
proactive planning, which leads to data transfer path calculation.

1.4 Challenges

As the complexity of network equipment grows, the amount and perplexity of data increases
promptly, which heavily obstructs the efficiency of network management. Here, several
challenges are listed but not limited in the following ways:

Knowledge Learning for Anomaly and Fault Analysis:
Traditional perspective to anomaly analysis is confined to single data source mining
and learning, which is inclined to neglect featured clues from other types of data.
For instance, the isolated temporal and spatial data analysis loses the correspondence
between each other. Furthermore, versatile network components tend to constantly
generate its own pre-defined mutually inconsistent information, probably including
human-readable text network logs, temporal traffic frames, spatial topology graphs
and etc. Though multi-source data analysis is a viable idea to extract joint information

from multiple data source, there lacks a universal processing mechanism to deal with

1.4 Challenges 5

non-uniform data, like time-based sequences and space-based structures. To be specific,
sequential logs serve as a prevalent record means for most of network equipments while
they are defined as distinctive formats. The seemingly chaotic logs with volatile data
variables are not suitable for numerical computing. Though the structural processing
can be implemented to some extent, categorical data still prevents semantics analysis
to fully understand the implication of logs. That is categorical data lacking numerical
representation to fit in the recent advances of machine learning algorithms. Another
noteworthy issue is that the simple message combination solely unveils incidents
occurrence without useful sources of root causes to guide subsequent maintenance.
Apparently, the root causes shall be discovered from heavily twisted and interleaved

data without straightforward hints.

Experience Interpretation for Traffic Path Planning
Three serious issues are considered to be heavy influences of traffic path planning.
Firstly, the conventional wisdom of traffic path prediction is to consider neighbor-
hood status collected by one single router or switch, which rarely holds global view.
Additionally, the traditional switch devices can only perceive local regional and inter-
connected nodes so that optimization algorithms are prevented from fetching global
information. Presumably, the recent advances in Software-Defined Network (SDN) is
able to adjust static data traffic schemes into elastic architectures, which separates net-
working behaviors as pure data transferring and environment-aware decision-making.
Secondly, as for decision-making, the traditional ways attempt to formulate strict
mathematical models to fully adapt to various situations, however the realistic en-
vironments are ever-changing without fixed paradigms so that failing to fit in strict
models. Therefore, knowledge learning for flexible decision is required to adapt to
shifty physical situations. Thirdly, elastic decision-making will lead to urgent demand
of knowledge extraction and interpretation from networking experience data. Never-
theless, massive correlated information are produced accordingly without clear clue of
how relevant they are to targeted optimization applications. Furthermore, networking
data contain large amount of unstructured and categorical data that fail to be integrated
into numerical analysis. As such, adaptive methods should be employed to digest

various data and export insightful knowledge accordingly.

6 Introduction

1.5 Contributions

This thesis endeavors to tackle large-scale network management issues in terms of network
anomalies and faults detection; root causes localization; constrained traffic engineering; and

adaptive and flexible traffic engineering. These contributions are summarized as below:

Anomaly and Fault Detection and Localization Scheme:
The proposal aims at general anomaly and fault detection and localization in the context
of micro-services via temporal-spatial joint analysis including representation learning
for categorical log data and tracing representation, and via root cause analysis with

service importance index.

Categorical log data are with temporal features from the perspective of sequential
log generation. To deal with log data, we firstly propose a recursive partitioning log
template extraction algorithm that has competitive performance and achieves faster
processing speed. It accomplishes uniformly formating unstructured logs. Secondly,
distributed representation-based semantic expressions are proposed for abstract log
templates and individual tasks. It transforms categorical data into computable numer-
ical vectors. Spatial data relate to locations of system services and the interactions
among themselves. We propose the system service dependency and spatial correla-
tion based on a distributed service-based tracing mechanism with calling duration
and frequency. It transforms topological configurations into interpretable numerical
representations. To reveal the hidden root causes, we propose a two-stage root cause
localization framework through anomaly degree computation based on Deep Learning
and a service importance index ranking mechanism based on PageRank. It extracts

latent dependency from intrinsic topology.

Experience Learning based Traffic Engineering:
The proposal is designed to adapt knowledge learning from experience data into

constrained networking data transferring path proactive planning.

History requested networking data are regarded as sequence-based experience for
sequences transformation. The planning resembles a sequence construction processing.
We therefore propose a sequence-to-sequence based model for constrained forwarding
traffic planning, enhanced by the attention mechanism to perceive path context and
beam search to avoid local optimal. It captures data forwarding directions and infers
available segments. Pure knowledge mining from experience with paired labels is a
rigid supervised process, however the physical network is dynamical and unstable,

which requires an adaptive planning outline. We accordingly propose a Deep Re-

1.6 Overview of This Thesis 7

inforcement Learning based model for constrained forwarding planning to mitigate
throughput reduction and for dynamic forwarding strategy based on the previous ac-
cessed path. It focuses on elastic routing and forwarding strategies for ever-changing

environment.

1.6 Overview of This Thesis

The remainder of this thesis is briefly presented here:

Chapter 2 investigates and categorizes notable research contributions in the sphere of
network management with respect to anomaly and fault analysis and traffic engineering. It
consists of the traditional statistics-based methods and recent learning-based algorithms for
both anomaly analysis and traffic engineering. Additionally, the text-based log template
extraction reviews are introduced for log data based anomaly analysis.

Chapter 3 introduces temporal and spatial data joint analysis for anomaly and fault
detection through representation learning. The temporal data are system logs that record key
status. With proposed segment and partition based template extraction, unstructured logs are
converted into abstract forms. The spatial data come from service trace information which
genuinely captures the dependency of queries. The heterogeneous temporal and spatial data
are semantically vectorized by the representation learning and jointly assist the final samples
identification.

Chapter 4 proposes a two-stage analysis scheme for ranking-based root cause localiza-
tion. The first stage focuses on the anomaly degree inferred from operation logs by fitting a
neural sequential model. This process not only attempts to approximate sequential relations
in normal conditions but also highlight the most obvious discrepancy between the expectation
and practice. At the second state, an importance value is calculated based on the PageRank
algorithm and an error tracing matrix is constructed to merge as a synthesized index. The
synthesized index is then used to rank the most suspicious service pointing at a specific task.

Chapter 5 introduces the sequence-to-sequence framework from Natural Language
Processing into network traffic data fitting. With the strength of attention mechanism and
beam search, the data flow forwarding path is well planned under the node location constrains.
The model is trained with the path records in two topologies and is deployed in the Mininet
Software Defined Network (SDN) emulator to evaluate its feasibility.

Chapter 6 focuses on the adaptive traffic engineering in difference scenarios from the
perspective of Reinforcement Learning, which is enhanced by Deep Learning at the same
time. For the node constrained application in the GEANT topology, the Deep Q-learning is

able to find the optimal constrained node to reduce the throughput loss. For the dynamic path

8 Introduction

prediction in the 10 x 10 Grid topology, the Deep Q-learning converges to a stable level that
offers the highest throughput for the data transferring requests. The empirical results show
the promising direction for the future networking architecture traffic engineering.

Chapter 7 draws the core conclusion of the thesis and introduces several future directions
and work.

Chapter 2
Literature Review

When it comes to network management, the common wisdom is an in-depth understanding
of a network system and an effective control based on the understanding. It involves five
core topics defined by the International Organization for Standardization (ISO) network
management model [17], including fault, configuration, accounting, performance, and se-
curity management, acronymized as the FCAPS. Specifically, the fault management refers
to a series of systematic proactive and reactive behaviors towards network fault occurrence;
the configuration management corresponds to core settings that control network devices;
accounting management monitors and analyzes the status of all types of users; performance
management keeps track of the measurement of networking performance and quality of
services; lastly, the security management guarantees legal and safe access to all assets through
the authorization and authentication. Centralized and decentralized schemes [18, 19] are suc-
cessively proposed to improve its utility and capacity. The challenges [19, 20] are constantly
increasing because of incremental magnitude and complexity of physical network equip-
ments and structures. Intelligent and cognitive proposals are introduced to make networking
available and reliable [1, 5, 20].

In addition to the contributions in academia, many systematic implementations are
achieved in practice to conduct pragmatic trials. Three typical trials have gained popu-
larities across industries, from an enterprise-oriented commercial solution, Splunkl, to an
open-sourced components integration, ELK?, and to a composite management platform,
OpenNMS?. Splunk has a reputation in commercial IT infrastructure, offering operational
and systematic status monitoring and analysis. It is enterprise-oriented and can take input as
text-formatted logs, time-series data and other meta-data. The ELK framework, which stands

Uhttps://www.splunk.com/
Zhttps://www.elastic.co/elk-stack
3https://www.opennms.com/

10 Literature Review

for Elasticsearch, Logstash and Kibana, is comprised of three discrete open-sourced projects
providing scalable and customizable heterogeneous data digestion. The ELK seamlessly
integrates the three data analysis tools for multi-source data parsing by Logstash, indexing
and searching by Elasticsearch, and visualizing analysis insights by Kibana. OpenNMS
platform is based on community development for distributed and scalable network system
management and monitoring. It provides stable and reliable enterprise-level performance
for health supervision of networking systems. All three practices have a user-friendly and
on demand visualization interface to relieve system administration pressure caused by data
flood. Nevertheless, prevalent analysis paradigms with application specific handling lack
flexible heterogeneous data analysis capacity. The well-designed systems endeavor to fit in
preset data type for general purpose so that they are unable to adaptively and automatically
discover unknown structures.

This chapter reviews necessary technical background and relevant literatures of log
analysis and application, and network traffic resource management. As the main work is
to pursue intelligent network operation and maintenance, the chapter includes two sections,
covering background knowledge and recent research advances. The structure is as follows:
log analysis for network maintenance is introduced at first, which includes text log data pre-
processing, and statistics-based and learning-based network fault detection and localization;
in the following, traffic engineering for intelligent network management is presented, which

consists of prevalent traditional and deep learning model based research.

2.1 Log Analysis for Network Maintenance

The well known Murphy’s law [21] can be stated as "Anything can go wrong, will go
wrong" to describe the occurrence of potential negative situations. This indicates that faults
and failures could highly frequently happen in modern electronic systems, such as digital
computer systems. In order to quickly discover and recover from failures, logging mechanism
is commonly embedded to record serious issues and track those severe back to source [22].

Originally, logging module is utilized as a developing probe inserted into key positions
for developers to debug and track work-flow [22, 23]. However, the readable textual message
somehow gives insight of one system, which promotes operation monitoring and trouble
diagnosis [24]. Since recent developments, e.g., microservice-based frameworks [12], are
growing increasingly complex, a specific well-designed logging component becomes vital to
efficiently detect and localize possible failures. The logging module has been integrated as
one of the core functions for high reliability.

2.1 Log Analysis for Network Maintenance 11

In section 2.1.1, log data preprocessing is firstly introduced, followed by statistics-based
and learning-based fault detection and localization, in section 2.1.2 and 2.1.3, respectively.

In section 2.1.4, Deep Learning based progresses will be insightfully presented as well.

2.1.1 Log data Preprocessing for Analysis

Log preprocessing is the foundation of downstream tasks, as raw log messages are unstruc-
tured, disordered and even possibly corrupted [25]. Generally, the downstream analysis
of log data, e.g., statistic learning and deep learning, is always inclined to take as input
numerical and categorical data, which requires raw log information being cleaned, ordered,
and normalized. Especially, when considering statistic learning and machine learning related
algorithms, numerical data is preferred, even compulsory. It is clear that in preprocessing,
raw logs are supposed to be tailored and transformed.

In general, one log record would consist of two parts: log head entry and log message
entry. In log head entry, there exist several segments, e.g., time stamp indicating system time
when the particular event taking place, Host name indicating physical machine marks, and
severity indicating how serious is the particular event, etc. The detailed segments depend on
the operation system where the software is running, but will keep consistent with standard and
unified format across all the stored logs. In the meanwhile, log message entry is pre-defined
manually by developers, which may differ significantly amongst systems, even within one
module, as developers in a group may also have distinctive logging standards.

Table 2.1 illustrates a block of raw log message examples generated from IBM BlueGeneLL

supercomputer [25].

Table 2.1 Raw Log Message Samples Collected in BlueGene/L. Supercomputer

LOG HEAD ENTRY LOG MESSAGE ENTRY

2005-06-05-07.43.29.199690 R35-M0-N1-C:J02-U01 RAS KERNEL INFO INSTRUCTION CACHE PARITY ERROR CORRECTED
2005-06-05-07.43.29.223683 R35-M1-N9-C:J03-U01 RAS KERNEL INFO INSTRUCTION CACHE PARITY ERROR CORRECTED
2005-06-07-22.17.51.624699 R03-M0-N7-C:J02-U01 RAS KERNEL INFO INSTRUCTION CACHE PARITY ERROR CORRECTED

2005-06-07-22.17.51.651067 R06-M1-NC-C:J11-U01 RAS KERNEL INFO GENERATING CORE.53489
2005-06-07-22.17.51.677398 R06-M1-NC-C:J06-U01 RAS KERNEL INFO GENERATING CORE.53489
2005-06-07-22.17.51.703324 R06-M1-NC-C:J02-U11 RAS KERNEL INFO DISABLE STORE GATHERING.................. 0
2005-06-07-22.17.51.728819 R05-M0-N1-C:J17-U11 RAS KERNEL INFO CE sYM 2, AT 0XOB85EA80, MASK 0X08
2005-06-07-22.17.51.754779 R05-MO0-N1-C:J08-U11 RAS KERNEL INFO NODE CARD IS NOT FULLY FUNCTIONAL
2005-06-07-22.17.51.784808 R05-M0-N1-C:J08-U01 RAS KERNEL INFO CE sYM 21, AT 0x110035€E0, MASK 0X80
2005-06-07-22.17.51.850973 R14-M1-NF-C:J03-U11 RAS KERNEL INFO CE sYM 2, AT 0XOB85EA80, MASK 0X08

It is manifest that in Table 2.1, a log record basically consists of two main parts, defined
as Log head entry and Log message entry, respectively. By "log record", some may also
consider it as "log entry", therefore the two expressions will be used exchangeably.

There exits formatted log meta-data inside the Log head entry, recording event time,

event source (host), class, belonging, and severity [26]. The information is usually appended

12 Literature Review

and inserted based on priori experiences which are considered as potential necessities to
developers and administrators. With the formatted information, no extra operation but
statistical summary and separation would be taken to provide intuitive rough system health
trend knowledge.

What always draws administrators’ attention is the unstructured Log message entry,
which is basically written in natural language and contains abundant fragmented clues to
system status at one particular time point. The log message style could vary among systems
or even inside one large-scale system which is modularly created by several developing
groups. Because of the unstructured property and trivial numerical variables, it is difficult to
mine coarse-grained and high-level systematic events in the sense of human understanding.
In order to form comprehensive systematic execution states, relative work has been done
firstly aiming at mining compact, stable and interpretable message representations, also can
be called message patterns and templates [27, 26, 28-33]. The common idea across the
research is treating log message as two elements, constant expressions and variable values,
respectively. The constant expressions are consistent repeating information body, which are
usually fixed in the system source code, e.g., message wrapped as constant string-type in
"print"-style functions and methods. In contrast, the variable values are reserved entries inside
a "print"-style methods, varying based on the incoming specific conditions, e.g., the integer
type replacement as "%d". Therefore, the main task has become to construct an abstraction
in which the constant entries are kept and the variables are reduced into an substitution such
as wild card "*" with the corresponding numbers and positions. The extracted message
abstraction is called "template" or "patterns". In this thesis, the two terminologies are used

interchangeably.

Table 2.2 Template/Pattern Examples

RAW LOG MESSAGE PART EXTRACTED PATTERNS

INSTRUCTION CACHE PARITY ERROR CORRECTED INSTRUCTION CACHE PARITY ERROR CORRECTED

CE sYM 2, AT 0XOB85EA80, MASK 0x08 CE SYM *, AT *, MASK *
GENERATING CORE.53489 GENERATING *
DISABLE STORE GATHERING.................. 0 DISABLE STORE GATHERING........c......... 0
NODE CARD IS NOT FULLY FUNCTIONAL NODE CARD IS NOT FULLY FUNCTIONAL

Extraction examples based on Table 2.1 are illustrated in Table2.2. From Table 2.2,
five templates are extracted, wherein three of them remain the same as the raw log and the
rest two have been reduced to compact style. It is because some raw messages are defined
with constant strings to represent a fixed system status. With such compressed format, the
downstream task takes the extracted types as input to enable deeper analysis. An empirical
evaluation over four prevalent algorithms has been compared in [34, 35], in which running

time and parsing accuracy are examined as performance metrics.

2.1 Log Analysis for Network Maintenance 13

Statistics-based template extraction

Kimura et al. proposed a statistical template extraction (STE) method [27] for the afterwards
numerical log information tensor factorization by parsing massive log collection without
assumption of prior system knowledge. They conjecture that constant terms that are parts
of template should occur more frequently than variable terms, and the similar structured
information will share the same base template. Two stages are included: scoring and
clustering. In the scoring phase, each term score is denoted by the occurrence probability

conditioned on occurrence position and the message length.
S(term, position,length) = Prob(term|position,length)

Here, each term is separated by punctuation(usually, by space or tab), the position is the term
occurrence order within a log message, and the length is total term count of one message. As
for occurrence position and message length, it is assumed that one template has the invariant
count of terms across real log messages and frequent template terms should tend to appear in
the same positions with respect to the base template. In the clustering phase, the variable
term are removed based on the score. Apparently, the score of frequent template terms are
larger than variables, while a simple threshold is not easily determined and may introduce
extra noise. Therefore, the DBSCAN [36] (Density-based spatial clustering of applications
with noise) algorithm is applied to divide terms into constants and variables. By choosing
the density and top terms clusters, the eventual template should keep 3 * length constants,
where f3 is a ratio parameter, 0 < 8 < 1.

In [29], the author develops a tool called SLCT(Simple Logfile Clustering Tool) to
implement the proposed frequent items mining based clustering algorithm, which has very
close relationship with the Apriori algorithm [37]. Starting with the Apriori algorithm, it
is utilized as association rules learning [38] to mine frequent items or co-occurrence items
within a database transaction. Furthermore, the Apriori algorithm will fix a support threshold
to determine the frequency. Here, the support is the count of items or co-occurrence
items across the entire transaction records set. Simply put, the Apriori algorithm finds
out any frequent items or item associations with the frequency defined by an occurrence
count threshold. Unlike the Apriori algorithm, which may incur large memory cost, the
SLCT attempts to scan the entire log data as less as possible. The SLCT includes three
steps: identifying frequent words; building cluster candidates; and fixing the final cluster
representation. Firstly, it defines a region as a set of word-level items which are assigned
with identical values and multiple attributes. If only one attribute is conveyed in one item,
the region is also named as /-region. Through inspecting log messages line by line, all the

14 Literature Review

1-regions, namely one word with its absolute position inside one log record as the attribute,
are recorded with a user specified occurrence value. Secondly, each log message will be
scanned once again to detecting if it belongs to any /-regions. If once identified as one
or more/-region, the corresponding one /-region or multiple /-region combination will
be stored in a cluster candidate library as a potential candidate. The last step is to select
the well-formatted /-region combinations from the candidate library by confirming that all
regions must equal or exceed a support threshold value.

Similar to [27], the proposed method also makes use of the statistical characteristics of
single word entries and the maximum items assumption that those log messages sharing the
same templates equal in terms of length. However, Vaarandi et al. claim in [31] that there
exists another situation that messages may share the same base template, whereas variables
may cross multiple entries. The case is exemplified as strings embedded with spaces and tabs
are passed to string placeholders, such as "%s", in system source code. In order to tackle the
situation, Vaarandi et al. propose improvement [31], called "LogCluster". In this work, the
log messages are firstly treated as the same way as [29]. Opposed to the attributed /-region
identification, the candidates are stored with flexible position to reserve a placeholder for a
variable count summary. The count summary is depicted as x{/st,mst }, where Ist and mst
indicate the least and most occurrence position of variables. By the means, LogCluster is
designed to be insensitive to shifting variable positions and flexible log pattern length.

Regardless statistical characteristics, some other research [39, 32] dedicates to gather
the longest common subsequence(LLCS) to identify sharing intrinsic structure across similar
log messages. In [39], not only message part but information header is also considered
as parsing objective. The authors propose a metric called Match Score to formulate the
log extraction process as maximizing an objective function summing all the match scores
between a potential pattern and log messages. On top of such definition, the method reduces
log messages into pairs and approximate the maximal employing a local search algorithm.
Finally, the message template, depicted as message signature in [39], is regarded as a
sequence of terms that exceeds the half of the cardinality of the candidate group. Contrary to
scanning the global log set and operating in batch-style, [32] attempts to gain achievements
in streaming-like data set, called Streaming Parser for Event Logs using an LCS (Spell).
Instead of maintaining a global template list, the initialized LCSMap list is empty. As the
one message is flowed into the parser, the longest common subsequent is computed. The
one whose common part is longer than a threshold will be considered as sharing the same
underlying template. The final templates are also processed as sequences, in which variables

are substituted by wild cards.

2.1 Log Analysis for Network Maintenance 15

Source code-based template extraction

When dealing with a particular system, administrators who have more key knowledge are
more familiar with information conveyed in logs. Knowledge based methods assume that
researchers have necessary part of log module knowledge to employ heuristics, differing
from other parsing solutions [40, 41]. Jiang et al. [40, 41] investigate several approach
categories, e.g., Rule-based, Codebook-based and Al-based, and they defined four criteria,
namely interpretability, Needed system knowledge, required effort, Coverage, to measure
the performance and applicability of existing log processing approaches. The assumption is
that the source code can be accessed. Their algorithm is based on CCFinder, a source code
clone detection tool [42], which utilizes parameterized token-matching algorithms. To tackle
large-scale log records, the proposed approach includes three steps: Anonymize, Tokenize,
and Categorize. Enabled by the prior knowledge, heuristics are applied to abstract variable
values in particular positions localized by pre-defined symbols and phrases, such as "=".
The heuristics come from the source code analysis, by which the log module confirm to one
standard recording style. Secondly, the Tokenize step mainly separates the entire dataset
into candidate structure clusters, by identifying the length of anonymized log messages. It
accepts that the underlying shared templates tend to generate equally long logs. Lastly, from
the Categorize, candidate clusters are inspected through line by line to discriminate unique
format class. Each cluster can be subdivided into unique log type since the remain static
terms are not aligned if the candidates fail to share a template. Comparing with the SLCT, the
knowledge-based method outperforms it by achieving more than 90% extraction precision
and 99% recall.

Partitioning-based template extraction

Through the statistics and knowledge based log parsing method above, some strict assump-
tions and strong user-specified parameters are required, which limits the feasibility and utility.
To avoid unstable parameter setting and prior knowledge requirement, partitioning-based
methods prefer to manipulating the log structure to represent the underlying format rather
than gathering global information.

In [43], a partitioning-based log key extraction, called LKE, is proposed to deal with
system threads and work-flow log events. The extraction consists of four steps: removing
obvious variable parameters; raw key clustering; partitioning by groups; fixing the final
keys. To remove variable part in log templates, heuristics and empirical rules are applied
base on deep understanding of system by setting up regular expressions to shrink apparent
variables. It eases the process of subsequent operations. To cluster the intermediate raw log

16 Literature Review

keys, the authors seek to compare log keys by computing a weighted edit distance, which
by the general metric definition is Levenshtein distance [44]. The Levenshtein distance
initially measures string difference by counting fundamental string operations, like insertion,
deletion, and substitution. Therefore the distances are obtained as metric for inner-class and
inter-class, which is suitable for the k-means algorithm to cluster raw logs into groups. In the
third step, in each cluster, raw log keys are examined iteratively to collect the information
of the private part, not or almost not sharing with other individuals, and the common part,
sharing with other keys. The information includes the position, count and belonging, by
which pre-defined thresholds are used to split the cluster into several groups. Finally, inside
each group, empirical rules form the eventual format followed by another edit distance to
determine the main body of the entire group.

Makanju et al. propose a log invariant message iterative partitioning algorithm in [26, 28],
called IPLoM (Iterative Partitioning Log Mining). The IPLoM removes Apriori algorithm to
achieve computational efficiency by restricting hyper-parameters at minimal scale to stabilize
the performance across multiple types of log sets, and ignores the system prior knowledge
since accessing the source code into commercial software is always impossible. In detail,
the algorithm consists of four main steps: Partitioning by template length, Partitioning by a
particular position, Partitioning by term mapping, and Abstracting the template. Firstly, a
similar assumption has been made, which is one underlying template always produces equal
log messages with variables. By this assumption, the entire data will be scanned once to
obtain candidate bins that temporarily hold raw logs. Inside one single bin, each position will
be examined across all the logs and find out the number of unique tokens for each position.
The intuitive is that the column with the least unique token is at least one of the constant entry
in terms of its underlying log type, as variables will vary from a broad perspective resulting
in massive amount unique values. Thirdly, the bijective mapping constructs the foundation
of discovering a strong relationship between co-occurrence stable constants. The bijections
come from the second and the third most frequent (most counts) unique tokens within a
candidate bin. It is because at least one column remains the same thanks to the position-based
partitioning. The bijection is the core operation of IPLoM taking the heuristics that stable
mapping highlights the branches and the counts of mappings will be greater than 1. When the
bijections are discovered, the logs with such bijections are split into corresponding candidate
branch bins for the last extraction step. Lastly, to achieve abstraction that constants are kept
and variables are substituted by wild cards .

Although IPLoM outperforms other algorithms, some serious issues appear during
partitioning. For instance, when using the mapping, logs that variable dominates the format

type may cause so-called M-M relation. This type of relations will confuse the algorithm with

2.1 Log Analysis for Network Maintenance 17

multiple interpretable and legal candidates. The issue remains unsolved since the authors put

it in the future work.

2.1.2 Statistics-based Network Fault Diagnosis

Statistics-based analysis is a common and traditional choice of network fault diagnosis to
discover characteristics of system operation. For general network fault diagnosis, processing
key performance indicators is also an informative and effective approach, for instance, [45—
47], while this section reviews the statistics-based works applied to detect and analyze the
root causes of infrastructure and distributed-style cloud computing systems. The core of
log-based analysis is to represent the key features of discrete logs and transfer the features to
the corresponding system behaviors, which can be regular operation or abnormal symptoms.

In addition to network low-level system, the recent distributed cloud computing mecha-
nism has specific fault analysis requirements, since cloud computing exposes distinct interface
and management plane. To provide reliable services and maintain robust performance, fault
tolerance in cloud is of the essence and an imperative issue [48—51], which guarantees system
sustainable operation to users even with occurrence of faults. In general, fault tolerance
involves in two types of techniques: reactive approaches, including checkpoint, job migration,
Replication and proactive approaches, including self-healing, preemptive, system rejuvena-
tion. Note that fault tolerance is highly closely related to system-level decision and action in
terms of automation or administrator-authorization. However, the main focus here is highly
relevant to fault prediction, discovery, identification and localization, therefore fault tolerance
is out of the research scope.

Beyond the academic perspective of log analysis, open-source and commercial processing
pipelines and tools, such as logstash [52] and splunk [53], are developed to accommodate
massive data and digest in either streaming or off-line scene. Processing pipelines can
be built linking a series of compatible platforms [54] to become core analysis modules
in a production-ready work-frame. These tools will firstly walk through the input data to
recognize the global structure via matching off-the-shelf formats. Then the key characteristics
are listed and illustrated visually via expert rules for system administrators to stimulate the
conventional analysis process. Guided by the statistical properties across a particular time
duration, analysts may reveal crucial operation status and dig out hidden time series-like

anomalies.

18 Literature Review

Event Correlation Based Methods

As clarified above that logs are always interpreted as serialized system events or behaviors
in terms of time, one widely accepted view is that the context events are highly temporal
correlated and the correlation evidently entails strong systematic integrity, even causality for
fault root localization [55, 56]. Some related research [57-59] have been done to utilize the
statistical correlation to deduce black box-style operation status. A structured and thorough
introduction and research direction analysis for event correlation is presented in [55].

In [57], it presents that influences which are defined by interactions between system
modules can represent normal operation logic and behaviors through time-correlated events
to unveil anomaly and misbehaviors. A Structure-of-Influence Graph (SIG) is constructed to
make edges hold correlations and strengths between system components which were assumed
to be black boxes. It proposes two models based on log message timing and log message
content, respectively. One implicit assumption is that the log timing gaps can be quantified
as anomaly signal and conform to a stable distribution. Recording the history distribution
and computing the most recent timing distribution enable the calculation of Kullback-Leibler
divergence [60] to be entries of signal matrices, which in turn are converted into a correlation
matrix and a delay matrix. With the two matrices, the SIG is constructed and fed into
the downstream system-dependent analyzers. It also provides two system analysis cases
checking an autonomous vehicle operation [61] and a complex system of the Thunderbird
supercomputer [25]

In [58], the authors put forwards a unified time-series detection framework for runtime
change points identification. The change point, also called outlier, is defined as one or
segment points outside the statistical regularity of histories, by which the margin deviated
from the regularity is measured. Although the whole model targets at sequential data, the
collection is network access time series coming from commonly used access logs. In fact,
this method is very similar to the network access behavior frequency processing. Naturally,
the model is named as ChangeFinder and is divided into two stages, fitting the time-series
and identifying the significant changes. In the first stage, following a well-defined problem
setting, an abstract scoring loss calculation is formulated with a probability density function,
which is subsequently exemplified by an auto regression (AR) model [62] and a variant
of maximum likelihood named as Sequential Discounting AR learning algorithm (SDAR).
In the following detection stage, change point detection, a measure called T-average score
within T time interval, is defined and two moving average processes are adopted to synthesize
the first stage into the T-average score, which increases model robust in the meanwhile.

Yamanishi et al. [59] proposes a hidden markov model (HMM) [63] based dynamic event
correlation discovery method for well formated syslog [64] data to output an anomaly degree.

2.1 Log Analysis for Network Maintenance 19

The anomaly degree is compared against a dynamically flexible threshold to determine
whether the warning should be flagged. To be more detailed, they firstly divided the syslog
abstract event into several independently distributed sessions and fit the sessions in HMM
mixture as a generative model. Secondly, a variant of online discounting mixtures learning
algorithm, which is a type of Expectation-Maximization(EM) [65, 66], is employed to
optimize HMM mixture parameters. To select the number of components of mixtures, a
dynamic model selection(DMS) [67] is applied to fit in sequential and batched data conditions.
Finally, the score formulation of a syslog event is given on top of its corresponding session
probability distribution and the flexible threshold is implemented by an online style histogram
of the recent score distribution. Though a time-aware threshold is in effect, a set of hyper-
parameters are supposed to be set manually.

In [68], authors propose an analytical workflow, named FDiag, to cope with error
diagnosis issues including log message template extraction, events correlation and operation
sequence recognition. In message template extraction(MTE), the mining approach applies
expert knowledge to separating constants and variables based on manual observation and
administrators and implement in six steps. In the statistical event correlator, it lays the
foundation of domain knowledge groups and pair-wise association heat-map to transfer event
occurrence frequency matrix into Pearson correlation coefficient [69] matrix. In the third
stage, the Episode Constructor extracts log events in one domain knowledge and makes
the log events within a time window grouped into one episode, namely an operation trace,
which eventually helps identify key events and diagnose the root cause of failures. The tool
work admittedly effectively under some certain circumstances, however, system-dependent
log contents observation prevents from extending to wider applications and generalizing to

broader utilization.

Statistical Property Based Methods

Differing from mining and extracting the implicit event correlations, log events occurrence
and co-occurrence statistical properties offer the possibility that discrete events can be turned
into time based numerical features. The processing paradigm avoids unstable sequential
corruption but keep the local real-valued features smoothly by conditioning the investigated
data on a limited time interval. Some work involves in identifying real world events [70],
nevertheless faults and anomalies are widely accepted as technical hazardous events taking
place in network equipments. The review focuses mainly on issues with respect to computer
networking.

Lim et al. [71] analyze the problem of detecting commercial telephony system failures in

quantity and introduce frequency-related methods to unveil numerical trend from log events.

20 Literature Review

They suppose that empirical human knowledge that detects the system crash cause can be
modeled numerically from log statistical characteristics to generalize to wider occasions. To
implement it, the unstructured log messages are reduced into patterns based on modified
Levenshtein distance, by which the original messages are substituted by the corresponding
patterns afterwards. With the given event segments labeled as system failures, the particular
signatures of interest is supposed to be extracted. At beginning, the frequent item set is
mined based on event co-occurrence. Afterwards, overall message and individual message
frequency are investigated to highlight unexpected count mutants and individual event-wise
frequency trend. The obvious changes can be viewed as failure numerical signatures, which
are taken as input the following application dependent clustering algorithm to identify failure
trends.

In [72], the authors suppose that a sequence of log messages should implicitly hold a
temporal dependency, which lays the foundation of time characteristics. In order to extract log
patterns, named as categorization, the authors introduce modified Naive Bayes algorithm and
Hidden Markov Model considering time stamps. Another claim they hold is that the abstract
log events tend to unfold temporal information in terms of event causality. Also, they take the
system parallelized operation into consideration as interarrival distributions. To tackle this
problem, the occurrence order is integrated into conditional probability distributions, which
are estimated by arrival time stamp and waiting durations. The significant relationships are
finally tested and separated by Chi-squared test [73], evaluating incoming events whether
appear within time window, which determines the relationships in statistics.

The above traditional scenario is to detect and localize faults in the scope of network
elements and equipments predominantly based on temporal features, whereas significant
spatial information, i.e., multi-layer, geographical location, and etc., is not fulled exploited
[27]. In [27], the authors point out that the complex multiple-layer network architectures may
corrupt the message correlations and hide vital information over inter-crossed log records,
which should be taken serious consideration. Enhanced by the proposed statistical template
extraction (STE) and the definition of template group and network event, the work takes
approximate non-negative tensor factorization (NTF) approach [74, 75] and extends to log
tensor factorization (LTF) to extract template groups and model event relationships. The
main contribution of the work is mathematically formulating the log tensor factorization
update through a special function, which stimulates the decomposition. In the end, three
supportive and promising cases are presented with insights from the proposed LTF.

Admittedly, a proposed algorithm gives a clear clue and direction to settle a system fault
problem for most of work, nonetheless a systematic tool with fully parsing, analysis and

output functionality attracts more attention to pragmatist. In [76], authors contributes to

2.1 Log Analysis for Network Maintenance 21

an integrated error analysis system, named SherLog, including log type parsing, targeted
system execution path inference, and execution value inference. In log parsing module,
the approach assumes source codes are available and logging position in source codes
are clarified by developers as well as retrievable logging severity. Promoted by abstract
syntax tree (AST) [77] and extended regular expression, the parser supports basic and
complex logging blocks. As for path inference, the approach employs Boolean satisfiability
problem(known as propositional satisfiability problem, or SAT) solver [78] to discover and
reconstruct full and partial execution path, called Must-Paths and May-Paths, respectively.
The previous two steps are consistent with common fault diagnosis approaches, whereas
SherLog adds a value inference stage as an extra analysis module to emphasize the importance
of variables associated in logs across execution path. As the variable entries characterize
the execution sequence and operation status, value inference is able to provide numerical
analysis along with symbolic path execution inference. Their evaluation over failures like
Apache, GNU core-utils, shows the effectiveness, but unfortunately the tool only works under
the assumption that the source codes are retrievable and domain knowledge applies to link
the value trend to fault propagation. A more scalable scheme is more preferable in practical
applications.

2.1.3 Finite State Machine-based Network Fault Diagnosis

Event correlation-based and Statistics-based approaches basically focus on the log data itself
involving in endeavor to grasp the abstract and discrete hidden attributes of logs. On the
other hand, the interaction relationships between events and associated hidden system states
are not merged into analysis schemes, though vital information may be conveyed by the
interactions. Recently, finite state machine for system execution derivation by digesting
text-based logs has drawn much attention and some effective algorithms have been employed
[79-84]. In these works, [79] generates control-flow and data-flow execution traces to fit in
finite state machine; [80] and [82] make efforts to reveal operational processes in the sense of
information system by building Petri nets [85], which can mathematically represent system
work trajectories or transition paths; [81], [83], and [84] apply event traces coarsening and
refinement leveraging model checking techniques [86] to produce event occurrence graphs.

In detail, authors in [79] face the challenge of analysis of Hadoop distributed computing
platform [87], which contains inter-arrival recorded events, developing a tool called SALSA.
From the logs, the tool assumes the existence of time stamps, host names and tasks. Fol-
lowing the dissecting the of its log4j module, SALSA divisively extracts work-flow from
Jobtracker, NameNode, TaskTracker and DataNode and discovers control-flow and data-flow,
respectively, by identifying tokens of interests. Besides the description of the tool, the authors

22 Literature Review

also provide two case studies of improving task allocation visualization and stimulating
failure diagnosis heavily dependent on Hadoop working mechanism.

Authors in [80] focus on processing mining via discovering Petri nets [85] from sequential
event data. The necessity of processing mining lies on issues of diagnosing historical
processing and gaining insights to improve system operation. The Petri nets describe the
processing in a sense of state transition with condition and activation action, which is suitable
for collecting information and identify the key points of sequential logs. Petri nets also
assist to cope with parallel and concurrent sequences that are intersected by each other even
with noisy log data and incomplete sequence traces. Authors introduce a method called “o-
algorithm” [88] and dedicate to applying its fundamental idea to mitigate the affect of noisy
and incomplete sequential elements and concurrent processing. From a practical perspective,
the Petri nets based invariants and implementations have been integrated in an open-sourced
processing tool, called ProM [89], for the convenience of academic and industrial research.

The work in [81] mainly proposes a synthesized analysis tool, named “Synoptic” for
inferring a system model to digest graph-like sequential behaviors, which is followed by
[83], and [84] to deliberately improve and showcase the utility of it. Unlike the concurrent
mixed task logs, the hypothesis of logged events is that a trace identifier is strictly tagged
with log records that are bounded in one task. The trace identifier helps avoid tangled
processes and discover the boundary of a task. With the explicit time stamps and abstract
log types parsed by regular expressions, trace graphs are initially constructed in terms of the
order in sequences and assign directed relations based on the log co-occurrence summary.
An initial trace graph is inaccurate and seemingly chaotic. As such, after a trace graph
initialization, two stages, refinement and coarsening, are deeply involved to finalize it in
terms of competition. To be more specific, refinement attempts to separate oversimple
graphs that shield fine-grained executions, in the meanwhile, coarsening attempts to drag
the refinement back from unnecessary division to avoid extreme separation. The refinement
stage employs the counterexample guided abstraction refinement (CEGAR) approach [90] to
decide partitioning and the coarsening stage makes the use of the kTail-equivalence [91] to
merge abundant branches as one united branch. The two stages present a behavior in terms
of competition while it fails to achieve the global optimum without iterations, and this type
of graph construction is a NP-hard problem [90]. More efficient algorithms are expected to

obtain in the future work.

2.1.4 Deep Learning-based Network Anomaly and Fault Diagnosis

Deep Learning have prevailed in automatic, cognitive and scalable tasks during the recent
decades thanks to the tremendous generalization and fitting ability [92]. One of the key

2.1 Log Analysis for Network Maintenance 23

reasons is the enormous prepared data facilitate the training processing in supervised fashion
in applications like image processing [93], Natural Language Processing [94] and etc. With
appropriate information and data, the data-driven approach apparently offers bonus for
versatile tasks and applications. Specifically, networking environment is inclined to produce
vast amounts of various log data, which definitely raises the difficulty of ingesting information
but brings about more chances for Deep Learning based insightful digestion [2]. Furthermore
in general anomaly detection research, Deep Learning still plays a significant role of engaging
novel schemes and models even without manual labels for novelty identification [95]. Recent
notable efforts are shown in Table 2.3, which commonly regards the log data as sequences

with timely property and learnable in terms of Recurrent Neural Networks.

Table 2.3 Recent Efforts Based on Deep Learning for Network Anomaly and Fault Analysis

Research Work Data Type Formatting Style Model Block
[96] Raw Text Log Tokenization Sequential LSTM
[97] Log Template Template Extraction Sequential LSTM
[98] Log Template Template Extraction Sequential LSTM
[99] Abstract Event Not Applied Sequential LSTM
[100] Log Template Template Extraction Sequential LSTM

The work in [96] introduces a sequential probability learning based on the language
modeling in Natural Language Processing for discrete token prediction. The high-level
theory utilizes the Long Short Term Memory (LSTM) base as its model building block to
construct a tiered framework that takes as input the tokenized data and wraps up the context.
The input tokens come from the raw log data tokenization and are filtered by a frequency
threshold. A word embedding [101] alike lookup table is adopted in order to properly fit the
data into a numerical learning model. Apparently, the analysis grain stays on the frequent
token-level instead of accounting for event-level logs. The attention mechanism [102] [103]
is taken effect to capture the context. Normally, it puts the Softmax function as the probability
approximation in the last step.

Authors in [97] name their framework of Deep Learning for System Health after “Desh”
for short, clearly indicating the fundamentals that underlie the system health analysis. Unlike
general anomaly and fault detection, the work focuses on predicting node failures over a
large-scale high performance computing (HPC) system via system-level executions. The
Desh framework consists of three stages, two training processes, failure chain learning and
lead time failures prediction, and one test stage to validate its prediction model. Similarly, the
Desh framework also takes as input frequent constant phrases that are embedded as vector
representations. Moreover, the adopted sequential model takes the time gap between phrases

into consideration to perceive the lead time rather than appearance of failures. The language

24 Literature Review

model idea is similar to other research while the main difference is the work in Desh attempts
to dive into exact lead time approximation.

In [98], DeepLog is proposed to fit a long term short memory (LSTM) model in natural
language-like sequential log data. The framework endeavors to model hidden transactional
patterns over abstract events that are transfered from raw messages to templates. It firstly
considers unstructured log format parsing into template shape for noise elements reduction
by Spell in [32]. Based on the OpenStack cloud computing platform [104], DeepLog further
identifies and retrieve key values, such as task IDs and elapsed time, for its particular input
parameter vector. As for the architecture, two stages, training and detection, constitute the
core functionality. In training, the sequential parsed log templates associated with their
parameter vectors are fed into a LSTM-based model. In detection, two steps binded with two
modules are consecutively carried out to predict the forthcoming logs and further parameter
vectors. The log prediction applies to execution path anomaly detection through sequential
LSTM model as well as the parameter vectors that relate to the parameter vector and
performance anomaly detection. In particular, DeepLog checks the parameter vectors with
its original assigned log keys range, which is successfully transformed into multi-variable
time-series detection process. The logs are marked as normal if and only if both tests are
passed, and the anomalous information will be display to system administrators for further
diagnosis.

Another relevant research is [100] based on recurrent neural learning from the perspective
of Deep Learning, which consistently model sequential events as language prediction. The
system failure prediction takes abstract events into account in terms of console logs that
are the same as operation and execution logs. To recognize the patterns, namely template
extraction, it adopts a hierarchical clustering algorithm named OPTICS [105] by widening
observed data points towards adjacent data to retrieve a dense phrase. The “dense” here is
restricted by a preset threshold. The patterns are subsequently used to omit variables from
raw logs. Without soft representation learning, this work immediately employs the term
frequency—inverse document frequency (TF-IDF) algorithm [106] to obtain the vectorized
features that are pushed into the following LSTM model. Undoubtedly, the LSTM as an
effective sequential modeling tool is prevalent over timely ordered log data analysis.

In contrast to systematic operation logs, authors in [99] propose Tiresias to focus on
access security log on web service based platform targeting at adversaries triggered by
attacks. They emphasize the contribution on exact future actions prediction rather than
showing binary outcomes. Basically, the Tiresias leverages the LSTM recurrent blocks to
receive sequential security events as language model alike framework, which is formulated to

cope with variable length input. Different from event parsing preprocessing, Tiresias aims at

2.2 Traffic Engineering for Network Management 25

well-defined access log events, such as HTTP and Apache server status, strongly associated
with cyber-attacks. The further evaluation and case study shows the availability of Tiresias

and its high precision.

2.2 Traffic Engineering for Network Management

Traffic Engineering (TE) is crucial for network management and the utility and performance
of networks, for example Quality-of-Service (QoS), in the era of big data [7, 8]. It has
been a hot-spot in recent research trend [7—11]. Technically, Traffic Engineering involves
in multiple disciplines [107, 108, 7, 8], including network adaptive routing, traffic profiling,
traffic classification, resource scheduling, load balancing, and etc., towards networking
global utility optimization as its ultimate task. Each relevant area has a strong impact on
network usage conditions and efficient, while in this thesis, the topic is dedicated to network
data flexible and agile forwarding, routing and planning. Traffic Engineering has a strong
and obvious binding with properly scheduling data forwarding and streaming involving
in network performance and user experience improvement. In addition, software define
network (SDN) is also highlighted as the data delivery platform of interests, since the SDN
[109] impresses researchers and practitioners enormously with resilient programmability and
effectiveness.

Though TE facilitates network control and management [7, 8], its challenges still remain
and negatively affect network performance, for example, dynamic load balance using fine-
grained control. Massively generated digit data in Big Data era bring about challenges, e.g.
dealing with unformatted data and opportunities as well, e.g. implying abundant knowledge
and information [110]. The implied knowledge may be the key for efficient traffic analysis
and engineering. Also, the separated data plane and control plane enable control plane to
have access global information and high level awareness of hidden state, making it suitable
to merge data-driven model into centralized controller as an intelligence decision-maker [9].

Therefore, in section 2.2.1, efforts based on traditional models are reviewed and the novel

Deep Learning inspired progresses are reviewed as following in section 2.2.2.

2.2.1 Classic Traffic Engineering for Network Management

As is manifest that the Traffic Engineering (TE) imposes crucial impact on network perfor-
mance, it intrigues researchers to overcome serious in both stale network structure and novel
programmable paradigm. In early network development and usage, Asynchronous Transfer
Mode (ATM) and later Multi-protocol Label Switching (MPLS) emerge with Internet Proto-

26 Literature Review

col (IP) and the corresponding IP-routing technologies [111, 112], before the SDN underlies
the fundamental functionality. A heuristic and preliminary adjustment is unsurprisingly flexi-
ble for simple and idle links if the requirement keeps low, however the robustness reduces
dramatically when network flows persistently grow [111, 112]. Researchers have endeavored
to carry out some notable ideas to relieve the pressures caused by network traffic congestions.

In early days, authors in [111] claim that the Open Shortest Path First algorithm (OSPF)
present and Intermediate System-Intermediate System (IS-IS) give an acceptable and efficient
intuition for on-demand IP traffic delivery in general IP network. The above two methods
tend to search an optimal path for a transferring request in a network topology with stable
link weights. The adjustable and dynamic link weights configuration is available to maintain
high quality of service. For instance, the work in [113] as well as [114] attempts to overcome
the issue raised by the OSPF and IS-IS with a static link weights setting, which helps traffic
routing scheme to make the most use of bandwidth capacity and reduce packet loss. In
addition to next-hop routing fashion based on the OSPF, another effective approach is to
split a given traffic flow into several sub-flows and distribute into multiple links [115, 116],
each of which will the equal resource consumption. It can be sometimes called as Equal-
Cost-MultiPath, “ECMP” [116]. Opposed to immediate shortest path and IS-IS routing
mechanism, the multiple path distribution helps with adaptive traffic load balance, switch
end controlling, flexible quality guarantee and etc., without extra overhead and protocol
modification. However, flow distribution to multiple paths brings about packet disordering
issues and always require existing multiple shortest paths as decision region. An intuitive
method is to close the gap between the path prediction and distribution without changing
underlying routing protocol, which is the core effort of work in [117]. It actively selects a
fraction of all shortest paths and distributes some flows with particular prefix accordingly,
ultimately approximating the optimal performance.

The advent of the SDN architecture [118, 119] as the novel programmable network
paradigm facilitates networking evolution for services of higher quality as well as challenges
for traffic engineering [8, 112], for instance dynamic load-balance for both data and control
plane. From a broader view of Traffic Engineering, authors in [7] put forward a conceptual
framework seeking to divide the process as two parts, traffic measurement and traffic manage-
ment, which is ambitiously expected to integrate existing advances into uniform object. To be
detailed in concrete practices, authors in [120] solely focus on parts of forwarding elements
that make up of the data plane and support its functionality, meanwhile the rest of network
maintains the standard routing mechanism. The part of interest is portrayed and formulated
as a problem minimizing packet delay and loss surrogated by link utilization optimization,
which is eventually tackled by a Fully Polynomial Time Approximation Scheme (FPTAS). A

2.2 Traffic Engineering for Network Management 27

similar idea is leveraged and realized by Segment Routing (SR) [121], which allows hosts
to transmits data via a handful marked segments instead of trivial fine-grained hops. The
SR technique is well compatible with the SDN control and data plane [122] simplifying
node-by-node arrangement as coarse-grained forwarding, which consequently influences
several following works [123-125].

2.2.2 Deep Learning-based Traffic Engineering

Machine Learning and the further progresses of Deep Learning regulate the hidden structural
information and in turn exploit the patterns to consolidate the understanding of objects, which
is able to seamlessly engage in complex networking with huge data pool [126-129, 6, 130,
108, 9]. In this section, Deep Learning is the main target of investigation for its remarkable
achievements in many domains[131, 93, 94, 92, 132]. Normally, one latent hypothesis
for Deep Learning related techniques is the magnitude of data supports to discover the
distribution that the data conform to. Even though the complexity may confuse the learning
model, the expressive techniques in Deep Learning can elastically generalize to broader range.
As for networking in terms of traffic engineering, loads of real time streams are flowing
across the communication apparatuses and ubiquitous network equipments persistently
generate operation-related information. Large size and heterogeneous data inevitably cause
difficulty in efficient analysis and computation, meanwhile the Deep Learning model benefits
from abundant data to mine valuable knowledge. Recently, numerous efforts for general
networking mechanism and the SDN have been made by researchers and practitioners in
both academia and industry. Besides general large-scale carrier network, the Deep Learning
paradigm also makes for wireless and 5G network a shift towards intelligent and automatic
management [133, 134, 11]. A brief summary for most recent and noteworthy research

contributions are listed in Table 2.4.

Traffic Routing And Forwarding Strategy

For improvement of routing strategy, works in [135, 136, 139, 145, 138, 146] all attempt to
exploit abundant information to accomplish optimal traffic forwarding decision.
Specifically, it proposes a Deep Belief Net (DBN)-based architecture in [135] for flexible
routing table construction oriented at Software Defined Router (SDR) that can be accelerated
by Graphic Processor Unit (GPU). The model predicts the next routing sequential nodes
taking traffic patterns in edge routers as input through data collected with pairs of traffic
patterns and routing paths. In contrast to traditional routers, the SDR is devised to dynamically
embed strategies and provide programmability regardless of the limitations of hardwares.

Literature Review

28

Table 2.4 Recent Efforts Based on Deep Learning for Traffic Engineering

Research Work Method Objective Network Application Data
[135] DBNs Software Define Router Routing Decision Traffic Patterns
[136] CNN-DL Wireless SDN Routing Decision Topology & Traffic Attributes
[137] CNN-DL Wireless Network Partially O<o.am6 ping Traffic Patterns
Channel Assignment
[138] CNN-DRL SDN Routing Decision Network Graph Information
[139] CNN-DL Wireless Network Routing Decision Time Interval Tensor
[10] DRL SDN Multiple Paths Decision Traffic Throughput & Delay
[140] DRL SDN Multiple Paths Decision Flow Statistics
[11] DRL Cellular Network Multiple Paths Decision Measurement & Traffic Patterns
[141] DRL Wireless Network Ommro. Enable Requested Content Status
Opportunistic Interference
[142] DRL SDN Multimedia Traffic Control Traffic Measures
[143] DRL Edge Computing Off-loading Task Measures
[144] DRL Named Data Networking Congestion Control Traffic Measures
[145] Graph CNN-DL SDN Routing strategy Network Measures
[146] RNN SDN Routing strategy Network Measures
[147] DRL SDN Timeout Mechanism Traffic Measures
[148] Graph NN-DL Wireless Network Channel Schedule Geographic Location Information

2.2 Traffic Engineering for Network Management 29

The traffic patterns are defined as inbound packets volumes within several time intervals. The
model is designed in Deep Belief Net structure in supervised training fashion, where two
extra layers of Restricted Boltzmann Machine are stack for data reconstruction training.

In [136], authors give an overview of SDN integrated with wireless network merging
as Software Defined Wireless Networks (SDWN) and point out the drawbacks of the con-
ventional shortest path routing. Therefore they propose to employ Convolutional Neural
Networks (CNN) as a feature learner and extractor of input traffic patterns. The proposed
model takes input as traffic patterns in terms of source-destination paired matrix instead of
numerical vectors. Furthermore, the matrix is expanded as sliced tensors with respect to
different metric types, which fits better in the CNN model than the fully connected layers.
With the benefit of SDN structure, the control plane makes computational decisions and
deploys into switches in data plane.

Tang et al. [139] consider more general wireless network backbone scenario for intelligent
and real time traffic control scheme to avoid congested traffics. Their objective metrics are
average packet delay and packet loss, which are heavily influenced by the routing decisions.
The issue of routing is formulated as the combinatorial optimization as well as conventional
shortest path construction while the solution should be more dynamic and adjustable for novel
situations. Then a real-time CNN-based model is proposed to receive multi-dimensional
traffic patterns to predict a next forwarding hop. The traffic patterns are also defined by the
interval packet generation ration in terms of router pairs. A traffic patterns matrix is viewed
as a status slice with respect to various measurements to form a 3-order tensor or a 3-D
traffic matrix. The tensor is input into a CNN feature extractor and output the final prediction
probability over all the available routers, based on which the most likely one is deemed as
the chosen router.

The above several research works focus on traffic patterns implication by a standard CNN
block, however the nature and property of network topological information have been ignored.
The potential problem of lacking of structural information is lacking of correct direction and
convergence. Authors in [145] leverage graph-related processing to perceive the topological
and spatial correlations in a network. Inspired by graph learning methods, a graph-aware deep
learning framework is proposed for intelligent routing solution in supervised learning fashion.
The deep learning framework is also enhanced by the CNN block to learning structural
features. To expressive represent a network topology, a set of well-defined adjacency and
measures matrices, including link attributes and transmission statistics, are constructed to
capture the local structure. The core idea is to find neighbors of each vertex in consistent way
in case disordered graph traverse and the number of neighbors is fixed set as k. The captured

neighbors are formed as the neighbor-of-interest matrices. These matrices are paralleled

30 Literature Review

applied with standard CNN kernels and subsequently with feed forward output layer for node
prediction.

Apart from the conventional networking, researchers in [138] investigate the network
management scenario that the algorithms and applications are virtualized in accelerating
infrastructures with computing resource, for example Heterogeneous Computing Platform.
Researchers attempt to deploy Deep Reinforcement learning into the Heterogeneous Com-
puting Platform, making the strategy node into the controller. As for reinforcement learning,
the routing strategy learning process is formulated as Markov Decision Process (MDP)
and value iteration based Q-learning is adopted as decision-making. With the assistant of
CNN as the feature learning block, the model takes the network structure information and
traffic source-destination pair information as input to estimate the total value that a series
taken-actions can return. Additionally, the implementation in controller and router is different
to separate training and routing application.

Zuo et al. [146] circumvent the usage of CNN model to grasp the network implication.
Instead, they dedicates to learning the implications of the traffic sequence itself through
Recurrent Neural Networks (RNN) based model. The hypothesis is that several constrains are
likely to be applied to routing such as load balancing and firewall. The authors consider the
routing path constrains on accessing particular node as a predictable path planning problem.
To automatically plan the constrained path, historical experiences are utilized as training
input. Inspired by the sequence-to-sequence technique in language machine translation, the
sequence-to-sequence model is employed as path transformation between the transferring
source-destination pair and forwarding path. The sequential model building block is a LSTM
model, in the meanwhile, the transformation is improved with Attention mechanism and
beam search to obtain global optimums. The evaluation shows the deep learning model is able
to mine the hidden sequential patterns in traffic path experience and serve as a decision-maker
for stable path planning.

Traffic Distribution In Multiple Paths

Routing strategy related works endeavor to plan a concrete traffic deploying path and im-
plement the regulations into programmable switches. The method is straightforward and
assigns an optimal or approximately optimal option to a communication request. In this
regard, a communication session is comprised of and binded with the particular path. The
complexity of computation is relatively high due to the incremental communication sessions
and the growing number of forthcoming requests. Apart from picking switches node-by-node,
assume that there would have several available path options that could be obtained by the

OSPF algorithm, the problem can be transformed to jointly distributing traffic flows in all

2.2 Traffic Engineering for Network Management 31

options. An extreme case is to reduce into a traditional routing strategy, where a flow is
fully deployed solely in one of the shortest alternatives. As normal usage, traffic flows are
proportionally and adaptively split into all or some of the paths for optimized performance
defined as the network utility.

The work in [10], named Deep Reinforcement Learning Traffic Engineer (DRL-TE), and
its successor [140], named Deep Reinforcement Learning for Congestion Control (DRL-CC),
share the fundamental solution cores that traffic split ratio determination can be modeled
as a Markov Decision Process. The action-taken is the deploying proportion over given
communication tunnels so that the action space is inherently continuous and countless rather
than discrete and limited. To target at the network utility maximization (NUM) in the
Multi-Path TCP (MPTCP) applications, both of them carefully consider the variants of Deep
Deterministic Policy Gradient (DDPG) [149] for adjusting to continuous actions applications.
Nonetheless, the observed states are very different. In [10], the states are regarded as a
space of session throughput and delay, where the state representation is formed as a 2-tuple
element vector. In [140], the states warp up the states of each flow including sending rate,
throughput, statistics of Round Trip Time (RTT), and congestion widow size. The numerical
representation learning methods have also adopted to implement interpretable computation,
fully connected neurons in [10] and LSTM in [140], respectively. The reward settings are
particularly designed for either effort. For the former work, a-fairness [150] is denoted as
the network utility and the reward. For the latter, the authors propose a close-loop framework
which is not limited in a specific reward function and accept the average goodput statistics
[151] in empirical evaluation.

In addition to networking infrastructures, the authors in [11] consider the High Volume
Flexible Time (HVFT) applications in the field of Internet of Things (IoT) via wireless
cellular network architecture. The HVFT applications are triggered by various and trivial
instances in [oT with vast amount of small and large flow requests. The requests can be tiny
software updates, daily device reports, and timely measurements, etc., which do not require
real time and stable communication, and are delay-tolerant. However, the HVFT traffics
may consume a huge ratio of transmission bandwidth congesting real-time requests due to
the lack of appropriate scheduling. Therefore, a Reinforcement Learning-base algorithm is
proposed to optimize the networking scheduling scheme allowing the efficiency of HVFT
as well as the quality of non-tolerant services. With the standard MDP framework, the state
is defined as a combination of current network state and temporal information of histories.
The current network state contains congestion metric, session number and cell efficiency.
The temporal information is extracted from time-series-form network states by a conceptual

extractor which can be realized by time-series data processors, i.e., the LSTM block. Then

32 Literature Review

the reward function is inferred from desired traffic metrics and conventional performance loss.
In contrast to prevalent model-free methods, a model-based state dynamics representation is
formalized as transition mapping, which transfers a non-MDP issues into a standard MDP in
another anger. The affected term is the congestion metric showing piecewise formulation in
terms of the HVFT traffic scheduling proportion.

Other Traffic Engineering Problems

Authors in [137] attempt to face the problem of partially overlapping channels assignment
(POCA) in the wireless SDN for the 10T scenario. The channels assignment issue rises due
to heterogeneous networking infrastructure configurations and inappropriate association with
busty and unstable links. The nature of dynamics heavily damages the working conditions and
desired performance when conventional static algorithms are adopted. This work investigates
several existing methods and concludes that the wireless channels allocation based the current
traffic loads fails to cope with dramatically changing flows. In order to enable intelligent
processing, a deep learning based traffic prediction method is utilized to learn the traffic
temporal patterns and outline potential fluctuation. The empirical traffic pattern data are
fed into a CNN-based learning model to output the possibility of all available channels. A
closed-loop framework has been proposed with two phases, updating, and on-line and off-line
training phases. The centralized controller design helps to keep the accuracy with global
information collection.

In contrast to traffic analysis and applications, authors in [141] mention wireless channel
and link utility optimization with two relevant technologies, caching and interference align-
ment (IA). Wireless proactive caching helps mitigate the link burden imposed by backhaul
traffic loads and the IA reduces the affect of channel interference, both of which depend
on the channel state information (CSI). Due to the unstableness of CSI in the context of
ever-changing wireless environment, conventional techniques fail to capture the real patterns
of CSI and have difficulty in accurate CSI prediction. As such, the authors formulate the
cache-enabled opportunistic IA paradigm as a Markov Decision Process, and based on the
formulation, a Deep Q-learning based method is employed to learn a policy for optimal IA
user selection. The reinforcement learning module regards the channel coefficients and cache
states as the joint states and determines which candidate user can be activated to allocate
resources.

In [142], authors aim at the particular traffic engineering problems caused by multi-media
traffic. For specific traffic management, for example, multi-media traffic, the metrics-
sensitivity are required to take deep consideration. Multi-media applications now account for

a large fraction of total flows residing in the network system and are highly sensitive to several

2.2 Traffic Engineering for Network Management 33

metrics, e.g., delay, bandwidth, and packet loss, etc., which has drawn crucial attention to
researcher. Same as other works, the SDN architecture underpins the centralized controlling
scheme with the implementation of a Deep Reinforcement Learning decision-maker. The
work in [142] considers the quality of experience (QoE) as the synthesized measurement
for delay, throughput and other discrete metrics, and makes optimizing QoE as the total
object. Five discrete metrics are mapped into one reward representation by a fully connected
evaluation network as well as the state of flows for the actor-critic network structure. The
actions in this work are different from others, consisting of two parts for exact control, the
allocated path and feasible bandwidth not exceeding the maximal limit. Deep Deterministic
Policy Gradient (DDPQG) is subsequently taken as the advantageous update paradigm over
standard Q-learning.

For emerging network model, the Named Data Networking (NDN) [152] in the information-
centric networking (ICN) [153] plays a key role for the future content-based communication
Internet architecture. The work in [144] devotes to meeting requirement of traffic man-
agement for the Named Data Networking, where the content is of special interest for the
pull requests from users. Then a Deep Reinforcement Learning based Congestion Control
Protocol (DRL-CCP) is proposed for tackling the complexity and dynamics in the NDN.
Unlike the routing TCP requests, NDN focuses on content-sensitive information for users
so that the resource allocation is to schedule flows in terms of requested content rather than
forwarding prediction. Ten elemental variables are selected as the environment state and
a content-based utility function is denoted as reward function to guide the policy to gain
maximal total content utility. The action here is defined as the size of sending window of
contents.

Deep Learning enhanced techniques are applied into other applications, for instance,
[147] for rule timeout mechanism adjustment in SDN also based on Deep Q-learning, and
[148] for channel scheduling in wireless network based on Graph neural networks to capture
spatial information. It is manifest from these successful examples, the deep learning related
paradigm fits well in the centralized SDN architecture and promotes the utility of networking
through various applications. The integrity of deep learning and networking will make further

progress in the future intelligent management and maintenance.

Chapter 3

Network Systematic Event Discovery and
Anomaly Detection

3.1 Introduction

The goal of this chapter is to identify suspicious events based on available execution status,
such as service execution logs and service query traces, and to raise necessary alerts to
avoid catastrophic failures for a system. The idea is that using service execution logs can
capture functional behaviors in a temporal manner and using query traces is able to capture
systematic behaviors in a spatial manner, which will be introduced later. They sufficiently
contain fine-grained and coarse-grained status. Combining them is supposed to enable
expected detection conduction, and the experiment results well validate this hypothesis.

This chapter applies distributed dense representation of a complete transaction to learning
regularity of each type of transactions and isolating execution outliers in such representational
space. The traditional anomaly detections prefer statistical properties of logs, but rarely
appreciate the practical role of generic events. One obvious difference between traditional
systems and cloud-based distributed system is remote procedure calling [154] or RESTful
API [155]. There is a chance that semantic log representation remains reasonable while
service requests are pushed into an unexpected long queue raising timeout.

In this chapter, abstract events are firstly extracted to substitute parameterized text
contents. Then mapping the discrete contents into real-valued vector space as mathematical
explanation of transactions. Additionally, capturing query durations between subroutines
to construct trace matrix as service calling representation helps aggregate multiple facets of
transactions. Lastly, two representations are concatenated to feed into one-class classification
to identify unexpected outliers.

36 Network Systematic Event Discovery and Anomaly Detection

3.2 An Overview of System Structure

We firstly introduce the proposed detection framework for the system with micro-services
architectures, which focuses on two core aspects: individual service execution and services
remote query. The former refers to whether a local single service can handle an incoming
task properly within a reasonable time scale. The latter refers to whether the global lightly-
coupled services as a whole can process a user request smoothly in an acceptable time. The
local and global functionalities can be regarded as two-tier behavior features being encoded
into mathematical and learnable representations in a distributed vector space.

In order to achieve the primary goal of runtime anomaly detection, the proposal builds
two parallel representation learning procedures that can capture the above two core features.
Fig. 3.1 illustrates the diagram of the proposal. The arrows are the data-flow as well as the

proposal work-flow.

Data Preparation:
Template Extraction
Service Query Tracing

Representation Learning:
Transactional Topic
Service Query Matrix

Anomaly Detection:
Representation Merging
Outlier Classifier

Log Module N e Log Representation N

—>
Micro-services — . Detection Model
®° = J ¥
& : = Tracing Module I ﬁracing Representaticﬁ
o
f\ —- [590 Sqn]
/;.’///'\‘. SnO Snn
NS J

Fig. 3.1 The Proposed Framework for Runtime System Anomaly Detection in A Micro-services
Architecture

In detail, it is divided into three stages: data preparation, representation learning, and
anomaly detection. The first two stages analyze local and global behaviors. In data prepara-
tion, meta-execution logs are collected by the embedded logging module in the microservices
architecture, and the hierarchical trace data sheets are collected by tracing probes. In addition,
event templates are extracted from logs, and in turn chaotic logs shall be transferred into the
template formation. In representation learning, the log template formation is mapped into dis-
tributed vectors to collectively infer a “fopic” vector for a particular transaction. The tracing
representation is extracted from the trace data sheet which is organized in hierarchy to expose
request-response time. The representation is a matrix, each entry of which indicates a service
duration queried from a front-end service to a certain back-end service. For the convenience

of afterwards feature merging, the matrix is flattened along row as a sparse vector. In the

3.3 Event Template Extraction 37

last stage, two representation vectors are combined and merged as one vector containing
local and global information. The joint features are then input into an outlier classifier to
learn an implicit normal sample distribution, with which the classifier keeps the capacity of
marking data out of the implicit distribution as anomalies. The experiment and evaluation
platform is based on OpenStack cloud computing architecture [104], which implements each
service component, €.g., nova-compute, neutron-networking, and keystone-authorization, by
RESTful API based on the microservices architecture.

3.3 Event Template Extraction

In event template extraction, the aim is to distinguish and omit unstable variate entries to
rewrite one single log in a compact and abstract manner. It is very clear that extracting
templates involves in several distinct types of previous work from statistics to longest
common subsequence, and from clustering to entry partitioning. Each of these algorithms
is underpinned by different assumptions, like digits as variables, constants occupying the
majority, logging source code and location is available and etc. Many proposals only apply
to certain situations and have strict limitation. This thesis proposes partitioning-based log
parsing methods to meet general requirements and keep high efficiency. In the thesis, terms
like template, pattern and log type, are used interchangeably since they all indicate abstract
representations of unstructured raw log messages.

As aforementioned, in general raw log message refers to the unstructured part written in
natural language instead of fixed defined entities, like time stamp, host name, and severity. A
template refers to a frequent item set with fixed position, explicit meaning and time invariant.
A template of one or one groups of raw logs refers to the item set is entailed in these similar
log messages excluding wild card * that replaces infrequent variables.

Table 2.1 and Table 2.2 show the practical outcomes intuitively presenting the downward
closure property [156], also known as Apriori property, by which unstructured and natural
language-related log messages are compressed to compact text form. The compression can

be seen as a surjective function from a raw log set to a template set formulated as:

Definition 3.3.1. Let f,,; : R — T be the extraction function that maps raw log set R into
template set 7', where R = {l,l»,...,In},N e N, T ={t1,t2,...,tps } ,M € N, n > m, I,, denotes

one raw log message, and ¢,, denotes one template.

To be specific, the raw log set R can be divided into G = {l¢,l,, ..., ¢, } such that
lél ﬁlg2 ﬂ...ﬂléM =, and lél Ulgzu...uléM = R. For the i-th group, léi ={0},0,..., ,’(} CR,
where 1 <k <N and /g, C R, the corresponding template is obtained by #; = fex,(l’é),ti S
T1<i<M.

38 Network Systematic Event Discovery and Anomaly Detection

From the definition and subsequent properties, the cardinality of template set 7" is M equal
to the cardinality of group set G. One raw log message can and only can be mapped into one
template. Two extreme conditions can be clarified: 1.) M = 1 since all the messages entail
the same template; 2.) N = M since each message entail each unique template. A universal
objective of the function is to minimize the cardinality of template set to cover wider raw
messages but maximize the reserved information to express human readable events.

For minimizing the cardinality of template set, it attempts to discover the highly concise
and succinct symbolic representations to generalize to sufficiently large groups of raw mes-
sages. In this manner, systematic interpretation would be concentrated on low dimensional
space to avoid being overwhelmed by data flood. An example can be drawn from Table 2.1
and Table 2.2.

Raw logs:

[= CE SYM 2, AT 0X0OB85EA80, MASK 0X08
I, = CE SYM 21, AT 0X110035E0, MASK 0X80
I3 = CE SYM 2, AT 0X0B85EA80, MASK 0X08
Ideal representation:

t = CE SYM * AT * MASK *

From the above example, the abbreviations and words are of interests instead of the
specific numbering and digital physical address. Hence in the ideal representation, unstable
marks are refined and the meaningful words are kept, and three abundant logs are converged
into one sentence, t = foy (I;).

For maximizing the reserved information, the extraction function should disambiguate
templates by divisive raw logs if the intrinsic events differ from among each other. If the
diversity of template stays low, a direct result is to confuse analysis models and human
administrators with substantial same event representations. In this manner, the extraction
function should unfold abundant events by lowering the percentage of wild card *. Also
from the above example, “CE SYM * * * * *” gpparently can cover more types while losing
discrimination capacity for administrator and the following diagnosis model, if the last four
entries deliver other operations.

3.4 Partitioning-based Log Template Extraction

In [26, 28], the authors propose a successful log entry partitioning based method, called
IPLoM to iteratively refine abstract candidates and use invariant entry pair mapping to obtain

templates. As a matter of fact, the entire raw logs are seemingly irregular, chaotic and non

3.4 Partitioning-based Log Template Extraction 39

intuitive. The partition and conquer [157] idea offers a graceful mechanism. The method
proposed in this chapter is inspired by the IPLoM, since the partitioning follows the idea of
fixed entry positions.

A drawback from [26, 28] is that the [PLoM assumes the message contain stable structures
of words pairs. The assumed property fails to hold if developers tend to mark divisive
executions with the same syntax and prefix. The same syntax will appear in the IPLoM
partitioning candidates, entail pair mapping and eventually mislead the discriminator to
unify variant templates. IPLoM is at the risk of masking key information with wild cards.
The proposed partitioning-based extraction in the chapter discards the intuitive mapping
finding and recursively partitions candidate sub-groups by the same mechanism as the first
partitioning trial. As the algorithm here targets at the whole log data set, it is called the
bulk-oriented recursive partitioning algorithm. Three steps in total are included and presented
in the following.

3.4.1 Bulk Recursive Partitioning

First of all, it is broadly accepted that raw logs which entail the identical template would keep
the same sentence length, namely entry count. Recall that the count relates to splitting a text
sentence by given separators, i.e., space, tabs and any other given English punctuations. Thus
one reasonable way to reduce entire raw log intersection chaos is to coarsely segment the
equal length raw logs as several sub groups. The sub groups with equal length help identify
and locate stable constants by columns alignment. Step one is the same as [PLoM.

After grouping raw logs with the identical sentence length (word count separated by
space), in the second step, the first partitioning is based on the most stable entry position.
The most stable entry position can be decided by the count of unique words occurring in that
particular position. On top of the same sentence length, the group of messages can be aligned
and fitted in a symbolic “matrix”, of which each entry is a discrete word. This “matrix” is
reduced into a vector with respect to column, by filling each place with the unique word count
in the corresponding column. The column of the least one is chosen, where individual logs
with the same entry word will be moved into one sub-group. At the moment, step two is also
the same as IPLoM, nevertheless, the above operation is taken subsequently and recursively
over the newly created sub-groups until a limit is reached.

That is, for one sub-group, one symbolic “matrix” is also temporally instantiated and
compress into one vector. At this point, one difference is to ignore any column counting
one to ensure the partitioning effect will not be taken repeatedly and unnecessarily over
analyzed columns. A threshold of number of columns that count one is set to terminate
the recursion process. The threshold controls how many seemingly constant words should

40 Network Systematic Event Discovery and Anomaly Detection

remain to represent the event and how much information should be exposed to analyzers.
The recursion process and threshold indicate the balance between minimizing cardinality
of template set and maximizing the reserved information. The low threshold is inclined to
extend one type as broadly as possible, meanwhile the high threshold tends to richen template
diversity.

Once all the sub-groups become indivisible, the partitioning phase comes to the end and
the final step results in generating template set or so-called template library, one template
for each sub-group. At this point, the first one message would be examined along with the
unique word counts vector, and words at any position corresponding to non-one, would be
directly substituted by *, otherwise are kept. The template set storing all extracted templates

is the ultimate outcome of the recursive processing.

Algorithm 1: Bulk-oriented Recursive Partitioning Algorithm
Data: Entire log message part, R
Parameter : Threshold, T hr
Result: A template library, lib .
Initialize a set of candidate sets S, ire;
for message | € R do
lspiir = split(1), via pre-defined symbols;
length = len(l;,;;), length of the list [;;;
if length not match any set in S¢;;ir. then
create a empty set Siength i Senrires
append [in Sjength
else
| append [in the matched Sjength
end
end
Initialize a group of partitioned sets Group pqa+;
for candidate set Siength € Sensire dO
| Grouppars = RECUR_PARTITION (Siength, Thr);
end
Initialize a library of templates;
for one_set € Group pq do
Replacing columns without count-1 unique terms with x;
libpar: appends the processed content;
end
return [ib4;

The partitioning detail is presented in Algorithm 1. In Algorithm 1, a parameter, Thr is
required to determine remained information, which is ready for downstream tasks or semantic

analysis. The function Recursive Partitioning takes as input a group of candidate sets and

3.4 Partitioning-based Log Template Extraction 41

Algorithm 2: Recursive Partitioning
Data: A set of logs
Parameter :log_subset, INFO_threshold
Result: A template set, inner_set
Function Recur_Partition(log_subset,INF O_threshold):
split_set < log_subset split by the column of the least unique terms;
Initializing inner_set to hold partitioned set;
for one_block € split_set do
if Count I terms exceeds threshold then
append the block into inner_set;
continue;
else
| RECUR_PARTITION(one_block, INFO_threshold);
end
end
Return inner_set;
End Function;

recursively output partitioned results. Afterwards, a template library, [ib,, is returned and

each entry of the library refers to one template.

3.4.2 Segmented Library Iteration

The bulk-oriented recursive partitioning algorithm will return satisfactory template library
which is optimized against the original messages. However, one crucial disadvantage is
the operation time consumption. Though there is information threshold controlling process
depth, extreme examples include the messages that are chaotic and only small fragments of
messages confirm to one template, which complicates and multiplies the recursion process
into pieces. Inside the pieces, recursing until threshold has been reached can examine the
single messages line by line repeatedly, which will grow rapidly with the message size.
Another disadvantage is that bulk partitioning requires an off-line environment feeding the
entire log dataset, which may compromise the log collection module and its efficiency.
Therefore, we propose a segmentation style log partitioning and an aggregation scheme
to increase utility. The segmentation and aggregation extend the off-line scheme to not
only on-line but also a parallel architecture, as the on-line scheme iterates streaming data to
complete the template library, and the parallel architecture encourages local computing and

low communication overhead.

42 Network Systematic Event Discovery and Anomaly Detection

The downward closure property [156] is introduced, also known as Apriori property, by
which unstructured and natural language-related log messages can be compressed to compact
text form. The downward closure property claims if a term set is frequent, then any subset
should be at least as frequent as this term set. The property makes it possible that the frequent
terms are obtained in segmentation, and the shared subsets are extracted in aggregation. In
the segmentation step, Algorithm 1 is only applied to a fraction of original logs, for example
1000 samples, which is determined by a split parameter. If in on-line manner, the fraction
depends on the buffered streaming events, also pre-set by a buffer parameter. Apparently,
the outputs are locally optimal, since no global information is considered. The intermediate
template sets are stored as inputs to the aggregation step. Subsequently, the aggregation
step takes the gathered intermediate templates as input to apply Algorithm 1 again. At this
point, the intermediate templates that are considered as “incomplete logs" entail the global
information to approach more abstract forms. Details are described in Algorithm 3.

Algorithm 3: Segmentation and Aggregation
Data: Entire log message part, R
Parameter : Threshold, T hr;
Log count in segments, Seg_interval
Result: A template library, [ib
Separating the entire log set sequentially with volume set by Seg_interval,
Seg_list = split(R);
for block € Seg_list do
Applying Algorithm 1 to the block;
temporal_lib = Algorithm 1(block)
end
Applying Aggregation to temporal_lib;
1ib par = Aggregation(temporal_lib);
return [ib,4;

In addition to directly applying Algorithm 1 in an on-line scheme, it is also reasonable
to consider that the constant terms could exceed a fraction of variable terms in aggregation
rather than adhering to a fixed information threshold. A case is that the count of constants
should not be less than a percentage of the count of variables. The modification benefits
relatively long logs from potential discovering the templates with majority of variables. It is
obvious that in aggregation, it provides an interface of some adjustments to flexibly tackle
extreme conditions, denoted as Aggregation in Algorithm 3. This modification referred to as
elastic aggregation. The downward closure property guarantees log templates will gradually
converge to its optimal abstraction. It is because within a local part of logs, variables,

e.g., host names, are likely remain stable and are therefore inseparable. Nevertheless, on a

3.5 Transaction-level Representation Learning 43

longer timescale, the inseparable positions become chaotic and separable in terms of unique
counts. The segmentation focuses on small fractions of data to relief computing pressure,
meanwhile aggregation gathers intermediate results from segmentation to approximate
optimal abstraction. The two steps manage to avoid large time consumption while gaining

theoretical convergence.

3.5 Transaction-level Representation Learning

This section is to discuss the semantic representation of grouped logs, which are always
entangled within a short period. The semantic learning collects execution information and
will be the first half of the eventual transaction representation.

Though the preprocessing mainly involves in individual log record structures, the down-
stream tasks require deep analysis and comprehensive explanation in higher hierarchy. In
other words, single individual log messages only record meta-execution, i.e., add and delete,
send and receive, etc. The issues of meta-executions can express error or critical in log
severity, while no evident signs will probably be expressed in case of system-level faults,
for instance, the chaotic execution order causing service failure. The semantic analysis is to
observe and discover hidden running patterns and make use of them to diagnose root causes.

A reasonable solution to high level events representation is to gather a group of logs
sequentially occurring in a time-window and summarize its “fopic" to a more compact
and expressive format. The expressive formats shall compactly capture the corresponding
systematic information and avoid effect of absolute message volume. In this manner, several
fundamental factors should be taken into consideration. Firstly, logs shall be converted into
template form to indicate events instead of unique individuals. The conversion depends on
the outputs of the template extraction method and informative templates prevents identical
events divergence. Secondly, the collected logs shall keep the original order since the
execution sequence is one of the dominant factors which heavily influences decision. A
widely accepted argument is that the execution order entails essential work-flow and its
disorder and incompleteness possibly imply an abnormal task. Thirdly, the time-window
shall be set properly and flexibly to ensure covering close related events and omitting long-
standing disturbance issues, e.g., daemon procedures. Last but not least, the expressive “topic”
shall be capable of keeping core content, compressing in a compact space and simplifying
subsequent numerical computation.

The framework employs the previous template library, transaction request information
and natural language analysis to address these factors. As for the first two points, issues are

straightforward. All the raw messages are scanned line by line, each of which is aligned with

44 Network Systematic Event Discovery and Anomaly Detection

one example in the template library. In practice, one way to reduce computation complexity
is to only consider examples with the same length. Afterwards, all positions corresponding
to asterisks would be masked to give way to matching other positions. Once conversion
is finished, the whole data set becomes a sequence of meta-executions excluding unstable
variables. In terms of the time window, a basic idea is using a pre-defined fixed scale to
separate logs. However, the segments either may lose a significant part of logs or mistakenly
cover irrelevant logs. Therefore, the logs of interest should be determined by request time
duration collected based on practical transaction runtime. The runtime duration will be
discussed later along with request tracing in Section 3.6.

To obtain densely distributed representation of transactions, the document representation
approach from natural language processing is introduced [158]. The document distributed
representation, called doc2vec, stems from word distributed representation [159], which
is called word2vec. The word2vec succeeds in not only capturing word-level semantic
meaning, but also adapting semantic transferring into word vector calculation. Furthermore,
the doc2vec inherits the mechanism of word2vec to wrap up an extra paragraph or document

vector to entail a topic.

_ [wordi |

(|
2 . w
: s = ¥
ﬁ- § Prediction by R
. softmax classification e
=

—

An extra vector for document
Fig. 3.2 Embedding Learning of Word2vec and Doc2vec

Generally, the word embedding learning refers to word2vec-like algorithms, learning
distributed representation of text elements. From Fig. 3.2, it illustrates fundamental concepts
of word2vec and the following doc2vec. To simplify the theory, the Continuous Bag of
Words (CBOW) in [159] is introduced. The embedding learning attempts to converge each
word vector within a time window by aggregating the context information and predicting

the central word. At the beginning, each word will assign with an randomly initialized

3.6 Service Query Tracing Representation Learning 45

vector. Choosing a window size, e.g., win = 9, will constrain and determine the scope and
context of interest. As shown in Fig. 3.2, word5 takes the center position, hence being
taken as prediction objective. The other 8 words make up the context information, which
are aggregated by summing or averaging the vectors. The prediction is accomplished by
softmax function with the input vector w = (wy,w»,...,w,), where v is the size of the entire
vocabulary. The window will slide through the entire sentence to ensure learning every words
and each moving step produces a training example. On top of the CBOW paradigm, the
doc2vec simply adds a fixed extra vector docv into training process. The basic idea is very
similar except that docv is chosen identically across the sentence. Note that docv would
not remain fixed in training but would keep using the same vector instance across window
sliding.

Template vector Template of log

A numeric vector
Template vector Template of log

Fig. 3.3 Transaction Execution Behavior Representation

In contrast to intuitive and generic natural language processing, the model utilizes doc2vec
over log template sentence-level rather than constant word-level. That is in the log analysis,
the analysis grain is log templates rather than general language words. In essence, a language
sentence can be seen as a sequence of words. Similarly, it is reasonable to imagine that a
complete transaction or task is a sequence of meta-executions, printed by a sequence of logs
that can be substituted by intrinsic templates. Thus, in log analysis, one template corresponds
to one “word”, and one transaction log collection corresponds to one “sentence”. Then
such a “sentence” (an actual transaction or task) is fed into a doc2vec model to learn its
distributed vector representation. As can be seen from Fig. 3.3, each template is embedded
as a template vector, and via doc2vec a sequence of log template is also embedded as a
transaction embedding vector.

3.6 Service Query Tracing Representation Learning

This section depicts service tracing module to extract routine and subroutine response duration
to construct the temporal information. Service tracing is of special interest in large scale and

distributed server clusters as well as the microservices architecture, which couple each other

46 Network Systematic Event Discovery and Anomaly Detection

with a communication mechanism, i.e., RESTful API. As a web-search example described in
[160], the basic front-end functionality in distributed platforms heavily depend on frequent
service queries, whose responses normally consist of a stable relation chain.

The targeted scenario is that user-oriented queries are sent from the very first front-end to
all computation provider back-ends, which is inclined to form a spanned tree-like structure.
The motivation is that if a complete query path can be well tracked, a malfunction action
can be well identified and located. The “Dapper” tool depicted in [160] provides a robust,
scalable and effective implementation as well as “Zipkin” in [161], and “Osprofiler” in [162].
Practically, a tracing component will insert a light weight collector into each service point,
and immediately return service activities to central monitor. The light weight collectors
should only cause negligible overhead and be transparent to application developers [160].
Fig. 3.4 illustrates service query chain, spanned as a tree structure.

User query

Servicequery # —w T

Fig. 3.4 A User Request from Front-end to Back-end Path

From Fig. 3.4, users launch a service request through an interface, the application entry.
In the following, the request is processed as several parts which are delivered to back-end
service point via service queries, as depicted as light blue arrows. It is possible that the
first tier receiving queries merely conduct intermediate analysis so that first tier queries are
mapped to the next service tier. Queries are eventually disassembled to multiple primitive
ones, sent to the last tier, and results are reversely responded to the application entry, where
all messages are assembled and replied to users. In this case, there are three levels of service
back-end points.

In the proposed framework, the tracing infrastructure is utilized for structure-related
information, because service requests and back-end queries durations implicitly reflect the

function integrity. With the assistance of a tracing module, the whole query durations are

3.7 Integrated Anomaly Detection Based on Temporal-Spatial Data Representation 47

stored to construct a service query matrix to record one transaction inner component query
histories. Eq. 3.1 below shows a simple example of service query matrix. Here, services are
denoted as numbered columns and rows. Columns are the query sender point and rows are
the receivers. Each entry indicates the response duration from column to row. For instance,
Service Query Matrix(1,2) = 0.4 means service 1 calling service 2 with response duration
0.4 seconds. The matrix explicitly contains all the necessary structural time information
extracted from tracing module, and will combine its corresponding transaction “topic” vector

as the complete temporal-spatial representation.

o 2 0 01 O
04 0 03 O 0
Service Query Matrix=| () 0 0 078 1.7 (3.1)
1.5 0 09 O 0
i 0 1.1 0 033 0 |

3.7 Integrated Anomaly Detection Based on Temporal-Spatial

Data Representation

Based on the behavior and query chain representation, extracted by doc2vec and tracing
mechanism, respectively, the two parts should be integrated as an integrated feature vector.
The feature vector will be taken as input to an anomaly detector.

For representation integration, firstly the matrix should be converted into a vector. In
general, a matrix is flattened with respect to column or row. That is, for row, placing
all rows elements in one single row but keeping their relative context position. In the
following experiment, the service query matrix is flattened across row and the dimension is
dimgyery = n X n, where n denote the number of services. To keep the dimension consistent
through all data samples, the number is for the total service. In one transaction, it is possible
that not all services are involved, in which case irrelevant columns and rows are set as 0.
Afterwards, to aggregate two parts, transaction “topic” vector and service query vector can
be concatenated seamlessly. The concatenation results in a hybrid vector with dimension
dimeoncar = diMguery + dimyg.

As for the anomaly detector, the basic idea is to absorb the features of normal samples and
clarify the normality boundary in a feature space in training, and identify outliers in practice.
Here, in training, all input samples are assumed normal and for test samples, outliers will
be considered as anomalies against the normal sample distribution. One noteworthy issue

is to confirm a proper high-dimensional area to encompass the training cluster. To this end,

48 Network Systematic Event Discovery and Anomaly Detection

one-class classification (OCC) [163] is investigated, which is prevalent in anomaly detection
sphere [163, 164]. Different from multi-classification, a challenge arises when there is little
multiple categories knowledge in training dataset but aware of their similar characteristics.
When there is an newly incoming data point, a classifier is able to highlight its belonging
to training set or not. Several classic methods are belong to the OCC sphere, including the
Local Outlier Factor algorithm [165], the Isolation Forest [166], One-class SVM [167, 168],
clustering based detection [169]. From the OCC algorithms, the one-class support vector
machine (OSVM) [167, 168] is of special interest. That is because in the integrated anomaly
detection, there is no assumption on the distribution of joint spatial and temporal information.
The representative log and trace information are apparently located in distinguished spaces
without direct correlations, and the concatenation presents no evident clue on integration of
original distributions. It can hardly draw the conclusion that density-related methods shall
capture reasonable locality in the original data space. Nonetheless, one-class SVM shall
expand or shrink its decision bound in higher dimensional spaces with the assistant of the

kernel trick, which brings a chance to learn a reasonable bound of normal samples.

A Anomalous

Origin Training samples

Fig. 3.5 A Case of The OSVM to Train Samples against The Origin

The OSVM adopts the similar idea to standard support vector machine, by drawing an
optimal boundary to separate two types. In OSVM, only one category is specified, therefore
the other one is formed by the origin in the feature space. Moreover, the OSVM essentially
finds a least radius sphere in hyperplane to encompass training data, if using kernel trick for
linear non-separable situation. As shown in Fig. 3.5, red circles denote training samples,
which should be separated against the origin. Note that the boundary drawn is not a strict
sphere in the 2D space, but remain spherical in a high dimensional space. The OSVM

is robust to noise in training set since it mainly concentrates on flexible data distribution

3.8 Experiment Results and Analysis 49

boundary, and the training is effective and fast given a small size of dataset. It is reasonable to
consider the advantage of OSVM, provided that collectible and deterministic fault samples in
a complex architecture. Therefore, we employ the OSVM algorithm as the outlier classifier
to fit in small size training data and detect inserted transaction anomalies. Three blue-colored
points are marked as anomalous due to their locations. The blue dash lines denote the distance

from boundary to outliers.

3.8 Experiment Results and Analysis

In this section, we will present the empirical experiments of template extraction and integrated
anomaly detection with concatenated features. The data processing machine is with 16-core
Intel Xeon E5-2630 v3 CPU, 64GB memory, and Nvidia GTX 1080Ti GPU.

Table 3.1 Log Datasets in Experiments

Dataset | BlueGene/L OpenStack
Total Total
4,747,963 269,169
Volume

Info/Warning Error Info/Warning Error
3,759,170 988,793 243,780 25,389

Data are from a public dataset and a distributed platform. The public dataset comes
from the BlueGene/L [25], a supercomputer developed by IBM Watson Research Center.
The BlueGene/L data will only be utilized in template extraction as there lacks high level
transactional label and essential service tracing records for the tracing matrix. The OpenStack
log data are collected from OpenStack services, i.e., nova-computing, neutron-networking,
and etc., deployed in three physical computing nodes. As described before, we make use
of Osprofiler, the OpenStack tracing module, to store hierarchical request trace paths. For
evaluating anomaly detection, 122 user transaction samples are collected from virtual instance
creation and deletion. All data are labeled as 100 normal samples, and 22 outliers, as well.
As for labeling, once a request is sent into OpenStack, the trace module will start to construct
a request tree via inserted probes and assign a unique trace ID to it. Aligning the ID and
starting time, the corresponding logs are directly located.

Table 3.1 depicts the summary of the volume of two datasets. BlueGene/L contains more
than 4 million logs in total, two thirds of which stay with “info” and “warning” severity.
Similarly, OpenStack has nearly 270,000 records with most “info” and “warning” severity. In
the chapter, the main object is these “info” and “warning” records. This is fairly reasonable,

because the assumption is that if "error" appears, it surely points to an anomaly, however if

50 Network Systematic Event Discovery and Anomaly Detection

Table 3.2 Transactional Data Description
Log Volume 243,780

Total Normal Abnormal

Sample Volume 122 100 2

Total Creation Deletion

Sample Type 122 96 26

only “info” and “warning” appear, abnormal events probably are hidden under the seemingly
healthy records.

Table 3.2 describes the transaction sample dataset for high-level transaction representation
learning and service tracing matrix construction. The first column indicates the data volume
in terms of different situations: log volume refers to the total number of log events; sample
volume refers to the division of tasks in terms of normality; sample type refers to the division
of tasks in terms of task type. In total, 122 samples are collected, 100 normal samples and
22 abnormals, through basic virtual instance creation and deletion requested by user. Note
that samples here are based on the task instances, each of which may contain numerous log
events. In abnormal conditions, interferences have been inserted to make instance creation
unsuccessful or long delay. Wherein, unsuccessful creation is triggered by not enough user
quote, and the long delay is due to the broken physical networking. Note that the inadequate
quote is not a system anomaly, but it still can be marked as failed request with "info" and

"warning" records. The proposed model can successfully identify the exceptions.

3.8.1 Evaluation of Template Extraction

Table 3.3 Template Extraction Results
Method Block Size Accuracy Time (s)

IPLoM 0.54 31.9
Segmented 10000 0.57 16.44
Iteration 100000 0.56 12.26
Elastic 10000 0.53 16.92

Aggregation 100000 0.61 12.38

In the beginning, the results show the efficiency and analyze the concrete outcomes of
template extraction between IPLoM and the method. Some evaluations have been done
in [34] and [35]. We take advantage of the open-source material with default setting for
BlueGene/L logs and implement the proposed method in this Chapter. The parameter setting

3.8 Experiment Results and Analysis 51

is: the information threshold, Thr, is set as 0.5 to keep at least 50% terms; the log count
in one segment or buffered size in an on-line scheme, Seg_interval, is set as 10000, and
100000, respectively; furthermore, in the long template adjustment, the exceeding percentage
is set as 0.9. The results are shown in Table 3.3. From the accuracy, the proposed method is
competitive and even performs slightly better than the original IPLoM. The highest one is
the elastic aggregation with accuracy 0.61. As for the time cost, both of the proposals are

nearly as twice as faster than [PLoM.

3.8.2 Evaluation of Transactional Topic Representation

' ® Creation
o ® °. ® Unknown
° i‘ o & .. 00 ® ® Deletion
[) o .. b ‘ []
& e ¢
° ®
[] [X]
... ‘ ... ‘
° ® o0 L
0..
..
¢ ®
°® ol. ‘
[]
. e

Fig. 3.6 Visualization of Transactional Representation

Following template extraction, the whole raw log messages are converted into their
corresponding templates. Each transactional logs block is located by request time stamps
labeled in tracing modules. The doc2vec algorithm takes as input the located normal
transactional log blocks to train the document representation with dim;,, = 150. A high
dimension space needs to be visualized to verify its interpretability. To this end, the t-SNE
algorithm [170] is adopted in Fig. 3.6 to map high dimensional representations into 2D space
and properly visualize the space structure. Additionally, the DBSCAN method [36] clusters
the normal samples into two groups, marked as red and blue, respectively. It is because two
distinct tasks, instance creation and deletion, are included and their fine grain executions
differ widely. In Fig. 3.6, the black circles are labeled as noisy by the DBSCAN in high

dimension, and approximately formed a separation line between the two groups.

52 Network Systematic Event Discovery and Anomaly Detection

3.8.3 Evaluation of Tracing Representation

® Normals ®
li [] []
e Outliers % o ’o.' e o
s o
O. N % ® .. °
°
o o .
®
®
® o .~ °® ° []
F 4 :" oo’ ° 4 <
°
®
®
¥y %
%’

Fig. 3.7 Visualization of All Samples with Ground Truth Labels

The tracing mechanism recognizes 20 services in OpenStack, therefore one 20 x 20 trace
matrix is flattened as a dimgyey = 400 vector. Concatenated with document representation,
the ultimate integrated vector is with dimgneqr = 550. From Fig. 3.7, it illustrates all sample
with ground truth labels distributed in 2D space through the t-SNE. The cyan blue circles are
normal points, and the magenta circles refers to inserted abnormal requests. Obviously, the
combined features clearly reflect the distinct cluster natures, which enables the following
outlier classifier.

3.8.4 Evaluation of Anomaly Detection

By the OSVM method with radial basis function (RBF) kernel, the detection results are
visualized in Fig. 3.8. As in Fig. 3.8, training with the normal data marked as cyan has 0.91
training accuracy and all anomalies are successfully identified, marked as magenta on the
left. Compared to Fig. 3.7 above, several normal data are mistakenly identified as anomalies.
It conjectures that in high dimensional training, these data are placed near the periphery
of normal distribution boundary, though distant from anomalies. Without an elastic sphere

boundary, possibly a small number of normals are segregated out of the normal scope.

3.9 Summary

53

® Normals ®
- ® ®
e Outliers e, & .Q.! .
¢ (] "
®
. 0, o
.. ® °
®
®
® 0.'
@ o 00" <4 ‘ *»
’ ® o ® LN °
(]
®
[]
¥y %
®e®’

Fig. 3.8 Visualization of Anomaly Detection Labels

3.9 Summary

To conclude, the functional and transactional anomaly detection is crucial for efficient

management and maintenance in a large-scale micro-services architecture. A general-purpose

anomaly detection framework is proposed to target at micro-services architectures, using

temporal service execution logs and spatial service query traces. The framework works

compatibly with but not limited in doc2vec and tracing matrix. Experiment results have

shown competitive performance and effectiveness of the proposed scheme: the template

extraction achieves competitive accuracy and high efficiency; the transactional representation

visualizes the distribution that samples entail; with the aid of spatial service query traces,

the integrated representation segregates anomalies from normal points and helps the outlier

classifier to highlight those anomalies.

Chapter 4

Network System Fault Localization and
Ranking

4.1 Introduction

Previous work achieves anomaly detection of service-oriented networking architecture,
and gains insightful results and decent performance. It is worth noting that the anomaly
detection merely unveils labels or marks of high level events or predict the trends of them.
One commonly accepted issue is that only learning a global label or a summary of an
event is not sufficient for management. Identifying anomalies is the first step, followed by
deeply and correctly localizing root cause and fault source, which is the step stone of fault
prevention, solution and recovery. Localizing the root cause directly highlights the central
issue raised by the anomaly and reveal the causality of service interaction. Localizing root
cause also provides awareness in advance of anomaly details, becoming the key to prevent
from catastrophic collapse.

This chapter considers the root cause localization problem as the core issue of networking
diagnosis and proposes a ranking model to emphasize potential sources. On top of the
networking anomaly detection outcomes, the localization focuses on digging out hidden rela-
tions between interconnected services and using the relations to infer the service significance
and severity. The common wisdom of root cause analysis is offering a reasonable solution to
a particular visible problem or a reported issue by a trouble ticket. For the localization of
faults [171, 172], a probabilistic model should be built based on fault propagation to cover
the networking system. In the context of the chapter, micro-services architecture root cause
analysis, the aim is to point out the most suspicious service node rather than outputting
descriptive technical summary.

56 Network System Fault Localization and Ranking

4.2 Overview of Fault Localization Framework

To this end, a hierarchical ranking process is proposed. The process starts from transaction
type filtering to service significance computing, followed by discrepancy calculation between
actual time consumption and historical average, finally ending up with components ranking
of a filtered task. The inputs of the process consist of the detected anomaly logs, the
corresponding trace matrices and a newly constructed dependency matrix. The dependency
matrix is based on calling links and is described in Section 4.5. There are three stages to
accomplish it: 1) calculating anomaly degree and ranking the anomalous samples based on a
sequential prediction model; 2) building an error matrix against history average; 3) calculating
significance ratio vector with a dependency matrix based on PageRank and outputting the
final suspicious ranking list. An overview of localization framework is presented in Fig. 4.1.
Each red dotted frame illustrates a complete step. The black arrows cover the data-flow in
the framework.

Anomaly Detection Ranking based on ~
Categorized by Type Anomaly Degree

]
1

A ______J S

e tep2: _Trace Matrix \“
! Historical Average Trace Matrix |
i Historical Average i
E @y - g CAM 4 !
E a' a' Error Matrix = Historical Matrix — Measure Matrix i

nil nn

E Historical [bn bln] [En o Eynl [Hyy - Hppl [Mpp - Mln] i
1 Matrix : § H S E S § !
1 1
: bnl bnn Epy o Eppl lHpg o Hppl (Mpy 0 My, i
1 H

1 1
\ 1

o e o o o B o o o o o o B B o o B o o o o o o o B o e e o o o e o [B n f n

s Significance Ratio Final Rankin \
! Step3 by PageRank 2 i
! 1
i) .. D S. i
] Dependency | ;' .. i PM[;1] !
i Matrix Dpy Dpp Sn i
! 1
=\ j
. 4

Fig. 4.1 Framework of Fault Root Cause Localization

4.3 Ranking Based on Anomaly Degree 57

Below, the anomaly degree is introduced in Section 4.3, followed by trace error matrix in

Section 4.4, and lastly, localizing and ranking services in Section 4.5.

4.3 Ranking Based on Anomaly Degree

In this section, the first step is to filter the most anomalous individual request type. The
assumption is that during a period of interest, various kinds of user requests launch the
corresponding systematic transactions or tasks, and a number of anomalies occur as well.
The hypothesis is that the root causes always hide in the most notable anomalies. As such,
the job is to find out which anomaly or the type of anomalies is the most representative and
reflects the most symptoms.

In light of the anomaly detection outcomes in Chapter 3, it is reasonable to stem the
anomaly degree from the detected abnormal samples instead of normal samples. The
anomalous samples would hold fault representative information that could lead to track down
to the problem source. In complicated systems, a single true fault always triggers numerous
visible error signs across relevant complete tasks, for instance, massive printed error and fatal
severity logs, unexpected work-flows and excessively long processing delays. Furthermore,
if a functional node provides a core service for one type of tasks and is experiencing an
erroneous operation, the type of tasks will surely have serious and exterior symptoms. On the
contrary, if a functional node imposes less heavily on a type of tasks, the visible symptoms
are likely to barely presents low severity. Even if a service is excluded from a task request, the
relevance is highly possible reduced to none. The above observation supports the localization
hypothesis and shows the right direction to implement it.

The following problem becomes how to determine the anomaly degree based on the
recognized tasks. Here, one sequential model is utilized to capture log data temporal
characteristics. A basic assumption is that before anomaly identification, normal samples are
collected for training a baseline, as the outlier classifier training in Chapter 3. The sequential
model is fitted with the normal collected log data in training phase and in testing phase,
incoming stream log data are evaluated and checked in matching. The adopted sequential
model is one of the Recurrent Neural Networks (RNN) models, Long Short Term Memory
(LSTM) [173]. The detail will be elucidated below.

The RNN model prevails in sequential data analysis in deep learning community [92] and
can be visualized in Fig. 4.2. From Fig. 4.2, x;, 0;, and s; denote input data, output data and
hidden state, respectively. The time index conforms to 0 < ¢ < oo, and the practical range will
be within a sequence of interest. The input x; is the representation of log templates learned by

word embedding [101] as the same as transactional representational learning. The templates

58 Network System Fault Localization and Ranking

remain the same order as the raw logs and the sequential data are turned into a sequence of
distributed vectors as the time series input of the RNN. The outputs also construct a sequence
that should match a given sequence of labels to guide the neural networks training direction.
Generally, an input sequence and its labels pair is called a training pair. A conventional way
to accomplish it is shifting a input sequence forward one time step to be its output labels.
As for the cell, it is the processing core of RNN which transforms input data into
the implicit forms (hidden state s;) in a high-dimensional vector space, and is capable of
projecting the implicit forms into output representation. The left red dotted rectangle covers
the unrolled structure of the RNN and the right rectangle reveals one cell unit recurrently

wraps up the previous hidden state to merge into the current processing.

o o o o o o

-
~

e ———————————

¥

Y

Y

Y

N‘.-—--------------—-------—-----———’

e

p———

1

I—-
e

\\ ,,

4
7
\
-’
4
Ay

- S ———————— -

Fig. 4.2 Visualization of Recurrent Neural Networks Structure

The formulation of the RNN can be defined as below:

St = fcell(xt) 4.1)
01 = fou (St) (4.2)

In Eq. 4.6, the cell function passes x; at step ¢ to compress into the hidden state s;, and Eq
4.2 transforms the hidden state s; into o;. Here, ¢ is consistent with the concept in Fig. 4.2,
whose range is within a sequence of interest. In effect, f.;; is chosen as a Hyperbolic function
tanh in original RNN, while in LSTM cell, the f..; is divided as three processing gates:
the input gate determines how much input information should be received; the forget gate
determines how much history information should be omitted; the output gate determines how

much current information should be outputted. The LSTM is formulated in the following:

4.3 Ranking Based on Anomaly Degree 59

fi=Gy(x,51-1) (4.3)
iy = Gi(x,8,-1) 4.4)
0r = Go(xs,81-1) (4.5)
¢ =Cell(ci—1,Xs,1r, fr,81—1) (4.6)
hy = State(oy,¢;) 4.7)

In Eq. 4.3, Eq. 4.4, and Eq. 4.5, the gate functions G are Sigmoid functions, containing
three groups of parameters for forget gate, information gate and output gate, respectively.
Different from the original RNN, LSTM has a cell state ¢, that helps store sequence relations.
Then, the outputs are obtained directly from the output gate. Furthermore, for complex
data structure, standard LSTM models can be stacked to enhance the capacity of capturing
complex regularity. In this chapter, two LSTM blocks are stacked and the stacked entity is
called a two-layer LSTM model.

As such, the two-layer LSTM model is employed to learn sequential characteristics from
a sequence of extracted log template data of normal tasks. A well trained LSTM model is
then utilized to compute the anomaly degree of one anomalous sample. The idea is that the
LSTM model attempts to predict the future templates that are compared with ground truth in
an anomalous sample. The prediction basically outputs a list of the top likely results. The
comparison is to match the ground truth with the list position and the anomaly degree is
exponential to the matched position.

(m)

Eq. 4.8 formulates the sequential model and its top-m list [istojn , where o, denotes the
template at time step 7, and o0g.;—1 denotes the previous templates as a time series from step 0
tor—1. In Eq. 4.9, if the template label /; belongs to the / ist(g?’), the corresponding positioning
Pos), is recorded by an argument search function fy,(-), otherwise, the positioning is assigned
by m+ 1. The positioning Pos,, is subsequently subtracted by m in an exponential expression
in Eq. 4.10 to compute how anomalous the template is at time 7, which is called anomaly

degree.

listgtm) = SeqModel(00;—1) (4.8)
Pos, — Farg(listS™ 1), if 1, € listd™ “o)
m—+1, otherwise

Dgr = exp(Pos;, —m) (4.10)

60 Network System Fault Localization and Ranking

Here, the degree Dgr records merely individual template status. For a complete task,
all individual templates should be aggregated. The aggregation could be based on sum and
mean. sum focuses on ensemble degree of the entire task, while mean emphasizes the average
individual capacity. In addition to task-level, multiple tasks of the same type could occur
within one time-window, for which the anomaly degree in terms of type level should be
carefully considered as well. In this chapter, mean is adopted in task-level degree aggregation
to relief long log sequence bias and sum is adopted in type-level degree aggregation to
highlight the most significant occurrence.

4.4 Trace Error Matrix and Dependency matrix

In this section, we will introduce the trace error matrix (TEM) for finding the most noticeable
query duration discrepancy and the dependency matrix (DM) for subsequent PageRank
calculation. Both of the TEM and the DM stem from the service query tracing module
depicted in Chapter 3. The TEM is obtained by calculating service history trend and the DM
is obtained by querying frequency.

From Chapter 3, the service query trace matrix only captures single transaction structure
information for systematic representation. Nevertheless, service querying features have not
been fully leveraged for in-depth mining. The individual spatial information merely reflects
discrete and possibly exceptional features, which are utilized in an abstract way in anomaly
detection. In localization, knowledge should be narrowed down to element-wise analysis in
order to highlight suspicious services.

An intuitive idea is to reveal the discrepancy between the actual observations and the
history trend, afterwards denoted by Trace Error Matrix. The discrepancy, also called Trace
Error Matrix, can directly measure which part has been changed the most when an anomaly
occurs. Thus, the history trends construct a baseline of each querying duration in normal
operation over collected transactional traces, which can be accomplished by element-wise
averaging tracing query matrix, i.e., simple average, moving average and exponential moving
average. The three averaging methods implement three perspectives of history trends: the
simple average makes efforts to consider the overall service performance; the moving average
pays more attention to recent sample information with respect to history time labels; lastly,
the exponential moving average attempts to assign temporal importance to the recent samples
of special interests. Eq. 4.11 and Eq. 4.12 formulate the calculation of the TEM.

TEM = Myps — Mirena 4.11)

4.4 Trace Error Matrix and Dependency matrix 61

Mirena = Favg (Msample) (412)

where M, is the service query matrix of a detected sample and M. denotes history

normal data. As for Fj,(-),

1 N
Fayg(+) = N ZM;ample sample average for N samples
0
1 4
= Z Méample moving average in n steps
t—n
M ,ifr =1
samﬁ’ le - exponential moving average

6 .Ms‘ample + (1 - 5) 'Fa\Zg

When an anomaly is detected, its actual observation matrix is subtracted by the history
trend to obtain the eventual Trace Error Matrix. The Trace Error Matrix will be regarded as
the actual anomalous status fused with inherent significance to capture the most suspicious
component.

Unlike the Trace Error Matrix, the Dependency Matrix captures the calling procedures
rather than actual response durations, which will lack the temporal information but hold the
service interaction relations. An intriguing perspective is that the entire dependency process
corresponds to a topology-like graph where each node is an independent service and each link
is built by the calling connection. In the following, a topology-like graph is mathematically
modeled as a matrix. In detail, the row and column settings are the same as the Trace Error
Matrix, and the entries store the interaction frequency. Originally, the service tracing module
collects the calling counts from an individual front-end service to each one of its back-end
services during one specific type of task. In the original Dependency Matrix, the entries are
the collected request counts. From the perspective of functionality and utility, the calling
information directly reflects the importance of each individual service in the running task. If
a service is activated with a large amount of requests, it is apparently supposed to maintain a
key element for completing the whole process. It therefore discovers a service occupying
an important position during the task. Furthermore, the relative significance is of interest
instead of the absolute summed count. The significance is then represented as probability
weights that are normalized by the overall callings, which can be regarded as the task state
quasi-transition probabilities in this regard. As such, the original Dependency Matrix is
converted based on the probability weights to eventually construct a Markov matrix [174].
The quasi-transition Dependency Matrix will be utilized to calculate the inherent significance

of each service with respect to each type of tasks.

62 Network System Fault Localization and Ranking

Though the Trace Error Matrix and Dependency Matrix are distinctive from the process
of construction, they in fact wrap up two facets of the systematic service request-response
mechanism. The Trace Error Matrix flexibly extracts the explicit discrepancy between the
history trend and the current suspicious sample. In the meantime, the Dependency Matrix
implicitly extracts the static and intrinsic relations that are based on the ideology of designing.
Both of the two matrices are jointly leveraged in the following Section for highlighting and

localizing the most serious service point in the system.

4.5 Localizing Services by Significance Ranking

The Trace Error Matrix reflects the actual discrepancy incurred by each component in the
runtime. It is a naive approach to sort out the root cause within one operation. Nonetheless,
each component may present a symptom without inherent importance. That is the Trace Error
Matrix measures the error seriousness in one single operation regardless of corresponding
service weights in this request type. For instance, in a cloud platform, creation of virtual
machine involves in the same classes of back-end services as migration of virtual machine,
while creation instead of migration tends to access the image management module frequently
in the beginning. The importance of each service is likely to be distinctive for various tasks
in this regard.

In fact, for each type of task, there exists an inherent significance assignment since
the corresponding service functions were designed and developed. On top of the type of
a forthcoming task, system will automatically determine what back-end services will be
invoked and in what order these services respond. In many cases, a service may not have
only one back-end support and in turn, a service may have to answer to multiple front-end
requests during one single task. An obvious phenomenon is that the more front-end services
calling one particular back-end point, the more crucial it is likely to be to the completeness
and performance of functionality. A topology-like graph properly fits the complicated query-
response relations and expresses the whole structure in an explicit mathematical matrix.

A simplified topology-like dependence graph is presented in Fig. 4.3. In this figure, the
circles represent one functional service point in a system, and the arrows represent back-end
service querying links. There are three tracing layers, front-end services, mid-layer services
and the last level back-end services, respectively. In the beginning, users post requests for
tasks of interests, and these requests are forwarded to the front-end services. The front-end
services ingest the primitive request and resolve them as several sub-tasks that are distributed
to some corresponding lower layer servicing points to process. The mid-layer services receive

the sub-tasks and further disassemble them into meta-queries that will be delivered to the last

4.5 Localizing Services by Significance Ranking 63

servicing layer. The final back-end services only take configurations, data, and objects as
input and respond to the tasks binded predecessors. In Fig. 4.3, arrows with the same color
and style are belong to the same tasks. It is manifest from Fig. 4.3 that each front-end service
can send multiple services to one descendant and in turn each mid-layer and back-end service
can ingest multiple queries from different predecessors. Additionally, a user request can
declare more than one front-end services to jointly accomplish it as shown with the circles

linked by dotted green arrows.

. Front-end Services

Mid-layer Services

Query Dependency

Back-end Services

Fig. 4.3 Tracing Graph Based on Systematic Query Dependence

The aforementioned Dependence Matrix shows an opportunity to capture the fundamental
significance of individual services despite it is instantiated as a sparse correlation matrix.
The above graph is adopted to construct a 9 X 9 dependence matrix, each entry of which
is obtained by the invocation frequency from row services to column services. Hence, the
PageRank algorithm [175] is introduced to compress the interaction information into dense
importance representation.

The PageRank algorithm was proposed in the context of web applications and services,
which offered an effective way to determine the importance of an accessible web page. It
was firstly employed for the web search engines that returned a set of key word matched
pages. The matched pages are all relevant to the real intension of users, however should
be prompted in a reasonable order. The order is ranked based on a score measuring the
importance or popularity of the web content in this regard. The results that top the ordered
list has large chances to become the items of interests. As for the score, the PageRank
algorithm would assign an initial weight to each accessible node in the graph and the weights
are equal at the beginning. Links that direct one node to another refer to the dynamic score
distributing or state-like transferring from perspective of system state representation. In the

meanwhile, the entire graph completes a closed loop where each node gives out its score to

64 Network System Fault Localization and Ranking

descendants but receives scores from its predecessors. The closed loop reveals an iterative
process and requires a convergence condition that guarantees fixed and stable scores after a
limited iteration steps regardless of the initialized values. The convergence condition is that
the transferring matrix embedded in the graph is a Markov matrix, which means either the
column or the row vectors are stochastic vectors.

The Dependence Matrix perfectly fits in the PageRank algorithm requirement. The
column vectors of the Dependence Matrix are inherently stochastic vectors, Since the orig-
inal calling counts entries in the matrix are all recomputed as normalized service queries
dependence weights. Analogous to the state transferring scenario, the nature of the Depen-
dence Matrix can be viewed as operational state dynamics for a high level user request. The
PageRank algorithm takes as input the Dependence Matrix to iteratively converge to a weight
vector, in which each element corresponds to one working service revealing the inherent
importance. The inherent importance is stable and only based on the system design ideology
and functionality, while it is not explicitly provided. As such, it requires the PageRank
method to achieve this.

The ultimate outcomes are forged by the Trace Error Matrix and services PageRank
values as formulated at Eq. 4.13, where X denotes matrix product by a matrix and a vector.
Here, the [is the final ranking value list that can be sorted to find the most suspicious node.
TEM refers to Trace Error Matrix and P, denotes the systematic default PageRank values of
all existing active services. This can summarize the total error degrees in a particular task
weighted by each service inherent importance. Apparently, the largest error indicates the

largest gap between the normal baseline and the actual data.

[=TEM x P, (4.13)

4.6 Experiments

In this section, the settings of experiments are described to present the availability and
feasibility of anomaly degree, instances of Trace Error Matrix and Dependence, and the
ranking localization based on the PageRank algorithm. Firstly, we have overview of the
experiment scenario. The process is consistent with the proposal framework in Fig. 4.1. The
target micro-services platform is OpenStack with four fundamental components interacted
with each other, as presented in Fig. 4.4. The green arrows denote that interactions direct
to end users and the red arrows denote intra-queries. It is clear that the user requests
are straightforward from the front-end. When there is an instance creation operation, the

request is divided into several downstream queries: authentication, instance image retrieval,

4.6 Experiments 65

computing resource allocation and networking resource allocation. The operation and its
order are recorded by the event logging module and the tracing management module, which

provides abundant information for dependency analysis.

End Users Requests

Keystone Authentication Service

-

Nova Computing Service [« Neutron Networking Service

Glance Imaging Service

I

Fig. 4.4 The Topological Interaction with Each Fundamental Services

4.6.1 Experimental Environment and Data

As detailed depicted in Chapter 3, the localization conforms to the networking data process
paradigm with representation and fusion. In this section, the experiment environment is still
based on OpenStack cloud computing system with the tracing module, Osprofiler [162]. The
functionality of Osprofiler is similar to that of Zipkin [161], the Dapper Tracing tool [160]
from Google and other academic and industrial contributions [176—179].

In Chapter 3, the tracing module is employed to probe the actual servicing time to
represent the systematic spatial information. However, as aforementioned, the drawback of
pure servicing duration is shielding the correlation of each service node so that the root cause
of a fault is difficult to highlight. With the assistance of the tracing module, the Dependence
Matrix is extracted based on the query occurrence in a task. In addition, the Service Tracing
Matrix of normal tasks are averaged to the historical normal operation baseline for the
building of Trace Error Matrix. Besides the tracing information, the log data are the same
as Chapter 3, while they are all transformed into symbolic sequences for sequential model
construction. In normal tasks, the samples are collected based on instance creation and
deletion, in the meanwhile the abnormal samples are collected based on the virtual instance

creation.

66 Network System Fault Localization and Ranking

4.6.2 Anomaly Degree Analysis

In Section 4.3, the RNN-augmented (LSTM) model block is introduced to memorize the se-
quential relations entailed in log sequences. The logs are preprocessed into the corresponding
templates and its mark number in the template ‘’vocabulary", the size of which is determined
the amount the unique templates. The sequential model adopts 2-layer bi-directional LSTM
with 512 units in hidden states and 256 units in log template embedding matrix. The unrolled

sequence window is 10, predicting the template sequence of 1 time slot right-shifting.

([Creation Accuracy} \“ [Deletion Accuracy }

Accuracy In Epochs
Accuracy In Epochs

e e
Epochs Epochs

(a) Normal Instance Creation Task Samples (b) Normal Instance Deletion Task Samples
Fig. 4.5 The Training Accuracy of Normal Instance Creation and Deletion Task Samples

It is clear from the Fig. 4.5, both of the training accuracy curves are very similar and
converge fast, showing the capability of capturing the sequential features of logs across
various types of tasks. Both of the training process of the instance creation and deletion
task converge to the optimal parameter setting barely after 200 epochs though there carrying
on 3000 epochs. The well-trained models are stored for the forthcoming anomaly degree
calculation at different time checkpoints, i.e., 1000 epochs, 2000 epochs and 3000 epochs.
Section 4.3 elucidates the anomaly degree formulation, which is an exponential expression
based on the next template token prediction position. To explicitly illustrate the anomaly
trend, the anomaly degree is computed by moving average with the triangle window type.

In Fig. 4.6, the left sub-graph and right sub-graph are the anomaly degree trends of
instance creation samples and instance deletion samples, respectively. It is manifest from
Fig. 4.6 that the anomaly degree trends of all the historical normal tasks remain close to 0.
Although there exits an exception at the beginning prediction, it plunges to the low value
within a very short period. It is worth noting that the degree calculation results are very
similar nonetheless they are respectively compatible with a creation model and a deletion
model. The model are divided based on the task types and will be loaded with the optimal

performance checkpoint to apply to the collected datasets.

4.6 Experiments 67

Each color denotes each deletion task Each color denotes each creation task
from sample 1 to sample 22 from sample 1 to sample 78

Sample 1
Sample 2
Sample 3

Sample 1
Sample 2
Sample 3

/r\ Sample 22

Sample 78

Anomaly Degree
Anomaly Degree

L W

[EY 100 %0 z0 2 £ E]

) 100 0 w0 %0
Time Steps

30
Time Steps

(a) Normal Instance Creation Task Samples (b) Normal Instance Deletion Task Samples
Fig. 4.6 The Anomaly Degree of Normal Instance Creation and Deletion Task Samples

1o Each color denotes each abnormal task
from sample 1 to sample 21

08

06

04

Anomaly Degree

Sample 1

02 Sample 2

00

Time Steps
Fig. 4.7 The Anomaly Degree of Abnormal Instance Creation Task Samples

In contrast to the normal samples, Fig. 4.7, all the trends of instance creation task samples
keep high values, most of which indicate the incremental trend. The abnormal testing data
are all based on instance creation, therefore the loaded model is from well-trained instance
creation checkpoint. The high anomaly degree values and the incremental trends compared

to the normal samples evidently proves that the features of network faults and anomalies

68 Network System Fault Localization and Ranking

leave strong brands and fingerprints in the temporal log sequences. Also, the anomaly degree
numerical values offer an effective measure to rank the most suspicious task type for the

following service node-level root cause ranking and localization.

4.6.3 The Root Cause Analysis

To localize and rank the root cause of network anomalies and faults, the Trace Error Matrix
is forged and combined with service PageRank values to obtain the most suspicious nodes.
The PageRank values are calculated on top of the Dependence Matrix and listed for two
types of tasks in Table 4.1. The service name not only contains the necessary components
dedicated to the OpenStack functionality, but also records the physical host servers, e.g.,
HPC-Lab01. The communication mechanisms for service queries are additionally wrapped
up as rpc, neutron_api, and wsgi etc. Note that there is a term named “TopReq", which refers
to the user request entry point. The request entry for a user is like a general service node so
that the entry is supposed to be part of the tracing. In an OpenStack system, there will be
a master server for high level management and several slave servers for conveying virtual
machines. In the experiment, the master server is appointed to the HPC-Lab01 host therefore
services like nova-conductor, and nova-scheduler are located at HPC-LabO0l .

As for the values of PageRanks, the results are the average values of all creation tasks
and deletion tasks. In fact, the PageRank values are different across tasks even belonging to
the same type. It is because the virtual instance creation operations are probably allocated in
different physical machines based on an OpenStack default resource management strategy.
Since nova-compute service in OpenStack is responsible for computing resource management,
each of physical machines has a service end point with a relatively high PageRank value.

Besides the PageRank value, the Trace Error Matrix stems from the tracing information
of history normal operation baseline and the detected anomaly ones. Following the anomaly
and faults detection in Chapter 3, the root causes are localized among the detected anomalous
samples. The amount of services counts 20 from Table 4.1, making the baseline tracing
matrix size 20 x 20 as well as the Trace Error Matrix. Both of the two types of matrix are
sparse because one service only interacts with a few of others.

In Table 4.1, the final Ranking Value column presents a ranking list of a creation example.
The true cause of the creation task failure is due to inadequate user instance quotes. Note
that the issues of inadequate user instance is not a system problem but can be detected as
in Chapter 3 and the root cause ranking value still gives insights of the issue source. The
largest two service nodes are rpc:nova:nova-conductor:HPC-Lab0l and rpc:nova:nova-
scheduler:HPC-Lab01, respectively. The nova-conductor service enables OpenStack access
the database and the nova-scheduler serves as the core instance launch decision agent. It is

4.6 Experiments

69

Table 4.1 OpenStack Services and PageRank Values

Service Name

Creation Deletion Ranking Value

nova_image:nova:osapi_compute:HPC-Lab01
vif_driver:nova:nova-compute:HPC-Lab01
compute_api:nova:osapi_compute:HPC-Lab01
rpc:nova:nova-conductor: HPC-Lab01
wsgi:glance:api:HPC-Lab01
rpc:nova:osapi_compute:HPC-Lab01
neutron_api:nova:nova-compute:HPC-Lab03
neutron_api:nova:nova-compute:HPC-LabO01
rpc:nova:nova-compute: HPC-Lab01
wsgi:keystone:admin:HPC-LabO01
rpc:nova:nova-scheduler: HPC-Lab01
TopReq
rpc:nova:nova-consoleauth:HPC-Lab01
neutron_api:nova:nova-compute:HPC-Lab02
neutron_api:nova:osapi_compute: HPC-Lab01
wsginova:osapi_compute: HPC-Lab01
rpc:nova:nova-compute: HPC-Lab03
vif_driver:nova:nova-compute: HPC-Lab03
rpc:nova:nova-compute: HPC-Lab02
vif_driver:nova:nova-compute:HPC-Lab02

0.0102
0.0102
0.0303
0.0666
0.0095
0.0075
0.0113
0.0172
0.0616
0.0075
0.0075
0.0385
0.0075
0.0141
0.0280
0.0252
0.0285
0.0085
0.0437
0.0093

0.0075
0.0075
0.0497
0.0075
0.0075
0.0496
0.0168
0.0241
0.0402
0.0075
0.0075
0.0588
0.0075
0.0197
0.0277
0.0548
0.0229
0.0075
0.0282
0.0075

0.0219
0.0717
0.0379
0.2306
0.0188
0
0.0398
0.0787
0.1281
0.0379
0.2003
0.0300
0
0.0577
0.0341
0.0143
0.0951
0.0371
0.1102
0.0530

70 Network System Fault Localization and Ranking

reasonable to emphasize the database access point since the system validation mechanism
attempts to hold the process from an invalid request. Though the nova-scheduler carries a
low PageRank value, the inadequate quote issue prevents the scheduler from distributing the
launch instructions, which dramatically raises the error gap and highlights the final ranking
value.

4.7 Summary

In this chapter, we describe the framework of network anomaly and fault root cause local-
ization by presenting sequential model anomaly degree prediction, Trace Error Matrix and
Dependence Matrix construction, and the information fusion-based ranking value computa-
tion. Experiments of sequential model training process and localization ranking based on
the collected task samples show that the proposed framework performs well and success-
fully captures core temporal and spatial information to provide interpretable insight of the
abnormal issues.

Chapter 5

Network Traffic Resource Management

5.1 Introduction

Path planning is one of the most important aspects of TE, providing selected routing and
forwarding paths between nodes to offer high-performance networks [180, 181]. Due to
diversified services and advanced networking techniques like network virtualization, network
dynamics have become a normal phenomenon, resulting in an increasing demand for path
planning under various requirements and/or conditions [181-184]. For instance, forwarding
path is restricted to go through one or several given nodes for e.g. traffic monitoring.

The emerging Software Defined Networking (SDN) paradigm [118, 185] has gained its
popularity and drawn considerable attentions for smooth and rapid development of new TE
algorithms, due to its capability of decoupling the control plane from the data plane. This
decoupling releases computing resources in commodity switches to simplify switch functions
and pull the forwarding decision making and computing into a high level controller, which is
able to take global information into consideration.

With the increment of various emerging applications, massive data has been produced
from the Internet [186, 110]. The hidden information behind the data implies important
knowledge [187] for efficient TE [9]. Data-driven applications take as input the massive data
to help adapt learning algorithms into distinctive circumstances. Successes in [188, 189]
clarify the importance of leveraging useful data generated from the network. Their large-
scale data analysis enables promising applications, such as semantic interpretation and user
experience improvement.

The intention is to extend data-driven learning promoted by deep learning methods to the
path planning problem. Deep learning has been massively developed and rapidly deployed
by a variety of applications [92], which makes the utmost data be fully perceived by the

application. Though deep learning methods have succeeded in many fields, challenges

72 Network Traffic Resource Management

still exist when being introduced into network applications [9]. For example, dynamics in
networking needs human-like behavior for model to fit.

To make a further progress, this chapter aims to have finer-grained network-level path
planning driven by empirical traffic data. To achieve this purpose, we treat the network path as
a sequential data, since a path with a set of forwarding hops explicitly express its serializability.
One notable sequence analysis technique comes from Natural Language Processing (NLP),
where sentences or phrases are intrinsically serialized. Inspired by sentences analysis in NLP,
the proposal merges neural networks and build a sequence-to-sequence (seq2seq) model
[190] to capture inner characteristics of sequence-like traffic forwarding and routing path.
Abundant traffic information from the network can provide a natural way for model training.
The method will extract sequential features from empirical traffic data and apply them into

path discovery.

5.2 The Proposed Framework

This study aims to propose a forwarding method based on seq2seq model for path planning
between two nodes, through learning common paths in a network from historical forwarding

experiences.

5.2.1 Problem formulation

For the sake of clarity, Definition 5.2.1 is first given in this section.

Definition 5.2.1. The source sequence and target sequence are two network paths between
source node and destination node. Each of them contains a set of network nodes to be

traversed from source to destination.

The problem considered here is that, given the source sequence and constrained condition,
it is going to find the target sequence which satisfies the constrained condition. For example,
a source sequence can be (source, node 1, node 2, ..., node n, destination), and a constrained
condition is that this network path need go through a particular node k. The target sequence
is therefore (source, node 1, node 2, ..., node k, ..., node n, destination).

For clarity, it denotes source and target sequences as bold vector 7, 7, where X =
(x1,X2,...,X,,) With length n, and 7 = (¥1,¥2; -+, Yn,) With length n,. The lower case letter
X,y represent the element in a sequence.

5.2 The Proposed Framework 73

5.2.2 The Inspired Forwarding Path Model

Fig. 5.1 provides a high-level illustration of the inspired forwarding method based on seq2seq
model. An intuitive idea is that path generation can be deemed as a transformation from
request sequences to ultimate sequences, which fits well in the seq2seq model. The scenario
incorporates encoder-decoder into the SDN architecture, where the programmable switches
in the data plane will conduct rules from a controller. The learning-based framework serves
as an intelligent agent making decisions and deploying rules. The input sources are data
transferring requests with constrains and the output shall be practical transferring paths
corresponding to requests. The Encoder takes the source sequence as input and produces
hidden states that are fed into the Decoder and the Attention (used to ensure reasonable
order of nodes in a sequence). The Decoder receives the last hidden state from the Encoder
to produce its own hidden states which are fed into the Beam search (used to enhance the
performance of the proposed model) and back to the Attention, as the dashed arrow shows.
The Attention scores the relevance between the hidden states of the Encoder and the Decoder
to output context vectors. Eventually, the context vectors are jointly fed into the beam search
with the hidden states of the Decoder, which is represented by the addition icon in the figure.
The details of Encoder and Decoder have been illustrated in Section 5.3.2, and the details of
Attention and Beam search will be elaborated in Sections 5.3.4 and 5.3.5.

Let 6, o represent parameters and weights in neural networks, and let the capital letter
Y5, Y, denote the dataset of source sequence and target sequence, respectively. The number
of elements in & and % is k.

As described in Section 5.3.2, it has the form of Encoder below:

m =En(X/,0), X €%, i=123..k (5.1

where Y,) is one of k elements in the dataset %, and 0 is the parameters of Encoder.
The source sequence is encoded into a fixed-length (dimension) vector as an intermedia
sequence to bridge the gap (in terms of the number of network nodes) between a source
sequence and a target sequence.
Equivalently, the Decoder can be given by:
i = Dely, . 0l). ¥, €%

i=1,2,3,...k, j=123,..,n,

(5.2)

where — j indicates a sub-sequence (y1,y2,...,yj—1) of W before t.

74 Network Traffic Resource Management

SDN POX-based [o<*=Sto E\

controller S ——

- ~, Beam search|

Attention § Z<
—

. s

——

. \

Ny /
Encoder

Input Output
Transferring Requests Constrained Paths

Fig. 5.1 A High-level Illustration of The Proposed Forwarding Method Based on Seq2Seq Model

For simplicity, Eqgs. (1) and (2) can be re-written as follows:

. —
yizﬁ(yjjaeaw|?l)a Yl?egsa yi)egh
i=1,2,3,..k, j=123,...,n

(5.3)

Normally, Y? is a two-element sequence, source x;, and destination x;,; for basic for-
warding. Meanwhile, with a constrained condition, 2 will include particular network nodes,

e.g. node IDs, through which a flow should go. This can be expressed as:

: —
le = 9()’,-]7 97 w‘xsrmxreSaxdst)a
%
XsrcyXresy Xdst € @s: yi € @la (G4

i=1,2,3,...k, j=12,3,..n,

It is worth noting that x,.; represents a single restricted node, whereas a set of restricted
nodes can be added, namely, Xrer = {Xres1, Xres2, .-} C Ds.

Because the sequence output from standard seq2seq model could be variant in statistics
due to flexibility and randomness, the network path represented by the target sequence,

5.3 Background Techniques 75

ylj , may encounter the problem of non-connectivity. This is not tolerant in the forwarding
method for path planning in traffic engineering. To effectively alleviate this issue, the
attention mechanism [102, 191] and beam search [192] will be employed. The attention
mechanism is an enhancement for context relevancy learning, and the beam search tops the
best score and attempts to ensure the link connectivity. The details of leveraging attention
mechanism and beam search can be found in Sections 5.3.4 and 5.3.5. The situation of
rarely happened non-connectivity path in the target sequence after the adoption of attention
mechanism and beam search is discussed at the end of Section 5.3.5.

5.3 Background Techniques

The seq2seq model [190] is an expanded and specific encoder-decoder model in neural
networks for handling sequence data, including sequence data learning, transferring and
translation. It now prevails in neural machine translation, text summarization and speech
recognition in Natural Language Processing (NLP), image captioning and other sequence
data applications. In this section, an overview of the formulation and the details of the
seq2seq model is given.

5.3.1 Recurrent neural network

In this section, the Recurrent Neural Network (RNN) is introduced, which is particularly
devised for sequential modeling in neural networks. RNN has gained its popularity and
shown promising performance thanks to its capability of taking information from past to
subsequent inputs.

In detail, RNN attempts to memorize sequential histories and merge them into current
observation in order to predict the next sample element in the same sequence. The “memory”
unit is usually called cell. A simple architecture of RNN is presented in Fig. 5.2.

In Fig. 5.2, it can be seen that at time step ¢, an input sample x; is pushed into a cell,
based on which the hidden state s; is generated. Ultimately, the output o; would be given by
the hidden state s;.

The hidden states and outputs can be represented in a mathematical way as follows:
e 5, = f(Ux; +Ws;_1), where U is an input matrix and W is the weights;

* 0, = softmax(Vs;), where V is an output matrix mapping the hidden state s; into

classification scores;

76 Network Traffic Resource Management

Ot -1 Ot Ot -1
St—1 St St+1
Xt -1 Xt Xt +1

Fig. 5.2 A Simple Architecture of RNN.

* f(-) is considered as the core component, widely accepted as the basic cell tanh(-),
Long Short Term Memory (LSTM) cell [193] and Gated Recurrent Unit (GRU) cell
[194].

5.3.2 The Encoder-Decoder structure

The goal of Encoder-Decoder structure is regarded as a mechanism to map the data in
the source space into the desired information in the target space via an intermedia space.
Specifically, two parts are included: Encoder and Decoder. Let x and y denote the data in the
source space and target space, respectively, and m represent the data in the intermedia space.

Therefore, it has

Encoder: mi = En(X),YX € Dyt € Dy,
Decoder: Y = De(nt),Vy € D,,Ynt € D,,

where Dy is the source space with dimension [, Dy, is the intermediate space with dimension
I, and D is the target space with dimension /.
The Encoder-Decoder structure is able to learn the source space knowledge to align with
the desired target space knowledge, referred as “translation" or “transduction” in some cases.
Note that the setting of Dy = D; ensures that the constrained path planning problem
in traffic engineering, considering the request pairs (source -> destination nodes) and the
constrained conditions (source -> constraints -> destination), can be fitted into this scheme,

because they are in the same objective space as controlled network nodes.

5.3 Background Techniques 77

5.3.3 The sequence-to-sequence model

The seq2seq model was proposed in [190] for neural machine translation, which now is
extended as general-purpose sequential model in many other spheres, for instance, conversa-
tional modeling, image captioning, etc. An evident advantage of seq2seq model is that it can
encode variable length sequences into a fixed-length coding vector bridging the gap between
source space and target space.

Target output
01 0 03

St—1 Stl St1+1 Sp S0S o o

1 2
\ J
Y
T Decoder
Xt-1 Xt Xt+1 EOS
\ SourcYe input |
Encoder

Fig. 5.3 An Abstract Structure of Seq2Seq Model.

A illustration of the seq2seq model is depicted in Fig. 5.3. As can be seen, two parts
are included: Encoder marked red and Decoder marked blue. With the source input 7
adding an ending symbol, EOS, there can be stacked by multiple layers of the RNN instances
in Encoder compressing ordered information into final hidden states, which is then sent
to the counterparts in Decoder. On the opposite side, Decoder takes the hidden states and
the estimated outputs, adding a starting symbol, SOS, as the initialization and inputs of its

corresponding RNN instances, respectively.

78 Network Traffic Resource Management

5.3.4 Attention mechanism

The attention mechanism, also named alignment, has been applied in [102, 191], aiming at
aligning the elements of a sentence or a phrase in a correct order in neural machine translation.
In this study, it is adapted to ensure reasonable sequence order by scoring the relevance of
the elements between source space and target space.

Target output
01 02 03

'y A

context
vector

Xt+1

\ SourcYe input) \ Y J
Encoder Decoder

Fig. 5.4 An Illustration of Attention Mechanism

Fig. 5.4 illustrates the basic idea of attention mechanism. Instead of directly using
encoder hidden states, the attention mechanism sums up the encoder hidden states as the
context vector by weights w,;, which are scored with decoder hidden states. Thus, along
with the context vector, the model also takes hidden states of the last decoder layer as
comprehensive information to obtain the final target outputs. The score function could be
multiplicative or additive, depicted in [102, 191].

Because the attention mechanism captures key relevance, we take advantage of it to
effectively restore the complete restricted forwarding paths. The Decoder can therefore use

the context vector ¢ with the last decoding hidden state hp as follows:

5.3 Background Techniques 79

O; = yAtl‘ention (hE,th,t—l)

Vil <i<n, (5.5)
vt,1 <t <n,
o; = softmax(Q;) (5.6)
o = Y 0 hig (5.7)
i

where the relevance score between Encoder hidden states g ;,1 < i < n, and the Decoder
previous step hidden state ip ;1 is denoted as @;. @; is the weight for Encoder hidden states
to compute weighted sum of the context vector, F;

The final output of target sequence with the context vectors taken into account can be
expressed as:

; — N
vi=Z(y,”,6,0.¢x) (5-8)

1

yzj = g(yl]797(07 & ‘xsrc,xrenxdst) (59)

where Eq. (5.8) shows the output without constrained condition, and Eq. (5.9) denotes that
with constrained condition taken into account.

5.3.5 Beam search

The aforementioned LSTM cell, the seq2seq structure and the attention mechanism enor-
mously facilitate sequential data sensing and cognition. However, the single output result (i.e.,
only one target output) may cause local optimum. Especially, sequential models normally
cannot rerun, failing to circumvent temporary single highest score and gain rewards in the
long run. A potential solution is to collect as many candidate traces as possible to avoid this
local optimum problem. Hence, in this study the beam search algorithm [192] is adapted to
achieve this purpose and boost the performance of the proposed model.

The idea of beam search is to widen the model search range by buffering n traces, which
provides a list of outputs by scoring the sequence context. n is the beam search width. A
simple example is presented in Fig. 5.5, where 7 paths are drawn with 7 colors, marked with
starting symbol, SOS, and ending symbol, EOS. Beam search can efficiently explore the

target space and output the top-n paths against the single result. Compared to breadth search,

80 Network Traffic Resource Management

Fig. 5.5 An Example of Beam Search with Beam Width-7

which exhausts all options, beam search eliminates highly unlikely traces to accelerates
training and testing.

In this study, beam search is adapted in the Decoder not only for providing optimal target
output, but also for presenting the target output as valid forwarding path. Let beam search
width n be 5, a list of top 5 sequences are therefore buffered. From the top 1 to the last (i.e.,
5 in this case), any duplicate nodes are eliminated canceling wasteful loops, and checking
whether the successor node is a neighbor of the previous node to verify the connectivity of
forwarding path of the output target.

It is worth noting that the consideration of attention mechanism and beam search can still
miss a very small fraction of path validity (path non-connectivity) from the empirical results.
As a matter of the fact, it can conduct the last guarantee via recomputing the non-connectivity
path. For example, if all 5 candidates lose their validity, it chooses the top 1 and recomputes
the path between the disconnected node and the destination. In practice, this situation may

lead to long delay, however it occurs very rarely.

5.4 Experiments and Analysis

In this section, experiments are conducted to evaluate the effectiveness of the proposed
learning-based path planning model under constrained conditions. SDN is used as the

network environment due to its popularity and pervasive application in traffic engineering

5.4 Experiments and Analysis 81

[8]. In this section, it employs the Mininet emulator [195], and deploy the proposed learning-
based forwarding model in POX, a typical and popular implementation of SDN controller, to
make decisions for path planning under constrained conditions. Mininet emulates a virtual
network with a set of virtual hosts that can run various network services. It is specifically
designed for SDN scenario embedded with OpenFlow specification.

In what follows, the environment settings will be shown, as well as the results and

discussions. The experiments consist of two major parts:
1. The training and evaluation of seq2seq model

2. SDN network simulation employing the model

5.4.1 The seq2seq model training process

The seq2seq model is built on top of the TensorFlow library published by Google [196].
Two types of network topology are selected in the evaluation: the 2012 Europe GEANT
network topology with 40 nodes, shown in Fig. 5.6, and a 10x10 Grid network topology
with 100 nodes, shown in Fig. 5.7. The Europe GEANT is a widely used network backbone
infrastructure which provides high broad-band and high quality services for academic con-
nections. The GEANT as well as the standard grid topology shows typical network structures
and the traffic on both two topologies may reflect complex and practical traffic patterns.
The bandwidth is also constrained between switches ' as 50Mbps and link delay as 2ms.
Meanwhile, to eliminate the impact of connection between host and switch on network per-
formance, the host-switch link bandwidth is set to be 1000Mbps with 2ms link delay. In the
experiments, it sets the constrained condition,)@, to be one-node and multi-node (i.e., two
nodes), respectively. Namely, the planned network path between source and destination need
go through one particular node (one node constrained) and two particular nodes (multi-node
constrained) in the network. In the following, we will show training data preparation and the

training and evaluating of the proposed model, for each of the two topologies.
* Training data preparation

To collect the training data, we first implement the Dijkstra’s shortest path algorithm to
generate a collection of static paths between nodes in a network. The shortest paths between
nodes are usually not unique, but the focus is on the unicast scheme and extract only one for

each source and destination pair. These paths are considered as empirical effective paths. In

Tn SDN, network nodes are called switches.

82 Network Traffic Resource Management

Fig. 5.7 The Topology of 10x10 Grid Network

addition to these empirical effective paths, it shall generate the restricted experiences as the
experiences for traffic forwarding under constrained conditions.

First of all, the data preparation for one-node constraint (i.e., the path between source
and destination need go through a given node) is detailed below, followed by the multi-node
constraint (for the convenience of presentation, two-node constraint is considered).

To obtain the restricted experiences, all network nodes will get chance to be selected as
the restricted node (one is selected each time) except for the ones that have already been
in the paths collected for empirical effective paths and those that lead to routing loops (the
examples will be provided below to illustrate this routing loop situation). In order to form the
restricted paths (the paths collected for restricted experiences) with the one-node constraint,
two separated paths are calculated: the one between the source and the constrained node and

5.4 Experiments and Analysis 83

the one between the constrained node and the destination, respectively. Then, these two paths
are concatenated as the restricted path.

The example below is how to collect the restricted paths in the GEANT network topology.
It considers two scenarios of traffic forwarding, each with one constrained node. The first
scenario has node 1 as the source, node 5 as the destination, and node 2 as the constrained
node, i.e., Xge = 1, Xpes = 2, and x4 = 5, represented by (1,2,5). A second scenario has
Xsre = 1, Xpes = 16, and x4, = 5, denoted by (1, 16,5). The two separated paths for (1,2,5)
are:

(1,2) = (1,0,2), (2,5)=(2,0,4,5),

and the two separated paths for (1,16,5) are:
(1,16) = (1,33,34,16), (16,5) = (16,4,5).

The path for the scenario of (1,2,5) will not be collected as the restricted path for
restricted experiences, because a routing loop is involved in this path due to the overlapped
node 0 in these two separate paths. In contrast, the path for the scenario of (1,16,5) will be
collected as the restricted path for restricted experiences.

One sample data in the dataset for model training is a pair of source and destination and
the path for the target sequence:

{(1,5),(1,0,4,5)},

{(1,16),(1,33,34,16)}.

When generating the restricted paths for restricted experiences, the method also considers
the number of hops in the network, i.e., only collecting the paths whose length in terms of
hops between source and destination is equal to or less than 20. Table 5.1 shows the size
of collected data based on the length of paths. Note that there is no big difference between
the data size when considering different path lengths in GEANT network topology. That is
because most of the forwarding paths between any random source and destination pair are
close to 10 hops. Therefore, in the experiments, it trains and tests the proposed model using
GEANT network topology with the path length of 20, as it contains the cases of path length
of 10 and 15 hops.

Table 5.2 presents the data size for training and testing dataset split by the ratio of
80%:20%. Note, as mentioned above, only the path length of 20 in GEANT network is used

for training.

84 Network Traffic Resource Management

Table 5.1 Data Size By Path Length of One-node Constrain
Length =10 Length =15 Length =20

GEANT 16094 17946 17962
Grid 89086 290424 421844

Table 5.2 Data Size of The Training and Testing Set of One-node Constrain
Length =10 Length=15 Length =20

Training 14369

GEANT Testing 3593
Grid Training 71269 232339 337475
testing 17817 58085 84369

On top of one-node constraint dataset, two-node constraint dataset is easily constructed
and the path representation is very similar. Firstly a source and destination pair is selected
as the objective, then search the extracted one-node constraint dataset to pick all paths that
share the same source but are not embedded into its shortest path. Finally, it concatenates
the one-node constrained path with the destination as the two-node constrained path. An
example is presented below:

Suppose the pair (1,3) to be a two-node constrained path. In one-node constrained path
dataset, it has the path of (1,16,5) as (1,33,34,16,4,5). It is easy to check that (1,16,5)
is not a segment of the shortest path of (1,3). As such, (1,16,5,3) shall be the two-node
constrained path of the pair (1,3),

(1,16,5) = (1,33,34,16,4,5), (5,3) = (5,3)
and the complete path shall be:
(1,16,5,3) = (1,33,34,16,4,5,3)
The dataset size is shown in Table 5.5.
* Training and evaluating the proposed model

As has been described in the above sections, setting of the hyper-parameters of the
proposed model is as follows: in the Encoder, two stacked bi-directional LSTM layers are
adopted, which can be regarded as four layers. As opposite, the Decoder has four uni-
directional LSTM layers. The size of hidden layer is 1024, the embedding size is 100 for

5.4 Experiments and Analysis 85

nodes (e.g., their IDs) mapping into a vector space, and the beam search width is 5. The
model is trained using the mini-batch method with batch size 100 and the Adam optimizer
[197]. The experiments are run in a server with Intel 24-core Xeon E5-2650 CPU, 32GB
memory and GTX GeForce 1080Ti. The training results of GEANT network topology and
grid network topology are shown in Table 5.3 and Table 5.4, respectively.

Table 5.3 The Accuracy of The Training and Evaluating of The Proposed Model in The GEANT
Network

Beam=1 Beam=5
Length=20 Length=20
Training 0.9794 1.0

GEANT Testing 0.9740 0.9991

Table 5.4 The Accuracy of The Training and Evaluating of The Proposed Model in The Grid Network

Beam=5
Length=10 Length=15 Length=20
Grid Training 1.0 0.9990 0.9998
Testing 0.9901 0.9984 0.9987

Table 5.3 indicates that beam search helps gain better performance of the model. The
beam width of 1 refers to the situation that only the first outcome is taken into consideration,
while beam width of 5 refers to the situation that the model will output 5 candidate paths,
and if there is any disconnected path found, the model will move to the next candidate and
perform the same check.

An intriguing discovery of path inference is worth to note. Since the dataset contains
non-restricted paths (shortest paths in this study) and restricted paths, and it is evenly ran-
domly split into training and testing set, the model might not witness the shortest path,
ie., {(1,5),(1,0,4,5)} may only occur in testing data. The model is somehow still able to
discover the corresponding non-restricted path. That is {(1,5),(1,0,4,5)} is not witnessed
in training, nevertheless the model can still output (1,0,4,5) with the input (1,5). The con-
jecture is that the neural network is capable of extracting sub-sequential structure embedded
in a super-sequence. This feature implies that the proposed model can effectively capture
correct paths with partial experiences. Another fact is there is still a tiny fraction of paths
that cannot be covered to guarantee their connectivity. A final check will be conduct to fix

this problem.

86 Network Traffic Resource Management

Furthermore, the experiments are extended to two-node constraint as an example of
multi-node constraint, where the collection is based on one-node constraint, as described
above.

Table 5.5 The Accuracy of The Training and Testing in Two-node Constraint Experiments and Dataset
Size, Beam Width=5.

Training Testing Data Size

GEANT 1.0 0.9999 154663
Grid 0.9993 0.9999 4038738

Table 5.5 shows the accuracy of the training and testing with two-node constraint experi-
ments. The data sizes of two network collections, GEANT and Grid topology, are 154663
and 4038738, respectively.

5.4.2 SDN emulation experiments with learning-based controller

In what follows, we will introduce the details of the experiment results conducted by the
proposed model. In order to show the performance of the proposed model, it uses the
result from the model for the network without any constrained conditions as the baseline.
The results of one-node constraint are shown in Table 5.6 and Table 5.7, respectively, for
GEANT topology and grid topology. The throughput and delay are of interests to present
how much influence the constrain condition will impose on actual traffic. The delay is the
actual transferring delay without traffic congestion and the congestion delay directly refers to
transferring delay under traffic congestion.

Each switch is binded with a host to generate packets. 100 source-destination pairs
are randomly selected. Clearly, the 100 pairs interfere with each other heavily, which
causes frequent request conflicts and bandwidth competition. Hence, the network congestion

happens frequently as well.

Table 5.6 Experiment Results of One-node Constraint in The GEANT Network

Throughput Congest Delay Delay
Non-res 1136.15Mbps 295.45ms 15.62ms

100% 711.48Mbps 343.36ms 23.21ms
Res 50% 908.04Mbps 312.49ms 20.02ms
20% 1048.17Mbps 307.03ms 16.74ms

5.4 Experiments and Analysis 87

Table 5.7 Experiment Results of One-node Constraint in The Grid Network

Throughput Congest Delay Delay
Non-res 1267.67Mbps 329.13ms 25.71ms

100% 781.39Mbps 344.29ms 41.15ms
Res 50% 1105.09Mbps 380.40ms 33.00ms
20% 1217.33Mbps 364.47ms 36.76ms

In Table 5.6 and Table 5.7, three metrics of network performance are presented, i.e.,
average throughput, delay in congested condition, and delay in non-congested condition.
“Non-res” represents the network without any constrained conditions, and “Res” denotes
the network with constrained conditions. The percentage in “Res” indicates the volume of
traffic that are forwarded by restricted paths. Note that, as the main work is focusing on
proposing a learning-based forwarding strategy, at this point, the forwarding strategy is to
randomly choose a constrained node without taking the performance metrics into account. It
is reasonable that the random pick might deteriorate the throughput because the paths may
lead to unexpectedly long path. It therefore overlaps with more other traffic paths, which
triggers more traffic congestion.

As can be seen from the results shown in Table 5.6 and Table 5.7, despite the performance
being polluted under 100% restricted paths, it is not affected heavily for regulating a part of
traffic in both topologies. 20% restrictions show very promising throughput since it is very
close to baseline result (network performance under no constrained conditions). As for delay
of the network with constrained conditions, both congested and non-congested conditions
have no big difference compared with the network without any constrained conditions,
emphasizing the superiority of the proposed model.

For two-node constraint experiment results, in Table 5.8 and Table 5.9, three experiments

are conducted, measured by three performance metrics.

Table 5.8 Experiment Results of Two-node Constraint in The GEANT Network

Throughput Congestion Delay ~ Delay

Non-res 1136.15Mbps 295.45ms 15.62ms
100% 494.32Mbps 373.97ms 29.08ms

Res 50% 877.31Mbps 358.21ms 22.27ms
20% 1076.22Mbps 338.40ms 18.24ms

For GEANT topology, the throughput of 100% one-node constraint paths is significantly

higher than that of two-node constraint paths as well as the counterpart of grid topology.

88 Network Traffic Resource Management

Table 5.9 Experiment Results of Two-node Constraint in The Grid Network

Throughput Congestion Delay ~ Delay

Non-res 1267.67Mbps 329.13ms 25.71ms
100% 690.67Mbps 378.26ms 40.01ms

Res 50% 1056.25Mbps 358.82ms 31.67ms
20% 1242.23Mbps 390.22ms 28.79ms

However, in 50% situation, the throughput of two-node constraint are just slightly below
the one-node case, in both two network topologies. It is worth noting that the throughput of
two-node constraint is slightly higher than that of one-node situation. This may indicate that
the network transferring with more hops do not always cause more interference. It conjectures
that some of two-node constraint paths truly circumvent local busy cliques, which trades off
delay but reduces routing conflicts. It also brings the chance that reasonable paths planning
could increase the network throughput trading off acceptable delays to achieve optimized
network utility.

There are numerous case studies that require fine-grained traffic engineering, e.g., traffic
filtering, load balancing, and firewall. The work leverages the experiences learned from
historical traffic data, which abundantly exist in current Internet, to achieve this target. The
self-learning feature of the proposed model intends to make full use of existing experiences
to discover implicit traffic trend.

5.5 Summary

In this chapter, it proposes a learning-based network-level forwarding method for path
planning in the network with constrained conditions. It has sought to introduce well-defined
deep learning model into network traffic engineering sphere by formulating the traffic
forwarding problem as a sequence prediction problem. The learning-based model has been
developed for traffic forwarding based on the sequence-to-sequence model enhanced by
attention mechanism and beam search. The proposed model has been implemented in the
controller of an SDN architecture in Mininet emulator. Experiment results have shown
the superiority of the proposed model in path planning in the network with constrained

conditions.

Chapter 6

Dynamic Network Traffic Engineering:
A Reinforcement Learning Perspective

6.1 Introduction

The network traffic engineering optimization issues have been discussed in Chapter. 5 with
supervised-based sequence to sequence model. The learnable model makes the most of
the hidden values in history data and effectively generalizes to unseen situations to obtain
optimal or approximately optimal outcomes. The supervised paradigm is able to offer a
straightforward idea for most of work to converge to the stable and consistent performance,
which has been well studied for decades.

Admittedly, the supervised algorithms facilitate intelligent decision agents to execute
optimal instructions, the supervised learning is solely applicable to well prepared and labeled
data for learning process convergence. The labeled data require massive and costly manual
workload, which almost prevents broader applications and sharply reduces the efficiency
of problem solving. Another drawback is the disparity between the obsolete model and
unexpected future data distributions. The pre-defined learnable model seeks to discovery
implicit pattern from history data and apply the possibly stale knowledge to the future
situations, which ignores feasible changes of dynamically generated data. As such, in this
chapter, the main focus is a reasonable scheme to fit the dynamics and avoid the influence of
expensive manually labeled work. Network resource optimization and traffic engineering
dose not only benefit from knowledge learning and insight, but also strongly involves in
making decision and taking actions. Hence, a dynamic decision making process provides a

clear approach to accommodate this problem.

90 Dynamic Network Traffic Engineering: A Reinforcement Learning Perspective

The real network environment is unstable and dynamic for the complex architecture
and fluctuating service demands, changing the optimal conditions constantly. The unstable
environment brings about ever-changing data patterns and requires relatively complicated
models to fit data, which even aggravates the burden of analysis and decision-making. The
Reinforcement Learning (RL) [198] copes with the optimal and long-term decision-making
problems in a dynamic environment and has a decent property to match the traffic engineering
scope. Recently, the RL, strengthened by Deep Learning (DL) advances, has reached the
beyond-expert level [132, 199, 200] in different games, showing promising and impressive
performance in dynamic applications. The combination between RL and DL refers to the
phrase of Deep Reinforcement Learning (DRL), and it gains popularities and reputations in

Artificial Intelligence.

6.2 Preliminaries

Different from the traditional supervised learning and unsupervised learning algorithms, the
Reinforcement learning attempts to accommodate constantly changing scenarios to find the
largest performance earning in a long term with respect to specific problem settings.

6.2.1 Overview of Reinforcement Learning

Fig. 6.1 illustrates the fundamental process of general Reinforcement Learning with two
basic blocks, the intelligent agent and the object environment, respectively, where 0 < i < co.
The main assumption of Reinforcement Learning is Markov Decision Process (MDP) [201].
When starting at an initial state, the agent makes decision to take an action a; in effect in
the object environment. Then environment receives the information and its state has been
changed, resulting in a reward r;. The state has been changed to another one and exposes an
observation, o;, for the agent to identify. It is worthy to note that the real state is likely to
represent the state as s; at i step while in Fig. 6.1, there is an observation, o;. In effect, the
target environments are highly complicated with enormous correlated components, which
makes the true states very vague and abundant. Practically, the true implicit states are difficult
to be fully recognized except partial but highly relevant information. In this regard, the
observation o; is presented as a reference of the partial state.

Theoretically, the MDP is also a stochastic process but in discrete time with elastic
decisions (action taking). From the perspective of human, it is a normal demand to obtain an
optimal (maximizing benefits or minimizing damages) performance in terms of particular

measures interacting with different environments. The environments always fail to remain

6.2 Preliminaries 91

Making Decisions

Intelligent

Agent i
A i -
Y [SR R : S
c ~ o
o 2 5
& S <
e) 00
2 - 5
o -
o)
<

Object Environment

Fig. 6.1 Classic Reinforcement Learning Process in A Feedback Loop

similar so that the design of optimal solutions deeply depends on the unsteady background
situation and the underlying states. The underlying states are time-varying and the ideal
solution has an elastic strategy to determine what behavior should appear in terms of long
run benefits. Assume that the changing of underlying states is a Markov chain where the
next step state solely depends on the current and the changing cause is from outside force
(action taking). When one action is taken based on the current state and the current state
consequently changes to another, an immediate feedback (reward) will be given to tell how
well it does at the time slot. Then the entire process with feedbacks can be called Markov
Decision Process. The entire is from observing the environment and inferring hidden states
to receiving a reward once apply an action into the environment. Thus an intelligent agent
should be involved in finding a strategy by the state analysis to guarantee the long term
earning is the optimal.
The MDP can be modeled as a tuple of (S,A, P,R), depicted in the following:

92 Dynamic Network Traffic Engineering: A Reinforcement Learning Perspective

* S denotes a set of environment states;
* A denotes a set of operational actions applied to environment;

* P denotes dynamic state transition probability; in particular, P,(s;,s;+1) represents
the transition probability from state s; to s, ; when taking action a, where a € A, and
St,81+1 €55

* R denotes an immediate reward; in particular, R,(s;,s,11) is the received reward if the

state transition s; to s;41 occurs when taking action a.

As aforementioned, the state S is highly likely to be latent due to the complexity and
heterogeneity of the network system. The observation O as the partial state, solely represents
the necessary part and may vary based on specific tasks. Here, ¢ denotes the time step,
0 <t < oo. In practice, the state will terminate until a terminal condition is reached.

The core object of reinforcement learning is to maximize a series of accumulated rewards
along with consecutive actions for one task. The accumulated rewards is the total value, V,

of interest, sometimes also called the total return.
Vo=1Ro+ YR+ ...+ ViR + ...t =00

=Y yRi,w=1 ©-1
i=0

Vo is the accumulated values at time O based on a set of consecutive actions ag,dj, ..., d;.
Here, y refers to a discount factor to control the influence from actions at every time point. R;
is the corresponding reward. The action g; is selected by the policy a; = m;(s;) on top of the
state s;. When there exists a policy, 7y7, making the value the maximal, the policy my; = *
is called the optimal policy.

Apparently, the policy is of special interest, since the value heavily depends on it and
the intelligent agent will practically realize it to take effective actions to gain the largest
benefit. At the beginning, the adopted policy is likely to be random so that the entire process
is to iteratively update the policy and ultimately reach the convergence. In general, there are
two main branches, value-based policy optimization [202] and immediate policy gradient
optimization [84, 203]. Based on the two ideas, recent researches have gained a vast amount
of remarkable successes [204-209].

It has drawn many attentions to both researchers and pragmatics and achieved decent
performance in numerous applications, such as computing resource management [210], city
traffic control [211], robotics [212], and games [132, 199, 200] even over human rivals.
Especially in networking traffic engineering, recently advances [10, 11] bridge the gap

6.2 Preliminaries 93

between highly variant and dynamic traffic engineering and sampling-inefficient decision-
making methods. In the section below, an technical overview of the well-known Q-learning

is introduced, which is adopted to deal with dynamic traffic issues.

6.2.2 Deep Q-learning

As for Deep Q-learning, there can be viewed as two divisions, Q-learning fundamentals [202]
and Deep learning-enhanced. Q-learning refers to a model-free value-based algorithm as a
classic approach of Reinforcement Learning. Here, the model-free is an idea that the solution
takes on account of state transition probability P, (s;,s;11) but makes the most of estimated
total values with a specific action. In contrast to model-free, the model-based idea leverages
the state transition dynamics to guide the learning part in the correct direction. Note that the
term “model” in both model-free and model-based is for the transition dynamics probability,
not as the same as general deep learning model.

More detailed, Q-learning emphasizes the action should be taken considering the current
state and the subsequent results following the current optimal strategy. In essence, the
convergence belongs to the value-iteration update process. From Eq. 6.1, it can be easily
reformed as iteration-based update in Eq. 6.2, where V(@ is the value of i-th iteration over
the current strategy 7. Here, 0 < i < oo. This formation is also referred as Bellman Equation
[198]. For the very first iteration, i = 0, v () is obtained by the V(O), which is initialized as a
fixed guess, such as 0. With the iteration progressing, the value is inclined to converge and
the strategy is taken as actions triggering the optimal values. The strategy 7, is formulated
in Eq. 6.3.

Vi (s) = Y P(sissiv1) (R(siysi41) + Wi (si1)) (6.2)
7;, = argmax V (s;) = argmax Y P(si,si11)(R(si,si11) + YV (si41)) (6.3)

Q-learning inherits the above value iteration process and obtains the strategy based on Eq.
6.3 as well. Nevertheless, the Q-learning achieves better convergence speed by substituting
the state value expression, V with action-value expression, O, which explicitly emphasizes
the consequence of a specific action in a state, followed by the strategy 7 rather than the
expected value over all possible actions. Eq. 6.4 formulates the Q-value function employed
in Q-learning, which highlights the adopted action a. The difference between Eq. 6.2 and Eq.
6.4. is that the value iteration is the expected value over the policy probability distribution

while the Q function focuses on one specific action.

94 Dynamic Network Traffic Engineering: A Reinforcement Learning Perspective

O(s,a) = Y P(si,si4130) (R(sisi4130) + 7V D (s111)) (6.4)

In general, the Q-learning algorithm works well in size-limited scenarios, where states
are finite and traversable. The limited size state space is then modeled as a tabular paradigm
and the state transition can be determined by a look-up table. However, the state size in most
real cases is always so large that the tabular mode works extremely inefficiently, even totally
fails in the continuous state space with infinite states. A suitable estimator for the finite state
space is in an urgent need for pragmatic problems.

In effect, there are numerous methods to approximate the Q function [198], such as linear
approximator and deep neural networks. Hence the second division “Deep” is introduced to
construct the Deep Q-learning. The Deep Learning fundamentals include various building
blocks, e.g., fully connected network, and Long Short Term Memory. Sometimes, the fully
connected network refers to artificial neural network. It can consist of versatile linear or
non-linear function as the activation function, for instance, Sigmoid, Hyperbolic Tangent
and the Relu function. Empirically, the fully connected network is a preferable option for
non-sequential discrete data with a linear function at the last one-node output layer. The
model takes as input the combination of the environment state representation and the taken
action to ultimately transform into a single value output as the state-action Q-value. The
Q-value update conforms to the iteration mechanism of state-value V function, and finally

the strategy is approximately created based on Eq. 6.3.

6.3 Problem Formulation

Definition 5.2.1 gives a clear definition for path planning and learning between source and
destination nodes. Under such definition, Chapter 5 dedicates to supervised learning model
constrained by conditions. Nonetheless the labeled target paths merely conform to the stale
network configurations and settings rather than offering agile and flexible solutions for an
unstable and dynamic surrounding. In this section, the object converts from a static and
fixed issue to a dynamic and flexible problem. There are two types of core work: one is
inspired from Chapter 5, finding an intermediate constrained node to maximize constrained
path throughput, and the other is the construction of the complete sequence.

The optimization in the constrain condition: in Chapter 5, the evaluation of the con-
strain condition is randomly selecting the constrained forwarding node. Here, in order to
minimize the throughput loss of the constrained scheme, the intelligent agent attempts to

search the optimal constrained node based on the current network state to improve throughput.

6.4 Proposed Scheme 95

The formulation conforms to the definition in Chapter 5. In this section, the optimization is
only for the one-node condition.

The optimization in the dynamic forwarding path planning: we assume a data trans-
ferring plane in SDN network is abstracted as a graph topology, G. Let V and E be the
respective vertex set and the edge set of graph G, where |V| = ¢, and |E| = ¢,. The number
of vertex in V is ¢, and the number of edge in E is ¢,. Provided that the < &;,&; > is a
pair of traffic source node and destination node, & # £;,&;, &, € V, and a source sequence
Sseq = (&5, 81,82, ...Epia), where § # & if i # j, & €V, (§,&i41) € E, the object is to find a
target sequence ey = (Epia, &1,y ., Ea), Where &, # éjl ifi#j,& eV, (6;,§;+1) €E, so
that sgeq Ntseq = &Enia. Then the union of two sets, Sseq ANd fgeq @S Sgeq Ulgeq, 18 @ complete
path from the source node, &, to the destination node, &,.

The definition of the problem is from the high sequence-level perspective. The pragmati-
cal implementation is based on the low node-level. To be more detailed, in an SDN network,
given a pair of source and destination nodes for data transferring, there exist numerous paths
connecting them. A adaptive way to find the optimal path is to ascertain one of the paths
based on the current networking status to gain the maximal throughput that is identical to
the definition in Chapter 5. Obviously, even given the identical source and destination pair,
the solution is not always inclined to output the identical path attribute to the ever-changing

states of networking.

6.4 Proposed Scheme

‘\\‘ ‘::‘,f Action, g,
2 \ @
Controller SDN Network e &= 7
pm el , Environment 7 ‘
€ | Action - Constrained Node Vs
P Application Laye! . . .
- e ¢ Constrained Scenario
Q 1 . 1 >
S i Action Subsequent Node | Conteliavey <
S -
o Infrastructure Layer
\

| 0 0
O O...

Dynamic Path Generating

i X o ReW ,
¥ - odiat® . \
state Si 4 O

Agent

Data Analysis
Decision Making

Fig. 6.2 Deep Reinforcement Learning in SDN Networking

96 Dynamic Network Traffic Engineering: A Reinforcement Learning Perspective

Fig. 6.2 gives a clear illustration of Deep Reinforcement Learning paradigm proposed to
integrate into the SDN network structure. From this framework, the close loop of Reinforce-
ment learning fits well in centralized SDN networking. The entire SDN network is regarded
as the object environment and returns key system statuses as environment observations. The
intelligent agent collects the observed network data to approximate a global state and figures
out the future movement based on the data. The agent is assigned into the controller to
make the most of the SDN information collection mechanism. A series of decision making
mechanisms and distributions comprise of the implicit policy that is deployed in the controller.
The controller is the central pivot of the SDN network system, which can be embedded
into the application layer as a high-hierarchical part or the controller layer as a low-level
direct operator. Then the control imposes the actual influence on the network by taking an
action based on the calculated policy. Once an action is implemented in the environment,
a feedback signal, namely the immediate reward is produced to acknowledge the agent
what performance networking is achieving. With the continuous feedback loop, the network
system shall approach the optimal state and provide high quality services. As consequence,
Fig. 6.2 genuinely instantiates the broadly-accepted framework in Fig. 6.1 with the SDN
network platform and necessary modifications. Additionally, the two right-sided diagrams
correspond to two scenarios, constrained path planning with performance optimization and
dynamic path generating with optimal performance. Two different actions are also assigned
to constrained nodes and subsequent nodes. The constrained scenario follows the idea of
Chapter 5 but endeavors to search a particular node that enlarges throughput. The dynamic
path generating follows the idea of dynamic routing in SDN environment to assign an optimal
forwarding path for a request of interest. The action at time step i is denoted as a; and r;
denotes instantly the returned reward from the environment, where 0 < i < o. The policy
m; presented in Fig. 6.2 refers to a probability distribution a; = m; = 7(s;) over all possible
actions and the last step state. It is worth note that Fig. 6.2 represents the state as s; at i step
while in Fig. 6.1 denotes the state as observation, o;.

For the optimization in the constrain condition, the Deep Q-learning is adopted here to
dynamically discover the constrained node. Recall that the Deep Q-learning takes the action
that maximizes the action-state Q value function, which is shown in Eq. 6.5 below. The
discrepancy between the current expected value and the expected value of next state, plus an

immediate reward is utilized as the update objective signal.

O(si,a;) = O(si,ai) + V[Ri+1 + ymax 0 (Siv1,air1) — O(si,ai)] (6.5)

In Eq. 6.5, v is the learning step size. From this rule, the Q-learning is inherently the off
policy style that directs the Q-learning update to follow a fixed policy in greedy, Ql (+), instead

6.4 Proposed Scheme 97

of its own applied policy, Q(-). In this regard, Q/(-) is usually referred as a rarget policy
and Q(+) is a behavior policy. In addition, the update paradigm belongs to the Temporal
Difference (TD) class techniques, which are aware of an individual action along the expected
estimation regardless of the actual sequence of actions in a complete experiment episode.

6.4.1 Constrained Path Planning

In order to accommodate the issue in the optimization in the constrain condition, two Q-
learning policies, behavior policy and target policy, are set and built with two fully connected
network models. In this situation, the environment state is extracted based on the switch port
status query in SDN protocol, allowing the underlying physical switches in data plane to
upload their ports status to the central controller in control plane. A significant measure is the
ration of the actual network flow to the capacity of each link. Each link of a switch exactly
corresponds to each neighbor. Hence, a mutual utilization ratio matrix can be constructed
to reflect the transient data transferring state. The state for Deep Q-learning is thus defined
as the port utilization ratio matrix retrieved by the port status. In the following, the reward
is also based on a flow ratio while it is based on the actual deployed flow quantity and the

expectation from configurations of the generator, as is defined in Eq. 6.6.

R —oo if the constrained path is invalid
log(Aveat:expectea) if the constrained path is valid (6.6)
Preal

Areal :expected —
Pexpected

Preat 18 the real measured traffic and pPeypecrea denotes the ideal generated traffic. The
constrained path depends on the constrain node. If the node causes a loop for networking
transferring, the path selected is obviously invalid so that an extremely small reward (large

penalty) is given. If the path is valid, the reward will be returned as described above.

6.4.2 Dynamic Node-level Prediction

For the other scenario, the optimization in the dynamic forwarding path planning, the funda-
mental Q-learning algorithm formation is similar except the update baseline. Theoretically,
the Q-learning is a Temporal Difference (TD) off-policy method with one step ahead value
evaluation and two asynchronous Q value models. The Temporal Difference with off-policy
leads the learning process asymptotically to converging to the steady point. The problem
is that it can be easily trapped into chasing error loop and fall into a sub-optimal area. On

98 Dynamic Network Traffic Engineering: A Reinforcement Learning Perspective

the contrary, the Monte Carlo control method collects a set of rewards based on the actual
actions in episodes, with which the update error is towards the real experiment values instead
of biased estimation. Though the Monte Carlo method requires suffers the high variance
and slower than the Temporal Difference, as long as the adequate date are available, the
Monte Carlo control can achieve competitive performance and reach the optimal results. The
dynamic forwarding path planning faces more complex environment, larger state and action
space, upon which the Monte Carlo control can guarantee the optimality.

Though the problem is defined as high sequence-level, in effect, the complete sequence
is determined node-by-node from the source up to the destination. Therefore the state is
then defined by the already inferred path. The action space is the node space in terms of the
network topology. The reward is similar to the previous scenario based on the utilization
and path validation. However, the node-level demands the path connectivity, indicating that
each action selection can only take place in the neighbors of the latest action. In addition,
the trail-and-error style episode sampling solely based on temporal port utilization is likely
to cause performance damage to the convergence at the beginning, and even chaotic and
unstable learning progress. As such, the transferring direction information is needed to
seemingly “drag” the inference to the destination. At the last step of action sampling based
on Q-values, the shortest path length is added, which indicates the path from each neighbor
to the destination .

6.5 Experiments

To evaluate the feasibility of Reinforcement Learning, in this section, experiments are
conducted with respect to two traffic engineering issues. The target network platform is the
SDN-based architecture, with a control plane and a data switching plane. The constrained
condition is evaluated on GEANT network topology and the dynamic path planning is
testified on 10 x 10 Grid network topology, respectively. The learning machine platform
is the same as Chapter 5. Fig. 6.3 shows a basic diagram of conducting experiments of
constrained path planning. The data plane simulator is SDN-based network traffic simulator
with a status reporting module, which will be described in the following. The control plane
is based on POX SDN controller collecting port status as states to assist an intelligent agent.
The intelligent agent is based on reinforcement learning to make decisions (take actions),
namely choosing constrained nodes. The reward feedbacks are sent with port status to help
the intelligent agent adjust the future actions. Similarly, the dynamic scenario in Fig. 6.4
is to deploy a traffic path into simulator by choosing forwarding hops one by one based on

current state. The current state consists of the current switch node, its neighbors and the

6.5 Experiments 99

previous determined nodes segment. The reward here is given by the switch port bandwidth
usage, which indicates whether there will be enough bandwidth for the demanded requests.
In both cases, once a path is eventually implemented into the simulator, the throughput will
be output as the target performance.

Status Collector Decision Making

Control Plane

- AN Port Status
(53] " I
- & i
\ @ - !
& = 7 i Data Plane -~
4 ! <

Simulator Constrained Node Assigning

Fig. 6.3 The Experiment Diagram of Constrained Path Planning

Status Collector Decision Making

Control Plane
AN Port Status

N

FeXxel
O O O Data Plane

Simulator Next Forwarding Hop Assigning

Dynamic Path Generating

__

Fig. 6.4 The Experiment Diagram of Dynamic Path Planning

]
y
'
/

To perform the Reinforcement Learning process and the corresponding data sampling, a
simple SDN-based network simulator is implemented. For the convenience and simplicity of
experiments, the network simulator considers the active links between adjacent two nodes
with exclusive flow occupation. That is a first-come-full-usage mode, which will allocate
the the maximal transferring capacity to the foremost traffic requests and prevent the late
requests when all the bandwidth resource is consumed. The purpose is to emphasize the

limitation of link throughput capacity and make the control agent aware of the seriousness of

100 Dynamic Network Traffic Engineering: A Reinforcement Learning Perspective

busy path. Several key metrics will be directly calculated, such as the port utilization matrix
and the corresponding rewards in light of the actions. The simulator finally returns the state,
normalized rewards, episode end flag and a tuple containing any intriguing measures, which
is inspired by a Reinforcement Learning simulator, “gym”, published by OpenAl [213]. To
compare the throughput incrementation, a baseline of shortest path is added, which takes
advantage of the Open Shortest Path First (OSPF) algorithm [214]. As default, the bandwidth
of each link is 100 Mbps (12.5 MBps), and the traffic generation demand of each flow is 5
MBps. In the subsequent two sub-sections, the results and discussions are presented.

6.5.1 Evaluation of Constrained Path Planning

The experiment carried out here aims to gain the maximal throughput for all the data
transferring requests under specific constrains similar to constrained traffic controlling in
Chapter 5. To show feasibility of Deep Q-learning, one-node constrain control is evaluated
and the specified node corresponds to the action in Markov Decision Process. Deep Q-
learning model attempts to deliberately search a valid and high-return constrain in the action
space for a given source-destination pair instead of random picking. In this experiment,
total 20 requests will be executed in the simulator of the GEANT topology and a complete
sampling episode consists of the entire length-20 simulation sequence.

As aforementioned, the state is defined as the current switch port status snapshot matrix.
The state input plane of Deep neural network is thus a 5-layer fully connected neurons with
the Relu activation function. The result is a Q-value vector with the same size as that of the
action space. The other significant settings are: the discount factor y being 0.99, the replay
size being 2,000, learning rate being 0.00001 and the batch size being 100.

Fig. 6.5 reveals a clear illustration that the throughput performance incrementally reaches
its highest level and eventually converges at the relatively stable point. To be detailed, the
green line is for the shortest path baseline, the orange one is the actual measure throughput
and the red line refers to the moving average of the actual measure with 1,000 steps. The
one-node constrained path control gradually increases the overall throughput even from the
very beginning of the experiment. Although it maintains the performance slightly below
the baseline, the optimal solution has been achieved after nearly 20,000 episodes without
obvious reduction. The cause of being slight worse than the baseline is that the constrained
path is likely to cause many traffic conflicts same as in Chapter 5. However, the overall
performance is improved with the assistant of Deep Q-learning that explores the optimal
option and exploit it to keep the state. The moving average of actual traffic measure shows

the better results and offers a helpful improvement for traffic engineering.

6.5 Experiments 101

70

Throughput(MBps)
g

20 Practical Throughput

Average Throughput

10 Baseline Throughput

0 10000 20000 30000 40000 50000 60000 70000

Simulation Time

Fig. 6.5 The Throughput Gaining Based on One Node Constrained Path Planning

6.5.2 Evaluation of Dynamic Path Planning

In this part, an experiment is conducted with the similar traffic background in the 10 x 10
Grid network. 24 data transferring requests have been implemented as what is called
imitated networking usage. With the settings of experiment environment, the target request is
operational. The initial action is fixed as the source node and becomes the inferred sequential
state in terms of the second taken action. Once the second action has been decided, the
source node and the second node jointly become a previous inferred sequence for the third
action, and so forth. The complete episode with respect to the Markov Decision Process ends
when reaching the destination or a forwarding loop.

The sequential state is transformed by a 2-layer bi-directional LSTM block with 256 hid-
den state units, since it is required to be embedded as a computable distributed representation.
Each action in a sequence is also embedded into an embedding space with embedding size
being 256. To eliminate the temporal correlation along an episode, the experience replay
is carried out with the memory size of 500,000. Other basic hyper-parameters are set as
follows: the discount constant y being 0.99, learning rate being 0.00001 and batch size being
500.

Fig. 6.6 illustrates the throughput achievement thanks to the dynamic path construction.

The orange line is the actual traffic implemented by the dynamic learning algorithm and the

102 Dynamic Network Traffic Engineering: A Reinforcement Learning Perspective

100

Practical Throughput
97

Average Throughput

—— Baseline Throughput

Throughput(MBps)

93

0 10000 20000 30000 40000 50000 60000
Simulation Time

Fig. 6.6 The Throughput Gaining Based on Dynamic Forwarding Path Planning

red line is a moving average with 1,000 steps. The dark green line is the OSPF baseline
throughput. One simulation equals to one sampled episode. After around 10,000 exploration
in various available paths, the performance is stabilized after 20,000 simulation because of
the convergence of the learning agent. With more than 60,000 simulations, the throughput
has reached nearly 5 MBps more than the shortest path baseline with an apparent leap. The
moving averaging reflects a trend on the whole regardless of possible errors and noise. The
throughput is not a fixed value, ranging in 1.5 Mbps difference, since the implemented
simulator added extra bandwidth reduction in each link to replay irresistible physical loss in
the real world. The total trend remains steady without large fluctuation. It is able to draw a
conclusion that the proposed Reinforcement Learning-based dynamic node-level predication
adaptively promotes the network throughput performance and show promising direction of

complex traffic engineering optimization.

6.6 Summary

In this Chapter, a Deep Q-learning based method is proposed for adaptive networking
traffic engineering in two distinctive applications, constrained traffic control and dynamic
forwarding path planning. The basic framework embedded in the SDN network is introduced
along with the fundamentals of Reinforcement Learning process. It also presents the Q-

6.6 Summary 103

learning in a well-defined mathematical formulation and its iterative update and learning
method. The evaluation experiments conducted in terms of two scenarios in a dedicated
simulator indicate that the Reinforcement Learning based technique advocates the decision
agent to explore feasible solutions to achieve optimal points when facing highly complex
networking environments.

Chapter 7
Conclusion and Future Work

The main contributions in this thesis concentrate on two aspects in intelligent networking
management, fault management and performance management based on data mining and
machine learning. The fault management part targets at anomaly and fault detection and
localization in Micro-services architecture. The performance management part aims at
network traffic engineering challenges and attempts to converge to optimal performance in
terms of traffic throughput and transferring delay. The thesis outlines the main applicable
scenarios and the analysis hierarchy in Chapter 1 and lists several challenges for effective
management. An underlying idea throughout the thesis is the recent advances in machine
learning shows a promising orientation for the automation and agile adaption of management
and maintenance.

This Chapter summarizes the core techniques proposed and introduced in each previous
chapters with empirical evaluations and their well-marked conclusions, followed by the next

section for discussion of limitations and potential future research.

7.1 Conclusions

Fault and Anomaly Analysis:
For fault and anomaly analysis, two fundamental issues are presented: novelty identifi-
cation with distributed representation; root cause localization with importance index

and empirical errors.

The novelty identification successfully takes advantage of representative and com-
pressed features embedded into a continuous space to reveal the hidden sample bound-
ary. It is intriguing because the features are forged automatically as semantics of

a task in terms of spatial-temporal information. The common wisdom assumes the

106

Conclusion and Future Work

features should be manually extracted from data with explicit meaning. However, a
learning agent based on neural networks can encode sophisticated information into an
implicit representative space. Especially, when it comes to log process, statistics-based
algorithms prevail across academia and industry. Nevertheless, the representation
learning for categorical logs shows another path to interpret implicit semantics in
terms of systematic behaviors. Besides the embedding-like representation learning,
the trace information is also significant for large-scale service-based architecture. The
trace serves as a work-flow tracker of communications of intra-system services, which
unfolds hierarchical and complicated linkage. The trace information has become an

indispensable source for in-depth analysis.

As for the root cause localization, it makes the most of trace information not only
to extract intrinsic importance index of involved services but also to investigate the
servicing deviations against the normal baseline. The intrinsic importance index is
constructed based on a query importance hypothesis. It is that one service is intuitively
vital to its connected services if it is frequently queried by these neighbors. The
hypothesis is similar to the PageRank method that works well in web page indexing.
Additionally, the servicing deviations against the baseline come from the differences
between empirical normal tasks and the tasks of interest with respect to durations of
queries. The combination between intrinsic importance index and empirical errors
will reasonably highlight suspicious nodes that may remain obscure under normal
circumstances. The process even shows an opportunity to enable causality analysis for
backtracking of root causes.

Data Driven Traffic Engineering Based on Learning

For traffic engineering, two ideas of supervised learning and reinforcement learning are
presented respectively, traffic path planning with transferring constrains and optimizing

network performance with constrains and dynamic forwarding.

The network traffic engineering relates to the allocation networking resource. A
learning-based data-driven algorithm based on sequence-to-sequence is proposed to
discover the hidden patterns entailed in the historical networking traffic data. The path
planning process can be deemed as a transformation from traffic requests to available
communication path allocation, which fit in a so-called “Encoder-Decoder’ structure.
The “Encoder-Decoder” structure helps project data from one domain into a latent
space to keep common characteristics. It further projects the latent elements into
target domain. Especially, recent successes in language processing show a promising

direction to sequence-related analysis, for example network traffic engineering.

7.2 Future Work 107

In the following dynamic traffic engineering scenario, it takes advantage of recent
advances in Deep Reinforcement Learning to overcome the limitation of data labeling
and unadaptive planning. This is because in real network environment, it is very
difficult to collect labeled data and appoint the data to a corresponding downstream
task. Generally, decision-making methods are required to be adaptive to dynamic
surroundings. Reinforcement learning algorithms provide elastic searching policies
to target at long term accumulated benefits and help gain global optimal performance.
Despite the network complexity, reinforcement learning endeavors to reach a balance
and trade-off between exploration and exploitation for optimization scheme so that

reinforcement learning gives a promising result to tackle dynamic challenges.

7.2 Future Work

Network Data Representation Learning

The framework of network anomaly and fault detection takes heterogeneous data
representation into consideration. The representation learning attempts to translate
the data into computable metrics by various techniques stemming from other research
areas, such as Natural Language Processing and image processing. It is then likely
to bring system biases into networking analysis, since algorithms designed for other
applications are not fully aware of the characteristics of networking analysis. Currently,
there lack effective algorithms to interpret various data in the context of network
properties and applications. For instance, several meta-configurations are vital to
networking initial settings and conditions, but the recorded configurations can be
stored in a variety of formats making it difficult to jointly wrap up. The unstructured
topology data is traditionally denoted as a matrix, however the graph neural network
[215, 216] improved by deep learning and graph theory shows exciting properties to
comprehensively capture latent dependency. An informative and general representa-
tion with respective to networking applications will provide more insightful hidden
information for in-depth analysis. It is worthwhile to have a deep investigation and
review of existing representation learning trend and propose a reasonable approach to

specifically capture the latent networking information.

Causality Analysis For Root Cause Tracking

In Chapter 4, the fault root cause localization is realized by the error degree with
inherent systematic services importance based on the normal history baseline and
PageRank index calculation. The idea emphasizes the most affected function point by

108

Conclusion and Future Work

the occurred faults, in other words the most suspicious localization. It is reasonable for
clear hierarchical system structure, nevertheless the most affected node is not always
the fault source in terms of a task. The dependency and connection between system
components are very likely to amplify a tiny issue to a catastrophe via a long chain of
fault propagation. Except propagation and amplification, tiny errors can accumulate
continuous task by task and trigger a total failure explosion after long term latency.
This type of errors can hardly be predicted as if they appeared as normal executions.
It is therefore in an urgent need of causality analysis for an analyzer to trace back
the fault source from terminal observation. As a matter of fact, causality analysis
draws substantial attention to the artificial intelligence community [217-219] in spite
of recent splendid advances in Deep Learning sphere. To reach the full automation
and administrator-level diagnosis, the causality analysis enhanced by graph neural
networks and deep learning gives a bright direction to reason about the latent root

causes and localize ground truth fault sources.

Dynamic Network Traffic Engineering

It is manifest that supervised-based traffic path planning can achieve high performance
but lack flexibility to adjust to novel situations. After sequence-to-sequence mode
of planning, the processing for dynamic issues based on Deep Q-learning is further
introduced and evaluated in terms of constrained conditions and individual node pre-
diction. A potential approach to extend the availability of the algorithm is to combine
sequence-to-sequence model and Reinforcement Learning. As aforementioned, the
sequence-to-sequence model is preferable for paired source and target sequential data.
The sequential processing mode is expected to be more efficient and inclined to circum-
vent local optimums. In the presented evaluated experiments, the tested forwarding
traffic data are somehow fixed and may cause over-fitting with respect to long term
training. A feasible and useful solution is to generalize the Reinforcement Learning to
massive environment background conditions, which will generate orders of magnitude
more states and seemingly unstable background traffic occupation. In contrast to the
research [10] that dedicates to flow allocation, node-level sequence finding offers
adequate options and flexibility to accommodate seemingly chaotic environment states,
and it can relieve the burden from re-training with respect to the latest data. Adjustable
and node-level analysis will be a promising future work for intelligent network traffic

engineering.

References

[1]

(2]

[10]

S. Ayoubi, N. Limam, M. A. Salahuddin, N. Shahriar, R. Boutaba, F. Estrada-Solano,
and O. M. Caicedo, “Machine learning for cognitive network management,” /[EEE
Communications Magazine, vol. 56, no. 1, pp. 158-165, 2018.

K. Kalegele, K. Sasai, H. Takahashi, G. Kitagata, and T. Kinoshita, “Four decades of
data mining in network and systems management,” IEEE Transactions on Knowledge
and Data Engineering, vol. 27, no. 10, pp. 2700-2716, 2015.

I. C. Paschalidis and G. Smaragdakis, “Spatio-temporal network anomaly detection by
assessing deviations of empirical measures,” IEEE/ACM Transactions on Networking,
vol. 17, no. 3, pp. 685-697, 2009.

I. Nevat, D. M. Divakaran, S. G. Nagarajan, P. Zhang, L. Su, L. L. Ko, and V. L. Thing,
“Anomaly detection and attribution in networks with temporally correlated traffic,”
IEEE/ACM Transactions on Networking, vol. 26, no. 1, pp. 131-144, 2018.

H. Yan, L. Breslau, Z. Ge, D. Massey, D. Pei, and J. Yates, “G-rca: a generic root cause
analysis platform for service quality management in large ip networks,” IEEE/ACM
Transactions on Networking, vol. 20, no. 6, pp. 1734-1747, 2012.

M. Wang, Y. Cui, X. Wang, S. Xiao, and J. Jiang, “Machine learning for networking:
Workflow, advances and opportunities,” IEEE Network, vol. 32, no. 2, pp. 92-99,
2017.

Z. Shu, J. Wan, J. Lin, S. Wang, D. Li, S. Rho, and C. Yang, “Traffic engineering in
software-defined networking: Measurement and management,” IEEE Access, vol. 4,
pp- 3246-3256, 2016.

I. E. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “Research challenges for traffic
engineering in software defined networks,” IEEE Network, vol. 30, no. 3, pp. 52-58,
2016.

Z. M. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue, and K. Mizutani,
“State-of-the-art deep learning: Evolving machine intelligence toward tomorrow’s

intelligent network traffic control systems,” IEEE Communications Surveys Tutorials,
vol. 19, no. 4, pp. 2432-2455, 2017.

Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, and D. Yang, “Experience-
driven networking: A deep reinforcement learning based approach,” in IEEE INFO-
COM 2018-IEEE Conference on Computer Communications, pp. 1871-1879, IEEE,
2018.

110 References

[11] S. Chinchali, P. Hu, T. Chu, M. Sharma, M. Bansal, R. Misra, M. Pavone, and
S. Katti, “Cellular network traffic scheduling with deep reinforcement learning,” in
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[12] C. Richardson, Microservice Patterns. Manning Publications Company, 2018.

[13] P.Jamshidi, C. Pahl, N. C. Mendonga, J. Lewis, and S. Tilkov, “Microservices: The
journey so far and challenges ahead,” IEEE Software, vol. 35, no. 3, pp. 24-35, 2018.

[14] S. Hassan and R. Bahsoon, “Microservices and their design trade-offs: A self-adaptive
roadmap,” in 2016 IEEE International Conference on Services Computing (SCC),
pp- 813-818, IEEE, 2016.

[15] O. Zimmermann, “Microservices tenets,” Computer Science-Research and Develop-
ment, vol. 32, no. 3-4, pp. 301-310, 2017.

[16] M.-O. Pahl and F.-X. Aubet, “All eyes on you: Distributed multi-dimensional iot
microservice anomaly detection,” in 2018 14th International Conference on Network
and Service Management (CNSM), pp. 72-80, IEEE, 2018.

[17] A. Clemm, Network management fundamentals. Cisco Press, 2006.

[18] M. Kahani and H. Beadle, “Decentralised approaches for network management,” ACM
SIGCOMM Computer Communication Review, vol. 27, no. 3, pp. 3647, 1997.

[19] H. Kim and N. Feamster, “Improving network management with software defined
networking,” IEEE Communications Magazine, vol. 51, no. 2, pp. 114-119, 2013.

[20] S.-Y. Yang and Y.-Y. Chang, “An active and intelligent network management system
with ontology-based and multi-agent techniques,” Expert Systems with Applications,
vol. 38, no. 8, pp. 10320-10342, 2011.

[21] A. Chatterjee, “Is the statement of murphy’s law valid?,” Complexity, vol. 21, no. 6,
pp- 374-380, 2016.

[22] A. Oliner, A. Ganapathi, and W. Xu, “Advances and challenges in log analysis,”
Commun. ACM, vol. 55, pp. 55-61, Feb. 2012.

[23] R. Vaarandi, Tools and Techniques for Event Log Analysis. Tallinn University of
Technology Press, 2005.

[24] S. Sabato, E. Yom-Tov, A. Tsherniak, and S. Rosset, “Analyzing system logs: A new
view of what’s important,” in Proceedings of the 2nd USENIX workshop on Tackling
computer systems problems with machine learning techniques, pp. 1-7, USENIX
Association, 2007.

[25] A. Oliner and J. Stearley, “What supercomputers say: A study of five system logs,” in
Dependable Systems and Networks, 2007. DSN’07. 37th Annual IEEE/IFIP Interna-
tional Conference on, pp. 575-584, IEEE, 2007.

[26] A.Makanju, A. N. Zincir-Heywood, and E. E. Milios, “A lightweight algorithm for
message type extraction in system application logs,” IEEE Transactions on Knowledge
and Data Engineering, vol. 24, no. 11, pp. 1921-1936, 2012.

References 111

[27] T. Kimura, K. Ishibashi, T. Mori, H. Sawada, T. Toyono, K. Nishimatsu, A. Watanabe,
A. Shimoda, and K. Shiomoto, “Spatio-temporal factorization of log data for under-
standing network events,” in IEEE INFOCOM 2014-1EEE Conference on Computer
Communications, pp. 610-618, IEEE, 2014.

[28] A. A. Makanju, A. N. Zincir-Heywood, and E. E. Milios, “Clustering event logs
using iterative partitioning,” in Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 1255-1264, ACM, 2009.

[29] R. Vaarandi, “A data clustering algorithm for mining patterns from event logs,” in /P
Operations & Management, 2003.(IPOM 2003). 3rd IEEE Workshop on, pp. 119-126,
IEEE, 2003.

[30] R. Vaarandi, “A breadth-first algorithm for mining frequent patterns from event logs,”
in Intelligence in Communication Systems, pp. 293-308, Springer, 2004.

[31] R. Vaarandi and M. Pihelgas, “Logcluster-a data clustering and pattern mining al-
gorithm for event logs,” in Network and Service Management (CNSM), 2015 11th
International Conference on, pp. 1-7, IEEE, 2015.

[32] M. Du and F. Li, “Spell: Streaming parsing of system event logs,” in Data Mining
(ICDM), 2016 IEEE 16th International Conference on, pp. 859-864, IEEE, 2016.

[33] M. Nagappan, K. Wu, and M. A. Vouk, “Efficiently extracting operational profiles
from execution logs using suffix arrays,” in 2009 20th International Symposium on
Software Reliability Engineering, pp. 41-50, IEEE, 2009.

[34] P. He, J. Zhu, S. He, J. Li, and M. R. Lyu, “An evaluation study on log parsing and
its use in log mining,” in 2016 46th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pp. 654-661, IEEE, 2016.

[35] J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R. Lyu, “Tools and benchmarks
for automated log parsing,” arXiv preprint arXiv:1811.03509, 2018.

[36] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-based algorithm for
discovering clusters in large spatial databases with noise.,” in Kdd, vol. 96, pp. 226—
231, 1996.

[37] R. Agrawal, R. Srikant, et al., “Fast algorithms for mining association rules,” in Proc.
20th int. conf. very large data bases, VLDB, vol. 1215, pp. 487-499, 1994.

[38] B. L. W. H. Y. Ma and B. Liu, “Integrating classification and association rule mining,”
in Proceedings of the fourth international conference on knowledge discovery and
data mining, pp. 24-25, 1998.

[39] L. Tang, T. Li, and C.-S. Perng, “Logsig: Generating system events from raw textual
logs,” in Proceedings of the 20th ACM international conference on Information and
knowledge management, pp. 785-794, ACM, 2011.

[40] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora, “An automated approach for
abstracting execution logs to execution events,” Journal of Software Maintenance and
Evolution: Research and Practice, vol. 20, no. 4, pp. 249-267, 2008.

112

References

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Z. M. Jiang, A. E. Hassan, P. Flora, and G. Hamann, “Abstracting execution logs
to execution events for enterprise applications (short paper),” in 2008 The Eighth
International Conference on Quality Software, pp. 181-186, IEEE, 2008.

T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: a multilinguistic token-based code
clone detection system for large scale source code,” IEEE Transactions on Software
Engineering, vol. 28, no. 7, pp. 654-670, 2002.

Q. Fu, J.-G. Lou, Y. Wang, and J. Li, “Execution anomaly detection in distributed
systems through unstructured log analysis,” in International conference on Data
Mining (full paper), IEEE, December 2009.

V. L. Levenshtein, “Binary codes capable of correcting deletions, insertions, and
reversals,” in Soviet physics doklady, vol. 10, pp. 707-710, 1966.

Y. Zhang, N. Liu, Z. Pan, T. Deng, and X. You, “A fault detection model for mobile
communication systems based on linear prediction,” in 2014 IEEE/CIC International
Conference on Communications in China (ICCC), pp. 703-708, IEEE, 2014.

G. A. Barreto, J. C. M. Mota, L. G. M. Souza, R. A. Frota, and L. Aguayo, “Condi-
tion monitoring of 3g cellular networks through competitive neural models,” IEEE
Transactions on Neural Networks, vol. 16, no. 5, pp. 1064-1075, 2005.

P. Szilagyi and S. Novdczki, “An automatic detection and diagnosis framework for
mobile communication systems,” IEEE transactions on Network and Service Manage-
ment, vol. 9, no. 2, pp. 184-197, 2012.

T. Zaidi et al., “Modeling for fault tolerance in cloud computing environment,” Journal
of Computer Sciences and Applications, vol. 4, no. 1, pp. 9-13, 2016.

Z. Amin, H. Singh, and N. Sethi, “Review on fault tolerance techniques in cloud
computing,” International Journal of Computer Applications, vol. 116, no. 18, 2015.

R. Jhawar, V. Piuri, and M. Santambrogio, “Fault tolerance management in cloud
computing: A system-level perspective,” IEEE Systems Journal, vol. 7, no. 2, pp. 288—
297, 2013.

C. B. L. Neto, P. B. De Carvalho Filho, and A. N. Duarte, “A systematic mapping
study on fault management in cloud computing,” in 2013 International Conference

on Parallel and Distributed Computing, Applications and Technologies, pp. 332-337,
IEEE, 2013.

M. Bajer, “Building an iot data hub with elasticsearch, logstash and kibana,” in 2017
Sth International Conference on Future Internet of Things and Cloud Workshops
(FiCloudW), pp. 63-68, IEEE, 2017.

S. Alspaugh, B. Chen, J. Lin, A. Ganapathi, M. Hearst, and R. Katz, “Analyzing log
analysis: An empirical study of user log mining,” in 28th Large Installation System
Administration Conference (LISA14), pp. 62-77, 2014.

C. Gormley and Z. Tong, Elasticsearch: The definitive guide: A distributed real-time
search and analytics engine. " O’Reilly Media, Inc.", 2015.

References 113

[55] M. Steinder and A. S. Sethi, “The present and future of event correlation: A need for
end-to-end service fault localization,” in World Multi-Conf. Systemics, Cybernetics,
and Informatics, vol. 12, pp. 124—-129, Orlando, FL, 2001.

[56] S. A. Yemini, S. Kliger, E. Mozes, Y. Yemini, and D. Ohsie, “High speed and robust
event correlation,” IEEE communications Magazine, vol. 34, no. 5, pp. 82-90, 1996.

[57] A.J. Oliner, A. V. Kulkarni, and A. Aiken, “Using correlated surprise to infer shared
influence,” in 2010 IEEE/IFIP International Conference on Dependable Systems &
Networks (DSN), pp. 191-200, 1EEE, 2010.

[58] J.-i. Takeuchi and K. Yamanishi, “A unifying framework for detecting outliers and

change points from time series,” IEEE transactions on Knowledge and Data Engineer-
ing, vol. 18, no. 4, pp. 482—492, 2006.

[59] K. Yamanishi and Y. Maruyama, “Dynamic syslog mining for network failure mon-
itoring,” in Proceedings of the eleventh ACM SIGKDD international conference on
Knowledge discovery in data mining, pp. 499-508, ACM, 2005.

[60] S. Kullback, “Letter to the editor: The kullback-leibler distance,” 1987.

[61] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong,
J. Gale, M. Halpenny, G. Hoffmann, et al., “Stanley: The robot that won the darpa
grand challenge,” Journal of field Robotics, vol. 23, no. 9, pp. 661-692, 2006.

[62] H. Akaike and G. Kitagawa, The practice of time series analysis. Springer Science &
Business Media, 2012.

[63] Z.Ghahramani, “An introduction to hidden markov models and bayesian networks,” in
Hidden Markov models: applications in computer vision, pp. 9-41, World Scientific,
2001.

[64] R. Gerhards, “The syslog protocol,” tech. rep., 2009.

[65] R. M. Neal and G. E. Hinton, “A view of the em algorithm that justifies incremental,

sparse, and other variants,” in Learning in graphical models, pp. 355-368, Springer,
1998.

[66] K. Yamanishi, J.-I. Takeuchi, G. Williams, and P. Milne, “On-line unsupervised outlier
detection using finite mixtures with discounting learning algorithms,” Data Mining
and Knowledge Discovery, vol. 8, no. 3, pp. 275-300, 2004.

[67] Y. Maruyama and K. Yamanishi, “Dynamic model selection with its applications to
computer security,” in Information Theory Workshop, pp. 8287, IEEE, 2004.

[68] E. Chuah, S.-h. Kuo, P. Hiew, W.-C. Tjhi, G. Lee, J. Hammond, M. T. Michalewicz,
T. Hung, and J. C. Browne, “Diagnosing the root-causes of failures from cluster log

files,” in 2010 International Conference on High Performance Computing, pp. 1-10,
IEEE, 2010.

[69] P. Sedgwick, “Pearson’s correlation coefficient,” Bmyj, vol. 345, p. e4483, 2012.

114

References

[70]

[74]

[75]

W. C. Young, J. E. Blumenstock, E. B. Fox, and T. H. McCormick, “Detecting and
classifying anomalous behavior in spatiotemporal network data,” in Proceedings of

the 2014 KDD workshop on learning about emergencies from social information
(KDD-LESI 2014), pp. 29-33, 2014.

C. Lim, N. Singh, and S. Yajnik, “A log mining approach to failure analysis of
enterprise telephony systems,” in 2008 IEEE International Conference on Dependable
Systems and Networks With FTCS and DCC (DSN), pp. 398-403, IEEE, 2008.

T. Li, F. Liang, S. Ma, and W. Peng, “An integrated framework on mining logs files
for computing system management,’ in Proceedings of the eleventh ACM SIGKDD
international conference on Knowledge discovery in data mining, pp. 776781, ACM,
2005.

S. Ma and J. L. Hellerstein, “Mining partially periodic event patterns with unknown
periods,” in Proceedings 17th International Conference on Data Engineering, pp. 205—
214, 1IEEE, 2001.

D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix
factorization,” Nature, vol. 401, no. 6755, p. 788, 1999.

A. Cichocki, R. Zdunek, A. H. Phan, and S.-i. Amari, Nonnegative matrix and tensor
factorizations: applications to exploratory multi-way data analysis and blind source
separation. John Wiley & Sons, 2009.

D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasupathy, “Sherlog: error
diagnosis by connecting clues from run-time logs,” in ACM SIGARCH computer
architecture news, vol. 38, pp. 143-154, ACM, 2010.

I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone detection
using abstract syntax trees,” in Proceedings. International Conference on Software
Maintenance (Cat. No. 98CB36272), pp. 368-377, IEEE, 1998.

O. Ohrimenko, P. J. Stuckey, and M. Codish, “Propagation via lazy clause generation,”
Constraints, vol. 14, no. 3, pp. 357-391, 2009.

J. Tan, X. Pan, S. Kavulya, R. Gandhi, and P. Narasimhan, “Salsa: Analyzing logs as
state machines.,” WASL, vol. 8, pp. 66, 2008.

W. M. Van Der Aalst and B. F. Van Dongen, “Discovering petri nets from event logs,”
in Transactions on Petri Nets and Other Models of Concurrency VII, pp. 372422,
Springer, 2013.

I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan, and M. D. Ernst, “Leveraging
existing instrumentation to automatically infer invariant-constrained models,” in Pro-
ceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on
Foundations of software engineering, pp. 267-277, ACM, 2011.

A. Rozinat, R. Mans, M. Song, and W. M. Van der Aalst, “Discovering colored petri
nets from event logs,” International Journal on Software Tools for Technology Transfer,
vol. 10, no. 1, pp. 57-74, 2008.

References 115

[83] T. Ohmann, K. Thai, I. Beschastnikh, and Y. Brun, “Mining precise performance-
aware behavioral models from existing instrumentation,” in Companion Proceedings
of the 36th International Conference on Software Engineering, pp. 484—487, ACM,
2014.

[84] T. Ohmann, M. Herzberg, S. Fiss, A. Halbert, M. Palyart, I. Beschastnikh, and Y. Brun,
“Behavioral resource-aware model inference,” in Proceedings of the 29th ACM/IEEE
international conference on Automated software engineering, pp. 19-30, ACM, 2014.

[85] J. L. Peterson, “Petri nets,” ACM Computing Surveys (CSUR), vol. 9, no. 3, pp. 223—
252, 19717.

[86] R. Jhala and R. Majumdar, “Software model checking,” ACM Computing Surveys
(CSUR), vol. 41, no. 4, p. 21, 2009.

[87] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop distributed file
system,” in 2010 IEEE 26th symposium on mass storage systems and technologies
(MSST), pp. 1-10, Ieee, 2010.

[88] W. Van der Aalst, T. Weijters, and L. Maruster, “Workflow mining: Discovering
process models from event logs,” IEEE Transactions on Knowledge and Data Engi-
neering, vol. 16, no. 9, pp. 1128-1142, 2004.

[89] H. Verbeek, J. Buijs, B. Van Dongen, and W. M. van der Aalst, “Prom 6: The process
mining toolkit,” Proc. of BPM Demonstration Track, vol. 615, pp. 34-39, 2010.

[90] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-guided ab-
straction refinement,” in International Conference on Computer Aided Verification,
pp. 154-169, Springer, 2000.

[91] A. W. Biermann and J. A. Feldman, “On the synthesis of finite-state machines from
samples of their behavior,” IEEE transactions on Computers, vol. 100, no. 6, pp. 592—
597, 1972.

[92] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,
p. 436, 2015.

[93] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in neural information processing systems,
pp- 1097-1105, 2012.

[94] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao,
Q. Gao, K. Macherey, et al., “Google’s neural machine translation system: Bridging
the gap between human and machine translation,” arXiv preprint arXiv:1609.08144,
2016.

[95] R. Chalapathy and S. Chawla, “Deep learning for anomaly detection: A survey,” arXiv
preprint arXiv:1901.03407, 2019.

[96] A. Brown, A. Tuor, B. Hutchinson, and N. Nichols, “Recurrent neural network
attention mechanisms for interpretable system log anomaly detection,” in Proceedings
of the First Workshop on Machine Learning for Computing Systems, p. 1, ACM, 2018.

116

References

[97]

[100]

[101]

[102]

[103]

[104]
[105]

[106]

[107]

[108]

[109]

[110]

A. Das, F. Mueller, C. Siegel, and A. Vishnu, “Desh: Deep learning for system health
prediction of lead times to failure in hpc,” in Proceedings of the 27th International
Symposium on High-Performance Parallel and Distributed Computing, pp. 40-51,
ACM, 2018.

M. Du, E. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection and diagnosis
from system logs through deep learning,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pp. 1285-1298, ACM, 2017.

Y. Shen, E. Mariconti, P. A. Vervier, and G. Stringhini, “Tiresias: Predicting security
events through deep learning,” in Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, pp. 592-605, ACM, 2018.

K. Zhang, J. Xu, M. R. Min, G. Jiang, K. Pelechrinis, and H. Zhang, “Automated it
system failure prediction: A deep learning approach,” in 2016 IEEE International
Conference on Big Data (Big Data), pp. 1291-1300, IEEE, 2016.

T. Mikolov, 1. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed repre-
sentations of words and phrases and their compositionality,” in Advances in neural
information processing systems, pp. 3111-3119, 2013.

D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning

to align and translate,” In International Conference of Learning Representation, ICLR
(2015), 2014.

M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches to attention-based
neural machine translation,” arXiv preprint arXiv:1508.04025, 2015.

K. Jackson, OpenStack cloud computing cookbook. Packt Publishing Ltd, 2012.

M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “Optics: ordering points to
identify the clustering structure,” in ACM Sigmod record, vol. 28, pp. 49-60, ACM,
1999.

J. Ramos et al., “Using tf-idf to determine word relevance in document queries,”’

in Proceedings of the first instructional conference on machine learning, vol. 242,
pp- 133-142, Piscataway, NJ, 2003.

Z. M. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue, and K. Mizutani,
“State-of-the-art deep learning: Evolving machine intelligence toward tomorrow’s in-
telligent network traffic control systems,” IEEE Communications Surveys & Tutorials,
vol. 19, no. 4, pp. 2432-2455, 2017.

C. Zhang, P. Patras, and H. Haddadi, “Deep learning in mobile and wireless network-
ing: A survey,” IEEE Communications Surveys & Tutorials, 2019.

N. Feamster, J. Rexford, and E. Zegura, “The road to sdn: an intellectual history
of programmable networks,” ACM SIGCOMM Computer Communication Review,
vol. 44, no. 2, pp. 87-98, 2014.

V. Marx, “Biology: The big challenges of big data,” Nature, vol. 498, p. 255, 2013.

References 117

[111] B. Fortz, J. Rexford, and M. Thorup, “Traffic engineering with traditional ip routing
protocols,” IEEE communications Magazine, vol. 40, no. 10, pp. 118-124, 2002.

[112] 1. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A roadmap for traffic
engineering in sdn-openflow networks,” Computer Networks, vol. 71, pp. 1-30, 2014.

[113] B. Fortz and M. Thorup, “Optimizing ospf/is-is weights in a changing world,” IEEE
journal on selected areas in communications, vol. 20, no. 4, pp. 756-767, 2002.

[114] B. Fortz and M. Thorup, “Internet traffic engineering by optimizing ospf weights,”
in Proceedings IEEE INFOCOM 2000. Conference on Computer Communications.
Nineteenth Annual Joint Conference of the IEEE Computer and Communications
Societies (Cat. No. 00CH37064), vol. 2, pp. 519-528, 1EEE, 2000.

[115] A.Elwalid, C. Jin, S. Low, and 1. Widjaja, “Mate: Mpls adaptive traffic engineering,”
2001.

[116] M. Chiesa, G. Kindler, and M. Schapira, “Traffic engineering with equal-cost-
multipath: An algorithmic perspective,” IEEE/ACM Transactions on Networking
(TON), vol. 25, no. 2, pp. 779-792, 2017.

[117] A. Sridharan, R. Guérin, and C. Diot, “Achieving near-optimal traffic engineering
solutions for current ospf/is-is networks,” IEEE/ACM Transactions On Networking,
vol. 13, no. 2, pp. 234-247, 2005.

[118] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner, “Openflow: enabling innovation in campus networks,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 69-74, 2008.

[119] D. Kreutz, F. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodolmolky, and
S. Uhlig, “Software-defined networking: A comprehensive survey,” arXiv preprint
arXiv:1406.0440, 2014.

[120] S. Agarwal, M. Kodialam, and T. Lakshman, “Traffic engineering in software defined
networks,” in 2013 Proceedings IEEE INFOCOM, pp. 2211-2219, IEEE, 2013.

[121] C. Filsfils, N. K. Nainar, C. Pignataro, J. C. Cardona, and P. Francois, “The segment
routing architecture,” in 2015 IEEE Global Communications Conference (GLOBE-
COM), pp. 1-6, IEEE, 2015.

[122] L. Davoli, L. Veltri, P. L. Ventre, G. Siracusano, and S. Salsano, “Traffic engineering
with segment routing: Sdn-based architectural design and open source implementation,”
in 2015 Fourth European Workshop on Software Defined Networks, pp. 111-112, IEEE,
2015.

[123] A. Cianfrani, M. Listanti, and M. Polverini, “Incremental deployment of segment rout-
ing into an isp network: A traffic engineering perspective,” IEEE/ACM Transactions
on Networking, vol. 25, no. 5, pp. 3146-3160, 2017.

[124] J. Pang, G. Xu, and X. Fu, “Sdn-based data center networking with collaboration of
multipath tcp and segment routing,” IEEE Access, vol. 5, pp. 9764-9773, 2017.

118 References

[125] M.-C. Lee and J.-P. Sheu, “An efficient routing algorithm based on segment routing in
software-defined networking,” Computer Networks, vol. 103, pp. 44-55, 2016.

[126] R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar, F. Estrada-Solano,
and O. M. Caicedo, “A comprehensive survey on machine learning for networking:
evolution, applications and research opportunities,” Journal of Internet Services and
Applications, vol. 9, no. 1, p. 16, 2018.

[127] P. V. Klaine, M. A. Imran, O. Onireti, and R. D. Souza, “A survey of machine learn-
ing techniques applied to self-organizing cellular networks,” IEEE Communications
Surveys & Tutorials, vol. 19, no. 4, pp. 2392-2431, 2017.

[128] N. Kato, Z. M. Fadlullah, B. Mao, F. Tang, O. Akashi, T. Inoue, and K. Mizutani, “The
deep learning vision for heterogeneous network traffic control: Proposal, challenges,
and future perspective,” IEEE wireless communications, vol. 24, no. 3, pp. 146—153,
2016.

[129] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C. Liang, and D. 1. Kim,
“Applications of deep reinforcement learning in communications and networking: A
survey,” IEEE Communications Surveys & Tutorials, 2019.

[130] Q. Mao, F. Hu, and Q. Hao, “Deep learning for intelligent wireless networks: A
comprehensive survey,” IEEE Communications Surveys & Tutorials, vol. 20, no. 4,
pp- 2595-2621, 2018.

[131] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,
L. Baker, M. Lai, A. Bolton, et al., “Mastering the game of go without human
knowledge,” Nature, vol. 550, no. 7676, p. 354, 2017.

[132] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level control
through deep reinforcement learning,” Nature, vol. 518, no. 7540, p. 529, 2015.

[133] Y. Fu, S. Wang, C.-X. Wang, X. Hong, and S. McLaughlin, “Artificial intelligence
to manage network traffic of 5g wireless networks,” IEEE Network, vol. 32, no. 6,
pp. 58-64, 2018.

[134] J. Xu and K. Wu, “Living with artificial intelligence: A paradigm shift toward future
network traffic control,” leee Network, vol. 32, no. 6, pp. 92-99, 2018.

[135] B. Mao, Z. M. Fadlullah, F. Tang, N. Kato, O. Akashi, T. Inoue, and K. Mizutani,
“Routing or computing? the paradigm shift towards intelligent computer network
packet transmission based on deep learning,” IEEE Transactions on Computers, vol. 66,
no. 11, pp. 1946-1960, 2017.

[136] B. Mao, F. Tang, Z. M. Fadlullah, N. Kato, O. Akashi, T. Inoue, and K. Mizutani, “A
novel non-supervised deep-learning-based network traffic control method for software

defined wireless networks,” IEEE Wireless Communications, vol. 25, no. 4, pp. 74-81,
2018.

References 119

[137] F. Tang, B. Mao, Z. M. Fadlullah, and N. Kato, “On a novel deep-learning-based
intelligent partially overlapping channel assignment in sdn-iot,” IEEE Communications
Magazine, vol. 56, no. 9, pp. 80-86, 2018.

[138] Z. M. Fadlullah, B. Mao, F. Tang, and N. Kato, “Value iteration architecture based
deep learning for intelligent routing exploiting heterogeneous computing platforms,”
IEEE Transactions on Computers, vol. 68, no. 6, pp. 939-950, 2018.

[139] F Tang, B. Mao, Z. M. Fadlullah, N. Kato, O. Akashi, T. Inoue, and K. Mizutani, “On
removing routing protocol from future wireless networks: A real-time deep learning
approach for intelligent traffic control,” IEEE Wireless Communications, vol. 25, no. 1,
pp- 154-160, 2017.

[140] Z. Xu, J. Tang, C. Yin, Y. Wang, and G. Xue, “Experience-driven congestion control:
When multi-path tcp meets deep reinforcement learning,” IEEE Journal on Selected
Areas in Communications, vol. 37, no. 6, pp. 1325-1336, 2019.

[141] Y. He, Z. Zhang, F. R. Yu, N. Zhao, H. Yin, V. C. Leung, and Y. Zhang, “Deep-
reinforcement-learning-based optimization for cache-enabled opportunistic interfer-
ence alignment wireless networks,” IEEE Transactions on Vehicular Technology,
vol. 66, no. 11, pp. 10433-10445, 2017.

[142] X. Huang, T. Yuan, G. Qiao, and Y. Ren, “Deep reinforcement learning for multimedia
traffic control in software defined networking,” IEEE Network, vol. 32, no. 6, pp. 35—
41, 2018.

[143] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Optimized computation
offloading performance in virtual edge computing systems via deep reinforcement
learning,” IEEE Internet of Things Journal, 2018.

[144] D. Lan, X. Tan, J. Lv, Y. Jin, and J. Yang, “A deep reinforcement learning based con-
gestion control mechanism for ndn,” in ICC 2019-2019 IEEE International Conference
on Communications (ICC), pp. 1-7, IEEE, 2019.

[145] Z.Zhuang, J. Wang, Q. Qi, H. Sun, and J. Liao, “Toward greater intelligence in route
planning: A graph-aware deep learning approach,” IEEE Systems Journal, 2019.

[146] Y. Zuo, Y. Wu, G. Min, and L. Cui, “Learning-based network path planning for traffic
engineering,” Future Generation Computer Systems, vol. 92, pp. 59-67, 2019.

[147] Q. Li, N. Huang, D. Wang, X. Li, Y. Jiang, and Z. Song, “Hqtimer: A hybrid g-
learning-based timeout mechanism in software-defined networks,” IEEE Transactions
on Network and Service Management, vol. 16, no. 1, pp. 153-166, 2019.

[148] W. Cui, K. Shen, and W. Yu, “Spatial deep learning for wireless scheduling,” IEEE
Journal on Selected Areas in Communications, vol. 37, no. 6, pp. 1248-1261, 2019.

[149] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv preprint
arXiv:1509.02971, 2015.

120 References

[150] R. Srikant, The mathematics of Internet congestion control. Springer Science &
Business Media, 2012.

[151] K. Winstein and H. Balakrishnan, “Tcp ex machina: Computer-generated congestion
control,” 2013.

[152] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, P. Crowley, C. Papadopoulos, L. Wang,
B. Zhang, et al., “Named data networking,” ACM SIGCOMM Computer Communica-
tion Review, vol. 44, no. 3, pp. 6673, 2014.

[153] G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou, C. Tsilopoulos, X. Vasilakos,
K. V. Katsaros, and G. C. Polyzos, “A survey of information-centric networking

research,” IEEE Communications Surveys & Tutorials, vol. 16, no. 2, pp. 1024—1049,
2013.

[154] R. Srinivasan, “Rpc: Remote procedure call protocol specification version 2,” tech.
rep., 1995.

[155] H. Kreger et al., “Web services conceptual architecture (wsca 1.0),” IBM software
group, vol. 5, no. 1, pp. 67, 2001.

[156] R. Agrawal, T. Imielifiski, and A. Swami, “Mining association rules between sets of
items in large databases,” in Acm sigmod record, vol. 22, pp. 207-216, ACM, 1993.

[157] M. Erwig and M. Schneider, “Partition and conquer,” in International Conference on
Spatial Information Theory, pp. 389—407, Springer, 1997.

[158] Q. Le and T. Mikolov, “Distributed representations of sentences and documents,” in
ICML, pp. 1188-1196, 2014.

[159] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word represen-
tations in vector space,” arXiv:1301.3781, 2013.

[160] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal, D. Beaver,
S. Jaspan, and C. Shanbhag, “Dapper, a large-scale distributed systems tracing infras-
tructure,” 2010.

[161] Zipkin, “Openzipkin: A distributed tracing system.” https://zipkin.io/, 2019.

[162] Openstack, “Openstack: Osprofiler.” https://github.com/openstack/osprofiler, Apr
2019.

[163] S. Khan and M. Madden, “One-class classification: taxonomy of study and review of
techniques,” The Knowledge Engineering Review, vol. 29, no. 3, pp. 345-374, 2014.

[164] E. J. Pauwels and O. Ambekar, “One class classification for anomaly detection:
Support vector data description revisited,” in ICDM, pp. 25-39, Springer, 2011.

[165] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: identifying density-based
local outliers,” in ACM sigmod record, vol. 29, pp. 93—104, ACM, 2000.

[166] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in 2008 Eighth IEEE
International Conference on Data Mining, pp. 413-422, IEEE, 2008.

https://zipkin.io/
https://github.com/openstack/osprofiler

References 121

[167] L. Manevitz and M. Yousef, “One-class svms for document classification,” JMLR,
vol. 2, no. Dec, pp. 139-154, 2001.

[168] B. Scholkopf, R. Williamson, A. Smola, J. Shawe-Taylor, and J. Platt, “Support vector
method for novelty detection,” in NIPS, pp. 582-588, 2000.

[169] L. Duan, L. Xu, Y. Liu, and J. Lee, “Cluster-based outlier detection,” Annals of
Operations Research, vol. 168, no. 1, pp. 151-168, 2009.

[170] L. Maaten and G. Hinton, “Visualizing data using t-sne,” JMLR, vol. 9, no. Nov,
pp. 2579-2605, 2008.

[171] M. tgorzata Steinder and A. S. Sethi, “A survey of fault localization techniques in
computer networks,” Science of computer programming, vol. 53, no. 2, pp. 165-194,
2004.

[172] M. Steinder and A. S. Sethi, “Probabilistic fault localization in communication systems
using belief networks,” IEEE/ACM Transactions on Networking (TON), vol. 12, no. 5,
pp. 809-822, 2004.

[173] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,
vol. 9, no. 8, pp. 1735-1780, 1997.

[174] S. Asmussen, Applied probability and queues, vol. 51. Springer Science & Business
Media, 2008.

[175] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation ranking:
Bringing order to the web.,” tech. rep., Stanford InfoL.ab, 1999.

[176] OpenCensus, “Opencensus.” https://opencensus.io/, 2019.
[177] OpenTracing, “The opentracing project.” https://opentracing.io/, 2019.

[178] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica, “X-trace: A pervasive net-
work tracing framework,” in Proceedings of the 4th USENIX conference on Networked
systems design & implementation, pp. 20-20, USENIX Association, 2007.

[179] U. Technologies, “Jaeger: open source, end-to-end distributed tracing.” https://www.
jaegertracing.io/, 2019.

[180] J. Xiao, S. Chen, and M. Sui, “The strategy of path determination and traffic scheduling

in private campus networks based on sdn,” Peer-to-Peer Networking and Applications,
pp. 1-10, 2017.

[181] S. B. H. Shah, Z. Chen, and F. Yin, “Open: Optimized path planning algorithm with
energy efficiency and extending network-lifetime in wsn,” Journal of computing and
information technology, vol. 25, no. 1, pp. 1-14, 2017.

[182] M. Arifuzzaman, O. A. Dobre, M. H. Ahmed, and T. M. N. Ngatched, “Joint routing
and mac layer qos-aware protocol for wireless sensor networks,” in IEEE Global
Communications Conference (GLOBECOM), pp. 1-6, Dec 2016.

https://opencensus.io/
https://opentracing.io/
https://www.jaegertracing.io/
https://www.jaegertracing.io/

122 References

[183] Y. Niu, Y. Liu, Y. L1, X. Chen, Z. Zhong, and Z. Han, “Device-to-device communi-
cations enabled energy efficient multicast scheduling in mmwave small cells,” IEEE
Transactions on Communications, vol. 66, pp. 1093—-1109, March 2018.

[184] E.Oh and B. Krishnamachari, “Energy savings through dynamic base station switching
in cellular wireless access networks,” in IEEE Global Telecommunications Conference
GLOBECOM, pp. 1-5, Dec 2010.

[185] A. Lara, A. Kolasani, and B. Ramamurthy, “Network innovation using openflow: A
survey,” IEEE communications surveys & tutorials, vol. 16, no. 1, pp. 493-512, 2014.

[186] E. Ahmed, I. Yaqoob, I. A. T. Hashem, I. Khan, A. 1. A. Ahmed, M. Imran, and A. V.
Vasilakos, “The role of big data analytics in internet of things,” Computer Networks,
vol. 129, pp. 459471, 2017.

[187] M. Taheriyan, C. A. Knoblock, P. Szekely, and J. L. Ambite, “Learning the semantics
of structured data sources,” Web Semantics: Science, Services and Agents on the World
Wide Web, vol. 37, pp. 152-169, 2016.

[188] A. Halevy, P. Norvig, and F. Pereira, “The unreasonable effectiveness of data,” IEEE
Intelligent Systems, vol. 24, pp. 8—12, March 2009.

[189] D. Crankshaw, P. Bailis, J. E. Gonzalez, H. Li, Z. Zhang, M. J. Franklin, A. Ghodsi,
and M. 1. Jordan, “The missing piece in complex analytics: Low latency, scalable
model management and serving with velox,” arXiv preprint arXiv:1409.3809, 2014.

[190] R. Feynman and F. Vernon Jr., “Sequence to sequence learning with neural networks,”
In Advances in neural information processing systems, NIPS, pp. 3104-3112, 2014.

[191] M. Luong, H. Pham, and C. D. Manning, “Effective approaches to attention-based
neural machine translation,” In Conference on Empirical Methods in Natural Language
Processing, EMNLP (2015), 2015.

[192] G. Neubig, “Neural machine translation and sequence-to-sequence models: A tutorial,”
(2017) arXiv, http://arxiv.org/abs/1703.01619, 2017.

[193] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation,
vol. 9, p. 1735-1780, 1997.

[194] K. Cho, B. van Merrienboer, C. Giilcehre, F. Bougares, H. Schwenk, and Y. Bengio,
“Learning phrase representations using RNN encoder-decoder for statistical machine
translation,” (2017) arXiv, http://arxiv.org/abs/1406.1078, 2014.

[195] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid prototyping for
software-defined networks,” in Proceedings of the 9th ACM SIGCOMM Workshop on
Hot Topics in Networks, Hotnets-1X, (New York, NY, USA), pp. 19:1-19:6, ACM,
2010.

[196] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray,
B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng,
“Tensorflow: A system for large-scale machine learning,” in Proceedings of the 12th

References 123

USENIX Conference on Operating Systems Design and Implementation, OSDI’ 16,
(Berkeley, CA, USA), pp. 265-283, USENIX Association, 2016.

[197] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” (2014) arXiv
preprint arXiv:1412.6980, 2014.

[198] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press,
2018.

[199] OpenAl, “Openai five.” https://blog.openai.com/openai-five/, 2018.

[200] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., “Mastering the
game of go with deep neural networks and tree search,” nature, vol. 529, no. 7587,
p. 484, 2016.

[201] R. Bellman, “A markovian decision process,” Journal of mathematics and mechanics,
pp. 679-684, 1957.

[202] C.J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4, pp. 279—
292, 1992.

[203] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gradient methods
for reinforcement learning with function approximation,” in Advances in neural
information processing systems, pp. 1057-1063, 2000.

[204] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller, “Determinis-
tic policy gradient algorithms,” 2014.

[205] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy
optimization,” in International conference on machine learning, pp. 1889—-1897, 2015.

[206] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” in Inter-
national conference on machine learning, pp. 1928-1937, 2016.

[207] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[208] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double
g-learning,” in Thirtieth AAAI conference on artificial intelligence, 2016.

[209] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and N. De Freitas,
“Dueling network architectures for deep reinforcement learning,” arXiv preprint
arXiv:1511.06581, 2015.

[210] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource management with deep
reinforcement learning,” in Proceedings of the 15th ACM Workshop on Hot Topics in
Networks, pp. 50-56, ACM, 2016.

[211] L Arel, C. Liu, T. Urbanik, and A. Kohls, “Reinforcement learning-based multi-agent
system for network traffic signal control,” IET Intelligent Transport Systems, vol. 4,
no. 2, pp. 128-135, 2010.

https://blog.openai.com/openai-five/

124 References

[212] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of deep visuomotor
policies,” The Journal of Machine Learning Research, vol. 17, no. 1, pp. 1334-1373,
2016.

[213] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba, “Openai gym,” 2016.

[214] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische
mathematik, vol. 1, no. 1, pp. 269-271, 1959.

[215] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, and M. Sun, “Graph neural networks: A
review of methods and applications,” arXiv preprint arXiv:1812.08434, 2018.

[216] Z. Wu, S. Pan, E. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehensive survey on
graph neural networks,” arXiv preprint arXiv:1901.00596, 2019.

[217] P. Spirtes, “Introduction to causal inference,” Journal of Machine Learning Research,
vol. 11, no. May, pp. 1643-1662, 2010.

[218] J. Pearl, “Theoretical impediments to machine learning with seven sparks from the
causal revolution,” arXiv preprint arXiv:1801.04016, 2018.

[219] J. Pearl, “The seven tools of causal inference, with reflections on machine learning.,”
Commun. ACM, vol. 62, no. 3, pp. 5460, 2019.

	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Overview
	1.2 Network Environment and Scenarios
	1.3 Motivation
	1.3.1 Intelligent Anomaly and Fault Analysis
	1.3.2 Traffic Engineering from Hidden Knowledge

	1.4 Challenges
	1.5 Contributions
	1.6 Overview of This Thesis

	2 Literature Review
	2.1 Log Analysis for Network Maintenance
	2.1.1 Log data Preprocessing for Analysis
	2.1.2 Statistics-based Network Fault Diagnosis
	2.1.3 Finite State Machine-based Network Fault Diagnosis
	2.1.4 Deep Learning-based Network Anomaly and Fault Diagnosis

	2.2 Traffic Engineering for Network Management
	2.2.1 Classic Traffic Engineering for Network Management
	2.2.2 Deep Learning-based Traffic Engineering

	3 Network Systematic Event Discovery and Anomaly Detection
	3.1 Introduction
	3.2 An Overview of System Structure
	3.3 Event Template Extraction
	3.4 Partitioning-based Log Template Extraction
	3.4.1 Bulk Recursive Partitioning
	3.4.2 Segmented Library Iteration

	3.5 Transaction-level Representation Learning
	3.6 Service Query Tracing Representation Learning
	3.7 Integrated Anomaly Detection Based on Temporal-Spatial Data Representation
	3.8 Experiment Results and Analysis
	3.8.1 Evaluation of Template Extraction
	3.8.2 Evaluation of Transactional Topic Representation
	3.8.3 Evaluation of Tracing Representation
	3.8.4 Evaluation of Anomaly Detection

	3.9 Summary

	4 Network System Fault Localization and Ranking
	4.1 Introduction
	4.2 Overview of Fault Localization Framework
	4.3 Ranking Based on Anomaly Degree
	4.4 Trace Error Matrix and Dependency matrix
	4.5 Localizing Services by Significance Ranking
	4.6 Experiments
	4.6.1 Experimental Environment and Data
	4.6.2 Anomaly Degree Analysis
	4.6.3 The Root Cause Analysis

	4.7 Summary

	5 Network Traffic Resource Management
	5.1 Introduction
	5.2 The Proposed Framework
	5.2.1 Problem formulation
	5.2.2 The Inspired Forwarding Path Model

	5.3 Background Techniques
	5.3.1 Recurrent neural network
	5.3.2 The Encoder-Decoder structure
	5.3.3 The sequence-to-sequence model
	5.3.4 Attention mechanism
	5.3.5 Beam search

	5.4 Experiments and Analysis
	5.4.1 The seq2seq model training process
	5.4.2 SDN emulation experiments with learning-based controller

	5.5 Summary

	6 Dynamic Network Traffic Engineering: A Reinforcement Learning Perspective
	6.1 Introduction
	6.2 Preliminaries
	6.2.1 Overview of Reinforcement Learning
	6.2.2 Deep Q-learning

	6.3 Problem Formulation
	6.4 Proposed Scheme
	6.4.1 Constrained Path Planning
	6.4.2 Dynamic Node-level Prediction

	6.5 Experiments
	6.5.1 Evaluation of Constrained Path Planning
	6.5.2 Evaluation of Dynamic Path Planning

	6.6 Summary

	7 Conclusion and Future Work
	7.1 Conclusions
	7.2 Future Work

	References

