357 research outputs found

    Datacenter Traffic Control: Understanding Techniques and Trade-offs

    Get PDF
    Datacenters provide cost-effective and flexible access to scalable compute and storage resources necessary for today's cloud computing needs. A typical datacenter is made up of thousands of servers connected with a large network and usually managed by one operator. To provide quality access to the variety of applications and services hosted on datacenters and maximize performance, it deems necessary to use datacenter networks effectively and efficiently. Datacenter traffic is often a mix of several classes with different priorities and requirements. This includes user-generated interactive traffic, traffic with deadlines, and long-running traffic. To this end, custom transport protocols and traffic management techniques have been developed to improve datacenter network performance. In this tutorial paper, we review the general architecture of datacenter networks, various topologies proposed for them, their traffic properties, general traffic control challenges in datacenters and general traffic control objectives. The purpose of this paper is to bring out the important characteristics of traffic control in datacenters and not to survey all existing solutions (as it is virtually impossible due to massive body of existing research). We hope to provide readers with a wide range of options and factors while considering a variety of traffic control mechanisms. We discuss various characteristics of datacenter traffic control including management schemes, transmission control, traffic shaping, prioritization, load balancing, multipathing, and traffic scheduling. Next, we point to several open challenges as well as new and interesting networking paradigms. At the end of this paper, we briefly review inter-datacenter networks that connect geographically dispersed datacenters which have been receiving increasing attention recently and pose interesting and novel research problems.Comment: Accepted for Publication in IEEE Communications Surveys and Tutorial

    Delivering Consistent Network Performance in Multi-tenant Data Centers

    Get PDF
    Data centers are growing rapidly in size and have recently begun acquiring a new role as cloud hosting platforms, allowing outside developers to deploy their own applications on large scales. As a result, today\u27s data centers are multi-tenant environments that host an increasingly diverse set of applications, many of which have very demanding networking requirements. This has prompted research into new data center architectures that offer increased capacity by using topologies that introduce multiple paths between servers. To achieve consistent network performance in these networks, traffic must be effectively load balanced among the available paths. In addition, some form of system-wide traffic regulation is necessary to provide performance guarantees to tenants. To address these issues, this thesis introduces several software-based mechanisms that were inspired by techniques used to regulate traffic in the interconnects of scalable Internet routers. In particular, we borrow two key concepts that serve as the basis for our approach. First, we investigate packet-level routing techniques that are similar to those used to balance load effectively in routers. This work is novel in the data center context because most existing approaches route traffic at the level of flows to prevent their packets from arriving out-of-order. We show that routing at the packet-level allows for far more efficient use of the network\u27s resources and we provide a novel resequencing scheme to deal with out-of-order arrivals. Secondly, we introduce distributed scheduling as a means to engineer traffic in data centers. In routers, distributed scheduling controls the rates between ports on different line cards enabling traffic to move efficiently through the interconnect. We apply the same basic idea to schedule rates between servers in the data center. We show that scheduling can prevent congestion from occurring and can be used as a flexible mechanism to support network performance guarantees for tenants. In contrast to previous work, which relied on centralized controllers to schedule traffic, our approach is fully distributed and we provide a novel distributed algorithm to control rates. In addition, we introduce an optimization problem called backlog scheduling to study scheduling strategies that facilitate more efficient application execution

    Enabling Work-conserving Bandwidth Guarantees for Multi-tenant Datacenters via Dynamic Tenant-Queue Binding

    Full text link
    Today's cloud networks are shared among many tenants. Bandwidth guarantees and work conservation are two key properties to ensure predictable performance for tenant applications and high network utilization for providers. Despite significant efforts, very little prior work can really achieve both properties simultaneously even some of them claimed so. In this paper, we present QShare, an in-network based solution to achieve bandwidth guarantees and work conservation simultaneously. QShare leverages weighted fair queuing on commodity switches to slice network bandwidth for tenants, and solves the challenge of queue scarcity through balanced tenant placement and dynamic tenant-queue binding. QShare is readily implementable with existing switching chips. We have implemented a QShare prototype and evaluated it via both testbed experiments and simulations. Our results show that QShare ensures bandwidth guarantees while driving network utilization to over 91% even under unpredictable traffic demands.Comment: The initial work is published in IEEE INFOCOM 201

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results

    Orchestration of IT/Cloud and Networks: From Inter-DC Interconnection to SDN/NFV 5G Services

    Get PDF
    The so-called 5G networks promise to be the foundations for the deployment of advanced services, conceived around the joint allocation and use of heterogeneous resources,including network, computing and storage. Resources are placed on remote locations constrained by the different service requirements, resulting in cloud infrastructures (as pool of resources) that need to be interconnected. The automation of the provisioning of such services relies on a generalized orchestra tion, defined as to the coherent coordination of heterogeneous systems, applied to common cases such as involving heterogeneous network domains in terms of control or data plane technologies, or cloud and network resources. Although cloud-computing platforms do take into account the need to interconnect remote virtual machine instances, mostly rely on managing L2 overlays over L3 (IP). The integration with transport networks is still not fully achieved, including leveraging the advances in software defined networks and transmission. We start with an overview of network orchestration, considering different models; we extend them to take into account cloud manage ment while mentioning relevant existing initiatives and conclude with the NFV architecture

    Container-based network function virtualization for software-defined networks

    Get PDF
    Today's enterprise networks almost ubiquitously deploy middlebox services to improve in-network security and performance. Although virtualization of middleboxes attracts a significant attention, studies show that such implementations are still proprietary and deployed in a static manner at the boundaries of organisations, hindering open innovation. In this paper, we present an open framework to create, deploy and manage virtual network functions (NF)s in OpenFlow-enabled networks. We exploit container-based NFs to achieve low performance overhead, fast deployment and high reusability missing from today's NFV deployments. Through an SDN northbound API, NFs can be instantiated, traffic can be steered through the desired policy chain and applications can raise notifications. We demonstrate the systems operation through the development of exemplar NFs from common Operating System utility binaries, and we show that container-based NFV improves function instantiation time by up to 68% over existing hypervisor-based alternatives, and scales to one hundred co-located NFs while incurring sub-millisecond latency
    • 

    corecore