
Container-based Network Function Virtualization
for Software-Defined Networks

Richard Cziva, Simon Jouet, Kyle J. S. White and Dimitrios P. Pezaros
School of Computing Science, University of Glasgow, Glasgow, G12 8QQ, Scotland
{r.cziva.1, s.jouet.1, k.white.3}@research.gla.ac.uk, dimitrios.pezaros@glasgow.ac.uk

http://glanf.dcs.gla.ac.uk

Abstract—Today’s enterprise networks almost ubiquitously
deploy middlebox services to improve in-network security and
performance. Although virtualization of middleboxes attracts a
significant attention, studies show that such implementations
are still proprietary and deployed in a static manner at the
boundaries of organisations, hindering open innovation.

In this paper, we present an open framework to create,
deploy and manage virtual network functions (NF)s in OpenFlow-
enabled networks. We exploit container-based NFs to achieve
low performance overhead, fast deployment and high reusabil-
ity missing from today’s NFV deployments. Through an SDN
northbound API, NFs can be instantiated, traffic can be steered
through the desired policy chain and applications can raise
notifications. We demonstrate the systems operation through the
development of exemplar NFs from common Operating System
utility binaries, and we show that container-based NFV improves
function instantiation time by up to 68% over existing hypervisor-
based alternatives, and scales to one hundred co-located NFs
while incurring sub-millisecond latency.

I. INTRODUCTION

Enterprise networks rely on a wide spectrum of hardware-
based network appliances or ‘middleboxes’ to transform, in-
spect, filter or otherwise manipulate network traffic on top of
packet forwarding. In recent years, middleboxes have become
fundamental parts of operational networks, providing approx.
45% of the network devices to enforce security (e.g., firewalls
and intrusion detection) and performance (e.g., rate limiters,
proxies, load-balancers) policies throughout the topology [1].
Recent studies have shown that the advent of diverse con-
sumer devices that rely on different, network-intensive cloud
services as well as the increasing need of in-network security
will increase the demand for middleboxes even further [2].
However, despite their increasing popularity, hardware-based
middleboxes have significant drawbacks: they incur significant
capital investment due to being provisioned and optimized for
peak-demand, are cumbersome to maintain due to the expert
knowledge required, and cannot typically be extended to ac-
commodate new functionality as new operational requirements
emerge. The proprietary software on which they run, limits
innovation and creates vendor lock-in [3].

Network Function Virtualization (NFV) is a novel approach
to address the above shortcomings of managing closed and
proprietary appliances by decoupling network functions (NF)s

The software and datasets used in this paper can be found at:
http://dx.doi.org/10.5525/gla.researchdata.165

from their hosting hardware platform. By using low-cost
commodity servers, NFV can reduce Capital and Operational
Expenditure and maximize Return on Investment (RoI) [4].
However, current early-stage deployments and platforms of
NFV by large ISPs and DC network operators suffer from the
statically-configured underlying routing mechanisms in place
that do not support open interfaces and result in operator
and environment-specific solutions in static or semi-static
environments [5] [6]. For example, deploying one or more
network functions requires the update of all affected switches’
routing tables to redirect traffic, therefore making it impractical
to deploy infrastructure-wide NFs. Consequently, current NFV
platforms exhibit poor component reuse, and are still unable
to fulfill dynamic, temporal traffic workloads in an elastic
manner [7] [8]. In such environments, there is no cross-
layer information exchange between the routing layer and
the network functions, which results in a limited view of the
network to each functional entity. We argue that improvements
in NFV can be achieved by synergistic management and
optimisation of NFs and end-to-end routing between hosts and
NFs.

At the same time, Software-Defined Networking (SDN) has
emerged to logically centralise the network’s control plane
with OpenFlow as its leading realization [9] [10]. SDN is
penetrating in highly dynamic environments such as Cloud
Data Centers (DCs), mainly due to its network-wide control
interface that enables fast service deployment and reconfigura-
tion. SDN offers adequate centralisation and programmability
in the routing layer that can be exploited for the development
of open, fast, and infrastructure-independent NFV frameworks
to facilitate cross-platform innovation through the use of open
interfaces. SDN and NFV are complementary technologies
and can be functional building blocks of each other: SDN
can be exploited to dynamically isolate and route traffic to
specific NFs by abstracting the physical topology, while NFV
can create the virtual infrastructure upon which further SDN
abstractions (e.g., virtual networks) can be instantiated.

In this paper, we propose GLANF (Glasgow Network
Functions), a generic and open NFV ecosystem for Software-
Defined Networks that tackles the above shortcomings and has
the following main characteristics:

Container-based: NFs are encapsulated in light-weight
Docker containers to provide fast instantiation time, platform-
independence, high throughput and low resource utilisation.

20th IEEE Symposium on Computers and Communication (ISCC)

978-1-4673-7194-0/15/$31.00 ©2015 IEEE 346

Transparent: Hosts do not need to change their traffic’s
destination to use NFs, as re-routing the traffic is handled
entirely by the network without modifying packet headers.

Infrastructure independent: Traffic routing for NFs is
handled separately from the DCs generic routing policies,
allowing forwarding of traffic from any host to ephemeral NFs
in OpenFlow-enabled environments.

Open innovation: The development of new NFs is not hin-
dered by limitations of any particular NFV toolkit, framework
or architecture. Sharing NFs in public or private repositories
alleviates redundant implementations and promotes collabora-
tive development, innovation and better software quality.

The main contributions of this work can be summarised as:
1) We advocate and evaluate the use of open, light-weight

containers as platform for virtual NFs. We present wide-
range of exemplar NFs implemented for GLANF.

2) We present a system that seamlessly and transparently
routes traffic between end-hosts (physical or virtual ma-
chines) and NFs in generic OpenFlow-enabled networks.

The remainder of the paper is structured as follows: Sec-
tion II discusses existing work. Section III presents the design
and implementation of the proposed system. Section IV eval-
uates GLANF container performance in terms of throughput,
latency and NF instantiation time. Finally, Section V concludes
the paper.

II. RELATED WORK

Middlebox virtualization and the development of NFV has
attracted considerable research effort in recent years.

ClickOS [11] focuses on the design and implementation
of a Xen-based hypervisor optimized for middlebox pro-
cessing. Although it provides high processing performance,
the platform relies on a specific programming environment
(Click) and a modified, Xen-based hypervisor to run NFs.
It would therefore require considerable effort to create new
NFs and integrate ClickOS to existing infrastructures. In this
paper, we present a framework for NFs using container-based
virtualization, that provides a generic Linux system for NF
implementations as well as the routing mechanism between
the VMs and the NFs.

Cloud4NFV [12] has been recently proposed to manage
NFs following the ETSI guidelines [3]. Their paper focuses on
service chaining and deployment over a Cloud environment,
but it gives no information on the interactions between the
NFV and SDN layer or the routing mechanisms used. While
they use fully virtualized VMs, GLANF exploits containers,
offering a significantly more lightweight solution for NFs (cf.
Section IV).

Container-based virtualization [13] is a scalable, high-
performance alternative to hypervisors where the virtualization
layer runs as an application within the operating system. In
this approach, a commodity, general-purpose operating system
runs on the hardware and hosts several isolated containers that
share the same kernel. The main advantages of this approach is
efficiency, lack of hypercalls overhead, and high container-per-
host density. However there are isolation and security issues

OF SWITCH 2

GLANF ManagerGLANF Router

Server

VM1

VM

VM

Server

VM2

VM

VM

Server

VM

OF SWITCH 1
OF RULES

OF SWITCH 3
OF RULES

OF RULES

GLANF User Interface

Open Daylight

GLANF Agent

NF

GLANF Server

Docker
NFNFNF

SDN Controller

SOFT. SWITCH OF RULES

OpenFlow

Flow
mgmt

NF
mgmt

VM

VM

Fig. 1: High-level system architecture. Dashed arrows show
the traffic flow from VM1 to VM2. Packets are routed through
the associated NF hosted at the GLANF Server and are
subsequently forwarded to their destination.

around containers, a recent Gartner report [14] shows that
Docker, our container system of choice is production ready
and using the supported security safeguards (such as SELinux,
AppArmor, network namespaces and kernel versions), the
technology is mature enough to be used in public PaaS
environments. For GLANF, containers were chosen to provide
high forwarding performance and low instantiation time.

Docker [15] is an open platform for developers and system
administrators to develop, ship and run distributed applica-
tions as containers. It has quickly become the platform of
choice for container-based virtualization with recent support
in Amazon Elastic Beanstalk, Microsoft Azure and Google
Cloud Compute Engine. Its two core components are the
Docker Engine, a portable, lightweight run-time and packaging
tool, and the Docker Hub, a cloud service to share containers.
Docker, on top of process (container) management, provides
layered image management based on the Advanced multi-
layered Unification FileSystem (AUFS) allowing incremental
updates of a container image.

III. DESIGN

A. Traffic Routing
Typically, middlebox policies are enforced in two ways.

Either by placing the middlebox directly in the traffic path
or by adding dedicated routing entries to redirect traffic to the
middlebox. The first allows the middleboxes to be placed on
the shortest path, however it requires infrastructural changes
and result in poor flexibility as the policy will be applied
to all traffic. The second allows more flexibility as an arbi-
trary policy chain can be configured through custom routing
entries, at the cost of a longer path and overloaded routing
tables, making it hard to configure and maintain [16]. In our
approach, we reroute traffic to the GLANF Server hosting
the relevant network function. This approach enables dynamic
placement of the NFs and uses the same hosts for compute
and network functions, reducing equipment costs and machine

20th IEEE Symposium on Computers and Communication (ISCC)

347

VM1
(source)

NF (e.g. firewall)
GLANF SERVER

1
OF RULES OF RULES

1

2 32

OF RULES
LOCAL SWITCH

3

1

2

OF SWITCH 1 OF SWITCH 2

VM2
(dest.)

1

4

2
3

7

5

6

Fig. 2: Imposing a NF to selected traffic. Numbers next to the
links (in boxes) denote the port number at the switch. Numbers
in circles next to the arrows show the order of traffic flow from
VM1 to VM2 through a NF. Table I shows the associated
OpenFlow rules installed.

TABLE I: OpenFlow rules to forward packets from VM1 to
VM2 through its NF using the architecture at Fig. 2.

Switch Match Action
1 input port: 2, src ip: VM1 output port: 1
2 input port: 1, src ip: VM1 output port: 3

local input port: 1, src ip: VM1 output port: 2
local input port: 3, src ip: VM1 output port: 1

specialisation. A consequence of traffic redirection is the use
of non shortest path routing between source and destination
possibly impacting performance, however in low-latency, high-
throughput environments such as DCs, the impact is minimal
as long as the number of extra hops is kept low by placing
the NFs close to their associated VM [17].

GLANF relies on OpenFlow to match and forward traffic
to a NFV host. Routing is handled by matching on input port,
source IP and source port (depending on the routing policy
used) and forwarding matched packets to an output port on the
switch. As packets are never modified, routing through a NF
is fully transparent to the end-hosts. By having a centralized
control plane with a global view of the network, the input and
output ports for the OpenFlow flow entries can be retrieved
and problems of manual route (re)configuration in large-scale
middlebox deployments [8] can be alleviated. In our infrastruc-
ture, GLANF Router is responsible for routing the traffic to the
GLANF Servers hosting the network function. The separation
of the default routing policy from GLANF’s routing, achieved
by using high flow priorities, allows GLANF to be deployed on
any OpenFlow-enabled infrastructure without altering normal
operation and changing the already installed flows.

Figure 2 shows the default traffic path using a shortest path
(solid arrows), going from source VM1 to the destination VM2
through two OpenFlow-enabled switches. On the use of a
network function, traffic must be redirected to the NFV server
and to a particular NF (dashed arrows in Figure 2). To achieve
this, the OpenFlow rules shown in Table I are inserted to the
switches. Since default routing is still in place, there is no
need for extra rules to route traffic at the egress of the NFV
server to the destination (from OF SWITCH 2 to VM2). For

clarity, only the forward path from source to destination is
shown here. The reverse path from the destination back to the
source is a simple inversion of the ports in Table I.

OpenFlow switches have complex trade-offs between per-
formance and scale. The TCAM used for partial flow matching
is small in size, capable of holding only a few thousand (2000–
4000) flow entries [18]. It is typically collocated with a highly-
specialized table holding 100,000+ entries for MAC address
matching [19]. As the number of network functions increases,
the growth of the flow table needs to be considered. Using only
the TCAM, a single switch can redirect traffic to a maximum
of 1000 NFs, as 2 entries are required per switch on the
redirected path. However, only 2 flow entries are required for a
collocated service chain (regardless of its length) or multiple
hosts under the same CIDR mask. Finally the flow entries
shown in Table I rely on L3 matching but could easily be
replaced by MAC address matching using the specialized table
and leaving the TCAM only for Selective Routing as described
below.

We have identified the following types of applicable routing
policies, dependent on the nature of the network function.

Exhaustive routing: All traffic from and to the host(s) goes
through the NF, allowing an inspection and alteration of the
entire traffic at Layer 2 or 3. Common functions requiring
exhaustive routing include Intrusion Detection and Prevention
(IDPS), firewalls, and Virtual Private Network (VPN) services.

Selective routing: A subset of services are routed through
the NF, while the rest of the traffic follows the default
route. This approach reduces the traffic load in the traversed
NFs, allowing better scalability and denser network function
collocation. DNS load balancers and transparent web-proxies
can use this type of routing as they operate on Layer 4 with
a specific service port (e.g. 53 for DNS and 80 for HTTP).

Replica routing: A replica of the traffic is routed to the
NF, accounting for services that only inspect but never modify
data, such as, e.g., monitoring, intrusion detection, and traffic
characterisation middleboxes. Doing so, prevents performance
degradation on the data path such as additional latency. Once
a packet has traversed the service chain it can be discarded.

B. NFV Servers
The driving force behind NFV is to reduce cost and unify

the infrastructure through low-cost commodity x86 servers.
Through a common hardware base for compute and manage-
ment, procurement can be more efficient, machines can be
re-purposed to accommodate demand, and the maintenance
cost reduced as network operators use a compatible and well-
understood environment. With the significant performance
improvement offered by recent software-based middlebox ar-
chitectures, such as ClickOS [11] and Vyatta [20], legacy
dedicated hardware appliances can be deprecated, alleviating
vendor lock-in, and improving reuse and innovation through
exploitation of common software practices.

To enable the instantiation and management of network
functions in commodity servers, our implementation relies on
the GLANF Agent, a single daemon running on the servers

20th IEEE Symposium on Computers and Communication (ISCC)

348

Agent Docker

ip,nw_src=VM,in_port=pNIC
action: output: veth1

pNIC

if1

if2

veth1

veth2

Container

ip,nw_src=VM,in_port=veth2
action: output: pNIC

Open vSwitch

bridge AF_PACKET...

REST Monitor

manage NFs

OVS

manage veth pairs

Fig. 3: Agent’s network configuration for a single container.

hosting network functions. The daemon is responsible for
retrieving the requested network function from the repository,
instantiating and running it, routing the traffic locally to the
relevant container, managing service chains, and providing
information on the temporal resource and status of the host.

Our implementation relies on Docker containers for network
functions that can be versioned, shared, shipped and tested
with a low resource utilisation overhead. At the same time,
GLANF can be used with other virtualization techniques, e.g.
containers (LXC, Rocket, openVZ) or VMs (XEN, KVM or
even ClickOS), as long as it provides the ability to attach two
virtual interfaces (egress and ingress) provided by the Agent.
However, without Docker, the system would lose some of its
convenient features, such as incremental image management,
public image repository and the inherent speed of deployment
of docker containers.

As multiple network functions can be co-located on the
same host, it is necessary to locally route traffic to each
network function so that each receives the subset of traffic
for which it was instantiated. Local routing of traffic is also
important to respect data privacy in a multi-tenant environment
and improves middlebox performance by only processing des-
ignated traffic. To route traffic within a single host, the GLANF
Agent configures a local OpenvSwitch software switch by
inserting and deleting OpenFlow flow entries.

Figure 3 provides an overview of the responsibilities of
the GLANF Agent. It exposes a REST API to the man-
agement network, monitors the health of the machine, and
communicates with Docker and OpenvSwitch to instantiate
and configure the network functions.

C. Management & Orchestration
Traffic management and network function implementation

are the enablers of NFV, yet for the technology to be de-
ployed flexibility is paramount. The ability for users and
operators alike to create and instantiate new network functions
in minutes or hours instead of weeks and months provides
unprecedented agility as well as short and cost-effective devel-
opment cycles. The Management and Orchestration (MANO)
framework by the European Telecommunications Standards
Institute (ETSI) describes the requirements and challenges of
operating a NFV infrastructure [21]. The infrastructure must
be managed at different layers from the individual network
services to the global network-wide requirements to maximize
resource utilisation while maintaining performance guarantees.

Our implementation relies on the collaboration between the
GLANF Router, Manager, Agent and UI to provide a global
view and control over the infrastructure as shown in Figure 1.
GLANF Manager is an OpenDaylight module collocated with
the GLANF Router that provides a set of REST APIs to
globally control the lifecycle of network functions through
create, start, stop and delete primitives. It also continuously
collects health status of hosts and network functions and no-
tifications raised by the NF components. On network function
instantiation, the manager selects a suitable host with the most
available resources and communicates with the host’s GLANF
Agent to retrieve and start the requested NF from the container
repository.

The decoupling the coordination logic (Manager) from the
operational logic (Agent) allows for a more flexible orches-
tration of the infrastructure by delegating the responsibility
for placement and routing to the Manager, and the network
function implementation and operation to the Agent. The
Manager can use different placement algorithms for the NFs in
order to reduce the latency and workload of a specific machine,
plan for future demand and capacity requirements based on
already deployed network functions, or handle faults by trans-
parently migrating the network function to a different server.
Future work will look into placement algorithms providing
different properties such as increasing NFV server utilisation
or resilience, reduce latency or network hotspot prevention.

The GLANF UI is a web application that communicates
with the Manager API and the northbound interface of Open-
Daylight to display topological, health and status information,
and to register new GLANF servers and manage network
functions for one or multiple hosts. The network status is
continuously updated to reflect the current state of the network
and to alert users of new notifications raised by one of the
running network functions.

IV. EVALUATION

A. Base Performance Evaluation

In this section, we provide the base throughput, delay and
boot time evaluation for multiple GLANF containers, contrast-
ing it to other prominent function virtualization approaches.
In Section IV-B, we also present exemplar implementations of
useful network functions currently available over GLANF. Our
experimental testbed consists of Intel i7 servers with 16GB of
memory and Gigabit OpenFlow switches.

1) Throughput: We have used iperf to measure maximum
throughput between the source and destination hosts connected
via chained wire NFs. The wire functionality is a standard
Linux bridge forwarding the traffic from the ingress to the
egress ports of the NF. It is therefore the simplest form of
NF and can be used to evaluate the minimum performance
impact of a virtualized service. With TCP making up over
99.9% of the traffic in DCs [22], the following experiments
use a single MSS-sized TCP stream and the default networking
stack configuration of Linux kernel 3.13 (TCP Cubic; initial
congestion window of 10 segments; minimum retransmission

20th IEEE Symposium on Computers and Communication (ISCC)

349

 0

 20

 40

 60

 80

 100

 120

XEN dom0 ClickOS GLANF KVM virtio XEN domU KVM e1000

D
e
la

y
(µ

s)

(a) Idle ping delays

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 10 20 30 40 50 60 70 80 90 100

T
im

e
 (

s)

Number of containers

create XEN
create & start GLANF

start GLANF
stop GLANF

(b) Create/Start/Stop time

0

5

10

15

20

25

30

10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

Th
ro

ug
hp

ut
 (G

b/
s)

De
lay

 (µ
 s)

Container chain length

GLANF
ClickOS

GLANF delay

(c) Throughput and delay of chained NFs

Fig. 4: Performance evaluation of GLANF container NFs.

timeout of 200ms; window scaling, timestamps, selective
acknowledgement and server-side ECN).

Figure 4c shows the packet processing throughput with NF
chains hosted on a single host and is therefore not limited
to the speed of the topology (e.g., 1Gbps physical switches or
network cards). In this figure, we show that the container-based
approach to NFs significantly outperforms ClickOS, with a
single wire GLANF NF outperforming a ClickOS wire by
more than 4Gb/s. It is also evident that GLANF scales better
as the NF chain grows: with 9 containers chained together,
packets are processed at 13.8Gb/s compared to 3.6Gb/s using
ClickOS, while over Gigabit speeds can be still maintained for
100 chained containers. Note that these results are limited to
the wire NFs and can be explained by the fact that GLANF
does not copy the packets from the kernel space to the user
space as ClickOS does.

2) Boot times: To provide high flexibility in container
placement, it is necessary to quickly manage the container’s
lifecycle, i.e., create, start and stop. With a rapid turnaround
time, it is possible to enable/disable new network functions
in short timescales, as well as to allow for fast migration,
better consolidation and placement. In case of unexpected
interruption, such as container or host failure, fast recovery
can be achieved by restarting the same network function on
another server and redirecting traffic.

Figure 4b shows the time required to create, start and stop
1 to 100 containers on the same host. In all three cases the
growth is linear, allowing the infrastructure to scale when a
large number of containers are instantiated. The significant
difference between create & start and start shows that it
is beneficial to proactively create frequently-used containers
and only starting them when required. We can observe that
containers significantly outperform the creation time of Xen,
and highlight the poor and exponential cost of Xen to create
more domains [23].

3) Delay: Middleboxes should process packets transpar-
ently, therefore keeping additional latency to a minimum in
order not to compromise end-user experience. Also, it is often
required to chain multiple services to provide different network
functions such as a web-cache followed by a load balancer,
calling for extremely low delay for each NF in the chain.

For the results shown in Figure 4a and 4c, we have used a
simple ICMP ping between source and destination to measure
the idle delay impact of a wire NF. Figure 4a adds GLANF’s
idle latency delay impact to the original ClickOS performance
evaluation [11], and compares it to ClickOS, different Xen
domains, as well as to different KVM vNIC drivers. Using a
stock configuration of Ubuntu Server 14.04, GLANF performs
better than KVM regardless of the vNIC driver used and
Xen guest system (domU). The ClickOS design aimed at
providing high performance, low delay NF through significant
modifications to the hypervisor resulting in a reduction of
latency from 106µs (domU) to 45µs, 10µs faster than a
GLANF container.

In order to keep each network function as a single functional
block, it is necessary to be able to chain them to enforce
multiple policies sequentially and at different layers of the
topology. Figure 4c shows the maximum throughput achiev-
able and delay induced by a chain of 1 to 100 NFs. We can
see that the delay impact is linear as the number of chained
containers increases. With 100 containers chained together on
the same host, GLANF provides sub-millisecond delay. As
the number of chained containers increases, GLANF performs
3.1⇥ faster than Xen-based ClickOS with 5 containers and
3.8⇥ faster with 9 containers, and allows a much higher
number of containers to be chained together.

B. Network Function Implementations

We have implemented a number of exemplar network
functions for GLANF, available through our Docker and
GitHub repositories. These functions have been developed for
demonstration purposes, to show the simplicity of creating and
sharing functions.

1) Wire: The wire is a simple network function that for-
wards packets from its input to its output interface. It executes
the brinit script (located in our base image) that creates a
Linux bridge and adds the two interfaces to it. We have used
this network function to evaluate the base system and to do
baseline performance comparisons.

https://registry.hub.docker.com/repos/glanf/
https://github.com/glanf/

20th IEEE Symposium on Computers and Communication (ISCC)

350

2) HTTP filter: A traffic filter has been implemented using
Python’s Scapy library and Netfilter queues. Our Python
program intercepts all HTTP traffic and drops or accepts it
depending on the packet’s content. This filter can be used to
block the access to websites containing blacklisted words such
as, e.g., for parental control purposes.

3) Traffic control: Tc is used to control the Linux kernel
Quality of Service (QoS) functions. In particular, we have
implemented a traffic shaper using tc that limits the bandwidth
to a threshold value. Tc also provides scheduling, policing
and dropping of packets. Rate limiting can be useful to
throttle background services such as backup transfers in order
not to impact the response time of more bandwidth-critical
applications such as VoIP.

4) Load balancer: A transparent DNS-based load-balancer
that intercepts DNS query requests and replies for a specific
domain, with a DNS query response created by the network
function (using Python’s Scapy library). For all other DNS
requests, it forwards them to the intended original recipients.

5) Intrusion detection: SNORT is an open-source Intrusion
Prevention and Detection System (IDPS) that performs real-
time traffic analysis and packet logging. We have configured
SNORT as an in-line IDPS using AF PACKET with an alert
monitor that sends notifications to the Manager and allows
users to track intrusion incidents from the GLANF UI.

6) Firewall: Based on iptables, we have implemented a
simple packet filter in our glanf/firewall image. The default
configuration of rules forwards HTTP traffic only.

ACKNOWLEDGMENTS

This work was supported in part by the UK Engineering
and Physical Sciences Research Council (EPSRC) projects
EP/L026015/1 and EP/L005255/1.

V. CONCLUSION

Network Function Virtualization offers a cost-effective al-
ternative to purpose-built middleboxes that provide limited
functionality, and are cumbersome to deploy and maintain
to accommodate for emerging service requirements. However,
existing implementations of NFV are significantly constrained
by the static routing configuration of the underlying network
infrastructure, leading to topology and operator-specific de-
ployments.

In this paper, we have exploited SDN and container-
based virtualization to devise GLANF, an open, infrastructure-
independent NFV framework that can be deployed in highly-
dynamic environments, and can foster innovation in the de-
velopment of network functions that are missing from today’s
solutions. We have evaluated GLANF over a cloud testbed
using an OpenFlow-enabled network and in addition to the
flexibility of creating and attaching NFs to arbitrary hosts, we
show significant improvement in throughput and function in-
stantiation time by using containers over existing, hypervisor-
based NFV platforms.

REFERENCES

[1] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: network pro-
cessing as a cloud service,” ACM SIGCOMM Computer Communication
Review, vol. 42, no. 4, pp. 13–24, 2012.

[2] World enterprise network and data security markets. [On-
line]. Available: https://www.abiresearch.com/market-research/product/
1006059-world-enterprise-network-and-data-security/

[3] E. T. S. Institute. (2012) Network Functions Virtualisation, White Paper.
[Online]. Available: http://portal.etsi.org/NFV/NFV White Paper.pdf

[4] J. Carapinha, P. Feil, P. Weissmann, S. E. Thorsteinsson, Ç. Etemoğlu,
Ó. Ingórsson, S. Çiftçi, and M. Melo, “Network Virtualization - Oppor-
tunities and Challenges for Operators,” in Future Internet - FIS 2010.
Springer Berlin Heidelberg, 2010, pp. 138–147.

[5] D. King and C. Ford, “A critical survey of Network Functions Virtual-
ization (NFV),” in iPOP: IP Over Optical, 2013.

[6] L. Bondan, C. Dos Santos, and L. Zambenedetti Granville, “Manage-
ment requirements for clickos-based network function virtualization,”
in Network and Service Management (CNSM), 2014 10th International
Conference on, Nov 2014, pp. 447–450.

[7] D. T. A. Nicolai Leymann, “Flexible service chaining. requirements and
architectures.” in EWSDN: European Workshop on Software Defined
Networks, 2013.

[8] J. Sherry and S. Ratnasamy, “A survey of enterprise middlebox de-
ployments,” EECS Department, University of California, Berkeley, Tech.
Rep., Feb 2012.

[9] Software-Defined Networking: The new norm for networks (ONF White
Paper). [Online]. Available: https://www.opennetworking.org/images/
stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf

[10] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[11] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco, and
F. Huici, “Clickos and the art of network function virtualization,” in 11th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 14). Seattle, WA: USENIX Association, 2014, pp. 459–473.

[12] J. Soares, M. Dias, J. Carapinha, B. Parreira, and S. Sargento,
“Cloud4NFV: A Platform for Virtual Network Functions,” in Cloud
Networking (CloudNet), 2014 IEEE 3nd International Conference on,
2014.

[13] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peter-
son, “Container-based operating system virtualization: a scalable, high-
performance alternative to hypervisors,” in ACM SIGOPS Operating
Systems Review, vol. 41, no. 3. ACM, 2007, pp. 275–287.

[14] Gartner. (2015, Jan.) Security properties of containers managed by
docker. [Online]. Available: https://www.gartner.com/doc/2956826/

[15] Docker, the Linux Container Engine. [Online]. Available: http:
//www.docker.io

[16] D. Joseph, A. Tavakoli, and I. Stoica, “A Policy-aware Switching Layer
for Data Centers.” ACM, 08/2008 2008, pp. 51–62.

[17] F. P. Tso and D. P. Pezaros, “Baatdaat: Measurement-based flow schedul-
ing for cloud data centers,” in 2013 IEEE Symposium on Computers and
Communications, ISCC 2013, Split, Croatia, 7-10 July, 2013, 2013, pp.
765–770.

[18] B. Stephens, A. Cox, W. Felter, C. Dixon, and J. Carter, “PAST: Scalable
Ethernet for Data Centers,” ser. CoNEXT ’12. New York, NY, USA:
ACM, 2012, pp. 49–60.

[19] A. X. Liu, C. R. Meiners, and E. Torng, “TCAM Razor: A Sys-
tematic Approach Towards Minimizing Packet Classifiers in TCAMs,”
IEEE/ACM Trans. Netw., vol. 18, no. 2, pp. 490–500, Apr. 2010.

[20] Vyatta routing platform. [Online]. Available: http://vyatta.org
[21] E. T. S. Institute. (2013) Network Functions Virtualisation

(NFV); Architectural Framework, White Paper. [Online].
Available: http://www.etsi.org/deliver/etsi gs/NFV/001 099/002/01.01.
01 60/gs NFV002v010101p.pdf

[22] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. a.
Prabhakar, S. Sengupta, and M. Sridharan, “Data Center TCP (DCTCP),”
ser. SIGCOMM ’10. New York, NY, USA: ACM, 2010, pp. 63–74.

[23] P. Harvey and J. Sventek, “Wireless sensor network simulation with
Xen,” in Proceedings of the 46th Annual Simulation Symposium. So-
ciety for Computer Simulation International, 2013, p. 4.

20th IEEE Symposium on Computers and Communication (ISCC)

351

