592 research outputs found

    Deep learning in food category recognition

    Get PDF
    Integrating artificial intelligence with food category recognition has been a field of interest for research for the past few decades. It is potentially one of the next steps in revolutionizing human interaction with food. The modern advent of big data and the development of data-oriented fields like deep learning have provided advancements in food category recognition. With increasing computational power and ever-larger food datasets, the approach’s potential has yet to be realized. This survey provides an overview of methods that can be applied to various food category recognition tasks, including detecting type, ingredients, quality, and quantity. We survey the core components for constructing a machine learning system for food category recognition, including datasets, data augmentation, hand-crafted feature extraction, and machine learning algorithms. We place a particular focus on the field of deep learning, including the utilization of convolutional neural networks, transfer learning, and semi-supervised learning. We provide an overview of relevant studies to promote further developments in food category recognition for research and industrial applicationsMRC (MC_PC_17171)Royal Society (RP202G0230)BHF (AA/18/3/34220)Hope Foundation for Cancer Research (RM60G0680)GCRF (P202PF11)Sino-UK Industrial Fund (RP202G0289)LIAS (P202ED10Data Science Enhancement Fund (P202RE237)Fight for Sight (24NN201);Sino-UK Education Fund (OP202006)BBSRC (RM32G0178B8

    APPLICATION OF BACKPROPAGATION NEURAL NETWORK ALGORITHM FOR CIHERANG RICE IMAGE IDENTIFICATION

    Get PDF
    Rice is a food source for carbohydrates that are most consumed in Indonesia, because of this the production is higher compared to other food crops. There are several superior rice varieties planted by the farmers, one of them is Ciherang. This type is widely planted by farmers because has high selling as economic value and can be used as premium rice. The existence of several types of rice that had a high sales value makes some person was deceitfulness by mix the rice with premium quality with bad quality. Many people do not know the problem of distinguishing types of rice from one to another that has the same shape. Classification techniques using the backpropagation neural network algorithm and image processing are used to identify one of the most preferred types of rice, Ciherang. The network architecture model on the backpropagation algorithm is very influential on the value of accuracy. In determining the best network’s architectures, 4 times attempted where network architecture with 5 nodes in the input layer, 8 nodes in the hidden layer, and 1 node in output layer produce the highest accuracy of 82,66%

    Food Tray Sealing Fault Detection in Multi-Spectral Images Using Data Fusion and Deep Learning Techniques

    Get PDF
    A correct food tray sealing is required to preserve food properties and safety for consumers. Traditional food packaging inspections are made by human operators to detect seal defects. Recent advances in the field of food inspection have been related to the use of hyperspectral imaging technology and automated vision-based inspection systems. A deep learning-based approach for food tray sealing fault detection using hyperspectral images is described. Several pixel-based image fusion methods are proposed to obtain 2D images from the 3D hyperspectral image datacube, which feeds the deep learning (DL) algorithms. Instead of considering all spectral bands in region of interest around a contaminated or faulty seal area, only relevant bands are selected using data fusion. These techniques greatly improve the computation time while maintaining a high classification ratio, showing that the fused image contains enough information for checking a food tray sealing state (faulty or normal), avoiding feeding a large image datacube to the DL algorithms. Additionally, the proposed DL algorithms do not require any prior handcraft approach, i.e., no manual tuning of the parameters in the algorithms are required since the training process adjusts the algorithm. The experimental results, validated using an industrial dataset for food trays, along with different deep learning methods, demonstrate the effectiveness of the proposed approach. In the studied dataset, an accuracy of 88.7%, 88.3%, 89.3%, and 90.1% was achieved for Deep Belief Network (DBN), Extreme Learning Machine (ELM), Stacked Auto Encoder (SAE), and Convolutional Neural Network (CNN), respectively

    Advanced Sensing, Fault Diagnostics, and Structural Health Management

    Get PDF
    Advanced sensing, fault diagnosis, and structural health management are important parts of the maintenance strategy of modern industries. With the advancement of science and technology, modern structural and mechanical systems are becoming more and more complex. Due to the continuous nature of operation and utilization, modern systems are heavily susceptible to faults. Hence, the operational reliability and safety of the systems can be greatly enhanced by using the multifaced strategy of designing novel sensing technologies and advanced intelligent algorithms and constructing modern data acquisition systems and structural health monitoring techniques. As a result, this research domain has been receiving a significant amount of attention from researchers in recent years. Furthermore, the research findings have been successfully applied in a wide range of fields such as aerospace, manufacturing, transportation and processes

    Artificial Intelligence : Implications for the Agri-Food Sector

    Get PDF
    Artificial intelligence (AI) involves the development of algorithms and computational models that enable machines to process and analyze large amounts of data, identify patterns and relationships, and make predictions or decisions based on that analysis. AI has become increasingly pervasive across a wide range of industries and sectors, with healthcare, finance, transportation, manufacturing, retail, education, and agriculture are a few examples to mention. As AI technology continues to advance, it is expected to have an even greater impact on industries in the future. For instance, AI is being increasingly used in the agri-food sector to improve productivity, efficiency, and sustainability. It has the potential to revolutionize the agri-food sector in several ways, including but not limited to precision agriculture, crop monitoring, predictive analytics, supply chain optimization, food processing, quality control, personalized nutrition, and food safety. This review emphasizes how recent developments in AI technology have transformed the agri-food sector by improving efficiency, reducing waste, and enhancing food safety and quality, providing particular examples. Furthermore, the challenges, limitations, and future prospects of AI in the field of food and agriculture are summarized

    Predicting the Future

    Get PDF
    Due to the increased capabilities of microprocessors and the advent of graphics processing units (GPUs) in recent decades, the use of machine learning methodologies has become popular in many fields of science and technology. This fact, together with the availability of large amounts of information, has meant that machine learning and Big Data have an important presence in the field of Energy. This Special Issue entitled “Predicting the Future—Big Data and Machine Learning” is focused on applications of machine learning methodologies in the field of energy. Topics include but are not limited to the following: big data architectures of power supply systems, energy-saving and efficiency models, environmental effects of energy consumption, prediction of occupational health and safety outcomes in the energy industry, price forecast prediction of raw materials, and energy management of smart buildings
    corecore