398 research outputs found

    A Unified Framework for Secure Search Over Encrypted Cloud Data

    Get PDF
    This paper presents a unified framework that supports different types of privacy-preserving search queries over encrypted cloud data. In the framework, users can perform any of the multi-keyword search, range search and k-nearest neighbor search operations in a privacy-preserving manner. All three types of queries are transformed into predicate-based search leveraging bucketization, locality sensitive hashing and homomorphic encryption techniques. The proposed framework is implemented using Hadoop MapReduce, and its efficiency and accuracy are evaluated using publicly available real data sets. The implementation results show that the proposed framework can effectively be used in moderate sized data sets and it is scalable for much larger data sets provided that the number of computers in the Hadoop cluster is increased. To the best of our knowledge, the proposed framework is the first privacy-preserving solution, in which three different types of search queries are effectively applied over encrypted data

    Coeus: A System for Oblivious Document Ranking and Retrieval

    Get PDF
    Given a private string q and a remote server that holds a set of public documents D, how can one of the K most relevant documents to q in D be selected and viewed without anyone (not even the server) learning anything about q or the document? This is the oblivious document ranking and retrieval problem. In this paper, we describe Coeus, a system that solves this problem. At a high level, Coeus composes two cryptographic primitives: secure matrix-vector product for scoring document relevance using the widely-used term frequency-inverse document frequency (tf-idf) method, and private information retrieval (PIR) for obliviously retrieving documents. However, Coeus reduces the time to run these protocols, thereby improving the user-perceived latency, which is a key performance metric. Coeus first reduces the PIR overhead by separating out private metadata retrieval from document retrieval, and it then scales secure matrix-vector product to tf-idf matrices with several hundred billion elements through a series of novel cryptographic refinements. For a corpus of English Wikipedia containing 5 million documents, a keyword dictionary with 64K keywords, and on a cluster of 143 machines on AWS, Coeus enables a user to obliviously rank and retrieve a document in 3.9 seconds---a 24x improvement over a baseline system

    SDSF : social-networking trust based distributed data storage and co-operative information fusion.

    Get PDF
    As of 2014, about 2.5 quintillion bytes of data are created each day, and 90% of the data in the world was created in the last two years alone. The storage of this data can be on external hard drives, on unused space in peer-to-peer (P2P) networks or using the more currently popular approach of storing in the Cloud. When the users store their data in the Cloud, the entire data is exposed to the administrators of the services who can view and possibly misuse the data. With the growing popularity and usage of Cloud storage services like Google Drive, Dropbox etc., the concerns of privacy and security are increasing. Searching for content or documents, from this distributed stored data, given the rate of data generation, is a big challenge. Information fusion is used to extract information based on the query of the user, and combine the data and learn useful information. This problem is challenging if the data sources are distributed and heterogeneous in nature where the trustworthiness of the documents may be varied. This thesis proposes two innovative solutions to resolve both of these problems. Firstly, to remedy the situation of security and privacy of stored data, we propose an innovative Social-based Distributed Data Storage and Trust based co-operative Information Fusion Framework (SDSF). The main objective is to create a framework that assists in providing a secure storage system while not overloading a single system using a P2P like approach. This framework allows the users to share storage resources among friends and acquaintances without compromising the security or privacy and enjoying all the benefits that the Cloud storage offers. The system fragments the data and encodes it to securely store it on the unused storage capacity of the data owner\u27s friends\u27 resources. The system thus gives a centralized control to the user over the selection of peers to store the data. Secondly, to retrieve the stored distributed data, the proposed system performs the fusion also from distributed sources. The technique uses several algorithms to ensure the correctness of the query that is used to retrieve and combine the data to improve the information fusion accuracy and efficiency for combining the heterogeneous, distributed and massive data on the Cloud for time critical operations. We demonstrate that the retrieved documents are genuine when the trust scores are also used while retrieving the data sources. The thesis makes several research contributions. First, we implement Social Storage using erasure coding. Erasure coding fragments the data, encodes it, and through introduction of redundancy resolves issues resulting from devices failures. Second, we exploit the inherent concept of trust that is embedded in social networks to determine the nodes and build a secure net-work where the fragmented data should be stored since the social network consists of a network of friends, family and acquaintances. The trust between the friends, and availability of the devices allows the user to make an informed choice about where the information should be stored using `k\u27 optimal paths. Thirdly, for the purpose of retrieval of this distributed stored data, we propose information fusion on distributed data using a combination of Enhanced N-grams (to ensure correctness of the query), Semantic Machine Learning (to extract the documents based on the context and not just bag of words and also considering the trust score) and Map Reduce (NSM) Algorithms. Lastly we evaluate the performance of distributed storage of SDSF using era- sure coding and identify the social storage providers based on trust and evaluate their trustworthiness. We also evaluate the performance of our information fusion algorithms in distributed storage systems. Thus, the system using SDSF framework, implements the beneficial features of P2P networks and Cloud storage while avoiding the pitfalls of these systems. The multi-layered encrypting ensures that all other users, including the system administrators cannot decode the stored data. The application of NSM algorithm improves the effectiveness of fusion since large number of genuine documents are retrieved for fusion

    Privacy-preserving Platforms for Computation on Hybrid Clouds

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Top-k aggregation queries in large-scale distributed systems

    Get PDF
    Distributed top-k query processing has recently become an essential functionality in a large number of emerging application classes like Internet traffic monitoring and Peer-to-Peer Web search. This work addresses efficient algorithms for distributed top-k queries in wide-area networks where the index lists for the attribute values (or text terms) of a query are distributed across a number of data peers. More precisely, in this thesis, we make the following distributions: We present the family of KLEE algorithms that are a fundamental building-block towards efficient top-k query processing in distributed systems. We present means to model score distributions and show how these score models can be used to reason about parameter values that play an important role in the overall performance of KLEE. We present GRASS, a family of novel algorithms based on three optimization techniques significantly increased overall performance of KLEE and related algorithms. We present probabilistic guarantees for the result quality. Moreover, we present Minerva1, a distributed search engine. Minerva offers a highly distributed (in both the data dimension and the computational dimension), scalable, and efficient solution toward the development of internet-scale search engines.Top-k Anfragen spielen eine große Rolle in einer Vielzahl von Anwendungen, insbesondere im Bereich von Informationssystemen, bei denen eine kleine, sorgfältig ausgewählte Teilmenge der Ergebnisse den Benutzern präsentiert werden soll. Beispiele hierfür sind Suchmaschinen wie Google, Yahoo oder MSN. Obwohl die Forschung in diesem Bereich in den letzten Jahren große Fortschritte gemacht hat, haben Top-k-Anfragen in verteilten Systemen, bei denen die Daten auf verschiedenen Rechnern verteilt sind, vergleichsweise wenig Aufmerksamkeit erlangt. In dieser Arbeit beschäftigen wir uns mit der effizienten Verarbeitung eben dieser Anfragen. Die Hauptbeiträge gliedern sich wie folgt. Wir präsentieren KLEE, eine Familie neuartiger Top-k-Algorithmen. Wir entwickeln Modelle mit denen Datenverteilungen beschrieben werden können. Diese Modelle sind die Grundlage für eine Schätzung diverser Parameter, die einen großen Einfluss auf die Performanz von KLEE und anderen ähnlichen Algorithmen haben. Wir präsentieren GRASS, eine Familie von Algorithmen, basierend auf drei neuartigen Optimierungstechniken, mit denen die Performanz von KLEE und ähnlichen Algorithmen verbessert wird. Wir präsentieren probabilistische Garantien für die Ergebnisgüte. Wir präsentieren Minerva, eine neuartige verteilte Peer-to-Peer-Suchmaschine

    Location based services in wireless ad hoc networks

    Get PDF
    In this dissertation, we investigate location based services in wireless ad hoc networks from four different aspects - i) location privacy in wireless sensor networks (privacy), ii) end-to-end secure communication in randomly deployed wireless sensor networks (security), iii) quality versus latency trade-off in content retrieval under ad hoc node mobility (performance) and iv) location clustering based Sybil attack detection in vehicular ad hoc networks (trust). The first contribution of this dissertation is in addressing location privacy in wireless sensor networks. We propose a non-cooperative sensor localization algorithm showing how an external entity can stealthily invade into the location privacy of sensors in a network. We then design a location privacy preserving tracking algorithm for defending against such adversarial localization attacks. Next we investigate secure end-to-end communication in randomly deployed wireless sensor networks. Here, due to lack of control on sensors\u27 locations post deployment, pre-fixing pairwise keys between sensors is not feasible especially under larger scale random deployments. Towards this premise, we propose differentiated key pre-distribution for secure end-to-end secure communication, and show how it improves existing routing algorithms. Our next contribution is in addressing quality versus latency trade-off in content retrieval under ad hoc node mobility. We propose a two-tiered architecture for efficient content retrieval in such environment. Finally we investigate Sybil attack detection in vehicular ad hoc networks. A Sybil attacker can create and use multiple counterfeit identities risking trust of a vehicular ad hoc network, and then easily escape the location of the attack avoiding detection. We propose a location based clustering of nodes leveraging vehicle platoon dispersion for detection of Sybil attacks in vehicular ad hoc networks --Abstract, page iii

    Designing Human-Centered Collective Intelligence

    Get PDF
    Human-Centered Collective Intelligence (HCCI) is an emergent research area that seeks to bring together major research areas like machine learning, statistical modeling, information retrieval, market research, and software engineering to address challenges pertaining to deriving intelligent insights and solutions through the collaboration of several intelligent sensors, devices and data sources. An archetypal contextual CI scenario might be concerned with deriving affect-driven intelligence through multimodal emotion detection sources in a bid to determine the likability of one movie trailer over another. On the other hand, the key tenets to designing robust and evolutionary software and infrastructure architecture models to address cross-cutting quality concerns is of keen interest in the “Cloud” age of today. Some of the key quality concerns of interest in CI scenarios span the gamut of security and privacy, scalability, performance, fault-tolerance, and reliability. I present recent advances in CI system design with a focus on highlighting optimal solutions for the aforementioned cross-cutting concerns. I also describe a number of design challenges and a framework that I have determined to be critical to designing CI systems. With inspiration from machine learning, computational advertising, ubiquitous computing, and sociable robotics, this literature incorporates theories and concepts from various viewpoints to empower the collective intelligence engine, ZOEI, to discover affective state and emotional intent across multiple mediums. The discerned affective state is used in recommender systems among others to support content personalization. I dive into the design of optimal architectures that allow humans and intelligent systems to work collectively to solve complex problems. I present an evaluation of various studies that leverage the ZOEI framework to design collective intelligence

    Application Of Blockchain Technology And Integration Of Differential Privacy: Issues In E-Health Domains

    Get PDF
    A systematic and comprehensive review of critical applications of Blockchain Technology with Differential Privacy integration lies within privacy and security enhancement. This paper aims to highlight the research issues in the e-Health domain (e.g., EMR) and to review the current research directions in Differential Privacy integration with Blockchain Technology.Firstly, the current state of concerns in the e-Health domain are identified as follows: (a) healthcare information poses a high level of security and privacy concerns due to its sensitivity; (b) due to vulnerabilities surrounding the healthcare system, a data breach is common and poses a risk for attack by an adversary; and (c) the current privacy and security apparatus needs further fortification. Secondly, Blockchain Technology (BT) is one of the approaches to address these privacy and security issues. The alternative solution is the integration of Differential Privacy (DP) with Blockchain Technology. Thirdly, collections of scientific journals and research papers, published between 2015 and 2022, from IEEE, Science Direct, Google Scholar, ACM, and PubMed on the e-Health domain approach are summarized in terms of security and privacy. The methodology uses a systematic mapping study (SMS) to identify and select relevant research papers and academic journals regarding DP and BT. With this understanding of the current privacy issues in EMR, this paper focuses on three categories: (a) e-Health Record Privacy, (b) Real-Time Health Data, and (c) Health Survey Data Protection. In this study, evidence exists to identify inherent issues and technical challenges associated with the integration of Differential Privacy and Blockchain Technology

    Scalable big data systems: Architectures and optimizations

    Get PDF
    Big data analytics has become not just a popular buzzword but also a strategic direction in information technology for many enterprises and government organizations. Even though many new computing and storage systems have been developed for big data analytics, scalable big data processing has become more and more challenging as a result of the huge and rapidly growing size of real-world data. Dedicated to the development of architectures and optimization techniques for scaling big data processing systems, especially in the era of cloud computing, this dissertation makes three unique contributions. First, it introduces a suite of graph partitioning algorithms that can run much faster than existing data distribution methods and inherently scale to the growth of big data. The main idea of these approaches is to partition a big graph by preserving the core computational data structure as much as possible to maximize intra-server computation and minimize inter-server communication. In addition, it proposes a distributed iterative graph computation framework that effectively utilizes secondary storage to maximize access locality and speed up distributed iterative graph computations. The framework not only considerably reduces memory requirements for iterative graph algorithms but also significantly improves the performance of iterative graph computations. Last but not the least, it establishes a suite of optimization techniques for scalable spatial data processing along with three orthogonal dimensions: (i) scalable processing of spatial alarms for mobile users traveling on road networks, (ii) scalable location tagging for improving the quality of Twitter data analytics and prediction accuracy, and (iii) lightweight spatial indexing for enhancing the performance of big spatial data queries.Ph.D
    corecore