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ABSTRACT

SDSF: SOCIAL-NETWORKING TRUST BASED DISTRIBUTED DATA

STORAGE AND CO-OPERATIVE INFORMATION FUSION

Phani Chakravarthy Polina

September 22, 2014

As of 2014, about 2.5 quintillion bytes of data are created each day, and 90% of

the data in the world was created in the last two years alone. The storage of this data

can be on external hard drives, on unused space in peer-to-peer (P2P) networks or

using the more currently popular approach of storing in the Cloud. When the users

store their data in the Cloud, the entire data is exposed to the administrators of the

services who can view and possibly misuse the data. With the growing popularity

and usage of Cloud storage services like Google Drive, Dropbox etc., the concerns

of privacy and security are increasing. Searching for content or documents, from

this distributed stored data, given the rate of data generation, is a big challenge.

Information fusion is used to extract information based on the query of the user, and

combine the data and learn useful information. This problem is challenging if the

data sources are distributed and heterogeneous in nature where the trustworthiness

of the documents may be varied.

This thesis proposes two innovative solutions to resolve both of these problems.

Firstly, to remedy the situation of security and privacy of stored data, we propose

an innovative Social-based Distributed Data Storage and Trust based co-operative

Information Fusion Framework (SDSF). The main objective is to create a framework
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that assists in providing a secure storage system while not overloading a single system

using a P2P like approach. This framework allows the users to share storage resources

among friends and acquaintances without compromising the security or privacy and

enjoying all the benefits that the Cloud storage offers. The system fragments the data

and encodes it to securely store it on the unused storage capacity of the data owner’s

friends’ resources. The system thus gives a centralized control to the user over the

selection of peers to store the data.

Secondly, to retrieve the stored distributed data, the proposed system performs

the fusion also from distributed sources. The technique uses several algorithms to en-

sure the correctness of the query that is used to retrieve and combine the data to

improve the information fusion accuracy and efficiency for combining the heteroge-

neous, distributed and massive data on the Cloud for time critical operations. We

demonstrate that the retrieved documents are genuine when the trust scores are also

used while retrieving the data sources. The thesis makes several research contri-

butions. First, we implement Social Storage using erasure coding. Erasure coding

fragments the data, encodes it, and through introduction of redundancy resolves is-

sues resulting from devices failures. Second, we exploit the inherent concept of trust

that is embedded in social networks to determine the nodes and build a secure net-

work where the fragmented data should be stored since the social network consists of

a network of friends, family and acquaintances. The trust between the friends, and

availability of the devices allows the user to make an informed choice about where

the information should be stored using ‘k’ optimal paths. Thirdly, for the purpose of

retrieval of this distributed stored data, we propose information fusion on distributed

data using a combination of Enhanced N-grams (to ensure correctness of the query),

Semantic Machine Learning (to extract the documents based on the context and

not just bag of words and also considering the trust score) and Map Reduce (NSM)

Algorithms.

Lastly we evaluate the performance of distributed storage of SDSF using era-
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sure coding and identify the social storage providers based on trust and evaluate

their trustworthiness. We also evaluate the performance of our information fusion

algorithms in distributed storage systems. Thus, the system using SDSF framework,

implements the beneficial features of P2P networks and Cloud storage while avoid-

ing the pitfalls of these systems. The multi-layered encrypting ensures that all other

users, including the system administrators cannot decode the stored data. The ap-

plication of NSM algorithm improves the effectiveness of fusion since large number of

genuine documents are retrieved for fusion.
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CHAPTER I

INTRODUCTION

Data storage and Information Fusion has been extensively studied in both

academic and industrial domains. However, data security, scalability, and reliability

are still not well solved although many products and technologies are proposed for

data storage. This is due to a large number of data users and a huge amount of data

generated every day [1]. Information Fusion is not well implemented when data is

distributed and stored on multiple devices. How to effectively build scalable storage

systems to reliably store, search and protect all the data for various users is extremely

challenging. Localized storage such as mobile devices and hard drives is mostly used

in our daily life. For data confidentiality, the data could be encrypted before writing

them into the storage media. As each device is used separately (e.g., our laptops and

our mobile phones), the localized data storage is subjected to a single-point of failure.

In addition, separately using storage space of the user devices is inefficient as a large

amount of storage space could be free on some devices while some devices may run

out of storage space.

A Data Storage:

Network-based data storage has been rapidly developed in the past decades.

It targets DDS systems and allows users to access data anywhere from the network.

Notably, IBM Almaden Research Center at San Jose [2] initiated the research by

proposing a system which prevents data failure by providing a certain degree of data

redundancy at multiple places. The designed system offers much higher data resiliency
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and security, compared to the localized data storage. However, the data could be lost,

illegally accessed, and stolen once the storage network (e.g.. a file database system)

is attacked externally. In addition, scalability is another issue when the data size and

number of users increase.

The network-based storage system recently evolved into peer-to-peer (P2P)

storage, cloud storage, and an integration of both. The P2P systems like Ocenastore

[3], Freenet [4], Dht [5], TotalRecall [6] utilize the storage space of the peers to

store the data. When a data file is written into the P2P network, it is published to

everyone in the community. The data files are organized in the network with the goal

to maximize the device utilization. The file’s creator (i.e., data owner) is unable to

control and manage his file. In other words, P2P currently provides no mechanisms for

users to effectively manage their data. The manipulations on the data are therefore

very limited, e.g., the file may not be actually deleted, resulting in many security

and privacy vulnerabilities. Furthermore, the availability of the stored information in

P2P-based system highly depends on the users’ interests (i.e., how many users want

to download and store the file). The P2P-based storage systems can only provide a

best-effort service without any performance guarantee. Due to the dynamics of the

P2P-based networks (the users join and leave randomly), in many scenarios, the users

cannot retrieve the desired information when wanted.

On the other hand, the cloud storage systems such as Dropbox [7] and Google

Drive [8] store users’ data into a pool of powerful servers. These systems enable users

to reliably store their data files in an online drive. However, there exist several issues

on data security and privacy because the users’ data is open to the service provider.

In addition, maintaining the data reliability is complex and expensive, especially

when the system expands. More importantly, the storage capacity is limited and it

is expensive to acquire more storage space. The users have to pay additional cost to

upload and download the data to and from the systems. The cloud storage becomes

an issue for storing large media files such as movies or archived data.
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Towards addressing these challenges, we propose a Social-based Distributed

Data Storage (SDSF) system for reliable and secure data storage and information

fusion in a scalable and cost effective way. The storage nodes are effectively selected

based on the social relationships with the data owner. To find the potential storage

nodes, we provide an efficient algorithm to compute the social ties in the social net-

works. In addition, robust and efficient data encoding and decoding schemes are also

used for data regeneration when a storage node fails.

There are other challenges in building the SDSF system:

• Erasure coding requires more computation and less storage space compared to

replication. The erasure coding efficiency should be considered as the mobile

storage nodes (e.g., mobile phones and tablets) are cheap devices and have

limited computational capabilities. The erasure coding parameters such as (n,

k) should be well determined to achieve the trade off between the available

amount of storage space, the number of storage nodes, and the data resiliency.

How to determine the potential storage nodes from a set of storage capable

nodes is an important issue since each storage node has different capabilities

like storage space, computational power, bandwidth and availability. The main

problem while selecting storage nodes is how to select nodes that are trust

worthy.

• Searching for information in huge data is by itself challenging. The problem

becomes more difficult when the data is distributed among several machines.

We search intelligently for data in real time.

• In a distributed storage system, parts of the file are stored in different storage

devices. We have to ensure that even owners of the individual storage devices

cannot read or modify the contents. The distributed storage system needs se-

curity to provide strong support for authentication, encryption and decryption.

It has to authenticate a storage device and the user of the file.
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• Faults (e.g., communication error, device failure and network disconnection)

occur for many reasons. The mobile devices and tablets are not as stable as

the fixed storage devices. Therefore, fault-handling is necessary to deal with

the possible errors in the network or storage devices. The distributed storage

protocol should have the capability to recover the system to a normal state from

any failures.

Our SDSF makes the following contributions:

1. We design a system architecture for DDS based on the social networks. The

proposed system is scalable to a large number of users.

2. We perform information fusion on the cloud using N -gram, Semantic Machine

Learning, and M ap Reduce (NSM) Algorithms. The innovation of the proposed

NSM is to improve the information fusion accuracy and efficiency for processing

heterogeneous, distributed, and massive data on the cloud for tactical informa-

tion fusion services. The information fusion could start with a query request

issued by a user, e.g., from a mobile device. The query consists of various fusion

parameters, like keywords, geographic information, time and other contextual

information, and they will be used for further filtering and fusion. Once the

query is submitted to the fusion engine, NSM then performs information fusion

as shown in Figure 19 to find relevant information.

3. We further provide a new framework for efficient data encoding and decoding

based on the erasure coding for data reliability and security. In addition, we

propose (N,K) coding schemes to efficiently process large data files.

4. For data security, we utilize the strong security properties of the Advanced

Encryption Standard (AES) to encrypt the data. The data is encrypted with

multiple layers ensuring that all other users, including system administrators,

learn nothing about the stored data.
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5. We propose an efficient algorithm to find the potential storage nodes based

on the interactions in the social networks. The social ties are quantified and

computed. This allows unused storage space to be utilized.

6. The performance of the proposed system is evaluated via both theoretical anal-

ysis and extensive simulations. In particular we have implemented a test bed

which performs the experiments on real networks.

B Information Fusion

Before we look into the issues associated with Information Fusion and how to

handle them, let us first look at Information Fusion, how it can be classified, and

existing applications where Information/data fusion has been used. Historically, the

word “Information Fusion” has been commonly reported to be used in the context of

detection and classification tasks in a variety of application domains such as military

applications and robotics [9]. In the recent times this term has been used in the con-

text of intrusion detection [10], denial of services detection [11], improving location

estimates of sensor nodes in wireless sensor networks, detecting routing failures in

WSN [12], for intelligent traffic management [13] and also to collect link statistics for

routing protocols [14]. Information Fusion has also been used extensively in military

domain for autonomous weaponry employing multiple sensors; broad area surveil-

lance systems employing single weapons platforms (e.g., ships, airborne surveillance,

ground sites, surveillance spacecraft) or distributed sensor networks; fire control sys-

tems employing multiple sensors for acquisition, tracking, and command guidance;

intelligence collection systems; indications and warning (I&W) systems, the mission

of which is to assess threat and hostile intent and command for classification of un-

derwater mines [15]; and control nodes for military forces. It is also used in robotics,

machine intelligence, automated manufacturing, remote sensing, image processing,

and medical systems. There exist many definitions of information fusion in fusion
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community. The first reported definition of data fusion has been by the data fusion

work group of the Joint Directors of Laboratories (JDL) of US DoD as“multilevel,

multifaceted process dealing with the automatic detection, association, correlation,

estimation, and combination of data and information from multiple sources” [16].

This definition was further refined to expand the scope by Hall and Llinias [17] as

the combination of data from multiple sensors, and related information provided by

associated databases, to achieve improved accuracy and more specific inferences than

could be achieved by the use of a single sensor alone [17].

However, the definition accepted by the International Society for Information

Fusion in 2004 is “in the context of its usage in the society, it encompasses the

theory, techniques and tools created and applied to exploit the synergy in the infor-

mation acquired from multiple sources (sensor, databases, information gathered by

humans, etc.) in such a way that the resulting decision or action is in some sense

better (qualitatively or quantitatively, in terms of accuracy, robustness, etc.) than

would be possible if any of these sources were used individually without such synergy

exploitation” [18]. We use the term Information Fusion in this context.

All of the definitions in the literature agree that fusion is a process that is used

to achieve some goals by combining data or information from multiple sources into

one coherent format, in spite of their minor differences. Thus, the underlying reason

why we need fusion is to achieve that goal of obtaining comprehensive information

from multiple sources.

Information Fusion can be classified in multiple ways and one of the ways

suggested by Nakamura et al [19] for classification of Information Fusion is based on

the relationship between the sources. The classes are based on how much and what

information does each source provide:

• Complementary Fusion:

When a complete piece of information is obtained from sources that contain

different portions of the information. i.e. Source 1 returns information portion
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‘a’ and Source 2 returns information portion ‘b’ to create complete information

‘a+b’ using fusion. For example, temperature information from East, West,

North, South parts of the monitored area can be fused to give the overall tem-

perature of the monitored area.

• Redundant Fusion:

If more than one source returns the same information, the accuracy of the

information can be assumed to be better with higher confidence. This will

typically result in fused information with more accuracy.

• Cooperative Fusion:

This type of Information Fusion uses information from two independent sources

and fuses them to obtain new information that is more complex than the infor-

mation from each of the sources. For example, cooperative fusion can be used

to obtain the dimensional images from two or more cameras at slightly different

angles which are then combined to derive the three dimensional images of the

observed scene.

Figure 1 shows the various types of information fusion based on the above

classifications.

During the retrieval of information, the information has to be collected from

various nodes. We need to collate this information from various sources. However,

very little work has been done towards Information fusion for data stored in the cloud

environment. There are several issues associated with “Information Fusion” for data

in cloud environments:

• The information comes from various heterogeneous devices and may have dif-

ferent trust values associated with them. One or more sources in the system

may not be trustworthy due to various reasons like bias, malice or faults in

the source system. If these sources are unrecognized, false data may propagate
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Figure 1. Information fusion classification based on relationship between sources

through the system. Thus, trustworthiness of the source must be verified before

information fusion.

• Since there is redundancy associated in the storage phase, when the information

is retrieved from various sources, there is likely to be duplication of information.

Identification of accuracy of the source has to be verified.

• The keywords in the user query may not be syntactically accurate. However,

this should not affect the accuracy of the results obtained.

• Also, there can be multiple interpretations of the keywords associated in the

query. It is necessary to determine the context of the query and accordingly

perform semantic mining to obtain the accurate results.

An excellent survey by Nakamura et al [19] has described in detail various techniques

that can be used for data fusion. These techniques include Kalman filters, Bayesian

and Dempster-Shafer inference, aggregation functions, interval combination functions,

and classification methods.
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Multiple application areas for Information fusion have been discussed earlier.

Our work has been driven by making the following observations and identifying the

differences in the type of fusion required:

• Most of these techniques have been used for fusion of information collected from

various sensors in wireless sensor networks. Sensors hold specific pieces of infor-

mation only. Hence the fusion activity involves fusion of data like temperature

(if they are temperature sensors) or location co-ordinates (if they are proximity

sensors) or direction and velocity (in case of accelerometer).

• None of the solutions, to the best of our knowledge, have evaluated the correct-

ness of the query or reinforced and reconstructed it with contextual information

to improve the quality of query.

• The sources that have been used for obtaining the data may be malicious or

spam. If the trust value has not been considered, the quality of data fusion may

be affected.

• When this information has to be obtained from multiple, heterogeneous data

sources where parts of information have been stored (and some may contain

redundant information), it is necessary to use techniques different from the

ones described in the literature.

The problems specified above indicate that we need to handle various aspects in

providing a solution, such as:

• Techniques to ensure the correctness of the query itself.

• Techniques to enhance the quality of query based on the context of the query.

• Techniques to search the parts of content from various sources using semantics

of the query and mapping them to the existing ontology.
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• Techniques to identify the trust value of the source and use cooperation based

Information Fusion to present the results.

Our proposed technique Trust based Co-operative Information Fusion that uses NSM

algorithm addresses the above issues in the following manner:

• Enhanced N-gram Algorithm:

Our enhanced N-gram algorithm understands the user query and contextual

factors. It clarifies the query request at two levels:

– Word Level: N-gram algorithm corrects the misspelled keywords.

– Query Level: N-gram algorithm associates the request with the contextual

knowledge to generate a more precise query.

• Semantic and Distributed Machine Learning (SDML) Algorithm:

SDML performs semantic data mining in a distributed way across heterogeneous

data sources. Our wrappers optimize the learning process and our mapper

semantically translates the data back to target ontology. During the storage

phase, we have assigned a trust value to each of the nodes where the data is

stored. The wrappers automatically choose data from nodes with high trust

scores.

• Map Reduce-based Fusion (MRF) Algorithm:

Upon the results from the SDML mining, MRF performs MapReduce-based

fusion. It promotes in-depth information fusion and co-operation. The results

obtained from a data source can be used as a new clue to learn other data

sources and retrieve relevant information. MRF returns the results to the user

only if the stop criteria is satisfied, as shown in Figure 19. Otherwise, MRF

iteratively exploits collaborative learning and mining until the result is optimal.

Figure 1 shows the various types of information fusion based on the above

classifications.
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Figure 2. Information fusion example for power outage example

Figure 2 shows an example of a power outage Information Fusion example.

Assume we have a power outage in Louisville and want to know the areas in Louisville

that are facing power issues which can be helpful for the electricity department. In

this example we first have to understand the user query, perform semantic analysis

and data mining on data from various social networking sites like twitter, Facebook,

Google Plus like. We process the information and extract the locations of power

outages based on tweets and feed. We then use the locations, perform information

fusion and display them on a map to show the areas of power outages.

C Complete System

We propose a DDS system on the social network (SDSF) where we build a

network of personal storage devices of system users. SDSF promotes the idea of

utilizing the storage space of the personal devices along with dedicated storage servers.

Figure 3 shows the SDSF system. We encrypt the given file using the user provided

encryption key and divide it into smaller pieces. We then add redundancy using

erasure coding. Storage nodes are determined from the users’ social network. Once
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Figure 3. Files can be uploaded by users and can be searched intelligently

the files are uploaded users can search for files with queries. We perform information

fusion and return the most relevant results possible. We built a fully functional SDSF

system for laptops and desktops and we also discuss the performance of SDSF data

storage and information fusion.
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CHAPTER II

RELATED WORK

There has been a lot of research in Erasure Coding, Distributed Storage, Social

Cloud Computing and Information Fusion.

A Replication

DDS evolved as a means to store data remotely. Although, the number of

reads and writes of data determines the strategy to be employed, there are some

requirements of persistent storage. The data should be retrieved reliably and should

be secure. When the data is on a single server, although the reads / writes are fastest

and security is maximum (especially if it is encrypted and saved), the entire data

is lost if the server crashes. So, to ensure reliability it is necessary to replicate the

data and store it at multiple locations. This implies that redundancy in storage is

a must. This replication can be done using additional hardware (RAID) or using

software based approaches (creating storage subsystems of the individual nodes and

combining them across the network). Examples for such systems are the Parallel

Virtual File System (PVFS) [20] and the Lustre Parallel File System [21].

• Full file Replication:

This method requires that the entire file is replicated and stored at multiple

locations based on the nodes that request the files. This strategy works well

when the files are small in size. When the files are large in size this strategy

is not meaningful since there will be traffic congestion and bandwidth will be

consumed with the data transfer. It is also a time consuming process. If the
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location of the server where data is replicated requires multiple hops to reach

then it might result in a timeout of request and multiple requests may be neces-

sary before the data is obtained. The main disadvantage of using this strategy

is that it requires a lot of storage space [22]. If a file of size s is stored as x

replicas, the space needed to store the x replicas is x ∗ s.

• Block level Replication:

In this technique, the file is divided in multiple blocks and stored at various

nodes. If the data from any one of these nodes is missing, it is difficult to recon-

struct the complete file. To avoid this issue, each block also can be replicated.

But this will increase the overhead of maintaining the locations of blocks of in-

formation and the number of that block in the sequence. Block level replication

is used in eDonkey [22].

• XOR Redundancy:

To introduce redundancy, one may use 1D XOR redundancy or 2D XOR re-

dundancy. The advantage is that if one of the nodes fails, it is possible to

reconstruct the original file using the unique property of XOR function that

when applied twice in a row it negates itself. The obvious disadvantage is that

although retrieval is reliable, security can be compromised. Also when the error

correcting capability of the code is broken, there is an infinite error propagation.

There are many other variations of XOR operations like Even Odd that allow

efficient reconstruction from failures but when the redundancy increases it can

become an issue during an update since a large number of redundant data will

also need to be updated [23].

• RAID Redundancy:

RAID 5 is a hardware based file recovery system which needs at least 3 hard

disks. It allows failure recovery for a single disk. It internally uses XOR opera-

tions to recover the failed disk. It is very fast and efficient. However it cannot
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handle two disk failures. If two disks fail all the data is lost and cannot be

recovered.

RAID 5 with hot spare can be used which allows up to one disk failure. But

in this case the hot spare disk becomes active and replaces the failed disk. We

then have to replace the failed disk which now acts as the new hot spare disk.

It needs at least 4 hard disks.

RAID 6 can tolerate two disk failures at the cost of write speeds. It is slower to

write to than Raid 5 but allows up to 2 disk failures. It needs at least 4 disks.

We can use raid 6 with a hot spare which will need at least 5 disks.

RAID offers disk failure protection but does not offer any protection for other

failures like processor failure or power failure, and the files cannot be accessed

unless we move the disks to another machine.

B Erasure Coding

Maintaining high reliability is essential for the data storage systems. Tradi-

tionally, data is duplicated at many distributed storage devices for higher reliability.

However, this method requires large storage space and consumes a lot of time to

maintain a pre-specified level of reliability.

Data 
(a,b)

Partition 1
Node S1 

(a)
Node P1 

(b)

Partition 2
Node S2 

(a)
Node P2 

(b)

Data 
(b) Data item ‘a’ is 

lost

Storage nodes

Figure 4. Redundancy using file duplica-
tion
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Figure 5. Redundancy using Erasure Cod-
ing
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Consider we have Data “ab” and four storage nodes to store the data. We split

the Data “ab” into two parts nodes “a” and “b”. Figure 4 shows data redundancy us-

ing replication. Figure 5 shows data redundancy using erasure coding. Both systems

have two data nodes and two redundant nodes. Consider two node failures on each

system. In Figure 4 data cannot be recovered as “a” cannot be recovered. However,

In Figure 5 data can be recovered from the two remaining nodes. Notably, erasure

codes-based approach [24] can provide the same level of reliability with much less

required storage space. Particularly, Weatherspoon and Kubiotowicz in their work

Erasure coding vs replication [25] provided a quantitative performance comparison

in terms of data reliability and transmission bandwidth of the erasure codes-based

approaches over the duplication-based approaches. The results showed that a signif-

icant performance gain is obtained by using the erasure codes-based techniques. In

a different setup, Rodrigues et al. [26] showed that in P2P-based storage systems,

in some scenarios, the benefits of coding gain over the duplication-based approach is

limited. Particularly, the duplication-based approach outperforms the coding-based

approach when the node availability is high. The result suggested that performing

coding is not necessarily obtaining better system performance. In addition, using

multiple measuring metrics,Wang et al. [27] showed that the erasure coding based

approach obtained higher performance than the duplication-based approach in a cloud

system. Interestingly, Leong et al. [28] showed that coding is unnecessary when the

total size used for storing the file is small.

C Erasure Coding Challenges with Big Data

We are using MDS Reed Solomon erasure codes for Data Redundancy. MDS

codes have the (N,K) property where any k of n files are sufficient to recover the

entire file. There are two main challenge when using erasure coding for Big Data:

1. The computation time for erasure coding increases with the increase in file size.

For a storage system the user cannot be made to wait for too much time. For a
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large file, the time taken for normal erasure coding is a lot and is not ideal for

the user.

2. The buffer size used in the erasure coding algorithm is bound by an upper limit

of the RAM size. The system can only generate some of the available RAM for

the erasure coding buffer. So the buffer size cannot be very big. If the buffer

size is very small the file has to be opened and closed so many times that it will

even further delay the erasure coding as the time taken for I/O operations is

very expensive.

Reed Solomon Runtime

When using MDS Reed Solomon erasure codes we have to perform matrix

multiplications during encoding which has a runtime O(n2) and matrix inverse oper-

ations while decoding which has a high runtime O(n3). As the matrix size increases,

time taken and computation resources required for matrix inverse operations increases

exponentially.

Here we can make use of Map Reduce (explained later) framework to tackle

while dealing with big data which breaks a large problem into a subset of smaller

problems, solves the smaller problems individually on separate machines and combines

the result of the smaller problems.

D Hadoop

Jeffrey et.al. proposed MapReduce: A programming model and its associated

implementation for processing and generating large data sets [29]. Map Reduce model

uses a map and reduce function. MapReduce runs on a large cluster of highly scalable

servers. The servers act as mappers and reducers. Figure 6 shows an overview of the

map reduce model. An input file is split into smaller files and is given to the mappers

where each file is processed independently and then the results are sorted and given

to the reducer. Here the results are combined and merged. Sathiamoorthy et.al.
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proposed novel erasure codes [30] for big data. They implement their erasure codes

in Hadoop HDFS and compares them to Hadoop HDFS with Reed Solomon Codes.

They have a 14% penalty in storage space but are very efficient while repairing failed

nodes. Xorbas [31] is their Hadoop version that implements a new set of regenerating

codes called Locally Repairable Codes (LRC). It is built on top of Facebook’s Hadoop

system running HDFS-RAID. It supports Reed Solomon and XOR codes in addition

to LRCs.

E P2P Systems

Among the large number of known solutions for DDS systems, P2P networks

have been used extensively. P2P systems are designed for sharing data among the

users. Systems such as Ocenastore [3], Freenet [4], Dht [5], TotalRecall [6] are ex-

amples of P2P systems. The main principle of these systems is to allows the users

(i.e., peers) to connect directly with each other when sharing the data. Using this

approach, data can be shared among users without a central server which could be

a single point of failure and can have scalability issues. Bit Torrent File Sharing [32]

is another file sharing system where a central server (i.e., tracker) acts as the coordi-
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nator for connecting the peers. However, the central server knows nothing about the

contents of the files. Thus, the designed system is scalable and is able to support a

large number of users. The main issues of the P2P systems for data storage is that

these systems provide no guarantee on file retrieval as availability of files depend on

the interest of those files by the users. If users stop downloading some files for a

certain amount of time, those files will not be available anymore.

Users unwilling to store their data with cloud providers can instead use decen-

tralized P2P networks for their data sharing. Unfortunately, even P2P networks can

compromise user privacy. Popular P2P systems not only leak the source of data but

also know about which users subsequently access those files. The agents monitoring

these networks range from researchers (trying to understand the network properties

better) to content providers ( trawling for copyright infringement). Either way, users

are often unaware of the wealth of information being collected about them when they

share or access content over the Internet, irrespective of the fact whether they use a

cloud provider or a P2P network. The distributed and global reach of the Internet

makes it useful not only for sharing users’ personal files but also for business organiza-

tion needs. The information sharing has become universal but is really vulnerable in

terms of security and confidentiality. Governments have shown their interest to selec-

tively restrict the content, source, and destination of communication to benefit their

social and economic agendas. The most popular example of one such implementation

is the network for Blackberry phones.

In P2P networks, each peer has a specific identifier that is created from hashing

the nodes ip address and port number. The placement of nodes and content is prede-

termined so that while performing a lookup, the a priori knowledge of the location of

content is beneficial while performing lookups. Also, the storage has to be persistent

since the latency for lookups should be minimal and the content required should be

found quickly, along with the requirements of security and privacy for owner as well

as the receiver of data. The system Oceanstore [3] also supports nomadic data (dis-
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association from the location of origin of data), as the authors refer to it. Oceanstore

ensures that all the information entering the system is encrypted and only the stor-

age servers have the responsibility of data integrity. Oceanstore stores each data item

as an object, with a global identifier, in multiple servers (floating replicas). These

objects are updatable and hence can be in active or archived (identifiable through

versioning mechanism) which are again stored in multiple servers. A probabilistic

algorithm (hill climbing) identifies the location of the nearest active object using the

predicate and the desired GUID. The routing is a two phase process using a fault

tolerant data structure stored at network layer where messages are routed from node

to node till destination is reached. If no active object is found close by, a deter-

ministic algorithm will find the objects far away from the requesting server, which

is a slower process. The naming technique provides security from replay attacks to

a certain extent. Although this model ensures that the cost of update reduces as

the size of the update increases, if the size is small, which is more likely a case, the

cost is very high. Also, the latency of update is not known. There is no specific way

in which the servers are chosen and so the required redundancy may be quite large.

The system uses block level erasure coding for durability and uses simple replication

to improve tolerance from transient failures. Using erasure coding and replication,

the information is stored in multiple locations, and one assumes that the servers are

untrusted, it necessitates the need for unwanted and much more replication than nec-

essary. Erasure coding ensures constant delay but the computation costs are high.

Since the systems used in Oceanstore are desktop machines, whose computational

capacities are much higher, it may be unsuitable to use the parameters defined for

desktop machines in mobile systems as both computational capacities and storage

space are challenges in using mobile devices for storage.

In Freenet [4], Clark et. al. have focused on the privacy for the originator

of the data and also the node that stores the data and frees the storage node from

ownership of the data residing at the node. The protocol used is packet oriented
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and uses self-contained messages. Each node is treated equally and is aware of only

its immediate predecessor and successor. This enhances the privacy since no node is

aware if the predecessor node is the originator of request and if the successor node

is the consumer of the request. Also a copy of the data is replicated at each node

(stored using LRU technique). This improves the lookup time in subsequent queries

at nearby locations. While writing the data, it creates a hash key and checks with

itself if it has a similar key and also has the required storage space, if not, then it

looks up the neighboring nodes and sends data along with the key. If the node finds

similar keys, it stores the data, else it forwards it to its nearest node. This also allows

creating clusters of data that will reduce the look up time. However, this protocol

may be unsuitable in mobile environments since the location of the neighbors will be

changing continuously and some nodes may not remain neighbors. Also, the entire

file has to be stored. So if an adversary is able to get a file from any one of the

participating nodes, the entire data is exposed. This can be detrimental in case of

highly confidential information as in case of sensitive data.

In DHASH++ [5] Dabek et.al. have compared the various techniques proposed

for designing a wide area distributed hash table (DHT) that provides high throughput

and low latency. They have studied various schemes for the design choices of read and

write algorithms in solutions using iterative routing (The nodes in the system commu-

nicate with only the node from where the lookup has originated, thereby increasing

packet overhead), recursive routing (When a query is made, each node forwards the

query to the next node, reducing the packet overhead), proximity routing, neigh-

bor selection (chooses the nearest neighbor in the routing table thereby reducing the

lookup latency), erasure coding (improves the privacy for the data owner by encoding

and introducing redundancy), replication (fragments of data are replicated in multi-

ple servers), and server selection (technique of fetching data from the nearest set of

candidate nodes). The experiments demonstrate that recursive lookups increase the

lookup time by 1.6 times as compared to iterative lookups. Also the use of erasure
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coding for data fragmentation reduces the bandwidth consumption for writes, and

latency for reads is low, but in case of replication it is exactly the opposite. Based

on their observations they have designed an algorithm that tuned the parameters of

read and write in a distributed hash tables (DHT). They integrated the key lookup

and the data fetch with which they found that they were able to reduce the impact

of the lower bound that is imposed by the final lookup steps. Their algorithm also

have suggested the use of an alternative integrated transport layer protocol that al-

lows alternate timeouts allowing for freedom to choose from many nodes that are

contactable. Although the various modifications have improved the performance, the

optimization does not look at how it will affect the high churn network such as in

mobile networks. Also, though they have considered the performance parameters of

the erasure coding in the design of their algorithm as static in nature, the same pa-

rameters may not be relevant in mobile networks where the computational power and

available space for storage will be limited.

Bhagwan et.al. in their proposed system Total Recall [6] have focused on

predicting the availability of the peers in the network (which has high churn rate

in peer to peer networks) using in depth analysis of the a priori knowledge of the

rates of peers joining and exiting the network. The system determines the level

of redundancy required for fault tolerance based on the file size, storage availability,

read/write access rates and uses multiple repair strategies (eager repair or lazy repair)

based on the redundancy method (replication or erasure coding) used. The system is

dynamic in nature due to these functionalities incorporated; however, it is assumed

that all the participating nodes are trusted and the level of trust with each node is

same. In reality the originator of request may not trust all the peers in the network.

So some mechanism that incorporates the trust component also needs to be taken

into consideration.
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F Cloud Storage

Internet users share text, voice, images, and videos. Sometimes data is shared

with the entire world, sometimes with a few selected friends, and sometimes data

is shared in such a way that the original source or destination of the data would

preferably stay hidden both from each other and from observers in the network. This

shift in usage has made cloud services popular for communication and data sharing.

Users upload their data to a centralized provider who then allows the user to share and

access the data from anywhere. Centralized cloud storage providers handle everything

from video and photo sharing to data collection from simple devices in the home

that report water and electricity use. However, using the cloud has its downsides.

For example, many popular cloud storage providers collect, store, and share vast

amounts of data about their users, raising privacy concerns. Even if we trust the cloud

provider with our data, centralization makes censorship easier which has become a

serious practical concern in many places around the globe. Cloud storage systems

are built on top of a pool of vast number of storage servers. Systems such as Google

Drive [8], Dropbox [7], and Amazon Storage [33] typically consist of a few master

servers and several storage-servers organized in such a way to efficiently store a large

amount of data. These storage systems are able to provide highly accessible and

user friendly storage services to the users. Dropbox uses modern encryption methods

to both transfer and store the data like Secure Sockets Layer (SSL) and AES-256

bit encryption. Dropbox website and client software are constantly being improved

to enhance security and protect against attacks. Two-step verification is available

for an extra layer of security at login. You can choose to receive security codes

by text message or via any Time-Based One-Time Password (TOTP) applications.

Public files are only viewable by people who have a link to the file(s). Once a file is

added to your Dropbox, the file is then synced to Dropbox’s secure online servers.

All the files stored online by Dropbox are encrypted and kept securely on Amazon’s
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Simple Storage Service (S3) in multiple data centers located across the United States.

However, concerns on data security and privacy with cloud storage are main issues

due to the unreliability of the service [34, 35]. Generally users upload their files to

Dropbox and Google without encrypting their files first. So the administrators of

Google and Dropbox can view the user’s data without the user’s permission. Google

collects users’ privacy details to target custom ads to the user. So users using these

services are compromising on both security and privacy. The below are the Privacy

Policies from their websites:

• Google Privacy Policy:

When you upload or otherwise submit content to our Services, you give Google

(and those we work with) a worldwide license to use, host, store, reproduce,

modify, create derivative works (such as those resulting from translations, adap-

tations or other changes we make so that your content works better with our

Services), communicate, publish, publicly perform, publicly display and dis-

tribute such content. The rights you grant in this license are for the limited

purpose of operating, promoting, and improving our Services, and to develop

new ones. This license continues even if you stop using our Services (for ex-

ample, for a business listing you have added to Google Maps). Some Services

may offer you ways to access and remove content that has been provided to

that Service. Also, in some of our Services, there are terms or settings that

narrow the scope of our use of the content submitted in those Services. Make

sure you have the necessary rights to grant us this license for any content that

you submit to our Services.

• Dropbox Privacy Policy:

When you use the Service, we automatically record information from your De-

vice, its software, and your activity using the Services. This may include the

Deviceś Internet Protocol “IP”) address, browser type, the web page visited be-

fore you came to our website, information you search for on our website, locale
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preferences, identification numbers associated with your Devices, your mobile

carrier, date and time stamps associated with transactions, system configura-

tion information, meta-data concerning your Files, and other interactions with

the Service.

TABLE 1. Cloud Storage Cost Comparison

Size/Cost Google Drive DropBox Amazon SDSF
2 GB Free Free Free Free
5 GB Free N/A Free Free
15 GB Free N/A N/A Free
1 TB 9.99$ 9.99$ 41.66$ Free

Another concern with Dropbox and Google Drive is the complexity of the

system. As the system size expands, the complexity of the system also increases.

Also personnel required to manage hardware and software increases. Another major

concern is the cost. Google Drive offers 15 GB free of cost and Dropbox offers 2 GB

free of cost to the users while Amazon Drive offers 5 GB of free storage. Users have

to pay to get additional storage space in cloud systems even if they have a lot of free

storage space in their laptops, desktops, tablets and mobile. The associated costs are

compared in Table 1. In SDSF we use the free space of the user’s storage space to

build a free social cloud storage service.

G Social Networks

Social networks like Facebook [36] and Twitter [37] are growing rapidly with

large number of users. Further, many techniques have been proposed to quantify the

social relationships based on the social interactions in the social networks. These

works offer a solid foundation to characterize the social ties, which are exploited in

our proposed system. The work that is most closest to ours is Safebook [38]. In this

work, the authors presented a system design for data storage and management to
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preserve the privacy, integrity, and availability of the stored data. However, this work

does not deal with the reliability and efficiency (e.g., erasure coding in our SDSF),

and also does not provide any analytical analysis as well as an efficient method to

quantify the social ties. Chard et al. proposed approaches [39, 40] for sharing storage

and computation resources among users utilizing the social relationships. Particu-

larly, the authors used the social relationships to quantify the trust between the users

to create a dynamic virtual connected network. Again, the work did not provide

any analysis implementation or results. Different from these systems, our proposed

system SDSF provides a comprehensive system design with extensive analysis and

simulations. Importantly, we implemented a real network test bed for system valida-

tion.
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Table 2 compares the above systems. Based on the above discussion, we present

the summary to provide a comparison of various storage systems. The parameters

that we considered to make a significant contribution to the “storage” are quantum

of data that can be stored, the ease of data management, the complexity of creation

of data storage system, and the security and privacy. Table 2 gives a bird’s eye-view

of comparison between various storage systems.

H Information Fusion

Information fusion is extracting and learning useful information based upon the user’s

query in a given context. It is mostly performed by machine learning and other

reasoning from a given set of data. Information fusion becomes a challenging problem

when the data are stored at distributed storage devices and the trustworthiness of

the source is not taken into consideration. Information fusion in the cloud has further

challenges that should be further addressed:

• Heterogeneous Data Formats:

Data created and maintained by different organizations often have different

formats and some data may not be well structured.

• Partial and Distributed Data:

A data source may only possess a partial information of some real-world data

objects. Therefore, it is a problem to integrate the partial information from

different cloud sources to obtain the accurate and complete reasoning.

• Distributed Processing:

The data in the cloud is huge and is beyond the computational capability of a

single machine. The question is how to design a information fusion engine to

reason and reference belief nets of data patterns across the cloud nodes.

Recently, Hull et al. proposed an approach called WAVE-FE [41] for semantic enrich-

ment and fusion for multi-intelligent data. WAVE-FE adds semantic metadata tags
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TABLE 2. Comparison of Storage Systems.

Storing on PC P2P Network Dropbox SDSF
Reliability Data is lost

when system
crashes

Multiple
copies of files
are stored
in different
places.

Uses redun-
dancy and
version control

Uses Erasure
coding for
redundancy.

Security If system is
compromised,
entire data is
unsafe.

Files can be
accessed by
others.

Files can
be accessed
by Dropbox
administrators

Need to com-
promise k out
of N devices to
retrieve data.

Privacy Privacy infor-
mation is not
exposed.

Privacy infor-
mation is not
exposed.

Collects user’s
privacy details.

Privacy in-
formation is
needed for con-
text but does
not associate
them with their
identity.

Storage
Size

Fixed. Storage size
increases as
P2P users
increases.

Storage size
can be in-
creased with
cost.

Storage size
increases as
users increase,
as they share
their resources

Data Man-
agement

Third Party
applications
to share data.

Data deletion
and control-
ling access is
difficult

Done by Drop-
box UI

Done by Social
DDS UI

System
Complex-
ity

System main-
tained by user

System ex-
pands and
is managed
by individual
users

System com-
plexity in-
creases with
users

System ex-
pands and
is managed
by individual
users
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to the original data enabling advance correlation and fusion. Hadoop and MapRe-

duce are other approaches that are developed to increase the fusion capabilities on the

cloud. However, these approaches are still evolving and do not meet the requirements

of information fusion and they have some challenges:

• Fuzzy-enabled Query:

For some critical applications, users may not be able to accurately query the

information (e.g., keyword typos) in a time intensive or unknown environment.

On the other hand, users may lack the contextual knowledge to perform an

accurate query. The fuzzy-based query on the information fusion means the

capability to provide the right information to users even if the query is not

accurate.

• In-depth Fusion:

The storage system needs in-depth information fusion to really understand the

needs of the users. Given a query from a user, in-depth information fusion

not only provides the capability to merge heterogeneous data, but also conduct

collaborative reasoning across these data sources to give the most appropriate

information desired by the user.

• Fusion Precision:

High fusion precision is the key for tactical information fusion services. Inaccu-

rate, biased, or wrong fusion results may lead to wrong actions and even mission

failures. The query precision should be based on all accessible data resources.

• Real-time Response:

Delayed response could result in tactical action delay or loss of actions. There-

fore, the information fusion should be efficient to process all data in a time-

constrained manner. Massive information exchange among nodes for reasoning

may not be applicable for storage services as this creates significant delays.
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CHAPTER III

STORAGE

A SDSF Storage Framework

The high level architecture is shown in Figure 7. There are 6 main modules in

Erasure 

Coding

Fault 
Tolerance

Determine 

Erasure Coding 

Parameters 

(n,l,k)

Social Network Security

Data 

Management

Figure 7. High Level Overview

the system:

1. Erasure coding module

2. Determining erasure coding parameters

3. Social Network module

4. Fault Tolerance module
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5. Security module

6. Data Management module

The Erasure coding module helps in maintaining the reliability and security of

the SDSF system. Erasure coding is performed on the individual file where the file is

split into multiple pieces and is stored on the storage devices. The SDSF system then

determines the erasure coding parameters based on the file size, network speed and

other parameters like available storage space. The erasure coding parameters play a

vital role in providing security and reliability. The potential storage devices are then

identified from the social network module. The Data Management module is used to

read, share or delete files. The Fault tolerance module is used to recover data when

storage nodes fail. When a user logs in with his credentials, he is presented a screen

where the users’ files are displayed. The users can view, share, upload, download

or delete the files. The Security Module takes care of authentication, authorization,

encryption of data and other security features.

1 Design Goal for Users

The detailed system view is shown in Figure 8. The Erasure coding module

is explained in Section B. Determining the Erasure coding parameters is explained

in Section C. Social ties and trust is explained in section E. Exploring social storage

provider module is explained in section E.1. Fault handling module is explained in

section F. When a user wants to upload a new file, the user is first asked to enter

an encryption key. We encrypt data using AES encryption with the user assigned

key and transmit the encrypted data to SDSF using SSL safely. This ensures that

even the administrators of SDSF cannot view the user’s data. Once the encrypted

data is uploaded to SDSF, we determine the erasure coding parameters and split the

file into multiple pieces, and we use erasure coding for replication. We store some

of these pieces on the user devices and remaining pieces on the storage devices of
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Figure 8. Detailed system view
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the user’s friends and family as determined from the social network module. Social

storage providers are determined by the social ties and trust. There are two levels of

protection for the users’ data. First, the user has to be authenticated and authorized

to access the data. Second, the user must know the encryption key, which was used

while uploading the file. The advantage of using erasure coding is that any k out

of n servers can recover the entire data. The advantage of using distributed storage

is that a malicious user must obtain access to at least k out of n devices to retrieve

even the encrypted data. We store the pieces of information on the user’s friends

and personal acquaintances storage devices instead of storing randomly like in P2P

networks. We calculate the trust and other parameters like availability, bandwidth,

etc. from the users’ social network and find the best storage nodes available. This

is explained in more detail in section E Evaluating Potential Storage providers. In

case some storage nodes fail, data can be recovered from the remaining nodes which

is explained in more detail in section F Fault Tolerance.

2 Architecture

Our proposed system consists of three layers as shown in Figure 9:

• The physical layer:

The physical layer is the Internet layer which offers the social devices’ connec-

tivity.

• The social interaction layer:

The social network layer over the Internet offers the capability for SDSF to

distinguish the device’s reliability and trustworthiness. This additional layer

differentiates our proposed SDSF from the P2P systems where all devices are

treated with equal priorities for data storage. SDSF advocates the social net-

work and the devices are organized in a manner based on social interactions.

As a result, every social user could be a service provider to offer storage space.
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Figure 9. The proposed SDSF architecture.

• The storage device layer:

The storage device layer consists of various storage spaces of different spaces

provided by user mobile terminals and are mapped to the social account. The

user’s cloud space can also be considered as a part of storage space. In this way,

the data could be stored on the cloud as if it is a storage device.

B Erasure Coding

1 Overview

Erasure codes have been around for a few decades and have been used for

multiple applications. Erasure coding’s key advantage is that it expands the original

data by adding a parameterized amount of computed redundancy so that even if

a subset of the data is lost or corrupted; it is still possible to retrieve the original

data. All data can be recovered if and only if k out of n distributed chunks can be
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accessed. Consider n to be the number of storage nodes used for storing a file. The

data file is encoded into n fragments. Let k be the minimum number of fragments

to reconstruct the original data piece. For simplicity, we use (n, k) to represent the

erasure code where a file is encoded into n fragments, and k is the minimum number

of fragments to recover a data piece. The MSD erasure codes provide a space-optimal

data redundancy against node compromises. The file size does not matter for erasure

coding as we perform erasure coding multiple times on a file processing small pieces

at a time. When the file becomes larger, we still perform erasure coding on small

pieces, multiple times, one at a time. So however large a file is we are still able to

perform erasure coding. It is desirable for performance to maintain the property that

the size of each fragment does not exceed the size of the original file. The erasures

codes on each piece generate n encoded fragments by the coding parameter k. The

file will totally generate n.l fragments if l is the size of the data we perform erasure

coding at a time. These fragments from a piece have to be stored into different nodes.

Therefore, n is also the minimal number of storage nodes. Any k fragments out of n

are enough to reconstruct the entire original file. The SDSF system is able to recover

the simultaneous failures of up to (n−k) storage nodes. In other words, (k) indicates

the security factor and n − k indicates the reliability factor which should match to

the security and reliability levels of the given file. The size of each fragment is:

Figure 10 shows the implementation of the erasure coding algorithm. The data

string c is first equally divided into k segments (e.g., c = (c1, · · · ck)). The erasure

coding adds (n− k) redundant segments (i.e., c
′

k+1, · · · , c
′
n in the encoded string as

shown in Figure 10). These redundant segments are computed by a polynomial

function. In this polynomial function, these k segments are converted into coefficients

that are integers (i.e., ASCII strings of the segment to integers). The increase of the

size of the data string generates huge coefficients (i.e., huge integers). Because of

this, the evaluation of the polynomial function becomes very hard, resulting in very

high computational complexity that cannot be accommodated for the mobile devices.
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Figure 10. Classical Coding Algorithm

Conversely, the erasure decoding algorithm decodes any k of n segments into the

original data string. It also has high computational complexity. Therefore, we have

to select the erasure coding which will have optimal performance without sacrificing

security and reliability.

C Determining erasure coding parameters

The coding parameters n and k affect security, reliability and performance of

the system. Security and reliability are inversely proportional to each other. As

the coding parameter k increases, reliability decreases and security increases. The

parameter k means it needs at least k pieces to reconstruct the original file. So as

k increases, the intruder needs to get access to more file chunks, as a result making

it harder for the intruder to get access to the original file. But also as k increases,

it needs more chunks to reconstruct the original image, decreasing the reliability. As

k increases the runtime decreases. Though the runtime decreases with increase in k,

we do not want a high k, as it decreases the reliability. As n increases, the runtime
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increases, decreasing the performance of the system. We have to find a balance of

reliability, security and performance.

From our experiment results we have found that the (n, k)=(8, 4) codes worked

ideal for us with a balance of reliability and security and better performance. It is

also shown in the performance results section.

D Social Network

Digital relationships are a virtualization of real world relationships between

individuals. These relationships infer a level of trust between users. For many of

us, social networking has become a primary mode of communication among family,

friends and coworkers. This model is used for virtualized resource sharing in a trustful

environment. Social Cloud thereby allows users share heterogeneous resources within

the context of a social network. The participants of a community in a social network

are bound by fixed resources and limited capabilities. Among friends, surplus storage

availability, if shared, could be used to meet the dynamically fluctuating demand of

other participants. A Social Cloud takes advantage of pre-established trust relation-

ships among the users, which enables mutual sharing. It is similar to sharing resources

with our friends in our daily lives. In a similar manner, this concept lets us share

our storage resources. Social cloud is not a representation of a point to point data

exchange; rather it can be picturized as a multipoint sharing within a group. A social

layer can reside over an existing architecture and keep every participant collaborated.

Storage perhaps is the most simplest and standardized resource for daily users to

share and utilize data from across the globe. Online data storing devices are primar-

ily used to store, create backup, share, and replicate data in one or the other form.

One obvious use for social storage is sharing photos and videos on social networks

which carry the responsibility for hosting them as well. Instead, it shall prove to be

a brilliant idea if this responsibility could be shifted from the storage provider to all

the users of the storage system for a better scalability and decreased infrastructural
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requirements. In order to share resources we need to keep a track of the resources

of the friends and acquaintances. We however cannot maintain the resources of each

persons along with the relationships on a single machine. In the next section we will

see how to maintain the list of resources even for a large scale social network like

Facebook.

1 Social Network Resource Management Implementation

When implementing a social network one will deal with millions of data. This

large number of users can cause difficulties which will be discussed in the following

section. We first start our design with a simple case and we then apply it for a larger

network. We first build a graph by assuming every storage machine is a node. Each

user can have multiple storage machines like phones, tablets, laptops and computers.

An edge exists between two nodes if the two people are friends with each other. We

can design a class for the node as

pub l i c c l a s s Node

{

p r i v a t e long NodeID ;

p r i v a t e Node [ ] f r i e n d s ;

Node ( p r i v a t e long ID)

{

NodeID=ID ;

}

pub l i c Node [ ] GetFriends ( ) ;

pub l i c bool AddFriend (Node node ) ;

pub l i c bool RemoveFriend (Node node ) ;

}

If we want to find the connection between two people we can use the breadth

first search algorithm.
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Input : A graph G and a root v o f G

1 procedure BFS(G, v ) i s

2 c r e a t e a queue Q

3 c r e a t e a s e t V

4 enqueue v onto Q

5 add v to V

6 whi l e Q i s not empty loop

7 t Q. dequeue ( )

8 i f t i s what we are l ook ing f o r then

9 re turn t

10 end i f

11 f o r a l l edges e in G. adjacentEdges ( t ) loop

12 u G. adjacentVertex ( t , e )

13 i f u i s not in V then

14 add u to V

15 enqueue u onto Q

16 end i f

17 end loop

18 end loop

19 return none

20 end BFS

But the problem comes into picture when we are dealing with millions of users. We

will not be able to store data of millions of users on a single machine. The data has

to be distributed onto multiple machines and our simple implementation above will

not work.
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2 Large Scale Design

When we deal with Big Data, like the data of social networks e.g., Facebook,

Google+, Twitter etc., we cannot possibly keep all of our data on a single machine. It

means that a simple data structure will not suffice. It is explained in more detailed in

the book “Cracking the Coding Interview” [42]. Data for different persons may reside

on different machines or even different data centers. Hence we need a better method

of searching for individual data and relationships data across multiple machines. This

can be described by an algorithm, described in C# code below.

The following code demonstrates our algorithm:

us ing System ;

us ing System . C o l l e c t i o n s . Generic ;

us ing System . Linq ;

us ing System . Text ;

us ing System . Threading . Tasks ;

namespace Socia lNetwork

{

pub l i c c l a s s WebServer

{

pub l i c L i s t<Computer> Computers = new List<Computer>() ;

}

pub l i c c l a s s Computer

{

pub l i c L i s t<Person> per sonDi rec to ry = new List<Person >() ;

pub l i c i n t computerID { get ; s e t ; }

}
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pub l i c c l a s s Person

{

p r i v a t e Lis t<int> r e l a t i o n s h i p s = new List<int >() ;

pub l i c i n t personID { get ; s e t ; }

p r i v a t e i n t machineID { get ; s e t ; }

pub l i c s t r i n g Name { get ; s e t ; }

p r i v a t e WebServer Web Servers = new WebServer ( ) ;

pub l i c Person ( i n t iD , i n t machineID , s t r i n g name)

{

Name = name ;

personID = iD ;

t h i s . machineID = machineID ;

}

pub l i c i n t [ ] g e tRe l a t i on s ( )

{

//Method 1

// Create an array with same s i z e as the

// r e l a t i o n s h i p s l i s t o f a person

i n t [ ] r e l a t i o n s A r r a y = new i n t [ r e l a t i o n s h i p s . Count ( ) ] ;

//Copy i d s o f r e l a t e d persons to array from the l i s t

r e l a t i o n s h i p s . CopyTo( r e l a t i o n s A r r a y ) ;

r e turn r e l a t i o n s A r r a y ;

//Method 2

// return r e l a t i o n s h i p s . ToArray ( ) ;

}
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//Add r e l a t i o n to person data based on provided ID

pub l i c void addRelat ion ( i n t id )

{

r e l a t i o n s h i p s . Add( id ) ;

}

// Search f o r a person given t h e i r person ID

// and computer ID

pub l i c Person sea r chRe la t i on ( i n t computerID , i n t ID )

{

// Ret re ive computer by ID from Web Serve r s

// Computers c o l l e c t i o n

var Target = from computer in Web Servers . Computers

where computer . computerID == computerID

s e l e c t computer ;

//Method 2 − Optimization , use a l r eady provided func t i on

// var targetComputer= lookupComputer ( computerID ) ;

// Cast to Computer

var targetComputer = ( Computer ) Target ;

//Find person in Person d i r e c t o r y i f the person e x i s t s

var person = targetComputer . pe r sonDi rec to ry .

Find (p => p . personID == ID ) ;

i f ( person != n u l l )

r e turn person ;

e l s e

re turn n u l l ;
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}

// Search f o r computer g iven computer ID

pub l i c Computer searchComputer ( i n t computerID )

{

//Find computer g iven the computer ID

var computerResult = Web Servers . Computers .

Find ( x => x . computerID == computerID ) ;

i f ( computerResult != n u l l )

{

r e turn computerResult ;

}

e l s e

{

r e turn n u l l ;

}

}

}

}

Following are some optimizations that can be applied to our algorithm to improve

multi node searches:

• Reduce Hops:

Hops from one machine to another are computationally expensive when search-

ing through the entire graph. As such we need a mechanism in which multiple

related persons are located in the same node (computer) or if one relation of

person is found on a single computer the next should also be searched in the

same node. This would reduce machine hops which in turn would speed up the

search through the graph.
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• Use of a hash table for visited nodes:

In a usual traversal, visited nodes are marked. This cannot be used in our case

since simultaneous searches might be done, hence the visited flags may cause

unexpected results. For optimum performance and to avoid collision with other

searches, we can use a hashtable of visited nodes. Each search will have its own

hashtable, hence there will be no collision and traversal can occur in a efficient

manner.

• Redundancy:

Redundancy is key for Social Networks. If a system fails there should be an-

other system ready to take its place. Redundancy will also be used for sharing

workload. There can be multiple computers that work in parallel which share

their jobs, and if one stops the others can share the workload of the failed ma-

chine. Same data is spread across multiple machines to cater for server failures

and for parallel processing.

• Collection of Related People in a single machine

It is much more probable statistically for people to have relationships within

the same country. Using this knowledge, we can group people of same countries

on machines in the same geographical location. This procedure can be done

on addition to the datastore. In addition, we can check locality of the person

and add to the respective machine. This should help us achieve faster response

times during searching and traversal for person data.

• Caching Data per Region

We can also reduce search times by caching person data based on searches.

Every search should first search inside the cache instead of hopping multiple

machines. The cache could be considered a hashmap for sake of simplicity and

every search would first go through this. This could drastically reduce search

time as the cache can be located on the web server instead of accessing the
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database. Data can be processed in parallel by several concurrent systems and

this is the key to the speed of large social networks.

E Evaluating the potential social storage provider

SDSF stores the data based upon the underlying trust in the nodes from the

social networks unlike the untrusted nodes in P2P. Social networks are built based

on real world relationships and can be used to form virtual organizations as shown

in Figure 11. We can use the different social networks like Facebook, Twitter etc. to

find the relationships which can then be used to form a virtual organization.

Social Layer

Facebook

Twitter

Internet user

Social accounts mapped to User Storage Devices

Family group

Reliable storage nodes

S
to

re D
ata

Figure 11. SDSF using Social Networks

Social network is a weighted directed finite graph

G = (V,E) (1)

consisting of a set V of nodes (friends, family, colleagues and other acquaintances)
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and a set E of edges (relationships). Each node is characterized by the tuple

< S,A,B,Dg,D > (2)

where S refers to storage space available on the node for storage allocation, A refers

to availability percentage which is the ratio of on-time to total-time, B refers to

bandwidth of node, Dg refers to Degree of node, and D refers to the delay. To locate

the potential storage nodes, the source node explores the social storage provider.

In particular, the source node will search for social nodes that have enough storage

space while satisfying certain constraints such as trustworthiness and availability. In

practice, however, the size of the social network is very large (i.e., millions of nodes).

It is impossible to search all the options to find an optimal solution. Randomly

selecting n nodes out of the available nodes could result in an undesirable outcome

such as stored data may not be recoverable. In the following subsections, we will

show how a source node optimally selects storage nodes. While selecting nodes for

storage we have to take into consideration the following:

• Security of data

• Time to perform operations on files

• Availability of files

The evaluation of these attributes along with trust is used to identify nodes that are

trust worthy for storing data. We have to identify a potential subset v ⊆ V in order

to store the user’s data. At the same time, the system must be flexible to allow users

to specify additional parameters for determining storage nodes.

Trust relationship between nodes is one of the criteria in the selection of the

storage providers. Trust t in our context is the confidence a user i has in another user

j that his data will not be misused in any way by the user j. Let ti→j be the trust or

confidence, node i has in node j. Assume ti→j ∈ [0, 1].
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Obtaining the global optimal solution is impossible due to the large size of

the social network. Therefore, our approach seeks for a local optimal solution via an

iterative-deepening search on the social network provider. The purpose of this step is

to identify a set of nodes Vs which are trustworthy and have sufficient storage space.

The search algorithm is illustrated in Figure 12.

1 Finding the Potential Storage Nodes
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Figure 12. Exploring the social network provider to identify the potential storage
nodes.

The source node s (i.e., the node wants to store data) performs many breadth-

first searches (BFS) with the depth enlarged after each iteration, until the query is

satisfied or the maximum depth d has been reached. For example, s wants to have a

two-iteration deepening request where the first iteration searches for potential storage

nodes within the depth of a hops and the second iteration searches for potential

storage nodes within the depth of d hops (d > a). Nodes (i.e., social network users)

having the requested storage space within a hops away from the source will reply to

the source. Upon receiving replies from the storage node, the source s will evaluate
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if the request is satisfied (the number of potential storage nodes is greater than n).

If not, s proceeds to another BFS of depth d by sending a signal to the a-hop nodes

forwarding the request message for (d−a) more hops. Using this approach, the source

will progressively improve its search result by increasing the depth of the search after

each iteration. To mitigate the effect of the low-rate transmission links, the source

can change its time window T to a larger value to accommodate delayed replies. In

the next subsections, we will describe how the source node computes the social ties

with respect to the potential storage nodes.

2 Evaluating Trust Score of Neighboring Nodes

Two nodes are considered neighbors if they are either directly connected in the

social networks or have interacted with each other in the past.

Intermediary Users

1

2

3

4

5

6

Source User Target User

t 1->2

t 1->3

t 2->4

t 3->5

t 5->6

t 4->6

t 1->5

Figure 13. Social Network of User 1. Users 2, 3 and 5 are direct friends of User 1.
Users 4 and 6 are indirect friends of user 1 through common or intermediary friends

A sample social network is shown in Figure 13. Users 1 and 2 are considered

neighbors and users 1 and 6 are considered non neighbors. A simple way to select

storage nodes is to use “service trust” between neighbors. The “service trust” value

indicates the satisfaction of the data storing service of a source node on a data storage

node. For example, node A stores its data into node B and B always correctly responds

to A when requested. Thus, A trusts in B and sets its service trust value in B to

a high value. However, selecting storage nodes solely based on the “service trust”
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in distributed storage system may not reliable as a malicious node can dissemble

working properly before turning into an adversary node. To cope with this, in SED,

a source node selects its storage nodes based on a trust score which is computed from

the service trust and social trust values. The social trust value of node s on node

z indicates the trust level of node s on z from the social viewpoint. For example,

node s has social relationships with A and B, where A is a family member and B is

a classmate; thus, the social trust of s on A is generally higher than that of s on B.

• Social Trust Value:

The social trust value is derived from the online social interactions (e.g., profile

viewing activities, picture tagging, wall status postings, etc.) between the users.

The stronger the relationship (i.e., higher social trust value), the higher the

likelihood that a certain interaction takes place between the users [21]. Assume

that s and z are two neighbors and let y
(t)
s,z, t = 1, ...,m be the m different

types of interactions between them. We define Ts,z as the social trust value of

s on z. Here, for simplicity, we assume that the trust value of s on z is the

same as that of z on s. However, the framework can also be extended for the

scenario of unequal trust values between two neighbors, albeit with additional

computation. To compute Ts,z, time is divided into several equal periods, i.e.,

time windows [ti−1, ti]. Let n
(t)
s,z(i) be the number of interactions of type t in the

social network between s and z during the ith time window, and ∆t
(t)
s,z(i) be the

time span of type t interactions. Furthermore, let a
(t)
s,z(i) be the auxiliary factor

capturing the impact of type t of interactions between s and z in the ith time

window. The graphical model of social trust computation is shown in Figure

14(a). Mathematically, the social trust value for the ith time window can be

computed as:

Ts,z(i) =
m∑
t=1

a(t)s,z

n
(t)
s,z(i)

∆t
(t)
s,z(i)

. (3)

• Service Trust Value: On the other hand, the service trust value is derived from
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Figure 14. Graphical representation of trust score of two neighbors.

the past experience of the data storing service of node s on z. Let g
(t)
s,z(i)

and τs,z(i) be the number of satisfied storing service transactions and total

transactions of s to z in the ith time window. The service trust value is expressed

as:

Rs,z(i) =
gs,z(i)

τs,z(i)
. (4)

• Trust Score:

From Eq. (3) and (4), s computes its trust score on z over N time windows as:

w(s, z) = β

N∑
i=1

α−i

[
λ

m∑
t=1

a(t)s,z

n
(t)
s,z(i)

∆t
(t)
s,z(i)

+ (1− λ)
gs,z(i)

τs,z(i)

]
, (5)

where α is the discount factor (e.g., α = 2) to count the latest experience

more heavily than the past ones, λ is the trade-off value to adjust how much

to put weight on social trust and service trust, and β is the normalization
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factor ensuring w(s, z) ∈ [0, 1]. The graphical representation of the trust score

computation from s on z is illustrated in Figure 14(b).

z

A B

C D

w(s,C)

w(C,D)

w(D,z)

w(s,A)

w(A,B)

w(B,z)

(a) An example of trust propagation via 

two disjoint paths

s z

(b) Trust propagation in real social network

Social network

a1

a2

ak

ai

an

s

Figure 15. Graphical representation of trust score of two non-neighbors.

3 Trust Propagation in Social Networks

We now show how to compute the trust score of node s on node z where

they are not neighbors. Computing the trust score between two non-neighbors in the

social network is challenging because of the sophisticated social connections between

them. In addition, there are possibly several paths with different lengths that the

source node reaches to the target storage node. Consider a simple example in Figure

15(a) where source node s reaches to storage node z via two social paths with four

intermediate nodes A, B, C, and D. From the previous subsection and Eq. (5), node

s can compute the trust scores on its neighbors A and C as w(s, A) and w(s, C).

However, it cannot compute its trust score on z as they are not neighbors. To tackle
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this issue, we adopt the approaches in [17] [18], which have been proposed to compute

the trust propagation in web-based social networks. The main idea is to compute the

trust score based on the referral scores of the intermediate nodes. For example, in

Figure 15(a), s estimates its trust score on z by simply averaging the trust scores

aggregated from the two social paths s → A → B → z and s → C → D → z with

equally weighted factors:

w(s, z) =
1

2
[w(s, A)w(A,B)w(B, z)

+ w(s, C)w(C,D)w(D, z)]. (6)

In general, however, s reaches to z through a social network with sophisticated social

connections shown in Figure 15(b). The interconnections between s and z typically

are created in large size mesh networks. However, if s has complete global knowledge

of the interconnections reaching to z, it can compute the expected trust score on z

as:

w(s, z) = Φi (θs,ai , w(ai, z)) , (7)

where θs,ai is the weight factor assigned by s over intermediate node ai’s trust score

on z, and Φ denotes the aggregation function that combines the weighted trust scores.

Unfortunately, in real social networks, obtaining the complete global knowl-

edge of the connections between two non-neighboring nodes is time consuming and

sophisticated due to the large size of the network. In fact, this is an NP-Complete

problem [19] [20]. To tackle this, the proposed SOS system searches for only the set of

K best paths to the potential storage node. Particularly, suppose there are n nodes,

including the source and the storage nodes, on the path from source s to storage node

z, and K is the set of best K disjoint paths, the aggregated trust score of s on z can

be mathematically written as:

w(s, z) =
1

K

∑
j∈K

∏
[ai,ai+1]∈pj(s,a1,a2,...,an−2,z)

wj(ai, ai+1), (8)

where pj(s, a1, a2, ..., an−2, z) is the jth path from s to z, wj(ai, ai+1) is the weight

factor assigned by ai over ai+1’s trust score on z. The question is how to find the best
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K paths from a source node to a target node? Unfortunately, finding K best paths

is also an NP-complete problem [43]. Therefore, to tackle this issue, we propose an

approach which utilizes the Dijkstra’s algorithm to search for theK best disjoint paths

between the source and target nodes. However, the Dijkstra’s algorithm searches for

the shortest path while our objective is to find the paths with maximum trust values.

Fortunately, this issue can be resolved by subtracting the trust value of each link

from the unity trust value, i.e., the maximum possible trust value. For example, the

trust value between two node u and v is w(u, v) which is computed by Eq. (4). In

order to utilize the Dijkstra’s algorithm we use the weight of the link between u and

v as 1 − w(u, v). As a result, finding the shortest path is equivalent to finding the

path with maximum trust value. Once a path has been obtained, we then remove the

intermediate nodes on the identified path from the graph, and find the next shortest

path using the same algorithm. The algorithm is repeated until K paths are identified

or there are no more paths left. The algorithm is summarized in Algorithm 1.

Algorithm 1 Finding K Paths using modified Dijkstra’s algorithm

1: Input(M,W, vs, vt, K) {M is an adjacency matrix that represents the sub network
between vs and vt. W is the edge weight matrix. The edge weight wai,j =
1− Trustai,j }

2: Output((p1vs→vt), ...(p
G
vs→vt)) {pivs→vt is the ith shortest path found. G is the

number of feasible solutions. G ≤ K }
3: Dijkstra’s Algorithm (M,W, vs, vt)
4: if Shortest Path Found then
5: Add pvs→vt to output paths.
6: Remove intermediary nodes pvs→vt from M .
7: if K paths Found then
8: Return K Paths
9: else

10: Goto Line 3
11: end if
12: else
13: return G Paths {G < K}
14: end if

The time complexity of the algorithm is O(K(m+ nlog(n))) as we repeat the
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Dijkstra’s algorithm K times. Here m is the number of nodes and n is the number of

social links. In the next section, we will evaluate the performance of the proposed SOS

via analysis and simulations. In the next section, we will evaluate the performance

of the proposed SOS via analysis and simulations.

F Fault Recovery

Whenever a node fails, data on that node must be recovered and must be

written to a new node. Figure 16 shows a failure at node D. Data from node D must

be recovered and written to Node F. Since we cannot access the failed node we can

recover data from the existing nodes using either minimal storage technique. It can

be used for fragment self-regeneration.

(n,k)=(4,2) Erasure Code System

A

B

C

D

E

x1

x2

y1

y2

y3

y4

F

y5

A

Data writing

Data reading

Data repair

Figure 16. Node Failure

1 Minimal Storage Nodes (MSN)

Self-regeneration with minimal storage nodes is developed based on the tradi-

tional erasure code that allows the original file to be recovered by using any k out

of n fragments. In the SDSF, each storage node has l fragments to achieve minimal

storage nodes. Therefore, using any l.k fragments from k node is able to regenerate

new l.k fragments in the new node. Figure 17 depicts the process that continues

the example in Figure16. Suppose node is unreachable as shown in Figure 17. By
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connecting to any of two available nodes (e.g., v2 and v4 in Figure 17), the new node

(e.g., v5) can reconstruct the whole file and generate new encoded fragments (e.g.,

c1,3 and c2,3 in Figure 17). It is noted that c1,3 in v3 may not equal to c1,3 in v5,

due to different coefficients. This approach repairs the fragments by minimal number

of nodes and thus it is highly resilient for up to ((n− k)) compromised nodes. In

addition, it has the minimal number of connections (i.e., k) from the new node to

storage nodes. The shortcoming of this approach is that the communication cost may

not be minimized. The end-to-end communication overhead is k · l · |ci,j|, where |ci,j|

is the size of a fragment.

1,3 1 2 3 4c b b b b   

1,1 1c b

2,1 3c b

1,2 2c b

2,2 4c b

2,3 1 2 3 42 3c b b b b   

1,4 1 2 3 42 3c b b b b   

2,4 1 2 3 43 2c b b b b   

1
v

2
v

3
v

4
v

1,3 1 2 3 45 2 3c b b b b   

2,3 1 2 3 42 2 3c b b b b   

5
v

,
is the communication overhead 

for each fragment.

i j
c

Communication overhead is 
,i jk l c 

Figure 17. Self-regeneration with minimal storage nodes

2 System reliability

For simplicity, suppose the storage devices fail following the same distribution

with the probability of failure λ. The failure could be due to physical damage or

security compromise. We assume that the failures of the devices are independent. In

our proposed system, we implement the (n, k) coding scheme where the data is stored

into n nodes and any k of them is sufficient to recover the original data. In order for

the system to fail, there must be more than n − k failures at the same time. Let X

be the random variable denoting the number of storage devices which fail at a time
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instance. The probability that the system fails can be expressed as:

Pr(system fails) = Pr(X > n− k)

= 1−
n−k∑
i=0

(
n

i

)
λi(1− λ)n−i. (9)

From Eq. (9), it is clear that when k increases, the system reliability decreases as

it can tolerate less number of failures. In this case, the data redundancy that is

necessary in the storage is reduced.

3 Data regeneration overhead

We now compute an average of how much data needs to be transferred over the

network for data regeneration. Similarly, we assume that at any time instance, a data

storage device fails with probability of λ. Let X be the random variable denoting the

number of failed storage devices. We then can write the probability that i storage

devices fail at the same time is

Pr(X = i) =

(
n

i

)
λi(1− λ)n−i. (10)

In the case of MSN, whenever a storage device fails, it requires a transmission band-

width of the original data piece, i.e., f = m/l, which is downloaded from the k storage

devices. Let Y be a random variable denoting the amount of transmission bandwidth

used for data regeneration. Therefore, we can compute the expected transmission

bandwidth for data regeneration as:

E[Y ] =
n−k∑
i=1

i× f × Pr(X = i)

= f

n−k∑
i=1

i

(
n

i

)
λi(1− λ)n−i

= f ×

(
nλ−

n∑
i=n−k+1

i

(
n

i

)
λi(1− λ)n−i

)
, (11)

where the last equation is achieved by using
∑n

i=0 i
(
n
i

)
λi(1 − λ)n−i = nλ, i.e., the

expectation of the Binomial distribution with parameters n and λ.
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G Security

SDSF system has to protect the data on the individual unreliable data nodes.

It has to verify the mobile node to verify that it is who it claims it is. SDSF system

also has to make sure it has the authority to request the data. We have implemented

security at various levels in our storage system. We use authentication, authorization,

encryption and erasure coding for securing our data. We use AES encryption to

encrypt the data files and use Shamir’s secret key algorithm (explained below) to

split the key into n keys. We store each key along with the n chunks generated from

the erasure coding algorithm. In order for someone to illegally reconstruct the files

they have to gain access to at least k servers. Unless they get access to the k servers,

they cannot get the k keys to reconstruct the original key. Once they get the original

key, only then will they be able to decrypt the k files. Also they need the k files along

with the reconstructed key to decode the original file.

1 Shamir’s Secret Key

We implemented Shamirś [44] secret key sharing algorithm to minimize the

risk of someone getting access to the key. We will take an encryption key and will

split the encryption key into n keys and store each key along with the n data nodes.

The property of Shamir’s secret key is, it needs k keys out of the n keys to retrieve

the original Key K. Once we split the key into n sub keys we delete the original

key. So in order to decrypt the file, we need to get the original key which can only

be obtained by getting k sub keys. In order to get k sub keys, an intruder must get

access to the k storage nodes. Suppose that our secret key is 7772. Consider (n, k) =

(6, 3). Choose k − 1 random keys. For example 55, 70. The polynomial function is

f(x) = 7772+55x+70x2. We can construct 6 sub keys from the polynomial function.

(f(1), 7897), (f(2), 8162), (f(3), 8567), (f(4), 9112), (f(5), 9797), (f(6), 10622).

In order to reconstruct the original key we need any 3 sub keys. Consider we
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have f(2),f(4),f(5). (x0,y0), (x1,y1), (x2,y2) = (2, 8162), (4, 9112), (5, 9797) We compute

Lagrange basis polynomials:

f(x) = 7772 + 55x+ 70x2

l0 = x−x1

x0−x1
. x−x2

x0−x2
= 1

6
x2 − 3

2
x+ 10

3

l1 = x−x0

x1−x0
. x−x2

x1−x2
= −1

2
x2 + 7

2
x− 5

l2 = x−x0

x2−x0
. x−x1

x2−x1
= 1

3
x2 − 2x+ 8

3

f(x) =
k−1∑
j=0

yj.lj(x)

f(x) = 8162.(1
6
x2 − 3

2
x+ 10

3
) + 9112.(−1

2
x2 + 7

2
x− 5) + 9797.(1

3
x2 − 2x+ 8

3
)

f(x) = 7772 + 55.x+ 70x2

So we recovered the polynomial and the secret key 7772.

H Data Management

Users must have security and reliability while storing files without sacrificing

convenience and usability. Some of the files of a user are meant to be secure and the

access should be limited to only the file owner and with whom ever the file owner

has shared it with. But some files are meant for public (could be public for friends

and acquaintances only or public for everyone) use and other users must be able to

search and access them. If a file is marked as public by the user, though it is not

encrypted, it is stored in distributed devices. As a result of storing it in distributed

devices we cannot directly use the windows search [45] as it is used for searching for

files stored on a single machine. We cannot use the Google search engine [46] or Bing

search engine [47] for 2 main reasons:

1. Distributed storage:

Using the Google and Bing search engines directly on the distributed files will

rank them differently as compared to ranking them together as a single file. Also

the meaning from the split files could be interpreted differently as compared to

the combined file.
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2. No Meta tags:

Google search engine or any other search engine mainly relies on the website

developers to implement the Search Engine Optimization (SEO). SEO teaches

Google about the site so it can rank accordingly. Some of the SEO techniques

include specifying title, keywords, meta tags, schema. The developer of the

website specifies these details which will be used along with the content of the

website to rank the websites. However, in our storage system, the file owner

will not have to provide the tags for the documents which will make it difficult

to search for the documents efficiently.

Information Fusion in distributed systems Chapter IV will explain how to search for

publicly shared files efficiently in our social distributed storage system.
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CHAPTER IV

INFORMATION FUSION IN DISTRIBUTED SYSTEMS

Approaches such as mediation data fusion [48] as shown in Figure 18 perform

the distributed fusion in order to avoid the collection of data into a centralized server.

In the mediation information fusion, Mediator transforms a user query into several

Mobile 
Phones

DesktopsLaptops

Distributed Heterogeneous Data Sources

Sub-
query

User

Query/
subscription

Results

Result 1 Sub-
query Result k

wrapper

Result 2Sub-
query

Mediator

wrapper wrapper

Accessing 
data source

Accessing 
data source

Accessing 
data source

Figure 18. Multi-intelligent Information Fusion Approaches

sub-queries which are further transmitted to the data sources where they are executed.
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Wrappers then extract the data knowledge from the local data sources. Figure 18

shows the process in which a user’s query leads to data fusion that is performed in a

distributed manner. Mediator breaks the query into sub-queries and gives them to the

Wrapper. Wrappers separately access the distributed and heterogeneous data sources

(e.g., mobiles, laptops, desktops and servers) as shown in Figure 18. In the end, the

results from local wrappers will be integrated at the Mediator before displaying them

to the user. The mediation information fusion is well scalable even for a large number

of data sources.

keywords

Enhanced N-gram 
Alg.

SDML Alg.

MRF Alg.

Enhanced keywords

Accessing distributed 
data sources

Extracted data Feedback

Fused data

Satisfying 
stop criteria?

Start

No

Yes

End

Return fused information

Heterogeneous data 
sources in the cloud

Figure 19. NSM Information Fusion Procedure

We perform information fusion on the cloud using N -gram, Semantic Machine

Learning, and M ap Reduce (NSM) Algorithms. The innovations of the proposed

NSM is to improve the information fusion accuracy and efficiency for processing het-
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erogeneous, distributed, and massive data on the cloud for tactical information fusion

services. The information fusion could start with a query request issued by a user,

e.g., from a mobile device. The query consists of various fusion parameters like key-

words, geographic information, time and other contextual information, and they will

be used for further filtering and fusion. Once the query is submitted to the fusion

engine, NSM then performs information fusion as shown in Figure 19 to find relevant

information.

A Technical Innovations:

While the details of the proposed NSM algorithms will be described in the

section E, the significant innovations of NSM are summarized as follows:

• Enhanced N-gram Algorithm: Our enhanced N-gram algorithm understands

the fuzzy query on two levels. In the first level, Enhanced N-gram Algorithm

has the ability to correct the misspelled query parameters. At the higher level,

it breaks a query into precise tokens to understand the needs of the user by

qualifying the contextual association.

• SDML Algorithm:

The proposed SDML algorithm allows the machine learning enabled information

extraction and semantic mappings. This property is highly desirable in the

tactical environments, where the information comes from different sources across

the network nodes.

• MRF Algorithm:

The proposed MRF algorithm provides an efficient way to fuse information

retrieved from multiple data sources. Importantly, the trustworthiness of the

information sources is also modeled and taken into account when performing

reasoning and integration.
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B N-grams Overview

N-gram are used to process ambiguous user queries. N-grams are explained

in great detail in [49]. N-grams can predict the next word from the previously

N − 1 words. Assume we are trying to find the probability of a word “vehicle”

given the occurence of the words “The thief stole a” i.e. we are trying to find

P (vehicle | The thief stole a). We can use conditional probability.

P (vehicle|The thief stole a) =
Count of(The thief stole a vehicle)

Count of(The thief stole a)
(12)

P (w1, w2, ...wn) denoted as P (wn
1 ) is the probability of the n words appearing

in that order. Chain rule of probability can be applied to solve this. Chain rule of

probability states that:

P (X1...Xn) = P (X1)P (X2|X1)P (X3|X2
1 )...P (Xn|Xn−1

1 ) (13)

P (X1...Xn) =
n∏

k=1

P (Xk|Xk−1
1 ) (14)

From Eq. (13) and Eq. (14) we can apply chain rule of probability to get the

probability for n words to be in a given sequence:

P (wn
1 ) = P (w1)P (w2|w1)P (w3|w2

1)...P (wn|wn−1
1 ) (15)

P (wn
1 ) =

n∏
k=1

P (wk|wk−1
1 ) (16)

Figure 20 shows the Google N-gram viewer for books. Suppose a user is trying to

search for Newton’s first law of motion. Assume that the user types in “The first law

describes that”. If we are trying to correct the query, and if our alternative is “The

first law describes that”, and if we perform N-gram on both the queries the former

query does not even show up while the latter query has a probability. This way we

can replace the former query with the corrected query.
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Figure 20. Sample Google N-Gram Viewer

C Keyword Indexer

In reality it is not feasible to analyze all the documents available on all the

storage devices as we do it in real time and the results have to be given to the user

immediately. So we get the keywords and classify the documents before performing

the erasure coding and storing them in distributed storage devices. Once we get the

keywords we perform the following:

• Remove stopwords: We remove all the stop words like ‘a’, ‘the’ etc.

• Normalization: We perform normalization by removing period symbols, con-

verting all characters to lower cases etc.

• Stemming: We then perform stemming by removing the ‘ing’, ‘s’ etc.

• Assigning weights: We then assign weights to the documents pointing by these

keywords based on the word count, rarity of keyword etc.

64



We then store these keywords in indexing servers. Figure 21 shows the process of

classification and file retrieval. When a user uploads a file, we extract the keywords

and store them in indexing servers along with the file ID, location and synonyms.

When a user is searching for files, we get only the related files from the indexing

servers and perform NSM only on those files. This way we don’t have to perform

fusion on millions of documents, but we can perform only on the relevant documents

saving both time and computation power.

D Our Approach to Information Fusion

• Enhanced N-gram Algorithm:

Our enhanced N-gram algorithm understands the user query and contextual

factors. It clarifies the query request on two levels:

– Word Level: N-gram algorithm corrects the misspelled keywords.

– Query Level: N-gram algorithm associates the request with the contextual

knowledge to generate a more precise query.

• Semantic and Distributed Machine Learning (SDML) Algorithm:

SDML performs semantic data mining in a distributed way across heterogeneous

data sources. Our wrappers optimize the learning process and our mappers

semantically translate the data back to the targets.

• Map Reduce-based Fusion (MRF) Algorithm:

After obtaining the results from the SDML mining, MRF performs MapReduce-

based fusion. It promotes in-depth information fusion and collaboration. The

results obtained from a data source can be used as a new clue to learn other

data sources and retrieve relevant information. MRF returns the results to the

user only if the stop criteria is satisfied, as shown in Figure 19. Otherwise, MRF

iteratively exploits collaborative learning and mining until the result is optimal.
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Indexing Servers
(Format: Keyword, File ID, Location)

“There was…”

“Vehicle theft...”

“Hi, John!...”

“John was…”

Processing Servers
File ID: 101

Vehicle Theft, 101,
192.168.1.101

Query: Vehicle Theft

Vehicle Theft

Query Results

Vehicle Theft, 101, 
192.168.1.101

Indexing Servers

Information Fusion

FILE UPLOADING

SEARCHING

Personal storage devices of friends and family

Personal storage devices of friends and family

192.168.1.102
192.168.1.101

192.168.1.103

192.168.1.4

Social Friends

Social Friends

192.168.1.102
192.168.1.101

192.168.1.103

192.168.1.4

Figure 21. Keyword Extractor Prior to distribution
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NSM is specifically developed for real-time information fusion with high precision

and low runtime. It provides a fuzzy-based query that understands the user’s need

in a given context. NSM uses distributed machine learning to discover the useful

information from unstructured data across a number of heterogeneous data sources.

More importantly, it provides performance benefits to satisfy the information fusion

services:

• Fusion Precision: NSM improves the fusion precision across heterogeneous data

sources in the following way:

– Query Accuracy: Our enhanced N-gram algorithm uses the contextual

information and external knowledge to generate an accurate query that

leads to a precise outcome from the query.

– In-depth Collaboration: SDML improves the accuracy by an iterative pro-

cessing across clouds. It allows the information obtained from a data source

to be used as new input feedback to other data sources in order to find

more relevant information.

– Semantic Integration: MRF designs the semantic mapping function to

improve the accuracy by allowing the information from different sources

to be contextually integrated.

• Real-time Capability: NSM is adapted to distributed environment and our al-

gorithms are optimized to satisfy the real-time tactical applications.

E Enhanced N-Gram Algorithm

N-gram [50] estimates the Edit Distance for detecting and correcting typos in

a query. We propose the enhanced N-gram algorithm to understand the entire query,

instead of individual keywords only. It uses an N-Gram-based probabilistic model to

precisely refresh the user’s request for a fuzzy query.
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Enhanced N-gram algorithm takes advantage of two external resources that are avail-

able:

• Contextual Information:

The contextual and situational knowledge of the user can be used to better

understand the user query. The knowledge could be the time, geographic infor-

mation, age etc. that allows us to contextually filter content for a specific area

and time of interest such that the specific contextual questions are addressed in

the distributed learning and fusion.

• Lexical resource:

Lexical resource is a collection of user-defined resources and the open resources

available on the internet like Wikipedia and WordNet. The use of these re-

sources provide linguistic information about words and relationship between

concepts of natural languages.

Let w be a keyword and D be the collection of all available contextual and lexical

resources. Given a fuzzy-based query, the enhanced N-gram algorithm performs (i)

Correcting typos in a query and (ii) Understanding the entire query, as illustrated

below.

Correcting typos in a query: It corrects the typos in a query which consists of a set

of words w. Let UD ⊆ Σ∗ be a finite universal lexicon, which conceptually consists

of all the words in D. We define the set CD(w) of candidates as:

CD(w) = {w}
⋃
{w′ ∈ UD|ed(w,w′) ≤ δ}, (17)

where δ is a pre-specified threshold and ed(w,w′) is the edit distance between two

words w′ and w. In our framework, the edit distance ed(w′, w) is defined as the

number of insertion, deletion, transpose and substitution operations to transform w′

to w.

• N-grams based similarity scores:
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To identify the candidates of the input query, we use the similarity score function

over D. Particularly, the similarity score between two strings w′ and w using

the N − grams model is expressed as:

scoreD(w′, w) =
|w′
⋂
w|

|w′
⋃
w|
, (18)

where |w′
⋂
w| and |w′

⋃
w|, respectively, denote the number of similar N −

grams in w′ and w and the number of unique N − grams in the union of w′

and w. For example, the similarity score of the misspelled word w′ = “vahicl”

and the correct word w = “vehicle” using an N − grams with N = 2, i.e.,

bi-gram, is 3/8. This is because using bi-grams model, w′ is represented as

{“va′′, “ah′′, “hi′′, “ic′′, “cl′′}, whereas w is represented as

{“ve′′, “eh′′, “hi′′, “ic′′, “cl′′, “le′′}.

Therefore, the number of similar bi-grams w′
⋂
w = 3, i.e., {“hi”,“ic”,“cl”},

and the total number of unique bi-grams in the union w′
⋃
w = 8, is

{“ve′′, “eh′′, “hi′′, “ic′′, “cl′′, “le′′, “va′′, “ah′′}.

• Selecting candidate set:

We denote the candidate set as topD(w) which is a set of k words w′ ∈ CD(w)

with the highest k scoreD(w′, w). If |CD(w)| < k, then topD(w) is simply CD(w).

Understand the Entire Query: The input query usually consists of several keywords

with contextual association. It is not enough for just correcting individual keywords

without considering query semantic and context. In other words, we need to under-

stand the entire query in the given contextual environment. We assume that the

input query, possibly consisting of misspelled words, s = 〈s1, s2, . . . , sn〉. As shown

above, i.e., the word-level correction, the algorithm creates a set CD(s) of sugges-

tions and determines the values scoreD(r, s) for ∀r ∈ CD(s). In addition, for a word

w = w1w2 · · ·wm of m characters, we denote by w[i,j) the word wiwi+1 · · ·wj−1. Fur-

ther, we denote the word wiwk as a concatenation of wi and wk. Furthermore, we
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denote bsc = s1s2 · · · sm, a single word, which is constructed by concatenating the

words of s. For instance, if w1 = “vehicle” and w2 = “theft”, then s corresponds

to the query “vehicle theft”, whereas bsc is the word “vehicletheft”, and bsc[1,8) =

“vehicle”.

• Query segmentation:

Query segmentation plays an important role in breaking the input query into

precise tokens. For example, if the user enters “vahiclethef”, a good system

should identify it as a misspelling and correct it to “vehicle” and “theft” as

tokens, as those are in fact the tokens that the user had in mind.

– Token candidate:

We define w = bsc[i,j) a token candidate if w is a word of s, or there is a

word w′ ∈ CD(s) such that scoreD(w′, w) > ε for some pre-specified value

ε. Intuitively, w is a token candidate if it is an original token of s, or if we

have a high confidence in our word-level suggestion to correct w.

– Tokenization:

We define a tokenization of s as a sequence J = 〈j1, j2, . . . , jl〉 with j1 =

1 and jl = m + 1. Then the tokenization J induces a set of tokens

〈bsc[j1,j2), bsc[j1,j2), . . . , bsc[jl−1,jl)〉. J is called a tokenization candidate if

each token induced by J is a token candidate.

• Query correction optimization:

The query correction is formulated as an optimization problem to find the op-

timal tokenization J∗ of the input query:

J∗ = argmax
J

[
l∑

i=1

scoreD(w′i, wi)

]
, (19)

where wi = bsc[ji,ji+1) and w′i ∈ topD(wi). The intuition of the optimization

formulation expressed in Equation (19) is that the algorithm scans all the pos-

sible tokenization’s of the input query and finds the best one which maximizes
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the summation of the similarity scores of all induced tokens. In practice, the

algorithm runs very quick because it considers only misspelled tokens while ig-

noring the correctly spelled words. For example, if the user enters “vahiclthef

near forward operating base in Delhi, Afghanistan”, the algorithm will focus

on correcting “vahiclthef” and ignore the other tokens as they are correctly

identified in D.

The output of the QP algorithm is tokens that are sent to the distributed data mining

agents which semantically reformulate the query in the local ontologies to retrieve the

relevant information from the local data sources.

F SDML Algorithm

The SDML algorithm performs (i) Information extraction by selecting appro-

priate ontology to associate with the data sources, and (ii) Data mining by semantic

mapping and auto-learning.

1 Information Extraction:

Each cloud node ni extracts the useful information from its data source. The

SDML algorithm, with little training, can self evolve and automatically identify en-

tities, relations, and co-references from the data source, and has the following three

components:

Topic Identifier:

We implement the clustering method based on a predefined set of most com-

monly used words to identify topics of the data source. In this method, data sampled

from the data source (e.g., text documents) is represented as an unordered set of

words, regardless of grammar. The frequency of each word occurrence is then used as

a feature for training a classifier. For example, we have two text documents: “a car
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was stolen last week” and “a truck was stolen by a person”. Here we use Map Reduce

to count the number of keywords. Figure 22 shows an example of how word count is
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Figure 22. Map Reduce word count

done using Map Reduce. Based on the data source, a dictionary can be constructed as

{“a′′ : 1, “car′′ : 2, “person′′ : 3, “truck′′ : 4, “stolen′′ : 5, “by′′ : 6, “last′′ : 7, “week′′ :

8, “was′′ : 9}, consisting of nine distinct words. The two documents are then rep-

resented as vectors, i.e., [1,1,0,0,1,0,1,1,1] and [2,0,1,1,1,1,0,0,1], where each entry

of the vectors depicts the count of the corresponding entry in the dictionary (i.e.,

histogram representation). Based on the vector representation, the algorithm can

quickly compute the occurrences of important words such as “stolen” (twice), “car”

and “truck” (each once but related.) Based on the distribution of the words, it then

classifies the documents into the Vehicle-Looting category. In addition, depending on

the purpose and the required level of the classification, the system administrator can

apply weight factors to each term based on pre-specified categories of interests. This

can be achieved from “a study of term weighting schemes using class information for

text classification” [51] with slight modifications. Based on the outcome result, the

algorithm selects an appropriate ontology to attach to the data source. Correctly

selecting the ontology is important as the data source can be precisely represented in
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a formal logical language. A parser such as the full Stanford parser can be used to

parse the document before performing data mining.

Entity Extractor:

Entity extractor is a process for automatically extracting metadata informa-

tion from the data source (e.g., unstructured text documents). This is a key step

allowing semantic query and information integration from several data sources. The

keyword or string-based approaches show several shortcomings and potentially miss

critical information. For example, keyword-based query approaches will not be able

to find documents published within a specific time window due to the inconsisten-

cies of data formats in the documents. We leverage the powerful and open source

architecture of Apache Unstructured Information Management Architecture (UIMA)

[52] for processing unstructured information. More importantly, UIMA has a “plu-

gin” architecture which allows several developers to create and extend components

which are inter-operable. These plugins are called “annotators”. We can use the

builting annotators or we can write custom annotators. Some of the available built-in

annotators [53] are:

• Whitespace Tokenizer Annotator:

This is the most simplest annotator. It tokenizes the documents simply based

on white spaces. This is not very useful.

• Snowball Annotator:

The Snowball annotator uses the stemming algorithm and creates the features

for each token.

• Regular Expression Annotator:

The Regular Expression Annotator detects entities like email addresses, URLs,

phone numbers, zip codes or any other entity based on regular expressions and

concepts.
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• Dictionary Annotator:

The Dictionary Annotator creates annotations based on word lists that are

compiled to simple dictionaries.

• BSF Annotator:

BSF Annotator is used to create annotations for scripting languages that are

supported by Apache BSF

• OpenCalais Annotator:

OpenCalais can detect a large variety of entities, facts and events like for ex-

ample Persons, Companies, Acquisitions, Mergers, etc.

• Concept Mapper Annotator:

ConceptMapper is a powerful, highly configurable dictionary UIMA-based an-

notator. Numerous parameters can be used to specify various aspects of the

lookup algorithm, input processing and output options.

• Configurable Feature Extractor Annotator:

The Configurable Feature Extractor (CFE) Annotator is a multipurpose tool

that enables feature extraction from a UIMA CAS in a very generalized and

application independent way.

• Tika Annotator:

Apache Tika is used for detecting and extracting metadata and structured text

content from various documents using existing parser libraries.

• AlchemyAPI Annotator:

The AlchemyAPI Annotator is a wrapper for the AlchemyAPI webservices

which provide text enrichment facilities like categorization, entity extraction,

language identification, keyword extraction, concept tagging etc.

• User Created Custom Annotator:
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UIMA allows for custom creation of Annotators. We can specify what type of

annotator we want.

After this process, type-specific annotations and metadata will be added to the un-

structured document (i.e., document enrichment). For example, consider a document

contains the following text: “On May 30th, 2013, Bob stole an SUV”. If the docu-

ment is run through the entity extraction algorithm, the XML-like annotations will

be automatically added to the text and produce the following output: “On <entity

date = “2013-05-30”> May 30th </entity><entity person=“Bob”>Bob</entity>

stole a <entity vehicle=“SUV”> SUV</entity>”. As shown, the entity keyword is

wrapped around three entities identified in the text. After this step, unstructured

data is transformed into structured data allowing easy data query and analysis. We

denote Di which is the transformed data source associated with cloud node ni.

Validation:

Machine learning approach allows for fast and efficient data identification and

extraction. However, it may incorrectly identify entities or may not be able to deter-

mine critical entities due to the hidden semantics of the data source. Our proposed

approach provides a “validation” step which allows the administrator to review the

found solutions with low confidence. The confidence threshold is adaptively set based

on the information source to minimize the missed detections during the learning stage.

2 Data Mining Function:

Data mining function consists of two components.

Wrappers

Wrapper ri is a specific program associated with a data source that knows

how to query and extract data from the source via the source’s query interface.

The wrapper is also designed to be able to translate between the source data (e.g.,
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in HTML format) and the data that conforms to the source schema (e.g., a set of

tuples). In particular, ri interacts with Di via the local interface to extract relevant

information passed by the input query or subscription.

Semantic Mapping (SM)

The SM maps the attributes of the entity identified by the local IEs associated

with the local ontologies to the attributes of the target ontology, creating a unified

representation of the entity. The mapping function is performed based on the se-

mantics of the attributes, instead of a keyword-based strategy as implemented in the

existing approaches. For example, consider two concepts where “Car” is used in the

local ontology and “Vehicle” in the target ontology. Using keyword-based matching

approaches, the two concepts cannot be matched and will not be integrated. On the

other hand, using semantic-based mapping, the two concepts will fall into the same

category (i.e., a thing used for transporting people or goods on land); thus, they will

be identified and integrated during the fusion process. It boils down to how to seman-

tically match the concepts between the sources’ ontologies and the target ontology.

To tackle this, we propose a probabilistic machine learning approach which automat-

ically learns and maps between structured representation of data. The architecture

of the SM is illustrated in Figure 23. It consists of three key modules: Distribution

Estimator (DE), Similarity Estimator (SE), and Labeler.

• Distribution Estimator (DE):

DE takes two ontologies Ol (i.e., local ontology) and Ot (i.e., target ontology)

as its input, together with their data instance sets Ul and Ut, respectively. The

data instances might be generated by the domain experts or sampled from the

data sources. DE implements a machine learning technique to determine for

every pair of concepts 〈A ∈ Ol, B ∈ Ot〉 their joint probability distribution

(i.e., P (A,B), P (A,B), P (A,B), and PA,B). Additionally, we denote |Ul| and

|UA,B
l |, respectively, the size of Ul and the number of instances in Ul that belong
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to both A and B. DE performs the following steps:

– Partitioning Instances:

Instances in the two ontologies are partitioned into two sets: UA
l & UA

l

and UB
t & UB

t , where UX
i represents the set of instances that belongs to

X and UX
i represents the set of instances that do not belong to X.

– Training Learner:

This step first trains a learner L for instances of A using UA
l and UA

l as

the sets of positive and negative training examples, respectively. Such an

example of learner training is shown in Figure 24 where t1, t2, t3, and t4

are instances of concept A, whereas t5, t6, and t7 are instances not belong

to A.

L is then applied to UB
t to obtain two sets UA,B

t and UA,B
t . Similarly, L is

applied to UB
t to obtain two sets UA,B

t and UA,B
t . This process is illustrated

in Figure 25. Applying the same learning process with the roles of Ol and
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Ot being reversed to obtain the sets UA,B
l , UA,B

l , UA,B
l , and OA,B

l .

In this approach, each learner Li will learn a certain type of information

from the training system and will be combined at the meta-learner.

– Estimating Joint Distribution:

When the partitioning and training processes are complete, DE then com-

putes the joint distributions of the concepts. For example, the joint prob-

ability P (A,B) is computed as the ratio between the total number of

instances belong to both A and B in both ontologies O1 and O2 to the

total number of instances:

P (A,B) =
|UA,B

l |+ |UA,B
t |

|Ul|+ |Ut|
. (20)

The other three joint probabilities are computed using the same equation

(20), using the sets UA,B
l , . . . , UA,B

t obtained by L.

We then can obtain all the desired joint distributions by applying the above

procedure to all pairs of concepts 〈A ∈ Ol, B ∈ Ot〉. The DE can be imple-

mented in parallel to speed up the mapping where each distributed node learns

to map subset of concepts in the ontology.

• Similarity Estimator (SE):

SE uses the Jaccard method to measure the similarity between each pair of

concepts 〈A ∈ Ol, B ∈ Ot〉. Particularly, we define that

Jaccard− sim(A,B) = P (A∩B)/P (A∪B) =
P (A,B)

P (A,B) + P (A,B) + P (A,B)
.

(21)

The Jaccard− sim(A,B) ∈ [0, 1], and it takes the lowest value 0 when A and

B are disjoint, the highest value 1 when A and B are the same concept. The

output from this module is a similarity matrix between the concepts of the two

ontologies.
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• Labeler:

The labeler takes the similarity matrix, the domain constraints, and user-defined

knowledge and searches for optimal mapping configuration that best satisfies

the domain constraint and the common knowledge. The domain constraints

can be domain-independent constraints (e.g., union - if all children of concept

X match concept Y , then X also matches Y ), and domain-dependent constraint

(e.g., subsumption - if Y is not a descendant of X, and Y matches “Car”, then

it is unlikely that X matches “Vehicle”). We utilize the relaxation labeling

approach which has been successfully applied to similar matching problems in

computer vision and natural language processing for matching concepts between

two ontologies. For example, we want to find the mapping from Ol to Ot, it

simply becomes how to find the best label assignment to concepts in Ol, given

all knowledge about the domains and ontologies. Let X be a concept in Ol and

L be a label (i.e., a concept in Ot). Further, we let δK represent the knowledge

of the domain (e.g., tree structures of the ontologies, sets of instances, set of

domain constraints, etc). Mathematically, the matching problem can be written

by the following conditional probability:

P (X = L|δK) =
∑
MX

P (X = L,MX |δK) =
∑
MX

P (X = L|MX , δK)P (MX |δK),

(22)

where the sum is over all possible label assignments MX to concepts other than

X in Ol. When the concepts’ label assignments are conditional independent on

δK , the last term in Equation (22) then can be further written as:

P (MX |δK) =
∏

Xi=Li∈MX

P (Xi = Li|δK). (23)

Without loss of generality, we assume that concept X has m features, where

each feature is represented by a function fi(MX , δK , X,L). It is challenging to

perform the matching between two concepts consisting of several features. To

tackle this issue, we use the signoid function σ(x) = 1/(1+e−x), which has been
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used to combine multiple sources of evidence where x is a linear combination of

the features fi. The key idea of using the signoid function is that it is essentially

a smoothed threshold function for combining evidence from the different features

with different weights, i.e., αi. Thus, the matching problem can be written as:

P (X = L|δK) ∝
∑
MX

σ

(
m∑
i=1

αifi(MX , δK , X,L)

)
×

∏
Xi=Li∈MX

P (Xi = Li|δK),

(24)

where ∝ denotes “proportional to” and the weight αi represents the importance

of the corresponding feature fi. To determine two concepts are matched or

not, we use a threshold-based approach. In particular, we denote θl and θh

as threshold low and high, respectively. If P (X = L|δK) > θh, the system

determines that the two concepts are matched. On the other hand, if P (X =

L|δK) < θl, it determines that the two concepts are different. In the case

when θl ≤ P (X = L|δK) ≤ θh, they system will generate an alert for human

intervention.

G MRF Algorithm

The returned results from different data sources are first transformed into the

target ontology via SM function. Resource Description Framework Schema (RDFS)

semantics [54], for example, can be used in the target ontology. MRF then performs

duplicate detection to identify and mitigate duplicate information retrieved from dif-

ferent data sources. It then utilizes the MapReduce for reasoning and inferencing.

In addition, MRF uses a trust value indicates the accuracy of the mining results at

different resources to finally yield a fusion result. MRF detailed steps are described

below.
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1 Duplicate Detection (DD)

The first step of the IFE is to detect duplicate of information, i.e., two retrieved

objects refer to the same real-world entity. This problem is critical in scenarios where

information fusion query returns a large number of sources; consequently, the num-

ber of duplicate objects can explode and render the query result practically useless

to the user. The approaches which deploy overlapping attributes may fail in identi-

fying a correct duplicate. For example, we have first tuple (9, John), where the first

entry indicates the age and the second entry indicates the name, and another tuple

(John,Camry 2003), from other data source, with the first entry represents the name

and the second one represents the car possessed. In this case, the two tuples would

not be matched because a match would result in a “John” who is 9 year old and has

a car (i.e., Camry 2003). This is unlikely, based on our knowledge. Our proposed

DD algorithm is to exploit the correlation and contradiction among the attributes of

the objects to identify duplicate. In the above example, the contradiction from the

attributes can be used to resolve the issues in the existing approaches.
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Figure 26. An Example of Sub-class Reasoning Using MapReduce.

2 MapReduce-based Reasoning

We now describe how to perform reasoning using the MapReduce [55] approach.

Basically, the algorithm is performed in two steps:

• Map:
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The Map processes each input triple and outputs a key/value pair. Note that

to perform the sub-class join, triples with rdf : type should be grouped on their

object, whereas triples with rdfs : subClassOf should be grouped on their

subject.

• Reduce:

The Reduce collects all tuples with the same key to compute the result. We note

that this process will take into account the trustworthiness of the information

sources for fusion and inferencing.

An Example

To illustrate the idea of using MapReduce method for reasoning, we show an

example in Figure 26. Consider a rule of RDFS which derives rdf : type based on

the sub-class hierarchy. The Map procedure converts input triples into key/value

pairs such as < C1, “a rdf : type C1′′ >, where the first entry is the key, and the

second entry is its corresponding value. The Reduce procedure groups all intermediate

results which have the same key for reasoning and inferencing. For example, based

on < C1, “a rdf : type C1′′ > and < C1, “a rdfs : subClassOf C3′′ >, the

Reduce procedure then can reason that “a rdf : type C3′′.

The other rules of the RDFS can also be implemented in the same manner.

3 Information Trust

When integrating information from different sources which may come from

different origins; thus, their trustworthiness (i.e., accuracy) should be taken into

account. For example, personal information of a person from the police record is

usually more accurate than that on social network profile. We first start with the

definition of trust in the context of computer networks.
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Definition G.1 (Trust). The trust is mathematically defined by function ωE : E ×

E → ΣE, where E is a set of entities, ΣE is the set of all possible trust values, and

ωE models trustworthiness TE of all entities in E.

In our system, we consider two levels of trust:

• Data Source Trust:

This represents the trustworthiness of the data sources. Let S be the set of all

data sources, their trust is defined as TS : S → [0, 1], where higher values of TS

represent more trustworthy source. The true value of TS for each data source

has been derived from social networks in Eq (8).

• Semantic Relation Trust:

This describes trust in attributes of an entity. This trust value will depend

on the data source and is defined as TAs : As → [0, 1], where As is the set

of attributes for data source s ∈ S. Similarly, higher values of As represent

more trustworthy attribute. This depends based on the profession, location

and network of people.

By combining the trust on these levels, the system computes the global trust value

for information integration as T = TS ⊕ TAs , where ⊕ denotes the concatenation

function, which can be a simple multiplication or some fuzzy logic operation). The

global trust value will be used for inferencing during the Reduce procedure.

4 Using Trust to stop spammers

In the following cases we show how we can use the defined trust to stop the

spammers and increase the reliability of the information fusion. The guy in the black

dress with a hat is the spammer. The green files are good files and the red files are

the spam files.

84



Case 1 - Spammer outside of your network:

Assume that the spammer is not directly or indirectly (through friends and

family) related to the user as shown in Figure 27. The data source trust score for

this user is low as he is not in our social circle and as a result the spam files from this

spammer will have a very low probability to be included in the fusion results.

Figure 27. Spammer spamming from outside your social network

Case 2 - Spammer inside your network:

Assume that the spammer is directly or indirectly connected to our network

as shown in Figure 28 Initially the spammer has a high trust and his spam might be

included in the fusion results if he stuffs relevant keywords in his spam files. However

over a period of time the data source trust keeps decreasing and after a threshold,

the data source will not be used anymore.
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Figure 28. Spammer spamming from inside your social network

Case 3 - Intruder compromising a good node:

Assume that a spammer has compromised a user’s account and is spamming

from his account without the userś knowledge as shown in Figure 29. Since the user

has a good reputation, initially the spammer will be able to send spam files. But with

suddent spikes of uploading files, we reduce the data source trust and also based on

the content. The system will be able to exclude this user’s files from the fusion.

Case 4 - Unintentional Spamming by regular users:

Assume that regular users have some spam files on their machine and are up-

loading unintentionally as shown in Figure 30. This type of unintentional spamming

is the hardest to detect as there won’t be any surges in file uploading and the trust

of the data source is high too. Here we have to assign weights to the document based

on the content and user feedback and try to eliminate these type of spaam files.
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Figure 29. Spammer spamming after compromising a good node

Figure 30. Unintentional spamming from users
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5 Why Iterative Processing?

Typically, users do not know about the detailed collective information and

the retrieval environment. At first, it’s difficult for the users to formulate a query

that well satisfies the information need, and then they again and again refine the

queries until the retrieved information satisfies their need. This process requires

intensive efforts from users to come up with appropriate modifications (e.g., changing

keywords, providing additional keywords, etc.) In addition, it is more challenging

in the environment of heterogeneous data sources because an in-appropriate query

modification might retrieve more information from a data source, but it can also

filter out important relevant information from other data sources. Therefore, we

propose an iterative processing algorithm where the integrated information is fed

back to distributed data miners so that they can find additional relevant information.

In this way, the information obtained from one source can be used as a new clue for

other sources retrieve additional information for the next iteration. The process is

carried out until information returned is satisfied or number of iterations is reached

as long as the accuracy does not fall below the specified threshold.

H Fusion Precision and Other Metrics

In our system, the quality of the fusion engine is quantified via the quality of

the building components of the system.

Fusion Precision: We use precision and recall to quantitatively evaluate the quality

of our data mining function. F-measure will also be used to combine the two metrics

in a single figure. Let tp, fp, and fn, respectively, be the count of true positives, false

positives, and false negatives of the results. We define the following metrics.

• Precision: is the fraction of the retrieved documents that is relevant P = tp
tp+fp

.

• Recall: is the fraction of relevant documents that is retrieved R = tp
tp+fn

.
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• F-measure: is the weighted harmonic mean of P and R to combine both of

them into a single score F = 2×P×R
P+R

. The larger value of F indicates a better

IE system.

Additionally, the non-interpolated average precision defined by NIST will also be

used for evaluating the retrieval effectiveness of the SDML function. We denote T

be the number of true relevant documents in a set of size S; L the ranked list of

documents returned; Rj the number of relevant documents in the top j documents.

In addition, we define the indicator function Ij = 1 if the jth document is relevant

and 0, otherwise. The non-interpolated average precision (AP) is then computed as:

AP =
1

T

S∑
j=1

Rj

j
× Ij. (25)
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CHAPTER V

PERFORMANCE ANALYSIS, IMPLEMENTATION AND

EVALUATION

In this section, we will evaluate the performance of the proposed SDSF via

both analysis and simulations. Particularly, we first theoretically analyze the relia-

bility of the proposed SDSF and evaluate the system performances via real network

implementation. In the second part, we show the performance gain of our proposed

SDSF over the P2P-based systems.

A Implementation

The architecture of the SDSF is shown in Figure 31. SDSF system uses n

layered architecture. We have a presentation layer, web service, DDS Controller and

Data Layer. By using a layered architecture it is easier to manage the code as the

changes in one layer will not affect the other layers. By using a web service, any

device (using any platform) can talk to our web service. This way we do not have to

re-write the code for different platforms. The user can access the SDSF system using

a browser or through the SDSF application. The presentation Layer has the user

interface. Users accessing through browser interact with the presentation layer. The

presentation layer can interact only with the web service. Users accessing through

the SDSF application directly interact with the web service. The DDS Controller has

the business logic, the erasure coding and the Social Storage Provider functionality.

Data Layer controls the access to database and storage nodes. Figure 31 shows how

the Data Layer interacts with the storage nodes. The user uploads a file to the web
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service through the presentation layer. The web service sends the request to the

Controller. Here the Controller authenticates the user and sends the status back to

the web service. If the user is authenticated, the user uploads the file to the web

service. The file is sent to the DDS Controller. DDS Controller performs the erasure

coding and gets the storage providers from the social network. The data access layer

then communicates with the storage nodes.
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Figure 31. Architecture Overview

Figure 32 shows how the data is stored and retrieved from the storage nodes.
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The service agents in the data access layer interact with the application on the storage

nodes.
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Figure 32. Accessing storage nodes

Figure 31 shows the architecture of SDSF mobile application and desktop ap-

plication. The SDSF application directly communicates with the web service. The

advantage of using a web service and layered architecture is that any changes in the

business logic layer will not affect the clients.
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B Storage Performance Evaluation

Basic setup

To measure the encoding and decoding performance, we used the JErasure

codes written in C++ by James S. Plank [56]. We wrote a C# wrapper for the

Jerasure codes using Visual Studio 2012 and ran them on a PC which is running

Windows 7 (64 bits) with an Intel Pentium G 630 2.7 Ghz processor and 6 GB Ram.

The social storage system was built by us using C#, Asp.Net, SQL Server 2012 which

is hosted on IIS 7 Web Farm [57] and windows server 2012. We have used a web farm

for scalability, and for testing we have used 4 servers in our web farm. We have used

a database cluster for reliability of the database. The Social Storage system was built

using the n layered architecture. The client from his browser calls the web farm which

directs it to one of our servers which in turn does the file uploading, downloading,

erasure encoding, decoding, and returns the status to the clients browser. We use the

Monte Carlo method to evaluate the system performance where each experiment is

performed many times and the average is computed.

1 Encoding and decoding performance

In this subsection, we show the system performance in terms of encoding and

decoding runtimes via real network experiments with different settings. In our ex-

periments, the runtime is the delay of encoding or decoding operations. Figure 33

shows data encoding and decoding runtimes of the (8, 4) coding schemes for data files

of various sizes. We see that the runtime of encoding files is much higher than the

runtime of decoding files. We also see that the runtimes of encoding and decoding

increases almost linearly with the file size.

Figure 34 shows data encoding and decoding runtimes of the (12, 1, k) coding

schemes on a 125 MB data file. As expected the data encoding runtimes is higher

than the data decoding runtimes. Also as shown, the data encoding and decoding
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Figure 33. Encoding and Decoding runtime of (8, 4) code vs. the file size.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

25
Encoding and Decoding runtime Vs Code rate for 125 MB data file

Code rate k/n

T
im

e 
in

 S
ec

on
ds

 

 
Encoding(12,k)
Decoding(12,k)

Figure 34. Encoding and Decoding runtime of (12, k) codes vs. the code rate for
125MB data file.
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runtimes decreases with the increase of the code rate. The reason is that when the

code rate increases, the number of matrix multiplications are reduced; thus, it requires

less computational load for data encoding and decoding.

2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Encoding run times for a data file of size 55 MB

K

T
im

e 
in

 S
ec

on
ds

 

 
Encoding(9,k)
Encoding(10,k)
Encoding(11,k)
Encoding(12,k)

Figure 35. Encoding runtime of different (n, k) codes vs. k for 55 MB data file.

Figure 35 compares the encoding runtimes of (n, k) for a data file of size 55MB.

We compare for n=9, 10, 11, 12 and k from 2, 3..8 keeping the file size constant. We

observe that as n increases, encoding runtime increases and as k increases, encoding

runtime decreases. Particularly, we observe that the encoding and decoding runtime

increases with n. The intuition is that when n is small, the program performs com-

putation on smaller size matrix, resulting in smaller runtime. On the other hand,

when n increases, it requires more time to operate on a larger matrix. However, we

note that when n is smaller, the failure probability of the system increases as the

level of resiliency decreases. Thus, there is a trade-off which depends on the system

characteristics such as number of storage nodes and transmission bandwidth.

Figure 36 compares the decoding runtimes of (n, k) for a data file of size 55MB.
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Figure 36. Decoding runtime of different (n, k) codes vs. k for 55 MB data file.

We compare for n=9, 10, 11, 12 and k from 2, 3..8 keeping the file size constant. We

observe that the decoding runtimes do not follow any clear trend with n and k. Overall

it appears that decoding runtime decreases with increase in k. There is not much we

can deduce with n. We observed that since the runtime was very less the patterns

were not clear. So we increased the file size to 125 mb and repeated the same test.

Figure 37 compares the encoding runtimes of (n, k) for a data file of size

125MB. We compare for n=9, 10, 11, 12 and k from 2, 3..8 keeping the file size

constant. We again observe that as n increases, encoding runtime increases and as k

increases, encoding runtime decreases. The pattern is very clear for encoding.

Figure 38 compares the decoding runtimes of (n, k) for a data file of size 125MB.

We compare for n=9, 10, 11, 12 and k from 2, 3..8 keeping the file size constant. We

observe that the decoding runtimes have a better trend than the smaller file size 55

MB. We can clearly see that as K increases, the decoding runtime decreases. However

for N, it is still not very clear, although it looks like as N increases, decoding runtime
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Figure 37. Encoding runtime of different (n, k) codes vs. k for125 MB data file.

2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8
Decoding run times for a data file of size 125 MB

K

T
im

e 
in

 S
ec

on
ds

 

 
Decoding(9,k)
Decoding(10,k)
Decoding(11,k)
Decoding(12,k)

Figure 38. Decoding runtime of different (n, k) codes vs. k for 125 MB data file.
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also increases.

From the above figures as expected, the (8, 4) coding scheme outperforms all

the others. This is because with the (8, 4), the system operates on a smaller matrix

size, resulting in a lower computation runtime. Additionally, we observe that the

runtime of our implemented algorithm increases linearly with the data size; thus, is

is feasible to encode larger data files with slightly increase of the runtime.

2 End-to-end delay

We evaluate the end-to-end delay of the proposed SDSF system in a real net-

work implementation. The SDSF system was built using the n layered architecture.

The client uses his browser to call the web service on our server which in turn does

the file uploading, downloading, erasure encoding, decoding, and returns the status

to the client’s browser. Particularly, several files with different data sizes are used

to writing and downloading from a users over the Internet. The user uses a laptop
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Figure 39. End-to-end delay of data writing/uploading in a real network.
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connects to a gateway server, which is connected with multiple storage nodes. In this

experiment, all data writing and reading are performed via the gateway server before

sending to the storage nodes and user. We compare our system with the leading

storage systems Dropbox and Google Drive.
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Figure 40. End-to-end delay of data reading/downloading in a real network.

The average end-to-end uploading delays are depicted in Figure 39 and the

average end-to-end downloading delays are depicted in Figure 40. As shown, data

writing delay is greater than that of the reading delay. The reason is due to the fact

that the uploading speed of the Wi-Fi connection is less than that of the downloading

connection. The machine we used for testing had an upload speed of 0.8 MBps and a

download speed of 10MBps. In addition, we observe that the end-to-end delays also

increase linearly with the data size.
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C Fusion Performance Evaluation

1 Word Count Performance

We perform the word count for keyword indexer and for N-gram query correc-

tion. We have used Amazon Elastic MapReduce (Amazon EMR) [58] which is a web

service used to process vast amounts of data. Amazon EMR has a resizable cluster of

virtual machines and uses Hadooop map reduce. We used the following python word

count program [59].

#!/ usr / bin /python

import sys

import re

de f main ( argv ) :

pattern = re . compile ‘ ‘ [ a−zA−Z ] [ a−zA−Z0−9 ] ’ ’ )

f o r l i n e in sys . s td in :

f o r word in pattern . f i n d a l l ( l i n e ) :

p r i n t ‘ ‘ LongValueSum : ’ ’ + word . lower ( ) + ‘ ‘\ t ’ ’ + ‘ ‘ 1 ’ ’

i f name == ‘ ‘ main ’ ’ :

main ( sys . argv )

Figure 41 shows the execution time of a file with size 27 MB. We have tested

the word count program with one VM, two VMs, and four VMs. MapReduce helps

in breaking up a file of any size into very small pieces and process them individually

in parallel. We can increase the machines available in the map reduce and reduce the

execution time drastically. We can see from the figure that as we add more VMs, the

runtime reduces drastically. Amazon EMR is highly scalable and we can add more

VMs if we want to reduce the execution time even further.
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Figure 41. Word count runtime based on the number of VMś

2 Spam Filtering Comparison with and without Trust

We performed an experiment where we randomly mark some nodes in a net-

work as spam, and these nodes keep producing spam with lot of keywords and useless

or false material. Figure 42 shows the comparison of the results of Information Fu-

sion with and without trust component. In our experiment we assume that even

friends and acquaintances upload some spam and false data both intentionally and

unintentionally.

3 Query Correction Comparison

We performed a query comparison for 100 queries with Bing, Google and SDSF

system. Our SDSF system uses the Bing N-gram service and uses context knowledge

on top of it to further understand the query. Table 3 shows a sample of our queries.

The mistakes are highlighted with an underline. The user query ‘bards’ is correctly

identified as ‘birds’ with the use of context knowledge. However context knowledge
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Figure 42. Spam Filtering comparison with and without Trust

can sometimes be a disadvantage too. We wrongly identified the user query ’buy

flowr’ as ‘buy flour’ because the user has a background in cooking and restaurants.

The user query ‘I would like to know the full rices of loiusville’ has been wrongly

identified by all three systems.

Table 4 shows the comparison of 100 sample queries. We can see that the

number of correctly identified queries are higher in SDSF system than Google and

Bing. However the queries which did not need correction, but were still corrected were

the highest in SDSF. This was because our system uses the users’ context if the query

is not well formulated. The context can sometimes mislead our query correction.

D System Failure Comparison

We perform an experiment where we assume that nodes with lower social

connections has higher failure probability and nodes with higher social connections

has lower failure probability. In P2P network simulation, we assign random storage
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TABLE 3. Sample query corrections

User Query User Intention Google Bing SDSF
Vehicle thefs Vehicle thefts Vehicle thefts Vehicle theft Vehicle thefts
bards birds bards bards birds
buy flowr buy flower buy flower buy flower buy flour

swim earn
how to

learn how to
swim

swim learn
how to

swim learn
how to

swim learn
how to

I would like
to know the
full rices of
loiusville

I would like
to know the
fuel prices of
louisville

I would like
to know the
full prices of
louisville

I would like
to know the
full prices of
louisville

I would like
to know the
full prices of
louisville

TABLE 4. Comparison of query correction systems over 100 sample queries

Correctly Identified Incorrectly Identified Not needed
Google 81 19 4
Bing 78 22 3
SDSF 85 15 11
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Figure 43. System failure probability vs. code rate.

nodes, while we assign storage nodes in SDSF nodes based on trust. Figure 43 shows

the system failure probability of the P2P-based and SDSF systems for (15, 1, k) code

versus the code rate. In this simulation, we consider special case where the data

source is a neighbor of the storage nodes. We focus on evaluating the impact of social

ties on the system reliability. With that said, in this evaluation, we assume that

each storage node has sufficient space for data storage. In addition, we assume that

the source node has N = 50 social friends, the average social friends in Facebook

[60], with the social ties uniformly distributed in [0,1]. Furthermore, we assume

that storage node with smaller social tie value (i.e., the weaker relationship with the

data source) has higher data failure probability. This assumption accounts for the

“real life” relationships among the social users. The P2P system selects the storage

node randomly while our proposed SDSF utilizes the social tie computations to select

the storage nodes. As shown in Figure 43, the proposed SDSF system significantly

outperforms the P2P system, especially in the regime of medium code rate k/n. This
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is because in this region, the probability of failing more then n − k storage nodes

in the SDSF is much lower than that of the P2P system due to the higher storage

reliability, resulting from higher trusted nodes. On the other hand, in the regimes of

low code rates, two systems obtain similar performance, i.e., low failure probability.

The intuition is that in this region, the systems have high data resiliency n− k. On

the contrary, in the high region of code rate, the failure probability of the two systems

increases substantially due to the low resiliency factor. In this case, even exploiting

the high trusted storage nodes, the chance data is unrecoverable in the SDSF is still

high.
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CHAPTER VI

SDSF SCALABILITY
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Figure 44. System scalability architecture

We wanted to build a scalable system so that it can grow and serve any number

of users without any upper bound. For this purpose we implemented the use of IIS

web farms and DNS load balancing. Figure 44 shows the system architecture with

two web farms. Each web farm has one controller and X number of servers. The

system can have any number of web farms. For our host name we assign multiple

IP’s (the IP’s of each web farm controller) in the Domain Name Server (DNS). In this

example we assign two IP’s as we have two controllers. When the user first makes a

request to our social storage system, the DNS server will randomly select an IP( IP

of the web farm controller). The request comes to the web farm controller which uses
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the load balancer and assigns it to one of the available servers. The request is served

by these servers. The load balancer can use one of the available algorithms [61] like:

1. Weighted Round Robin: Distributes requests to the servers based on the as-

signed weights. By default all weights are equal. So all servers get equal number

of requests.

2. Weighted Total Traffic: Distributes requests to the servers based on the request

and response size. Which ever server has the least amount of data, request is

forwarded to it.

3. Least current request: Distributes requests to the servers based on the server

with the lowest number of requests.

4. Least response time: Distributes requests to the servers based on the fastest

response time.

5. Server variable hash: Distributes requests to the servers based on the server

hash value.

6. Query string hash: Distributes requests to the servers based on the hash value

of the query string.

7. Request hash: Distributes requests to the servers based on the configured hash

variable of the server.

We tested various load balancing algorithms and found that weighted total traffic

worked best for us as our servers were all of the same configuration and the execution

time depends on the data size. So if data size is evenly distributed the load is also

evenly distributed.
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A System Failures

The system is built such that there is no single point of failure. Any server can

fail at any time including the web farm controller, processing server or the database

server. The system does not rely on them always working. Let us see the possible

machine failures:

• Processing Server Failure

Assume that a server within a webfarm fails. The web farm keeps pinging the

processing server every t seconds, where t is the pre defined time interval we want

the web farm controller to ping the processing server. If there is no response

from the processing server, the web farm controller will stop all requests to the

failed processing server. As the system grows we can have as many processing

servers under a web farm controller as we want.

• Web Farm Controller Failure

Assume that a web farm controller has failed. When the user types in our

host name, the DNS server would translate the host name to one of the IP’s

of the web farm controller. When the requests to that IP keep failing, DNS

server would stop translating the host name to the failed IP of the web farm

controller. As the system grows we can have as many web farms in different

geographic locations as we want.

• Database Server Failure

We are currently using Always on availability group [62] of Sql Server which

uses five database servers with up to two synchronous synchronizations and

three more for asynchronous synchronizations. As we have two databases with

simultaneous synchronizations, read operations can be performed from both the

servers. It can handle up to four database server failures.
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CHAPTER VII

CONCLUSION AND FUTURE WORK

A Conclusion

1 Data Storage

In this proposal, we present a system design for a distributed data storage

system based on the social networks. In particular, our proposed system implements

erasure-based coding and decoding where the original data file is encrypted before

dividing into multiple small pieces which are then encoded into many coded fragments.

The coded fragments are reliably distributed to the storage nodes. Different from

the P2P systems, our proposed SDSF system chooses the storage nodes based on

the “social trust” which is computed from the interactions in the social networks. To

tackle the problem of finding the potential storage nodes in a large size social network,

we proposed an efficient algorithm to compute the social ties among the social nodes.

Furthermore, our proposed system also allows the data to be regenerated when a

storage node fails or leaves the network. This process ensures that at any time the

data in the network is sufficient for reconstructing the original file. Our theoretical

analysis and simulation results show that the data stored in our proposed SDSF

system is reliable with a failure probability approaching zero when more redundant

data is added. Particularly, our simulation results show that data reliability of our

proposed SDSF system is higher compared to the P2P systems.

SDSF system does not necessarily have to be used with social networks. There

are applications where we do not want our data to be stored in systems outside of

our network for example medical data. SDSF system can be used by an enterprise
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to construct and manage the internal data network. There are other areas where our

SDSF system could be used with minor changes:

Storage Service Provider

If a business wants to start a storage service like Dropbox or Google, they

can use our SDSF software to manage data on their data servers. The SDSF system

selects nodes from their data servers and stores the user data on these servers.

Large Data(e.g., GIS Imagery)

We have vast amounts of raw data being produced from the digital images of

earth from satellites. Given the vast amounts of data involved we cannot store the

information in one place. We can use SDSF to securely store large data while saving

lots of storage space when compared to storing using file redundancy.

Personal Data Management

Personal users who have multiple smart devices (For example laptop, touch-

pad and smart phone) can create a cloud network to manage and utilize the space

efficiently while enjoying all the benefits of cloud storage. Some users utilize lot of

storage space in some devices while other storage devices are underutilized. These

kind of users will benefit a lot as SDSF can distribute data based on device capacity.

For example mobile devices have limited space. With SDSF System we can store

major portions of the file on other devices owned by the user.

2 Information Fusion

We have conducted the set of experiments as a proof of illustration of success

of Information Fusion. We create an Index server that maintains the keyword, their

count and the location. Once this activity if performed, it need not be repeated

unless a new node/document is included in the existing network. This will improve
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the performance as the indexing part need not be repeated. To illustrate that using

Map reduce will enhance the Fusion performance, we demonstrated how use of Map

Reduce reduces the run times of the process by running on multiple machines. The

success of the Information fusion depends on the fact that the query of the user is

accurate. We have demonstrated through various experiments how the “not so well

formed” query can be corrected. We compared our results with Google and Bing

and found that our system performs better than them due to the incorporation of

context knowledge with the query (although in some cases, the context leads to an

error). We also demonstrated that use of trust scores improves the retrieval of genuine

documents which will effectively lead to better Accuracy of Information Fusion due to

selection of a better candidate set. Although, the Information fusion using our method

requires more time, the precision and accuracy of the results will increase due to use

of trust scores. This is the tradeoff required for increased accuracy. Generally the

Information Fusion technique has been utilized for fusing data obtained from wireless

sensor networks. However, it can also be utilized for fusing the traffic conditions and

weather data, Stereo vision, Fire detection using temperature, humidity and vision

sensors or flood forecasting. Some novel applications would be to fuse data on various

social networks and customer profile to make recommendations.

B Future Work

1 Improving Potential Storage Selector

We will work on improving the algorithm for selecting potential storage providers.

Currently we are using the Dijkstra’s algorithm k times to find the K paths to the

storage provider. We will look at heuristic ways to decrease the runtime complexity

of the algorithm. The heuristic algorithm might not give the best solution, but it

will give the near optimal solution. We will also re-evaluate other parameters like

bandwidth, availability, space, trust, etc.
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2 Minimizing Fault Recovery Overhead

Currently we are using Minimal Storage Nodes for fault recovery. Here we

recover the data from any k surviving nodes and write the data to a new node.

Consider a File with size M bytes. To recover a storage node of size M/K we need

to transmit M bytes. We will implement the minimal communication recovery along

with the traditional minimal storage recovery so the bandwidth consumed will be less.

This method requires additional computation but as fault recovery is a background

process the user will not be affected much.

3 Expanding search functionality for images and other file formats

Currently we have implemented only the text based searching and we haven’t

implemented searching for other file formats like images. Image searching is a difficult

problem as the image which is in parts does not give any information unless the image

is combined. If we have to know the information from the split pieces we need to

have the knowledge of all file formats which is not feasible. So we can instead extract

all possible information from the file before splitting and saving the split files.
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