
SCALABLE BIG DATA SYSTEMS: ARCHITECTURES AND
OPTIMIZATIONS

A Thesis
Presented to

The Academic Faculty

by

Kisung Lee

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computer Science

Georgia Institute of Technology
August 2015

Copyright c© 2015 by Kisung Lee

SCALABLE BIG DATA SYSTEMS: ARCHITECTURES AND
OPTIMIZATIONS

Approved by:

Professor Ling Liu, Advisor
School of Computer Science
Georgia Institute of Technology

Professor Karsten Schwan
School of Computer Science
Georgia Institute of Technology

Professor Ed Omiecinski
School of Computer Science
Georgia Institute of Technology

Professor Lakshmish Ramaswamy
Department of Computer Science
University of Georgia

Professor Calton Pu
School of Computer Science
Georgia Institute of Technology

Date Approved: 30 April 2015

To Mom and Dad

iii

ACKNOWLEDGEMENTS

I gratefully acknowledge the invaluable support I have received from my advisor, Professor

Ling Liu, over the course of my doctoral study. Her endless enthusiasm for research and

unsurpassed energy have inspired me to work on several interesting and practical research

problems. In addition to academic advising, she has shared her life lessons with me and

always been available whenever I needed help. I have been extremely fortunate to have her

“in my corner” as my doctoral advisor, and I hope to pass the lessons I learned from her

on to my students in the future.

I would also like to express my thanks to my doctoral dissertation committee members:

Professors Ed Omiecinski, Calton Pu, Karsten Schwan, and Lakshmish Ramaswamy. Their

insightful comments and suggestions on my research have not only greatly contributed to

my thesis but also helped broaden my horizons for my future research. I have also been

fortunate to spend three summers at IBM Research T.J. Watson as a summer research intern

and experience real-world research and engineering challenges. I express sincere thanks to

my IBM mentors and collaborators including Drs. Raghu Ganti, Mudhakar Srivatsa, and

Isabelle Rouvellou.

I would like to thank every member of the DiSL Research Group, Databases Laboratory,

and Systems Laboratory at Georgia Tech for their collaboration and companionship. It was

a great pleasure to work in such a dynamic research environment. I convey special thanks to

Qi Zhang, Xianqiang Bao, Yang Zhou, Balaji Palanisamy, Emre Yigitoglu, and Myungcheol

Doo for countless research discussions and friendship. I have also been exceptionally fortu-

nate to meet many wonderful friends in Atlanta. I would like to express my special thanks

to Jee Eun Park, Joonseok Lee, Soo Kyung Kim, Sangmin Park, and Hannah Kim for the

many memories they have given me. I also thank Jane Chisholm for her invaluable help

and lessons.

iv

Last but not the least, I do not know how I can thank my mom enough for her uncon-

ditional love and countless prayers for me. I am so proud to be her son. I also thank my

dad and sister for their love and support. Without the love and prayers of my family, this

accomplishment would not have been possible.

v

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . xii

LIST OF FIGURES . xiii

SUMMARY . xv

I INTRODUCTION . 1

1.1 Technical Challenges . 2

1.1.1 System Scalability . 2

1.1.2 Data Complexity . 3

1.1.3 System Complexity . 3

1.2 Dissertation Scope and Contributions . 4

1.2.1 Distributed Graph Query Processing 4

1.2.2 Distributed Iterative Graph Computations 5

1.2.3 Spatial Data Processing . 6

1.3 Dissertation Organization . 7

II SHAPE: DISTRIBUTED RDF SYSTEM WITH SEMANTIC HASH
PARTITIONING . 10

2.1 Introduction . 10

2.2 Preliminary . 12

2.2.1 RDF and SPARQL . 12

2.2.2 Related Work . 13

2.3 Overview . 15

2.4 Semantic Hash Partitioning . 17

2.4.1 Building Triple Groups . 17

2.4.2 Constructing Baseline Hash Partitions 19

2.4.3 Generating Semantic Hash Partitions 20

2.5 Distributed Query Processing . 29

2.5.1 Query Analysis . 30

vi

2.5.2 Query Decomposition . 31

2.5.3 Distributed Query Execution . 32

2.6 Experimental Evaluation . 33

2.6.1 Experimental Setup and Datasets 34

2.6.2 Data Loading Time . 35

2.6.3 Redundancy and Triple Distribution 35

2.6.4 Query Processing . 37

2.6.5 Scalability . 40

2.6.6 Effects of Optimizations . 41

2.7 Conclusion . 42

III VB-PARTITIONER: EFFICIENT DATA PARTITIONING FRAME-
WORK FOR HETEROGENEOUS GRAPHS 43

3.1 Introduction . 43

3.2 Overview . 46

3.2.1 Heterogeneous Graphs . 46

3.2.2 Operations on Heterogeneous Graphs 47

3.2.3 System Architecture . 48

3.3 VB-Partitioner Framework Design . 51

3.3.1 Vertex Blocks . 51

3.3.2 Extended Vertex Blocks . 53

3.3.3 VB-based Grouping Techniques . 54

3.4 Distributed Query Processing . 57

3.4.1 Query Analysis . 57

3.4.2 Query Decomposition . 59

3.5 Experimental Evaluation . 60

3.5.1 Datasets . 61

3.5.2 Setup . 62

3.5.3 Partitioning and Loading Time . 63

3.5.4 Balance and Replication level . 64

3.5.5 Query Processing . 66

3.5.6 Scalability . 69

vii

3.6 Related Work . 70

3.7 Conclusion . 71

IV GRAPHMAP: SCALABLE ITERATIVE GRAPH COMPUTATION FRAME-
WORK . 73

4.1 Introduction . 73

4.2 GraphMap Overview . 76

4.2.1 Basic Concepts . 76

4.2.2 Two-Phase Graph Partitioning . 78

4.2.3 Supporting Vertex-Centric API . 79

4.2.4 GraphMap Programming API . 81

4.2.5 System Architecture . 83

4.3 Locality-based Data Placement . 84

4.4 Locality-based Optimizations . 86

4.5 Experimental Evaluation . 89

4.5.1 Datasets and Graph Algorithms . 89

4.5.2 Setup and Implementation . 90

4.5.3 Iterative Graph Computations . 92

4.5.4 Effects of Dynamic Access Methods 95

4.5.5 Scalability . 95

4.5.6 Comparison with Existing Systems 96

4.6 Related Work . 98

4.7 Conclusion . 100

V ROADALARM: ROAD NETWORK-AWARE SPATIAL ALARMS . 101

5.1 Introduction . 102

5.2 Overview . 105

5.2.1 Road Network Model . 106

5.2.2 Road Network-aware Spatial Alarms 107

5.2.3 Alarm Miss and Hibernation Time 108

5.3 Spatial Alarm Processing . 110

5.3.1 Euclidean Distance-based Approach 110

5.3.2 Network Expansion-based Approach 111

viii

5.3.3 RoadAlarm Baseline Approach 112

5.4 Motion-aware Optimizations . 116

5.4.1 Current Direction-based Motion-aware Filter 117

5.4.2 Destination-based Motion-aware Filter 118

5.4.3 Caching-based Motion-aware Filter 119

5.4.4 Shortest Path-based Motion-aware Filter 121

5.4.5 Selective Expansion-based Motion-aware Filter 122

5.5 Experimental Evaluation . 126

5.5.1 Experiment Setup . 126

5.5.2 Comparison with Existing Methods 127

5.5.3 Effects of the Steady Motion Degree 130

5.5.4 Effects of the Growing Number of Objects and Alarms 131

5.5.5 Effects of Different Road Networks 132

5.5.6 Summary . 134

5.6 Related Work . 135

5.7 Conclusion . 136

VI WHEN TWITTER MEETS FOURSQUARE: TWEET LOCATION PRE-
DICTION USING FOURSQUARE . 137

6.1 Introduction . 137

6.2 Related Work . 139

6.3 Overview . 142

6.3.1 Twitter Reference Model . 142

6.3.2 Foursquare Reference Model . 142

6.3.3 Location Modeling . 143

6.3.4 System Architecture . 146

6.4 Location Prediction . 147

6.4.1 Filtering Step . 148

6.4.2 Ranking Step . 149

6.4.3 Validating Step . 150

6.5 Experiments . 152

6.5.1 Datasets . 152

ix

6.5.2 Building Language Models . 154

6.5.3 Finding “I don’t know” Tweets . 155

6.5.4 Prediction without the Validating Step 155

6.5.5 Building Models for the Validating Step 156

6.5.6 Prediction with the Validating Step 157

6.5.7 Percentage of Geo-tagged Tweets 161

6.6 Conclusion . 161

VII EFFICIENT SPATIAL QUERY PROCESSING FOR BIG DATA . . 164

7.1 Introduction . 164

7.2 Preliminary . 166

7.2.1 Spatial Queries . 166

7.2.2 Hierarchical Spatial Data Structure 167

7.2.3 Distributed Storage Systems . 168

7.2.4 Graph Models . 169

7.2.5 Related Work . 170

7.3 Spatial Query Processing . 172

7.3.1 Overview . 172

7.3.2 Distributed Storage Systems . 173

7.3.3 Graph Models . 177

7.4 Experimental Evaluation . 180

7.4.1 Experimental Setup and Datasets 180

7.4.2 Distributed Storage Systems . 181

7.4.3 Graph Models . 186

7.4.4 Comparison with R-tree . 188

7.5 Conclusion . 189

VIIICONCLUSIONS AND FUTURE WORK 190

8.1 Summary . 190

8.2 Future Work . 192

8.2.1 Scalable Systems for Big Graph Data Analytics 192

8.2.2 Cost-Efficient Resource Management in Cloud Computing 193

x

REFERENCES . 194

xi

LIST OF TABLES

1 Datasets (Shape) . 35

2 Partitioning and Loading Time (min) . 36

3 Redundancy (Ratio to Original Dataset) . 37

4 Distribution (Coefficient of Variation) . 37

5 SPARQL Queries . 38

6 Query Processing Time (sec) . 39

7 Effects of Optimizations (Replication Ratio) 42

8 Datasets (VB-Partitioner) . 62

9 GraphMap Core Methods . 82

10 Datasets (GraphMap) . 90

11 Total Execution Time and the Number of Messages 91

12 Effects of Dynamic Access Methods . 94

13 Scalability (SSSP) . 96

14 System Comparison . 98

15 Local Keywords . 155

16 Geo-tagged Tweets without the Validating Step 156

17 Training Sets . 157

18 Effects of Different δ Values . 159

19 Percentage of Geo-tagged Tweets . 160

20 Query Processing Results (withinDistance) 183

21 Breakdown of Query Processing Results . 184

22 SPARQL Query Processing Time Ratio . 187

23 SPARQL Query Processing Results (withinDistance) 188

xii

LIST OF FIGURES

1 RDF and SPARQL . 12

2 Shape System Architecture . 16

3 Partition Expansion . 21

4 Semantic Hash Partitions from Stud1 . 24

5 Calculating Query Radius . 30

6 Query Decomposition . 31

7 Query Processing Time (LUBM534M) . 40

8 Scalability with Varying Dataset Sizes . 40

9 Scalability with Varying Cluster Sizes . 41

10 Heterogeneous Graph . 46

11 Graph Pattern Query Graphs . 49

12 VB-Partitioner System Architecture . 50

13 Different Vertex Blocks of v7 . 51

14 2-hop Extended Vertex Blocks of v7 . 54

15 Query Analysis . 59

16 Query Decomposition (bi-edge) . 60

17 Out-edge and In-edge Distribution . 62

18 Partitioning and Loading Time . 64

19 Balance of Generated Partitions . 65

20 Replication Level . 66

21 Benchmark Query Graphs . 67

22 Query Processing Time on LUBM2000 . 68

23 Scalability with Varying Dataset sizes . 69

24 Scalability with Varying Cluster sizes . 69

25 GraphMap System Architecture . 83

26 Graph Representation in GraphMap (single worker) 86

27 The Number of Active Vertices per Iteration 87

28 Hierarchical Disk Representation in GraphMap 89

29 Comparison with Hama (PageRank on orkut) 93

xiii

30 Breakdown of Execution Time per Iteration (single worker) 93

31 Effects of Dynamic Access Methods . 96

32 Scalability with Varying the Number of Workers 97

33 RoadAlarm System Architecture . 105

34 Spatial Alarms . 108

35 Vector-based Motion-aware Filters . 118

36 Caching-based Motion-aware Filter . 119

37 Shortest Path-based Motion-aware Filter . 122

38 Segment Length-based vs Travel Time-based Approaches 127

39 Comparison with Euclidean Space-based Approaches 128

40 Effects of the Steady Motion Degree Θ . 130

41 Effects of the Growing Number of Objects and Alarms 132

42 Effects of Different Road Networks . 133

43 Framework Architecture . 146

44 Foursquare Locations and Tips . 154

45 Effects of the Validating Step . 156

46 Effects of Different Ranking Techniques . 158

47 Effects of Different Parameter Values . 159

48 Spatial Queries . 167

49 Geohash Examples . 168

50 Query Processing Example (containing) . 175

51 RDF Graph with Geohash Codes . 178

52 Query Processing Time . 182

53 Effects of Different Maximum Lengths . 185

54 Effects of Different Distances . 186

55 Insertion Time . 186

56 Precision Comparison (withinDistance) . 188

xiv

SUMMARY

Big data analytics has become not just a popular “buzzword” but also a strategic

direction in information technology for many enterprises and government organizations.

Even though many new computing and storage systems have been developed for big data

analytics, scalable big data processing has become more and more challenging as a result

of the huge and rapidly growing size of real-world data.

Dedicated to the development of architectures and optimization techniques for scaling

big data processing systems, especially in the era of cloud computing, this dissertation makes

three unique contributions. First, it introduces a suite of graph partitioning algorithms that

can run much faster than existing data distribution methods and inherently scale to the

growth of big data. The main idea of these approaches is to partition a big graph by

preserving the core computational data structure as much as possible to maximize intra-

server computation and minimize inter-server communication. In addition, it proposes a

distributed iterative graph computation framework that effectively utilizes secondary stor-

age to maximize access locality and speed up distributed iterative graph computations.

The framework not only considerably reduces memory requirements for iterative graph al-

gorithms but also significantly improves the performance of iterative graph computations.

Last but not the least, it establishes a suite of optimization techniques for scalable spatial

data processing along with three orthogonal dimensions: (i) scalable processing of spatial

alarms for mobile users traveling on road networks, (ii) scalable location tagging for im-

proving the quality of Twitter data analytics and prediction accuracy, and (iii) lightweight

spatial indexing for enhancing the performance of big spatial data queries.

xv

CHAPTER I

INTRODUCTION

With continued advances in computing and information technology, digital data have grown

at an astonishing rate in terms of volume, variety, and velocity. Such big data have huge

potential to reveal hidden insights and promote innovation in many business, science, and

engineering domains. Even though the application of big data analytics is virtually un-

limited, scalable processing of big data becomes more and more challenging because of the

huge amount of newly generated data.

There are several key challenges we need to address for scalable processing of big data.

First, an important technical challenge faced by many scientists and engineers is how to

build efficient big data processing systems and applications that can scale to the rapid

growth of digital data in the 21st century. In most cases, conventional data analysis algo-

rithms and computing platforms are inadequate for big data processing because they were

primarily designed and developed for running on a single server under centralized computing

architecture. In other words, it is not straightforward to run these algorithms and platforms

in a distributed computing environment. Second, even though new systems and algorithms

are continuously and rapidly being developed for big data analytics, they typically have

some limitations on their scalability. One common limitation is in-memory data processing

in a distributed computing environment that requires huge main memory to store both

input and intermediate data for big data analytics. Unless there is a computing cluster

large enough to accommodate such big data, existing systems usually crash in the middle

of data processing because of insufficient main memory. Last but not the least, new types

of big data, including graph data and spatial data, are being widely used for gaining deep

insights into big data. Since most big data systems are designed for structured data, they

are usually struggling to handle these new data types in an efficient and scalable manner.

To tackle these challenges of big data processing, this dissertation research is focused on

1

the development of architectures and optimization techniques for scaling big data processing

systems, especially in the era of cloud computing.

1.1 Technical Challenges

We describe the technical challenges to scalable big data processing in more detail as follows.

1.1.1 System Scalability

First, we argue that most existing systems and algorithms for big data processing cannot

scale to the rapid growth of real-world data. One representative example is the distributed

graph systems for iterative graph algorithms such as PageRank, single-source shortest path,

and connected component computations. Existing distributed graph systems, such as Pregel

and GraphX, are based on a distributed memory architecture and thus heavily rely on

distributed memory for their graph computations. They basically cannot run the iterative

graph algorithms unless they have a computing cluster large enough to accommodate both

input graph data and intermediate data for graph data analytics. To make matters worse,

compared to structured data analytics, it is much more difficult to predict the amount of

intermediate data based on the input data size for graph data analytics. In some cases, the

size of intermediate data is several orders of magnitude bigger than that of input graph data.

Therefore, even though we start with a computing cluster large enough to accommodate

the input graph data and potential intermediate data, we may discover that the cluster has

insufficient memory to store the intermediate data in the middle of graph data processing

and then need to prepare a new cluster with larger memory. This process may be repeated

multiple times and thus wasting our time and computing resources (i.e., money) significantly.

Another important limitation in terms of system scalability is that some systems for big

data processing are not purely distributed. For example, several graph systems typically

called a scalable solution depend on a centralized technique for their graph partitioning. In

other words, unless there is a single powerful machine that can run graph partitioning for big

graph data, these existing systems cannot even start graph data analytics in a distributed

computing environment.

2

1.1.2 Data Complexity

Another important challenge for scalable big data processing is to support various types of

big data, including graph and spatial data, in addition to traditional structured data. These

new data types create several new challenges for big data systems. These challenges can be

explained using commonly found graph data that are a representative example of new data

types. First of all, as we described above, a huge amount of intermediate data is generated

during graph analytics, and we cannot easily predict the amount of intermediate data based

on the input graph size in most cases. More importantly, graph data have complicated

relationships among data entities, and these relationships are essential to gain deep insights

into big graph data. However, these complex relationships make it hard to partition the

graph for distributed processing. If we use existing distributed data processing frameworks

like Apache Hadoop and Spark, the graph will be partitioned without considering these

important relationships. Therefore, graph analytics using such distributed systems would

be inefficient because we need to find or reconstruct these important relationships in the

middle of graph analytics. Last but not the least, real-world graph data have very skewed

distribution in terms of the number of connected edges. In other words, there are some

vertices with an extremely high degree, and these high-degree vertices make it hard to

ensure load balancing during distributed graph processing.

1.1.3 System Complexity

In addition to data complexity, system complexity is also an important challenge for big data

systems because systems usually become more complicated when they support more types

of data. Since distributed data processing frameworks are typically equipped with several

core capabilities including data partitioning, data replication, load balancing, and fault

tolerance, algorithms and optimization techniques for supporting new data types should be

carefully designed and implemented to minimize any potential overhead to these existing

functions. For example, when we want to add support for spatial queries in a distributed

storage system, we may consider implementing representative spatial indexing techniques,

such as R-trees, in the storage system. However, naive implementation of this approach can

3

make the storage system more complicated and also increase overhead of existing modules.

In addition, even though we handle the system complexity issues carefully for now, most

emerging distributed computing systems are being continuously and rapidly updated and

thus we should verify that our implementation will still work well for new versions.

1.2 Dissertation Scope and Contributions

To tackle the challenges of big data processing, this dissertation is focused on the develop-

ment of architectures and a suite of optimization techniques for scaling big data processing

systems. This dissertation makes the following contributions to address the technical chal-

lenges described above.

1.2.1 Distributed Graph Query Processing

Initially studying the problems and the challenges of distributed processing of big graph

data, we develop a distributed RDF (resource description framework) system equipped with

semantic hash partitioning. In addition, we develop a general graph partitioning framework

for various graph data characteristics and query workloads.

RDF, a standard graph-based model for data exchange on the Web, is being widely

used in many scientific projects, governments, and so on. Even though several distributed

RDF systems have been proposed, they suffer from high cross-node communication during

RDF query processing because they use random partitioning or hash partitioning without

taking into account computation correlations among data entities. To tackle this challenge,

we develop a distributed RDF system called Shape, and propose a scalable partitioning

technique for RDF called semantic hash partitioning, which starts with simple hash parti-

tioning and then extends each hash partition through controlled triple replication. Its main

goal is to preserve as much of the core computation graph structure as possible to minimize

cross-node communication and maximize intra-node computation. We also present an effi-

cient distributed query processing technique by minimizing the cross-node communication

based on the semantic hash partitions. The prototype system of Shape has been released

for public access. In addition, the experimental evaluation on large graphs with hundreds

of millions of vertices and billions of edges has shown that Shape, which can scale to large

4

graphs with varying sizes and complexity, is more efficient than existing distributed RDF

systems.

Even though graph partitioning is essential for distributed graph processing in the cloud,

effectively partitioning a big graph to efficiently process graph queries is challenging because

of high data correlations, high heterogeneity, and the highly skewed distribution of graph

data. Furthermore, our experiments reveal that existing graph partitioners, mostly based on

minimum cut, cannot scale to large graphs with more than a half billion edges. To tackle this

challenge, we develop a distributed graph partitioning framework called VB-Partitioner,

which supports efficient graph query processing for various graph data characteristics and

query workloads. Our framework consists of three main phases. First, it generates partition-

ing building blocks based on structural correlations among vertices. Second, it groups the

building blocks to construct a set of partitions. Since one grouping technique cannot fit all,

we propose three different grouping techniques for this phase. Finally, while running graph

queries based on the generated partitions, it supports two types of distributed graph query

processing: (1) intra-partition processing, in which compute nodes do not communicate,

and (2) inter-partition processing, in which coordination among compute nodes is required

to join the intermediate results. The experimental results show that VB-Partitioner,

which can scale to large graphs, significantly outperforms the popular random block-based

graph partitioning in terms of query latency.

1.2.2 Distributed Iterative Graph Computations

Iterative graph computations, such as PageRank, connected component, and single-source

shortest path computations, have been widely used to analyze large graphs and thus to

derive profound insights from a huge number of explicit and implicit relationships among

entities. Existing distributed graph systems for iterative graph computations heavily rely

on distributed memory and thus suffer from poor scalability when the compute cluster can

no longer hold the graph and all the intermediate results in memory. To address this chal-

lenge, we develop GraphMap, a distributed iterative graph computation framework that

effectively utilizes secondary storage to maximize access locality and speed up distributed

5

iterative graph computations. We distinguish read-only graph data from mutable graph

data and store the read-only data on disk. To maximize sequential disk access and mini-

mize random disk access, we propose locality-optimized data placement based on a two-level

graph partitioning algorithm. Furthermore, we develop locality-based optimization, which

dynamically chooses between sequential disk access and random disk access based on the

computation loads of each iteration for each worker machine. Compared to Apache Hama,

the first prototype of GraphMap not only considerably reduces the memory requirement

for iterative graph algorithms but also significantly improves the iterative graph computa-

tion performance.

1.2.3 Spatial Data Processing

We also explore the challenges of big spatial data processing by proposing efficient spatial

data management techniques along with three orthogonal directions.

First, we develop RoadAlarm, a scalable system for managing and supporting spatial

alarms for mobile users traveling on road networks. Spatial alarms are location-based

reminders that can inform mobile users when they arrive at a user-specified spatial location

of interest such as a grocery store. A key technical challenge for a large-scale spatial alarm

system is the ability to provide high performance and high accuracy for spatial alarm

evaluation. This system offers a suite of alarm processing and optimization techniques

that minimize the amount of wakeups at mobile clients to save energy while reducing the

amount of unnecessary alarm checks at the server to improve the performance of servers

and the accuracy of alarm evaluations. We evaluate RoadAlarm techniques over large

mobile traces and compare them with existing techniques by varying the number of mobile

clients, the number of alarms, and the size of the road networks. The RoadAlarm approach

outperforms existing approaches by orders of magnitude in terms of both server performance

and client energy consumption. We also build a simulation-based demo to show the working

of the RoadAlarm system using GTMobiSIM.

Second, we develop a Twitter location prediction framework by utilizing another social

network specialized in locations. Even though the location information of a social network is

6

invaluable, many social network users have been reluctant to adopt the geo-tagging feature

of social networks. To solve this location sparseness problem, we propose the framework

to predict the location of each tweet. This problem is much more challenging than predict-

ing the location of each user because each tweet has very short textual data (up to 140

characters). Furthermore, the goal of this framework is to predict the fine-grained location

(e.g., latitude and longitude) of each tweet, instead of the city- or zip code-level location.

We build probabilistic models for locations using data from Foursquare, which is another

social network specialized in locations, instead of noisy data from Twitter. To increase the

accuracy of prediction, we evaluate various ranking methods, smoothing techniques, and

language models. In addition, using machine-learning techniques, we develop classification

models that filter out unpredictable tweets.

Third, we develop a lightweight spatial indexing technique for big spatial data by uti-

lizing a hierarchical data structure. Even though several techniques that support spatial

queries for distributed storage systems such as HDFS and HBase have been proposed, most

require internal modification of existing systems and thus increase the complexity and over-

head of the systems. We propose an efficient and lightweight spatial index for big data

stored in distributed storage systems. The index, based on a hierarchical spatial data struc-

ture, has several advantages. First, it can be easily applied to existing storage systems

without modifying their internal implementation. Second, it provides simple yet highly

efficient filtering for spatial objects because it uses prefix matching to find relevant spatial

objects. Third, it supports the customizable control of the index size for various applica-

tions. Our experimental evaluation shows that our approach can significantly improve the

search performance of big spatial data and easily be applied to existing storage systems

without modifying their internal implementation. A prototype implementation on top of

HBase and an RDF store is developed to show the effectiveness and efficiency of our index.

1.3 Dissertation Organization

This dissertation consists of several chapters and each chapter addresses one or more of the

problems described above. In each chapter, we introduce the background of the problem

7

being addressed, describe related work, and present our solution techniques followed by

experimental evaluation. This dissertation is organized as follows.

In Chapter 2, we present a new distributed RDF system, called Shape, to improve the

performance of distributed RDF query processing. Equipped with a scalable partitioning

technique and an efficient distributed query processing technique, Shape, which can scale

to large graphs with varying sizes and complexity, is more efficient than existing distributed

RDF systems.

In Chapter 3, we proposes a distributed graph partitioning framework called VB-

Partitioner, which supports efficient graph query processing for various graph data char-

acteristics and query workloads. Equipped with three different grouping techniques, VB-

Partitioner significantly outperforms the popular random block-based graph partitioning

in terms of query latency.

In Chapter 4, we introduce a distributed iterative graph computation framework called

GraphMap, which effectively utilizes secondary storage to maximize access locality and

speed up distributed iterative graph computations. The framework not only considerably

reduces memory requirements for iterative graph algorithms but also significantly improves

the performance of iterative graph computations.

In Chapter 5, we develop a road network-aware spatial alarm processing system called

RoadAlarm. RoadAlarm offers a suite of alarm processing and optimization techniques

that minimize the amount of wakeups at mobile clients to save energy while reducing the

amount of unnecessary alarm checks at the server to improve the server performance and

the accuracy of alarm evaluations.

In Chapter 6, we present a framework to predict the location of each tweet on Twitter.

We build probabilistic models for locations using data from Foursquare, which is another

social network specialized in locations, instead of noisy data from Twitter.

In Chapter 7, we introduce an efficient and lightweight spatial index for big data stored in

distributed storage systems. Based on a hierarchical spatial data structure, the index can be

easily applied to existing storage systems without modifying their internal implementation.

In Chapter 8, we summarize the main contributions of this dissertation and discuss our

8

future research directions.

9

CHAPTER II

SHAPE: DISTRIBUTED RDF SYSTEM WITH SEMANTIC HASH

PARTITIONING

Massive volumes of big RDF data are growing beyond the performance capacity of conven-

tional RDF data management systems operating on a single node. Applications using large

RDF data demand efficient data partitioning solutions for supporting RDF data access on

a cluster of compute nodes. In this chapter we present a novel semantic hash partition-

ing approach and implement a Semantic HAsh Partitioning-Enabled distributed RDF data

management system, called Shape. This chapter makes three original contributions. First,

the semantic hash partitioning approach we propose extends the simple hash partitioning

method through direction-based triple groups and direction-based triple replications. The

latter enhances the former by controlled data replication through intelligent utilization of

data access locality, such that queries over big RDF graphs can be processed with zero

or very small amount of inter-machine communication cost. Second, we generate locality-

optimized query execution plans that are more efficient than popular multi-node RDF data

management systems by effectively minimizing the inter-machine communication cost for

query processing. Third but not the least, we provide a suite of locality-aware optimization

techniques to further reduce the partition size and cut down on the inter-machine communi-

cation cost during distributed query processing. Experimental results show that our system

scales well and can process big RDF datasets more efficiently than existing approaches.

2.1 Introduction

The creation of RDF (resource description framework) [17] data is escalating at an unprece-

dented rate, led by the semantic web community and Linked Open Data initiatives [14].

On one hand, the continuous explosion of RDF data opens door for new innovations in big

data and Semantic Web initiatives, but on the other hand, it easily overwhelms the memory

and computation resources on commodity servers and causes performance bottlenecks in

10

many existing RDF stores with query interfaces such as SPARQL [19]. Furthermore, many

scientific and commercial online services must answer queries over big RDF data in near real

time, and achieving fast query response time requires careful partitioning and distribution

of big RDF data across a cluster of servers.

A number of distributed RDF systems are using Hadoop MapReduce as their query

execution layer to coordinate query processing across a cluster of server nodes. Several

independent studies have shown that a sharp difference in query performance is observed

between queries that are processed completely in parallel without any coordination among

server nodes and queries that require even a small amount of coordination. When the size

of intermediate results is large, the inter-node communication cost for transferring interme-

diate results of queries across multiple server nodes can be prohibitively high. Therefore,

we argue that a scalable RDF data partitioning approach should be able to partition big

RDF data into performance-optimized partitions such that the number of queries that hit

partition boundaries is minimized and the cost of multiple rounds of data shipping across

a cluster of sever nodes is eliminated or reduced significantly.

In this chapter we present a semantic hash partitioning approach that combines locality-

optimized RDF graph partitioning with cost-aware query partitioning for scaling queries

over big RDF graphs. At the data partitioning phase, we develop a semantic hash par-

titioning method that utilizes access locality to partition big RDF graphs across multiple

compute nodes by maximizing the intra-partition processing capability and minimizing the

inter-partition communication cost. Our semantic hash partitioning approach introduces

direction-based triple groups and direction-based triple replications to enhance the baseline

hash partitioning algorithm by controlled data replication through intelligent utilization of

data access locality. We also provide a suite of semantic optimization techniques to further

reduce the partition size and increase the opportunities for intra-partition processing. As

a result, queries over big RDF graphs can be processed with zero or very small amount of

inter-partition communication cost. At the cost-aware query partitioning phase, we generate

locality-optimized query execution plans that can effectively minimize the inter-partition

11

Stud1

GradStud

type

Prof1

Paper1

Course1
teacherOf

Course

type

FullProf

type

CS

Dept

type

Univ1
phdDegree

Univ0
underDegree

Univ

type

type

Lab1 sub
Org

Lab

type

(a) RDF Graph

?x

type

FullProf

CS
works

?y1

?y2 ?y3

name

?x

GradStud

type

?y ?z

Univ

type

Dept

type

subOrg

Paper1 ?x
author

?y

takes

Course
type

star complex

chain

(b) SPARQL Query Graphs

?student

?professor ?course
teacherOf

GradStud
type

CS

works

SELECT ?student ?professor ?course

WHERE { ?student advisor ?professor .

?student takes ?course .

?professor teacherOf ?course .

?student rdf:type GradStud .

?professor works CS . }

(c) Example SPARQL query

Figure 1: RDF and SPARQL

communication cost for distributed query processing and are more efficient than those pro-

duced by popular multi-node RDF data management systems. To validate our semantic

hash partitioning architecture, we develop Shape, a Semantic HAsh Partitioning-Enabled

distributed RDF data management system. We experimentally evaluate our system to un-

derstand the effects of various system parameters and compare against other popular RDF

data partitioning schemes, such as simple hash partitioning and min-cut graph partitioning.

Experimental results show that our system scales well and can process big RDF datasets

more efficiently than existing approaches. Although this chapter focuses on RDF data and

SPARQL queries, we conjecture that many of our technical developments are applicable to

scaling queries and subgraph matching over general applications of big graphs.

The rest of the chapter proceeds as follows. We give a brief overview of RDF, SPARQL,

and the related work in Section 2.2. Section 2.3 describes the Shape system architecture

that implements the semantic hash partitioning. We present the locality-optimized semantic

hash partitioning scheme in Section 2.4 and the partition-aware distributed query processing

mechanisms in Section 2.5. We report our experimental results in Section 2.6 and conclude

the chapter in Section 2.7.

2.2 Preliminary

2.2.1 RDF and SPARQL

RDF is a standard data model proposed by World Wide Web Consortium (W3C). An RDF

dataset consists of RDF triples, and each triple has a subject, a predicate and an object,

representing a relationship, denoted by the predicate, between the subject and the object.

An RDF dataset forms a directed, labeled RDF graph, where subjects and objects are

12

vertices and predicates are labels on the directed edges, each emanating from its subject

vertex to its object vertex. The schema-free model makes RDF attractive as a flexible

mechanism for describing entities and relationships among entities. Fig. 1(a) shows an

example RDF graph, extracted from the Lehigh University Benchmark (LUBM) [47].

SPARQL [19] is a SQL-like standard query language for RDF, recommended by W3C.

SPARQL queries consist of triple patterns, in which subject, predicate and object may be a

variable. A SPARQL query is said to match subgraphs of the RDF data when the terms in

the subgraphs may be substituted for the variables. Processing a SPARQL query Q involves

graph pattern matching, and the result of Q is a set of subgraphs in the big RDF graph,

which match the triple patterns of Q.

SPARQL queries can be categorized into star, chain and complex queries as shown in

Fig. 1(b). Star queries often consist of subject-subject joins, and each join variable is the

subject of all the triple patterns involved. Chain queries often consist of subject-object

joins (i.e., the subject of a triple pattern is joined to the object of another triple pattern),

and their triple patterns are connected one by one like a chain. We refer to the remaining

queries, which are combinations of star and chain queries, as complex queries.

2.2.2 Related Work

Data partitioning is an important problem with applications in many areas. Hash parti-

tioning is one of the dominating approaches in RDF graph partitioning. It divides an RDF

graph into smaller and similar sized partitions by hashing over the subject, predicate or

object of RDF triples. We classify existing distributed RDF systems into two categories

based on how the RDF dataset is partitioned and how partitions are stored and accessed.

The first category generally partitions an RDF dataset across multiple servers using

horizontal (random) partitioning, stores partitions using distributed file systems such as

Hadoop Distributed File System (HDFS), and processes queries by parallel access to the

clustered servers using distributed programming model such as Hadoop MapReduce [97, 56].

SHARD [97] directly stores RDF triples in HDFS as flat text files and runs one Hadoop job

for each clause (triple pattern) of a SPARQL query. [56] stores RDF triples in HDFS by

13

hashing on predicates and runs one Hadoop job for each join of a SPARQL query. Existing

approaches in this category suffer from prohibitively high inter-node communication cost

for processing queries.

The second category partitions an RDF dataset across multiple nodes using hash parti-

tioning on subject, object, predicate or any combination of them. However, the partitions

are stored locally in a database, such as a key-value store like HBase or an RDF store

like RDF-3X [86] and accessed via a local query interface. In contrast to the first type of

systems, these systems only resort to distributed computing frameworks, such as Hadoop

MapReduce, to perform cross-server coordination and data transfer required for distributed

query execution, such as joins of intermediate query results from two or more partition

servers [42, 50, 88, 68]. Concretely, Virtuoso Cluster [42], YARS2 [50], Clustered TDB [88]

and CumulusRDF [68] are distributed RDF systems that use simple hashing as their triple

partitioning strategy, but they differ from one another in terms of their index structures.

Virtuoso Cluster partitions each index of all RDBMS tables containing RDF data using

hashing. YARS2 uses hashing on the first element of all six alternately ordered indices to

distribute triples to all servers. Clustered TDB uses hashing on subject, object and predi-

cate to distribute each triple three times to the cluster of servers. CumulusRDF distributes

three alternately ordered indices using a key-value store. Surprisingly, none of the existing

data partitioning techniques by design aim at minimizing the amount of inter-partition co-

ordination and data transfer involved in distributed query processing. Thus, most existing

work suffers from the high cost of cross-server coordination and data transfer for complex

queries. Such heavy inter-partition communication incurs excessive network I/O operations,

leading to long query latencies.

Graph partitioning has been studied extensively in several communities for decades

[52, 60]. A typical graph partitioner divides a graph into smaller partitions that have min-

imum connections between them, as adopted by METIS [60, 15] or Chaco [52]. Various

efforts on graph partitioning have been dedicated to partitioning a graph into similar sized

partitions such that the workload of servers holding these partitions will be better bal-

anced. [55] promotes the use of min-cut based graph partitioner for distributing big RDF

14

data across a cluster of machines. It shows experimentally that min-cut based graph parti-

tioning outperforms the simple hash partitioning approach. However, the main weaknesses

of existing graph partitioners are the high overhead of loading the RDF data into the data

format of graph partitioners and the poor scalability to large datasets. For example, we

show in Section 2.6 that it is time consuming to load large RDF datasets to a graph par-

titioner and the partitioner also crashes when RDF datasets exceed a half billion triples.

Orthogonal to graph partitioning efforts such as min-cut algorithms, several vertex-centric

programming models are proposed for efficient graph processing on a cluster of commodity

servers [80, 70] or for minimizing disk IOs required by in-memory graph computation [67].

Concretely, [80, 67] are known for their iterative graph computation techniques that can

speed up certain types of graph computations. The techniques developed in [70] partition

heterogeneous graphs by constructing customizable types of vertex blocks.

In comparison, this is the first work, to the best of our knowledge, which introduces a se-

mantic hash partitioning method combined with a locality-aware query partitioning method.

The semantic hash partitioning method extends simple hash partitioning by combining

direction-based triple grouping with direction-based triple replication. The locality-aware

query partitioning method generates semantic hash partition-aware query plans, which min-

imize inter-partition communication cost for distributed query processing.

2.3 Overview

We implement the first prototype system of our semantic hash partitioning method on top

of Hadoop MapReduce with the master server as the coordinator and the set of slave servers

as the workers. Fig. 2 shows a sketch of our system architecture.

Data partitioning. RDF triples are fetched into the data partitioning module installed on

the master server, which partitions the data stored across the set of slave servers. To work

with big data that exceeds the performance capacity (e.g., memory, CPU) of a single server,

we provide a distributed implementation of our semantic hash partitioning algorithm to

perform data partitioning using a cluster of servers. The semantic hash partitioner performs

three main tasks: (i) Pre-partition optimizer prepares the input RDF dataset for hash

15

master

slave 1

slave 2

.

.

.

slave n

Partition

RDF Storage

System Store input RDF data

Store intermediate results

DataNode

Generate partitions

Join intermediate results

TaskTracker

Semantic Hash Partitioner

Pre-partition optimizer Semantic partition generator

Baseline partitioner Partition allocator

Query Execution Engine

Query analyzer Distributed query executor

Query decomposer Query optimizer

NameNode JobTracker

Figure 2: Shape System Architecture

partitioning, aiming at increasing the access locality of each baseline partition generated in

the next step. (ii) Baseline hash partition generator uses a simple hash partitioner to create

a set of baseline hash partitions. In the first prototype implementation, we set the number of

partitions to be exactly the number of available slave servers. (iii) Semantic hash partition

generator utilizes the triple replication policies (see Section 2.4) to determine how to expand

each baseline partition to generate its semantic hash partition with high access locality. We

utilize the selective triple replication optimization technique to balance between the access

locality and the partition size. On each slave server, either an RDF-specific storage system or

a relational DBMS can be installed to store the partition generated by the data partitioning

algorithms. It also processes SPARQL queries over the local partition stored in the slave

server and generates partial (or intermediate) results. RDF-3X [86] is installed on each

slave server of the cluster in Shape.

Distributed query processing. The master server also serves as the interface for SPARQL

queries and performs distributed query execution planning for each query received. We cat-

egorize SPARQL query processing on a cluster of servers into two types: intra-partition

processing and inter -partition processing.

By intra-partition processing, we mean that a query Q can be fully executed in parallel

on each server by locally searching the subgraphs matching the triple patterns of Q, without

16

any inter-partition coordination. The only inter-server communication cost required to

process Q is for the master server to send Q to each slave server and for each slave server to

send its local matching results to the master server, which simply merges the partial results

received from all slave servers to generate the final results of Q.

By inter-partition processing, we mean that a query Q as a whole cannot be executed on

any partition server, and it needs to be decomposed into a set of subqueries such that each

subquery can be evaluated by intra-partition processing. Thus, the processing of Q requires

multiple rounds of coordination and data transfer across a set of partition servers. In

contrast to intra-partition processing, the communication cost for inter-partition processing

can be extremely high, especially when the number of subqueries is not small and the size

of intermediate results to be transferred across a network of partition servers is large.

2.4 Semantic Hash Partitioning

The semantic hash partitioning algorithm performs data partitioning in three main steps.

First, we build a set of triple groups that are baseline building blocks for semantic hash

partitioning. Second, we group the baseline building blocks to generate baseline hash par-

titions. To further increase the access locality of the baseline building blocks, we also

develop an RDF-specific optimization technique that applies URI hierarchy-based grouping

to merge those triple groups whose anchor vertices share the same URI prefix prior to gener-

ating the baseline hash partitions. Third, we generate k-hop semantic hash partitions that

expand each baseline hash partition via controlled triple replication. To further balance

the amount of triple replication and the efficiency of query processing, we also develop the

rdf:type-based triple filter during the k-hop triple replication. To ease the readability, we

first describe the three core tasks and then discuss the two optimizations at the end of this

section.

2.4.1 Building Triple Groups

An intuitive way to partition a large RDF dataset is to group a set of triples anchored

at the same subject or object vertex and place the grouped triples in the same partition.

We call such groups triple groups, each with an anchor vertex. Triple groups are used as

17

baseline building blocks for our semantic hash partitioning. An obvious advantage of using

the triple groups as baseline building blocks is that star queries can be efficiently executed

in parallel using solely intra-partition processing at each sever because it is guaranteed that

all required triples, from each anchor vertex, to evaluate a star query are located in the

same partition.

Definition 1 (RDF Graph) An RDF graph is a directed, labeled multigraph, denoted as

G = (V,E,ΣE , lE) where V is a set of vertices and E is a multiset of directed edges (i.e.,

ordered pairs of vertices). (u, v) ∈ E denotes a directed edge from u to v. ΣE is a set

of available labels (i.e., predicates) for edges and lE is a map from an edge to its label

(E → ΣE).

In RDF datasets, multiple triples may have the same subject and object and thus E is

a multiset instead of a set. Also the size of E (|E|) represents the total number of triples

in the RDF graph G.

For each vertex v in a given RDF graph, we define three types of triple groups based on

the role of v with respect to the triples anchored at v: (i) subject-based triple group (s-TG)

of v consists of those triples in which their subject is v (i.e., outgoing edges from v) (ii)

object-based triple group (o-TG) of v consists of those triples in which their object is v (i.e.,

incoming edges to v) (iii) subject-object-based triple group (so-TG) of v consists of those

triples in which their subject or object is v (i.e., all connected edges of v). We formally

define triple groups as follows.

Definition 2 (Triple Group) Given an RDF graph G = (V,E,ΣE , lE), s-TG of vertex v ∈

V is a set of triples in which their subject is v, denoted by s-TG(v) = {(u,w)|(u,w) ∈ E, u =

v}. We call v the anchor vertex of s-TG(v). Similarly, o-TG and so-TG of v are defined

as o-TG(v) = {(u,w)|(u,w) ∈ E,w = v} and so-TG(v) = {(u,w)|(u,w) ∈ E, v ∈ {u,w}}

respectively.

We generate a triple group for each vertex in an RDF graph and use the set of generated

triple groups as baseline building blocks to generate k-hop semantic hash partitions. The

18

subject-based triple groups are anchored at subject of the triples and are efficient for subject-

based star queries in which the center vertex is the subject of all triple patterns (i.e., subject-

subject joins). The total number of s-TG equals to the total number of distinct subjects.

Similarly, o-TG and so-TG are efficient for object-based star queries (i.e., object-object

joins), in which the center vertex is the object of all triple patterns, and subject-object-based

star queries, in which the center vertex is the subject of some triple patterns and object of

the other triple patterns (i.e., there exists at least one subject-object join) respectively.

2.4.2 Constructing Baseline Hash Partitions

The baseline hash partitioning takes the triple groups generated in the first step, applies

a hash function on the anchor vertex of each triple group, and places those triple groups

having the same hash value in the same partition. We can view the baseline partitioning

as a technique to bundle different triple groups into one partition. With three types of

triple groups, we can construct three types of baseline partitions: subject-based partitions,

object-based partitions, and subject-object-based partitions.

Definition 3 (Baseline hash partitions) Let G = (V,E,ΣE , lE) denote an RDF graph and

TG(v) denote the triple group anchored at vertex v ∈ V . The baseline hash partition-

ing P of graph G results in a set of n partitions, denoted by {P1, P2, . . . , Pn} such that

Pi = (Vi, Ei,ΣEi , lEi),
⋃
i Vi = V ,

⋃
iEi = E. If Vi = {v|hash(v) = i, v ∈ V }

⋃
{w|(v, w) ∈

TG(v), hash(v) = i, v ∈ V } and Ei = {(v, w)|v, w ∈ Vi, (v, w) ∈ E}, we call the baseline

partitioning P the s-TG hash partitioning. If Vi = {v|hash(v) = i, v ∈ V }
⋃
{u|(u, v) ∈

TG(v), hash(v) = i, v ∈ V } and Ei = {(u, v)|u, v ∈ Vi, (u, v) ∈ E}, we call the baseline par-

titioning P the o-TG hash partitioning. In the above two cases, Ei
⋂
Ej = ∅ for 1 ≤ i, j ≤ n,

i 6= j. If Vi = {v|hash(v) = i, v ∈ V }
⋃
{w|(v, w) ∈ TG(v) ∨ (w, v) ∈ TG(v), hash(v) =

i, v ∈ V } and Ei = {(v, w)|v, w ∈ Vi, (v, w) ∈ E}, we call the baseline partitioning P the

so-TG hash partitioning.

We can verify the correctness of the baseline partitioning by checking the full coverage of

baseline partitions and the disjoint properties for subject-based and object-based baseline

partitions. In addition, we can further improve the partition balance across a cluster of

19

servers by fine-tuning of triple groups with high degree anchor vertices. We omit further

discussion on the correctness verification and quality assurance step in this chapter.

2.4.3 Generating Semantic Hash Partitions

Using a hash function to map triple groups to baseline partitions has two advantages. It

is simple, and it generates well balanced partitions. However, a serious weakness of simple

hash-based partitioning is the poor performance for complex non-star queries.

Considering a complex SPARQL query asking the list of graduate students who have

taken a course taught by their CS advisor in Fig. 1(c), its query graph consists of two

star query patterns chained together: one consists of three triple patterns emanating from

variable vertex ?student, and the other consists of two triple patterns emanating from

variable vertex ?professor. Assuming that the original RDF data in Fig. 1(a) is partitioned

using the simple hash partitioning based on s-TGs, we know that the triples with predicates

advisor and takes emanating from their subject vertex Stud1 are located in the same

partition. However, it is highly likely that the triple teacherOf and the triple works

emanating from a different but related subject vertex Prof1, the advisor of the student

Stud1, are located in a different partition, because the hash value for Stud1 is different from

the hash value of Prof1. Thus, this complex query needs to be evaluated by performing

inter-partition processing, which involves splitting the query into a set of subqueries as well

as cross-server communication and data shipping. Assume that we choose to decompose the

query into the following two subqueries: 1) SELECT ?student ?professor ?course WHERE

{?student advisor ?professor . ?student takes ?course . ?student rdf:type GradStud . } 2)

SELECT ?professor ?course WHERE {?professor teacherOf ?course . ?professor works CS

.}. Although each subquery can be performed in parallel on all partition servers, we need

to ship the intermediate results generated from each subquery across a network of partition

servers in order to join the intermediate results of the subqueries, which can lead to a high

cost of inter-server communication.

Taking a closer look at the query graph in Fig.1(c), it is intuitive to observe that if the

triples emanating from the vertex Stud1 and the triples emanating from its one hop neighbor

20

Q3

Q1

P1

P2

P3

P5

P4

Q2

(a) Baseline partitions

Q3

Q1

P1

P2

P4

P3

P5

P1’ P5’

Q2

(b) Expanded Partitions

Figure 3: Partition Expansion

vertex Prof1 are residing in the same partition, we can effectively eliminate the inter-

partition processing cost and evaluate this complex query by only intra-partition processing.

This motivates us to develop a locality-aware semantic hash partitioning algorithm through

hop-based controlled triple replication.

2.4.3.1 Hop-based Triple Replication

The main goal of using hop-based triple replication is to create a set of semantic hash par-

titions such that the number of queries that can be evaluated by intra-partition processing

is increased. In contrast, with the baseline partitions only star queries can be guaranteed

for intra-partition processing.

Fig. 3 presents an intuitive illustration of the concept and benefit of the semantic hash

partitioning. By the baseline hash partitioning, we have five baseline partitions P1, P2, P3,

P4, and P5 and three queries shown in Fig. 3(a). For brevity, we assume that the baseline

partitions are generated using s-TGs or o-TGs in which each triple is included in only one

triple group. Clearly, Q2 is an intra-partition query and Q1 and Q3 are inter-partition

queries. Evaluating Q1 requires to access triples located in and nearby the boundaries

of the three partitions: P1, P3, and P4. One way to process Q1 is to use the baseline

partitions. Thus, Q1 should be split into three subqueries, and upon completion of the

subqueries, their intermediate results are joined using Hadoop jobs. The communication

cost for inter-partition processing depends on the number of subqueries, the size of the

intermediate results, and the size of the cluster (i.e., number of partition servers involved).

21

Alternatively, we can expand the triple groups in each baseline partition by using hop-

based triple replication and execute queries over the semantic hash partitions instead. In

Fig. 3(b), the shaded regions, P1’ and P5’, represent a set of replicated triples added to par-

tition P1 and P5 respectively. Thus, P1 is replaced by its semantic hash partition, denoted

by P1
⋃

P1’. Similarly, P5 is replaced by P5
⋃

P5’. With the semantic hash partitions, all

three queries can be executed by intra-partition processing without any coordination with

other partitions and any join of intermediate results, because all triples required to evaluate

the queries are located in the expanded partition.

Before we formally introduce the k-hop semantic hash partitioning, we first define some

basic concepts of RDF graphs.

Definition 4 (Path) Given an RDF graph G = (V,E,ΣE , lE), a path from vertex u ∈ V to

another vertex w ∈ V is a sequence of vertices, denoted by v0, v1, . . . , vk, such that v0 = u,

vk = w, ∀m ∈ [0, k − 1] : (vm, vm+1) ∈ E. We also call this path the forward direction

path. A reverse direction path from vertex u to vertex w is a sequence of vertices, denoted

by v0, v1, . . . , vk, such that v0 = u, vk = w, ∀m ∈ [0, k − 1] : (vm+1, vm) ∈ E. A bidirection

path from vertex u to vertex w is a sequence of vertices, denoted by v0, v1, . . . , vk, such that

v0 = u, vk = w, ∀m ∈ [0, k − 1] : (vm, vm+1) ∈ E or (vm+1, vm) ∈ E. The length of the

path v0, v1, . . . , vk is k.

Definition 5 (Hop count) Given an RDF graph G = (V,E,ΣE , lE), we define the hop

count from vertex u ∈ V to vertex v ∈ V , denoted by hop(u, v), as the minimum length

of all possible forward direction paths from u to v. We also define the hop count from

vertex u to edge (v, w) ∈ E, denoted by hop(u, vw), as “1 + hop(u, v)”. The reverse hop

count from vertex u to vertex v, reverse hop(u, v), is the minimum length of all possible

reverse direction paths from u to v. The bidrection hop count from vertex u to vertex v,

bidirection hop(u, v), is the minimum length of all possible bidirection paths between u to

v. The hop count hop(u, v) is zero if u = v and∞ if there is no forward direction path from

u to v. Similar exceptions exist for reverse hop(u, v) and bidirection hop(u, v).

Now we introduce k-hop expansion to control the level of triple replication and balance

22

between the query performance and the cost of storage. Concretely, each expanded partition

will contain all triples that are within k hops from any anchor vertex of its triple groups.

k is a system-defined parameter and k = 2 is the default setting in our first prototype.

One way to optimize the setting of k is to utilize the statistics collected from representative

historical queries such as frequent query patterns.

We support three approaches to generate k-hop semantic hash partitions based on the

direction of triple expansion: i) forward direction-based, ii) reverse direction-based, and

iii) bidirection-based. The main advantage of using direction-based triple replication is

to enable us to selectively replicate the triples within k hops. This selective replication

strategy offers a configurable and customizable means for users and applications of our

semantic hash partitioner to control the amount of triple replications desired. This is

especially useful when considering a better tradeoff between the gain of minimizing inter-

partition processing and the cost of local storage and local query processing. Furthermore,

by enabling direction-based triple expansion, we provide k-hop semantic hash partitioning

with a flexible combination of tripe groups of different types and k-hop triple expansion to

baseline partitions along different directions.

Let G = (V,E,ΣE , lE) be the RDF graph of the original dataset and {P1, P2, . . . , Pm}

denote the baseline partitions on G. We formally define the k-hop forward semantic hash

partitions as follows.

Definition 6 (k-hop forward semantic hash partition) The k-hop forward semantic hash

partitions on G are expanded partitions from {P1, P2, . . . , Pm}, by adding (replicating)

triples that are within k hops from any anchor vertex in each baseline partition along

the forward direction, denoted by {P k1 , P k2 , . . . , P km}, where each baseline partition Pi =

(Vi, Ei,ΣEi , lEi) is expanded into P ki = (V k
i , E

k
i ,ΣEki

, lEki
) such that Eki = {e|e ∈ E,∃vanchor ∈

Vi : hash(vanchor) = i and hop(vanchor, e) ≤ k}, and V k
i = {v|(v, v′) ∈ Eki or (v′′, v) ∈ Eki }.

We omit the formal definitions of the k-hop reverse and bidirection semantic hash par-

titions, in which the only difference is using reverse hop(vanchor, e) and bidirection

hop(vanchor, e), instead of using hop(vanchor, e), respectively.

23

Stud1

GradStud

type

Prof1 Course1

CS

Univ0
underDegree

(a) baseline partition (example)

Stud1

GradStud

type

Prof1 Course1

CS

Univ0
underDegree

teacherOf

Course

type

FullProf

type

Univ1
phdDegree

Dept

type

Univ

type

(b) forward direction

Stud1

GradStud

type

Prof1 Course1

CS

Univ0
underDegree

Paper1

teacherOf

Lab1
sub
Org

type

(c) reverse direction

Stud1

GradStud

type

Prof1 Course1

CS

Univ0
underDegree

Paper1

teacherOf

Lab1
sub
Org

Course

type

FullProf

type

Univ1
phdDegree

Dept

type

Univ

type

(d) bidirection

Figure 4: Semantic Hash Partitions from Stud1

Fig. 4 illustrates three direction-based 2-hop expansions from a triple group with anchor

vertex Stud1 shown in Fig. 4(a). Fig. 4(b) shows the 2-hop forward semantic hash partition,

where dotted edges represent replicated triples by 2-hop expansion from the baseline parti-

tion. Fig. 4(c) shows the 2-hop reverse semantic hash partition (i.e., from object to subject).

Fig. 4(d) shows the semantic hash partition generated by 2-hop bidirection expansion from

Stud1.

2.4.3.2 Benefits of k-hop semantic hash partitions

The main idea of the semantic hash partitioning approach is to use a flexible triple replica-

tion scheme to maximize intra-partition processing and minimize inter-partition processing

for RDF queries. Compared to existing data partitioning algorithms that produce disjoint

partitions, the biggest advantage of using the k-hop semantic hash partitioning is that, by

selectively replicating some triples across multiple partitions, more queries can be executed

using intra-partition processing.

We employ the concept of eccentricity, radius and center vertex to formally characterize

24

the benefits of the k-hop semantic hash partitioning scheme. Let G = (V,E,ΣE , lE) denote

an RDF graph.

Definition 7 (Eccentricity) The eccentricity ε of a vertex v ∈ V is the greatest bidirection

hop count from v to any edge in G and formally defined as follows:

ε(v) = max
e∈E

bidirection hop(v, e)

The eccentricity of a vertex in an RDF graph shows how far a vertex is from the vertex

most distant from it in the graph. In the above definition, if we use the forward or reverse

hop count instead, we can obtain the forward or reverse eccentricity respectively.

Definition 8 (Radius and Center vertex) We define the radius of G, r(G), as the minimum

(bidirection) eccentricity of any vertex v ∈ V . The center vertices of G are the vertices

whose (bidirection) eccentricity is equal to the radius of G.

r(G) = min
v∈V

ε(v), center(G) = {v|v ∈ V, ε(v) = r(G)}

When the forward or reverse eccentricity is used to define the radius of an RDF graph G,

we refer to this radius as the forward or reverse direction radius respectively.

Now we use the query radius to formalize the gain of the semantic hash partitioning.

Given a query Q issued over a set of k-hop semantic hash partitions, if the radius of Q’s

query graph is equal to or less than k, then Q can be executed on the partitions by using

intra-partition processing.

Theorem 1 Let {P k1 , P k2 , . . . , P km} denote the semantic hash partitions of G, generated by

k-hop expansion from the baseline partitions {P1, P2, . . . , Pm} on G, GQ denote the query

graph of a query Q and r(GQ) denote the radius of the query graph GQ. Q can be evaluated

using intra-partition processing over {P k1 , P k2 , . . . , P km} if r(GQ) ≤ k.

We give a brief sketch of proof. By the k-hop forward (or reverse or bidirection) semantic

hash partitioning, for any anchor vertex u in baseline partition Pi, all triples that are within

k hops from u along the forward direction (or reverse or bidirection) are included in P ki .

Therefore, it is guaranteed that all required triples to evaluate Q from u reside in the

expanded partition if r(GQ) ≤ k.

25

2.4.3.3 Selective k-hop Expansion

Instead of replicating triples by expanding k hops in an exhaustive manner, we promote

to further control the k-hop expansion by using some context-aware filters. For example,

we can filter out some rdf:type-like triples that are rarely used in most of queries in

the k-hop reverse expansion step to reduce the total number of triples to be replicated,

based on the two observations. First, rdf:type predicate is widely used in most of RDF

datasets to represent membership (or class) information of resources. Second, there are few

object-object joins where more than one rdf:type-like triples are connected by an object

variable, such as {Greg type ?x. Brian type ?x .}. By identifying such type of uncommon

case, we can set a triple filter that will not replicate those rdf:type-like triples if their

object vertices are the border vertices of the partition. However, we keep the rdf:type-like

triples when performing forward direction expansion (i.e., from subject to object), because

those triples are essential to provide fast pruning of irrelevant results due to the fact that

the rdf:type-like triples in the forward direction typically are given as query conditions for

most SPARQL queries. Our experimental results in Section 2.6 display significant reduction

of replicated triples compared to the k-hop semantic hash partitioning without the object-

based rdf:type-like triple filter.

2.4.3.4 URI Hierarchy-based Optimization

In an RDF graph, URI (Uniform Resource Identifier) references are used to identify vertices

(except literals and blank nodes) and edges. URI references usually have a path hierarchy,

and URI references having a common ancestor are often connected together, presenting

high access locality. We conjecture that if such URI references (vertices) are placed in the

same partition, we may reduce the number of replicated triples because a good portion of

triples that need to be replicated by k-hop expansion from a vertex v are already located

in the same partition of v. For example, the most common form of URI references in

RDF datasets are URLs (Uniform Resource Locators) with http as their schema, such

as “http://www.Department1.University2.edu/FullProfessor2/Publication14”. The typical

structure of URLs is “http : //domainname/path1/path2/ . . . /pathN#fragmentID”. We

26

first extract the hierarchy of the domain name based on its levels and then add the path

components and the fragment ID by keeping their order in the full URL path. For instance,

the hierarchy of the previous example URL, starting from the top level, will be “edu”,

“University2”, “Department1”, “FullProfessor2”, “Publication14”. Based on this hierarchy,

we measure the percentage of RDF triples whose subject vertex and object vertex share

the same ancestor for different levels of the hierarchy. If, at any level of the hierarchy, the

percentage of such triples is larger than a system-supplied threshold (empirically defined)

and the number of distinct URLs sharing this common hierarchical structure is greater

than or equal to the number of partition servers, we can use the selected portion of the

hierarchy from the top to the chosen level, instead of full URI references, to participate in the

baseline hash partitioning process. This is because the URI hierarchy-based optimization

can increase the access locality of baseline hash partitions by placing triples whose subjects

are sharing the same prefix structure of URLs into the same partitions, while distributing

the large collection of RDF triples across all partition servers in a balanced manner. We

call such preprocessing the URI hierarchy optimization.

In summary, when using a hash function to build the baseline partitions, we calculate

the hash value on the selected part of URI references and place those triples having the same

hash value on the selected part of URI references in the same partition. Our experiments

reported in Section 2.6 show that with the URI hierarchy optimization, we can obtain a

significant reduction of replicated triples at the k-hop expansion phase.

2.4.3.5 Algorithm and Implementation

Algorithm 1 shows the pseudocode for our semantic hash partitioning scheme. It includes

the configuration of parameters at the initialization step and the k-hop semantic hash

partitioning, which carries out in multiple Hadoop jobs. The first Hadoop job will perform

two tasks: generating triple groups and generating baseline partitions by hashing anchor

vertices of triple groups. The subsequent Hadoop job will generate k-hop semantic hash

partitions (k ≥ 2).

We assume that the input RDF graph has loaded into HDFS. The map function of the

27

Algorithm 1 Semantic Hash Partitioning
Input: an RDF graph G, k, type (s-TG, o-TG or so-TG), direction (forward, reverse or bidirection)
Output: a set of semantic hash partitions

1: Initially, semantic partitions are empty
2: Initially, there is no (anchor, border) pair

Round=1 // generating baseline partitions
Map
Input: triple t(s, p, o)

3: switch type do
4: case s− TG: emit(s, t)
5: case o− TG: emit(o, t)
6: case so− TG: emit(s, t), emit(o, t)
7: end switch

Reduce
Input: key: anchor vertex anchor, value: triples

8: add (hash(anchor), triples)
9: if k = 1 then

10: output baseline partitions P1, . . . , Pn
11: else
12: read triples
13: emit (anchor, borderSet)
14: Round = Round + 1
15: end if
16: while Round ≤ k do //start k-hop triple replication

Map
Input: (anchor, border) pair or triple t(s, p, o)

17: if (anchor, border) pair is read then
18: emit(border, anchor)
19: else
20: switch direction do
21: case forward: emit(s, t)
22: case reverse: emit(o, t)
23: case bidirection: emit(s, t), emit(o, t)
24: end switch
25: end if

Reduce
Input: key: border vertex border, value: anchors and triples

26: for each anchor in anchors do
27: add (hash(anchor), triples)
28: if k < Round then
29: read triples
30: emit (anchor, borderSet)
31: end if
32: end for
33: if k = Round then
34: output semantic partitions Pk1 , . . . , P

k
n

35: end if
36: Round = Round + 1
37: end while

first Hadoop job reads each triple and emits a key-value pair in which the key is subject

(for s-TG) or object (for o-TG) of the triple and the value is the remaining part of the

triple. If we use so-TG for generating baseline partitions, the map function emits two

key-value pairs, one using its subject as the key and the other using its object as the key

(line 3-7). Next we generate triple groups based on the subject (or object or both subject

and object) during the shuffling phase such that triples with the same anchor vertex are

grouped together and assigned to the partition indexed by the hash value of their anchor

28

vertex. The reduce function records the assigned partition of the grouped triples using the

hash value of their anchor vertex (line 8). If k = 1, we simply output the set of semantic

hash partitions by merging all triples assigned to the same partition. Otherwise, the reduce

function also records, for each anchor vertex, a set of vertices which should be expanded

in the next hop expansion (line 9-15). We call such vertices border vertices of the anchor

vertex. Concretely, for each triple in the triple group associated with the anchor vertex,

the reduce function records the other vertex (e.g., the object vertex if the anchor vertex is

the subject) as a border vertex of the anchor vertex because triples anchored at the border

vertex may be selected for expansion in the next hop.

In the next Hadoop job, we implement k-hop semantic hash partitioning by controlled

triple replication along the given expansion direction. The map function examines each

baseline partition and reads a (anchor vertex, border vertex) pair, and emits a key-value

pair in which the key is the border vertex and the value is the anchor vertex (line 17-25).

During the shuffling phase, a set of anchor vertices that have the same border vertex are

grouped together. The reduce function adds the triples connecting the border vertex to

the partition if they are new to the partition and records the partition index of the triple

using the hash value of the anchor vertex (line 27). If k = 2, we output the set of semantic

partitions obtained so far. Otherwise, we record a set of new border vertices for each anchor

vertex and repeat this job until k-hop semantic hash partitions are generated (line 28-31).

2.5 Distributed Query Processing

The distributed query processing component consists of three main tasks: query analysis,

query decomposition, and distributed query execution. The query analyzer determines

whether or not a query Q can be executed using intra-partition processing. All queries

that can be evaluated by intra-partition processing will be sent to the distributed query

plan execution module. For those queries that require inter-partition processing, the query

decomposer is invoked to split Q into a set of subqueries, each can be evaluated by intra-

partition processing. The distributed query execution planner will coordinate the joining of

intermediate results from executions of subqueries to produce the final result of the query.

29

?x

GradStud

?y ?z

Univ Dept

2

∞

∞ ∞

∞ ∞

(a) Q1: forward

?x

GradStud

?y Prof

Course

∞

∞
∞

∞

∞

(b) Q2: forward

?x

GradStud

?y Prof

Course

2

3

3

3

2

(c) Q2: bi-direction

Figure 5: Calculating Query Radius

2.5.1 Query Analysis

Given a query Q and its query graph, we first examine whether the query can be executed

using intra-partition processing. According to Theorem 1, we calculate the radius and the

center vertices of the query graph based on Definition 8, denoted by r(Q) and center(Q)

respectively. If the dataset is partitioned using the k-hop expansion, then we evaluate

whether r(Q) ≤ k holds. If yes, the query Q as a whole can be executed using the intra-

partition processing. Otherwise, the query Q is passed to the query decomposer.

Fig. 5 presents three example queries with their query graphs respectively. We place

the eccentricity value of each vertex next to the vertex. Since the forward radius of the

query graph in Fig. 5(a) is 2, we can execute the query using intra-partition processing if

the query is issued against the k-hop forward semantic hash partitions and k is equal to or

larger than 2. In Fig. 5(b), the forward radius of the query graph is infinity because there

is no vertex which has at least one forward direction path to all other vertices. Therefore,

we cannot execute the query over the k-hop forward semantic hash partitions using intra-

partition processing regardless of the hop count value of k. This query is passed to the

query decomposer for further query analysis. Fig. 5(c) shows the eccentricity of vertices in

the query graph under the bidirection semantic hash partitions. The bidirection radius is

2 and there are two center vertices: ?x and ?y. Therefore we can execute the query using

intra-partition processing if k is equal to or larger than 2 under the bidirection semantic

hash partitions.

30

?x

GradStud

?y

Course

∞

∞

∞

?y Prof ∞
1

2

(a) from ?x

?x

GradStud

?y

∞

∞ ?y Prof

Course

∞

∞

2

1

(b) from Prof

Figure 6: Query Decomposition

2.5.2 Query Decomposition

The first issue in evaluating a query Q using inter-partition processing is to determine the

number of subqueries Q needs to be decomposed into. Given that there are more than one

way to split Q into a set of subqueries, an intuitive approach is to first check whether Q

can be decomposed into two subqueries such that each subquery can be evaluated using

intra-partition processing. If there is no such decomposition, then we increase the number of

subqueries by one and check again to see whether the decomposition enables each subquery

to be evaluated by intra-partition processing. We repeat this process until a desirable

decomposition is found.

Concretely, we start the query decomposition by putting all vertices in the query graph

of Q into a set of candidate vertices to be examined in order to find such a decomposition

having two subqueries. For each candidate vertex v, we find the largest subgraph from v,

in the query graph of Q, which can be executed using intra-partition processing under the

current k-hop semantic hash partitions. For the remaining part of the query graph, which

is not covered by the subgraph, we check whether there is any vertex whose expanded

subgraph under the current k-hop expansion can fully cover the remaining part. If there is

such a decomposition, we treat each subgraph as a subquery of Q. Otherwise, we increase

the number of subqueries by one and then repeat the above process until we find a possible

decomposition. If we find several possible decompositions having the equal number of

subqueries, then we choose the one in which the standard deviation of the size (i.e., the

number of triple patterns) of subqueries is the smallest, under the assumption that a small

31

Algorithm 2 Join Processing
Input: two intermediate results, join variable list, output variable list
Output: joined results
Map
Input: one tuple from one of the two intermediate results

1: Extracts a list of values, from the tuple, which are corresponding to the join variables
2: emit(join values, the remaining values of the tuple)

Reduce
Input: key: join values, value: two sets of tuples

3: Generates the Cartesian product of the two sets
4: Projects only columns that are included in the output variables
5: return joined (and projected) results

subquery may generate large intermediate results. We leave as future work the query

optimization problem where we can utilize additional metadata such as query selectivity

information.

For example, in Fig. 5(b) where the query cannot be executed using intra-partition

processing under the forward semantic hash partitions, assume that partitions are generated

using the 2-hop forward direction expansion. To decompose the query, if we start with vertex

?x, we will get a decomposition that consists of two subqueries as shown in Fig. 6(a). If

we start with vertex Prof, we will also get two subqueries as shown in Fig. 6(b). Based

on the smallest subquery standard deviation criterion outlined above, we choose the latter

because two subqueries are of the same size.

2.5.3 Distributed Query Execution

Intra-partition processing steps: Let the number of partition servers be N . If the

query Q can be executed using intra-partition processing, we send Q to each of the N

partition servers in parallel. Upon the completion of local query execution, each partition

server will send the partial results generated locally to the master server, which merges

the results from all partition servers to generate the final results. The entire processing

does not involve any coordination and communication among partition servers. The only

communication happens between the master server and all its slave servers to ship the query

to all slave servers and ship partial results from slaves to the master server.

Inter-partition processing steps: If the queryQ cannot be executed using intra-partition

processing, the query decomposer will be invoked to split Q into a set of subqueries. Each

32

subquery is executed in all partitions using intra-partition processing and then the interme-

diate results of all sub-queries are loaded into HDFS and joined using Hadoop MapReduce.

To join the two intermediate results, the map function of a Hadoop job reads each tuple

from the two results and extracts a list of values, from the tuple, which are corresponding

to the join variables. Then the map function emits a key-value pair in which the key is

the list of extracted values (i.e., join key) and the value is the remaining part of the tuple.

Through the shuffling phase of MapReduce, two sets of tuples sharing the same join values

are grouped together: one is from the first intermediate results and the other is from the

second intermediate results. The reduce function of the job generates the Cartesian prod-

uct of the two sets and projects only columns that are included in the output variables or

will be used in subsequent joins. Finally, the reduce function records the projected tuples.

Algorithm 2 shows the pseudocode for our join processing during inter-partition process-

ing. Since we use one Hadoop job to join the intermediate results of two subqueries, more

subqueries usually imply more query processing and higher query latency due to the large

overhead of Hadoop jobs.

2.6 Experimental Evaluation

This section reports the experimental evaluation of our semantic hash partitioning scheme

using our prototype system Shape. We divide the experimental results into four sets: (i)

We present the experimental results on loading time, redundancy, and triple distribution.

(ii) We conduct the experiments on query processing latency, showing that by combining

the semantic hash partitioning with the intra-partition processing-aware query partitioning,

our approach reduces the query processing latency considerably compared to existing simple

hash partitioning and graph partitioning schemes. (iii) We also evaluate the scalability of

our approach with respect to varying dataset sizes and varying cluster sizes. (iv) We also

evaluate the effectiveness of our optimization techniques used for reducing the partition size

and the amount of triple replication.

33

2.6.1 Experimental Setup and Datasets

We use a cluster of 21 physical servers (one master server) on Emulab [115]: each has 12

GB RAM, one 2.4 GHz 64-bit quad core Xeon E5530 processor, and two 250GB 7200 rpm

SATA disks. The network bandwidth is about 40 MB/s. When we measure the query

processing time, we perform five cold runs under the same setting and show the fastest

time to remove any possible bias posed by OS and/or network activity. We use RDF-3X

version 0.3.5, installed on each slave server. We use Hadoop version 1.0.4 running on Java

1.6.0 to run various partitioning algorithms and join the intermediate results generated by

subqueries.

We experiment with our 2-hop forward (2f), 3-hop forward (3f), 4-hop forward (4f), 2-

hop bidirection (2b), and 3-hop bidirection (3b) semantic hash partitions, with the rdf:type-

like triple optimization and the URI hierarchy optimization, expanded from the baseline

partitions on subject-based triple groups. To compare our semantic hash partitions, we

have implemented the random partitioning (rand), the simple hash partitioning on subjects

(hash-s), the simple hash partitioning on both subjects and objects (hash-so), and the graph

partitioning [55] with undirected 2-hop guarantee (graph). For fair comparison, we apply

the rdf:type-like triple optimization to graph.

To run the vertex partitioning of graph, we also use the graph partitioner METIS [15]

version 5.0.2 with its default configuration. We do not directly compare with other parti-

tioning techniques that do not use the RDF-specific storage system to store RDF triples,

such as SHARD [97], because it is reported in [55] that they are much slower than the graph

partitioning for all benchmark queries. The random partitioning (rand) is similar to using

HDFS for partitioning, but more optimized in the storage level by using the RDF-specific

storage system.

For our evaluation, we use eight datasets of different sizes from four domains as shown

in Table. 1. LUBM [47] and SP2Bench [101] are benchmark generators and DBLP [1],

containing bibliographic information in computer science, and Freebase [5], a large knowl-

edge base, are the two real RDF datasets. As a data cleaning step, we remove any duplicate

triples using one Hadoop job.

34

Table 1: Datasets (Shape)
Dataset #Triples #subjects #rdf:type triples

LUBM267M 267M 43M 46M
LUBM534M 534M 87M 92M
LUBM1068M 1068M 174M 184M
SP2B200M 200M 36M 36M
SP2B500M 500M 94M 94M
SP2B1000M 1000M 190M 190M

DBLP 57M 3M 6M
Freebase 101M 23M 8M

2.6.2 Data Loading Time

Table 2 shows the data loading time of the datasets for different partitioning algorithms.

Due to the space limit, we report the results of the largest dataset among three benchmark

datasets. The data loading time basically consists of the data partitioning time and the par-

tition loading time into RDF-3X. For graph, one additional step is required to run METIS

for vertex partitioning. Note that the graph partitioning approach using METIS fails to

work on large datasets, such as LUBM534M, LUBM1068M, SP2B500M, and SP2B1000M,

due to the insufficient memory. The random partitioning (rand) and the simple hash par-

titioning on subjects (hash-s) have the fastest loading time because they just need to read

each triple and assign the triple to a partition randomly (rand) or based on the hash value

of the triple’s subject (hash-s). Our forward direction-based approaches have fast loading

time. The graph partitioning (graph) has the longest loading time if METIS can process

the input dataset. For example, it takes about 25 hours to convert the Freebase dataset to

a METIS input format and about 44 minutes to run METIS on the input. Note that our

converter (from RDF to METIS input format), implemented using Hadoop MapReduce,

is not the problem of this slow conversion time because, for LUBM267M, it takes 38 min-

utes (33 minutes for conversion and 5 minutes for running METIS), much faster than the

reported time (1 hour) in [55].

2.6.3 Redundancy and Triple Distribution

Table 3 shows, for each partitioning algorithm, the ratio of the number of triples in all

generated partitions to the total number of triples in the original datasets. The random

partitioning (rand) and the simple hash partitioning on subjects (hash-s) have the ratio of

35

Table 2: Partitioning and Loading Time (min)
Algorithm METIS Partitioning Loading Total

LUBM1068M
single server - - 779 779

rand - 17 47 64
hash-s - 19 34 53
hash-so - 84 131 215
graph fail N/A N/A N/A

2-forward - 94 32 126
3-forward - 117 32 149
4-forward - 133 32 165

2-bidirection - 121 61 182
3-bidirection - 396 554 950

SP2B1000M
single server - - 665 665

rand - 16 39 55
hash-s - 16 28 44
hash-so - 74 81 155
graph fail N/A N/A N/A

2-forward - 89 34 123
3-forward - 111 34 145
4-forward - 127 34 161

2-bidirection - 109 53 162
3-bidirection - 195 135 330

Freebase
single server - - 73 73

rand - 2 4 6
hash-s - 2 3 5
hash-so - 5 9 14
graph 1573 38 52 1663

2-forward - 9 4 13
3-forward - 11 4 15
4-forward - 14 4 18

2-bidirection - 22 17 39
3-bidirection - 59 75 134

DBLP
single server - - 34 34

rand - 2 2 4
hash-s - 2 1 3
hash-so - 4 3 7
graph 452 22 35 509

2-forward - 7 2 9
3-forward - 8 2 10
4-forward - 10 2 12

2-bidirection - 13 8 21
3-bidirection - 36 35 71

1 because there is no replicated triple. This result shows that our forward direction-based

approaches can reduce the number of replicated triples considerably while maintaining the

hop guarantee. For example, even though we expand the baseline partitions to satisfy 4-hop

guarantee (forward direction), the replication ratio is less than 1.6 for all the datasets. On

the other hand, this result also shows that we should be careful when we expand the baseline

partitions using both directions. Since the original data can be almost fully replicated on

all the partitions when we use 3-hop bidirection expansion, the number of hops should be

36

decided carefully by considering the tradeoff between the overhead of local processing and

inter-partition communication. We leave how to find an optimal k value, given a dataset

and a set of queries, as future work.

Table 3: Redundancy (Ratio to Original Dataset)
Dataset 2f 3f 4f 2b 3b hash-so graph

LUBM267M 1.00 1.00 1.00 1.67 8.87 1.78 3.39
LUBM534M 1.00 1.00 1.00 1.67 8.73 1.78 N/A
LUBM1068M 1.00 1.00 1.00 1.67 8.66 1.78 N/A
SP2B200M 1.18 1.19 1.19 1.76 3.81 1.78 1.32
SP2B500M 1.16 1.17 1.17 1.70 3.58 1.77 N/A
SP2B1000M 1.15 1.15 1.16 1.69 3.50 1.77 N/A

DBLP 1.48 1.53 1.55 5.35 18.28 1.86 5.96
Freebase 1.18 1.26 1.28 5.33 17.18 1.87 7.75

Table 4 shows the coefficient of variation (the ratio of the standard deviation to the

mean) of generated partitions in terms of the number of triples to measure the dispersion

of the partitions. Having uniformly distributed triples across all partitions is one of the

key performance factors because the large partitions in the skewed distribution can be per-

formance bottlenecks during query processing. Our semantic hash partitioning approaches

have almost perfect uniform distributions. On the other hand, the results indicate that par-

titions generated using graph are very different in size. For example, among the partitions

generated using graph for DBLP, the largest partition is 3.8 times bigger than the smallest

partition.

Table 4: Distribution (Coefficient of Variation)
Dataset 2f 3f 4f 2b 3b hash-so graph

LUBM267M 0.01 0.01 0.01 0.00 0.01 0.20 0.26
LUBM534M 0.01 0.01 0.01 0.00 0.01 0.20 N/A
LUBM1068M 0.01 0.01 0.01 0.00 0.01 0.20 N/A
SP2B200M 0.00 0.00 0.00 0.00 0.00 0.01 0.05
SP2B500M 0.00 0.00 0.00 0.00 0.00 0.01 N/A
SP2B1000M 0.00 0.00 0.00 0.00 0.00 0.01 N/A

DBLP 0.00 0.00 0.00 0.00 0.00 0.09 0.50
Freebase 0.00 0.00 0.00 0.00 0.00 0.16 0.24

2.6.4 Query Processing

For our query evaluation of the three LUBM datasets, we report the results of all 14 bench-

mark queries provided by LUBM. Among the 14 queries, 8 queries (Q1, Q3, Q4, Q5, Q6,

Q10, Q13, and Q14) are star queries. The forward radii of Q2, Q7, Q8, Q9, Q11, and Q12

are 2, ∞, 2, 2, 2, and 2 respectively. Their bidirection radii are all 2. Due to the space

37

limit, for the other datasets, we report the results of one star query and one or two com-

plex queries including chain-like patterns. We pick three queries among a set of benchmark

queries provided by SP2Bench and create star and complex queries for the real datasets.

Table 5 shows the queries used for our query evaluation. The forward radii of SP2B Com-

plex1 and Complex2 are ∞ and 2 respectively. The bidirection radii of SP2B Complex1

and Complex2 are 3 and 2 respectively.

Table 5: SPARQL Queries
LUBM All 14 benchmark queries

SP2B Star Benchmark Query2 (without Order by and Optional)
Select ?inproc ?author ?booktitle ?title ?proc ?ee
?page ?url ?yr Where { ?inproc rdf:type
Inproceedings . ?inproc creator ?author .
?inproc booktitle ?booktitle . ?inproc
title ?title . ?inproc partOf ?proc . ?inproc
seeAlso ?ee . ?inproc pages ?page . ?inproc
homepage ?url . ?inproc issued ?yr }

SP2B Complex1 Benchmark Query4 (without Filter)
Select DISTINCT ?name1 ?name2 Where { ?article1
rdf:type Article . ?article2 rdf:type Article .
?article1 creator ?author1 . ?author1 name ?name1 .
?article2 creator ?author2 . ?author2 name ?name2 .
?article1 journal ?journal . ?article2 journal ?journal }

SP2B Complex2 Benchmark Query6 (without Optional)
Select ?yr ?name ?document Where { ?class
subClassOf Document . ?document rdf:type ?class .
?document issued ?yr . ?document creator ?author .
?author name ?name }

DBLP Star Select ?author ?name Where { ?author rdf:type
Agent . ?author name ?name }

DBLP Complex Select ?paper ?conf ?editor Where { ?paper partOf
?conf . ?conf editor ?editor . ?paper creator ?editor }

Freebase Star Select ?person ?name Where { ?person gender male .
?person rdf:type book.author . ?person rdf:type
people.person . ?person name ?name }

Freebase Select ?loc1 ?loc2 ?postal Where { ?loc1
Complex1 headquarters ?loc2 . ?loc2 postalcode ?postal . }
Freebase Select ?name1 ?name2 ?birthplace ?inst Where {

Complex2 ?person1 birth ?birthplace .
?person2 birth ?birthplace .
?person1 education ?edu1 . ?edu1 institution ?inst .
?person2 education ?edu2 . ?edu2 institution ?inst .
?person1 name ?name1 . ?person2 name ?name2 .
?edu1 rdf:type education . ?edu2 rdf:type education }

Fig. 7 shows the query processing time of all 14 benchmark queries for different partition-

ing approaches on LUBM534M dataset. Since the results of our 2-hop forward (2f), 3-hop

forward (3f), and 4-hop forward (4f) partitions are almost the same, we merge them into

one. Our forward direction-based partitioning approaches (2f, 3f, and 4f) have faster query

processing time than the other partitioning techniques for all the benchmark queries except

Q7 in which inter-partition processing is required for 2f, 3f, and 4f. Our 2-hop bidirection

38

Table 6: Query Processing Time (sec)
Dataset 2f 3f 4f 2b 3b hash-s hash-so random graph single

server
SP2B200M 64.37 68.00 71.01 69.08 344.70 58.56 129.42 835.00 73.93 500.83

Star
SP2B200M 222.96 224.03 225.32 226.98 659.77 1257.99 2763.82 2323.42 223.60 fail
Complex1
SP2B200M 42.70 53.13 56.39 52.39 136.14 208.38 357.72 341.83 49.79 431.44
Complex

SP2B500M 183.41 187.02 197.72 197.61 967.29 166.92 378.61 1625.76 N/A fail
Star

SP2B500M 487.08 493.48 522.40 529.83 1272.77 3365.15 7215.62 5613.11 N/A fail
Complex1
SP2B500M 113.00 115.27 116.96 125.74 410.66 449.63 921.24 703.55 N/A 1690
Complex2

SP2B1000M 456.12 479.47 482.59 459.58 2142.45 413.24 685.49 2925.02 N/A fail
Star

SP2B1000M 897.88 911.01 917.83 1006.93 2391.88 6418.56 14682 11740 N/A fail
Complex1

SP2B1000M 258.61 265.82 270.21 282.41 905.22 808.23 1986.95 1353.03 N/A fail
Complex2

DBLP 12.88 12.91 13.59 17.94 41.18 3.62 5.33 56.01 30.51 22.71
Star

DBLP 3.48 3.57 3.73 9.90 31.66 61.28 74.19 117.48 20.87 21.38
Complex
Freebase 10.67 11.15 11.95 22.06 129.11 8.23 9.02 143.60 105.41 42.61

Star
Freebase 6.99 7.78 8.07 13.68 71.44 54.36 61.78 57.54 25.41 43.59

Complex1
Freebase 63.80 66.87 67.28 80.48 501.56 216.56 238.57 568.92 195.98 23213

Complex2

(2b) approach also has good performance because it ensures intra-partition processing for

all benchmark queries.

For Q7, since our forward direction-based partitioning approaches need to run one

Hadoop job to join the intermediate results of two subqueries and the size of the inter-

mediate results is about 2.4 GB (much larger compared to the final result size of 907 bytes),

its query processing time for Q7 is very slow compared to other approaches (2b and 3b)

using intra-partition processing. However, our approaches (2f, 3f, and 4f) are faster than

the simple hash partitioning (hash-s and hash-so), which requires two Hadoop jobs to pro-

cess Q7. Recall that the graph partitioning does not work for LUBM534M because METIS

failed due to the insufficient memory.

Table 6 shows the query processing times of the other datasets. The fastest query pro-

cessing time for each query is marked in bold. Our forward direction-based partitioning

approaches (2f, 3f, and 4f) are faster than the other partitioning techniques for all com-

plex queries. For example, for SP2B1000M Complex1, our approach 2f is about 7, 16,

39

1

10

100

1000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14

T
im

e
(s

ec
 -

 l
o

g
 s

ca
le

)

2f, 3f, 4f 2b 3b hash-s hash-so random single

Figure 7: Query Processing Time (LUBM534M)

0

50

100

150

200

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10Q11Q12Q13Q14

T
im

e
(s

ec
)

LUBM267M

LUBM534M

LUBM1068M

(a) 2-hop forward (2f)

0

20

40

60

80

100

120

140

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10Q11Q12Q13Q14

T
im

e
(s

ec
)

LUBM267M

LUBM534M

LUBM1068M

(b) 2-hop bidirection (2b)

Figure 8: Scalability with Varying Dataset Sizes

and 13 times faster than hash-s, hash-so, and random respectively. Note that executing

SP2B1000M Complex1 fails on a single server due to the insufficient memory and graph

does not work for SP2B1000M. Our 2-hop bidirection (2b) approach also has comparable

query processing performance with 2f, 3f, and 4f. Even though our 3-hop bidirection (3b)

approach is much slower than 2f, 3f, 4f, and 2b due to its large partition size, it is faster

than random for most queries. For star queries, hash-s is slightly faster than our approaches

because it is optimized only for star queries and there is no replicated triple.

2.6.5 Scalability

We evaluate the scalability of our partitioning approach by varying dataset sizes and cluster

sizes. Fig. 8 shows that the increase of the query processing time of star queries Q6, Q13,

and Q14 is almost proportional to the dataset size. For Q7, under the 2-hop bidirection

40

0

50

100

150

200

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10Q11Q12Q13Q14
T

im
e

(s
ec

)

5 servers

10 servers

20 servers

(a) 2-hop forward (2f)

0

10

20

30

40

50

60

70

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10Q11Q12Q13Q14

T
im

e
(s

ec
)

5 servers

10 servers

20 servers

(b) 2-hop bidirection (2b)

Figure 9: Scalability with Varying Cluster Sizes

(2b) expansion, the query processing time increases only slightly because its results do not

change by the dataset size. On the other hand, under the 2-hop forward (2f) expansion,

there is a considerable increase in the query processing time because the intermediate results

increase according to the dataset size even though the final results are the same regardless

of the dataset size.

Fig. 9 shows the results of scalability experiment with varying numbers of slave servers

from 5 to 20 on LUBM267M dataset. For star queries whose selectivity is high (Q1, Q3, Q4,

Q5, and Q10), the processing time slightly decreases with an increasing number of servers

due to the reduced partition size. For star queries with low selectivity (Q6, Q13, and Q14),

the decrease of the query processing time is almost proportional to the number of slave

servers.

2.6.6 Effects of Optimizations

Table 7 shows the effects of different optimization techniques under the 2-hop bidirection

(2b) expansion in terms of the replication ratio. Without any optimization, large partitions

are generated because lots of triples are replicated and so it will considerably increase

the query processing time. Using the rdf:type-like triple optimization, we can reduce

the partition size by excluding rdf:type-like triples during the expansion. The result of

applying the URI hierarchy optimization shows that we place close vertices in the same

partition and so prevent the replication of many triples. By combining both optimization

techniques, we substantially reduce the partition size and so increase the performance of

query processing.

41

Table 7: Effects of Optimizations (Replication Ratio)
Dataset No Opt. rdf:type URI hierarchy Both

LUBM1068M 11.46 8.46 4.94 1.67
SP2B1000M 6.95 3.70 5.12 1.69

DBLP 7.24 5.35 N/A 5.35
Freebase 6.88 5.33 N/A 5.33

2.7 Conclusion

In this chapter we have shown that when data needs to be partitioned across multiple server

nodes, the choice of data partitioning algorithms can make a big difference in terms of the

cost of data shipping across a network of servers. We have presented a novel semantic

hash partitioning approach, which starts with the simple hash partitioning and expands

each partition by replicating only necessary triples to increase access locality and promote

intra-partition processing of SPARQL queries. We have also developed a partition-aware

distributed query processing facility to generate locality-optimized query execution plans.

In addition, we have provided a suite of locality-aware optimization techniques to further

reduce the partition size and cut down on the inter-partition communication cost during

distributed query processing. Our experimental results show that the semantic hash par-

titioning approach improves the query latency and is more efficient than existing popular

simple hash partitioning and graph partitioning schemes.

The first prototype system for our semantic hash partitioning does not support aggregate

queries and update operations. We plan to implement new features introduced in SPARQL

1.1. Both rdf:type filter and URI hierarchy-based merging of triple groups are provided

as a configuration parameter. One of our future work is to utilize statistics collected over

representative set of queries to derive a near-optimal setting of k for k-hop semantic hash

partitioning. Finally, we conjecture that the effectiveness of RDF data partitioning can be

further enhanced by exploring different strategies for access locality-guided triple grouping

and triple replication.

42

CHAPTER III

VB-PARTITIONER: EFFICIENT DATA PARTITIONING

FRAMEWORK FOR HETEROGENEOUS GRAPHS

As the size and variety of information networks continue to grow in many scientific and

engineering domains, we witness a growing demand for efficient processing of large het-

erogeneous graphs using a cluster of compute nodes in the Cloud. One open issue is how

to effectively partition a large graph to process complex graph operations efficiently. In

this chapter, we present VB-Partitioner − a distributed data partitioning model and

algorithms for efficient processing of graph operations over large-scale graphs in the Cloud.

Our VB-Partitioner has three salient features. First, it introduces vertex blocks (VBs)

and extended vertex blocks (EVBs) as the building blocks for semantic partitioning of large

graphs. Second, VB-Partitioner utilizes vertex block grouping algorithms to place those

vertex blocks that have high correlation in graph structure into the same partition. Third,

VB-Partitioner employs a VB-partition guided query partitioning model to speed up the

parallel processing of graph pattern queries by reducing the amount of inter-partition query

processing. We conduct extensive experiments on several real-world graphs with millions

of vertices and billions of edges. Our results show that VB-Partitioner significantly out-

performs the popular random block-based data partitioner in terms of query latency and

scalability over large-scale graphs.

3.1 Introduction

Many real-world information networks consist of millions of vertices representing heteroge-

neous entities and billions of edges representing heterogeneous types of relationships among

entities, such as Web-based networks, social networks, supply-chain networks, and biologi-

cal networks. One concrete example is the phylogenetic forests of bacteria, where each node

represents a genetic strain of Mycobacterium tuberculosis complex (MTBC) and each edge

represents a putative evolutionary change. Processing large heterogeneous graphs poses

43

a number of unique characteristics in terms of big data processing. First, graph data are

highly correlated, and the topological structure of a big graph can be viewed as a correlation

graph of its vertices and edges. Heterogeneous graphs add additional complexity compared

to homogeneous graphs in terms of both storage and computation due to the heterogeneous

types of entity vertices and entity links. Second, queries over graphs are typically subgraph

matching operations. Thus, we argue that modeling heterogeneous graphs as a big table of

entity vertices or entity links is ineffective for parallel processing of big graphs in terms of

storage, network I/O, and computation.

Hadoop MapReduce programming model and Hadoop Distributed File System (HDFS)

are among the most popular distributed computing technologies for partitioning big data

processing across a large cluster of compute nodes in the Cloud. HDFS (and its attached

storage systems) is excellent for managing the big table data when row objects are indepen-

dent and thus big data can be simply divided into equal-sized blocks (chunks) that can be

stored and processed in parallel efficiently and reliably. However, HDFS is not optimized

for storing and partitioning big datasets of high correlation, such as large graphs [80, 67].

This is because HDFS’s block-based partitioning is equivalent to random partitioning of big

graph data through either horizontal vertex-based partitioning or edge-based partitioning

depending on whether the graph is stored physically by entity vertices or by entity links.

Therefore, data partitions generated by such a random partitioning method tend to incur

unnecessarily large inter-partition processing overheads due to the high correlation and thus

the need for high degree of interactions among partitions in responding to a graph pattern

query. Using such random partitioning methods, even for simple graph pattern queries,

may incur unnecessarily large inter-partition join processing overheads due to the high cor-

relation among partitions and demand multiple rounds of data shipping across partitions

stored in multiple nodes of a compute cluster in the Cloud. Thus, Hadoop MapReduce

alone is neither adequate for handling graph pattern queries over large graphs nor suitable

for structure-based reasoning on large graphs, such as finding k-hop neighbors satisfying

certain semantic constraints.

In this chapter, we present a vertex block-based partitioning and grouping framework,

44

called VB-Partitioner, for scalable and yet customizable graph partitioning and dis-

tributed processing of graph pattern queries over big graphs. VB-Partitioner supports

three types of vertex blocks and a suite of vertex block grouping strategies, aiming at max-

imizing the amount of local graph processing and minimizing the network I/O overhead

of inter-partition communication during each graph processing job. We demonstrate the

efficiency and effectiveness of our VB-Partitioner by developing a VB-partition guided

computation partitioning model that allows us to decompose graph pattern queries into de-

sired vertex block partitions that are efficient for parallel query processing using a compute

cluster.

This chapter makes three novel contributions. First, we introduce vertex blocks and

extended vertex blocks as the building blocks for partitioning a large graph. This vertex

block-based approach provides a foundation for scalable and yet customizable data parti-

tioning of large heterogeneous graphs by preserving the basic vertex structure. By scalable,

we mean that data partitions generated by VB-Partitioner can support fast processing

of big graph data of different size and complexity. By customizable, we mean that one par-

titioning technique may not fit all. Thus, VB-Partitioner supports three types of vertex

blocks and is by design adaptive to different data processing demands in terms of explicit

and implicit structural correlations. Second, we develop a suite of vertex block grouping

algorithms that enable efficient grouping of those vertex blocks with high correlation in

graph structure into one VB partition. We optimize the vertex block grouping quality by

maximizing the amount of local graph processing and minimizing the inter-partition commu-

nication during each graph processing job. Third, to further utilize our vertex block-based

graph partitioning approach, we introduce a VB-partition guided computation partitioning

model, which allows us to transform graph pattern queries into vertex block-based graph

query patterns. By partitioning and distributing big graph data using vertex block-based

partitions, powered by the VB-partition guided query partitioning model, we can consider-

ably reduce the inter-node communication overhead for complex query processing because

most graph pattern queries can be evaluated locally on a partition server without requiring

data shipping from other partition nodes. We evaluate our data partitioning framework and

45

v3

v12

v4

v1 v2

v5

v10

v9

v14
v13

v7 v8

v6
v11

l1

l1

l1

l1
l1

l1

l2

l3

l4

l3

l4

l3

l6

l6
l6

l3

l8

l7
l9

l9

l8

l4

l11

l3
l10 l6

l5

l1

Figure 10: Heterogeneous Graph

algorithms through extensive experiments using both benchmark and real datasets with mil-

lions of vertices and billions of edges. Our experimental results show that VB-Partitioner

is scalable and customizable for partitioning and distributing big graph datasets of diverse

size and structures, and effective for processing real-time graph pattern queries of different

types and complexity.

3.2 Overview

3.2.1 Heterogeneous Graphs

We first define the heterogeneous graphs as follows.

Definition 9 (Heterogeneous Graph) Let V be a countably infinite set of vertex names, and

ΣV and ΣE be a finite set of available types (or labels) for vertices and edges respectively.

A heterogeneous graph is a directed, labeled graph, denoted as G = (V,E,ΣV ,ΣE , lV , lE)

where V is a set of vertices (a finite subset of V) and E is a set of directed edges (i.e.,

E ⊆ V × ΣE × V). In other words, we represent each edge as a triple (v, l, v′) that is a

l-labeled edge from v to v′. lV is a map from a vertex to its type (lV : V → ΣV) and lE is

a map from an edge to its label (lE : E → ΣE).

Fig. 10 shows an example of heterogeneous graphs. For example, there are several

l1-labeled edges such as (v3, l1, v1), (v4, l1, v1) and (v13, l1, v12). Homogeneous graphs are

special cases of heterogeneous graphs where vertices are of the same type, such as Web pages,

and edges are of the same type, such as page links in a Web graph. In a heterogeneous

46

graph, each vertex may have incoming edges (in-edges) and outgoing edges (out-edges). For

example, in Fig. 10, vertex v7 has 3 out-edges and 4 in-edge (i.e., 7 bi-edges).

Definition 10 (Out-edges, in-edges, and bi-edges) Given a graphG = (V,E,ΣV ,ΣE , lV , lE),

the set of out-edges of a vertex v ∈ V is denoted by E+
v = {(v, l, v′)|(v, l, v′) ∈ E}. Con-

versely, the set of in-edges of v is denoted by E−v = {(v′, l, v)|(v′, l, v) ∈ E}. We also define

bi-edges of v as the union of its out-edges and in-edges, denoted by E±v = E+
v ∪ E−v .

Definition 11 (Path) Given a graph G = (V,E,ΣV ,ΣE , lV , lE), an out-edge path from

a vertex u ∈ V to another vertex w ∈ V is a sequence of vertices, denoted by v0, v1, . . . , vk,

such that v0 = u, vk = w, ∀m ∈ [0, k − 1] : (vm, lm, vm+1) ∈ E. Conversely, an in-edge

path from vertex u to vertex w is a sequence of vertices, denoted by v0, v1, . . . , vk, such

that u = v0, w = vk, ∀m ∈ [0, k − 1] : (vm+1, lm, vm) ∈ E. A bi-edge path from vertex u

to vertex w is a sequence of vertices, denoted by v0, v1, . . . , vk, such that u = v0, w = vk,

∀m ∈ [0, k − 1] : (vm, lm, vm+1) ∈ E or (vm+1, lm, vm) ∈ E. The length of the path

v0, v1, . . . , vk is k.

Definition 12 (Hop count) Given a graph G = (V,E,ΣV ,ΣE , lV , lE), the out-edge hop

count from a vertex u ∈ V to another vertex w ∈ V , denoted by hop+(u,w), is the minimum

length of all possible out-edge paths from u to w. We also define the out-edge hop count

from u to an out-edge (w, l, w′) of w, denoted by hop+(u,wlw′), as hop+(u,w) + 1. The

hop count hop+(u,w) is zero if u = w and ∞ if there is no out-edge path from u to w.

The in-edge and bi-edge hop counts are similarly defined using the in-edge and bi-edge

paths respectively.

3.2.2 Operations on Heterogeneous Graphs

Graph pattern queries [30] are subgraph matching problems and are widely recognized as

one of the most fundamental graph operations. A graph pattern is often expressed in terms

of a set of vertices and edges such that some of them are variables. Processing of a graph

pattern query is to find a set of vertex or edge values on the input graph that can be

substituted for the variables while satisfying the structure of the graph pattern. Therefore,

47

processing a graph pattern query can be viewed as solving a subgraph matching problem

or finding missing vertex or edge instantiation values in the input graph.

A basic graph pattern is an edge (v, l, v′) in which any combination of the three elements

can be variables. We represent variables with a prefix “?” such as ?x to differentiate

variables from the instantiation of vertex names and edge labels.

A graph pattern consists of a set of basic graph patterns. If there is a variable shared

by several basic graph patterns, the returned values for the variable should satisfy all the

basic graph patterns, which include the variable. For example, a graph pattern {(?x, l1, v8),

(?x, l6, ?a), (?x, l3, ?b)} requests those vertices that have l1-labeled out-edge to v8 and also

l6-labeled and l3-labeled out-edges. It also requests the connected vertices (i.e., ?a and

?b) linked by the out-edges. This type of operations is very common in social networks

when we request additional information of users satisfying a certain condition such as

{(?member, affiliation,GT), (?member, hometown, ?city), (?member, birthday, ?date)}.

Another graph pattern {(?x, l3, ?z), (?x, l6, ?y), (?z, l4, ?y), (?z, l1, ?a)} requests all vertices

such that each vertex x has any l3-labeled (to z) and l6-labeled (to y) out-edges and there is

any l4-labeled edge from z to y and z has any l1-labeled out-edge. This type of operations

is also common in social networks when we want to find friends of friends within k-hops

satisfying a certain condition. We formally define the graph pattern as follows.

Definition 13 (graph pattern) Let Vvar and Evar be countably infinite sets of vertex vari-

ables and edge variables respectively. Given a graph G = (V,E,ΣV ,ΣE , lV , lE), a graph

pattern isGq = (Vq, Eq,ΣVq ,ΣEq , lVq , lEq) where Vq ⊆ V ∪Vvar and Eq ⊆ Vq×(ΣE∪Evar)×Vq.

For example, {(?member, work, ?company), (?member, friend, ?friend), (?friend,

work, ?company), (?friend, friend, ?friend2)} requests, for each user, friends of her friends

who are working in the same company with her. Fig. 11 gives four typical graph pattern

queries (selection by edge, selection by vertices, star join, and complex join).

3.2.3 System Architecture

The first prototype of our VB-Partitioner framework is implemented on top of a Hadoop

cluster. We use Hadoop MapReduce and HDFS to partition heterogeneous graphs and

48

?x ?y

l1

Q1: (?x, l1, ?y)

v3 v7

?l

Q2: (v3, ?l, v7)

v8

?c

?x

?b l1

l3

l6

Q3: (?x, l1, v8),

(?x, l6, ?b), (?x, l3, ?c)

?x

?z ?y

?a

l1

l3 l6

l4

Q4: (?x, l3, ?z),

(?x, l6, ?y), (?z, l4, ?y),

(?z, l1, ?a)

Figure 11: Graph Pattern Query Graphs

manage distributed query execution across a cluster of Hadoop nodes in the Cloud. Fig. 12

shows a sketch of the system architecture. Our system consists of one master node and a

set of slave nodes. When we execute a graph partitioning or distributed query processing

algorithm using Hadoop, the master node serves as the NameNode of HDFS and the Job-

Tracker of Hadoop MapReduce. Similarly, the slave nodes serve as the DataNodes of HDFS

and the TaskTrackers of Hadoop MapReduce.

Graph Partitioner. Many real-world big graphs exceed the performance capacity (e.g.,

memory, CPU) of a single node. Thus, we provide a distributed implementation of our

VB-Partitioner on a Hadoop cluster of compute nodes. Concretely, we first load the

big input graph into HDFS and thus the input graph is split into large HDFS chunks and

stored in a cluster of slave nodes. Extended vertex block generator generates vertex

block or extended vertex block for each vertex in the input graph stored in HDFS using

Hadoop MapReduce. Extended vertex block allocator performs two tasks to place each

vertex block to a slave node of the Hadoop cluster: (i) It employs a vertex block grouping

algorithm to assign each extended vertex block to a partition; (ii) It assigns each partition

to a slave node, for example using a standard hash function, which will balance the load by

attempting to assign equal number of partitions to each slave node. On each slave node,

a local graph processing engine is installed to process graph pattern queries against the

partitions locally stored on the node. We provide more detail on our graph partitioning

49

master

slave 1

slave 2

.

.

.

slave n

Partition

Local Graph

Processing

Engine

Graph Partitioner

Extended Vertex Block Generator

Extended Vertex Block Allocator

Query Execution Engine

Query Analyzer Distributed Query

Executor Query Decomposer

NameNode JobTracker

DataNode

TaskTracker

Figure 12: VB-Partitioner System Architecture

algorithms in Section 3.3.

Query Execution Engine. To speed up the processing of graph pattern queries, we first

categorize our distributed query execution into two types: intra-partition processing and

inter -partition processing. By intra-partition processing, we mean that a graph query Q

can be fully executed in parallel on each slave node without any cross-node coordination.

The only communication cost required to process Q is for the master node to dispatch Q

to each slave node. If no global sort of results is required, each slave node can directly (or

via its master to) return its locally generated results. Otherwise, either the master node

or an elected slave node will be served as the integrator node to merge the partial results

received from all slave nodes to generate the final sorted results of Q. By inter -partition

processing, we mean that a graph query Q as a whole cannot be executed on any slave node,

and thus it needs to be decomposed into a set of subqueries such that each subquery can be

evaluated by intra-partition processing. Thus, the processing of Q requires multiple rounds

of coordination and data transfer across a set of slave nodes. In contrast to intra-partition

processing, the network I/O (communication) cost can be extremely high, especially when

the number of subqueries is not small and the size of intermediate results to be transferred

across the cluster of slave nodes is large.

50

v12 v13

v7
l1

l3
l6

v3 v4

v7 v8

l3

l4 l4

l3 v12 v13

v7 l1

l3

l6
v7 v8

v7 v8

v3 v4

v7

l3

l4 l4

l3

Out-edge vertex block

In-edge vertex block

Bi-edge vertex block

Figure 13: Different Vertex Blocks of v7

For a given graph query Q, query analyzer analyzes Q to see whether Q can be

executed using intra-partition processing. If Q can be executed using intra-partition pro-

cessing, Q is directly sent to distributed query executor. Otherwise, query decomposer

is invoked to split Q into a set of subqueries such that each subquery can be executed using

intra-partition processing. Distributed query executor is in charge of executing Q using

intra-partition or inter-partition processing by coordinating slave nodes. We will explain

our distributed query processing in detail in Section 3.4.

3.3 VB-Partitioner Framework Design

The VB-Partitioner framework for heterogeneous graphs consists of three phases. First,

we build a vertex block for each vertex in the graph. We guarantee that all the information

(vertices and edges) included in a vertex block will be stored in the same partition and thus

on the same slave node. Second, we expand each vertex block (VB) to an extended vertex

block (EVB). Third, we employ a VB grouping algorithm to assign each VB or EVB to a

vertex block-based partition. We below describe each of the three phases in detail.

3.3.1 Vertex Blocks

A vertex block consists of an anchor vertex and its connected edges and vertices. To

support customizable and effective data partitioning, we introduce three different vertex

blocks based on the direction of connected edges of the anchor vertex: 1) out-edge vertex

51

block, 2) in-edge vertex block, and 3) bi-edge vertex block. Fig. 13 shows out-edge, in-edge,

and bi-edge vertex blocks of vertex v7 in Fig. 10. We formally define the vertex block as

follows.

Definition 14 (Vertex block) Given a graph G = (V,E,ΣV ,ΣE , lV , lE), out-edge ver-

tex block of an anchor vertex v ∈ V is a subgraph of G which consists of v and all

its out-edges, denoted by V B+
v = (V +

v , E
+
v ,ΣV +

v
,ΣE+

v
, lV +

v
, lE+

v
) such that V +

v = {v} ∪

{v+|v+ ∈ V, (v, l, v+) ∈ E+
v }. Similarly, in-edge vertex block of v is defined as V B−v =

(V −v , E
−
v ,ΣV −v

,ΣE−v
, lV −v , lE−v) such that V −v = {v} ∪ {v−|v− ∈ V, (v−, l, v) ∈ E−v }. Also,

bi-edge vertex block of v is defined as V B±v = (V ±v , E
±
v ,ΣV ±v

,ΣE±v
, lV ±v , lE±v) such that

V ±v = {v} ∪ {v±|v± ∈ V, (v, l, v±) ∈ E+
v or (v±, l, v) ∈ E−v }.

Each vertex block preserves the basic graph structure of a vertex and thus can be used

as an atomic unit (building block) for graph partitioning. By placing a vertex block into

the same partition, we can efficiently process all basic graph pattern queries using intra-

partition processing, such as selection by edge or by vertex, because it guarantees that

all vertices and edges required to evaluate such queries are located in the same partition.

Consider the graph pattern query Q2 (v3, ?l, v7) in Fig. 11. We can process the query using

intra-partition processing regardless of the type of the vertex block. If we use out-edge (or

in-edge) vertex blocks for partitioning, it is guaranteed that all out-edges (or in-edges) of

v3 (or v7) are located in the same partition. It is obviously true for bi-edge vertex blocks

because it is the union of in-edge and out-edge vertex blocks.

It is worth noting that each partitioning scheme based on each of the three types of

vertex blocks can be advantageous for some queries but fail to produce the results of queries

effectively. Consider Q3 {(?x, l1, v8), (?x, l6, ?a), (?x, l3, ?b)} in Fig. 11. It is guaranteed that

all out-edges of any vertex matching ?x are located in the same partition if we use out-edge

vertex blocks. This enables the query evaluation using intra-partition processing because

only out-edges of ?x are required. However, if we use in-edge vertex blocks, we can no longer

evaluate Q3 solely using intra-partition processing because we can no longer guarantee that

all out-edges of any vertex matching ?x are located in the same partition.

52

Consider Q4 {(?x, l3, ?z), (?x, l6, ?y), (?z, l4, ?y), (?z, l1, ?a)} in Fig. 11. We cannot

process Q4 using intra-partition processing because there is no vertex (or vertex variable)

that can cover all edges in the query graph using its out-edges, in-edges or even bi-edges. For

example, if we consider bi-edge vertex block of ?z, it is clear that there is one remaining edge

((?x, l6, ?y)), which cannot be covered by the vertex block. This motivates us to introduce

the concept of extended vertex block.

3.3.2 Extended Vertex Blocks

The basic idea of the extended vertex block is to include not only directly connected edges of

the anchor vertex but also those within k-hop distance from the anchor vertex. Concretely,

to construct the extended vertex block of an anchor vertex, we extend its vertex block hop

by hop to include those edges (and their vertices) that are reachable within k hops from

the anchor vertex. For example, from the out-edge vertex block of v7 in Fig. 13, its 2-hop

(k=2) extended vertex block will add the out-edges of v8, v12 and v13.

One of the most significant advantages of k-hop extended vertex blocks is that most

graph pattern queries can be executed using intra-partition processing without any coordi-

nation with another partition. However, when k is too large relative to the size of the graph,

extended vertex blocks can be costly in terms of the storage cost on each node. In other

words, even though we remove inter-partition communication cost, the slow local processing

on each large partition may become the dominating factor for the query processing.

To tackle this problem, we introduce a k-hop extended vertex block in which the ex-

tension level is controlled by the system parameter k. As a base case, the 1-hop extended

vertex block of an anchor vertex is the same as its vertex block. The k-hop extended vertex

block of an anchor vertex includes all vertices and edges in its (k-1)-hop extended vertex

block and additional edges (and their vertices) that are connected to any vertex in the

(k-1)-hop extended vertex block.

We also define three different types of the k-hop extended vertex block based on the

direction of expanded edges: 1) k-hop extended out-edge vertex block, 2) k-hop extended

in-edge vertex block, and 3) k-hop extended bi-edge vertex block. Fig. 14 shows the different

53

v12

v13

v7 l1

l3
l6

v7 v8

v10
l1 l8

v5

v14

v11

l4

l7 l9

l4

l11

Extended out-edge vertex block

v7 v8

v3

v4

v7

l3

l4 l4

l3

v9
l6

l6

Extended in-edge vertex block

v12 v13

v7
l1

l3
l6

v3 v4

v7 v8

l3

l4 l4

l3

v1

v6

l1

l6

l1

l6

l1

l1

v10

v11
l3

l8

v5

v9

v14

l7
l9

l4

l11

l6

Extended bi-edge vertex block

Figure 14: 2-hop Extended Vertex Blocks of v7

types of 2-hop extended vertex block for v7. Dotted edges indicate the newly added edges

from the corresponding vertex block.

3.3.3 VB-based Grouping Techniques

After we obtain a vertex block or an extended vertex block of each vertex in the input graph,

we enter the second phase of VB-Partitioner. It strategically groups a subset of VBs and

EVBs into a VB-partition by employing our vertex block-based grouping algorithms such

that highly correlated VBs and EVBs will be placed into one VB-partition. We remove any

duplicate vertices and edges within each VB-partition.

When assigning each VB or EVB to a partition, we need to consider the following three

factors for generating efficient and effective partitions: (i) The generated partitions should

be well balanced; (ii) The amount of replications should be small; and (iii) The formation

of VB-partitions should be fast and scalable. First, balanced partitions are important for

efficient query processing because one big partition, in the imbalanced partitions, can be a

bottleneck and increase the overall query processing cost. Second, we need to reduce the

number of replicated vertices and edges to construct smaller partitions and thus support

faster local query processing in each partition. Since an edge (and its vertices) can be

included in several extended vertex blocks, we need to assign those extended vertex blocks

sharing many edges to the same partition to reduce the number of replicated edges and

54

vertices. Third but not the least, we need to support fast partitioning for frequently updated

graphs. Since one partitioning technique cannot fit all, we propose three different grouping

techniques in which each has its own strength and thus can be accordingly selected for

different graphs and query types.

Hashing-based VB Grouping. The hashing-based grouping technique assigns each

extended vertex block based on the hash value of the block’s anchor vertex name. This

partitioning technique generates well-balanced partitions and is very fast. However, the

hashing-based VB grouping is not effective in terms of managing and reducing the amount

of vertex and edge replication because the hashing-based algorithm pays no attention on

the correlation among different VBs and EVBs. If we can develop a smart hash function

that is capable of incorporating some domain knowledge about vertex names, we can reduce

the number of replicated edges. For example, if we know that vertices sharing the same

prefix (or suffix) in their name are closely connected in the input graph, we can develop a

new hash function, which uses only the prefix (or suffix) of the vertex names to calculate

the hash values, and assign the vertices sharing the common prefix (or suffix) to the same

partition.

Minimum cut-based VB Grouping. The minimum cut-based grouping technique

utilizes the minimum cut graph partitioning algorithm, which splits an input graph into

smaller components by minimizing the number of edges running between the components.

After we run the graph partitioning algorithm for an input graph by setting the number of

components as the number of partitions, we can get a list that has the assigned component

id for each vertex. Since the algorithm assigns each vertex to one component and there is

an one-to-one mapping between components and partitions, we can directly utilize the list

of components by assigning each VB or EVB to the partition corresponding to the assigned

component of its anchor vertex. This grouping technique is very good for reducing the

number of replicated edges because we can view the minimum cut algorithm as grouping

closely located (or connected) vertices in the same component. Also, because another

property of the minimum cut algorithm is to generate uniform components such that the

components are of about the same size, this grouping technique can also achieve a good

55

level of balanced partitions. However, the uniform graph partitioning problem is known to

be NP-complete [25]. It often requires a long running time for VB-grouping due to its high

time complexity. Our experiments on large graphs in Section 3.5 show that the minimum

cut-based VB grouping is practically infeasible for large and complex graphs.

High degree vertex-based VB Grouping. This grouping approach is motivated for

providing a better balance between reducing replication and fast processing. The basic idea

of this grouping algorithm is to find some high degree vertices with many in-edges and/or

out-edges and place the VBs or EVBs of those nearby vertices of each high degree vertex

in the same partition of the high degree vertex. By focusing on only high degree vertices,

we can effectively reduce the time complexity of grouping algorithm and better control the

degree of replications.

Concretely, we first find some high degree vertices whose number of connected edges

is larger than a system-supplied threshold value δ. If we increase the δ value, a smaller

number of vertices would be selected as the high degree vertices.

Second, for each high degree vertex, we find a set of vertices, called dependent vertices,

which are connected to the high degree vertex by one hop. There are three types of depen-

dent vertices for each high degree vertex (out-edge, in-edge or bi-edge). If the high degree

vertex has an out-edge EVB, then we find its dependent vertices by following the in-edges

of the high degree vertex. Similarly, we check the out-edges and bi-edges of the high degree

vertex for extended in-edge and bi-edge vertex blocks respectively.

Third, we group each high degree vertex and its dependent vertices to assign them (and

their extended vertex blocks) to the same partition. If a vertex is a dependent vertex of

multiple high degree vertices, we merge all its high degree vertices and their dependent

vertices in the same group. By doing so, we can prevent the replication of the high degree

vertices under 2-hop extended out-edge vertex blocks. If 3-hop extended out-edge vertex

blocks are generated, we also extend the dependent vertex set of a high degree vertex by

including additional vertices that are connected to any dependent vertex by one hop. We

can repeatedly extend the dependent vertex set for k > 3. To prevent from generating a

huge partition, we exclude those groups, whose size (the number of vertices in the group)

56

is larger than a threshold value, when we merge groups. By default, we divide the number

of all vertices in the input graph by the number of partitions and use the result as the

threshold value to identify such huge partitions.

Finally, we assign the extended vertex blocks of all vertices in a high-degree group to

the same partition. For each uncovered vertex that is not close to any high degree vertex,

we simply select a partition having the smallest size and assign its extended vertex block

to that partition.

3.4 Distributed Query Processing

For a given graph pattern query Q, the first step is to analyze Q to determine whether Q can

be executed using intra-partition processing or not. If yes, Q is directly sent to the query

execution step without invoking the query decomposition step. Otherwise, we iteratively

decompose Q into a set of subqueries such that each subquery can be executed using intra-

partition processing. Finally, we generate execution plans for Q (intra-partition processing)

or for its subqueries (inter-partition processing) and the query result by executing the plans

using the cluster of compute nodes.

3.4.1 Query Analysis

In query analysis step, we need to determine whether a query Q needs to be sent to the

query decomposer or not. The decision is primarily based on eccentricity, radius, and center

vertex in the context of graph.

Definition 15 (Eccentricity) Given a graph G = (V,E,ΣV ,ΣE , lV , lE), the out-edge ec-

centricity ε+ of a vertex v ∈ V is the greatest out-edge hop count from v to any edge in

G and formally defined as follows:

ε+(v) = max
(w,l,w′)∈E

hop+(v, wlw′)

The in-edge eccentricity ε− and bi-edge eccentricity ε± are similarly defined. The ec-

centricity of a vertex in a graph can be thought of as how far a vertex is from the vertex

most distant from it in the graph.

57

Definition 16 (Radius and Center vertex) Given a graph G = (V,E,ΣV ,ΣE , lV , lE), the

out-edge radius of G, denoted by r+(G), is the minimum out-edge eccentricity of any vertex

v ∈ V and formally defined as follows:

r+(G) = min
v∈V

ε+(v)

The out-edge center vertices of G, denoted by CV +(G), are the vertices whose out-edge

eccentricity equals to the out-edge radius of G and formally defined as follows:

CV +(G) = {v|v ∈ V, ε+(v) = r+(G)}

The in-edge radius r−(G), in-edge center vertices CV −(G), bi-edge radius r±(G), and

bi-edge center vertices CV ±(G) are similarly defined.

Assuming that the partitions are constructed using k-hop extended vertex blocks, for

a graph pattern query Q and its query graph GQ, we first calculate the radius and the

center vertices of the query graph based on Definition 16. If the partitions are constructed

using extended out-edge (in-edge or bi-edge) vertex blocks, we calculate r+(GQ) (r−(GQ)

or r±(GQ)) and CV +(GQ) (CV −(GQ) or CV ±(GQ)). If the radius is equal to or less than

k, then the query Q as a whole can be executed using the intra-partition processing. This

is because, from the center vertices of GQ, our k-hop extended vertex blocks guarantee that

all edges that are required to evaluate Q are located in the same partition. In other words,

by choosing one of the center vertices as an anchor vertex, it is guaranteed that the k-hop

extended vertex block of the anchor vertex covers all the edges in GQ given that the radius

of GQ is not larger than k. Therefore we can execute Q without any coordination and data

transfer among the partitions. If the radius is larger than k, we need to decompose Q into

a set of subqueries.

Fig. 15 presents how our query analysis step works under three different types (out-edge,

in-edge and bi-edge) of extended vertex blocks for graph pattern query Q4 in Fig. 11. The

eccentricity value of each vertex is given next to the vertex. Since the out-edge radius

of the query graph is 2, we can execute the query using intra-partition processing if the

partitions are constructed using k-hop extended out-edge vertex blocks and k is equal to or

58

?x

?z ?y

?a

l1

l3 l6

l4

2

∞ ∞

∞

?x

?z ?y

?a

l1

l3 l6

l4

∞ ∞

∞

∞ ?x

?z ?y

?a

l1

l3 l6

l4

2

2 2

3

out-edge in-edge bi-edge

Figure 15: Query Analysis

larger than 2. However, the in-edge radius of the query graph is infinity because there is

no vertex that has at least one in-edge path to all the other vertices. Therefore, we cannot

execute the query using intra-partition processing if the partitions are constructed using

extended in-edge vertex blocks.

3.4.2 Query Decomposition

To execute a graph pattern query Q using inter-partition processing, it is necessary to slit

Q into a set of subqueries in which each subquery can be executed using intra-partition

processing. Given that we use Hadoop and HDFS to join the partial results generated from

the subqueries, we need to carefully decompose Q in order to minimize the join processing

cost. Since we use one Hadoop job to join two sets of partial results and each Hadoop

job has an initialization overhead of about 10 seconds regardless of the input data size, we

decompose Q by minimizing the number of subqueries. To find such decomposition, we use

an intuitive approach that first checks whether Q can be decomposed into two subqueries

such that each subquery can be evaluated using intra-partition processing. To check whether

a subquery can be executed using intra-partition processing, we calculate the radius of the

subquery’s graph and then perform the query analysis steps outlined in the previous section.

We repeat this process until at least one satisfying decomposition is found.

Concretely, we start the query decomposition by putting all vertices in the query graph

GQ of Q into a set of candidate vertices to be examined in order to find such a decomposition

having two subqueries. For each candidate vertex v, we draw the k-hop extended vertex

block of v in GQ, assuming that the partitions are constructed using k-hop extended vertex

blocks. For the remaining edges of GQ, which are not covered by the k-hop extended vertex

59

?x

?z ?y

?a

l1

l3

l4

?x

?y

l6

(a) from ?z

?x

?z ?y

l3 l6

?z ?y

?a

l1 l4

(b) from ?x

Figure 16: Query Decomposition (bi-edge)

block of v, we check whether there is any other candidate vertex whose k-hop extended

vertex block in GQ can fully cover the remaining edges. If there is such a decomposition, we

treat each subgraph as a subquery of Q. Otherwise, we increase the number of subqueries

by one and then repeat the above process until we find a satisfying decomposition. If we

find more than one satisfying decompositions having the equal number of subqueries, then

we choose the one in which the standard deviation of the size (i.e., the number of edges) of

subqueries is the smallest, under the assumption that a small subquery may generate large

intermediate results. We leave as future work the query optimization problem where we

can utilize additional metadata such as query selectivity information.

For example, let us assume that the partitions are constructed using 1-hop extended

bi-edge vertex blocks and thus graph pattern query Q4 in Fig. 11 cannot be executed using

intra-partition processing. To decompose the query, if we start with vertex ?z, we will get a

decomposition that consists of two subqueries as shown in Fig. 16(a). If we start with vertex

?x, we will also get two subqueries as shown in Fig. 16(b). Based on the smallest subquery

standard deviation criterion outlined above, we choose the latter because two subqueries

are of the same size.

3.5 Experimental Evaluation

In this section, we report the experimental evaluation results of our partitioning framework

for various heterogeneous graphs. We first explain the characteristics of datasets we used for

our evaluation and the experimental settings. We divide the experimental results into four

60

categories: (i) We show the data partitioning and loading time for different extended

vertex blocks and grouping techniques and compare it with the data loading time in a single

server. (ii) We present the balance and replication level of generated partitions using

different extended vertex blocks and grouping techniques. (iii) We conduct the experiments

on query processing latency using various types of graph pattern queries. (iv) We also

evaluate the scalability of our partitioning framework by increasing the dataset size and the

number of servers in the cluster.

3.5.1 Datasets

To show the working of our partitioning framework for various graphs having totally different

characteristics, we not only use three real graphs but also generate three graphs from each

of two different benchmark generators. As real graphs, we choose DBLP [1] containing

bibliographic information in computer science, Freebase [5] including a large knowledge

base, and DBpedia [7] having structured information from Wikipedia. As benchmark

graphs, we choose LUBM and SP2Bench, which are widely used for evaluating RDF storage

systems, and generate LUBM2000, LUBM4000, LUBM8000 using LUBM and SP2B-

100M, SP2B-200M and SP2B-500M using SP2Bench. As a data cleaning step, we

remove any duplicate edges using one Hadoop job for each dataset. Table 8 shows the

number of vertices and edges and the average number of out-edges and in-edges of the

datasets. Note that the benchmark datasets, generated from the same benchmark generator,

have almost the same average number of out-edges and in-edges regardless of the dataset

size. Fig. 17 shows the out-edge and in-edge distribution of the datasets. In the x-axis of

the figures, we plot the number of out-edges (or in-edges) and in the y-axis we plot the

percentage of vertices whose number of out-edges (or in-edges) is equal to or less than this

number of out-edges (or in-edges). For example, about 85%, 97%, and 89% of vertices

have 25 or less out-edges on DBLP, Freebase, and DBpedia respectively. Note that the

benchmark datasets, generated from the same benchmark generator, have almost the same

out-edge and in-edge distribution regardless of the dataset size. We omit the results of

LUBM8000 and SP2B-500M because each has almost the same distribution with datasets

61

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 10 100 1000 10000

C
u

m
u

la
ti

v
e
 p

er
ce

n
ta

g
e

o
f

v
er

ti
c
es

The number of out-edges (log)

DBLP

Freebase

Dbpedia

(a) Out-edge distribution

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 10 100

C
u

m
u

la
ti

v
e
 p

er
ce

n
ta

g
e

o
f

v
er

ti
c
es

The number of out-edges (log)

LUBM2000

LUBM4000

SP2B_100m

SP2B_200m

(b) Out-edge distribution

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

1 100 10000 1000000 100000000

C
u

m
u

la
ti

v
e
 p

er
ce

n
ta

g
e

o
f

v
er

ti
c
es

The number of in-edges (log)

DBLP

Freebase

Dbpedia

(c) In-edge distribution

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 100 10000 1000000 100000000

C
u

m
u

la
ti

v
e
 p

er
ce

n
ta

g
e

o
f

v
er

ti
c
es

The number of in-edges (log)

LUBM2000

LUBM4000

SP2B_100m

SP2B_200m

(d) In-edge distribution

Figure 17: Out-edge and In-edge Distribution

from the same benchmark generator.

Table 8: Datasets (VB-Partitioner)
Dataset #vertices #edges avg. avg.

#out #in
DBLP 25,901,515 56,704,672 16.66 2.39

Freebase 51,295,293 100,692,511 4.41 2.11
DBpedia 104,351,705 287,957,640 11.62 2.82

LUBM2000 65,724,613 266,947,598 6.15 8.27
LUBM4000 131,484,665 534,043,573 6.15 8.27
LUBM8000 262,973,129 1,068,074,675 6.15 8.27
SP2B-100M 55,182,878 100,000,380 5.61 2.11
SP2B-200M 111,027,855 200,000,007 5.49 2.08
SP2B-500M 280,908,393 500,000,912 5.31 2.04

3.5.2 Setup

We use a cluster of 21 nodes (one is the master node) on Emulab [115]: each has 12 GB

RAM, one 2.4 GHz 64-bit quad core Xeon E5530 processor, and two 7200 rpm SATA disks

(250GB and 500GB). The network bandwidth is about 40 MB/s. When we measure the

query processing time, we perform five cold runs under the same setting and show the fastest

62

time to remove any possible bias posed by OS and/or network activity.

As a local graph processing engine, we install RDF-3X version 0.3.5 [86], on each slave

server, which is an open-source RDF management system. We use Hadoop version 1.0.4

running on Java 1.6.0 to run our graph partitioning algorithms and join the intermediate

results, generated by subqueries, during inter-partition processing. For comparison, we

also implement random partitioning. To implement the minimum-cut based VB grouping

technique, we use graph partitioner METIS version 5.0.2 [15] with its default configuration.

To simplify the name of our extended vertex blocks and grouping techniques, we use

[k]-[out|in|bi]-[hash|mincut|high] as our naming convention. For example, 1-out-

high indicates the high degree vertex-based technique with 1-hop extended out-edge vertex

blocks.

3.5.3 Partitioning and Loading Time

We first compare the partitioning and loading time of our framework with that on a single

server. Fig. 18 shows the partitioning and loading time of LUBM2000 and DBLP for

different extended vertex blocks and grouping techniques. The loading time indicates the

loading time of RDF-3X. The single server approach has only the loading time because there

is no partitioning. To support efficient partitioning, we implement the extended vertex

block construction and grouping using Hadoop MapReduce in the cluster of nodes. Since

the hashing-based grouping technique simply uses a hash function (By default, we use the

hash function of Java String class) to assign each extended vertex block to a partition, we

incorporate the grouping step into the construction step and thus there is no grouping time

for those using the hashing-based grouping technique. The grouping time of the minimum

cut-based grouping technique includes both the input conversion time (from RDF to METIS

input format) and METIS running time. We also implement the input conversion step using

Hadoop MapReduce in the cluster of nodes for efficient conversion.

Fig. 18(a) clearly shows that we can significantly reduce the graph loading time by

using our partitioning framework, compared to using only single server. The only exception

is when we use the minimum cut-based grouping technique in which we need to convert

63

0

2000

4000

6000

8000

10000

12000

si
n

g
le

ra
n

d
o

m

h
a

sh

m
in

cu
t

h
ig

h

h
a
sh

m
in

cu
t

h
ig

h

h
a

sh

m
in

cu
t

h
ig

h

h
a

sh

m
in

cu
t

h
ig

h

h
a
sh

m
in

cu
t

h
ig

h

1-out 1-in 1-bi 2-out 2-in

T
im

e
(s

ec
o
n

d
s)

Loading Grouping EVB construction

(a) LUBM2000

1

10

100

1000

10000

100000

si
n

g
le

ra
n

d
o

m

h
a

sh

m
in

cu
t

h
ig

h

h
a

sh

m
in

cu
t

h
ig

h

h
a

sh

m
in

cu
t

h
ig

h

h
a

sh

m
in

cu
t

h
ig

h

h
a

sh

m
in

cu
t

h
ig

h

1-out 1-in 1-bi 2-out 2-in

T
im

e
(s

ec
o
n

d
s

-
lo

g
sc

a
le

) Loading Grouping EVB construction

(b) DBLP

Figure 18: Partitioning and Loading Time

the datasets into the METIS input formats, as shown in Fig. 18(b). The conversion time

depends on not only the dataset size but also the structure of the graph. For example,

the conversion times of DBLP and Freebase are about 7.5 hours and 35 hours respectively,

which are much longer than 50 minutes of DBpedia even though DBpedia has much more

edges. We think that this is because DBLP and Freebase include some vertices having a

huge number of connected edges. For example, there are 4 and 6 vertices having more

than one million in-edges on DBLP and Freebase respectively. Also note that the minimum

cut-based grouping technique could not work on LUBM4000, LUBM8000, and SP2B-500M

because METIS failed due to the insufficient memory on a single machine with 12 GB RAM.

This result indicates that the minimum cut-based grouping technique is infeasible for some

graphs having a huge number of vertices and edges and/or complex structure.

3.5.4 Balance and Replication level

To show the balance of generated partitions in terms of the number of edges, we use the

relative standard deviation expressed as a percentage, defined as the ratio of the standard

deviation to the mean (and then multiplied by 100 to be expressed as a percentage). A

higher percentage means that the generated partitions are less balanced. Fig. 19 shows the

relative standard deviation for different extended vertex blocks and grouping techniques. As

we expect, the hashing-based grouping technique generates the most balanced partitions for

most cases. Especially, using extended out-edge vertex blocks, the hashing-based technique

64

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1-out 1-in 1-bi 2-out 2-in

R
el

a
ti

v
e

S
ta

n
d

a
rd

 D
ev

ia
ti

o
n

 hash mincut high

(a) LUBM2000

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1-out 1-in 1-bi 2-out 2-in

R
el

a
ti

v
e

S
ta

n
d

a
rd

 D
ev

ia
ti

o
n

hash mincut high

(b) SP2B-200M

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1-out 1-in 1-bi 2-out 2-in

R
el

a
ti

v
e

S
ta

n
d

a
rd

 D
ev

ia
ti

o
n

 hash mincut high

(c) DBLP

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1-out 1-in 1-bi 2-out 2-in

R
el

a
ti

v
e

S
ta

n
d

a
rd

 D
ev

ia
ti

o
n

 hash mincut high

(d) Freebase

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1-out 1-in 1-bi 2-out 2-in

R
el

a
ti

v
e

S
ta

n
d

a
rd

 D
ev

ia
ti

o
n

 hash mincut high

(e) DBpedia

Figure 19: Balance of Generated Partitions

constructs almost perfectly balanced partitions. It is interesting to note that, the hashing-

based technique using extended in-edge vertex blocks generates less balanced partitions than

that using out-edge EVBs. This is because there are some vertices having a huge number

of in-edges (e.g., more than one million in-edges) as shown in Fig. 17(c) and Fig. 17(d).

Therefore, partitions including the extended vertex blocks of such vertices will have much

more edges than the others. We omit the results of LUBM4000, LUBM8000, SP2B-500M,

and SP2B-500M because each has almost the same relative standard deviation with the

dataset from the same benchmark generator.

To see how many edges are replicated, Fig. 20 shows the total number of edges of all

the generated partitions for different extended vertex blocks and grouping techniques. As

we expect, the minimum cut-based grouping technique is the best in terms of reducing

the replication. Especially, when we use 2-hop out-edge EVBs, the minimum cut-based

grouping technique replicates only a small number of edges. However, for the other vertex

blocks, the benefit of the minimum cut-based grouping technique is not so significant if we

consider its overhead as shown in Fig. 18. Also recall that the minimum cut-based grouping

technique fails to work on LUBM4000, LUBM8000, and SP2B-500M because METIS failed

due to the insufficient memory.

65

0

100

200

300

400

500

600

700

800

900

1-out 1-in 1-bi 2-out 2-in

T
o
ta

l
n

u
m

b
er

 o
f

ed
g

es
 (

M
) hash mincut high

(a) LUBM2000

0

50

100

150

200

250

300

350

400

450

1-out 1-in 1-bi 2-out 2-in

T
o

ta
l

n
u

m
b

er
 o

f
ed

g
es

 (
M

) hash mincut high

(b) SP2B-200M

0

20

40

60

80

100

120

140

1-out 1-in 1-bi 2-out 2-in

T
o
ta

l
n

u
m

b
er

 o
f

ed
g

es
 (

M
)

hash mincut high

(c) DBLP

0

40

80

120

160

200

240

1-out 1-in 1-bi 2-out 2-in

T
o
ta

l
n

u
m

b
er

 o
f

ed
g

es
 (

M
)

hash mincut high

(d) Freebase

0

200

400

600

800

1000

1200

1400

1600

1-out 1-in 1-bi 2-out 2-in

T
o

ta
l

n
u

m
b

er
 o

f
ed

g
es

 (
M

)

hash mincut high

(e) DBpedia

Figure 20: Replication Level

3.5.5 Query Processing

Since LUBM provides 14 benchmark queries, we utilize them to evaluate query processing

in the partitions generated by our partitioning framework. Among 14 queries, two queries

(Q6 and Q14) are basic graph pattern queries (i.e., only one edge in their query graph) and

6 queries (Q1, Q3, Q4, Q5, Q10, and Q13) are star-like queries in which all the edges in

their query graph are out-edges from one vertex variable. Fig. 21 shows the graph pattern

query graphs for the other queries. We omit the edge label because there is no edge variable.

Fig. 22 shows the query processing time of all 14 benchmark queries for different ex-

tended vertex blocks and grouping techniques on LUBM2000. For brevity, we omit the

results of using 1-hop and 2-hop extended in-edge vertex blocks because they are not ade-

quate for the benchmark queries due to many leaf-like vertices that have only one in-edge

and no out-edge. All partitioning approaches using 1-hop out-edge EVBs, 1-hop bi-edge

EVBs, and 2-hop out-edge EVBs ensure intra-partition processing for the basic graph pat-

tern queries (Q6 and Q14) and star-like queries (Q1, Q3, Q4, Q5, Q10, and Q13). Among

the remaining queries (Q2, Q7, Q8, Q9, Q11, and Q12), no query can be executed using

intra-partition processing over 1-hop extended out-edge and bi-edge vertex blocks. On the

66

?x

v1

?z ?y

v3 v2

Q2

?x

v1 ?z

?y

v3 v2

Q8

?x

v1

?z ?y

v3 v2

Q9

?x

v1

?y v2

v3

Q7

?x

v1

?y

v3 v2

Q12

?x v1 ?y v2
Q11

Figure 21: Benchmark Query Graphs

other hand, 2-hop out-edge EVBs guarantee intra-partition processing for all the bench-

mark queries except Q7, in which 2-hop extended out-edge vertex block of ?x cannot cover

the edge from v2 to ?y.

The result clearly shows the huge benefit of intra-partition processing, compared to

inter-partition processing. For example, for Q2, the query processing time over 2-hop out-

edge EVBs is only 4% of that over 1-hop out-edge EVBs as shown in Fig. 22(a). That is

two orders of magnitude faster than the result on a single server. If we use inter-partition

processing, it is much slower than using intra-partition processing due to the initialization

overhead of Hadoop and the large size of intermediate results. For example, the size of the

intermediate results for Q7 over 2-hop out-edge EVBs is 1.2 GB, which is much larger than

the final result size of 907 bytes. The result for Q7 also shows the importance of the number

of subqueires in inter-partition processing. The query processing over 2-hop out-edge EVBs,

which consists of 2 subqueries, is only 65% of that over 1-hop out-edge EVBs, which consists

of 3 subqueries, even though the partitions generated using 2-hop out-edge EVBs are much

larger as shown in Fig. 20(a). For star queries Q1, Q3, Q4, Q5, and Q10 having very high

selectivity (i.e., the result size is less than 10kb), the query processing is usually fast (less

than 2 seconds) in the partitions generated by our framework. However, it is slight slower

than the query processing on a single server because there is some overhead on the master

node, which sends the query to all the slave nodes and merges the partial results received

67

1

10

100

1000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10Q11Q12Q13Q14Q
u

er
y

 P
ro

ce
es

in
g

 t
im

e
in

 s
ec

 single random 1-out-hash 1-bi-hash 2-out-hash

(a) Effects of different extended vertex blocks

1

10

100

1000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10Q11Q12Q13Q14Q
u

er
y

 P
ro

ce
es

in
g

 t
im

e
in

 s
ec

 2-out-hash 2-out-mincut 2-out-high

(b) Effects of different grouping techniques

Figure 22: Query Processing Time on LUBM2000

from the slave nodes. When we measure the query processing time on a single server, there

is no network cost because queries are requested and executed in the same server.

Fig. 22(b) shows the effect of different grouping techniques using the same extended

vertex blocks (i.e., the guarantee of intra-partition processing is the same). The result

indicates that the query processing depends on the replication level of the generated par-

titions. The query processing in the partitions generated using the minimum cut-based

grouping technique is usually faster because the minimum cut-based technique generates

smaller partitions than the others as shown in Fig. 20.

68

0

50

100

150

200

LUBM2000 LUBM4000 LUBM8000

Q
u

er
y

 P
ro

ce
es

in
g

 t
im

e
in

 s
ec

Q2 Q5 Q6

(a) 1-out-hash

0

10

20

30

40

50

60

LUBM2000 LUBM4000 LUBM8000

Q
u

er
y

 P
ro

ce
es

in
g

 t
im

e
in

 s
ec

Q2 Q5 Q6

(b) 2-out-hash

Figure 23: Scalability with Varying Dataset sizes

1

10

100

1000

1 server 5 servers 10 servers 20 servers

Q
u

er
y

 P
ro

ce
es

in
g

 t
im

e
in

 s
ec

Q2 Q5 Q6

(a) 1-out-hash

1

10

100

1000

1 server 5 servers 10 servers 20 servers

Q
u

er
y

 P
ro

ce
es

in
g

 t
im

e
in

 s
ec

Q2 Q5 Q6

(b) 2-out-hash

Figure 24: Scalability with Varying Cluster sizes

3.5.6 Scalability

To evaluate the scalability of our partitioning framework, we report the query processing

results with varying dataset size in Fig. 23. For brevity, we choose one basic graph pattern

query (Q6), one star-like query (Q5), and one complex query (Q2). The increase of the

query processing time for Q6 is almost proportional to the dataset size and there is only

slight increase for Q5 because its results are the same regardless of the dataset size. For

Q2, there is only slight increase over 2-hop out-edge EVBs (Fig. 23(b)). However, there is

a considerable increase over 1-hop out-edge EVBs because much more intermediate results

are generated, compared to the increase of the final results.

Fig. 24 shows the results of another scalability experiment with varying numbers of slave

nodes from 5 to 20 on LUBM2000. Note that the results on 1 server represent the query

processing time without our partitioning and the query processing times are displayed as

log scale. There is almost no big decrease for Q5 because it is already a fast query on 5

69

servers. We can see the considerable reduction of query processing time for Q2 and Q6 with

an increasing number of servers, primarily due to the reduced partition size. However, as

shown in the results of Q2 over 1-hop out-edge EVBs (Fig. 24(a)), there would be a point

where adding more servers does not improve the query processing time any more because

the transfer time of lots of results to the master node is unavoidable.

3.6 Related Work

To process large graphs in a cluster of compute nodes, several graph computation models

based on vertex-centric approaches have been proposed in recent years, such as Pregel [80]

and GraphLab [77]. Also, GraphChi [67] has been proposed to process large graphs on a

single computer in reasonable time. Even though they can efficiently process some famous

graph operations, such as PageRank and shortest path computations, they are not adequate

for general graph pattern queries (i.e., subgraph matching) in which fast query processing

(sometimes a couple of seconds) is preferred by evaluating small parts of input graphs.

This is primarily because their approaches are based on multiple iterations and optimized

for specific graph operations in which all (or most) vertices in a graph participate in the

operations. Our partitioning framework focuses on efficient and effective partitioning for

processing general graph pattern queries on large heterogeneous graphs.

Graph partitioning has been extensively studied in several communities for several

decades [61, 52, 62, 63]. A typical graph partitioner divides a graph into smaller parti-

tions that have minimum connections between them, as adopted by METIS [61, 63, 15] or

Chaco[52, 6]. Various efforts in graph partitioning research have been dedicated to parti-

tioning a graph into similar sized partitions such that the workload of servers storing these

partitions will be more or less balanced. We utilize the results of one famous graph parti-

tioner (METIS) to implement one of our grouping techniques to group our extended vertex

blocks.

In recent years, a few techniques have been proposed to process RDF graphs in a cluster

of compute nodes. [97, 56] directly store RDF triples (edges) in HDFS as flat text files to

process RDF queries. [43] utilizes HBase, a column-oriented store modeled after Google’s

70

Bigtable, to store and query RDF graphs. Because general file system-based storage layers,

such as HDFS, are not optimized for graph data, their query processing is much less efficient

than those using a local graph processing engine, as reported in [55]. Also, because their

query processing heavily depends on multiple rounds of inter-machine communication, they

usually incur long query latencies. [55] utilizes the results of an existing graph partitioner to

partition RDF graphs and stores generated partitions on RDF-3X to process RDF queries

locally. As we reported in Section 3.5, running an existing graph partitioner has a large

amount of overhead for huge graphs (or graphs having complex structure) and may not

even be practically feasible for some large graphs.

3.7 Conclusion

We present VB-Partitioner − a distributed data partitioning model and algorithms for

efficient processing of queries over large-scale graphs in the Cloud. This chapter makes three

original contributions. First, we introduce the concept of vertex blocks (VBs) and extended

vertex blocks (EVBs) as the building blocks for semantic partitioning of large graphs. Sec-

ond, we describe how VB-Partitioner utilizes vertex block grouping algorithms to place

those vertex blocks that have high correlation in graph structure into the same partition.

Third, we develop a VB-partition guided query partitioning model to speed up the par-

allel processing of graph pattern queries by reducing the amount of inter-partition query

processing. We evaluate our VB-Partitioner through extensive experiments on several

real-world graphs with millions of vertices and billions of edges. Our results show that VB-

Partitioner significantly outperforms the popular random block-based data partitioner

in terms of query latency and scalability over large-scale graphs.

Our research effort continues along several directions. The first prototype implemen-

tation of VB-Partitioner is on top of Hadoop Distributed File System (HDFS) with

RDF-3X [86] installed on every node of the Hadoop cluster as the local storage system.

We are interested in replacing RDF-3X by TripleBit [119] or GraphChi [67] as the local

graph store to compare and understand how different choices of local stores may impact

71

on the overall performance of our VB-Partitioner. In addition, we are working on effi-

cient mechanisms for deploying and extending our VB-Partitioner to speed up the set

of iterative graph algorithms, including shortest paths, PageRank, and random walk-based

graph clustering. For example, Pregel [80] can speed up the set of graph computations that

are centered on out-edge vertex blocks such as shortest path discovery, and GraphChi [67]

can speed up those iterative graph computations that rely on in-edge vertex blocks, such

as PageRank and triangle counting. We conjecture that our VB-Partitioner can be ef-

fective for a broader range of iterative graph operations. Furthermore, we are also working

on extending Hadoop MapReduce programming model and library to enable fast graph

operations, ranging from graph queries and reasoning to iterative graph algorithms.

72

CHAPTER IV

GRAPHMAP: SCALABLE ITERATIVE GRAPH COMPUTATION

FRAMEWORK

Scaling large-scale graph processing has been a heated systems research topic in recent

years. Existing distributed graph processing systems, such as Pregel, are based solely on

distributed memory for their computations and fail to provide seamless scalability when the

graph data and their intermediate computation results no longer fit into the memory. Most

existing distributed approaches for iterative graph computations to date do not consider

utilizing secondary storage as a viable solution. In this chapter we present GraphMap,

a distributed iterative graph computation framework, which effectively utilizes secondary

storage to maximize access locality and speed up distributed iterative graph computations.

GraphMap has three salient features: (1) We distinguish those data states that are muta-

ble during iterative computations from those that are read-only in all iterations to maximize

sequential accesses and minimize random accesses. (2) We devise a two-level graph par-

titioning algorithm to enable balanced workloads and locality-optimized data placement.

(3) We propose a suite of locality-based optimizations to improve computation efficiency.

Extensive experiments on several real-world graphs show that GraphMap outperforms

existing distributed memory-based systems for various iterative graph algorithms.

4.1 Introduction

Graphs are pervasively used for modeling information networks of real-world entities with

sophisticated relationships. Many applications from science and engineering to business

domains use iterative graph computations to analyze large graphs and derive deep insight

from a huge number of implicit relationships among entities. Considerable research effort

on scaling large graph computations has been devoted to two different directions. One

is to deploy a super powerful many-core computer with memory capacity of hundreds or

thousands of gigabytes [91] and another is to explore the feasibility of using a cluster of

73

distributed commodity servers.

Most of research effort on deploying a supercomputer for fast iterative graph compu-

tations assumes considerable computing resources and thus focuses primarily on parallel

optimization techniques that can maximize parallelism among many cores and tasks per-

formed on the cores. A big research challenge for efficient many-core computing is the

tradeoff between the opportunities for massive parallel computing and the cost of mas-

sive synchronization for multiple iterations, which tend to make the overall performance of

parallel processing significantly less optimal at the high ownership cost of supercomputers.

As commodity computers become pervasive for many scientists and small or medium

enterprise organizations, we witness a rapidly growing demand for distributed iterative

graph computations on a cluster of commodity servers. Google Pregel [80] and its open

source implementations − Apache Giraph [3] and Hama [4] − have shown remarkable initial

success. However, existing distributed graph processing systems, represented by Pregel,

heavily rely on distributed memory-based computation model. Concretely, a large graph is

first distributed using random or hash partitioning to achieve data-level load balance. Then

each compute node of the cluster needs to be able to not only load the entire local graph but

also hold both the intermediate results of iterative computations and all the communication

messages it needs to send to and receive from every other node of the cluster. Thus, existing

approaches suffer from poor scalability when the weakest compute node in the cluster fails

to hold the local graph and all the intermediate (computation and communication) results

in memory. The dilemma lies in the fact that simply increasing the size of the compute

cluster often fails for iterative computations on large graphs. This is because, with a larger

cluster, one can reduce the size of the graph that needs to be held in memory at the price

of significantly increased amount of distributed messages each node needs to send to and

receive from a larger number of nodes in the cluster. For example, a recent study [108]

shows that computing 5 iterations of PageRank on twitter 2010 dataset with 42 millions of

vertices and 1.5 billions of edges takes 487 seconds on a Spark [121] cluster of 50 nodes and

100 CPUs. Another study [110] shows that counting triangles on twitter 2010 dataset takes

423 minutes on a large Hadoop cluster of 1636 nodes. Surprisingly, most of the existing

74

approaches for iterative graph computations on a cluster of servers do not explore the option

of integrating secondary storage as a viable solution due to a potentially large number of

random disk accesses.

In this chapter we argue that secondary storage can play an important role in maximizing

both in-memory and on-disk access locality for running iterative graph algorithms on large

graphs. By combining it with efficient processing at each local node of a compute cluster,

one can perform iterative graph computations more efficiently than the distributed memory-

based model in many cases. The ability to intelligently integrate secondary storage into the

cluster computing infrastructure for memory intensive iterative graph computations can be

beneficial from multiple dimensions: (i) With efficient management of in-memory and on-

disk data, one can not only reduce the size of the graph partitions to be held at each node

of the cluster but also match the performance of the distributed memory-based system. (ii)

One can carry out expensive iterative graph computations on large graphs using a much

smaller and affordable cluster (tens of nodes), instead of relying on the availability of a

large cluster with hundreds or thousands of compute nodes, which is still costly even with

pay-as-you-go elastic cloud computing pricing model.

With these problems and design objectives in mind, we develop GraphMap, a dis-

tributed iterative graph computation framework, which can effectively utilize secondary

storage for memory-intensive iterative graph computations by maximizing in-memory and

on-disk access locality. GrapMap by design has three salient features. First, we distinguish

those data states that are mutable during iterative computations from those that are read-

only during iterative computations to maximize sequential accesses and minimize random

accesses. We show that by keeping mutable data in memory and read-only data on sec-

ondary storage, we can significantly improve disk IO performance by minimizing random

disk IOs. Second, we support three types of vertex blocks (VBs) for each vertex: in-VB

for in-edges of a vertex, out-VB for out-edges of a vertex, and bi-VB for all edges of a

vertex and devise a two-level graph partitioning algorithm to enable balanced workloads

and locality-optimized data placement. Concretely, we use hash partitioning to distribute

vertices and their vertex blocks to different compute nodes and then use range partitioning

75

to group the vertices and their vertex blocks within each hash partition into storage chunks

of fixed size. Last but not the least, we devise a suite of locality-based optimizations to

improve computation efficiency, including progressive pruning of non-active vertices and

edges to reduce the unnecessary memory and CPU consumption, partition-aware identifier

assignment, partition-aware message batching, and local merge of partial updates. These

design features enable GraphMap to achieve two objectives at the same time: (1) to mini-

mize non-sequential disk IOs, and significantly improve the secondary storage performance,

making the integration of external storage a viable solution for distributed processing of

large graphs; and (2) to minimize the communication cost among different graph partitions

and maximize the overall computation efficiency of iterative graph algorithms. We evaluate

GraphMap on a number of real graph datasets using several graph algorithms by compar-

ing with existing representative distributed memory-based graph processing systems, such

as Apache Hama. Our experimental results show that GraphMap outperforms existing

distributed graph systems for various iterative graph algorithms.

4.2 GraphMap Overview

In this section, we first define some basic concepts used in GraphMap and then provide

an overview of GraphMap including its partitioning technique, programming API, and

system architecture.

4.2.1 Basic Concepts

GraphMap models all information networks as directed graphs. For an undirected graph,

we convert each undirected edge into two directed edges.

Definition 17 (Graph) A graph is denoted by G = (V,E) where V is a set of vertices and E

is a set of directed edges (i.e., E ⊆ V×V). For an edge e such that {e = (u, v) ∈ E, u, v ∈ V },

we call u and v the source vertex and destination vertex of e respectively. e is an in-edge of

vertex v and an out-edge of vertex u. |V | and |E| denote the number of vertices and edges

respectively.

76

A unique vertex identifier is assigned to each vertex and a vertex may be associated

with a set of attributes describing the properties of the entity represented by the vertex.

For presentation convenience, we interchangeably use the terms “vertex attribute” and

“vertex state” throughout this chapter. For a weighted graph where each edge has its

modifiable, user-defined value, we model each edge weight as an attribute of its source

vertex. This allows us to treat all vertices as mutable data and edges as immutable data

during iterative graph computations. For instance, when a graph is loaded for PageRank

computations and vertex u has its out-edge degree d(u), the graph topology does not change

and each of u’s out-edges contributes the fixed portion (i.e., 1/d(u)) to the next round of

PageRank values during all the iterations. Thus, we can consider edges immutable for

PageRank computations. Similarly for SSSP (Single-Source Shortest Path) computations,

the edge weight usually denotes the distance of a road segment and thus is immutable

during the computations. This separation between mutable and immutable data by design

provides GraphMap an opportunity to employ compact and locality-aware graph storage

structure for both in-memory and on-disk placement. Furthermore, since most of large

graphs have at least tens or hundreds times more edges than vertices, we can significantly

reduce the memory requirement for loading and processing large graphs. We will show

in the subsequent sections that by utilizing such a clean separation between mutable and

immutable data components in a graph, we can significantly reduce the amount of non-

sequential accesses in each iteration for many iterative graph algorithms.

In order to provide access locality-optimized grouping of edges in GraphMap, we cate-

gorize all edges connected to a vertex into three groups based on their direction: out-edges,

in-edges, and bi-edges.

Definition 18 (Out-edges, in-edges, and bi-edges) Given a graph G = (V,E), the set of

out-edges of a vertex v ∈ V is denoted by Eoutv = {(v, v′)|(v, v′) ∈ E}. Conversely, the set

of in-edges of v is denoted by Einv = {(v′, v)|(v′, v) ∈ E}. We also define bi-edges of v as

the union of its out-edges and in-edges, denoted by Ebiv = Eoutv ∪ Einv .

77

For each graph to be processed by GraphMap, we build a vertex block (VB) for each

vertex. A vertex block consists of an anchor vertex and its directly connected edges and

vertices. Since different graph algorithms have different computation characteristics, in

GraphMap, we support three different types of vertex blocks based on the edge direction

from the anchor vertex: (1) out-edge vertex block (out-VB), (2) in-edge vertex block (in-

VB), and (3) bi-edge vertex block (bi-VB). One may view an out-edge vertex block as a

source vertex and its adjacency list via out-edges, i.e., the list of destination vertex IDs

connected to the same source vertex via its out-edges. Similarly, an in-edge vertex block

can be viewed as a destination vertex and its adjacency list via its in-edges, i.e., the list

of source vertex IDs connected to the same destination vertex via its in-edges. We below

formally define the concept of vertex block (VB).

Definition 19 (Vertex block) Given a graph G = (V,E) and vertex v ∈ V , the out-

edge vertex block of vertex v is a subgraph of G, which consists of v as its anchor

vertex and all of its out-edges, denoted by V Bout
v = (V out

v , Eoutv) such that V out
v = {v} ∪

{vout|vout ∈ V, (v, vout) ∈ Eoutv }. Similarly, the in-edge vertex block of v is defined as

V Bin
v = (V in

v , Einv) such that V in
v = {v} ∪ {vin|vin ∈ V, (vin, v) ∈ Einv }. We define the

bi-edge vertex block of v as V Bbi
v = (V bi

v , E
bi
v) such that V bi

v = V in
v ∪ V out

v .

In the subsequent sections we will describe several highlights of GraphMap design.

4.2.2 Two-Phase Graph Partitioning

We design a two-phase graph partitioning algorithm, which performs global hash partition-

ing followed by local range partitioning at each of the n worker machines in a compute

cluster. Hash partitioning on vertex IDs first divides a large graph into a set of vertex

blocks (VBs) and then assigns each VB to one worker machine. By using the lightweight

global hash partitioning, a large graph can be rapidly distributed across the cluster of n

worker machines while ensuring data-level load balance. In order to reduce non-sequential

disk accesses at each worker machine, we sort all VBs assigned to each worker machine in

the lexical order of their anchor vertex IDs and further partition the set of VBs at each

worker machine into r chunks such that VBs are clustered physically by their chunk ID.

78

The parameter r is chosen such that each range partition (chunk) can fit into the working

memory available at the worker machine. The range partitioning is concurrently performed

at all the worker machines.

Definition 20 (Hash partitioning) LetG = (V,E) denote an input graph. Let hash(v) be a

hash function for partitioning and V B(v) denote the vertex block anchored at vertex v. The

hash partitioning P of G is represented by a set of n partitions, denoted by {P1, P2, . . . , Pn}

such that each partition Pi (1 ≤ i ≤ n) consists of a set of vertices Vi and a set of VBs Bi

such that Vi = {v|hash(v) = i, v ∈ V }, Bi = {V B(v)|v ∈ Vi} and
⋃
i Vi = V , Vi

⋂
Vj = ∅

for 1 ≤ i, j ≤ n, i 6= j.

In the first prototype implementation of GraphMap, given a cluster of n worker ma-

chines, we physically store a graph at n worker machines by hash partitioning and then

divide the set of VBs assigned to each of the n worker machines into r range partitions.

GraphMap uses the hash partitioning by default for global graph partitioning across the

cluster of n worker machines because it is super fast and we do not need to keep any

additional data structure to record the partition assignment for each vertex. However,

GraphMap can be easily extended to support any other partitioning techniques because

its in-memory and on-disk representation is designed to store partition assignments gen-

erated by any partitioning techniques, such as Metis [60], ParMetis [44], SHAPE [71], to

name a few.

4.2.3 Supporting Vertex-Centric API

Most iterative graph processing systems adopt the “think like a vertex” vertex-centric pro-

gramming model [80, 45, 77]. To implement an iterative graph algorithm based on the

vertex-centric model, users write a vertex-centric program, which defines what each vertex

does for each iteration of the user-defined iterative graph algorithm, such as PageRank,

SSSP and Triangle Counting. In each iteration, vertices of the input graph execute the

same vertex program in parallel. A typical vertex program consists of three steps in each

iteration: (1) a vertex reads its current value and gathers its neighboring vertices’ values,

usually along its in-edges. (2) the vertex may update its value based on its current value and

79

gathered values. (3) if updated, the vertex propagates its updated value to its neighboring

vertices, usually along its out-edges.

Each vertex has its transition state flag with either active or inactive. In each iteration,

only active vertices run the vertex program. For some algorithms such as PageRank and

Connected Component (CC), every vertex is active in the first iteration and thus all vertices

participate in the computation. On the other hand, for some algorithms such as SSSP, only

one vertex is active in the first iteration and some vertices may be inactive during all the

iterations. A vertex can deactivate itself, usually at the end of an iteration, and can also

be reactivated by other vertices. The iterative graph algorithm terminates if all vertices

are inactive or an user-defined convergence condition, such as the number of iterations, is

satisfied.

Existing distributed iterative graph processing systems provide a mechanism for inter-

action among vertices, mostly along edges. Pregel [80] employs a pure message passing

model in which vertices interact by sending messages along their outgoing edges and, in the

current iteration, each vertex receives messages sent by other vertices in the previous iter-

ation. In GraphLab/PowerGraph [45, 77], vertices directly read their neighboring vertices’

data through shared state.

One representative category of existing distributed graph processing systems is based on

the Bulk Synchronous Parallel (BSP) [114] computation model and the shared-nothing ar-

chitecture. A typical graph application based on the BSP model starts with an initialization

step in which the input graph is read and partitioned/distributed across the worker ma-

chines in the cloud. In subsequent iterations, the worker machines compute independently

in parallel in each iteration and the iterations are separated by global synchronization bar-

riers in which the worker machines communicate each other to integrate the results from

distributed computations performed at different workers. Finally, the graph application

finishes by writing down its results.

Algorithm 3 shows an example of the Single-Source Shortest Path (SSSP) algorithm,

based on the vertex-centric model and the BSP model, implemented in Apache Hama’s

graph package, an open-source implementation of Pregel. In iteration (or superstep) 0, each

80

Algorithm 3 SSSP in Apache Hama
compute(messages)

1: if getSuperstepCount() == 0 then
2: setValue(INFINITY);
3: end if
4: int minDist = isStartVertex() ? 0 : INFINITY ;
5: for int msg : messages do
6: minDist = min(minDist, msg);
7: end for
8: if minDist < getValue() then
9: setValue(minDist);

10: for Edge e : getEdges() do
11: sendMessage(e, minDist+e.getValue())
12: end for
13: end if
14: voteToHalt();

combine(messages)
15: return min(messages)

vertex sets its vertex value as infinity (line 2). In subsequent iterations, each vertex picks

the smallest distance among the received messages (line 5-7) and, if the distance is smaller

than its current vertex value, the vertex updates its vertex value using the smallest distance

(line 9) and propagates the updated distance to all its neighboring vertices along out-edges

(line 10-12). At the end of each iteration, it changes its status to inactive (line 14). If the

vertex receives any message, it will be reactivated in the next iteration and then run the

vertex program again. To reduce the number of messages over the network, users can define

a combiner, which finds the minimum value of messages for each destination vertex (line

15).

4.2.4 GraphMap Programming API

GraphMap supports two basic programing abstractions at API level: the vertex-centric

model, similar to Pregel-like systems, and the VB partition-centric model. Given a vertex-

centric program, such as SSSP in Algorithm 3, GraphMap converts it into a GraphMap

program, which utilizes the in-memory and on-disk representation of GraphMap and the

performance optimizations enabled by GraphMap in terms of access locality and efficient

memory consumption (See the next sections for detail).

The VB partition-centric API is provided by GraphMap for advanced users who are

familiar with GraphMap’s advanced features and the BSP model. Note that, unlike the

vertex-centric model, a VB partition-centric program defines what each VB partition (a set

81

Algorithm 4 SSSP in GraphMap
compute(messages)

1: if getSuperstepCount() == 0 then
2: for Vertex v : readAllVertices() do
3: if v.isStartVertex() then
4: setValue(v, 0);
5: setActive(v);
6: else
7: setValue(v, INFINITY);
8: end if
9: end for

10: end if
11: for Message msg : messages do
12: if msg.value < getValue(msg.target) then
13: setValue(msg.target, msg.value);
14: setActive(msg.target);
15: end if
16: end for
17: for Vertex v : readActiveVertices() do
18: for Edge e : v.getEdges() do
19: msg = createMessage(e.destination,

getValue(v)+e.getValue());
20: sendMessage(getWorker(e.destination), msg);
21: end for
22: end for
23: deactivateAll();

of VBs) does for each iteration. Table 9 shows some core methods provided by GraphMap.

Algorithm 4 demonstrates how SSSP is implemented using the VB partition-centric API.

We emphasize that we are not claiming that the VB partition-centric API is more concise

than the vertex-centric API. Our main goal of the VB partition-centric API is to expose

partition-level methods and thus provide more optimization opportunities for advanced

users. Recall that users can run their vertex-centric programs on GraphMap as they are

without the need to learn the VB partition-centric API. Due to the space constraint, we

here omit the further detail on this advanced API design.

Table 9: GraphMap Core Methods
method description

setValue(vertex, value) update the value of the vertex
getValue(vertex) return the value of the vertex
readAllVertices() return an iterator for all

vertices of this partition
readActiveVertices() return an iterator for

all active vertices of this partition
setActive(vertex) set the vertex as active

createMessage(vertex, value) create a message including
the destination vertex and value

sendMessage(worker, msg) send the message to the worker
getWorker(vertex) return the worker which

is in charge of the vertex
deactivateAll() deactivate all

vertices of this partition

82

Master

Worker Machine

Worker Machine Worker Machine

Worker Machine

Worker i

Disk Partition i
(invariant)

Partition j
(invariant)

Partition i
(changeable)

BSP Engine Messaging
engine

Graph
Processing

Engine

Worker j

Partition j
(changeable)

BSP Engine Messaging
Engine

Graph
Processing

Engine

Figure 25: GraphMap System Architecture

4.2.5 System Architecture

Fig. 25 shows the system architecture of GraphMap. Similar to Pregel-like systems,

GraphMap supports the BSP model and the message passing model for iterative graph

computations. GraphMap consists of a master machine and a set of worker machines.

The master accepts graph analysis requests from users and coordinates the worker ma-

chines to run the graph algorithms on the input graph datasets. For large graphs, the

two phase graph partitioning task is also distributed by the master to its worker machines.

The worker machines execute the graph programs by interacting with each other through

messages.

Each worker machine can define a set of worker slots for task-level parallelism and each

worker is in charge of a single partition. Each worker task keeps the mutable data of

its assigned partition in memory (the set of vertices) and in each iteration, it reads the

invariant data of the partition from disk (VB blocks) for graph computations and updating

the mutable data. In addition, each worker task receives messages from and sends messages

to other workers using the messaging engine and enters the global synchronization barrier

of the BSP model at the end of each iteration using the BSP engine. We categorize the

83

messages into two types based on the use of the network: intra-machine messages between

two workers in the same worker machine and inter-machine messages between two workers in

the different worker machines. In GraphMap, we bundle a set of messages to be transferred

to the same worker at the end of each iteration for batch transmission across workers.

4.3 Locality-based Data Placement

In this section, we introduce our locality-based storage structure for GraphMap. We pro-

vide an example to illustrate our in-memory and on-disk representation of graph partitions.

In the next section we describe how GraphMap can benefit from the locality-optimized

data partitions and data placements to speed up iterative graph computations.

We have mentioned earlier that in most iterative graph algorithms, only vertex data are

mutable while edge data are invariant during the entire iterative computations. By cleanly

separating graph data into mutable and invariant (or read-only) data, we can store most

or all of the mutable data in memory and access invariant data from disk by minimizing

non-sequential IOs. In contrast to existing Pregel-like distributed graph processing systems

where each worker machine needs to be able to hold not only the graph data but also

their intermediate results and messages in memory, the GraphMap approach promotes the

locality-aware integration of external storage with memory-intensive graph computations.

The GraphMap design offers two significant advantages: (1) We can considerably reduce

the memory requirement for running iterative graph applications by keeping only mutable

data in memory and thus enable many more graphs and algorithms to run on GraphMap

with respectable performance. (2) By designing a locality-aware data placement strategy

such that vertex blocks belonging to the same partition will be stored contiguously on disk,

we can speed up the access to the graph data stored on disk through sequential disk IOs

for each iteration of the graph computations. For example, we keep all vertices and their

values belonging to one partition in memory while keeping all the edges associated with

these vertices and the edge property values, if any, on disk. Thus, in the context of vertex

blocks in a partition, we maintain only anchor vertices and their values in memory and store

all the corresponding vertex blocks contiguously on disk. In each iteration, for each active

84

anchor vertex, we read its vertex block from disk and execute the graph computation in

three steps as outlined in Section 4.2.3. For those graphs in which the number of edges is

much larger than the number of vertices (e.g., more than two orders of magnitude larger in

some real-world graphs), this design can considerably reduce the memory requirement for

iterative graph computations even in the presence of long radius and skewed vertex degree

distribution, because we do not require keeping edges in memory.

For anchor vertex values, which may be read and updated over the course of the iterative

computations, such as the current shortest distance in SSSP and the current PageRank

value, we maintain a mapping table that stores the vertex value for each anchor vertex

in memory. Since each worker is in charge of one partition in GraphMap, only anchor

vertices of its assigned partition are loaded in memory on each worker. For read-only

edge data (i.e., vertex blocks of the anchor vertices), we need to carefully design its disk

representation because otherwise it would be too costly to load vertex blocks from disk in

each iteration. To tackle this challenge, we consider two types of access locality in graph

algorithms: 1) edge access locality and 2) vertex access locality. By the edge access locality,

we mean that all edges (out-edges, in-edges or bi-edges) of an anchor vertex are accessed

together to update its vertex value. By using the vertex blocks as our building blocks

for storage on disk, we can utilize the edge access locality because all edges of an anchor

vertex are placed together. By the vertex access locality, we mean that the anchor vertices

(and their vertex blocks) of a partition are accessed by the same worker in every iteration.

To utilize the vertex access locality, for each partition, we store its all vertex blocks into

contiguous disk blocks to utilize sequential disk accesses when we read the vertex blocks

from disk in each iteration. In addition to the sequential disk accesses, in order to support

efficient random accesses for reading the vertex block of a specific vertex, we store the vertex

blocks in sorted order by their anchor vertex identifiers and create an index block that stores

the start vertex identifier for each data block. In other words, we use range partitioning in

which each data block stores vertex blocks of a specific range.

Fig. 26 shows an example of the in-memory and on-disk graph data representation for

a partition held by a worker in GraphMap. All anchor vertices of the partition and their

85

Memory

Vertex Data Map

Vertex ID Data

1 3

6 2

11 7

Disk

Message Queues

Worker 1 Worker 2 Worker n …

target msg

2 3

7 5

target msg target msg

… …

3 4 4 3

9 7

Data Blocks
Index Block B0 B1 B2

VB1

VB6

VB11

VB16

VB26

VB36

VB51

B1 1

VB31

B2 16

B3 36

Figure 26: Graph Representation in GraphMap (single worker)

current vertex data are stored in a mapping table in memory. Since GraphMap employs

the BSP model based on messaging, we keep an incoming message queue that stores all

messages sent to this worker and an outgoing message queue for each worker in memory.

On disk, eight vertex blocks are stored in three data blocks and one index block is created

to store the start vertex for each data block.

4.4 Locality-based Optimizations

In GraphMap, two levels of parallel computations can be provided: (1) Workers can pro-

cess graph partitions in parallel; and (2) Within each partition, we can compute multiple

vertex blocks concurrently using multi-threading. By combining the graph parallel compu-

tations with our locality-based data placement, each parallel task can run independently

with minimal non-sequential disk IOs. Since the vertex blocks belonging to the same par-

tition are accessed by the same worker and stored in contiguous disk blocks, we can speed

up graph computations in each iteration by combining parallelism with the sequential disk

IOs for reading the vertex blocks.

It is interesting to note that different iterative graph algorithms may have different

86

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7 8 9

#
 a

ct
iv

e
v

er
ti

ce
s

(x
1

0
0

0
)

Iteration

SSSP CC PageRank

Figure 27: The Number of Active Vertices per Iteration

computation patterns and sequential disk accesses are not efficient for all types of graph

computation patterns. For example, Fig. 27 shows the number of active vertices per it-

eration of a worker for three different iterative graph algorithms, Single-Source Shortest

Path (SSSP), Connected Components (CC), and PageRank, on the orkut graph [83]. In

PageRank, since all vertices are always active during all iterations and thus all vertex blocks

of the anchor vertices are required in each iteration, our sequential disk accesses would be

always efficient for reading the vertex blocks. On the other hand, in SSSP and CC, the

number of active vertices is different for different iterations. When the number of active

vertices is small, using the sequential accesses and reading the vertex blocks of all anchor

vertices would be far from optimal because we do not need to evaluate the vertex blocks of

most anchor vertices.

Based on this observation, we develop another locality-based optimization in GraphMap,

which can dynamically choose between the sequential disk accesses and the random disk

accesses based on the computation loads of the current iteration for each worker. This

dynamic locality-based adaptation enables us not only to progressively filter out non-active

vertices in each of the iterations for the iterative graph algorithms but also to avoid un-

necessary and thus wasteful sequential disk IOs as early as possible. Recall that we store

the vertex blocks of a partition in sorted order by their vertex identifiers and create an

index block to support efficient random accesses. Given a query vertex, we need one (when

87

the index block resides in memory) or two (when the index block is not in memory) disk

accesses to read its vertex block. Specifically, in each iteration of a worker, if the number of

active vertices is less than a system-defined (and user-modifiable) threshold θ, we choose the

random disk accesses as our access method and read the index block from disk first, if not

in memory. Based on the block information (i.e., start vertex for each data block) stored in

the index block, we select and read only those data blocks that include the vertex block of

active vertices. If the number of active vertices is equal to or larger than θ, we choose the

sequential disk accesses and read the vertex blocks of all anchor vertices regardless of the

current active vertices.

Because different clusters and different worker machines have different disk access per-

formance, we also dynamically change the value of θ for each worker machine. Conceptually,

by monitoring the current processing time of each random disk access and one full scan (i.e.,

sequential disk accesses for reading all vertex blocks), we calculate the break-even point, in

which one full scan time is equal to the time of r random disk accesses, and use r as the

value of θ.

The algorithm of updating the value of θ is formally defined as follows. Let θiw, siw,

riw, and aiw denote the threshold, one full scan time, total random disk access time, and

the number of active vertices in iteration i on worker w respectively. If the full scan (or

random disk access) is not used in iteration i on worker w, siw (or riw) is not defined (i.e.,

not a valid number). We use m and n, initially having 0 (zero), to denote the IDs of the

last iteration where the full scan and random disk access was used respectively. θ0w is the

initial threshold on worker w and calculated empirically (e.g., random disk access time for

2% of all anchor vertices is similar to sequential disk access time for all anchor vertices on

worker w). In iteration i (i > 0), before running the vertex program for each active vertex,

we calculate the new threshold as follows:

θiw =


θ(i−1)w, if m = 0 or n = 0

smw
anw
rnw

, otherwise.

In addition, when we store the vertex block of each anchor vertex in a data block, we

88

GraphMap Cluster

Master

Worker

Machine 1

Worker

Machine 2

Worker

Machine 3

Worker

Machine 4

Worker

Machine 5

Worker

Machine 6

Worker

Machine 7

Worker

Machine 8

Worker

Machine 9

Worker

Machine 1

Partition

1

Partition

2

Partition

3

Partition

4

Partition

5

Partition

6

Partition

1

Data Block

1

Data Block

2

Data Block

3

Data Block

4

Data Block

5

Data Block

6

Data Block

1

Vertex

Block 1

Vertex

Block 11

Vertex

Block 16

Vertex

Block 26

Vertex

Block 31

Vertex

Block 41

Vertex Block 41 Anchor Vertex

ID (int)

Edges length

(int)
Edges (bytes)

Figure 28: Hierarchical Disk Representation in GraphMap

bundle all out-edges (or in-edges or bi-edges) of the anchor vertex and store them together,

as shown in Fig. 28, to utilize the edge access locality.

4.5 Experimental Evaluation

In this section, we report the experimental evaluation results of the first prototype of

GraphMap for various real-world graphs and iterative graph algorithms. We first ex-

plain the characteristics of graphs we used for our evaluation and the experimental settings.

We categorize the experimental results into four sets: 1) We show the execution time of

various iterative graph algorithms in GraphMap and compare it with that of an Pregel-like

system. 2) We present the effects of our dynamic access methods for various graph datasets.

3) We evaluate the scalability of GraphMap by increasing the number of workers in the

cluster. 4) We compare GraphMap with other state-of-the-art graph systems.

4.5.1 Datasets and Graph Algorithms

We evaluate the performance of GraphMap using real-world graphs of different sizes and

different characteristics for three types of iterative graph algorithms. Table 10 gives a

summary of the datasets used for our evaluation. The first type of graph algorithms is

represented by PageRank. In these algorithms, all vertices are always active during all

iterations. The second type of graph algorithms is represented by Connected Components

(CC), in which all vertices of the graph are active in the first iteration and then the number

89

of active vertices starts to decrease as the computation progresses towards convergence.

The third type of graph algorithms is represented by Single-Source Shortest Path (SSSP),

where only the start vertex is active in the first iteration and the number of active vertices

increases in early iterations and decreases in later iterations. We choose these three types

of graph applications because they display different computation characteristics as we have

shown earlier in Fig. 27.

Table 10: Datasets (GraphMap)
Dataset #vertices #edges

hollywood-2011 [33] 2.2M 229M
orkut [83] 3.1M 224M

cit-Patents [72] 3.8M 16.5M
soc-LiveJournal1 [26] 4.8M 69M

uk-2005 [33] 39M 936M
twitter [66] 42M 1.5B

4.5.2 Setup and Implementation

We use a cluster of 21 machines (one master and 20 worker machines) on Emulab [115]:

each node is equipped with 12GB RAM, one quad-core Intel Xeon E5530 processor, and

two 7200 rpm SATA disks (500GB and 250GB), running CentOS 5.5. They are connected

via a 1 GigE network. We run three workers on each worker machine and each worker is a

JVM process with a maximum heap size of 3GB, unless otherwise noted. When we measure

the computation time, we perform five runs under the same setting and show the fastest

time to remove any possible bias posed by OS and/or network activity.

In order to compare with distributed memory-based graph systems, we use Apache Hama

(Version 0.6.3), an open source implementation of Pregel. Another reason we choose Hama

is that we implement the BSP engine and the messaging engine of GraphMap workers by

adapting the BSP module and the messaging module of Apache Hama for the first prototype

of GraphMap. This allows us to compare GraphMap with Hama’s graph package more

fairly.

To implement our vertex block-based data representation on disk, we utilize Apache

HBase (Version 0.96), an open source wide column store (or two-dimensional key-value

store), on top of Hadoop Distributed File System (HDFS) of Hadoop (Version 1.0.4). We

90

Table 11: Total Execution Time and the Number of Messages
Total execution time (sec)

Dataset SSSP CC PageRank
Hama GraphMap Hama GraphMap Hama GraphMap

hollywood-2011 108.776 18.347 177.854 39.365 268.474 111.466
orkut 108.744 21.345 195.841 54.383 286.054 111.46

cit-Patents 27.693 12.337 24.646 12.335 30.688 18.353
soc-LiveJournal1 48.697 18.346 60.734 33.357 75.76 39.369

uk-2005 Fail 156.49 Fail 706.329 Fail 573.964
twitter Fail 150.486 Fail 303.653 Fail 1492.966

The number of messages
hollywood-2011 229M 80M 1.2B 348M 2.1B 2.1B

orkut 224M 123M 1.3B 548M 2.0B 2.0B
cit-Patents 219K 212K 17M 15M 149M 149M

soc-LiveJournal1 68M 51M 359M 243M 616M 616M
uk-2005 Fail 450M Fail 5.2B Fail 8.3B
twitter Fail 585M Fail 1.5B Fail 13.2B

choose HBase for the first prototype of GraphMap because it has several advantages. First,

it provides a fault-tolerant way of storing graph data in the cloud. Since HBase utilizes

the data replication of HDFS for fault-tolerance, GraphMap will continue to work even

though some worker machines fail to perform correctly. Second, since HBase row keys are

in sorted order and adjacent rows are usually stored in the same HDFS block (a single file

in the file system), we can directly utilize HBase’s range scans for implementing sequential

disk accesses. Third, we can place all the vertex blocks of a partition in the same worker

machine (called a region server) by using the HBase regions and renaming vertex identifiers.

Specifically, we first pre-split the HBase table for the input graph into a set of regions in

which each region is in charge of one hash partition. Next, we rename each vertex identifier

by adding its partition identifier as a prefix of its new vertex identifier, such as “11-341”

in which “11” and “341” represent the partition identifier and the original vertex identifier

respectively. Thus all vertex blocks of a partition are stored in the same region. In other

words, our hash partitioning is implemented by renaming vertex identifiers and using the

pre-split regions and our range partitioning on each partition is implemented by HBase,

which stores rows in sorted order by their identifier. Fourth, to implement our edge access

locality-based approach, we bundle all edges of a vertex block and store the bundled data

in a single column because the data is stored together on disk. Another possible technique

is to use a column for each edge of a vertex block using the same column family because

all column family members are stored together on disk by HBase. However, to eliminate

91

the overhead of handling many columns, we implement the former technique for our edge

access locality-based approach.

4.5.3 Iterative Graph Computations

We first compare the total execution time of GraphMap with that of Hama’s graph package

for the three iterative graph algorithms. Table 11 shows the results for different real-world

graphs. For SSSP, we report the execution time when we choose the vertex having the largest

number of out-edges as the start vertex except the uk-2005 graph in which we choose the

vertex having the third largest number of out-edges because only about 0.01% vertices are

reachable from each of the top two vertices. For PageRank, we report the execution time of

10 iterations. The result clearly shows that GraphMap outperforms Hama significantly on

all datasets for all algorithms (PageRank, SSSP and CC). For large graphs such as uk-2005

and twitter, GraphMap considerably reduces the memory requirement for iterative graph

algorithms. However, Hama fails for all algorithms because it needs not only to load all

vertices and edges of the input graph but also to hold all intermediate results and messages

in memory. Thus Hama cannot handle those large graphs, such as uk-2005 (936M edges)

and twitter (1.5B edges) datasets, where the number of edges is approaching or exceeding

one billion.

GraphMap not only reduces the memory requirement for iterative graph algorithms

but also significantly improves the iterative graph computation performance compared to

Hama. For SSSP, CC and PageRank, GraphMap is 2x-6x, 1.8x-4.5x and 1.7x-2.6x faster

than Hama respectively. Given that both GraphMap and Hama use the same messaging

and BSP engines, the difference in terms of the number of messages in Table 11 is due

to the effect of the combiner. The GraphMap’s messages are counted after the combiner

is executed and, on the other hand, Hama reports only the numbers, which are measured

before the combiner is executed. For PageRank, the number of messages is almost the same

for both systems because no combiner is used.

To provide in-depth analysis, we further divide the total execution time into the vertex

processing time and the synchronization (global barrier) time per iteration as shown in

92

0

5

10

15

20

25

30

35

40

45

H
a
m

a

G
M

H
a
m

a

G
M

H
a
m

a

G
M

H
a
m

a

G
M

H
a
m

a

G
M

H
a
m

a

G
M

H
a
m

a

G
M

H
a
m

a

G
M

H
a
m

a

G
M

0 1 2 3 4 5 6 7 8

C
o
m

p
u

ta
ti

o
n

 T
im

e
 (

se
c)

Iteration

vertex processing

synchronization

Figure 29: Comparison with Hama (PageRank on orkut)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9

C
o

m
p

u
ta

ti
o

n
 T

im
e
 (

se
c)

Iteration

synchronization msg queing

vertex updates disk access

recv. msg processing

(a) PageRank (uk-2005)

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

C
o

m
p

u
ta

ti
o

n
 T

im
e
 (

se
c)

Iteration

synchronization

msg queing

vertex updates

disk access

recv. msg processing

(b) SSSP (uk-2005)

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

C
o

m
p

u
ta

ti
o

n
 T

im
e
 (

se
c)

Iteration

synchronization

msg queing

vertex updates

disk access

recv. msg processing

(c) CC (uk-2005)

Figure 30: Breakdown of Execution Time per Iteration (single worker)

93

Table 12: Effects of Dynamic Access Methods
Total execution time (sec)

Dataset SSSP CC
GraphMap- GraphMap- GraphMap- GraphMap- GraphMap- GraphMap-
Sequential Random Dynamic Sequential Random Dynamic

hollywood-2011 24.354 27.345 18.347 45.383 81.405 39.365
orkut 27.35 33.356 21.345 57.384 126.455 54.383

cit-Patents 15.34 12.34 12.337 18.34 12.332 12.335
soc-LiveJournal1 24.348 36.357 18.346 36.361 120.447 33.357

uk-2005 1225.637 225.555 156.49 2033.522 2898.407 706.329
twitter 252.598 267.622 150.486 712.085 721.089 303.653

Fig. 29. The synchronization time includes not only the message transfer time among

workers but also the waiting time until the other workers complete their processing in the

current iteration. The vertex processing time includes the vertex update time (the core

part defined in the vertex-centric program), received message processing time and message

queuing time for messages to be sent during the next synchronization. For GraphMap, it

also includes the disk (HBase) access time. It is interesting to note that, even though Hama

is the in-memory system, its vertex processing time is much slower than that of GraphMap,

which accesses HBase to read the vertex blocks stored on disk, for all iterations. This result

shows that a carefully designed framework based on the access locality of iterative graph

algorithms can be competitive with and in some cases outperform the in-memory framework

in terms of the total execution time even though it requires disk IOs in each iteration for

reading a part of graph data.

We split the vertex processing time of GraphMap for further details as shown in Fig. 30.

We could not find measurement points to gather such numbers for Hama. For PageRank,

all iterations have similar results except the first iteration, in which there is no received

message, and the last iteration, in which no message is sent. Note that the vertex update

time, the core component for the vertex-centric model, is only a small part in the total

execution time. For SSSP, the disk IOs from iteration 5 to iteration 15 are almost the same

because GraphMap chooses the sequential accesses based on our dynamic access methods.

From iteration 16 to iteration 30, the disk IOs continue to drop until the algorithm converges

thanks to our dynamic locality-based adaption.

94

4.5.4 Effects of Dynamic Access Methods

Table 12 shows the effects of the dynamic access methods of GraphMap, compared to two

baseline approaches that use only sequential accesses or only random accesses in all itera-

tions for SSSP and CC. For PageRank, GraphMap always chooses the sequential accesses

because all vertices are active during all iterations. The experimental results clearly show

that GraphMap with the dynamic access methods offers the best performance because

it chooses the optimal access method for each worker and in each iteration based on the

current computation loads, such as the ratio of active vertices to total vertices in a partition.

Table 12 also shows that for the cit-Patents graph dataset, GraphMap always chooses

the random accesses because only 3.3% vertices are reachable from the start vertex and

thus the number of active vertices in each iteration is very small. For SSSP on the uk-2005

graph, the baseline approach using only sequential accesses is 8x slower than GraphMap.

This is because it takes 198 iterations for SSSP on the uk-2005 graph to converge and the

baseline approach always runs with the sequential disk accesses even though the number of

active vertices is very small in most iterations.

Fig. 31 shows the effects of GraphMap’s dynamic access methods per iteration, for

the first 40 iterations, on a single worker using the uk-2005 graph. The result shows that

GraphMap chooses the optimal access method in most of the iterations based on the

number of active vertices. It is interesting to note that GraphMap chooses the sequential

accesses in iteration 5 and 15 even though random accesses are faster. This indicates that

GraphMap’s performance can be improved further by fine-tuning the threshold θ value.

In these experiments, θ is empirically set to 2% of all vertices in each partition.

4.5.5 Scalability

To evaluate the scalability of GraphMap framework, we report the SSSP execution results

with varying numbers of workers from 60 to 180 using the same cluster, as shown in Table 13.

For this set of experiments, we use 1GB as the maximum heap size of each worker for both

GraphMap and Hama. The results show that GraphMap needs fewer workers than Hama

to run the same graph because it reduces the memory requirement of graph computations.

95

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40

C
o

m
p

u
ta

ti
o
n

 T
im

e
(s

ec
)

Iteration

GraphMap-Sequential-IO

GraphMap-Random-IO

GraphMap-Adaptive-IO

(a) Computation Time

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40

N
u

m
b

er
 o

f
A

ct
iv

e
V

er
ti

ce
s

(1
0
0
0
)

Iteration

(b) #active vertices

Figure 31: Effects of Dynamic Access Methods

If we run more workers, each worker handles fewer active vertices proportionally, as shown

in Fig. 32(a) and Fig. 32(b), because the worker is in charge of a smaller partition. However,

by increasing the number of workers, the cost of inter-worker communication will increase

significantly, which hurt the computation time even with a smaller number of active vertices

on each worker. As shown in Fig. 32(c) and Fig. 32(d), the vertex update time reduces as

we increase the number of workers but at the cost of increased synchronization time for

coordinating more workers.

Table 13: Scalability (SSSP)
Total execution time (sec)

#Workers
Dataset Framework 60 120 180

hollywood-2011 Hama Fail 114.801 114.926
GraphMap 18.352 21.351 27.356

orkut Hama Fail 99.784 102.883
GraphMap 21.36 24.359 30.355

cit-Patents Hama 27.678 39.738 54.799
GraphMap 9.348 15.369 18.348

soc-LiveJournal1 Hama 45.683 54.736 75.837
GraphMap 18.357 21.368 27.356

uk-2005 Hama Fail Fail 415.239
GraphMap 159.517 135.486 138.481

twitter Hama Fail Fail Fail
GraphMap Fail 141.485 126.468

4.5.6 Comparison with Existing Systems

In this section we compare GraphMap with existing representative in-memory graph sys-

tems, including GraphX, GraphLab (PowerGraph), Giraph, Giraph++ (with hash parti-

tioning), and Hama, in Table 14. We compare the performance of PageRank and CC on

96

0

2

4

6

8

10

12

14

16

18

20

0 1 2 3 4 5 6 7 8

N
u

m
b

er
 o

f
A

ct
iv

e
V

er
ti

ce
s

(1
0
0
0
)

Iteration

60 workers

120 workers

180 workers

(a) #active vertices (orkut)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 1011121314151617181920

N
u

m
b

er
 o

f
A

ct
iv

e
V

er
ti

ce
s

(1
0
0
0
)

Iteration

60 workers

120 workers

180 workers

(b) #active vertices (uk-2005)

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

60 workers 120 workers 180 workers

C
o
m

p
u

ta
ti

o
n

 T
im

e
 (

se
c)

Iteration

synchronization msg queing

vertex updates disk access

recv. msg processing

(c) computation time (orkut)

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16 18 20 1 3 5 7 9 11 13 15 17 19 0 2 4 6 8 10 12 14 16 18 20

60 workers 120 workers 180 workers

C
o
m

p
u

ta
ti

o
n

 T
im

e
 (

se
c)

Iteration

synchronization msg queing

vertex updates disk access

recv. msg processing

(d) computation time (uk-2005)

Figure 32: Scalability with Varying the Number of Workers

97

Table 14: System Comparison
CC (sec) PageRank (sec/iteration)

System Setting twitter uk-2005 twitter uk-2005 Type
(*uk-2007) (*uk-2007)

GraphMap 21 nodes (21x4=84 cores, 304 706 149 57 Out-of-core
on Hadoop 21x12=252GB RAM)

Hama 21 nodes (21x4=84 cores Fail Fail Fail Fail In-memory
on Hadoop 21x12=252GB RAM)

GraphX 16 nodes (16x8=128 cores 251 800* 21 23* In-memory
on Spark 16x68=1088GB RAM)

GraphLab 2.2 16 nodes (16x8=128 cores 244 714* 12 42* In-memory
(PowerGraph) 16x68=1088GB RAM)

Giraph 1.1 16 nodes (16x8=128 cores 200 Fail* 30 62* In-memory
on Hadoop 16x68=1088GB RAM)
Giraph++ 10 nodes (10x8=80 cores No result 723 No result 89 In-memory
on Hadoop 10x32=320GB RAM) reported reported

twitter and uk-2005/uk-2007 datasets. Given that GraphX requires Spark and larger mem-

ory to run, we extract the performance results of GraphX, GraphLab and Giraph from [46],

annotated with their respective system configurations for the same graph datasets. The

results of Giraph++ are extracted from [120]. We offer a number of observations.

First, the testbeds for other systems have larger RAM and a larger number of CPU

cores. For example, GraphX, GraphLab, and Giraph run on a cluster with 1,088GB RAM

and 128 cores while GraphMap runs on a cluster with 256GB RAM and 84 cores. For CC

on the twitter dataset, GraphMap shows comparable performance to these state-of-the-art

in-memory graph systems, even though GraphMap uses much less computing resources

(less than two-thirds of cores and less than one-fourth of RAM). For example, GraphMap

is only 20% slower than GraphX with a much more powerful cluster. GraphMap is even

faster than Giraph++ on the uk-2005 dataset. Through our dynamic access methods,

GraphMap achieves competitive performance for CC even though it accesses the disk for

each iteration. For PageRank, GraphMap is slower than GraphX, GraphLab, and Giraph

because it reads all the edge data from disk in each iteration with only two-thirds of CPU

cores. This comparison demonstrates the effectiveness of the GraphMap approach to

iterative computations of large graphs.

4.6 Related Work

We classify existing systems for iterative graph algorithms into two categories. The first cat-

egory is the distributed solution that runs the iterative graph computations using a cluster

98

of commodity machines, represented by distributed memory-based systems like Pregel. The

second category of graph systems is the disk-based solution on a single machine, represented

by GraphChi [67] and X-Stream [98].

Distributed memory-based systems typically require to load the whole input graph in

memory and to have sufficient memory to store all intermediate results and all messages in

order to run iterative graph algorithms [80, 45, 77, 106, 46]. Apache Hama and Giraph are

the popular open-source implementations of Pregel. GraphX [46] and Pregelix [34] imple-

ment a graph processing engine on top of a general-purpose distributed dataflow framework.

They represent the graph data as tables and then use database-style query execution tech-

niques to run iterative graph algorithms.

Unlike Pregel-like distributed graph systems, GraphLab [77] and PowerGraph [45] repli-

cate a set of vertices and edges using a concept of ghosts and mirrors respectively. GraphLab

is based on an asynchronous model of computations and PowerGraph can run vertex-centric

programs both synchronously and asynchronously. Trinity [106] handles both online and

offline graph computations using a distributed memory cloud (an in-memory key-value

store). In addition, several techniques for improving the distributed memory-based graph

systems have been explored, such as dynamic workload balancing [100, 65] and graph-centric

view [113].

Disk-based systems focus on improving the performance of iterative computations on a

single machine [67, 98, 49, 120, 124]. GraphChi [67] is based on the vertex-centric model.

It improves disk access efficiency by dividing a large graph into small shards, and uses a

parallel sliding window-based method to access graph data on disk. Unlike the vertex-centric

model, X-Stream [98] proposes an edge-centric model to utilize sequential disk accesses. It

partitions a large graph into multiple streaming partitions and loads a streaming partition

in main memory to avoid random disk accesses to vertices. PathGraph [120] proposes a

path-centric model to improve the memory and disk access locality. TurboGraph [49] and

FlashGraph [124], based on SSDs, improve the performance by exploiting I/O parallelism

and overlapping computations with I/O.

99

Even though some systems, including Giraph and Pregelix, provide out-of-core capa-

bilities to utilize external memory for handling large graphs, they typically focus only on

reducing the memory requirement, not the performance of iterative graph computations.

To the best of our knowledge, GraphMap is the first distributed graph processing sys-

tem, which incorporates external storage into the system design for efficient processing of

iterative graph algorithms in a cluster of compute nodes.

4.7 Conclusion

We have presented GraphMap, a distributed iterative graph computation framework,

which effectively utilizes secondary storage to maximize access locality and speed up dis-

tributed iterative graph computations. This chapter makes three unique contributions.

First, we advocate a clean separation of those data states that are mutable during iterative

computations from those that are read-only in all iterations. This allows us to develop

locality-optimized data placement and data partitioning methods to maximize sequential

accesses and minimize random accesses. Second, we devise a two-level graph partitioning

algorithm to enable balanced workloads and locality-optimized data placement. In addition,

we propose a suite of locality-based optimizations to improve computation efficiency. We

evaluate GraphMap through extensive experiments on several real graphs and show that

GraphMap outperforms an existing distributed memory-based system for various iterative

graph algorithms.

100

CHAPTER V

ROADALARM: ROAD NETWORK-AWARE SPATIAL ALARMS

Road network-aware spatial alarms extend the concept of time-based alarms to spatial

dimension and remind us when we travel on spatially constrained road networks and enter

some predefined locations of interest in the future. This chapter argues that road network-

aware spatial alarms need to be processed by taking into account spatial constraints on road

networks and mobility patterns of mobile subscribers. We show that the Euclidian distance-

based spatial alarm processing techniques tend to incur high client energy consumption due

to unnecessarily frequent client wakeups. We design and develop a road network-aware

spatial alarm processing system, called RoadAlarm, with three unique features. First, we

introduce the concept of road network-based spatial alarms using road network distance

measures. Instead of using a rectangular region, a road network-aware spatial alarm is

a star-like subgraph with an alarm target as the center of the star and border points as

the scope of the alarm region. Second, we describe a baseline approach for spatial alarm

processing by exploiting two types of filters. We use subscription filter and Euclidean

lower bound filter to reduce the amount of shortest path computations required in both

computing alarm hibernation time and performing alarm checks at the server. Last but not

the least, we develop a suite of optimization techniques using motion-aware filters, which

enable us to further increase the hibernation time of mobile clients and reduce the frequency

of wakeups and alarm checks, while ensuring high accuracy of spatial alarm processing. Our

experimental results show that the road network-aware spatial alarm processing significantly

outperforms existing Euclidean space-based approaches, in terms of both the number of

wakeups and the hibernation time at mobile clients and the number of alarm checks at the

server.

101

5.1 Introduction

Most of us use time-based alarms almost everyday to remind us the arrival of some prede-

fined time points of interest in the future, such as getting up in the morning. Spatial alarms

extend the concept of time-based alarms to spatial dimension and remind us when we enter

some predefined locations of interest in the future. An example of spatial alarms is “alert

me when I am within 2 miles of the dry clean store at Atlantic Station.” Spatial alarms are

basic build blocks for many location-based services, such as location-based advertisements,

factory danger zone alert system, and sex offender monitoring system. Since the number of

smart devices including smart-phones and tablets is rising steeply (The worldwide smart de-

vice shipments will reach 2.1 billion units in 2017 [12]), scalable processing of spatial alarms

is becoming increasingly important in mobile applications and location-aware computing.

A spatial alarm is defined by four components: a focal point representing the alarm

target, a spatial distance representing the alarm region, an owner (or a publisher) of the

alarm, and a set of alarm subscribers. Spatial alarms are categorized into three groups by

their ownership: private, shared, and public. A private alarm has only one subscriber who

is also the publisher of the alarm. A shared alarm has a publisher and several subscribers

approved by the publisher. In terms of a public alarm, its publisher does not set any

restriction on subscribers and thus anyone can be a subscriber of the alarm. Public alarms

are typically classified by alarm interests, such as traffic alerts and coupons from grocery

stores and restaurants. Spatial alarms can also be categorized by the motion behavior of

their subscribers and their monitoring targets: moving objects with static targets, static

objects with moving targets, and moving objects with moving targets. Typical examples of

spatial alarms having moving objects with static targets are “alert me when I am within

5 miles of a Whole Foods Market in Buckhead” (private) and “notify anyone entering I85

North from Spaghetti Jct. in Atlanta” (public). “The Macy’s store at Lenox Square sends

advertisements to its customers who are within 10 miles of its store location” (i.e., Macy’s

customers are spatial alarm targets for the Macy’s store and the store will be notified when

its customers are within a specified spatial range from the store) is an example of spatial

alarms having static objects with moving targets. “Alert Lucy when her car is 1 mile apart

102

from her friends’ vehicles on the way to Walt Disney World in Orlando” is an example of

moving objects with moving targets.

Spatial alarms are essential for many location-based services. Negligent management

of spatial alarms can lead to excessive energy consumption of mobile devices, especially

those with limited battery power since continuous tracking of mobile devices is known to be

costly. For example, according to [16], minimizing use of location services is listed as one

tip to extend smart-phones’ battery life. Furthermore, the performance of spatial alarm

processing can be affected by a number of factors, such as frequency of wakeups − how

often mobile devices should wake up because of possible alarm hits and frequency of alarm

checks − how many spatial alarms should be evaluated at each wakeup. Since frequent

and possibly unnecessary wakeups and alarm checks not only reduce battery life of mobile

devices considerably but also increase the loads of a spatial alarm processing server, we

need efficient spatial alarm processing that can reduce the number of unnecessary wakeups

and alarm checks at each wakeup. Furthermore, the spatial alarm processing system should

scale to a large number of spatial alarms and mobile users while meeting the high accuracy

goal by minimizing the alarm miss rate.

Existing approaches on spatial alarm processing can be categorized into two groups by

their criteria for controlling the frequency of wakeups: time-based approaches (e.g., periodic

wakeups) and distance-based approaches (e.g., safe period [28, 85] and safe region [27, 41]).

To the best of our knowledge, no existing research has taken into consideration spatial

constraints for traveling on road networks in optimizing spatial alarm evaluation. We argue

that although existing approaches can be applied to road network-aware spatial alarms,

they fail to incorporate road network distance into spatial alarm definition and spatial

alarm processing. As a result, existing approaches tend to incur unnecessary wakeups and

shorter hibernation time at mobile clients and unnecessary computation and alarm checks

at the spatial alarm processing server.

In this chapter, we present RoadAlarm − a road network-aware spatial alarm pro-

cessing system. By taking into account spatial constraints on road networks and mobility

103

patterns of mobile subscribers, RoadAlarm can reduce the frequency of wakeups and in-

crease hibernation time of mobile clients and, at the same time, minimize the computation

cost of alarm checks by filtering out those spatial alarms that are irrelevant or far away from

the current location of their mobile subscribers. Concretely, we define road network-aware

spatial alarms using network distances (e.g., segment length-based or travel time-based).

Instead of using a rectangular region, a road network-aware spatial alarm is defined as a

star-like subgraph with an alarm target as the center of the star. We define the scope of an

alarm region by the set of border points of the star. In addition, we formulate our baseline

approach to road network-aware spatial alarm processing by exploiting subscription filtering

and Euclidean lower bound filtering. The former can filter out those spatial alarms that are

clearly irrelevant by considering only subscribed spatial alarms. The latter can reduce the

number of the network distance computations without loss of accuracy. Furthermore, we

develop a suite of motion-aware filters as optimization techniques to further reduce the fre-

quency of wakeups as well as the frequency of alarm checks while ensuring high accuracy by

considering mobility patterns of mobile subscribers. To the best of our knowledge, Road-

Alarm is the first systematic approach to exploring road network-aware and motion-aware

filters to reduce the search space and computation cost of road network-aware alarm pro-

cessing. Our experimental results show that RoadAlarm outperforms existing Euclidean

distance-based techniques and can scale to a large and growing number of spatial alarms as

well as mobile subscribers.

The rest of the chapter is organized as follows. We give an overview of the RoadAlarm

system architecture and define the road network model and road network-aware spatial

alarms in Section 5.2. In Section 5.3, we first describe limitations of applying Euclidean

distance-based approaches and the Dijkstra’s network expansion approach for processing

road network-aware spatial alarms. Then we present our baseline approach that utilizes

two types of alarm filters to achieve the desired system scalability while maintaining high

accuracy. To further optimize the performance of the baseline approach in RoadAlarm,

we develop a suite of optimization techniques using four types of motion-aware filters in

Section 5.4. We evaluate the performance of RoadAlarm in Section 5.5, outline the

104

Spatial Alarm Processing System

Road

Networks

DB

Moving Object

Moving Object

Station

Station

Processing Engine

Client communication

Alarm checks

Hibernation Computation

Location Server

Localization

Moving object location mgt.

Place management

Location/

place DB

Figure 33: RoadAlarm System Architecture

related work in Section 5.6, and conclude the chapter in Section 5.7.

5.2 Overview

In this section, we describe the system architecture of RoadAlarm and define road network-

aware spatial alarms, alarm miss, and hibernation time. A spatial alarm system typically

consists of a spatial alarm processing engine and a location server where the locations of

moving objects (mobile clients) and the locations of static objects (such as gas stations,

restaurants, and so on) are managed. The spatial alarm processing engine communicates

with the location server to obtain the current road network locations of mobile subscribers

as well as the road network locations of alarm targets for all alarms maintained in its

database. The location server uses localization techniques (such as GPS, WiFi or any hy-

brid localization technology) to keep track of the current positions of moving objects. Fig.

33 presents a sketch of the RoadAlarm system architecture.

We assume that moving objects can be any devices (e.g., smart-phones, tablets, naviga-

tion systems) with any localization technology such as GPS and WiFi localization. Road-

Alarm adopts the client-server architecture for spatial alarm processing. Concretely, mo-

bile objects may install (publish) their spatial alarms at the location server as private, shared

or pubic alarms. In addition to their own private alarms, mobile objects can subscribe to

any public alarms of interests and a subset of shared alarms authorized by other alarm own-

ers. Mobile objects need to install the thin client of RoadAlarm as a mobile application on

105

their devices. Each mobile subscriber will obtain an initial hibernation time at the commit

of her alarm subscription. Upon the expiration of its old hibernation time, the mobile client

will automatically contact the alarm server on behalf of the mobile subscriber to obtain its

new hibernation time. We assume that the mobile clients are able to communicate with

the server through wireless data channel. During the hibernation time, the RoadAlarm

application is hibernated at the mobile client, and the alarm server consumes zero alarm

processing cost for this mobile client.

5.2.1 Road Network Model

A road network is represented by a directed graph G = (V, E), composed of the road junction

nodes V = {n0, n1, . . . , nN} and directed edges E = {ninj |ni, nj ∈ V}. We refer to an edge

ninj as a road segment connecting the two road junction nodes ni and nj with direction

from ni to nj . When a road segment is bidirectional, we use edge ninj and edge njni to

denote the two directions of the same road segment with ni and nj as the starting nodes

respectively. For each road segment, road-related information can be maintained, such as

segment length (e.g., 1.2 miles), speed limit (e.g., 55 mph), current traffic data (e.g., average

speed is 35 mph), direction (e.g., one-way road), etc. The length and speed limit of a road

segment ninj are denoted by seglength(ninj) in miles and speedlimit(ninj) in miles per

hour respectively. Other road-related information such as direction and current traffic data,

if available, can be easily incorporated to provide more accurate travel time.

Let n1 and n2 denote two road junction nodes and n1n2 /∈ E . We define a path from

n1 to n2 as a sequence of road segment edges, one connected to another, denoted as n1ni1 ,

ni1ni2 , . . . , nik−1
nik , nikn2 (k > 0). The length of a path h between n1 and n2, denoted by

pathlength(h), is computed as seglength(n1ni1)+seglength(nikn2)+

k−1∑
α=1

seglength(niαniα+1).

Given two road junctions n1 and n2, since there can be more than one path from n1 to

n2, we use PathSet(n1, n2) to denote the set of all paths from n1 to n2. We define a

segment length-based shortest path from n1 to n2, denoted by sl shortestpath(n1, n2), as

{hsl|pathlength(hsl) = minh∈PathSet(n1,n2) pathlength(h)}. The travel time of a road seg-

ment ninj is defined as
seglength(ninj)
speedlimit(ninj)

and thus the travel time of a path h, denoted by

106

traveltime(h), is calculated as
seglength(n1ni1)

speedlimit(n1ni1) +
seglength(nikn2)

speedlimit(nikn2) +
k−1∑
α=1

seglength(niαniα+1)

speedlimit(niαniα+1)
.

The travel time-based shortest path from n1 to n2, denoted by tt shortestpath(n1, n2), is

defined as {htt|traveltime(htt) = minh∈PathSet(n1,n2) traveltime(h)}.

A road network location, denoted by L = (ninj , p), is a tuple of two elements: a road

segment ninj and the progress p along the segment from ni to nj . The road network distance

between two road network locations L1 = (ni1ni2 , p1) and L2 = (nj1nj2 , p2) is the length of

the shortest path between L1 and L2 in terms of either segment length or travel time. The

segment length-based road network distance and travel time-based road network

distance are formally defined respectively as follows:

sldistance(L1, L2) = seglength(ni1ni2) − p1 + p2 + pathlength(sl shortestpath(ni2 , nj1))

ttdistance(L1, L2) =
seglength(ni1ni2)−p1
speedlimit(ni1ni2) + p2

speedlimit(nj1nj2)+traveltime(tt shortestpath(ni2 , nj1)).

Even though the segment length-based distance is the most commonly used distance

measure on road networks, it may not provide sufficient and accurate distance information

in terms of actual travel time from the current location to the destination, considering that

highway road segments are usually much longer but also with much higher speed limits and

thus may have relatively shorter travel time compared to some local road segments. To

ensure high accuracy and high performance of spatial alarm processing, we use the travel

time-based distance as default road network distance measure in RoadAlarm.

5.2.2 Road Network-aware Spatial Alarms

In RoadAlarm, we define a road network-aware spatial alarm as a star-shaped subgraph

centered at the alarm focal point, denoted as SARN (pf , r, S) where pf is the alarm target or

the alarm focal point (a road network location), r is the alarm monitoring region, represented

by a spatial range (segment length or travel time) from pf , and S is a set of subscribers.

Consider Fig. 34(b) that shows three star-shaped alarms with focal points f1, f2, and f3.

The road network-aware spatial alarm with focal point f1 has a range of 5 miles based on

the segment length. The road network-aware spatial alarm with focal point f2 has a range

of 10 minutes based on the travel time. We call those points on the road network that

107

c

b1

b2

b3

b4

b5

m

(a) Rectangular Spatial Alarm

m12

m11

f1

f2

f3

b31

b32

b21

b22

b23

b24

b25

b26

b27

b11

b12

b13
b14

m1

m2 m3

m4

m5

(b) Road Network Spatial Alarms

Figure 34: Spatial Alarms

bound a star-shaped spatial alarm border points. For example, b12 is one of the four border

points of the alarm with focal point f1.

However most existing techniques define spatial alarms using Euclidean distances and

thus a rectangular region is typically used to represent the spatial alarm region of inter-

est [28, 27, 85, 41]. A rectangular spatial alarm is defined as SAEuc(p1, p2, S) where p1 and

p2 are the top-left and the bottom-right points respectively and S is a set of subscribers of

this alarm. Fig. 34(a) shows an example rectangular alarm that has five intersecting points

with the underlying road network. Such a spatial alarm can be triggered even though its

subscribers’ current location is far away from the alarm target c based on road network

distance. For example, if a mobile subscriber of the alarm is located on b1, the alarm

should be triggered because the mobile subscriber is within the rectangular alarm region.

However, even though b1 is the nearest intersecting point to the alarm target c based on

the Euclidean distance, its road network location is far away from the alarm target c based

on the road network distance and thus the mobile subscriber can save its battery energy by

sleeping for a longer time. This example illustrates the problem of using Euclidean distance

to define spatial alarms and highlights the potential benefit of road network-aware spatial

alarm processing.

5.2.3 Alarm Miss and Hibernation Time

We define an alarm miss as a case when a spatial alarm is not triggered as it should be

even though a mobile subscriber of the alarm enters or passes through the alarm region.

108

Consider Fig. 34(b): moving objects m1,m2,m3 and m5 should each receive a spatial alarm

alert and m4 should get two alerts from the spatial alarms with alarm targets f1 and f2

sequentially. If any one of those alarms is not triggered during the course of travel for the

five subscribers, the alarm miss has happened. Opposite to alarm miss, an alarm hit refers

to the case when a spatial alarm is triggered when one of its mobile subscribers enters the

alarm region.

As mentioned earlier, in RoadAlarm we compute a hibernation time for each mobile

subscriber, during which the mobile subscriber hibernates the RoadAlarm thin client on

her device. We define a hibernation time for each moving object, which is a time interval

during which the moving object does not need to wake up and the alarm server does not need

to perform alarm checks for this mobile subscriber. A hibernation time of a moving object

is specified by a time interval consisting of its start time and end time. If the current time is

between them, the moving object’s current status is hibernation; otherwise, it is alive. Upon

expiration of the current hibernation time, the mobile client wakes up, and communicates

with the spatial alarm server to obtain a new hibernation time. The alarm server examines

the current location of the mobile subscriber and the set of alarms subscribed by this

subscriber to determine the new hibernation time. If the new hibernation time is smaller

than a system-defined threshold δ, a spatial alarm is triggered and the mobile subscriber is

notified. Otherwise, a new hibernation time will be sent to the mobile subscriber.

We would like to note that the timeliness of alarm triggering is also important, especially

when spatial alarms are defined with some quality of service (QoS) guarantee. For example,

it is possible that based on the current hibernation time for the moving object m5 in Fig.

34(b), m5 may receive the spatial alarm alert when it approaches the focal point f3 or just

before leaving the spatial alarm through the border point b31. Thus, in RoadAlarm we

use a stronger definition of alarm miss: if a moving object’s current status is hibernation

when it enters alarm region of a spatial alarm by crossing a border point of the alarm, we

treat it as an alarm miss.

The alarm success rate is the percentage of spatial alarm alerts that are not missed, and

109

is defined as follows:

alarm success rate = 1− Total number of alarm misses

Total number of actual alarm hits
.

For example, if there are 9 alarm hits and 1 alarm miss (actual hit but not triggered), the

success rate is 90%. Other metrics we use to evaluate the efficiency and effectiveness of road

network-aware spatial alarm processing include the average hibernation time, the number

of wakeups, the number of border points used in the computation of hibernation time, and

the number of alarm checks upon each wakeup.

5.3 Spatial Alarm Processing

In this section we present the design consideration of the RoadAlarm baseline algorithm

for efficient processing of spatial alarms. We first describe the Euclidean distance-based

approach and the conventional network expansion-based approach to process road network-

aware spatial alarms and analyze the problems with these two approaches. Then we in-

troduce the baseline algorithm for RoadAlarm by incorporating subscription filter and

Euclidean lower bound filter.

5.3.1 Euclidean Distance-based Approach

The Euclidean distance-based approach is often considered as the most intuitive baseline

approach to implementing spatial alarm processing. Concretely, for every mobile object m,

upon the expiration of its hibernation time, m wakes up and contacts the spatial alarm

server to obtain its new hibernation time. The alarm server first retrieves the index of all

spatial alarms and obtains the set of border points for each active spatial alarm. Then

the alarm server computes the Euclidean distance between the current location of m and

each of the border points for all spatial alarms and selects the border point that is the

nearest to the current location of m, denoted by bnearest, and calculates the new hibernation

time for m based on the Euclidean distance and a velocity metric that is representative,

such as the global maximum speed (Vmax) or the expected speed of m (Vexpected). For

example, if there are 35 mph, 55 mph, and 65 mph road segments on the road network,

the global maximum speed is 65 mph. Although using the global maximum speed is too

110

conservative to calculate the hibernation time, it ensures high alarm success rate. The end

time of the new hibernation time for m based on this Euclidean distance-based method

using the global maximum speed is defined as current time + eucdistance(m,bnearest)
Vmax

where

eucdistance(m, bnearest) is the Euclidean distance between m and bnearest. The object m

will be in the hibernation status during the above hibernation time interval.

In general, the Euclidean distance-based method using the global maximum speed is

the most conservative technique since not all mobile objects are traveling at the maximum

speed. Thus an alternative metric we adopted in the first prototype of RoadAlarm is

the expected speed calculated using the current location of m, the previous location, the

previous expected speed, and the previous maximum speed [85]. The end time of the new

hibernation time for m based on this Euclidean distance-based method using the expected

speed is defined as current time + eucdistance(m,bnearest)
Vexpected(m) where Vexpected(m) is the expected

speed of m.

Although the Euclidean distance-based approach is simple to implement, it suffers from

a number of fatal weaknesses. First, the hibernation time is computed using the Euclidean

distance rather than road network distance, thus the hibernation time is unnecessarily

short. Consequently, mobile objects need to wake up frequently, making RoadAlarm

consuming higher battery energy than necessary. Second, for each mobile object m, the

nearest spatial alarm may not be subscribed by m, thus the hibernation time computed

using the Euclidean distance to the nearest spatial alarm is misleading. This is especially

true when all the spatial alarms subscribed by m is far away from the current location of

m.

5.3.2 Network Expansion-based Approach

Another intuitive baseline approach to evaluating road network-aware spatial alarms is to

use Dijkstra’s network expansion algorithm [40]. We present two methods using different

road network distances: one is using the segment length-based distance (NE-S) and the

other is using the travel time-based distance (NE-T).

When a moving object m wakes up, NE-S and NE-T first retrieve a set of spatial

111

alarms (Am) subscribed by m. For each spatial alarm ai ∈ Am, the set of border points of

ai are obtained. NE-S and NE-T take the current location of m and each border point of

ai as input to calculate the segment length-based shortest path and the travel time-based

shortest path respectively, using Dijkstra’s network expansion algorithm. After computing

the shortest path from m’s current location to every border point of all alarms in Am, NE-S

selects the shortest path with the smallest segment length-based distance, denoted by psl, to

compute the new hibernation time for m. Similarly, NE-T chooses the shortest path having

the smallest travel time-based distance, denoted by ptt, to compute the new hibernation

time for m. Thus, we can compute the end time of the hibernation time for m based on

NE-S and NE-T as follows:

HTNE−S(m) = current time + traveltime(psl)

HTNE−T (m) = current time + traveltime(ptt).

Recall that traveltime(p) computes the travel time of a path p as described in Section 5.2.1.

The network expansion-based approach is simple and straightforward to implement.

However, the computation cost of this approach is extremely high since it examines all

border points of every spatial alarm subscribed by a mobile object m at each wakeup. The

shortest path computation cost to calculate the hibernation time of m increases rapidly as

the number of alarms subscribed by the mobile object m increases and most of the sub-

scribed alarms are far away from the current location of m. This is because the computation

cost of Dijkstra’s network expansion algorithm primarily depends on the size of underly-

ing road network, the distance between the source location and the destination location,

and the number of shortest path computations to be performed. If the destination is far

away from the source, it is highly costly to compute the shortest path using the Dijkstra’s

network expansion algorithm because it exhaustively expands too many unnecessary nodes

and edges.

5.3.3 RoadAlarm Baseline Approach

Bearing in mind the problems with the Euclidean distance-based approach and network

expansion-based approach, we design the baseline approach of RoadAlarm by introducing

112

two simple and yet effective filters. We use the subscription filter to scope the computation

of the hibernation time for each mobile object to only those alarms that are subscribed by

the mobile object. In addition, we use Euclidean lower bound (ELB) as another type of filter

to minimize the number of shortest path computations required to compute the hibernation

time upon each wakeup by filtering out some irrelevant border points of subscribed spatial

alarms. The concept of Euclidean lower bound refers to the fact that the segment length-

based shortest path distance between two network locations L1 and L2 is at least equal to

or longer than the Euclidean distance between L1 and L2. By combining the subscription

filter and ELB filter, the RoadAlarm baseline approach (BA) can minimize the number

of shortest path computations required for computing hibernation time for each mobile

subscriber while maintaining the accuracy of alarm evaluation. We present two methods

using the segment length-based and the travel time-based road network distance, denoted

by BA-S and BA-T respectively.

Concretely, instead of computing shortest paths from the current location Lm of the

mobile subscriber m to every border point of all alarms subscribed by m, BA-S computes

the new hibernation time of m in five steps. First, for every alarm subscribed by m, denoted

by ai ∈ Am, we find the border point that has the shortest distance from Lm. Instead

of computing shortest paths from Lm to every border point of alarm ai, we compute the

Euclidean distance between Lm and every border point of ai and sort the set of border points

based on their Euclidean distances from Lm in an ascending order using the Incremental

Euclidean Restriction (IER) algorithm [53, 103, 90]. Second, let bnn denote the border

point that has the smallest Euclidean distance from Lm. We compute the shortest path

from Lm to bnn using the segment length-based distance. Third, we use a binary search

algorithm to examine the sorted list of border points and remove those border points whose

Euclidean distance from Lm is bigger than sldistance(Lm,bnn). Fourth, for each remaining

border point bj , BA-S computes the shortest path from Lm to bj . If sldistance(Lm,bj) <

sldistance(Lm,bnn) holds, we assign bj to be bnn. Thus, for a given mobile object and an

alarm ai ∈ Am, the nearest border point bnn of ai will be used as the reference border point

of ai to compute the hibernation time for m. Finally, BA-S examines every alarm ai ∈ Am

113

and its nearest border point bnn and chooses the border point whose segment length-based

distance from Lm is the smallest. Let bmin denote this nearest border point and pmin denote

the shortest path from Lm to bmin. Thus we compute the end time of the new hibernation

time for m as current time + traveltime(pmin).

Now we illustrate the working of the baseline approach using the example in Fig. 34(b).

We have three spatial alarms a1, a2, a3 with focal points f1, f2, f3 respectively and two mov-

ing objects m11 and m12. Let us assume that m11 subscribes to a1 and a3 and m12 subscribes

to a1 and a2. Let Lm11 and Lm12 denote the current location of m11 and m12 respectively.

When m11 and m12 wake up upon the expiration of their hibernation time, without the

subscription filter and ELB filter, we will need to compute the shortest paths from Lm11

and Lm12 to all 13 border points and then choose the nearest border point, which has the

shortest network distance (either segment length-based or travel time-based) from Lm11

and Lm12 respectively. With the subscription filter, we can filter out alarm a2 for m11 and

alarm a3 for m12 when computing the new hibernation time. By the ELB filter, to find the

new hibernation time for m12, we only need to perform one shortest path computation from

Lm12 to b13. This is because by Euclidean distance, b13 is the nearest border point of a1 from

Lm12 and b26 is the nearest border point of a2 from Lm12 . Given that eucdistance(Lm12 ,b13)

< eucdistance(Lm12 ,b26), b13 is the nearest border point for m12. Now we compute the net-

work distance (either segment length-based or travel time-based) from Lm12 to b13, denoted

by sldistance(Lm12 ,b13). By comparing sldistance(Lm12 ,b13) with the Euclidean distance

from Lm12 to all other border points of a1 and a2, we find that the following condition

eucdistance(Lm12 ,bk) > sldistance(Lm12 ,b13) holds (k = 11, 12, 14, 21, 22, 23, 24, 25, 26, 27).

Thus the ELB filter effectively removes the unnecessary shortest path computations when

computing the new hibernation time for m12.

We below show that the network location of the mobile object has significant impact on

the effectiveness of the ELB filter. Consider the mobile object m11 and the two alarms a1

and a3 subscribed by m11 in Fig. 34(b). For the alarm a3, we do not need to compute the

shortest path from Lm11 to the border point b31 since the Euclidean distance between Lm11

and b31 is longer than the segment length-based distance from Lm11 to b32. However, for

114

the alarm a1, the list of border points sorted in ascending order of their Euclidean distance

from Lm1 is {b12, b11, b14, b13}. Clearly, the segment length-based network distance from

Lm11 to its nearest border point b12, denoted by sldistance(Lm11 , b12), is longer than the

Euclidean distance between Lm11 and each of the last three border points in the list and

thus none of the three border points are filtered out for alarm a1.

BA-T finds the nearest border point of a moving object m using the travel time-based

road network distance. For BA-T, we cannot directly use the ELB filtering as done in

BA-S since the Euclidean lower bound property does not hold for the travel time-based

distance. For example, when the Euclidean distance and the segment length-based distance

between a border point and the current location of a mobile object m are 5 miles and 10

miles respectively, there could be another border point in which the Euclidean distance

and the segment length-based distance are 12 miles and 15 miles respectively, but it has

shorter travel time-based distance since there is a freeway connecting the border point and

the current location of m. Therefore, we extend the ELB filtering for the travel time-

based distance. Instead of using only segment lengths, BA-T defines the travel time-based

Euclidean lower bound as the travel time multiplied by the global maximum speed limit

on the entire road network. For example, if the travel time from the current location of

m to an alarm border point is 1 hour and the global maximum speed limit is 70 mph, the

travel time-based ELB in BA-T is 70 miles (1h x 70mph). BA-T excludes border points

whose Euclidean distance is longer than 70 miles since the moving object m cannot get to

those border points within 1 hour even if it travels at the global maximum speed. Since

BA-T is using the global maximum speed limit to calculate the travel time-based ELB,

the search space of BA-T is usually larger than that of BA-S, i.e., BA-T considers more

border points of alarms subscribed by m to find the nearest one. The remaining steps

of BA-T are the same as those in BA-S. In the first prototype of RoadAlarm we use

the global maximum speed limit for travel time-based ELB in order to ensure the high

accuracy of alarm evaluation. It would be interesting to use some less conservative speed or

motion metrics to see if we can further reduce the search space needed for computing the

hibernation time for mobile objects at the cost of a small and affordable accuracy loss.

115

5.4 Motion-aware Optimizations

Compared to the Euclidean distance-based approach and the conventional network expansion-

based approach, the RoadAlarm baseline approach (BA) improves the efficiency of road

network-aware alarm processing along two dimensions. First, it uses the subscription filter

to narrow down the set of spatial alarms to be considered for computing the hibernation

time upon wakeup of each mobile subscriber. Second, it utilizes the ELB filter to cut down

the number of border points to be examined for shortest path computation while achieving

high alarm success rate.

However, the ELB filter is not always effective. In some cases, the number of border

points after applying the ELB filter remains to be high. Recall the case of m11 in Fig. 34(b)

in which the ELB filter can filter out one border point (b31) for alarm a3. For alarm a1,

the Euclidean distance from Lm11 to b12 is the shortest and thus the road network-based

distance from Lm11 to b12 is first calculated. Because this road network distance is longer

than the Euclidean distances from Lm11 to all the other border points (b11, b13, b14), the

ELB filter filters out none of border points for alarm a1.

In this section we introduce a suite of motion-aware filters to further reduce the search

space and the computation time of the RoadAlarm baseline approach (BA), especially

for those moving objects that subscribe many spatial alarms and their alarms are scattered

in a large geographical area. The main idea of the motion-aware filters comes from the

observation that mobile objects traveling on road networks typically exhibit some degree

of steady motion. First, a moving object traveling on a spatially constrained road network

can move only by following the predefined road segments connected to the current road

segment it resides. Thus, its movement cannot be changed drastically. For example, if

a moving object is marching on a road segment, its current moving direction cannot be

changed until it reaches a road junction. Furthermore, even if it reaches a road junction,

it has high probability to follow the road segment in the same or similar direction at the

junction node. We refer to such motion behavior as steady motion.

In this section, we present five types of steady motion-based filters. Our first three

optimization techniques use steady motion degree Θ to capture the constrained motion

116

characteristics of moving objects traveling on a road network. For each mobile object, its

steady motion degree Θ models the direction of its movements along the road network. If a

sharp turn occurs at a junction node, a new Θ value will be computed for the mobile object

based on the characteristics of underlying road networks and past movement history of the

mobile object. We can also view this Θ as a confidence indicator. When a mobile object

moves on the road network by following its current direction, a large Θ value indicates pos-

sible sharp turns and sudden travel direction changes whereas a small Θ value indicates high

probability of steady motion along the current direction. When a mobile object is traveling

on the road network with a clear destination in mind, this Θ angle can be determined based

on the current location of the mobile object and the destination location.

5.4.1 Current Direction-based Motion-aware Filter

The first motion-aware filter is based on the current direction of moving objects and their

steady motion degree Θ. This filter selects only those border points that reside in the Θ

region anchored at the current location of the mobile object. The Θ degree is determined

based on the current travel direction of the mobile object. One popular way to define the

current direction of a moving object is to use the current direction vector in which we

use the last reported location as the initial point and the current location as the terminal

point of the vector. Let (p1, p2) and (c1, c2) denote the previous location and the current

location of a moving object m respectively. The current direction vector of m is defined as

v =<c1−p1, c2−p2>. Based on this current direction vector, when a mobile object m wakes

up, this filter limits the search space using the steady motion degree Θ and selects only those

border points of m that reside within this reduced search space, as shown in Fig. 35(a).

For example, let (xb1, xb2) denote a border point. To check if the border point is within the

Θ reduced search space, this filter first defines another vector w =<xb1− p1, xb2− p2> and

then calculates the degree of the border point from the current direction vector v using the

following equation:

sm degree(v, w) = arccos(
v · w
|v||w|

).

117

Θ

Current

Previous

(a) Current direction-based

Θ

Current

Destination

(b) Destination-based

Figure 35: Vector-based Motion-aware Filters

If sm degree(v, w) > Θ, this border point is removed since it is outside the constrained

search space. For the remaining unfiltered border points, our approach calculates the new

hibernation time by executing the RoadAlarm baseline approach.

The current direction-based motion-aware filter is good when the hibernation time is

relatively short and the time window in which the mobile object moves steadily is relatively

low as well, since the current direction vector changes each time when the mobile object

wakes up due to the expiration of its current hibernation time. Furthermore, the current

direction-based motion-aware filter may be suitable for some mobile clients who do not want

to disclose their destination information due to privacy reasons. However, if the destination

is given (or can be inferred by using its calendar application), it is more effective to use a

destination-based motion-aware filter.

5.4.2 Destination-based Motion-aware Filter

The destination-based motion-aware filter utilizes both the current location and the des-

tination information of moving objects. Destination information can be directly given by

the mobile clients, such as those using car navigational systems or can be extracted from

mobile clients’ calendar applications. In this filter, the degree Θ indicates how confident

the moving object will march toward its destination. The destination-based motion-aware

filter chooses only border points that reside in the Θ region defined based on the current

118

Θ

Current

Destination

Alarm
miss

(a) Alarm miss

Start

Destination

Recalculate

(b) Cache Invalidation

Start

Destination

(c) New search space

Figure 36: Caching-based Motion-aware Filter

location of moving objects to their destination. We define a destination vector to represent

the direction toward the destination, in which the current location and the destination lo-

cation are used as the initial and terminal point of the vector respectively. Let (c1, c2) and

(d1, d2) denote the current location and the destination of a moving object m respectively.

The destination vector of m is defined as v =<d1 − c1, d2 − c2>. When m wakes up, the

destination-based motion-aware filter restricts the search space using the destination vector

v and Θ and then selects only the border points within this Θ restricted search space, as

shown in Fig. 35(b). For example, let (yb1, yb2) denote a border point. To check if the

border point is within the reduced search space, this filter first computes another vector

w =<yb1− c1, yb2− c2> and then calculates the degree of this border point in terms of this

new vector and the destination vector v using the equation sm degree(v, w). We remove

those border points whose sm degree(v, w) values are higher than the specific Θ defined by

m or calculated by the system in the absence of user-defined Θ. Our approach calculates

the nearest border point by examining all the unfiltered border points and then computes

the new hibernation time for m by invoking our RoadAlarm baseline algorithm.

5.4.3 Caching-based Motion-aware Filter

Both the current direction-based motion-aware filter and the destination-based motion-

aware filter can reduce the computation cost of finding the nearest border point for each

mobile object upon its wakeup. This computation reduction is achieved by reducing the

number of candidate border points and thus the search space through a combination of the

119

steady motion degree Θ with current direction or destination information. However, those

two filters also suffer from a couple of inherent problems. First, if a mobile object m takes a

short detour due to traffic and moves slightly out of the scoped spatial region defined by Θ

and the current direction or destination, there could be an alarm miss. Consider Fig. 36(a):

a moving object m has moved slightly outside the scoped spatial region and there exists a

spatial alarm that resides just outside the scoped region and is very close to the current

location of m. Unfortunately, this alarm will be missed if we use the current direction-

based motion-aware filter or destination-based motion-aware filter. Another weak point

is that those two filters recalculate the search space and thus the set of candidate border

points at every wakeup of each moving object. This causes not only unnecessarily frequent

and possibly duplicate computation of the candidate border points but also adds some

unnecessary susceptibility to small detour-like movements of mobile objects. Concretely, if

a moving object changes its direction slightly, for example, due to traffic directed detour,

the selection of the candidate border points found at the current wakeup could be very

different from the selection at the previous wakeup. Therefore, the two filters may miss

some spatial alarms that have high probability to be a hit due to this unnecessarily sensitive

susceptibility.

To address this problem, we propose another motion-aware filter, called caching-based

motion-aware filter, based on the observation that moving objects will move toward their

destination constantly and persistently even though they may change their direction op-

posite to (or deviate quite bit from) the destination for a short period of time. Initially,

this filter selects the candidate border points for each moving object based on its current

location, destination location, and steady motion degree Θ using the destination-based

motion-aware filter. This filter then stores the selected candidate border points with the

calculated destination vector for each moving object. When a moving object m wakes up

next time, instead of recomputing the Θ region and the set of candidate border points as

done in the destination-based motion-aware filter, this caching-based motion-aware filter

retrieves the stored candidate border points of m and then finds the nearest border point

to the current location of m by examining the stored border points using our RoadAlarm

120

baseline approach. Finally, this approach calculates the hibernation time using the nearest

border point in the same way as is done in the baseline approach.

Even though the caching-based motion-aware filter is proposed to handle the suscepti-

bility to small changes, continuous small changes can make a big change as shown in Fig.

36(b). To address this problem, this filter has a mechanism to check whether the stored

border points are obsolete and thus to calculate new candidate border points. When a

moving object wakes up, this filter calculates the degree of the moving object’s current

location from the stored destination vector. If the degree is larger than Θ (i.e., the object

went out of the scoped search space), then this filter recalculates the search space based on

the object’s current location as shown in Fig. 36(c).

5.4.4 Shortest Path-based Motion-aware Filter

Even though the caching-based motion-aware filter avoids unnecessarily frequent filtering of

border points, it still needs to examine too many border points in order to find the nearest

one, especially when Θ is large and many alarms are subscribed by moving objects. Consider

Fig. 35(b): the border points on the bottom far left or far right corner are unlikely to be

hit by the moving object since it is far away from the object’s destination. Motivated by

this observation, we propose the shortest path-based motion-aware filter based on a natural

assumption that moving objects will follow the shortest path to the destination. Initially,

this filter calculates the shortest path (pmin) from the current location to the destination for

each moving object and then selects some border points within a boundary distance d from

the shortest path, as shown in Fig. 37(a). The distance d indicates the level of steadiness.

For example, if a moving object follows the calculated shortest path, a small value of d is

sufficient. To check if a border point b is within the boundary distance d from the shortest

path pmin, this filter calculates the perpendicular distance from the border point to all road

segments of pmin and then finds the minimum value as follows:

minb,pmin = minnpinpi+1∈pminpdistance(b, npinpi+1)

where npinpi+1 is a constituent road segment of the path pmin and pdistance(b, npinpi+1) is

the perpendicular distance from border point b to road segment npinpi+1 . If minb,pmin is less

121

Current

Destination

(a) Selection of border points

Current

Destination

Recalculate

(b) Shortest path recalculation

Figure 37: Shortest Path-based Motion-aware Filter

than d, the border point is selected as a candidate border point of the moving object. The

shortest path-based motion-aware filter then stores the selected candidate border points

with the calculated shortest path for each moving object. When a moving object m wakes

up, this filter retrieves the stored candidate border points of m and then finds the nearest

border point, among the retrieved border points, using the RoadAlarm baseline algorithm.

Finally, this approach calculates the hibernation time using the nearest border point in the

same way as is done in the baseline approach.

Like the caching-based motion-aware filter, the shortest path-based motion-aware filter

also has a mechanism to handle moving objects that go out of our reduced search space

based on the shortest path as show in Fig. 37(b). When a moving object wakes up, this

filter calculates the distance from the stored shortest path of the object and, if the distance

is larger than d, recalculates the search space based on the object’s current shortest path

to the destination.

5.4.5 Selective Expansion-based Motion-aware Filter

The shortest path-based motion-aware filter selects border points that have high probability

to be hit based on the shortest path from the current location of moving objects to their

destination. Even though it reduces the computation time to calculate the hibernation

time by considering fewer (but more relevant) border points compared to the RoadAlarm

122

baseline approach and the other steady motion-based approaches, it still needs at least two

shortest path computations: one for calculating the shortest path from the current location

to the destination to select candidate border points and the other for choosing the nearest

border point among the selected border points. These computations will increase the server

loads when the destination is far away from the current location of a moving object and

there is no nearby spatial alarm from the current location. To reduce the computation

cost, we propose a selective expansion-based motion-aware filter in which an exact shortest

path computation is not needed. The selective expansion-based filter expands only road

segments that have high probability to be passed by a moving object. To select target

road segments to be expanded, we utilize the destination of moving objects and apply

the concept of Simulated Annealing (SA) to the expansion. SA probabilistically finds a

good approximation to the global optimal solution in a large solution space by giving high

randomness in early stages and almost no randomness in ending stages. Using this basic

concept of SA, the selective expansion-based filter expands most of road segments in early

steps even though some of them have opposite direction to the destination. In following

steps, this filter incrementally strengthens the condition of the expansion and thus only

road segments whose direction points toward the destination are expanded. This expansion

is terminated if it satisfies one of three cases: 1) the expansion arrives at the destination,

2) the expansion meets any spatial alarm of the moving object, and 3) there is no more

road segment that satisfies the condition of the expansion. Since this filter expands only

relevant road segments that have high probability to be hit from the current location to the

destination and it terminates the expansion process even though there is no found border

point (case 3), it considerably reduces the computation cost to calculate the hibernation

time compared to other processing methods, which require shortest path computations. In

addition to the reduced computation cost, since it expands most of road segments in early

steps, the selective expansion-based filter can cover common cases in which moving objects

move in the opposite direction from the destination to take faster roads such as freeways.

The algorithm of the selective expansion-based filter is formally defined as follows. Like

other processing methods we propose, this filter starts when a moving object m wakes up.

123

Let Lm and dm denote the current location and the current destination of m respectively.

We define T (i), which denotes a time-varying parameter at step i and E(np, i), which

denotes an energy of an expansion node on a road junction np at step i. A smaller energy

of a road junction means that the road junction has higher probability to be visited by m

compared to other road junctions having a larger energy. A road segment npnq connected

to np is expanded if a new energy E(nq, i+ 1), defined as follows, is less than T (i).

E(nq, i+ 1) = E(np, i)× dv(npnq, dm)

where dv(npnq, dm) represents a deviability of npnq from the destination dm. Road segments

whose direction points toward the destination have a small dv value and, on the other hand,

road segments in which their direction is opposite to the destination have a large dv value.

Therefore, road segments in which their direction points toward the destination will have

higher probability to be expanded since their dv value is small. The deviability is defined

as follows:

dv(npnq, dm) =
degree(−−→npnq,

−−−→
npdm)

180◦
× 1

w(speedlimit(npnq))

where w(speedlimit(npnq)) is a weight based on the speed limit of npnq. By giving more

weights to faster roads such as freeways, it makes such faster roads have higher probability

to be expanded than slower roads. If degree(−−→npnq,
−−−→
npdm) is 0◦ (i.e., npnq exactly points

toward the destination), we use 1◦ instead of 0◦ to continue the selective expansion.

T value gradually decreases as steps increase to strengthen the expansion condition and

is defined as follows:

T (i) =
T0

ki

where k is a parameter which controls the expansion rate and T0 is an initial value for the

expansion. For a large k, the T value becomes smaller rapidly as steps increase and thus

more road segments are excluded from the expansion, compared to a small k. A large T0

value makes more road segments to be expanded. We use 1 as T0 value to ensure that all

road segments are expanded regardless of the k value and their dv value at first step.

The selective expansion-based filter starts with expanding the road junction n0, where

the current location Lm of m is located, with its initial energy 1 (i.e., E(n0, 0) = 1). If Lm is

124

located on the road segment npnq, this filter treats Lm as a road junction n0 and n0np and

n0nq as road segments connected to n0. For each road segment n0nj connected to n0, this

filter calculates E(nj , 1) using the above formula and then expands n0nj if E(nj , 1) is less

than T (0). While expanding n0nj , this filter stops the whole expansion process if there is a

border point of m or the destination dm on n0nj . If n0nj is expanded without encountering

any border point or dm, nj is inserted into the expansion list for the next step with its

energy E(nj , 1). After checking all road segments connected to n0, the selective expansion-

based filter moves to the next step and expands road junctions in the expansion list using

the above process. This expansion process is terminated if there is no road junction for the

next step or any border point or dm is encountered during the expansion.

To calculate the hibernation time for m, if a border point or dm is encountered during the

expansion, this filter uses the travel time, from Lm to the encountered border point or dm,

as the hibernation time. Since this filter keeps the accumulated travel time from Lm to each

expanded road junction, no additional computation is needed to calculate the hibernation

time for m. If the expansion is terminated because there is no more road junction to be

expanded, this filter chooses a terminal road junction (i.e., in which no connected road

segment is expanded) having the smallest travel time among selected candidate terminal

road junctions and then uses the travel time to the terminal road junction as the hibernation

time form. To select the candidate terminal road junctions, we introduce another confidence

degree ΘSESM . The selective expansion-based filter checks only terminal road junctions

within ΘSESM based on the vector from Lm to dm and then chooses a terminal road junction

having the smallest travel time among the candidate terminal road junctions. If ΘSESM

value is too large, it ensures high success rate, but its hibernation time is unnecessarily

short because some terminal road junctions that are terminated at earlier steps and thus

have short travel time are included in the search space. On the other hand, if ΘSESM value

is too small, it cannot ensure high success rate because only terminal road junctions that

survived until last steps are included in the search space and thus the selected travel time is

too long. Since this filter also keeps and updates the smallest travel time based on ΘSESM

during the expansion, no additional computation is needed to calculate the hibernation

125

time.

One disadvantage of the above synchronous (i.e., all target road junctions are expanded

at the same step) selective expansion on road networks is that, even though a border point

or the destination dm is encountered during the expansion, the point could be reached by

other road segments having shorter travel time at later steps. Furthermore, nearby border

points could not be reached during the expansion if there are many short road segments

from Lm to the border points. Therefore, spatial alarms can be missed due to the long travel

time calculated by ignoring some nearby border points or faster road segments connecting

to the border points. To solve this problem, we use an asynchronous version in which a

road junction having the smallest segment length (SESM −S) or travel time (SESM −T)

is expanded first, regardless of its current step, using a priority queue.

5.5 Experimental Evaluation

In this section we evaluate the performance of our RoadAlarm methods through four

sets of experiments. We first compare our approaches with existing Euclidean space-based

methods in terms of six measurements: alarm success rate, hibernation time, number of

wakeups, total computation time, number of border points, and total alarm checking time.

This set of experiments verifies that the shortest path-based motion-aware filter reduces

the computation cost of servers and conserves energy of mobile clients while ensuring high

success rate, and the selective expansion-based motion-aware filter reduces the computation

cost of servers considerably while ensuring high success rate. The second set of experiments

evaluates the effect of different steady motion degree Θ values. The third set of experiments

measures the scalability of our approaches by varying the number of moving objects and

the number of spatial alarms. The last set of experiments examines the effect of three types

of road networks (urban, suburban, and rural) on the performance of the RoadAlarm

approach.

5.5.1 Experiment Setup

We use gt-mobisim simulator [11] to generate mobility traces on real road networks down-

loaded from U.S. Geological Survey (USGS [22]). For the first three sets of experiments, the

126

80%

85%

90%

95%

100%

S
u

cc
es

s
R

a
te

Segment Length Travel Time

(a) Alarm success rate

0

50

100

150

200

250

300

A
v

g
 H

ib
er

n
a

ti
o

n
 T

im
e

(s
)

Segment Length Travel Time

(b) Average Hibernation time

Figure 38: Segment Length-based vs Travel Time-based Approaches

mobility traces are generated on a map of northwest Atlanta, which covers about 11 km (6.8

miles) by 14 km (8.7 miles), using the random trip model [94]. The road networks consist

of four different road types: residential roads and freeway interchange with 30 mph speed

limit (48 km/h), highway with 55 mph limit (89 km/h), and freeway with 70 mph limit (113

km/h). Ranges of spatial alarms are chosen from a Gaussian distribution with a mean of 50

m and standard deviation of 10 m. We use 50 m as the boundary distance d of the shortest

path-based motion-aware filter. For the selective expansion-based motion-aware filter, we

empirically use 4 as the k value and 90◦ as the ΘSESM value to select not too short and not

too long travel time. We give 1, 2, and 3 to 30 mph, 55 mph, and 70 mph road segments

respectively as their speed weights in order to give faster roads more chances of expansion.

5.5.2 Comparison with Existing Methods

We first compare segment length-based approaches and travel time-based approaches as

shown in Fig. 38. These experiments use 15,000 objects (and about 72,000 spatial alarms)

and 180◦ as the Θ value of the current direction-based, destination-based and caching-

based motion-aware filters. Each object has different number of spatial alarms, given by Zipf

distribution with five alarms as the most common value (i.e., rank 1). We exclude the results

of network expansion-based methods since they cannot scale to 15,000 moving objects. The

alarm success rate for travel time-based approaches is higher than the corresponding segment

length-based approaches as shown in Fig. 38(a). This is primarily because segment length-

based approaches select the segment length-based shortest path in which spatial alarms can

127

50%

60%

70%

80%

90%

100%

5,000 objects/

24,000 alarms

10,000 objects/

48,000 alarms

15,000 objects/

72,000 alarms

S
u

cc
es

s
R

a
te

Baseline Direction Destination Caching

Shortest Selective Euc (exp) Euc (max)

(a) Alarm success rate

0

50

100

150

200

250

5,000 objects/

24,000 alarms

10,000 objects/

48,000 alarms

15,000 objects/

72,000 alarms

A
v
g

 H
ib

er
n

a
ti

o
n

 T
im

e
(s

)

Baseline Direction Destination Caching

Shortest Selective Euc (exp) Euc (max)

(b) Hibernation time per wakeup

0

20

40

60

80

100

120

140

5,000 objects/

24,000 alarms

10,000 objects/

48,000 alarms

15,000 objects/

72,000 alarmsN
u

m
b

er
 o

f
W

a
k

eu
p

s
(x

 1
0
0
0
)

Baseline Direction Destination Caching

Shortest Selective Euc (exp) Euc (max)

(c) Number of Wakeups

0

100

200

300

400

500

600

700

800

5,000 objects/

24,000 alarms

10,000 objects/

48,000 alarms

15,000 objects/

72,000 alarms

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

Baseline Direction Destination Caching

Shortest Selective Euc (exp) Euc (max)

(d) Total Computation Time

0

2

4

6

8

10

12

14

5,000 objects/

24,000 alarms

10,000 objects/

48,000 alarms

15,000 objects/

72,000 alarms

N
u

m
b

er
 o

f
B

o
rd

er
 P

o
in

ts

Baseline Direction Destination

Caching Shortest

(e) Number of Border Points

0

100

200

300

400

500

600

5,000 objects/

24,000 alarms

10,000 objects/

48,000 alarms

15,000 objects/

72,000 alarmsA
la

rm
 C

h
ec

k
in

g
 T

im
e

(m
s)

Baseline Direction Destination Caching

Shortest Selective Euc (exp) Euc (max)

(f) Total Alarm Checking Time

Figure 39: Comparison with Euclidean Space-based Approaches

be missed if moving objects follow paths having shorter travel time. On the other hand,

the average hibernation time of each travel time-based approach is shorter than that of its

corresponding segment length-based approach since the travel time on the segment length-

based shortest path is always equal to or longer than that on the travel time-based shortest

path for the same source and destination location. Without loss of generality, in the rest of

the experiments, we include the results of only travel time-based approaches for simplicity.

The first set of experiments compares our approaches with existing Euclidean space-

based methods in Fig. 39. This set of experiments uses a moving object population with

size ranging from 5,000 to 15,000 and each object has different number of spatial alarms,

given by Zipf distribution with five alarms as the most common value.

Alarm success rate. The success rates for different approaches are shown in Fig. 39(a).

The shortest path-based and selective expansion-based motion-aware filters have almost

the same success rate as the Euclidean distance-based approach using the global maximum

speed and the RoadAlarm baseline approach. The caching-based filter has more than 5%

better success rate than the destination-based filter. This confirms our assumption that

moving objects will move toward their destination constantly even though they may change

128

their direction opposite to the destination for a short time. The Euclidean distance-based

approach using the expected speed has the lowest success rate since it fails to consider

spatial constraints of moving objects.

Hibernation time. Fig. 39(b) shows the average hibernation time of moving objects. The

longer the hibernation time is, the more energy the mobile clients can conserve. The hiber-

nation time of the shortest path-based filter is three times longer than that of the Euclidean

distance-based approach using the global maximum speed and 40% longer than that of the

RoadAlarm baseline approach. This result also shows that the shortest path-based filter

ensures high success rate in the same way as the Euclidean distance-based approach and the

RoadAlarm baseline approach even though moving objects of the shortest path-based fil-

ter can conserve much more energy. The selective expansion-based filter has 45% and 25%

shorter hibernation time than the shortest path-based filter and the RoadAlarm base-

line approach respectively since it calculates the hibernation time even though there is no

found border point. It, however, still has 80% longer hibernation time than the Euclidean

distance-based approach using the global maximum speed. The Euclidean distance-based

approach using the global maximum speed has the shortest hibernation time since it utilizes

the Euclidean distance and the global maximum speed to calculate the hibernation time.

The number of wakeups. Fig. 39(c) shows that the number of wakeups is inversely

related to the hibernation time. The smaller number of wakeups indicates the lower server

loads since the server computes the hibernation time whenever a moving object wakes up.

Computation time. Fig. 39(d) shows the total computation time to calculate the hi-

bernation time. The shortest path-based filter has 45% faster computation time than the

RoadAlarm baseline approach since it has smaller number of wakeups of moving objects.

The selective expansion-based filter has the smallest computation time among the road

network-based approaches since it does not need shortest path computations to calculate

the hibernation time. Its computation time is just 24% and 45% of that of the Road-

Alarm baseline approach and the shortest path-based filter respectively. The Euclidean

distance-based approaches need only a little computation time since the computation cost

to calculate the Euclidean distance is negligible, compared to the road network distance

129

75%

80%

85%

90%

95%

100%

Θ=90º Θ=135º Θ=180º

S
u

cc
es

s
R

a
te

Direction Destination Caching

(a) Alarm success rate

0

50

100

150

200

250

300

Θ=90º Θ=135º Θ=180º

H
ib

er
n

a
ti

o
n

 T
im

e
(s

)

Direction Destination Caching

(b) Hibernation time

Figure 40: Effects of the Steady Motion Degree Θ

calculation, even though the number of wakeups is more as shown in Fig. 39(c).

The number of border points. Even though there is only about 20% difference be-

tween the shortest path-based filter and the RoadAlarm baseline approach in terms of

the number of wakeups, there is about 45% difference in terms of the computation time.

Furthermore, even though all motion-aware filters have similar number of wakeups, only

the shortest path-based filter has better computation cost than the others. This is because

the shortest path-based filter considers the smallest number of border points to calculate

the hibernation time, as shown in Fig. 39(e).

Alarm checking time. Fig. 39(f) shows the total processing time to check whether moving

objects hit any alarms. We use a hash map to store spatial alarms. The result confirms

that our approach checks spatial alarms efficiently.

5.5.3 Effects of the Steady Motion Degree

We investigate the effect of different settings of the steady motion degree Θ on success rate

and hibernation time with 15,000 moving objects and about 72,000 spatial alarms. The

results are shown in Fig. 40 with Θ values set to 90◦, 135◦ and 180◦. The success rate

for the current direction-based, destination-based and caching-based filters increases as Θ

values increase, because more border points are selected as shown in Fig. 40(a). Fig. 40(b)

shows that the average hibernation time decreases with growing Θ values. This is because

border points having shorter travel time are newly selected to calculate the hibernation

time as the search space increases.

130

5.5.4 Effects of the Growing Number of Objects and Alarms

Fig. 41(a) and Fig. 41(b) evaluate the scalability of our approaches by increasing the number

of moving objects. Total 300,000 spatial alarms are deployed for this set of experiments and

the number of moving objects increases from 15,000 to 45,000. Each object has zero to 30

spatial alarms, given by Zipf distribution with 15 alarms as the most common value, and all

spatial alarms are private. We think this setting deploying 45,000 moving objects is realistic

on this road network of northwest Atlanta, in which the total length of all road segments

is 1384 km (865 miles), since there is a mobile user every 31 m (10 feet) on average. We

include the measurement results of only the RoadAlarm baseline approach, the shortest

path-based filter and the selective expansion-based filter as they have high success rate

compared to other methods. Fig. 41(a) confirms that our approaches ensure the high

success rate with growing number of moving objects. The selective expansion-based filter

has slightly lower success rate than the others since it does not try to find the nearest border

point if there is no nearby border point. In terms of the total computation time, there is no

increase from 30,000 to 45,000 objects since with fixed alarms, many objects have no spatial

alarms as shown in Fig. 41(b). The selective expansion-based filter’s computation time is

only 23% and 9% of that of the shortest path-based filter and the RoadAlarm baseline

approach respectively while ensuring similar success rate.

Fig. 41(c) and Fig. 41(d) show the scalability of our approaches by increasing the number

of spatial alarms with 15,000 moving objects. We increase the most common value of Zipf

distribution from 10 to 20 and thus the total number of alarms grows from about 147,000 to

297,000. Fig. 41(c) verifies that our approaches ensure the high success rate with increasing

number of spatial alarms. Note that the success rate of the selective expansion-based filter

increases as the number of spatial alarms grows. This is because, if a moving object has

more spatial alarms, there is a higher probability that a border point of the object is found

during the selective expansion. Fig. 41(d) shows that the computation time of the shortest

path-based filter increases only slightly with the growing number of spatial alarms. This

is primarily because the shortest path-based filter selects only border points having high

probability to be hit and thus the increased number of spatial alarms has no huge impact on

131

90%

92%

94%

96%

98%

100%

15,000

objects

30,000

objects

45,000

objects

S
u

cc
es

s
R

a
te

Baseline Shortest Selective

(a) With growing #objects

0

200

400

600

800

1000

1200

1400

1600

15,000

objects

30,000

objects

45,000

objects

C
o

m
p

u
ta

ti
o
n

 T
im

e
(s

)

Baseline Shortest Selective

(b) With growing #objects

90%

92%

94%

96%

98%

100%

147,000

alarms

221,000

alarms

297,000

alarms

S
u

cc
es

s
R

a
te

Baseline Shortest Selective

(c) With growing #alarms

0

200

400

600

800

1000

1200

147,000

alarms

221,000

alarms

297,000

alarms

C
o

m
p

u
ta

ti
o
n

 T
im

e
(s

)

Baseline Shortest Selective

(d) With growing #alarms

Figure 41: Effects of the Growing Number of Objects and Alarms

the selected border points by the shortest path-based filter. Even though the computation

time of the RoadAlarm baseline approach has more increase than that of the shortest

path-based filter, it does not increase linearly with the growing number of spatial alarms.

The computation time of the selective expansion-based filter even decreases as the number

of alarms increases because the selective expansion of the filter is terminated earlier with

the fewer number of expanded road segments due to the higher probability that a border

point is found.

5.5.5 Effects of Different Road Networks

This set of experiments measures the performance of our approaches using different types

of road networks. In addition to the map of northwest Atlanta as an urban road network,

we choose the map of Duluth, GA and the map of Helen, GA as a suburban and a rural

road network respectively. All three road networks cover almost same size (i.e., 6.8 miles

132

90%

92%

94%

96%

98%

100%

urban suburban rural

S
u

cc
es

s
R

a
te

Baseline Shortest Selective

(a) Alarm success rate

0

100

200

300

400

500

600

700

800

900

1000

urban suburban rural

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

Baseline Shortest Selective

(b) Total Computation Time

0

50

100

150

200

250

urban suburban rural

H
ib

er
n

a
ti

o
n

 T
im

e
(s

)

Baseline Shortest Selective

(c) Average Hibernation Time

0

5

10

15

20

25

urban suburban rural

N
u

m
b

er
 o

f
B

o
rd

er
 P

o
in

ts

Baseline Shortest

(d) Number of Border Points

Figure 42: Effects of Different Road Networks

by 8.7 miles) but have totally different number of road segments and road junctions. The

total numbers of road segments of the urban, suburban and rural road network are 9,187

(average length is 150.7 m), 1,600 (258.3 m) and 765 (356.3 m) respectively. The total

numbers of road junctions are 6,979, 1,486 and 711 for the urban, suburban and rural road

network respectively. The urban road network has 431 and 681 road segments having 70

mph and 55 mph speed limit respectively. The other road segments have 30 mph speed

limit. 24 and 218 road segments of the suburban road network have 70 mph and 55 mph as

their speed limit respectively. The rural road network has 27 and 66 road segments having

70 mph and 55 mph speed limit respectively.

Fig. 42 shows the experimental results for the three different road networks. This set

of experiments uses 15,000 moving objects and total about 72,000 spatial alarms. Each

object has different number of spatial alarms, given by Zipf distribution with five alarms as

the most common value. Fig. 42(a) confirms that our approaches ensure the high success

133

rate for different types of road network. The selective expansion-based filter has slightly

lower success rate on the rural road network since moving objects are more likely to use road

segments whose direction does not point toward the destination and thus not expanded, due

to the limited number of road segments. On the rural road network, the computation time

is about 8% of that on the urban road network as shown in Fig. 42(b). This is primarily

because of the high complexity (i.e., 12 times more road segments and 10 times more road

junctions than the rural road network) of the urban road network. Fig. 42(c) shows that

moving objects on the suburban and rural road networks have longer hibernation time

than those on the urban road network even though the number of spatial alarms for each

moving object and the focal point and the range of each spatial alarm are given by same

distributions for all three road networks. Since the urban road network has 12 times more

segments and 16 times more segments having 70 mph speed limit compared to the rural

road network, it has more probability to have a path having shorter travel time between

two locations. As shown in Fig. 42(d), fewer border points are considered to calculate the

hibernation time on the suburban and rural road networks than on the urban road network

because spatial alarms on complex road networks usually have more border points.

5.5.6 Summary

In summary, our experimental results show that the shortest path-based motion-aware fil-

ter outperforms the rest in most cases since this approach ensures high success rate while

reducing the computation cost of servers and conserving energy of mobile clients. Since the

selective expansion-based filter considerably reduces the computation cost while ensuring

high success rate, it is suitable for spatial alarm processing servers that should compute the

hibernation time quickly for a huge number of moving objects while ensuring longer hiber-

nation time than the Euclidean space-based approach to save the energy of moving objects.

For those applications in which high success rate is required, both the RoadAlarm base-

line approach and the shortest path-based motion-aware filter are good options. Especially,

for some applications in which the battery power of mobile clients is not a serious problem,

the RoadAlarm baseline algorithm may be a better choice since it has a slightly higher

134

success rate than the shortest path-based motion-aware filter. The current direction-based

filter, the destination-based filter and the caching-based filter are appropriate for those ap-

plications in which reducing the computation cost of servers and the battery consumption of

mobile clients are top priorities while maintaining the acceptable success rate (about 90%).

5.6 Related Work

There are many existing studies on continuous spatial queries to find objects within a

predefined range or k nearest objects from a query center point [107, 96, 111, 58, 54, 118].

Some of them are based on road networks [38, 84] or land surface [117]. However, spatial

alarms are fundamentally different from continuous spatial queries in terms of their purposes

as well as target applications. Continuous queries such as “find 3 nearest Starbucks stores

while driving to Miami” require continuous query evaluation as I am driving on the US

highway. On the other hand, spatial alarms have a predefined location of interest, such as

“alert me when I am within 5 miles of the public library in Buckhead” and thus require

alarm evaluation only when subscribers are in the vicinity of the spatial alarms. Even when

the mobile subscribers are moving on the road, their spatial alarms may not need to be

evaluated if those alarm targets are located far away from the current locations of their

subscribers. This is the fundamental reason why spatial alarms deserve to be processed

more efficiently using a different set of algorithms and optimizations.

Existing research on spatial alarms and location reminders mainly focuses on the Eu-

clidean space. [28] proposes an approach to process spatial alarms in the Euclidean space by

combining spatial indexes such as R-tree and Voronoi Diagram with the maximum speed-

based safe period. [27] develops a safe region-based approach for spatial alarm processing

in the Euclidean space. Different shapes of safe regions are proposed and compared in [27].

[41] points out the high cost of safe region-based approach and proposes the Mondrian

tree index that can index both spatial alarms and alarm free regions within a uniformed

framework. To the best of our knowledge, all existing results on spatial alarms are based

on the Euclidean space. This chapter is the first one that develops efficient algorithms and

optimizations for scaling road network-aware spatial alarm processing.

135

5.7 Conclusion

We have presented RoadAlarm − an efficient and scalable approach to processing road

network-aware spatial alarms. By utilizing spatial constraints on road networks and mobility

patterns of mobile objects, the RoadAlarm approach can provide longer hibernation time

of mobile clients while ensuring high success rate. Concretely, we introduce the concept of

road network-aware spatial alarms as star-shaped subgraphs and we use the border points to

represent the boundary of road network-aware spatial alarms. We design the RoadAlarm

baseline algorithm that combines subscription filter with Euclidean Lower Bound (ELB)

filter to reduce the search space and speed up the shortest path computation. By further

exploring the steady motion-based mobility patterns of mobile objects traveling on a road

network, we develop five motion-aware filters: current direction-based filter, destination-

based filter, caching-based filter, shortest path-based filter, and selective expansion-based

filter. Each improves the previous one by introducing further reduction of border points

examined by the RoadAlarm baseline algorithm. Our experiments show that the shortest

path-based motion-aware filter can provide three times longer hibernation time than the

Euclidean space-based approach and 40% longer hibernation time than the RoadAlarm

baseline approach while ensuring high success rate.

136

CHAPTER VI

WHEN TWITTER MEETS FOURSQUARE: TWEET LOCATION

PREDICTION USING FOURSQUARE

The continued explosion of Twitter data has opened doors for many applications, such as

location-based advertisement and entertainment using smartphones. Unfortunately, only

about 0.58 percent of tweets are geo-tagged to date. To tackle the location sparseness

problem, this chapter presents a methodical approach to increasing the number of geo-

tagged tweets by predicting the fine-grained location of those tweets in which their location

can be inferred with high confidence. In order to predict the fine-grained location of tweets,

we first build probabilistic models for locations using unstructured short messages tightly

coupled with semantic locations. Based on the probabilistic models, we propose a 3-step

technique (Filtering-Ranking-Validating) for tweet location prediction. In the filtering step,

we introduce text analysis techniques to filter out those location-neutral tweets, which may

not be related to any location at all. In the ranking step, we utilize ranking techniques to

select the best candidate location for a tweet. Finally, in the validating step, we develop a

classification-based prediction validation method to verify the location of where the tweet

was actually written. We conduct extensive experiments using tweets covering three months

and the results show that our approach can increase the number of geo-tagged tweets 4.8

times compared to the original Twitter data and place 34% of predicted tweets within 250m

from their actual location.

6.1 Introduction

With the continued advances of social network services, such as Twitter, Facebook and

Foursquare, a tremendous amount of unstructured textual data has been generated. One

of the most popular forms of such unstructured texts is a short text message, called tweet,

from Twitter and each tweet has up to 140 characters. Twitter users are posting tweets

about almost everything from daily routine, breaking news, score updates of various sport

137

events to political opinions and flashmobs [64, 109]. Over hundreds of millions of such

tweets are generated daily. Furthermore, more and more business organizations recognize

the importance of Twitter and provide their customer services through Twitter, such as

receiving feedback about products and responding to customers’ questions using tweets [20].

Tweets can be much more valuable when tagged with their location information because

such geo-tagged tweets can open new opportunities for many applications. For example, if

a user posts a tweet tagged with her current location, nearby local stores can immediately

send her customized coupons based on the context of the tweet or her profile assuming that

she is a subscriber of such location-based advertisement services. Similarly, local news and

places of interest can be recommended based on the location, the context of the tweet, and

the past experiences of her friends in a social network. Geo-tagged tweets can also be used

to report or detect unexpected events, such as earthquakes[99], robbery or gun shots, and

notify the event to the right people instantly, including those who are close to the location

of the event.

On one hand, like most social network services, Twitter recognizes the value of tagging

tweets with location information and provides the geo-tagging feature to all its users. On

the other hand, such opt-in geo-tagging feature is confronted with several challenges. First,

Twitter users have been lukewarm in terms of adopting the geo-tagging feature. According

to our recent statistical analysis over 1 billion tweets spanning three months, only 0.58%

tweets have their fine-grained location. With such a tiny amount of geo-tagged tweets, it

would be very hard to realize the many social and business opportunities such as those

mentioned above. Second, even for the limited tweets tagged with geometric coordinates, a

fair amount of them cannot be used effectively because their geometric coordinates cannot

be served as quality indicators of useful semantic locations, such as points of interest and

places where events of interest may happen or have happened. This location sparseness

problem makes it very challenging for identifying the types of tweets in which we can infer

their location information, i.e., the location where a tweet was written. We argue that in

order to derive new values and insights from the huge amount of tweets generated daily by

Twitter users and to better serve them with many location-based services, it is important

138

to have more geo-tagged tweets with semantically meaningful locations.

In this chapter we present a methodical approach to increasing the number of geo-tagged

tweets by predicting the fine-grained location of each tweet using a multi-source and multi-

model based inference framework. Our focus is to predict the location of carefully selected

tweets in which their location can be inferred with high confidence based only on their

textual data, instead of trying to predict the location of all (or most) tweets. First of all,

we address the location sparseness problem of Twitter by building the probabilistic models

for locations using unstructured short messages that are tightly coupled with their semantic

locations. In order to achieve the tight coupling between text and location, we propose to

use Foursquare - a popular location-centric social network, as a source for building these

probabilistic models. Based on the probabilistic models, we propose a 3-step technique

(Filtering-Ranking-Validating) for predicting the fine-grained location of tweets. In the

filtering step, we develop a set of filters that can remove those location-neutral tweets,

which may not be related to any location at all, prior to entering the location prediction

(ranking) phase. This effort enables us to filter out as many location-neutral tweets as

possible to minimize the noise level and improve the accuracy of our location prediction

model. In the ranking step, candidate locations for each tweet are determined using one of

the three ranking techniques: standard machine learning approaches, naive Bayes model,

and tfidf value. Once the top ranked location is assigned to the tweet, in the validating

step, we utilize a classification-based prediction validation method to accurately predict

the location where the tweet was actually written. We report our experimental evaluation

conducted using a set of tweets, collected over a three-month period in New York City.

The results show that our approach can increase the number of geo-tagged tweets 4.8 times

compared to the original Twitter data and place 34% of predicted tweets within 250m from

their actual location.

6.2 Related Work

We categorize the related work into four categories: 1) location prediction in Twitter-

like social networks, 2) topic and user group prediction in Twitter-like social networks, 3)

139

analysis of Foursquare check-ins, and 4) location prediction using other online contents.

Location prediction in social networks. Existing work can be divided into the

problem of predicting the location of each Twitter user [36, 51, 79] or predicting the location

of each tweet [57, 73]. Concretely, [36] proposes a technique to predict the city-level location

of each Twitter user. It builds a probability model for each city using tweets of those users

located in the city. Then it estimates the probability of a new user being located in a city

using the city’s probability model and assigns the city with the highest probability as the

city of this new user. To increase the accuracy of the location prediction, it utilizes local

words and applies some smoothing techniques. [51] uses a Multinomial Naive Bayes model

to predict the country and state of each Twitter user. It also utilizes selected region-specific

terms to increase the prediction accuracy. [79] presents an algorithm for predicting the

home location of Twitter users. It builds a set of different classifiers, such as statistical

classifiers using words, hashtags or place names of tweets and heuristics classifiers using

the frequency of place names or Foursquare check-ins, and then creates an ensemble of

the classifiers to improve the prediction accuracy. These coarse-grained location prediction

methods rely heavily on the availability of a large training set. For example, the number of

tweets from the users in the same city can be quite large and comprehensive. In contrast,

the goal of our work is to predict the fine-grained location of each tweet if the tweet can be

inferred with high confidence.

[57] and [73] are the most relevant existing work as they centered on predicting the

location of each tweet. [73] builds a POI (Place of Interest) model, assuming that a set of

POIs are given, using a set of tweets and web pages returned by a search engine. For a query

tweet, it generates a language model of the tweet and then compares it with the model of

each POI using the KL divergence to rank POIs. Since it uses only 10 POIs and a small test

set for its evaluation, it is unclear how effective the approach is in a real-world environment

in which there are many POIs and a huge number of tweets and furthermore many tweets

contain noisy text, irrelevant to any POI. [57] extracts a set of keywords for each location

using tweets from location-sharing services, such as Foursquare check-in tweets, and other

general expression tweets posted during a similar time frame. To predict the location of

140

a new tweet, it generates a keyword list of the tweet and compares it with the extracted

keywords of locations using cosine similarity. An obvious problem with this work is that

it treats all tweets equally in the context of location prediction. Thus, it suffers from high

error rate in the prediction results, especially for those location-neutral tweets.

Topic and user group prediction in social networks. In addition to location

prediction of Twitter data, other research efforts have been engaged in inferring other types

of information from Twitter data. [75] proposes a framework to predict topics of each tweet.

It builds a language model for each topic using hashtags of tweets and evaluates various

smoothing techniques. [92] proposes a social network user classification approach, which

consists of a machine learning algorithm and a graph-based label updating function. [29]

proposes an approach to predict sentiments of tweets and [32] presents a technique to classify

Twitter users as either spammers or nonspammers. Most of the work in this category build

their language-based classification model using supervised learning and utilize some external

knowledge to initialize the classification rules, such as spam or non-spam. In contrast to this

line of work, we focus on location detection of tweets rather than Twitter user classification.

Analysis of Foursquare check-ins. [37, 87] analyze Foursquare check-in history

in various aspects. [37] shows spatial and temporal (daily and weekly) distribution of

Foursquare check-ins. It also analyzes the spatial coverage of each user and its relation-

ship with city population, average household income, etc. [87] also shows spatio-temporal

patterns of Foursquare check-ins and calculates the transition probabilities among location

categories.

Location prediction using other online contents. Many studies have been con-

ducted to infer the geographical origin of online contents such as photos [105], webpages [24]

and web search query logs [59]. [105] builds a language model for each location (a grid cell)

using the terms people use to describe images. [24] identifies geographical terms in webpages

using a gazetteer to infer a geographical focus for the entire page. [59] utilizes a geo-parsing

software that returns a list of locations for web search query logs to infer the location of

users (at zip code level).

141

6.3 Overview

In this section we first describe the reference data models for Twitter and Foursquare data.

Then we describe how we build the language models for locations of tweets, using short text

messages of Foursquare. Finally we outline the design principles and the system architecture

of our location prediction framework.

6.3.1 Twitter Reference Model

Twitter is the most representative microblogging service being used widely, from breaking

news, live sports score updates, chats with friends (called followers) to advertising and

customer service by many companies. Twitter data consists of tweets. Formally, a tweet is

defined by a user ID, a timestamp when the tweet was posted, and a short text message up

to 140 characters. To enrich its data with location information, Twitter provides not only

a location field for each user but also a feature for geo-tagging each tweet [8]. Therefore

each tweet can be tagged with a fine-grained location, such as a geometric coordinate

defined by a latitude and longitude, though the number of tweets with the geo-tag is very

small. Our prediction framework performs the location prediction solely based on the short

unstructured text messages without requiring user ID and timestamp of tweets. In order

to perform text analysis over all tweets, we formally model each tweet as a vector of words

in our word vocabulary of n words, denoted by < w1, w2, . . . , wn >. For each tweet tx, if

w1 appears 2 times in tx, we have a value 2 in the position of w1. Thus, a tweet vector is a

vector of n elements of integer type with each element txi (1 ≤ i ≤ n) denoting the number

of occurrences of the word wi in tx. To get a list of words from tweets, we process each

tweet by breaking the tweet into tokens, stemming the tokens, and removing stop words

from them.

6.3.2 Foursquare Reference Model

Foursquare is a social network service, which is specialized in location-sharing through check-

ins. As of May 2014 [2], there are over 50 million users and over 6 billion check-ins, with

millions more every day. Users can check into a place by selecting one of the nearby places

142

from their current location (usually using their smartphones with GPS), and leave tips for a

specific place. Each tip has up to 200 characters and is explicitly associated with one place.

Foursquare provides the basic information of places, such as name, address, website URL,

latitude and longitude, and category. A fair number of Foursquare users are linking their

Foursquare account with their Twitter account such that their check-ins are automatically

posted to their Twitter account. We argue that building probabilistic language models

for locations using Foursquare tips will be the first step towards developing a methodical

approach to high quality location prediction for each tweet. Concretely, in order to integrate

Foursquare as an external location-specific data source for predicting the location of each

tweet, we formally model each tip in Foursquare based on our Twitter vocabulary of n

words. Thus, a tip tip is also represented as a vector of n elements of integer type, with

each element tipi denoting the number of occurrences of the word wi in tip. Each tip is also

associated with a location l. Similar to tweet tokenization process, we get a list of words

from tips by breaking each Foursquare tip into tokens, stemming the tokens, and removing

stop words from them.

6.3.3 Location Modeling

In contrast to many existing approaches [36, 51, 79, 73, 57], which mainly use geo-tagged

tweets to build a probabilistic model for each location, we argue that a high quality location

model for tweets should identify those geometric coordinates that are actually associated

with some semantically meaningful place(s) of interest (PoI) and build the location models

only for those semantic locations, instead of building a location model for every geometric

coordinate captured by some tweets. For example, there are many tweets that are not

related to any location at all since people can tweet anything regardless of their location.

We refer to those tweets that do not relate to any semantic location at all as location-

neutral tweets. Clearly, if too many such location-neutral tweets are involved in location

modeling, the language models we build for locations can be both noisy and misleading.

Alternatively, if we counter the sparseness problem of geo-tagged tweets by dividing the

geographical region of interest into multiple partitions (such as grids) and then building a

143

language model using tweets generated in each partition, it will also be misleading since each

partition may include tweets from multiple locations and it is hard to differentiate tweets

written in one location from those written in another location because each geo-tagged tweet

has only latitude and longitude. This problem can be aggravated by the sampling errors

existing in most of the localization techniques.

Foursquare, as a location-sharing social network service, has a collection of PoIs (places

of interest), and each tip is associated with a short text message and a PoI. This makes

Foursquare a valuable resource for building good probabilistic language models for locations,

because Foursquare data includes one of the best human-encoded mappings of geometric

locations to semantic locations (PoIs) as well as a set of short messages (tips) for them.

This motivates us to use Foursquare tips instead of noisy tweets to build more accurate and

dependable probabilistic models for locations. In the situation where multiple locations have

the same latitude and longitude (such as multistory buildings), we can build a separate

language model for each location based on the corresponding PoIs and the set of tips

associated with the PoIs.

Let the set of locations (PoIs) in Foursquare be l1, l2, . . . , lm. To predict the location

of tweets using the probabilistic models of locations, we first build a language model (LM)

for each Foursquare location using a set of tips associated to that location. The language

model has a probability for each word (unigram model) or each sequence of n words (n-gram

model). Let tf(w, t) denote the number of occurrence of word w in the tip t, c(w, l) denote

the number of occurrences of word w in all tips associated to location l and n be the number

of all words in our word vocabulary. We calculate the probability of a word w in a location

l using the frequency-based maximum likelihood estimation as follows:

p(w, l) =
c(w, l)
n∑
i=1

c(wi, l)

, c(w, l) =
∑

tip∈tips(l)

tf(w, tip)

where tips(l) is the set of tips associated to location l. Given that there are some Foursquare

locations with a very small number of associated tips, in order to generate dependable

LMs using a sufficient number of tips, we build LMs only for locations with more than a

minimum number of tips, defined by a system-supplied parameter θtip and also consider

144

only commonly used words in modeling each location.

Bigram Language Model. Instead of the unigram models, where the language model

has a probability for each word, we can define a probability for each sequence of n words

(n-gram model). For presentation brevity, we below present a bigram model, which can be

easily extended to n-gram models. Let p(wi−1wi, l) be the probability of a bigram wi−1wi

in the tips of location l. The probability of a location l for a tweet T using the bigram LMs

is computed as follows:

p(l | T) =
∏

wi−1wi∈T
p(wi−1wi, l).

To estimate the probability of bigrams by handling unobserved bigrams in the tips, in this

chapter, we explore three different smoothing techniques: Laplace smoothing, Absolute

discounting, and Jelinek-Mercer smoothing [35]. The three smoothing techniques are defined

as follows:

Laplace smoothing, which adds 1 to the frequency count of each bigram. This is defined

as follows, where c(wi−1wi, l) is the frequency count of a bigram wi−1wi included in the tips

of location l:

p(wi−1wi, l) =
1 + c(wi−1wi, l)∑
wi

(1 + c(wi−1wi, l))

Absolute Discounting, which includes interpolation of bigram and unigram LMs by

subtracting a fixed discount D from each observed bigram. This is defined as follows, where

Nwi−1 is the number of observed bigrams that start with wi−1 such that | {wi : c(wi−1wi, l) >

0} | :

p(wi−1wi, l) =
max{c(wi−1wi, l)−D, 0}∑

wi
c(wi−1wi, l)

+
D ·Nwi−1∑
wi
c(wi−1wi, l)

· c(wi, l)∑
wi
c(wi, l)

Jelinek-Mercer smoothing, which linearly interpolates between bigram and unigram

LMs using parameter λ:

p(wi−1wi, l) = λ · c(wi−1wi, l)∑
wi
c(wi−1wi, l)

+ (1− λ)
c(wi, l)∑
wi
c(wi, l)

Intuitively, the unigram LMs might be sufficient for short text messages like tweets. How-

ever, we will conduct experiments to compare the unigram models with the bigram models

in terms of the prediction precision and errors.

145

Tweet Location

Location Prediction Framework

LMs from Foursquare

Foursquare Data

Location correctness
classifier

Twitter Data

Location Prediction Engine

Filtering

Ranking

Validating

Figure 43: Framework Architecture

6.3.4 System Architecture

Even though we build dependable language models for locations using Foursquare tips,

there are still several unique challenges for prediction of the fine-grained location of each

tweet. The first challenge is that there are lots of tweets that may not be related to any

location at all. Thus, it is important to distinguish those location-neutral tweets, which are

completely irrelevant to any location, from those tweets whose locations can be learned and

predicted. For example, some daily mundane tweets, such as “Have a good day!”, rarely

have any hint that can be used to predict their location. To address this we need to develop

effective techniques to filter out as many location-neutral tweets as possible to minimize

the noise level and improve the accuracy of our location prediction model. The second

challenge is that a tweet can refer to another location, which is not related to the current

location where the tweet was written. For example, it is not unusual that Twitter users

post tweets about sports games of their favorite teams even though their current location

is not at all related to the locations where the games are being played. Therefore, we also

need to develop an approach to detect whether the referred location of a tweet, predicted by

the location prediction model, is the same as its current location. The referred location of

a tweet means the location, which is explicitly mentioned or implicitly hinted in the tweet.

Finally, to respect the privacy of users, the location prediction model should not depend on

user ID and timestamp of the tweets. To address these challenges, we develop a multi-phase

location prediction framework that utilizes the probabilistic models of locations built using

Foursquare tips.

146

Fig. 43 provides a sketch of our system architecture for predicting the fine-grained

location of a tweet. Our location prediction engine consists of three steps: (i) Filtering:

Identification of “I don’t know” tweets, which are also referred to as location-neutral tweets,

(ii) Ranking: Ranking and predicting the referred location of a tweet, which is implied

explicitly or implicitly by the text message of the tweet, and (iii) Validating: Using the

classification model to determine whether there is a match between the referred location

and the actual physical location of that tweet. The filtering step is to identify if a tweet

has any location-specific information. Our solution approach uses simple and yet effective

pruning techniques to differentiate tweets with location-specific information from tweets

having no location-specific hint at all, by utilizing the probabilistic language models for

locations built using Foursquare tips (Recall the previous section). This allows us to filter

out noisy tweets at early phase of the location prediction process. For those tweets that

have passed the filtering step, the ranking step is to select the best matched location among

the set of possible locations for each tweet using ranking techniques. Finally, the validating

step is to validate whether the predicted location of a tweet is indeed the correct location

with respect to the actual location where the tweet was written. We will explain each step

in detail in the next section.

6.4 Location Prediction

In this section, we describe the key steps we take to predict the fine-grained location of

each tweet and how we utilize the probabilistic language models built based on Foursquare

tips and the geo-tagged tweets from Twitter in our location prediction framework. We first

discuss how to identify and prune the “I don’t know” tweets in the filtering step, and then we

describe how we design the ranking algorithms to select the best location candidate among

a set of possibilities for a tweet in the ranking step. Finally, we discuss how to utilize SVM

classifier and the geo-tagged tweets as the training data to develop classification models

that validate the correctness of the predicted location of a tweet with respect to the actual

physical location from where the tweet was generated, in the validating step.

147

6.4.1 Filtering Step

We first define “I don’t know” tweets as those that have little information about their

location or are talking about past or future event. Given a tweet, if there is not any hint

about its location, we filter the tweet out because we have no chance of predicting its

location using only textual information of the tweet. Also, if a tweet is talking about past

or future activities or events, we exclude the tweet because we cannot predict its current

actual location even though we may infer the past or future location referred in the tweet.

In this chapter, the current location of a tweet refers to a location where the tweet was

written. To find such “I don’t know” tweets, we utilize local keywords and PoS (Part of

Speech) tags.

Utilizing local keywords. Even though each Foursquare tip is explicitly coupled with

a location, it also includes some words that are too general to represent the location (e.g.

“awesome”, “menu”, “special”). If a tweet consists of only such general words, it would

be impossible to predict the tweet’s location because many locations have such words and

it is hard to differentiate (rank) among the locations. For example, a tweet “This sun

is BLAZING and there’s no shade” has no hint about its fine-grained location because

all words in the tweet are too general to represent any location. To extract any hint

about fine-grained locations from tweets, we define local keywords as a set of words that

are representative of a location. To find the local keywords, we calculate the tfidf (Term

Frequency, Inverse Document Frequency) [81] score for each word and each location. Let L

be the total number of locations and dfw be the number of locations having w in their tips.

Our tfidf calculation for a word w and a location l is formally defined as follows:

tfidfw,l = p(w, l)× log10

L

dfw
.

For a word w, if there is any location l in which its score tfidfw,l is larger than a threshold,

denoted by θtfidf , we treat the word w as a local keyword with respect to the location l. If

a tweet has no local keyword at all, then we classify the tweet as a “I don’t know” tweet.

The threshold θtfidf for choosing local keywords is a tuning parameter in our framework.

If we increase the threshold value, a smaller number of local keywords will be selected, and

148

then more tweets could be filtered out as “I don’t know” tweets.

Utilizing PoS tags. Even though a tweet has a sufficient number of local keywords,

we may not guarantee that the predicted location based on the language models will match

the current location with high confidence when the tweet is talking about the future or

past event. For example, a tweet “I’m going to MoMA” has a local keyword “MoMA”

(abbreviation for the Museum of Modern Art in New York City), but is talking about

the future location. Therefore, even though we can predict the referred location in the

tweet based on the local keywords such as “MoMA” in this example, the predicted location

is related to the location where the author of the tweet will be, rather than the current

location where this tweet is written. To detect those tweets talking about the past or future

location, we utilize PoS (Part-of-Speech) tags generated by a PoS tagger. Given a tweet, if

the generated PoS tags of the tweet include any tag about the past tense form, we treat the

tweet as a “I don’t know” tweet. Since there is no tag about the future tense in existing

PoS taggers, we utilize some words related to future or with future sense, such as “will”,

“going to” and “tomorrow”, and remove those tweets that contain such words.

6.4.2 Ranking Step

After filtering out those location-neutral tweets, we explore three different techniques to

rank locations for each of the tweets survived from the filtering step. Given a query tweet,

there is a set of candidate locations that are associated to the tweet based on the language

models for locations. To predict the location of the tweet, we need to rank all locations and

select the location having the highest rank (or top k locations) as the predicted location of

the tweet.

Standard Machine Learning Approaches. A most intuitive baseline approach is

to build classification models using standard machine learning techniques such as SVM and

decision tree. To choose a training set for learning the models, we sample some tips for each

location. In our training set, each instance and each feature represent a Foursquare tip and

a word respectively. The number of classes in the training set is equal to the number of all

locations. Thus, given a tweet, we use the predicted class by the classification models as

149

the predicted location of the tweet.

Naive Bayes Model. Alternatively, given a set of candidate locations for a tweet, we

use the simple naive Bayes probabilistic model to rank locations based on the conditional

independence assumption among words. Concretely, given a tweet T and the set of possible

locations, we calculate the naive Bayes probability for each location l as follows:

p(l | T) =

p(l)
∏
w∈T

p(w, l)∑
i
p(li)

∏
w∈T

p(w, li)

where p(l) is 1
L for all locations since in our current implementation we assume the uniform

distribution for locations. We predict the location having the highest probability as the

tweet’s location. To remove any zero probability, we apply Laplace smoothing.

tfidf Value. The naive Bayes model uses the probability of a word in each location

when calculating the ranking probability of locations. If we want to reflect how important

a word is in all locations, we can incorporate such global word weights by using the tfidf

values to rank the locations for a given tweet. Concretely, for a given tweet T , let LT denote

the set of candidate locations of T . We calculate the tfidf value for each location l in LT

as follows:

tfidfT,l =

∑
w∈T

tfidfw,l∑
l∈LT

∑
w∈T

tfidfw,l
.

We use the location having the largest normalized tfidf ranking score as the predicted

location of tweet T .

6.4.3 Validating Step

Even though we can filter out some “I don’t know” tweets using the local keyword filter and

the PoS tag filter, the predicted location for a tweet may not be the actual location where

the tweet was written. This is especially true for those tweets whose actual locations where

the tweets were written are quite different from the referred location produced by our rank-

ing algorithms. For example, we may think that the referred location in a real tweet “Let’s

Go Yankees!!!” is “Yankees Stadium” and some of our ranking techniques also find “Yan-

kees Stadium” as the predicted location of the tweet. However, it is not unusual that many

150

New York Yankees fans in the world post such tweets anywhere during the game or before

the game. Another interesting real tweet is “I hope you all have a GREAT weekend but

also take time to remember those we’ve lost; those who are still fighting for

our freedom!!”. Under an assumption that we know this tweet is from New York City,

some of our ranking techniques find “World Trade Center” as the predicted location of the

tweet. We can easily see that the tweet is closely related to “World Trade Center” semanti-

cally, however such tweets can be posted from anywhere. The main challenge for predicting

the location for this type of tweets is to provide the prediction validation capability for the

system to determine if the referred location lref (T) for a tweet T , obtained using the prob-

abilistic language models and one of the three ranking algorithms, will match the actual

location lcur(T) where the tweet T was written. If we detect that lref (T) does not match

lcur(T), then we classify the tweet as an “unpredictable” tweet and exclude the tweet from

our location prediction.

Our approach to finding such “unpredictable” tweets is to build a classification model

using standard machine learning techniques. To learn the classification model, we need to

prepare a training set carefully. One approach to preparing the training set is to use those

tweets having a geo-tag (i.e., latitude and longitude), because such tweets already have

their explicit current location, thus we can use the language models and one of the ranking

algorithms to extract their referred location to build the training set. Given a tweet T having

its geo-tag, after choosing the location (denoted as ltop(T)) having the highest probability

based on the naive Bayes probability, we additionally compare the probability of ltop(T)

with that of the other locations using a probability ratio test. We use this test to build a

good training set consisting of only tweets in which there is high confidence in their referred

location. We choose only those tweets that pass the probability ratio test, formally defined

as follows:

p(lref (T) | T)

1− p(lref (T) | T)
> δ

where δ is the criterion of our test. If we increase δ, a smaller number of tweets will be

selected for the training set.

151

Based on the generated training set, we learn classification models by running the de-

cision tree classifier and SVM (Support Vector Machine) with the polynomial kernel func-

tions and Gaussian radial basis functions using 10-fold cross-validation. Then we choose

a classification model having the highest cross-validation precision for the training set and

use this classification model for detecting the “unpredictable” tweets. To find parameters

having the highest cross-validation precision, we use the grid search. We introduce some

notable results returned by our classification model. For a real tweet “The line at this

Chipotle in Brooklyn Heights is really long”, our model detects that its referred

location, produced by the language models and the ranking algorithm, indeed matches the

actual location where this tweet was written, as indicated by the geo-tag of the tweet.

Therefore, our model correctly classifies this tweet and thus validates the correctness of our

predicted location of the tweet. Note that the accuracy of the prediction depends on our

language models whereas the accuracy of the prediction validation depends on the training

set.

6.5 Experiments

In this section, we evaluate the proposed location prediction framework for tweets through

an extensive set of experiments conducted using tweets collected over a three-month period.

We report the experimental results on how we build the language models using the datasets,

how we implement the prediction validation classifier to distinguish the predictable tweets

from those non-predictable ones, and the effectiveness of the two filters to find “I don’t

know” tweets. In addition, we evaluate the effectiveness of our location prediction approach

by studying the effects of different parameters on the precision of location prediction, such

as the effects of different ranking methods, the effects of unigram v.s. bigram language

models, the effects of different δ values for building prediction validation classifier, and the

effects of different tfidf threshold values.

6.5.1 Datasets

We gathered a set of tweets spanning from April 2012 to June 2012 using Twitter Deca-

hose [21], which is a feed of 10% of all tweets. Each day (24 hours) has about 37 million

152

tweets and only 0.58% tweets are geo-tagged (i.e., include fine-grained location information).

To focus on predicting the fine-grained location, we assume that we know the city-level (or

similar) location of tweets because previous work [36, 79] has addressed this. Since some

tweets explicitly include their city-level location even though they don’t have their geo-tag,

we can also utilize such information. In this chapter, we select tweets from Manhattan,

New York, USA because Manhattan (officially a borough of New York City), which covers

59 square kilometers (23 square miles), is one of the biggest and most densely populated

cities in the world. Based on their geo-tag (latitude and longitude), 127,057 tweets (span-

ning three months) from Manhattan are selected. Among them, we exclude 39,157 tweets

from Foursquare and 15,299 tweets from Instagram to remove any possible bias from them

because they already include the location name in their textual data and so it would be

straightforward to predict their location. Therefore, we use 72,601 tweets to evaluate our

prediction framework.

We extracted Foursquare locations, called venues, and their tips using Foursquare API.

First, to gather a set of Foursquare locations, we called the Foursquare venues API for each

cell after splitting the area of Manhattan into very small cells (each covers 50 m × 50 m).

Unfortunately, there were some missing locations using only this grid search. Therefore, to

find additional locations, we analyzed the URLs included in check-in tweets from Foursquare

and then extracted location IDs from them. Each Foursquare location has basic information

such as name, address, latitude, longitude, city, country and category. Finally, for each

gathered location, we extracted all its tips using Foursquare API. Using this approach, we

gathered 25,171 venues in Manhattan and their 268,470 tips, which span from May 2008 to

June 2012. Also, there are some locations in which their area is too wide to represent their

location using only one point, such as Central Park, Times Square and Yankee Stadium.

Since Foursquare does not provide boundary information of its locations, we extracted

boundary information of 22 wide locations in Manhattan using Google Maps. Fig. 44(a)

shows the geographical distribution of Foursquare locations in Manhattan and Fig. 44(b)

shows the distribution of total tips over the past 4 years, which shows a tremendous increase

in the number of Foursquare tips in the last year.

153

(a) Locations in Manhattan

0

2

4

6

8

10

12

14

16

2
0
0
8
-5

2
0
0
8
-1

1
2
0
0
9
-1

2
0
0
9
-3

2
0
0
9
-5

2
0
0
9
-7

2
0
0
9
-9

2
0
0
9
-1

1
2
0
1
0
-1

2
0
1
0
-3

2
0
1
0
-5

2
0
1
0
-7

2
0
1
0
-9

2
0
1
0
-1

1
2
0
1
1
-1

2
0
1
1
-3

2
0
1
1
-5

2
0
1
1
-7

2
0
1
1
-9

2
0
1
1
-1

1
2
0
1
2
-1

2
0
1
2
-3

2
0
1
2
-5

#
T

ip
s

(t
h

o
u

sa
n

d
s)

Month

(b) #Tips in Manhattan by month

Figure 44: Foursquare Locations and Tips

6.5.2 Building Language Models

To build our language models for the extracted locations, we first choose locations that

have more than 50 tips and so 1,066 locations are selected. We also experimented using

language models of locations having more than 30 tips and 100 tips. However, the location

prediction accuracy using them was not better than using locations having more than 50

tips. We believe that 30 or 40 tips are not enough to build a distinct language model for each

location. On the other hand, for locations having more than 100 tips (e.g., 500 tips), we

believe that the prediction accuracy will improve with more tips. However, there are only

about 300 Foursquare locations in Manhattan having more than 100 tips and we think this

number is too small to cover the area of Manhattan. Therefore, in this chapter, we report

results using language models of locations having more than 50 tips. For each location,

to get a list of words from its tips, we first break each tip into tokens. Then we stem the

tokens using Snowball stemmer [18] and remove any stop words in the tokens using stop

words of Rainbow [82]. In addition to removing stop words, to consider only commonly used

words for the location, we exclude words that appear in less than 5% tips among all tips of

the location. Through this filtering, we can remove those words that are less common or

contain typos, thus reduce the size of our word vocabulary (i.e., a set of all words used in

154

our language models). Finally, 3,073 words are included in our word vocabulary.

6.5.3 Finding “I don’t know” Tweets

To find local keywords, we empirically choose three different tfidf threshold values: 0.1,

0.2 and 0.3. For example, let us assume that a word appear in 10% of all locations (i.e.

inverse document frequency, idf = 1). We can intuitively think that the word is too general

to be included in the local keywords. By using 0.1 as the threshold, there should be any

location in which the term frequency (tf) of the word is larger than 0.1 to be selected as a

local keyword. Since it is rare for a word to occupy 10% of all tips, the word will be filtered

out by the threshold. Table 15 shows the number of selected local keywords, among 3,073

words in our word vocabulary, for different tfidf threshold values. To find tweets which are

talking about the future or past, we utilize PoS tags generated by GPoSTTL [10].

Table 15: Local Keywords
tfidf threshold # local keywords

0.1 1,782
0.2 556
0.3 200

6.5.4 Prediction without the Validating Step

First we evaluate the prediction accuracy of our framework without applying the validating

step for the predicted locations. To measure the prediction accuracy, given a tweet, we

compare the geo-tag, which was removed during the prediction steps, of the tweet with the

latitude and longitude (or boundary) of the predicted location. If the predicted location

has its boundary information and the geo-tag of the tweet is within the boundary, the

prediction error is 0. Otherwise, we calculate the Euclidean distance between the geo-tag

of the tweet and the latitude and longitude of the location and then use the distance as the

prediction error. We also note that acceptable prediction errors depend on the application in

question. For example, automated geospatial review applications may require the location

of the individual to be identified accurately (within 100m). On the other hand, applications

such as event localization can tolerate a few hundreds of meters of error.

Table 16 shows that our framework without the validating step can geo-tag a much

155

Table 16: Geo-tagged Tweets without the Validating Step
tfidf threshold # geo-tagged tweets percentage

No local keywords 31,264 43.06%
0.1 28,057 38.65%
0.2 15,096 20.79%
0.3 7,168 9.87%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

250 1000 2500 5000

P
re

c
is

io
n

Prediction Error (meter)

no local keywords

threshold = 0.1

threshold = 0.2

threshold = 0.3

(a) Without the validating step

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

250 1000 2500 5000

P
re

c
is

io
n

Prediction Error (meter)

without validation step

with validation step

(b) Effects of the validating step (threshold: 0.2)

Figure 45: Effects of the Validating Step

more number of tweets, compared to 0.58% in the original Twitter data. However, as

shown in Fig. 45(a) where we use the naive Bayes model as the ranking technique (we will

compare different ranking techniques in the next section), the prediction precision is not

satisfactory because only 10% of predicted tweets are located within 250m from their actual

location even though we apply very selective local keywords (i.e., threshold = 0.3). Here,

the precision means the percentage of predicted tweets whose prediction error is less than a

specified distance (250m, 1,000m, 2,500m and 5,000m in Fig. 45(a)). Although this result

is meaningful compared to existing coarse-grained prediction frameworks, one of our goals

is to improve the accuracy of our predicted locations. The results in subsequent sections

show that we can considerably improve the prediction accuracy using our validating step.

6.5.5 Building Models for the Validating Step

To validate the correctness of the predicted locations in terms of their likelihood to match

the actual location where the tweets were written, we need to learn our classification models

using the training datasets. In this set of experiments, we empirically use three different

δ values: 0.5, 1.0 and 2.0 to generate three training sets. In other words, given a tweet,

if there is a location whose naive Bayes probability is larger than 33%, 50% and 66%, the

156

tweet will be included in the training set with the δ value of 0.5, 1.0 and 2.0 respectively.

For each tweet, to label whether its referred location is equal to its current location, we

compare the latitude and longitude of the referred location, extracted from Foursquare, with

the geo-tag (i.e. current location) of the tweet. If the distance between the two locations

is less than 100 meters or the geo-tag of the tweet is within the boundary of its referred

location, we label that the tweet’s two locations are the same. Table 17 shows the number

of selected tweets, the number tweets whose two locations are different and the number of

tweets whose two locations are the same, for different δ values among 72,601 tweets.

Table 17: Training Sets
δ value # tweets # lref 6= lcur # lref = lcur

0.5 2,642 1,936 706
1.0 1,598 1,008 590
2.0 1,028 579 449

6.5.6 Prediction with the Validating Step

In this section, we first show the effectiveness of our classification-based prediction valida-

tion step for improving the prediction accuracy. Then we compare the location prediction

accuracy by different ranking techniques and different parameter values. In this section,

we use the tfidf threshold of 0.2 and the δ value of 0.5, unless specifically noted, because

we think this setting strikes a balance between the number of geo-tagged tweets and the

prediction accuracy. We will show the effects of different parameter values in this section.

Effects of the validating step. Fig. 45(b) shows that we can significantly improve

the prediction precision using our validating step, compared to that without the validating

step. Based on the generated classification model, by filtering out those tweets in which

their predicted location does not match their actual location, we can locate about 34% of

predicted tweets within 250m from their actual location.

Effects of different ranking techniques. Fig. 46 shows the prediction precision of

three different ranking techniques on 2003 tweets predicted by our framework. We will show

how 2003 tweets are predicted in the next experiment. Fig. 46(a) shows that using the naive

Bayes model as the ranking technique has better prediction precision than using standard

157

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

250 1000 2500 5000

P
re

ci
si

o
n

Prediction Error (meter)

standard ML (baseline)

naïve Bayes

tfidf

(a) Using only one prediction

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

250 1000 2500 5000

P
re

ci
si

o
n

Prediction Error (meter)

naïve Bayes

tfidf

(b) Using the best in the Top-5

Figure 46: Effects of Different Ranking Techniques

machine learning techniques (our baseline approach) or tfidf values. Specifically, using

the naive Bayes model, about 34.35% and 44.38% of predicted tweets are located within

250m and 1,000m respectively from their location. This result shows that the naive Bayes

model is working well in our language models to rank locations for given tweets even though

the model does not consider global word weights. We think this is because our language

models include only location-specific words (i.e., most of general words are filtered out by

our local keywords and stop words). This may also be a reason that incorporating global

word weights of such location-specific words, like tfidf ranking, does not help much in terms

of improving the prediction precision. In comparison, ranking with the standard machine

learning (ML) techniques has relatively worse prediction precision because the prediction

model is built using a very limited number of Foursquare tips. Since it is almost infeasible

to use all (or most of) tips to run standard ML techniques due to the time complexity and

the resource (CPU and memory) constraints, it would be hard to get good prediction results

using this technique.

Fig. 46(b) shows the prediction precision using the best prediction (i.e., the closest

location from the geo-tag of tweets) in the top-5 predictions. This result represents the

capacity of our prediction framework to find a set of good candidate locations even though

the first predicted location is mistaken. The result shows that the naive Bayes model also has

the best prediction precision by locating 41.99% of predicted tweets within 250m from their

location. The prediction model generated using standard ML techniques has no top-5 result

158

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

250 1000 2500 5000

P
re

ci
si

o
n

Prediction Error (meter)

no classification model
δ=2.0
δ=1.0
δ=0.5

(a) Effects of different δ values

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

250 1000 2500 5000

P
re

c
is

io
n

Prediction Error (meter)

no local keywords

threshold = 0.1

threshold = 0.2

threshold = 0.3

(b) Effects of different tfidf threshold
values

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

250 1000 2500 5000

P
re

ci
si

o
n

Prediction Error (meter)

Laplace smoothing

Absolute discounting (D=0.9)

Jelinek-Mercer smoothing (λ=0.1)

Unigram

(c) Effects of bigram LMs

Figure 47: Effects of Different Parameter Values

because it returns only one location having the highest confidence. Since the naive Bayes

model has the best prediction precision in all other experiments using different parameter

values, we report results using only the naive Bayes model in subsequent sections.

Table 18: Effects of Different δ Values
δ value # geo-tagged tweets percentage

0.5 2,003 2.76%
1.0 2,764 3.81%
2.0 3,982 5.48%

Effects of different δ values. We compare the number of tweets, among 15,096 tweets

(See Table 16), classified as lref = lcur by different classification models built using different

δ values in Table 18. The percentage in the table shows the ratio among 72,601 target

tweets. Since the classification model using 0.5 as the δ value is built using the training

set which includes more lref 6= lcur tweets compared to the other training sets as shown

in Table 17, it has more capability to find such tweets and so choose fewer predictable

tweets. The prediction precision result below shows that the classification model built

using the δ value of 0.5 ensures higher precision by effectively filtering out unpredictable

tweets. Fig. 47(a) shows the prediction precision of our framework without any classification

model and with three different classification models using different δ values. The prediction

precision increases as the δ value decreases because, as we mentioned, the capability to

filter out lref 6= lcur tweets increase due to the higher percentage of lref 6= lcur tweets in the

training set. However, there would be a point in which selecting more tweets for learning

the classification model by decreasing the δ value does not improve the prediction precision

any more (or even worsens the prediction precision). This is because more noisy tweets

159

that have low confidence in their referred location would be included in the training set by

decreasing the δ value.

Effects of different tfidf threshold values. Fig. 47(b) shows the prediction precision

of our framework without any local keywords and with three different tfidf threshold values.

Since the number of local keywords decreases as we increase the tfidf threshold values as

shown in Table 15, more tweets are filtered out as “I don’t know” tweets because tweets

should have at least one local keyword not to be excluded. Also, the precision continuously

increases because selected tweets by high tfidf threshold for the prediction have unique

location-specific keywords. However, there is a trade-off between the prediction precision

and the percentage of selected tweets. In other words, if we increase the tfidf threshold to

improve the prediction precision, a smaller number of tweets are selected for the prediction.

Unigram vs Bigram. In this section we compare unigram and bigram LMs under

the same conditions. Fig. 47(c) shows the prediction precision of bigram LMs with three

different smoothing techniques and unigram LMs using the naive Bayes model. The effective

smoothing parameters are selected from a coarse search of the parameter space. The result

shows that unigram LMs are more effective than bigram LMs, which is consistent with the

reported results [102]. This is because tweets and Foursquare tips are very short messages

and it is rarely possible to include a bigram (or trigram or more), which can be used

to effectively differentiate one location from another. Even though the location names

include two or more words, the examination of prediction results verifies that unigram

LMs are sufficient to detect such names. Furthermore, the effective parameters of absolute

discounting and Jelinek-Mercer smoothing show that the smoothed bigram LMs work better

when they assign more weights on unigram LMs.

Table 19: Percentage of Geo-tagged Tweets
Approach Percentage

original Twitter data 0.72%
original Twitter data 0.58%

(excluding Foursquare & Instagram)
our framework (without validation step) 20.79%

our framework (with validation step) 2.76%

160

6.5.7 Percentage of Geo-tagged Tweets

Finally we summarize how many tweets are geo-tagged by our prediction framework in

Table 19. This result indicates how well our framework tackles the location sparseness

problem of Twitter. In the original Twitter data, only 0.72% tweets have their geo-tag.

For fair comparison with our framework in which we exclude tweets from Foursquare and

Instagram because it is too trivial to predict their location, the percentage of geo-tagged

tweets in the original Twitter data goes down to 0.58% if we don’t count the tweets from

Foursquare and Instagram. We report in this section the results of our framework using the

δ and tfidf threshold value of 0.5 and 0.2 respectively and the naive Bayes model as the

ranking technique because we think this setting strikes a balance between the number of

geo-tagged tweets and the prediction accuracy. Our framework equipped with all proposed

techniques including the validating step can geo-tag 2.76% of all tweets, increasing about 4.8

times compared with the percentage of geo-tagged tweets in the original Twitter data, while

placing 34% of predicted tweets within 250m from their actual location. If we don’t use our

classification-based prediction validating method, we can geo-tag 20.79% of all tweets with

lower prediction accuracy as shown in Table 16.

6.6 Conclusion

We have addressed the location sparseness problem of Twitter by developing a frame-

work for increasing the number of geo-tagged tweets by predicting the fine-grained location

of each tweet using only textual content of the tweet. Our framework is vital for many

applications that require more geo-tagged tweets such as location-based advertisements,

entertainments, and tourism. Our prediction framework has two unique features. First

of all, we build the probabilistic language models for locations using unstructured short

messages that are tightly coupled with their locations in Foursquare, instead of using noisy

tweets. Second, based on the probabilistic models, we propose a 3-step technique (Filtering-

Ranking-Validating) for tweet location prediction. In the filtering step, we develop a set of

filters that can remove as many location-neutral tweets as possible to minimize the noise

level and improve the accuracy of our location prediction models. In the ranking step, we

161

utilize ranking techniques to select the best candidate location as the predicted location

for a tweet. In the validating step, we develop a classification-based prediction validation

method to ensure the correctness of predicted locations. Our experimental results show that

our framework can increase the percentage of geo-tagged tweets about 4.8 times compared

to the original Twitter data while locating 34% of predicted tweets within 250 meters from

their location. To the best of our knowledge, this is the first work, which incorporates exter-

nal data source such as Foursquare, in addition to Twitter data, for location prediction of

each tweet. Furthermore, unlike most existing frameworks that focus on coarse-grained pre-

diction such as 10km and 100km, our framework locates a considerable amount of predicted

tweets within one-quarter kilometer from their location.

It should be noted that, for privacy advocates, our results can be interpreted as new

threats to location privacy for their short messages such as tweets. In other words, our

techniques can be used not only to provide the valuable geo-tag information of tweets for

location-based services but also to give warning of potential risks to their location to the

privacy advocates. For example, when a Twitter user, who is concerned about his/her

privacy, posts a tweet, our framework can detect that the location of the tweet can be

predicted with high confidence and give him/her a warning of potential threats to location

privacy. Our framework can also provide real-time warnings, while the user is writing a

tweet, by checking whether the newly entered word is included in the local keywords.

Even though the focus of this chapter is exploring location-specific information explicitly

or implicitly included in the textual content of tweets, our framework can be extended by

incorporating more information sources to further increase the number of geo-tagged tweets

and improve the location prediction accuracy. One simple extension could be to build

time-based models (per day, week, month and year) for each location and then utilize the

models with the timestamp of a given tweet to predict its location. For example, if our

time-based models for a museum indicate that there is almost no activity after 6pm on

weekdays, our prediction framework would give very low ranking to the museum for a tweet

that was posted at 9pm on Wednesday. Another possible extension could be to consider a

set of tweets, including Foursquare check-in tweets, posted by a single user as time series

162

data. This information could be used to fine-tune the prediction of our framework. For

example, if a user posted a Foursquare check-in tweet, we can reduce the search space for

predicting the location of those tweets, posted by the same user and whose timestamp is

close to that of the Foursquare tweet. Furthermore, if a user posted two Foursquare check-

in tweets at two different locations within a short period of time, we could predict the

location of those tweets posted between the two timestamps of the Foursquare tweets by

analyzing the possible trajectory paths between the two locations using some interpolation

techniques, like the route matching algorithm [112]. Other interesting extensions to our

current framework includes inference over future and past activities included in the tweets,

utilizing social relationships between Twitter users, spatial and temporal relationship as

well as semantic relationship among different tweets.

163

CHAPTER VII

EFFICIENT SPATIAL QUERY PROCESSING FOR BIG DATA

Spatial queries are widely used in many data mining and analytics applications. However,

a huge and growing size of spatial data makes it challenging to process the spatial queries

efficiently. In this chapter we present a lightweight and scalable spatial index for big data

stored in distributed storage systems. We also extend our spatial index for graph models.

Our spatial index has several advantages over existing techniques. First, it can be easily

applied to existing storage systems or graph models without modifying their internal imple-

mentation. Second, it achieves high pruning power by selecting only relevant spatial objects

efficiently based on a simple yet effective filter. For example, even though our index does

not construct any complicated data structure, the precision (the ratio of true positives to

all evaluated spatial objects) of our index is one order of magnitude higher than that of

an R-tree-based index for those range queries having high selectivity. Third, it supports a

customizable and intuitive control of index size (i.e., the precision of indexed geometries).

Last but not the least, it supports efficient updates of spatial objects because it does not

maintain any costly data structure such as trees. Experimental results show the efficiency

and effectiveness of our spatial indexing technique for different spatial queries.

7.1 Introduction

Many real-world and online activities are associated with their spatial information. For

example, when we make or receive a call, the call information including its cell tower

location is stored as a call detail record (CDR). Even a single tweet message of Twitter

can be stored with its detailed location (i.e., latitude and longitude) [8]. To extract more

valuable and meaningful information from such spatial data, spatial queries are widely used

in many data mining and analytics applications. One of the most representative challenges

for processing the spatial queries is that the amount of spatial data is increasing at an

unprecedented rate, especially thanks to the widespread use of GPS-enabled smart-phones.

164

Due to this huge size of spatial data, we need new scalable techniques that can process the

spatial queries efficiently.

To handle such huge spatial data, it is natural to utilize emerging distributed com-

puting technologies such as Hadoop MapReduce, Hadoop Distributed File System (HDFS)

and HBase. Several techniques have been proposed to support spatial queries on Hadoop

MapReduce [78, 122, 23, 123] or HDFS [74, 76]. However, most of them require internal

modification of underlying systems or frameworks to implement their indexing techniques

based on, for example, R-trees. Those approaches not only increase the complexity and

overhead of the modified storage systems but also are applicable only to a specific storage

system.

If the spatial data is represented as a graph structure, we can execute more complex

spatial queries using relationships among spatial objects in the graph. For example, in

social networks, instead of simply retrieving all users residing in a certain region, we can

extract all pairs of users who not only reside in a certain region but also have at least one

common friend and graduated from the same high school, based on the relationships in the

graph. A few techniques [93, 69] have been proposed to support spatial queries in graph

models. However, since they require internal modification of standard graph models such

as Resource Description Framework (RDF), it is hard to integrate them with existing graph

management systems.

To tackle the limitations of existing work, in this chapter, we investigate the problem

of developing efficient and scalable techniques for processing spatial queries over big spatial

data. Specifically, we present a lightweight spatial index based on a hierarchical spatial

data structure. Our spatial index has several advantages. First, it can be easily applied to

existing storage systems without modifying their internal implementation and thus we can

utilize existing systems as they are. Second, it provides simple yet highly efficient filtering,

based on prefix matching, for finding only relevant spatial objects. Third, it supports a

customizable and easy-to-use control of index size for different applications and thus we can

reduce the index size at a cost of pruning power. Last but not the least, it supports efficient

updates of spatial objects because it does not maintain any costly data structure such as

165

trees.

Based on the spatial index, this chapter makes three novel contributions. First, we

develop an efficient spatial index for big data stored in a distributed storage system. We

demonstrate how we implement the index on top of HBase without modifying its internal

implementation. Second, we extend the index for spatial data stored as a graph structure.

We present how we implement the index on top of RDF, without modifying the standard

model, and a query rewriting technique to support spatial queries using a standard graph

query language. Third, we provide experimental results to show the efficiency and effec-

tiveness of our spatial indexing techniques.

The rest of the chapter is organized as follows. We give an overview of spatial queries, hi-

erarchical spatial data structure, distributed storage systems, and graph models and outline

the related work in Section 7.2. In Section 7.3, we present our spatial indexing techniques

for distributed storage systems and graph models. We evaluate the performance of our

spatial index in Section 7.4 and conclude the chapter in Section 7.5.

7.2 Preliminary

In this section, we give an overview of spatial queries, hierarchical spatial data structure,

distributed storage systems, and graph models. We also outline the related work.

7.2.1 Spatial Queries

There are many types of spatial queries, such as selection query, join query and k near-

est neighbor (kNN) query, for different applications. Even though there are more spatial

relations [89], in this chapter, we focus on selected fundamental queries that are basis for

many other spatial queries: containing, containedIn, intersects, and withinDistance. Those

queries are defined for any geometries including points, lines, rectangles, and polygons. A

containing(search geometry) query returns all spatial objects that contain the given

search geometry. A containedIn(search geometry) query returns all spatial objects

that are contained by the given search geometry (i.e., the converse of containing). An

intersects(search geometry) query returns all spatial objects that intersect with the

given search geometry. A withinDistance(search geometry, distance) query (or range

166

containing containedIn

intersects withinDistance

q

d

Figure 48: Spatial Queries

query) returns all spatial objects that are within the given distance from the the given

search geometry. Fig. 48 shows spatial query examples in which, for each query, there is

one spatial object satisfying the query condition. Search geometries and spatial objects are

represented using dotted lines and solid lines respectively.

7.2.2 Hierarchical Spatial Data Structure

For our spatial indexing, we utilize a hierarchical spatial data structure, called geohash [9],

which is a geocoding system for latitude and longitude. A geohash code, represented as

a string, basically denotes a rectangle (bounding box) on the earth. It provides a spatial

hierarchy and it can reduce the precision (i.e., represent a bigger rectangle) by removing

characters from the end of the string. In other words, the longer the geohash code is, the

smaller the bounding box represented by the code is. Another property of geohash is that

two places with a long common geohash prefix are close each other. Similarly, nearby places

usually share a similar prefix. However, it is not always guaranteed that two close places

share a long common prefix.

Definition 21 (Geohash code) Given a geographic location with latitude lat and longitude

long, the geohash code of the location, denoted by geohash(lat, long), is a sequence of

characters c1c2 . . . ck. The geohash code geohash(lat, long) defines a bounding box within

which the location lies.

167

(a) geohash code “dn5bp” (b) geohash code “dn5”

Figure 49: Geohash Examples

Property 1 (Gradual precision) Let c1c2 . . . ck denote a geohash code and bb(c1c2 . . . ck)

denote a bounding box represented by c1c2 . . . ck. A bounding box represented by any prefix

c1c2 . . . cm (m < k) of the geohash code c1c2 . . . ck, denoted by bb(c1c2 . . . cm), fully contains

bb(c1c2 . . . ck). Conversely, a bounding box represented by a geohash code c1c2 . . . ck . . . cn

(n > k) having c1c2 . . . ck as its prefix, denoted by bb(c1c2 . . . ck . . . cn), is fully contained in

bb(c1c2 . . . ck).

For example, geohash code “dn5bp” covers midtown and downtown of Atlanta, Georgia,

USA as shown in Fig. 49(a) 1. Geohash code “dn5bps” having prefix “dn5bp” represents a

smaller region inside midtown Atlanta (i.e., a sub-rectangle of the rectangle represented by

“dn5bp”). If we remove two character from the end of the code, geohash code “dn5” repre-

sents a much bigger region intersecting three US states (Georgia, Tennessee and Alabama)

as shown in Fig. 49(b). The rectangle represented by geohash code “dn5b” is located in the

bottom right-hand corner of the rectangle represented by geohash code “dn5”.

7.2.3 Distributed Storage Systems

A growing number of non-relational distributed databases (often called NoSQL databases)

are proposed and widely used in many big data applications and analytics because they are

designed to run on a large cluster of commodity hardware and fault-tolerant through data

replication. One representative category of the NoSQL databases is the key-value store,

1Generated from http://geohash.gofreerange.com/

168

in which data is stored in a schema-less way via an unique key that represents each row,

such as Apache HBase, Apache Accumulo, Apache Cassandra, Google BigTable, Amazon

DynamoDB, just to name a few. In this chapter, our description is based on HBase, an open-

source key-value store (or wide column store) originally derived from BigTable, because it

is widely used by many big data applications. However, we believe that our spatial index is

applicable to other key-value stores similarly because we use only keys for our index without

modifying the internal structure of HBase.

A HBase table consists of rows and the rows are stored in sorted order. Each row has a

primary key and an arbitrary number of columns. Unlike traditional relational databases,

different rows can have different columns. Columns are grouped into column families and

the data under the same column family is stored together. HBase usually uses HDFS as

its underlying file system and provides random read/write accesses to the data stored in

HDFS.

7.2.4 Graph Models

Graph-based data analytics is invaluable because graphs are everywhere from social net-

works to brain networks and we can extract more meaningful information through structural

relationships in the graph. Recently, several single machine-based systems [67, 98] or dis-

tributed systems [80, 45] have been proposed to process big graph data. In this chapter, we

develop our spatial index on top of the RDF graph model [17], which is a standard model

adopted by World Wide Web Consortium (W3C) and widely used in not only research

communities but also many governments. An RDF graph consists of RDF triples and each

RDF triple has three components: subject, predicate, and object. An RDF triple represents

a directed edge, from the subject to the object, having the predicate as its edge label.

SPARQL [19] is a standard query language, adopted by W3C, for RDF graphs. A

SPARQL query consists of triple patterns that are similar to RDF triples but its subject,

predicate and object can be a variable. Executing a SPARQL query is basically to find a set

of subgraphs, satisfying the given graph pattern, where the terms in the subgraphs may be

substituted for the variables of the query. For example, the below SPARQL query requests

169

all users who received their PhD degree at a college called “GT” in 2014.

PREFIX gt: <http://cc.gatech.edu/disl/>

SELECT ?user

WHERE {

?user gt:phdFrom ?college .

?college gt:name “GT” .

?user gt:phdYear “2014” . }

7.2.5 Related Work

We classify existing spatial query processing techniques using distributed computing frame-

works into two categories, based on their query types. The first category handles high

selectivity spatial queries, such as selection queries and kNN queries, in which only a small

portion of spatial objects are returned as the result of spatial query processing. A few

techniques have been proposed to process the high selectivity queries in HDFS [74, 76].

They are utilizing popular spatial indices such as an R-tree and its variants [48, 104, 31].

[74] implements a built-in block-based hierarchical index structure, based on an R-tree, in

HDFS to process high selectivity spatial queries. Its R-tree index is stored as a file in HDFS

and nearby leaf nodes are stored in the same block to preserve the proximity. [76] combines

those small files, which are in adjacent location, into one group in HDFS to reduce the

number of HDFS files. Then it builds a hashing-based index for the small files.

The second category handles low selectivity spatial queries that usually require at least

one full scan of each dataset. One of the most representative low selectivity spatial queries

is k nearest neighbor join (kNN join), which is to find, for each object in a dataset A, its k

nearest neighbors in another dataset B. Several techniques have been proposed to process

the kNN (or similar) joins using the MapReduce framework [78, 122, 23, 123]. [78] first

divides the objects in A into partitions based on a Voronoi diagram with selected pivots.

For each partition of A, it finds a subset of B, which includes kNNs of all objects in the

partition, using a MapReduce job. [122] basically runs two MapReduce jobs to execute

a kNN join, based on the block nested loop methodology. In the first job, it splits each

170

dataset into n equal-sized blocks in the Map phase and compares every possible pair of

blocks (one from A and one from B) to find local kNNs in the Reduce phase. Finding

local kNNs in the Reduce phase can be improved by building an R-tree for each local block

of B. In the second job, it merges all local kNNs of each object in A and then finds the

global kNNs. It also proposes an approximate algorithm, to improve the scalability, which

transforms multi-dimensional datasets into one dimension using space-filling curves. [23]

first constructs a Voronoi diagram for the given input dataset using a MapReduce job in

which it creates partial Voronoi diagrams in the Map phase and combines them into a single

Voronoi diagram in the Reduce phase. Based on the Voronoi diagram, it supports three

point-based queries: reverse nearest neighbor, maximizing reverse nearest neighbor and

kNN . [123] executes the spatial selection query, join query, kNN and all-nearest-neighbors

query (ANN) using MapReduce jobs. However, it basically evaluates all objects even for

the spatial selection query.

Our work basically belongs to the first category because our focus is to efficiently find

a set of spatial objects satisfying the given query. However, as we will explain later, our

spatial index can be applied for the second category (i.e., MapReduce jobs) as an efficient

and lightweight filtering approach for the input data, instead of reading the whole data

regardless of the query conditions.

In terms of graph models, a few techniques [93, 69] have been proposed to support

spatial queries for RDF. [93] proposes an extension of SPARQL for complex spatiotemporal

queries. It introduces the spatial filter to express spatial constraints such as inside, contains

and intersect. To process the spatial queries, it stores RDF triples in a relational database

and builds an R-tree index for the spatial data. [69] implements an RDF storage and

SPARQL query processor for mobile devices. It also stores RDF triples using a relational

database and uses R-trees for spatial data indexing. Unlike existing techniques, our spatial

index does not require internal modification of existing RDF systems because it is developed

using only standard features.

171

7.3 Spatial Query Processing

In this section, we propose a lightweight and scalable spatial index, based on the hierarchical

spatial data structure, for big data. We first explain how we develop the spatial index on

top of HBase without modifying its internal implementation. Next, we extend our index

for spatial data stored as a graph structure.

7.3.1 Overview

A spatial object basically includes its geometry and can have any additional information

about the object, such as its name, address and phone number. In terms of the geometry,

our spatial index supports most of generally used geometries including points, lines, rect-

angles, curves and polygons. Given a spatial object to be stored and indexed by our spatial

index, we first calculate a set of minimum bounding boxes (i.e., geohash codes), called

minimum geohash set, which fully cover the geometry of the spatial object. To prevent

generating too many fine-grained bounding boxes to cover the geometry and thus increas-

ing the overhead of managing the spatial object, we set the maximum number of bounding

boxes for each geometry to 10 in the first prototype of our spatial index. The maximum

number of bounding boxes for each geometry can be configured for different applications.

Also, all the geohash codes included in a minimum geohash set have the same length and

thus represent the same precision.

Definition 22 (Minimum geohash set) Given a spatial object SO with its geometry SOG,

the minimum geohash set of SO is a set of geohash codes, denoted by minGeohash(SO) =

{geohash1, geohash2, . . . , geohashl}, which fully cover SOG while minimizing the size of

bounding boxes represented by the geohash codes. l is equal to or less than θmax, which

defines the maximum number of geohash codes for each spatial object. The minimum

geohash set is defined similarly for a spatial query with its search geometry.

Similar to other indexing techniques such as R-trees, the query processing based on our

spatial index basically consists of two main steps: filter step and refinement step. Given a

spatial query Q, in the filter step, we find candidate spatial objects, which may satisfy the

172

query condition of Q, by pruning non-qualifying spatial objects. In the refinement step, we

examine each candidate spatial object to determine whether the object is actually satisfying

the query condition of Q. We define the precision of query processing for Q as the ratio of

actual spatial objects satisfying the query condition of Q to all evaluated candidate spatial

objects.

7.3.2 Distributed Storage Systems

To develop our spatial index on top of HBase, we propose to utilize HBase row keys to

indicate the geohash codes for stored spatial objects. Specifically, given a spatial object

SO to be stored and indexed by our spatial index, for each geohash code in its minimum

geohash set minGeohash(SO), we store the spatial object in the HBase row having the

geohash code as its row key. We use an uniquely assigned identifier for the object as its

column name (qualifier). We allow replication of spatial objects in multiple HBase rows for

efficient processing of spatial queries as we will explain below. For example, if the minimum

geohash set of a spatial object is {“dn5bpsby”, “dn5bpsbv”}, we store the spatial object

in two HBase rows whose keys are “dn5bpsby” and “dn5bpsbv”. Note that our replication

of spatial objects is not related to the data block replication of underlying HDFS for its

fault-tolerance.

According to the definition of the geohash, longer geohash codes will be generated for

smaller geometries. If there are many spatial objects associated with a tiny geometry, a

huge number of HBase rows having a long row key may be created to store the objects and

each row will likely include only a few spatial objects. Since too many HBase rows can

aggravate the performance of our spatial query processing, we need to control the number

of HBase rows. To limit the number of HBase rows, we utilize the hierarchical feature of

the geohash codes. By setting the maximum length of geohash codes (i.e., length of HBase

row keys), we can store those spatial objects associated with a tiny geometry in HBase rows

representing a bigger rectangle and thus reduce the number of HBase rows. Algorithm 5

shows the pseudocode of our storing and indexing steps for a spatial object.

To execute spatial queries for the stored and indexed spatial objects in HBase, we utilize

173

Algorithm 5 Storing and indexing a spatial object
Input: a spatial object SO, m (the maximum length of HBase row keys)

1: minGeohashSO = calculateMinimumGeohashSet(SO)
2: for each geohash code g in minGeohashSO do
3: if g.length > m then
4: g = first m characters of g
5: end if
6: store SO in the HBase row whose row key is g
7: end for

the properties of the geohash codes to find only relevant HBase rows and thus reduce the

search space considerably. Let us assume that a spatial query Q with its search geometry

QG is given. We first calculate the minimum geohash set of Q, which fully covers QG. If the

query is containing(search geometry), we select only those HBase rows whose row key is a

prefix of one of the geohash codes in the minimum geohash set. This is because those spatial

objects that contain the search geometry should have at least the same or larger rectangles

than the search geometry. As we explained above, a geohash code representing a rectangle is

a prefix of those geohash codes representing the sub-rectangles of the rectangle. Therefore,

we can efficiently select candidate HBase rows that may store spatial objects containing

the search geometry, using the prefix match. Specifically, to find candidate HBase rows, we

scan all possible prefixes for each geohash code in the minimum geohash set. For example,

for a geohash code “dn5b” included in the minimum geohash set, we scan for key “d”, “dn”,

“dn5” and “dn5b”. Finally, for each candidate HBase row, we read all spatial objects stored

in the row and return those spatial objects that actually contain the search geometry. For

example, for a spatial object with its ellipsoidal geometry as shown in Fig. 50(a), we store

the spatial object in two HBase rows whose row keys are “dn5bpsb” and “dn5bpsc”. For a

containing query with its rectangular search geometry as shown in Fig. 50(b), its minimum

geohash set is {“dn5bpsbs”, “dn5bpsbu”} and thus we select the HBase row whose key is

“dn5bpsb” as a candidate row because its row key is a prefix of the geohash codes.

If the query is containedIn(search geometry), an intuitive approach is to select only those

HBase rows whose row key includes one of the geohash codes, included in the minimum

geohash set, as its prefix because containedIn is the converse of containing. However, we

need to take into account that we set the maximum length of geohash codes to prevent

generating too many small HBase rows. For example, let us assume that the minimum

174

(a) spatial object (ellipse) (b) search geometry (rectangle)

Figure 50: Query Processing Example (containing)

geohash set of a spatial object is {“dn5bpsby”} and the spatial object is stored in a HBase

row whose row key is “dn5bp” because the maximum length of geohash codes is 5. Also,

assume that a containedIn(search geometry) query in which the minimum geohash set of

the search geometry is {“dn5bpsb”} is given and the search geometry actually contains the

spatial object. Based on the intuitive approach, we cannot select the HBase row “dn5bp”

because “dn5bp” does not include “dn5bpsb” as its prefix. To tackle this problem, we also

apply the maximum length to the geohash codes included in the minimum geohash set of

the spatial query (from “dn5bpsb” to “dn5bp” in the previous example) and then use the

intuitive approach. When we select candidate HBase rows whose row key includes one of

the geohash codes, included in the minimum geohash set of the spatial query, as its prefix,

we utilize a range scan of HBase for each geohash code. Specifically, for each geohash code

included in the minimum geohas set, we execute a range scan whose start row is the geohash

code and end row is the lexicographically next geohash code, having the same length, to

access all HBase rows whose row key has the geohash code as its prefix. For example, for a

geohash code “dn5b”, we execute a range scan from “dn5b” to “dn5c”. For each selected

HBase row, we read the stored spatial objects in the row and return those spatial objects

that are actually contained in the search geometry.

If the query is intersects(search geometry), we consider both prefix cases when we select

candidate HBase rows. This is because, if there is any intersecting region between the search

geometry and the geometry of a spatial object, both geometries should have a rectangle(s)

175

Algorithm 6 Spatial Query Processing
Input: a spatial query Q, m (the maximum length of HBase row keys)
Output: a set of spatial objects satisfying Q

1: SOQ = ∅ // a set of spatial objects satisfying Q
2: minGeohashQ = calculateMinimumGeohashSet(Q) // if Q is withinDistance, use the extended geometry
3: for each geohash code g in minGeohashQ do
4: if g.length > m then
5: g = first m characters of g
6: end if
7: if Q is containing or intersects or withinDistance then
8: select those HBase rows whose row key is a prefix of g
9: read spatial objects stored in the selected HBase rows

10: add those spatial objects satisfying Q into SOQ
11: end if
12: if Q is containedIn or intersects or withinDistance then
13: run a range scan from g to g′ where g′ is the lexicographically next geohash code from g
14: read spatial objects stored in the scanned HBase rows
15: add those spatial objects satisfying Q into SOQ
16: end if
17: end for
18: return SOQ

(i.e., geohash code) that includes the intersecting region and any two different rectangles

including the same region should have their hierarchy (i.e., one is the sub-rectangle of

the other) according to the definition of the geohash codes. Since we do not know which

geometry has a bigger rectangle covering the intersecting region until we evaluate the spatial

object, we select those HBase rows, as candidate rows, whose row key is a prefix of one of

the geohash codes included in the minimum geohash set of the spatial query or includes one

of the geohash codes as its prefix. For each selected HBase row, we read the stored spatial

objects in the row and return those spatial objects that are actually intersecting with the

search geometry.

For a withinDistance(search geometry, distance) query, we first calculate the minimum

geohash set, which covers the extended geometry computed by adding the distance to the

search geometry. Then, similar to the intersects query processing, we select those HBase

rows, as candidate rows, whose row key is a prefix of one of the geohash codes included

in the minimum geohash set or includes one of the geohash codes as its prefix. For each

selected HBase row, we read the stored spatial objects in the row and return those spatial

objects that are actually within the distance from the the search geometry. Algorithm 6

shows the pseudocode of our spatial query processing.

In addition to HBase, our index can also be used to improve the performance of Hadoop

176

MapReduce programs handling spatial objects. Most Hadoop MapReduce programs ba-

sically read and evaluate all the records stored in their input HDFS paths via their map

function because they have no information about the stored records before reading them.

With our spatial index on top of HDFS where we use geohash codes of spatial objects as

HDFS file names, Hadoop MapReduce programs can read and evaluate only relevant files by

simply implementing and setting their PathFilter, which describes a set of files they want to

access and thus considerably reduce the input record size to be read and evaluated, without

any help from the external and complicated indices. For example, if a Hadoop MapReduce

program wants to analyze only those records included in a specific city and the geohash

code of the city is “dn5bp”, the Hadoop job can reduce the input record size by reading

only relevant HDFS files whose file name has “dn5bp” as its prefix.

7.3.3 Graph Models

We extend our spatial index for spatial objects represented as a graph model. To de-

velop our spatial index on top of RDF, for each vertex representing a spatial object,

we add an RDF triple (edge) storing the geohash code of the spatial object. Specifi-

cally, for each spatial object with its geometry, we first calculate the minimum geohash

set, which fully covers the geometry of the spatial object. For each geohash code in-

cluded in the minimum geohash set, we add an edge, representing the geohash code, to

the vertex denoting the spatial object. For example, if a calculated geohash code for a

spatial object denoted as <http://cc.gatech.edu/disl/Object1> is “dn5bpsby”, we add a

triple in which its subject, predicate and object are <http://cc.gatech.edu/disl/Object1>,

<http://cc.gatech.edu/disl/geohash> and “dn5bpsby” respectively. <http://cc.gatech.edu

/disl/geohash> is a predicate representing a geohash relationship from a spatial object to

a geohash code. Fig. 51 is an example RDF graph that shows how geohash codes are added

for three spatial objects. Algorithm 7 shows the pseudocode of our storing and indexing

steps on top of RDF for a spatial object.

In order to execute spatial queries for the indexed spatial objects based on the RDF

graph model, we utilize SPARQL, which is a standard query language for RDF. Specifically,

177

Object1

“KACB”

name

Building

type

“dn5bpsby”

geohash

Object2
propertyOf

“GT”

name

University

“dn5bp”

geohash

Object3

locatedIn
hasCa

mpusIn

“Atlanta”

name

City

type

“dn5b”

type

geohash

Geometry1

hasGeometry

Geometry2

hasGeometry

Geometry3

hasGeometry

Figure 51: RDF Graph with Geohash Codes

Algorithm 7 Storing and indexing a spatial object (RDF)
Input: a spatial object SO

1: vertexSO = createSpatialObjectV ertex(SO)
2: minGeohashSO = calculateMinimumGeohashSet(SO)
3: for each geohash code g in minGeohashSO do
4: store a triple (< vertexSO > < geohash > “g”)
5: end for
6: store triples representing other information of SO

to represent our spatial queries (containing, containedIn, intersects and withinDistance) in

SPARQL, we adopt the syntax of GeoSPARQL [39] and thus include the spatial queries in

a SPARQL filter. We call a filter including any spatial query a spatial filter. For example,

the below example query has a containing spatial filter.

PREFIX gt: <http://cc.gatech.edu/disl/>

SELECT ?so

WHERE {

?so gt:hasGeometry ?geometry .

FILTER(gt:containing(?geometry,

“Point(-83.4 34.3)”ˆˆgt:wktLiteral)) }

If a SPARQL query including any spatial filter is given, we rewrite the spatial filter using

a set of prefix filters based on the geohash codes and thus execute the query using only

standard features of SPARQL. Specifically, similar to our spatial query processing on top of

HBase, we first calculate the minimum geohash set, which fully covers the search geometry

given in the spatial filter. If the query is containedIn, we need to find those candidate spatial

objects whose geohash code includes one of the calculated geohash codes as its prefix. To find

178

such spatial objects, we utilize the regular expression prefix filter of SPARQL. For example,

if the calculated geohash codes of the search geometry are “dn5bpsb” and “dn5bpsc”, we

rewrite the spatial filter into a filter based on the prefix matching as follows:

FILTER(regex(?geohash, “ˆdn5bpsb”)||regex(?geohash, “ˆdn5bpsc”))

If the query is containing, we need to find those candidate spatial objects whose geohash

code is a prefix of one of the geohash codes included in the minimum geohash set. To find

such spatial objects, we utilize the exact match filter of SPARQL for each possible prefix

of the calculted geohash codes. For example, if the calculated geohash code of the search

geometry is “dn5b”, we rewrite the spatial filter into a filter based on the exact matching

as follows:

FILTER(?geohash = “d”||?geohash = “dn”||?geohash = “dn5”||?geohash = “dn5b”)

If the query is intersects or withinDistance, we rewrite the spatial filter using both prefix

filter and exact filter of SPARQL. This is because we need to find those candidate spatial

objects whose geohash code is a prefix of one of the calculated geohash codes or includes one

of the calculated geohash codes as its prefix. Recall that we get candidate spatial objects

by running the rewritten SPARQL query and thus we need a final step, which finds those

spatial objects that actually satisfy the given query among the candidate spatial objects.

Even though the standard SPARQL includes the regular expression prefix matching, its

implementation in the RDF and SPARQL systems may be inefficient if no proper index is

constructed for processing the prefix matching. To tackle this inefficiency, we propose an

alternative approach that can also be implemented on top of RDF without any modifica-

tion of the standard model and existing RDF systems. Its basic idea is, for each geohash

code of a spatial object, to add multiple edges representing different precisions (lengths)

of the geohash code and utilize the exact matching for spatial query processing. The pri-

mary motivation of this approach is that most RDF systems efficiently support the exact

match filter using a set of indices and adding some more edges (triples) has little effect on

their query processing performance, thanks to the indices. Specifically, let us first assume

that search geometries usually have their geohash codes having length of from l to l + k

179

characters. For each calculated geohash code of a spatial object, we add multiple edges

representing different precisions (lengths), from l characters to l+k characters by removing

characters from the end of the geohash code. In other words, if the length of the calculated

geohash code is equal to or longer than l + k, k + 1 edges representing different precisions

will be added. For spatial query processing, if the length of the calculated geohash codes

of a search geometry is between l and l + k (inclusive), we rewrite the spatial filter using

the exact filter, instead of the prefix filter. Otherwise, we rewrite the spatial filter using

the prefix filter of SPARQL. For example, if a calculated geohash code for a spatial ob-

ject denoted as <http://cc.gatech.edu/disl/object1> is “dn5bpsby” and search geometries

usually have their geohash codes having length of from 3 to 5 characters, we add three

edges representing geohash codes “dn5”, “dn5b” and “dn5bp”. Given a containedIn query

in which the calculated geohash codes of the search geometry are “dn5bn” and “dn5bp”,

we rewrite the spatial filter into a filter based on the exact matching as follows:

FILTER(?geohash = “dn5bn”||?geohash = “dn5bp”)

Our spatial index on top of RDF does not require any internal modification of RDF and

SPARQL, which are standards. That means we can directly utilize any existing RDF

and SPARQL systems. The only requirement for spatial query processing is the SPARQL

rewriter, which rewrites spatial filters into standard SPARQL filters.

7.4 Experimental Evaluation

In this section, we report the experimental evaluation of our spatial index on top of HBase

and RDF. We first present spatial query processing performance using our index on top

of HBase. Next we show the experimental results, including the comparison of different

SPARQL filters, on spatial query processing using our index on top of RDF. We also compare

the pruning power of our spatial index with that of an R-tree-based index.

7.4.1 Experimental Setup and Datasets

For evaluation of our spatial index on top of HBase, we use HBase (Version 0.96) and

Hadoop (Version 1.0.4) running on Java 1.6.0, installed on a cluster of 11 physical machines

180

(one master machine) on Emulab [116]: each has 12GB RAM, one 2.4 GHz 64-bit quad

core Xeon E5530 processor and two 7200 rpm SATA disks (500GB and 250GB). We run

HBase RegionServers on the same machines as DataNodes and a ZooKeeper ensemble of 3

machines. For each setting and each query, our spatial query processing time indicates the

fastest time after running five cold runs to remove any possible bias posed by OS and/or

network activity. For evaluation of our spatial index on top of RDF, we use DB2RDF of

DB2 10.5 Express-C installed on an Emulab machine having the same specifications like

the above ones.

We use GeoLife GPS Trajectories (GeoLife in short) [125] and San Francisco taxi cab

traces (SFTaxi in short) [95] for our experiments. GeoLife contains 24,876,977 GPS point

records (17,621 trajectories), gathered by 182 users in a period of over five years (from April

2007 to August 2012), with a total distance of about 1.3 million kilometers and a total

duration of about 50,000 hours. SFTaxi contains 11,219,955 GPS point records, collected

over 30 days, of approximately 500 taxi cabs in San Francisco, USA. For evaluation of

our spatial index on top of RDF, we convert the two datasets into RDF-formatted files

(N-Triples).

7.4.2 Distributed Storage Systems

We first present spatial query processing performance using our index on top of HBase

running on HDFS. As our baseline approach, we store the spatial objects using their latitude

(or longitude) as a row key of HBase (i.e., one dimensional index). We choose this approach

as our baseline because it can be also implemented without modifying HBase and, similar

to our spatial index, HBase range scans can be utilized for fair comparisons. For example,

given a containedIn query, we use the leftmost and rightmost latitudes (or longitudes) of

the query geometry as the start and end row keys of a HBase range scan respectively.

We implement a Hadoop MapReduce job to efficiently store the spatial objects in HBase.

Also, we represent each geohash code as a binary array, instead of a string, to efficiently

handle geohash codes. By default, we empirically choose 40 bits as the maximum length of

geohash codes because we think that value strikes a balance between the number of rows

181

0

5

10

15

20

25

1~10 11~100 101~1K 1K~10K 10K~100K 100K~1M 1M~3M

Q
u

er
y

 P
ro

ce
ss

in
g

 T
im

e
 R

a
ti

o

Selectivity (# query result records)

our index

baseline (latitude)

baseline (longitude)

(a) withinDistance queries

0

2

4

6

8

10

12

101~1K 1K~10K 10K~100K 100K~1M

Q
u

er
y

 P
ro

ce
ss

in
g

 T
im

e
 R

a
ti

o

Selectivity (# query result records)

our index

baseline (latitude)

baseline (longitude)

(b) containedIn queries

Figure 52: Query Processing Time

and the number of columns of each row. We will show the effects of different maximum

lengths of geohash codes in this section. 2,608,848, 4,744,257 and 4,886,185 HBase rows are

generated to store the spatial objects using our index, the latitude-based baseline approach

and longitude-based baseline approach respectively.

In this chapter, we report the results of withinDistance and containedIn queries. We

do not include the results of containing and intersects queries because they have similar

query processing results with withinDistance and containedIn queries. We generate 300

withinDistance queries by randomly selecting a point in the datasets and using a distance

of 10m, 100m or 1km. This generation process guarantees that we get at least one point

record as the output of each query execution. We also generate 100 containedIn queries

by randomly selecting two points in the datasets and using them as the lower-left and

upper-right points of a rectangle.

For brevity, we first categorize the queries based on their selectivity and then compare

our query processing performance with that of the baseline approach using the ratio of their

query processing times where we set our query processing time to 1, as shown in Fig. 52.

The query processing with our spatial index is more than one order of magnitude faster

than both the latitude-based and longitude-based baseline approaches, on average, for those

withinDistance queries that select less than 10,000 records, as shown in Fig. 52(a). As we

decrease the selectivity of queries, the performance gain of our spatial index also drops

because retrieving a large number of rows for query evaluation is inevitable. However, the

query processing with our spatial index is still 30% faster than the latitude-based baseline

182

approach, on average, for those withinDistance queries that select more than 1 million

records. For containedIn queries, even though our query processing is still more than one

order of magnitude faster than the latitude-based baseline approach for queries having high

selectivity as shown in Fig. 52(b), its performance gain is generally smaller than that for

withinDistance queries. This is primarily because containedIn queries usually cover a wider

region than withinDistance queries and thus the pruning power of the baseline approaches

is higher for containedIn queries. Specifically, the average precisions (i.e., the ratio of true

positives to all evaluated candidate spatial objects) of the latitude-based baseline approach

are 8% and 12% for withinDistance queries and containedIn queries respectively.

Table 20: Query Processing Results (withinDistance)
query # result our index baseline baseline

records (lat) (long)
Q1 3 time(sec) 0.004 0.188 0.070

cand. records 18 6060 1074
accessed rows 4 582 380

Q2 20 time(sec) 0.005 0.107 0.085
cand. records 94 2855 18429
accessed rows 2 310 584

Q3 271 time(sec) 0.028 1.161 0.104
cand. records 2896 233511 21027
accessed rows 4 2280 603

Q4 3370 time(sec) 0.054 2.222 1.257
cand. records 9618 478920 276189
accessed rows 204 10462 7619

Q5 107K time(sec) 1.511 5.427 6.509
cand. records 294K 1003K 1066K
accessed rows 9K 57K 171K

Q6 1020K time(sec) 13.803 21.348 25.275
cand. records 2640K 3999K 5396K
accessed rows 14K 191K 78K

To provide more detailed analysis of the query processing results, we include specific

results of some selected queries in Table 20. The query processing times are basically related

to the number of evaluated records (i.e., candidate records). This is because more candidate

records for the same query mean that the query processor wastes more time for evaluating

false positive records. The results clearly show much higher pruning power of our spatial

index, compared to the baseline approaches, which consider only one dimension. For Q4,

for example, to find 3,370 records satisfying the query condition, our spatial index-based

approach evaluates 9,618 records (i.e., its precision is 35%). On the other hand, the latitude-

based baseline approach evaluates 478,920 records and thus its precision is less than 1% for

183

the query.

Table 21: Breakdown of Query Processing Results
seconds Our index baseline (lat) baseline (long)

Q1 Index Access 0.004 0.171 0.068
Evaluation 0.000 0.017 0.002

Q2 Index Access 0.005 0.100 0.036
Evaluation 0.000 0.007 0.049

Q3 Index Access 0.021 0.493 0.049
Evaluation 0.007 0.668 0.055

Q4 Index Access 0.028 0.889 0.530
Evaluation 0.026 1.333 0.727

Q5 Index Access 0.672 2.552 3.560
Evaluation 0.839 2.875 2.949

Q6 Index Access 6.277 9.607 11.160
Evaluation 7.526 11.741 14.115

Table 21 shows the index access time (i.e., range scan time) and the evaluation time of

the candidate records for the six queries. Our spatial index-based approach has the fastest

evaluation time because it evaluates much smaller number of records than the baseline

approaches as shown in Table 20. Our approach also has the fastest index access time

because it reads the smallest number of rows for each query. It is interesting to note that

the index access time is not linearly proportional to the number of accessed rows. For

example, even though the longitude-based baseline approach reads about 150 times more

rows than our spatial index-based approach for Q3, its index access time is only 2 times

slower. This is primarily because, for each query, our spatial index-based query processing

usually consists of multiple (mostly from 2 to 4) range scans while the baseline approach

always uses one range scan. Furthermore, the processing time of each range scan is usually

not proportional to the number of accessed rows (or retrieved records) due to several factors

including the block cache of HBase RegionServers.

Fig. 53 shows the effects of different maximum geohash lengths for query processing.

We report the results of only Q5 and Q6 in Table 20 because the difference in terms of

query processing time is negligible for Q1, Q2, Q3 and Q4. In other words, our spatial

index provides efficient query processing performance, regardless of the maximum geohash

lengths, for those queries having high selectivity. In addition to 40 bits as the maximum

length of geohash codes, we store the spatial objects in HBase using 64 bits (which keep

full geohash codes), 44 bits and 36 bits. 27,973,524, 7,620,735 and 754,860 HBase rows

184

0

50

100

150

200

250

300

0

1

2

3

4

5

6

7

baseline

(longitude)

our index

(max 64)

our index

(max 44)

our index

(max 40)

our index

(max 36)

#
re

tr
ie

v
ed

 r
o
w

s
(1

0
0
0
)

P
ro

ce
ss

in
g
 T

im
e
 (

s)

#retrieved rows

Processing Time (s)

(a) Q5

0

500

1000

1500

2000

2500

0

5

10

15

20

25

30

baseline

(longitude)

our index

(max 64)

our index

(max 44)

our index

(max 40)

our index

(max 36)

#
re

tr
ie

v
ed

 r
o
w

s
(1

0
0
0
)

P
ro

ce
ss

in
g
 T

im
e
 (

s)

#retrieved rows

Processing Time (s)

(b) Q6

Figure 53: Effects of Different Maximum Lengths

are generated for 64, 44 and 36 bits respectively. For each of both queries, the number of

evaluated candidate records is the same regardless of the maximum geohash lengths. Query

processing performance is improved as we reduce the maximum geohash length to a certain

point (40 bits for both queries). This is because our spatial index using a shorter maximum

geohash length retrieves a smaller number of rows as shown in Fig. 53. However, at a

certain point, reducing the maximum geohash length does not improve the query processing

performance any more (or even aggravate the performance) because the query processor

should read and process very wide rows having a lot of columns for query evaluation. It

also requires more main memory for query processing. Note that, for Q5, our spatial index

with full geohash codes (64 bits) provides more than two times better query processing

performance than the baseline approach because, even though it retrieves more rows than

the baseline approach as shown in Fig. 53(a), its number of evaluated candidate records is

only 30% of that of the baseline approach.

Fig. 54 shows the query processing results using different distances for the same query

point of a withinDistance query. The query processing time understandably increases as we

enlarge the query region because more HBase rows are accessed and thus more candidate

records are evaluated for query processing.

Fig. 55 shows the insertion time of new 100 records for different dataset sizes (i.e., the

number of already stored records). For this experiment, we insert the new records from

the master machine. Since our spatial index-based approach does not create any expensive

data structure unlike existing techniques including R-tree-based approaches, the insertion

185

0.1

1

10

100

1000

10 100 1000 10000

range (m)

processing time (sec -log)

(a) Processing Time

1

10

100

1,000

10,000

100,000

10 100 1000 10000

천

range (m)

result records (x1000 -log)

(b) # result records

1

10

100

1,000

10,000

100,000

1,000,000

10 100 1000 10000

range (m)

accessed rows (log)

(c) # access rows

1

10

100

1,000

10,000

100,000

10 100 1000 10000
천

range (m)

candidate records (x1000 -log)

(d) # candidate records

Figure 54: Effects of Different Distances

0

20

40

60

80

100

120

1K 10K 100K 1M 10M

in
se

r
ti

o
n

 t
im

e
 (

m
s)

stored records

Figure 55: Insertion Time

time is almost constant regardless of the dataset size.

7.4.3 Graph Models

In this section, we present spatial query processing performance using our index on top of

RDF. We implement our index in two different ways, using the prefix matching and exact

matching, to compare their performance in the RDF system. For our index using the prefix

matching, we store full geohash codes in the RDF system. As our baseline approach, we

utilize SPARQL comparison filters, in which we set the lower-left and upper-right points

of a query bounding box, because we think this approach is the most intuitive approach

186

for processing spatial queries. For example, given a withinDistance query, we calculate

a minimum bounding box, which fully covers its query region and then create a SPARQL

query with a comparison filter that sets the lower-left and upper-right points of the bounding

box. For this set of experiments, we run the very same sets of queries, which are used for

the evaluation of our index on top of HBase.

Table 22: SPARQL Query Processing Time Ratio
selectivity our index our index baseline

(exact match) (prefix match)
withinDistance queries

1-10 1 1.08 5251.80
11-100 1 1.02 3913.76
101-1K 1 1.16 1568.79
1K-10K 1 1.23 298.53

10K-100K 1 1.23 24.03
100K-1M 1 1.28 3.71
1M-3M 1 1.28 1.09

containedIn queries
101-1K 1 1.05 1061.97
1K-10K 1 1.19 64.24

10K-100K 1 1.25 13.65
100K-1M 1 1.31 1.69

Table 22 shows the average query processing time ratios of three different approaches

for different selectivity levels. For those queries that select less than 1,000 records, the

query processing with our spatial index is more than three orders of magnitude faster

than the baseline approach on average. This result shows the overhead of join processing

because the baseline approach touches two different predicates (i.e., latitude and longitude)

in the comparison filter. We believe that the join processing is aggravated since we use

a free edition of DB2, which limits the usage of main memory and the number of CPU

cores. On the other hand, since our approach handles only one predicate (i.e., there is

no join processing for our index), we can process spatial queries efficiently regardless of

such limitations. The results also validate our claim that using the exact filter would be

more efficient than using the prefix filter due to the efficient support of the exact filter in the

RDF system. It is also interesting to note that, even though the baseline approach has 100%

precision (i.e., no false positive record) for containedIn queries due to the rectangular query

geometry, it is consistently slower than our approach primarily because of join processing.

Table 23 presents specific SPARQL query processing results of the same queries in

187

Table 23: SPARQL Query Processing Results (withinDistance)
Our index baseline

qu- #rec- time(s) time(s) #cand. time(s) #cand.
ery ords exact prefix records records
Q1 3 0.041 0.044 18 65.991 3
Q2 20 0.045 0.045 94 69.287 28
Q3 271 0.139 0.153 2896 69.220 350
Q4 3370 0.238 0.378 9618 69.456 3454
Q5 107K 7.611 10.746 294K 69.442 121K
Q6 1020K 75.254 100.399 2640K 101.450 1261K

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1~10 11~100 101~1K 1K~10K 10K~100K 100K~1M 1M~3M

P
re

c
is

io
n

Selectivity (# query result records)

R-tree our index

Figure 56: Precision Comparison (withinDistance)

Table 20. For those queries having very high selectivity (Q1, Q2 and Q3), our approach

using the prefix filter is comparable to that using the exact filter. This result validates

that the prefix filter is efficiently supported by the RDF system. Nevertheless, the exact

match-based approach is about 30% faster than the prefix match-based approach for the

other queries having low selectivity. The baseline approach is much slower even though it

has much higher precision.

7.4.4 Comparison with R-tree

Finally, we compare the pruning power of our spatial index with that of an R-tree-based

index. We use an open source R-tree implementation [13] for this evaluation. We want to

emphasize that the focus of this chapter is on the scalable and lightweight spatial index,

which can be easily applied to existing systems without modifying their internal implemen-

tation. Outperforming the pruning power of R-tree-based indices is not the purpose of this

chapter because R-tree-based indices maintain expensive data structures and mostly require

internal and complicated modification of the storage systems. Nevertheless, the precision

results in Fig. 56 show that our index has one order of magnitude higher precision than

188

the R-tree-based index for those queries having very high selectivity (selecting less than

10 records). Our spatial index demonstrates relatively consistent precision for different

selectivity levels while the R-tree-based index has higher precision for less selective queries.

7.5 Conclusion

In this chapter we have proposed efficient and scalable spatial indexing techniques for big

data stored in distributed storage systems or graph models. Based on a hierarchical spatial

data structure, called geohash, we have presented how we develop a lightweight spatial index

for big data stored in a distributed file system, especially on top of HBase. In addition,

we have described how we extend our spatial index for graph data, especially on top of

RDF. Our spatial index has several advantages. First, it can be easily applied to existing

storage systems or graph models without modifying their internal implementation. Second,

it provides an efficient pruning technique that can find only relevant spatial objects based

on prefix matching. Third, it supports customizable control of index size for different

applications. Our experimental results show the efficiency and effectiveness of our spatial

indexing techniques.

189

CHAPTER VIII

CONCLUSIONS AND FUTURE WORK

With continued advances in computing and information technology, digital data have grown

at an astonishing rate in terms of volume, variety, and velocity. Such big data have huge

potential to reveal hidden insights and promote innovation in many business, science, and

engineering domains. An important technical challenge faced by many big data systems and

applications is how to build efficient big data processing systems and applications that can

scale to the rapid growth of digital data in the 21st century. To address this challenge, this

dissertation is dedicated to the development of architectures and optimization techniques

for scaling big data processing systems, especially in the era of cloud computing. In this

chapter, we first summarize the main contributions of this dissertation and then discuss our

future research directions.

8.1 Summary

In summary, this dissertation makes three unique contributions. First, it introduces a suite

of graph partitioning algorithms that can run much faster than existing data distribution

methods and inherently scale to the growth of big data. The main idea of these approaches

is to partition a big graph by preserving the core computational data structure as much

as possible to maximize intra-server computation and minimize inter-server communica-

tion. Based on this main idea, we present a new distributed RDF system, called Shape,

to improve the performance of distributed RDF query processing. Shape is equipped with

a scalable partitioning technique and an efficient distributed query processing technique.

The experimental evaluation on large graphs with hundreds of millions of vertices and bil-

lions of edges has shown that Shape, which can scale to large graphs with varying sizes

and complexity, is more efficient than existing distributed RDF systems. We also propose

a distributed graph partitioning framework called VB-Partitioner, which supports effi-

cient graph query processing for various graph data characteristics and query workloads.

190

Equipped with three different grouping techniques, VB-Partitioner significantly outper-

forms the popular random block-based graph partitioning in terms of query latency.

In addition, this dissertation proposes a distributed iterative graph computation frame-

work called GraphMap, which effectively utilizes secondary storage to maximize access

locality and speed up distributed iterative graph computations. To address the poor scal-

ability of existing distributed graph systems, we distinguish read-only graph data from

mutable graph data and store the read-only data on disk. To maximize sequential disk

access and minimize random disk access, we also propose locality-optimized data placement

based on a two-level graph partitioning algorithm. Furthermore, we develop locality-based

optimization, which dynamically chooses between sequential disk access and random disk

access based on the computation loads of each iteration for each worker machine. The frame-

work not only considerably reduces memory requirements for iterative graph algorithms but

also significantly improves the performance of iterative graph computations.

Last but not the least, this dissertation establishes a suite of optimization techniques for

scalable spatial data processing along with three orthogonal dimensions. First, we develop

a road network-aware spatial alarm processing system called RoadAlarm. RoadAlarm

offers a suite of alarm processing and optimization techniques that minimize the amount of

wakeups at mobile clients to save energy while reducing the amount of unnecessary alarm

checks at the server to improve the server performance and the accuracy of alarm evalua-

tions. Second, we propose a framework to predict the location of each tweet on Twitter.

We build probabilistic models for locations using data from Foursquare, which is another

social network specialized in locations, instead of noisy data from Twitter. To increase the

accuracy of prediction, we evaluate various ranking methods, smoothing techniques, and

language models. Third, we introduce an efficient and lightweight spatial index for big data

stored in distributed storage systems. Based on a hierarchical spatial data structure, the

index can be easily applied to existing storage systems without modifying their internal

implementation.

191

8.2 Future Work

There are many interesting open research problems for scalable big data processing from

various perspectives. In the context of big graph processing, our future research interests

include improving GraphMap for better performance of iterative graph computations,

summarizing graphs for more efficient graph query processing, and ultimately developing

a unified system that efficiently and effectively supports both graph query processing and

iterative graph computations. We are also interested in elastic cloud computing technologies

for big data processing, including cost-efficient resource management for Platform-as-a-

Service (PaaS) systems based on operating system-level virtualization (containers). We

highlight some of them below.

8.2.1 Scalable Systems for Big Graph Data Analytics

Several directions of our ongoing research fall into this category. First of all, to further

tackle the scalability challenges of iterative graph computations, we will focus on utilizing

secondary storage even for storing mutable graph data in addition to read-only data. Naive

utilization of disks for storing mutable graph data would severely aggravate the perfor-

mance of iterative graph computations because it would require a huge number of random

disk accesses. We look forward to devising systematic approaches to storing mutable graph

data by taking into account data access locality while ensuring competitive performance

compared to distributed memory-based systems. In addition, we will extend GraphMap

to support other storage systems such as GraphChi and X-Stream on each compute node

and to include more efficient and lightweight partitioning techniques. Second, we will work

on graph summarization techniques that efficiently execute complex graph queries includ-

ing many graph patterns. In most graph systems, running complex graph queries is very

costly, mostly because of many internal joins. Our basic idea would add more edges that

summarize complex graph patterns to the original graph. Then, given a complex query,

we will convert the query into a simpler query using the summarized edges. Last but not

the least, our ultimate research goal in the context of big graph processing is to develop a

unified distributed system that supports both graph query processing and iterative graph

192

computations efficiently.

8.2.2 Cost-Efficient Resource Management in Cloud Computing

The Platform-as-a-Service (PaaS) cloud computing service model is in the limelight of both

industry and academia as the operating system in the cloud. By hiding the complexities of

IaaS, PaaS makes it easier to write cloud applications not only for application developers

but also small and medium-sized businesses that rarely have enough IT personnel for man-

aging an on-premise or leased cloud-computing infrastructure. Most PaaS providers offer

free trials that entice customers and ultimately make them pay for the PaaS services. Unfor-

tunately, most free-trial users start using PaaS out of curiosity, and to make matters worse,

they never access their applications after creating or running the applications. Therefore, to

serve those users who are very unlikely to pay for the PaaS services, PaaS providers waste

precious resources (and thus money). To tackle this challenge, we will work on designing

a new framework that dynamically adapts PaaS to optimize the use of its resources for

various service level agreements. Since many PaaS systems are using operating system-level

virtualization (containers) to run application instances, we will focus on how to manage

containers with minimal overhead. This framework will also include prediction models to

infer required computing resources by analyzing data and computation characteristics. In

addition, we will develop container allocation models to optimally assign containers based

on the predicted resource requirements.

193

REFERENCES

[1] “About FacetedDBLP,” http://dblp.l3s.de/dblp++.php.

[2] “About foursquare.” https://foursquare.com/about/.

[3] “Apache Giraph,” http://giraph.apache.org/.

[4] “Apache Hama,” https://hama.apache.org/.

[5] “BTC 2012,” http://km.aifb.kit.edu/projects/btc-2012/.

[6] “Chaco: Software for Partitioning Graphs,” http://www.sandia.gov/ bahendr/chaco.html.

[7] “DBpedia 3.8 Downloads,” http://wiki.dbpedia.org/Downloads38.

[8] “Geo Developer Guidelines,” https://dev.twitter.com/terms/geo-developer-guidelines.

[9] “Geohash,” http://geohash.org/.

[10] “GPoSTTL,” http://gposttl.sourceforge.net/.

[11] “GT-mobisim,” http://code.google.com/p/gt-mobisim/.

[12] “IDC: 87% Of Connected Devices Sales By 2017 Will Be Tablets And Smartphones,”
http://onforb.es/14J7vkl.

[13] “JSI RTree Library,” http://jsi.sourceforge.net/.

[14] “Linking Open Data,” http://www.w3.org/wiki/SweoIG
/TaskForces/CommunityProjects/LinkingOpenData.

[15] “METIS,” http://www.cs.umn.edu/˜metis.

[16] “Optimize Your Settings,” http://www.apple.com/batteries/iphone.html.

[17] “Resource Description Framework (RDF),” http://www.w3.org/RDF/.

[18] “Snowball,” http://snowball.tartarus.org/.

[19] “SPARQL Query Language,” http://www.w3.org/TR/rdf-sparql-query/.

[20] “Twitter: A New Age for Customer Service - Forbes,” http://onforb.es/VqqTxa.

[21] “Twitter Decahose,” http://gnip.com/twitter/decahose.

[22] “U.S. Geological Survey,” http://www.usgs.gov/.

[23] Akdogan, A., Demiryurek, U., Banaei-Kashani, F., and Shahabi, C., “Voronoi-Based
Geospatial Query Processing with MapReduce,” in CLOUDCOM, 2010.

[24] Amitay, E., Har’El, N., Sivan, R., and Soffer, A., “Web-a-where: geotagging web
content,” in SIGIR, 2004.

[25] Andreev, K. and Räcke, H., “Balanced graph partitioning,” in SPAA, 2004.

194

[26] Backstrom, L., Huttenlocher, D., Kleinberg, J., and Lan, X., “Group Formation in
Large Social Networks: Membership, Growth, and Evolution,” in KDD, 2006.

[27] Bamba, B., Liu, L., Iyengar, A., and Yu, P. S., “Distributed processing of spatial alarms:
A safe region-based approach,” in ICDCS, 2009.

[28] Bamba, B., Liu, L., Yu, P. S., Zhang, G., and Doo, M., “Scalable processing of spatial
alarms,” in HiPC, 2008.

[29] Barbosa, L. and Feng, J., “Robust sentiment detection on Twitter from biased and noisy
data,” in COLING, 2010.

[30] Barceló, P., Libkin, L., and Reutter, J. L., “Querying graph patterns,” in PODS, 2011.

[31] Beckmann, N., Kriegel, H.-P., Schneider, R., and Seeger, B., “The R*-tree: An
Efficient and Robust Access Method for Points and Rectangles,” in SIGMOD, 1990.

[32] Benevenuto, F., Magno, G., Rodrigues, T., and Almeida, V., “Detecting spammers
on Twitter,” in CEAS, 2010.

[33] Boldi, P. and Vigna, S., “The WebGraph framework I: Compression techniques,” in WWW,
2004.

[34] Bu, Y., Borkar, V., Jia, J., Carey, M. J., and Condie, T., “Pregelix: Big(Ger) Graph
Analytics on a Dataflow Engine,” Proc. VLDB Endow., vol. 8, pp. 161–172, Oct. 2014.

[35] Chen, S. F. and Goodman, J., “An empirical study of smoothing techniques for language
modeling,” in ACL, 1996.

[36] Cheng, Z., Caverlee, J., and Lee, K., “You are where you tweet: a content-based approach
to geo-locating twitter users,” in CIKM, 2010.

[37] Cheng, Z., Caverlee, J., Lee, K., and Sui, D., “Exploring Millions of Footprints in
Location Sharing Services,” in ICWSM, 2011.

[38] Cho, H.-J. and Chung, C.-W., “An efficient and scalable approach to cnn queries in a road
network,” in VLDB, 2005.

[39] Consortium, O. G. and others, “OGC GeoSPARQL-A geographic query language for
RDF data,” 2012.

[40] Dijkstra, E. W., “A note on two problems in connexion with graphs.,” Numerische Math-
ematik, vol. 1, pp. 269–271, 1959.

[41] Doo, M., Liu, L., Narasimhan, N., and Vasudevan, V., “Efficient indexing structure for
scalable processing of spatial alarms,” in GIS, 2010.

[42] Erling, O. and Mikhailov, I., “Towards web scale RDF,” Proc. SSWS, 2008.

[43] Franke, C., Morin, S., Chebotko, A., and others, “Distributed Semantic Web Data
Management in HBase and MySQL Cluster,” in IEEE CLOUD, 2011.

[44] G. Karypis and V. Kumar, “A Coarse-Grain Parallel Formulation of Multilevel k-way
Graph Partitioning Algorithm,” in PARALLEL PROCESSING FOR SCIENTIFIC COM-
PUTING. SIAM, 1997.

[45] Gonzalez, J. E., Low, Y., Gu, H., Bickson, D., and Guestrin, C., “PowerGraph:
Distributed Graph-parallel Computation on Natural Graphs,” in OSDI, 2012.

195

[46] Gonzalez, J. E., Xin, R. S., Dave, A., Crankshaw, D., Franklin, M. J., and Stoica,
I., “GraphX: Graph Processing in a Distributed Dataflow Framework,” in OSDI, 2014.

[47] Guo, Y., Pan, Z., and Heflin, J., “LUBM: A benchmark for OWL knowledge base sys-
tems,” Web Semant., 2005.

[48] Guttman, A., “R-trees: A Dynamic Index Structure for Spatial Searching,” in SIGMOD,
1984.

[49] Han, W.-S., Lee, S., Park, K., Lee, J.-H., Kim, M.-S., Kim, J., and Yu, H., “Tur-
boGraph: A Fast Parallel Graph Engine Handling Billion-scale Graphs in a Single PC,” in
KDD, 2013.

[50] Harth, A., Umbrich, J., Hogan, A., and Decker, S., “YARS2: a federated repository
for querying graph structured data from the web,” in ISWC, 2007.

[51] Hecht, B., Hong, L., Suh, B., and Chi, E. H., “Tweets from Justin Bieber’s heart: the
dynamics of the location field in user profiles,” in CHI, 2011.

[52] Hendrickson, B. and Leland, R., “A multilevel algorithm for partitioning graphs,” in
Supercomputing, 1995.

[53] Hjaltason, G. R. and Samet, H., “Distance browsing in spatial databases,” ACM Trans.
Database Syst., vol. 24, June 1999.

[54] Hu, H., Xu, J., and Lee, D. L., “A generic framework for monitoring continuous spatial
queries over moving objects,” in SIGMOD, 2005.

[55] Huang, J., Abadi, D. J., and Ren, K., “Scalable SPARQL Querying of Large RDF
Graphs.” PVLDB, 2011.

[56] Husain, M., McGlothlin, J., Masud, M. M., and others, “Heuristics-Based Query
Processing for Large RDF Graphs Using Cloud Computing,” IEEE TKDE, 2011.

[57] Ikawa, Y., Enoki, M., and Tatsubori, M., “Location inference using microblog messages,”
in WWW Companion, 2012.

[58] Iwerks, G. S., Samet, H., and Smith, K., “Continuous k-nearest neighbor queries for
continuously moving points with updates,” in VLDB, 2003.

[59] Jones, R., Kumar, R., Pang, B., and Tomkins, A., “”I know what you did last summer”:
query logs and user privacy,” in CIKM, 2007.

[60] Karypis, G. and Kumar, V., “A Fast and High Quality Multilevel Scheme for Partitioning
Irregular Graphs,” SIAM J. Sci. Comput., 1998.

[61] Karypis, G. and Kumar, V., “Analysis of multilevel graph partitioning,” in Supercomputing,
1995.

[62] Karypis, G. and Kumar, V., “Parallel multilevel k-way partitioning scheme for irregular
graphs,” in Supercomputing, 1996.

[63] Karypis, G. and Kumar, V., “Multilevel algorithms for multi-constraint graph partition-
ing,” in Supercomputing, 1998.

[64] Kavanaugh, A., Yang, S., Sheetz, S. D., and Fox, E. A., “Microblogging in Crisis
Situations: Mass Protests in Iran, Tunisia, Egypt,” in CHI Workshop, 2011.

196

[65] Khayyat, Z., Awara, K., Alonazi, A., Jamjoom, H., Williams, D., and Kalnis, P.,
“Mizan: A System for Dynamic Load Balancing in Large-scale Graph Processing,” in EuroSys,
2013.

[66] Kwak, H., Lee, C., Park, H., and Moon, S., “What is Twitter, a Social Network or a
News Media?,” in WWW, 2010.

[67] Kyrola, A., Blelloch, G., and Guestrin, C., “GraphChi: large-scale graph computation
on just a PC,” in OSDI, 2012.

[68] Ladwig, G. and Harth, A., “CumulusRDF: Linked data management on nested key-value
stores,” in SSWS, 2011.

[69] Le Phuoc, D., Parreira, J. X., Reynolds, V., and Hauswirth, M., “RDF On the Go:
RDF Storage and Query Processor for Mobile Devices.,” in ISWC, 2010.

[70] Lee, K. and Liu, L., “Efficient Data Partitioning Model for Heterogeneous Graphs in the
Cloud,” in ACM/IEEE SC, 2013.

[71] Lee, K. and Liu, L., “Scaling Queries over Big RDF Graphs with Semantic Hash Partition-
ing,” Proc. VLDB Endow., vol. 6, pp. 1894–1905, Sept. 2013.

[72] Leskovec, J., Kleinberg, J., and Faloutsos, C., “Graphs over time: Densification laws,
shrinking diameters and possible explanations,” in KDD, 2005.

[73] Li, W., Serdyukov, P., de Vries, A. P., Eickhoff, C., and Larson, M., “The where
in the tweet,” in CIKM, 2011.

[74] Liao, H., Han, J., and Fang, J., “Multi-dimensional Index on Hadoop Distributed File
System,” in NAS, 2010.

[75] Lin, J., Snow, R., and Morgan, W., “Smoothing techniques for adaptive online language
models: topic tracking in tweet streams,” in KDD, 2011.

[76] Liu, X., Han, J., Zhong, Y., Han, C., and He, X., “Implementing WebGIS on Hadoop:
A case study of improving small file I/O performance on HDFS,” in CLUSTER, 2009.

[77] Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., and Hellerstein,
J. M., “Distributed GraphLab: a framework for machine learning and data mining in the
cloud,” Proc. VLDB Endow., vol. 5, pp. 716–727, Apr. 2012.

[78] Lu, W., Shen, Y., Chen, S., and Ooi, B. C., “Efficient Processing of K Nearest Neighbor
Joins Using MapReduce,” Proc. VLDB Endow., vol. 5, June 2012.

[79] Mahmud, J., Nichols, J., and Drews, C., “Where Is This Tweet From? Inferring Home
Locations of Twitter Users,” in ICWSM, 2012.

[80] Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C., Horn, I., Leiser, N., and
Czajkowski, G., “Pregel: a system for large-scale graph processing,” in SIGMOD, 2010.

[81] Manning, C. D., Raghavan, P., and Schtze, H., Introduction to Information Retrieval.
Cambridge University Press, 2008.

[82] McCallum, A. K., “Bow: A toolkit for statistical language modeling, text retrieval, classi-
fication and clustering.” http://www.cs.cmu.edu/ mccallum/bow, 1996.

[83] Mislove, A., Marcon, M., Gummadi, K. P., Druschel, P., and Bhattacharjee, B.,
“Measurement and Analysis of Online Social Networks,” in IMC, 2007.

197

[84] Mouratidis, K., Yiu, M. L., Papadias, D., and Mamoulis, N., “Continuous nearest
neighbor monitoring in road networks,” in VLDB, 2006.

[85] Murugappan, A. and Liu, L., “An Energy Efficient Middleware Architecture for Processing
Spatial Alarms on Mobile Clients,” Mob. Netw. Appl., vol. 15, pp. 543–561, August 2010.

[86] Neumann, T. and Weikum, G., “The RDF-3X engine for scalable management of RDF
data,” VLDBJ, 2010.

[87] Noulas, A., Scellato, S., Mascolo, C., and Pontil, M., “An Empirical Study of Geo-
graphic User Activity Patterns in Foursquare,” in ICWSM, 2011.

[88] Owens, A., Seaborne, A., Gibbins, N., and others, “Clustered TDB: A Clustered Triple
Store for Jena,” 2008.

[89] Papadias, D., Sellis, T., Theodoridis, Y., and Egenhofer, M. J., “Topological Rela-
tions in the World of Minimum Bounding Rectangles: A Study with R-trees,” SIGMOD Rec.,
vol. 24, May 1995.

[90] Papadias, D., Zhang, J., Mamoulis, N., and Tao, Y., “Query processing in spatial
network databases,” in VLDB, 2003.

[91] Pearce, R., Gokhale, M., and Amato, N. M., “Multithreaded Asynchronous Graph
Traversal for In-Memory and Semi-External Memory,” in SC, 2010.

[92] Pennacchiotti, M. and Popescu, A.-M., “Democrats, republicans and starbucks afficiona-
dos: user classification in twitter,” in KDD, 2011.

[93] Perry, M., Jain, P., and Sheth, A. P., “Sparql-st: Extending sparql to support spatiotem-
poral queries,” in Geospatial semantics and the semantic web, Springer, 2011.

[94] Pesti, P., Liu, L., Bamba, B., Iyengar, A., and Weber, M., “RoadTrack: scaling
location updates for mobile clients on road networks with query awareness,” Proc. VLDB
Endow., vol. 3, 2010.

[95] Piorkowski, M., Sarafijanovoc-Djukic, N., and Grossglauser, M., “A Parsimonious
Model of Mobile Partitioned Networks with Clustering,” in COMSNETS, 2009.

[96] Prabhakar, S., Xia, Y., Kalashnikov, D. V., Aref, W. G., and Hambrusch, S. E.,
“Query Indexing and Velocity Constrained Indexing: Scalable Techniques for Continuous
Queries on Moving Objects,” IEEE Trans. Comput., vol. 51, pp. 1124–1140, Oct. 2002.

[97] Rohloff, K. and Schantz, R. E., “Clause-iteration with MapReduce to scalably query
datagraphs in the SHARD graph-store,” in DIDC, 2011.

[98] Roy, A., Mihailovic, I., and Zwaenepoel, W., “X-Stream: Edge-centric Graph Process-
ing Using Streaming Partitions,” in SOSP, 2013.

[99] Sakaki, T., Okazaki, M., and Matsuo, Y., “Earthquake shakes Twitter users: real-time
event detection by social sensors,” in WWW, 2010.

[100] Salihoglu, S. and Widom, J., “GPS: A Graph Processing System,” in SSDBM, 2013.

[101] Schmidt, M., Hornung, T., Lausen, G., and others, “SP2Bench: A SPARQL Perfor-
mance Benchmark,” in ICDE, 2009.

[102] Sebastiani, F., “Machine learning in automated text categorization,” ACM Comput. Surv.,
vol. 34, no. 1, pp. 1–47, 2002.

198

[103] Seidl, T. and Kriegel, H.-P., “Optimal multi-step k-nearest neighbor search,” in SIGMOD,
1998.

[104] Sellis, T. K., Roussopoulos, N., and Faloutsos, C., “The R+-Tree: A Dynamic Index
for Multi-Dimensional Objects,” in VLDB, 1987.

[105] Serdyukov, P., Murdock, V., and van Zwol, R., “Placing flickr photos on a map,” in
SIGIR, 2009.

[106] Shao, B., Wang, H., and Li, Y., “Trinity: A Distributed Graph Engine on a Memory
Cloud,” in SIGMOD, 2013.

[107] Song, Z. and Roussopoulos, N., “K-Nearest Neighbor Search for Moving Query Point,”
in SSTD, 2001.

[108] Stanton, I. and Kliot, G., “Streaming Graph Partitioning for Large Distributed Graphs,”
in KDD, 2012.

[109] Starbird, K. and Palen, L., “(How) will the revolution be retweeted?: information diffusion
and the 2011 Egyptian uprising,” in CSCW, 2012.

[110] Suri, S. and Vassilvitskii, S., “Counting triangles and the curse of the last reducer,” in
WWW, 2011.

[111] Tao, Y., Papadias, D., and Shen, Q., “Continuous nearest neighbor search,” in VLDB,
2002.

[112] Thiagarajan, A., Biagioni, J., Gerlich, T., and Eriksson, J., “Cooperative transit
tracking using smart-phones,” in SenSys, 2010.

[113] Tian, Y., Balmin, A., Corsten, S. A., Tatikonda, S., and McPherson, J., “From”
think like a vertex” to” think like a graph,” Proceedings of the VLDB Endowment, vol. 7,
no. 3, 2013.

[114] Valiant, L. G., “A bridging model for parallel computation,” Commun. ACM, vol. 33,
pp. 103–111, Aug. 1990.

[115] White, B., Lepreau, J., Stoller, L., Ricci, R., and others, “An integrated experimen-
tal environment for distributed systems and networks,” in OSDI, 2002.

[116] White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M.,
Hibler, M., Barb, C., and Joglekar, A., “An Integrated Experimental Environment for
Distributed Systems and Networks,” SIGOPS Oper. Syst. Rev., vol. 36, 2002.

[117] Xing, S., Shahabi, C., and Pan, B., “Continuous monitoring of nearest neighbors on land
surface,” Proc. VLDB Endow., 2009.

[118] Yu, X., Pu, K. Q., and Koudas, N., “Monitoring k-Nearest Neighbor Queries over Moving
Objects,” in ICDE, 2005.

[119] Yuan, P., Liu, P., Wu, B., Jin, H., Zhang, W., and Liu, L., “TripleBit: a Fast and
Compact System for Large Scale RDF Data,” Proceedings of the VLDB Endowment, vol. 6,
no. 7, 2013.

[120] Yuan, P., Zhang, W., Xie, C., Jin, H., Liu, L., and Lee, K., “Fast Iterative Graph
Computation: A Path Centric Approach,” in SC, 2014.

[121] Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., and Stoica, I., “Spark:
Cluster Computing with Working Sets,” in HotCloud, 2010.

199

[122] Zhang, C., Li, F., and Jestes, J., “Efficient Parallel kNN Joins for Large Data in MapRe-
duce,” in EDBT, 2012.

[123] Zhang, S., Han, J., Liu, Z., Wang, K., and Feng, S., “Spatial Queries Evaluation with
MapReduce,” in GCC, 2009.

[124] Zheng, D., Mhembere, D., Burns, R., Vogelstein, J., Priebe, C. E., and Szalay,
A. S., “FlashGraph: Processing Billion-Node Graphs on an Array of Commodity SSDs,” in
FAST, 2015.

[125] Zheng, Y., Zhang, L., Xie, X., and Ma, W.-Y., “Mining Interesting Locations and Travel
Sequences from GPS Trajectories,” in WWW, 2009.

200

