
PRIVACY-PRESERVING PLATFORMS FOR
COMPUTATION ON HYBRID CLOUDS

ZHANG CHUNWANG
(B.Sc, Fudan University)

A THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2014





Acknowledgements

First, I would like to express my sincere gratitude to my PhD advisor, Associate Professor

Chang Ee-Chien, for his constant support, guidance and encouragement throughout my

PhD study. He has been always patient and positive on me, brightening me many times

when I encounter difficulties in my research and study. His rigorous attitude of scholar-

ship, limitless passion on work as well as cordial and amiable style in life all have deeply

influenced me. Without his advice and guidance, this thesis would not have become pos-

sible.

I would like to thank Associate Professor Roland H. C. Yap for his great ideas and

extensive advice on the first work of the thesis. I would like to thank Associate Professor

Ooi Wei Tsang for the numerous discussions and invaluable suggestions on the second

work. I also wish to thank Associate Professor Liang Zhenkai for his help in my life and

helpful suggestions on my whole PhD thesis work.

My stay in NUS would not have been so wonderful without my fellow students and

friends. In particular, I would like to thank Dr. Xu Jia and Dr. Fang Chengfang for their

countless helps and encouragement. It has been such a fruitful and pleasant experience

working with them. I also wish to thank Dr. Dong Xinshu, Zhang Mingwei, Li Xiaolei,

Dai Ting, Hu Hong, Jia Yaoqi, Zhu Xiaolu, Zhang Dongyan and many others for bringing

so much joy and color to my life. In addition, I am also thankful to the friends in the

SeSaMe centre for providing so many helps in all the matters related to video surveillance

and sensing.

Lastly, my most heartfelt thanks go to my parents and my wife. I could not and would

not have made it without their constant love and encouragement. They gave up a lot while

offering everything I want. They are always there when I need them.

ii



To my parents and my wife

iii



Contents

1 Introduction 1

2 Background 9

2.1 Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Service Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Cloud Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Hybrid Clouds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Definition and Current Status . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Scheduling on Hybrid Clouds . . . . . . . . . . . . . . . . . . . 16

2.3 Secure Computing on the Cloud . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Encrypted Domain Processing . . . . . . . . . . . . . . . . . . . 17

2.3.2 Trusted Computing and Secure Hardware . . . . . . . . . . . . . 19

2.3.3 Data Segregation Using Hybrid Clouds . . . . . . . . . . . . . . 19

3 Privacy-preserving MapReduce Computation on Hybrid Clouds 21

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 MapReduce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.2 Overview of the Proposed Framework . . . . . . . . . . . . . . . 28

3.3 Programming Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Sensitivity Policy . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Scheduling Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.1 Two-Phase Crossing Mode (Partitionable Reduce) . . . . . . . . . 35

iv



3.4.2 Two-Phase Non-Crossing Mode . . . . . . . . . . . . . . . . . . 36

3.4.3 Hand-Off Mode (Unique Tag) . . . . . . . . . . . . . . . . . . . 37

3.4.4 Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5.1 Motivating Examples . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5.2 Scheduler-View and Public-View . . . . . . . . . . . . . . . . . . 41

3.5.3 Baseline - the Conservative Scheduler . . . . . . . . . . . . . . . 42

3.5.4 Security Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5.5 Leaky Implementation . . . . . . . . . . . . . . . . . . . . . . . 45

3.5.6 Security of the Proposed Modes . . . . . . . . . . . . . . . . . . 47

3.5.7 Side-Channel Information . . . . . . . . . . . . . . . . . . . . . 48

3.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6.1 Hadoop Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6.2 Input Data Tagging . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6.3 Data Uploading and Replication . . . . . . . . . . . . . . . . . . 53

3.6.4 Map Task Management . . . . . . . . . . . . . . . . . . . . . . . 53

3.6.5 Reduce Task Management . . . . . . . . . . . . . . . . . . . . . 54

3.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.7.1 Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . . 55

3.7.2 Experiments on Scheduling Modes . . . . . . . . . . . . . . . . . 57

3.7.3 Experiments on Different Baselines . . . . . . . . . . . . . . . . 63

3.7.4 Experiments on Different Public Cloud Sizes . . . . . . . . . . . 64

3.7.5 Experiments with Chained MapReduce . . . . . . . . . . . . . . 66

3.8 Extension – Routing Traffic through a Proxy . . . . . . . . . . . . . . . . 67

3.8.1 Main Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.8.2 Implementation and Evaluation . . . . . . . . . . . . . . . . . . . 69

3.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

v



4 Privacy-preserving Video Surveillance Stream Processing on Hybrid Clouds 73

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Background on Video Surveillance . . . . . . . . . . . . . . . . . . . . . 76

4.2.1 Video Surveillance Systems . . . . . . . . . . . . . . . . . . . . 76

4.2.2 Video Surveillance in the Cloud . . . . . . . . . . . . . . . . . . 78

4.2.3 Security and Privacy in Video Surveillance . . . . . . . . . . . . 79

4.3 Hybrid Cloud Video Surveillance Model . . . . . . . . . . . . . . . . . . 81

4.3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3.2 Stream Processing Model . . . . . . . . . . . . . . . . . . . . . . 82

4.3.3 Security Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.4 Cost Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3.5 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4.1 Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . 87

4.4.2 Extension of the Stream Processing Model . . . . . . . . . . . . . 89

4.5 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.5.1 Transforming to Integer Programming . . . . . . . . . . . . . . . 91

4.5.2 Minimal Configurations . . . . . . . . . . . . . . . . . . . . . . . 92

4.5.3 Heuristic Selecting Method . . . . . . . . . . . . . . . . . . . . . 94

4.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.6.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.6.2 Proof-of-concept System Evaluation . . . . . . . . . . . . . . . . 101

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5 Conclusions 105

vi



vii



Summary

In this thesis, we are interested in enabling efficient and cost-effective privacy-preserving

computing on the cloud. Existing approaches on encrypted domain processing and trusted

computing have been found limited, impractical or expensive. Instead, this thesis focuses

on another approach of data segregation using hybrid cloud. With a hybrid cloud, one

could properly segregate the data, pushing non-sensitive data to the public cloud while

keeping sensitive data in the trusted private cloud. However, this computing model under

hybrid cloud has not been well supported by many existing platforms. In particular, we

look into two widely used platforms of MapReduce and video surveillance.

MapReduce is a popular framework for performing large-scale data analysis; how-

ever, MapReduce is designed for only one (logical) cloud and may leak sensitive data

when working on a hybrid cloud. In view of this, we propose extending MapReduce by

augmenting each key-value pair with a sensitivity tag. This tagging enables fine-grained

dataflow control during execution to prevent information leakage. More importantly, the

tagging provides increased flexibility by allowing sophisticated security polices and facil-

itating complex MapReduce computation. To address the performance issues introduced

by the security constraint, we exploit useful properties of the MapReduce functions and

present three scheduling modes which can rearrange the computation for increased effi-

ciency while maintaining MapReduce correctness. A generic security framework is also

provided for analyzing what information a scheduler can leak through execution on hy-

brid clouds. Experiments on Amazon EC2 show that our prototype on Hadoop is able to

preserve data-privacy while effectively outsourcing computation and reducing inter-cloud

network traffic.

We next consider processing of large-scale video surveillance streams on hybrid cloud.

The challenge here shifts to problems of scheduling the processing tasks over the hybrid

cloud so as to protect data privacy as well as to achieve certain efficiency. We first present

a stream processing model that can take into account special properties of the hybrid
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cloud in handling ad-hoc queries and dynamic clients. Based on this model, we formalize

the scheduling challenge as an optimization problem to minimize the monetary cost to

be incurred on the public cloud, subjected to several resource, security and Quality-of-

Service (QoS) constraints. Our proposed scheduler exploits useful properties of the hybrid

cloud for more efficient solutions and allows scaling to larger instances. Both the simula-

tions and proof-of-concept system evaluation on Amazon demonstrate the effectiveness

and efficiency of the proposed approach.

We conclude that privacy-preserving computation on the hybrid cloud can be made

efficient, cost-effective and automatic. With the well-designed scheduling mechanisms,

the overheads incurred by the security constraint could be significantly reduced.
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Chapter 1

Introduction

Cloud computing has drawn extensive attention from both academia and industry in the

recent years. By combining a set of existing and new techniques such as virtualization

and Service-Oriented Architectures (SOA), cloud computing provides scalable and on-

demand resources as services over the Internet, at relatively low prices (e.g., $0.098 per

hour for compute and $0.03 per GB for storage).1 Successful examples of cloud services

are Amazon AWS [24], Google App Engine [10] and Microsoft Windows Azure [12] etc.

Organizations and individuals are increasingly realizing that, by simply tapping into the

cloud, they can enjoy a wide range of benefits including reduced monetary cost, high

scalability and availability, ubiquitous access etc. More and more data and applications

are being moved to the cloud [143, 157].

However, cloud computing also faces a series of striking challenges which may im-

pede its wider adoptions. Among these challenges, data security and privacy could be

the most significant one. Users outsource their data to the cloud and lose physical con-

trol of the data. Yet cloud providers cannot be fully trusted due to various inside threats

and outside attacks. For example, many data breach incidents have been reported over

the years for various cloud service providers [29, 31, 37, 123]. NSA has been revealed to

secretly tap into Google and Yahoo data centers and collect data “at will” [30]. Ristenpart
1Prices are taken from Amazon EC2 and S3 respectively, for the Asia Pacific (Singapore) region as in

May 2014. The compute cost is measured for on-demand Linux/UNIX instances of m3.medium type; the
storage cost is measured for a total space requirement of less than 1 TB per month.
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et al. [141] also demonstrated that confidential information can be extracted through side-

channel leakage across virtual machines (VMs) resided on the same physical machine.

Indeed, data security and privacy has long been ranked as one of the top concerns in

the cloud [5–7]. Oftentimes organizational data involve both sensitive and non-sensitive

information, e.g., an organization’s file system may contain general (non-sensitive) files

mixed with confidential business data. Also, many datasets for analytical tasks such as

network logs, email archives and healthcare records may involve data from public sources

mixed with sensitive private data. Computation on such mixed-sensitivity data should not

be carried out on the unsecured clouds without security measures to prevent data leakage.

There are multiple ways to achieve privacy-preserving computation in the cloud. In

the simplest form, one could encrypt the data, e.g., using AES, before outsourcing them

to the cloud. This simple solution, however, would give rise to technical challenges when

computation has to be carried out on the data. Researchers have developed multiple cryp-

tographic primitives to support encrypted domain processing. The main idea is to encrypt

the data in a proper form such that the cloud can compute on the encrypted data with-

out learning any plaintext information. Some traditional encryption schemes are partially

homomorphic, supporting only limited operations such as addition for ElGamal [80] and

multiplication for Paillier [131]. They allow outsourcing of specific applications such

as modular exponentiation [92] and linear algebra [38], but are not suitable for general-

purpose computation. In 2009 Gentry [84] presented the first construction of a fully

homomorphic encryption (FHE) scheme which supports evaluating arbitrary functions on

the encrypted data. Unfortunately, FHE scheme is still not practical [151] though a num-

ber of improvements and implementations have been made over the years [50,83,85,155].

Another line of research work utilizes trusted computing techniques [17] to establish a se-

cure and isolated computing environment in the cloud which can handle sensitive data and

operations [53, 65, 173]; however, such approaches still require trust on a certain amount

of hardware such as CPUs which is under physical control of the cloud providers. Also,

these secure hardwares are usually expensive and relatively slow. They do not qualify as
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building blocks for a cost-efficient and scalable cloud computing infrastructure.

In this thesis, we are interested in enabling efficient and cost-effective privacy-preserving

computation on the cloud. In view of the limitations and difficulties of the above existing

solutions, we focus on another approach of data segregation using hybrid cloud. A hybrid

cloud essentially combines a private and a public cloud. The private cloud could be an

organization’s existing internal data center, on which the organization have full control

and can trust. The public cloud is typically one of the general commercial clouds men-

tioned before. A seamless integration of these two clouds offers increased scalability and

cost-effectiveness. The private cloud can be used for typical workloads which fit within

the local resources, but when additional resources are needed during peak computation,

the public cloud is harnessed. This hybrid cloud model has gained wide adoptions and is

still undergoing rapid development [1, 5].

While the hybrid cloud model was initially proposed to handle the issues of scalability

and dynamic workload, it can also be used to address the security issues. With a hybrid

cloud, one could segregate the computation on non-sensitive data from that on sensitive

data, such that the former can be comfortably outsourced to the public cloud while the

latter, possibly much smaller in size, can be easily handled on the private cloud. In this

way, the computation can be carried out both securely and efficiently. Unfortunately,

this computing model under hybrid clouds has not been well supported by many existing

cloud platforms. As a result, users have to manually separate the data into two parti-

tions, compute sensitive (or non-sensitive) partition on the private (or public) cloud, and

then combine the partial outputs using their own code. This process is neither efficient

nor transparent. We want to provide platforms that can automate this process and make

privacy-preserving computation in the cloud efficient, cost-effective and automatic. In

particular, we look into two widely used platforms of MapReduce and video surveillance.

MapReduce [74] is a popular framework for processing huge data sets in a cluster

of commodity machines. Conceptually, MapReduce divides a huge problem into multi-

ple smaller sub-problems (or map/reduce tasks) and provides a seamless distribution of

3



these tasks among nodes in the cluster in a way which is transparent to the programm-

ers/users. Users only implement the two map and reduce functions, without caring about

the complex issues of task-scheduling and data movement. Unfortunately, MapReduce is

designed for only one single (logical) cloud and does not distinguish between data and

machines with differing sensitivity. From the viewpoint of MapReduce, all data are id-

entical in terms of sensitivity and all machines have the same level of trust. Hence, if

used on a hybrid cloud, MapReduce cannot prevent sensitive data/information from being

leaked to the untrusted public cloud.

To address this problem, we propose tagged-MapReduce, a conservative extension to

the existing MapReduce framework. Tagged-MapReduce augments each key-value tuple

in MapReduce with a tag, which is a small piece of meta data indicating the sensitivity

of that tuple. Meanwhile, the map and reduce functions are also modified to work on

tagged-tuples appropriately. The sensitivity tags enable the platform to do fine-grained

dataflow control during execution to prevent information leakage: once a tuple is tagged

as sensitive, it cannot leave the private cloud. More importantly, the tagging provides

increased flexibility by: 1) allowing programmers to code sophisticated security policies

in map/reduce programs to guide sensitivity transformation during execution, and 2) pro-

viding sensitivity information for data across multiple MapReduce computation, which

is necessary for many real-world applications involving chained or iterative MapReduce.

The flexibility in turn allows legacy MapReduce programs to be easily supported. To ad-

dress potential performance issues introduced by the security constraint, we investigate

useful properties of the map/reduce functions, namely partition-able reduce and unique

tag, and propose several scheduling modes that can rearrange the computation for better

performance while preserving data-privacy and maintaining MapReduce correctness. We

further present a generic security framework that can capture and analyze what kind of

information leakage a scheduler can make through execution on hybrid clouds. This secu-

rity framework can be used to compare the information leakage of different schedulers and

to determine whether a scheduler is secure or not. We have prototyped tagged-MapReduce
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on Hadoop [18], a well-known open-source MapReduce implementation. Experiments on

a small hybrid cloud we built on Amazon EC2 show that tagged-MapReduce can effec-

tively preserve data privacy on hybrid clouds, outsource more computation to the public

cloud and reduce both inter-cloud communication and monetary cost.

Next, we consider processing of large-scale video surveillance streams on hybrid

clouds. Video surveillance is a widely used application which deals with large data and

also has privacy issues. The challenge here lies on how to schedule the stream processing

tasks on the hybrid cloud so as to protect video privacy which achieving certain efficiency.

Such scheduling decisions cannot be manually made by system administrators due to high

system dynamics as well as various factors in consideration. Thus, it is desired to have a

platform that unifies the two clouds and schedules the tasks securely and effectively. We

first give a stream processing model that is specifically designed for the hybrid cloud set-

ting. This model takes into account special properties of the hybrid cloud and can handle

ad-hoc queries and dynamic clients without rescheduling mostly. Based on this model, we

then formalize the scheduling problem as an optimization problem to minimize the mon-

etary cost incurred on the public cloud, with several constraints being satisfied, namely

resource, security and Quality-of-Service (QoS). The optimization problem itself is NP-

hard; however, our proposed scheduler can exploit specialized properties of hybrid clouds

for more efficient solutions. Essentially, for each task of the input, we convert it to a set

of configurations and search for the “minimal configurations”, and then employ integer

programming to select the desired configurations. To guarantee that the integer problems

are sufficiently small, we further provide a heuristic to select only a few representatives.

Experiments through both simulations and proof-of-concept system run on Amazon EC2

illustrate the effectiveness and efficiency of the proposed approach.

The above two work investigated into fundamental issues for two widely used pro-

gramming paradigms. Through these two work, we demonstrated that privacy-preserving

computation on hybrid clouds can be made efficient, cost-effective and also automatic.

For future work, we plan to extend our ideas to other platforms such as Apache Spark [23]
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as well as to combine with practical encryption schemes. In addition, we are also interest-

ed in providing routing anonymity for cloud computing so that the leakage from dataflow

can be prevented. This would complement existing research work on cloud security.

Contributions

This thesis addresses the issues of data security and privacy in cloud computing. In view

of the limitations of the existing solutions, this thesis focuses on a different approach

of segregating computation in the emerging hybrid cloud setting. More specifically, the

thesis studies how to partition and schedule computation with mixed-sensitivity data on

hybrid cloud systems so as to preserve data privacy and achieve increased efficiency. The

two platforms studied in the thesis, namely MapReduce and video surveillance, represent

two popular programming paradigms for cloud computing. This thesis work provides

one of the first platforms that automate and make effective the process of privacy-aware

computation on hybrid clouds.

The work completed in the thesis made two major contributions.

• We proposed tagged-MapReduce (Chapter 3), the first generic and flexible frame-

work to support privacy-aware computation on hybrid clouds, and gave a new

programming model for MapReduce that supports tagging of sensitive data (Sec-

tion 3.3). We then presented several scheduling modes (Section 3.4) that can assign

the map and reduce tasks between the public and the private cloud for increased

efficiency and reduced cost. We also proposed a general security framework to an-

alyze and compare the information leakage by different schedulers (Section 3.5). A

prototype has been implemented on top of Hadoop (Section 3.6), with experiments

on a hybrid Amazon cloud to demonstrate its efficiency in terms of inter-cloud net-

work traffic and task completion time (Section 3.7).

• We dealt with partitioning and scheduling of video processing operations in the do-

main of video surveillance (Chapter 4). First, we presented a well-designed stream

processing model that is suitable for hybrid cloud video surveillance (Section 4.3).
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Based on this model, we formulated the scheduling issue as an optimization prob-

lem to minimize the monetary cost, with several constraints being satisfied (Sec-

tion 4.4), and gave an efficient solution using a simple observation and a heuristic

(Section 4.5). We conducted experiments through both simulations and proof-of-

concept system runs to demonstrate the efficiency and effectiveness of the proposed

approach (Section 4.6).

Organization

Chapter 2 provides the background of cloud computing, together with a brief summary of

existing work on cloud computing security. Chapter 3 details the design, implementation

and evaluation of the proposed tagged-MapReduce extension. We continue in Chapter 4

by looking at the problem of processing large-scale video surveillance streams on hybrid

clouds. Chapter 5 concludes the thesis, with several suggestions for the future directions.
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Chapter 2

Background

This chapter provides a brief overview of cloud computing, with emphasis on the hybrid

cloud model. We also summarize existing research work on privacy-preserving comput-

ing in the cloud.

2.1 Cloud Computing

A cloud might be thought of as a large pool of resources, unified through virtualization

or job scheduling techniques, that can be managed to dynamically scale up to match the

load, using a pay-as-you-use business model. The main idea behind cloud computing is

not new: John McCarthy in the 1960s already envisioned that computing facilities will be

provided as utilities to the general public [132]. It was until 2006 when Google’s CEO

Eric Schmidt used the word to describe their new business model that the term started to

gain its real popularity. Yet for a long time, “cloud computing” is only used as a marketing

term without any standards or formal definitions, causing ambiguities and confusions.

There are a few attempts to standardize the notion [124, 163]. In this thesis, we adopt the

definition by the U.S. National Institute of Standards and Technology (NIST) [124]:

NIST’s definition of cloud computing. Cloud computing is a model for

enabling convenient, on-demand network access to a shared pool of con-
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figurable computing resources (e.g., networks, servers, storage, applications,

and services) that can be rapidly provisioned and released with minimal man-

agement effort or service provider interaction.

The above definition captures well the essential characteristics of cloud computing

which include:

• On-demand self-service. Users can request and manage resources without human

interaction with the service providers, using, for example, a web portal or manage-

ment interface. Provisioning and de-provisioning of resources happen automatical-

ly on the providers’ side.

• Broad network access. Clouds are generally accessible via the Internet, and use the

Internet as the service delivery medium. Thus, any device with Internet connectivi-

ty, e.g., a smartphone, a PDA or a laptop, is able to access the cloud services.

• Shared resource pooling. Computing resource such as CPUs, memories and storage

are implemented as a homogeneous architecture that is shared among all users.

• Rapid elasticity. Resources can be allocated and released rapidly and elastically.

This will allow the users to scale up the resources at any time to address peak

workloads and usage, and then scale down by returning the resources to the pool

when finished.

• Metered service. Computing in the cloud is offered as utility where users only pay

for what they have used, like any other utility enterprises paid for such as electricity

and gas.

2.1.1 Service Models

The architecture of a cloud computing environment can be broadly divided into 4 layers:

the hardware layer, the infrastructure layer, the platform layer and the application layer, as
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Figure 2.1: The layered architecture of a cloud computing environment.

shown in Figure 2.1. Corresponding to this classification, services offered by the clouds

can be grouped into 3 categories: Software as a Service (SaaS), Platform as a Service

(PaaS), and Infrastructure as a Service (IaaS).

• Infrastructure as a Service (IaaS). In this model infrastructure resources are provid-

ed, usually in terms of virtual machines (VMs), to cloud users. Users have access

to and can manage the computing power, storage mediums and necessary network

components. Users thus can run arbitrary operating systems and softwares that best

meet their needs, with full control and management. An example of IaaS would be

Amazon EC2 [24].

• Platform as a Service (PaaS). In this model platform layer resources including op-

erating system support and software development frameworks are provided, hence

users can create, deploy and run custom applications targeting specific platforms,

with full control of the applications and their configurations. Examples of PaaS

would be Google Apps Engine [10] and Microsoft Azure Platform [12].

• Software as a Service (SaaS). In this model on-demand software and applications

are provided over the Internet, thus users can rent the software using pay-per-use,

or subscription fee. Examples of SaaS would be Dropbox [19] and Salesforce.com

Customer Relationship Management (CRM) software [22].
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Note that it is entirely possible for a SaaS or PaaS provider to run its cloud on top of

a IaaS provider. For example, Dropbox, an online file hosting and sharing service, stores

customers’ data on Amazon S3. There are also cases where SaaS/PaaS and IaaS are parts

of the same organization, e.g., Google and Salesforce.com.

2.1.2 Cloud Advantages

Cloud has advantages in offering more scalable, fault-tolerant services with even higher

performance and lower cost. More specifically, from customers’ point of view, cloud

computing offers a wide range of benefits including:

• No up-front investment. Cloud resources are provided in a pay-as-you-go pricing

model. Users do not have to invest in any infrastructure or hardware (e.g., plants,

computers, networks, etc.) in order to start their business. They can simply rent

resources from the cloud based on their needs and only pay for the usage.

• High scalability and elasticity. The cloud provides a seemingly infinite set of re-

sources which can be allocated and de-allocated on-demand. Users can easily ex-

pand their applications to large scales in order to handle rapid increase in service

demand. They do not need to provision capabilities according peak workloads, and

thus save a significant amount of monetary cost and increase the resource utilization

rate.

• Low operating and maintenance cost. By deploying services and applications in the

cloud, users can free themselves from complex tasks of operating and maintaining

infrastructure and policies. Furthermore, they also shift business risks (e.g., hard-

ware failures) to the cloud providers which usually have better expertise and are

better equipped for managing these risks.

• High accessibility. Services hosted in the cloud are generally web-based. Thus,

they are easily accessible through a variety of devices with Internet connectivity.
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Source: North Bridge Venture Partners’ 2013 Future of Cloud 
Computing Survey 

1. Motivation  

 

 A combination of a private cloud (e.g., an organization’s in-house data 
center) together with a public cloud (e.g., Amazon AWS) 

 Offers increased scalability and cost-effectiveness 

 Becomes increasingly popular [1] 

 

[1] 2013 Cloud Computing Survey. http://northbridge.com/2013-cloud-computing-survey/ 
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3 Figure 2.2: Illustration of a hybrid cloud.

These devices include not only desktop and laptop computers, but also smartphones

and PDAs.

These features make cloud computing a compelling model for developing and deploy-

ing new services and applications, especially for small and medium business (SMBs) and

individuals.

2.2 Hybrid Clouds

2.2.1 Definition and Current Status

Cloud computing comes mainly in three forms: public clouds, private clouds, and hybrid

clouds. A public cloud makes resources, such as compute and applications, available to

the general public. Public clouds provide the best economies of scale but lack fine-grained

control over the data and applications. A private cloud is a data center owned by a single

organization. The goal of a private cloud is not to provide services to external customers

but instead to gain the benefits of cloud architecture without giving up the full control.

Private clouds can be expensive with typically modest economies of scale, and are driven

by concerns around security and compliance.

A hybrid cloud is an integrated cloud service utilizing both public and private clouds

to perform distinct functions within the same organization. Applying the definition from

the NIST, “a hybrid cloud is a combination of public and private clouds bound together
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by either standardized or proprietary technology that enables data and application porta-

bility”. Hybrid cloud models can be implemented as a combination of a private cloud

inside an organization (i.e., the local in-house datacenter) or a private cloud hosted on

third-party premises, together with one or more public cloud providers. A hybrid cloud is

illustrated in Figure 2.2.

A hybrid cloud offers advantages of both the public and private clouds. On the one

hand, a hybrid cloud can handle typical workload on the private cloud while offloading

additional workload to the public cloud, thereby is more scalable and cost-effective than

private clouds. On the other hand, it allows sensitive and business-critical data to be

managed and processed locally, and hence is arguably more secure than public clouds.

More specifically, a hybrid cloud can offer its users the following features:

• Scalability. While private clouds do offer a certain level of scalability depending on

their configurations (whether they are hosted internally or externally for example),

public cloud services will offer scalability with fewer boundaries because resource

is pulled from the larger cloud infrastructure. By moving as many non-sensitive

functions as possible to the public cloud, it allows an organization to benefit from

public cloud scalability while reducing the demands on a private cloud.

• Cost-efficiency. Public clouds are likely to offer more significant economy of scale

(such as centralized management) and so greater cost efficiency, than private clouds.

Hybrid clouds therefore allow organizations to access these savings for as many

business functions as possible while still keeping sensitive operations secure.

• Security. The private cloud of the hybrid cloud model not only provides the security

where it is needed for sensitive operations but can also satisfy regulatory require-

ments for data handling and storage where it is applicable.

• Flexibility. The availability of both secure resource and scalable cost-effective pub-

lic resource can provide organizations with more opportunities to explore different

operational avenues.
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Figure 2.3: RightScale 2014 State of the Cloud Report [5].

A large number of recent surveys reveal the popularity and growing demand of hybrid

clouds [1, 3–5, 15]. For example, the RightScale 2014 State of the Cloud Report shows

that the hybrid cloud has accounted for around 50% of all the cloud adoptions in 2013 (as

shown in Figure 2.3) and this number is still expected to be increasing. Rackspace’s 2013

Cloud Survey [15] gives us more details about industry’s attitude on hybrid clouds:

• 60% of respondents have moved or are considering moving certain applications or

workloads either partially (41%) or completely (19%) off the public cloud because

of its limitations or the potential benefits of other platforms, such as the hybrid

cloud;

• 60% of IT decision-makers see hybrid cloud as the culmination of their cloud jour-

ney;

• Top reasons for using hybrid cloud instead of a public cloud only approach: better

security (52%), more control (42%), and better performance or reliability (37%);

• Top benefits hybrid cloud users report: more control (59%), better security (54%),

better reliability (48%), reduced costs (46%) and better performance (44%);

• Average reduction in overall cloud costs from using hybrid clouds: 17%.
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2.2.2 Scheduling on Hybrid Clouds

The hybrid cloud possesses certain characteristics making it different from the pure public

or private cloud. In particular, while servers within each single public or private cloud are

often connected by a high-bandwidth, low-latency network (for example, Gigabit LANs),

connections across the public and private servers in a hybrid cloud have to go through a

wide area network (WAN) or the Internet, having relatively smaller bandwidth and higher

delay. In addition, under current typical cloud pricing models, data traffic within each

single cloud is free-of-charge whereas data traffic out from/in to the public cloud may

incur high monetary cost. For example, Amazon does not charge for data transfer in the

same Availability Zone within the Amazon AWS, but charges as high as $0.19 per GB

for data transfer out from Amazon EC2 to the Internet.2 Based on these observations, it

is therefore desired to carefully schedule the computation so as to reduce the inter-cloud

data traffic as well as the monetary cost. With the advances in hybrid clouds, this schedul-

ing issue has drawn growing research interest. For example, Zhang et al. [174] propose a

hybrid cloud computing model for Internet-based applications with highly dynamic work-

load, and augment this model with a workload factoring service. The core technology is

a fast “hot” data prediction algorithm. Van et al. [162] propose a scheduling algorithm

to minimize the cost in a multi-provider hybrid cloud setting with deadline-constrained

and preemptible workloads that are characterized by memory, CPU and data transmission

requirements. De et al. [73] and Mattess et al. [121] similarly evaluate the cost-benefits of

different strategies for scheduling workloads between a local cluster and a public cloud.

However, none of these works takes into account the data security and privacy require-

ment. In the following Section 2.3.3, more works considering both security and efficiency

in hybrid cloud scheduling will be discussed.

2Prices are taken from the Asia Pacific (Singapore) region in May 2014, with a total amount of data
transfer less than 10 TB per month.

16



2.3 Secure Computing on the Cloud

Security and privacy are often the first concern when organizations consider outsourcing

their data to a public cloud [1, 3, 5, 67]. In public cloud environments, data is usually lo-

cated outside an organization’s network, so that users have access to resources but not to

physical machines, network and other related equipment. Users have to rely on the cloud

providers for ensuring data security and privacy, which may not be a good practice. On

the one hand, public cloud services cannot be fully trusted due to potentially malicious

insiders [68, 102]. On the other hand, public clouds may also suffer from outside attacks.

For example, confidential information can be extracted through side-channel information

leakage across VMs resided on the same physical machine [141]. Snowden recently re-

vealed that NSA secretly tapped into Yahoo! and Google data centers to collect sensitive

information [30]. Therefore, how to compute in public clouds without revealing sensitive

information is a challenging problem in general. In this section, we summarize existing

approaches and broadly divide them into three categories: encrypted domain processing,

trusted platforms and data segregation using hybrid clouds.

2.3.1 Encrypted Domain Processing

One simple approach is to employ client-side encryption before pushing data to the cloud.

However, traditional encryption techniques such as AES do not allow computation to be

carried out on the encrypted data. Cloud users have to download the data, decrypt it

and then process it which is extremely inefficient. In response, multiple cryptographic

techniques have been proposed to support encrypted domain processing.

Homomorphic encryption allows one to compute on encrypted data without getting

the underlying plaintext information. Early homomorphic encryption schemes are re-

stricted to specific operations such as multiplications for RSA [142], additions for Pailli-

er [131], or additions and up to one multiplication [46]. They only support outsourcing of

specific computations, e.g., modular exponentiations [92], linear algebra [38], sequential
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comparison [39] and DNA searching [42], to untrusted servers. Gentry in 2009 introduced

the notion of Fully Homomorphic Encryption [84] which supports arbitrary computations

on the encrypted data. Gennaro et al. [82] then present an idea to securely outsource

general computations using fully homomorphic encryption in such a way that both in-

put/output privacy and correctness/soundness of computation are guaranteed. Following

their work, Chung et al. [66] propose an improved version in which the original inefficient

“offline stage” is significantly simplified. Unfortunately, fully homomorphic encryption

schemes are currently not efficient enough for practical usages [83, 151], though various

improvements and implementations have been made over the years [49, 50, 85, 155].

There are also works focusing on encrypted domain searching specifically. The notion

of searchable encryption was first studied by D. Song et al. [158] in the symmetric set-

ting, and then improved and revised by Chang et al. [59] and Curtmola et al. [71]. Wang

et al. [166] later give a secure keyword ranked search scheme which utilizes keyword

frequency to rank searching results instead of returning undifferentiated results. Boneh et

al. [44] give the first searchable encryption construction in the public key setting. These

schemes only support searching over a single keyword. To enrich the search functionality,

conjunctive keyword search [41, 45, 88] over encrypted data are then proposed. Predicate

encryption schemes [105,154], as a more general search approach, are published recently

which support both conjunctive and disjunctive keyword search. To improve searching

experience, Cao et al. [54] then propose the first multi-keyword ranked search in which

searching results are ordered by “coordinate matching”, as an improvement to their early

work [166] which only considers single keyword. Kamara et al. [99] introduce a cryp-

tographic cloud storage service that, by combining techniques of searchable encryption,

attribute-based encryption and proof of storage, enables the cloud to search on the en-

crypted data without leaking its information while allowing users to verify the integrity

of the data at any time.
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2.3.2 Trusted Computing and Secure Hardware

Another line of works try to address the cloud security and privacy issues by establishing

trusted execution environments where cloud clients can verify the integrity of the soft-

ware and hardware platforms. The use of trusted computing-based remote attestation in

the cloud scenario was recently discussed [65]. Trusted Virtual Domains [53, 90] are one

approach that combines trusted computing, secure hypervisors, and policy enforcement

of information flow within and between domains of virtual machines. However, those

approaches require trust in a non-negligible amount of hardware (e.g., CPU, Trusted Plat-

form Module (TPM) [17]) which are under physical control of the cloud provider. A

virtualized TPM [134] that is executed in software could be enhanced with additional

functionality (see, e.g., [146]). However, such software running on the CPU has access to

unencrypted data at some point, hence, if the cloud provider is malicious, confidentiality

and verifiability cannot be guaranteed by using trusted computing.

Secure co-processors [78,156] are tamper-proof active programmable devices that are

attached to an untrusted computer in order to perform security-critical operations or to

allow establishing a trusted channel through untrusted networks and hardware devices to

a trusted software program running inside the secure coprocessor. This can be used to

protect sensitive computation from insider attacks at the cloud provider [97]. However, as

secure hardware is usually expensive, relatively slow, and provides only a limited amount

of secure memory and storage, it does not qualify as building blocks for a cost-efficient,

high-performant, and scalable cloud computing infrastructure.

2.3.3 Data Segregation Using Hybrid Clouds

In view of the difficulties of the above cryptographic approaches or trusted platforms,

the academic and research community show growing interest in the data segregation ap-

proach over hybrid clouds. Ideally, with a hybrid cloud, an organization can keep sensi-

tive and private data in the private cloud which is under full control of the organization
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while pushing non-sensitive data to the elastic public cloud, addressing the security is-

sues by preventing sensitive information flowing into the public cloud. But this data

segregation model is not well supported by many of today’s data-intensive computing

frameworks. Ko et al. present the HybrEx model [108] which discusses various ways to

partition data and MapReduce computation over a hybrid cloud. Four execution models

are presented accordingly, that is, map hybrid, horizontal partitioning, vertical partition-

ing and hybrid. However, they only give an outline without further details or implemen-

tations. Sedic [175] gives a practical implementation of the map hybrid model on top of

Hadoop [18]. However, Sedic has limitations in terms of flexibility. The reduce can only

happen in the private cloud while not utilizing the public cloud resources. Also, Sedic

does not naturally support complex MapReduce computation involving chained or itera-

tive MapReduce which is important to many real-world applications. Bugiel et al. [52]

propose using the private cloud to encrypt the data and verify the intensive computation

performed in the untrusted public cloud.

On the issue of secure query processing, Relational Cloud [70] uses a graph-based par-

titioning algorithm to achieve near-linear elastic scale-out, and an adjustable encryption

scheme that encrypts each value in a “onion”. Query operations can be performed by de-

crypting the value only to an appropriate layer, achieving both privacy and efficiency. Ok-

tay et al. [130] formulate the database partitioning over hybrid clouds as an optimization

problem with a set of performance, cost and disclosure constraints, and give an efficient

greedy algorithm. They simply measure the data disclosure risk as how much percent

of the sensitive data can be stored on the public cloud. In contrast, Aggarwal et al. [34]

investigate how to achieve information-theoretically secure partitioning by decomposing

database relation schemas across two non-colluding cloud providers (not necessary to be

a public and a private cloud). Other works include distributing human genomic computa-

tion to hybrid clouds so as to protect sensitive DNA information [62, 168].
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Chapter 3

Privacy-preserving MapReduce

Computation on Hybrid Clouds

3.1 Introduction

In this chapter, we consider the MapReduce framework and present our extension which

supports privacy-preserving MapReduce computation on hybrid clouds.

As mentioned in the Introduction, a simple solution for secure computing on hy-

brid clouds is to separate the data into sensitive and non-sensitive parts, outsource non-

sensitive data to the public cloud while keeping sensitive data being handled on the private

cloud. In this way, the data can be processed both securely while being elastic. However,

this data segregation model under hybrid clouds is not well supported by MapReduce [74],

today’s most popular data-intensive computing framework. MapReduce is designed for

only one (logical) cloud and does not distinguish between data and servers with differing

sensitivities. Hence, cloud users have to manually split the data, compute them on each

cloud separately and then combine the results using an additional code. This is highly

inefficient and also contrary to the transparency provided by MapReduce. Our objective

is an automatic and general framework to facilitate secure MapReduce computation on

hybrid clouds.
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Sedic [175] addresses this problem to some extent by pre-labeling the input data which

is then replicated to both the public and private clouds, but with sensitive portions in the

public cloud “sanitized”. During computation, map tasks operate in both clouds and

send all intermediate results to the private cloud for reducing to prevent data leakage

from the intermediate results. However, the sanitization approach taken by Sedic has

limitations in terms of flexibility - it does not fit well with complex MapReduce jobs such

as chained or iterative MapReduce, which is important to many data analytical tasks and

realistic applications [140]. In addition, the sanitization approach may still reveal relative

locations and length of sensitive data, which could lead to crucial information leakage in

certain applications [118]. A more generic, flexible and secure framework is desired.

In response, we propose a conservative extension to MapReduce that deals automat-

ically with mixed-sensitivity data in hybrid clouds and supports a new MapReduce pro-

gramming model where data sensitivity can be manipulated during computation, e.g.,

security-aware programs can be used to downgrade the sensitivity of data in execution.

We propose tagged-MapReduce that (conceptually) augments each key-value pair in MapRe-

duce with a sensitivity tag, extending the map and reduce functions appropriately. The

tagging helps to achieve the following goals: 1) it enables fine-grained dataflow control

during execution to prevent leakage and supports scheduling of map and reduce tasks in

the two clouds; 2) it allows programmers to code sophisticated security policies to guide

sensitivity transformation during execution and supports sensitivity downgrading which

is useful in sensitivity-aware applications; 3) it provides sensitivity information for data

across multiple MapReduce jobs which is necessary for complex MapReduce computa-

tions with chained jobs. The flexibility also allows legacy MapReduce programs to be

supported by simply having a default tagging policy. Sedic programs can be expressed

as a special class of tagged-MapReduce programs; however, Sedic cannot express all

tagged-MapReduce programs.

The concerns of preventing data leakage mean that there is a security constraint on

where computations can be run and where data can be sent in a hybrid cloud computing
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job. We provide scheduling strategies for reduce tasks so that some reducers can exe-

cute in the public cloud. The scheduling strategies exploit useful properties of common

map and reduce functions to rearrange the computation for more effective load-balancing

and inter-cloud network usage while maintaining MapReduce correctness. For example,

if a reduce operation is “partitionable”, tagged-MapReduce will automatically carry out

partial reduce computation on the public cloud (with non-sensitive data), which lessens

not only the private cloud’s workload but also the total amount of inter-cloud data traffic.

Our prototype implementation allows the properties to be easily coded into the tagged-

MapReduce programs, from which the scheduler decides automatically which scheduling

strategy is to be employed.

Nevertheless, special care must be taken in designing such scheduling strategies as

different strategies lead to different actual dataflows during execution, which in turn leads

to different amounts and types of information being exposed to the public cloud. In par-

ticular, a scheduler that aggressively rearranges the computation to the public cloud, while

improving efficiency and maintaining MapReduce correctness, may leak more informa-

tion than a “conservative” scheduler that carries out all reduce computation in the private

cloud. Such leakage is beyond the programmers’ anticipation and could be unacceptable

in some scenarios. To analyze the scheduling strategies, we propose the first security

model that captures how dataflow can leak information during execution. This model is

suitable for analyzing what additional leakage a scheduler might make through execution

on a hybrid cloud over a reference “baseline” scheduler whose information exposure is

deemed to be acceptable. Using this model, we are able to show that some potential-

ly more effective scheduling strategies indeed leak more information than the baseline

whereas ours do not.

We implement a prototype of tagged-MapReduce on Hadoop, with experiments to

evaluate the practicability of the system and the effectiveness of the proposed schedul-

ing strategies. The experiments are run on a small-sized hybrid cloud built on Amazon

EC2, using both single and chained MapReduce jobs. The results show that the tagged-
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MapReduce prototype which implements the security constraints for preventing data leak-

age is able to automatically and efficiently outsource computation to the public cloud and

reduce inter-cloud data traffic. The system is practical with only small overhead compared

to the baseline Hadoop which ignores the data confidentiality and security constraints.

3.2 Overview

3.2.1 MapReduce

MapReduce is a framework for performing distributed computation across huge datasets

over a large cluster of commodity machines. The MapReduce framework was original-

ly developed at Google [74], but has recently seen wide adoptions and has become the

de facto standard for large-scale data analysis. Publicly available statistics indicate that

MapReduce is used to process more than 20 petabytes of information per day at Google

alone [129]. Over 70 companies use MapReduce including Yahoo!, Facebook, Adobe,

and IBM [2]. In addition, many universities (including CMU, Cornell etc.) are providing

MapReduce clusters for research [2].

MapReduce Basics

In the MapReduce framework, the basic unit of information is a 〈key, value〉 pair where

each key and each value are binary strings. The input to any MapReduce algorithm is

a set of 〈key, value〉 pairs. Users provide two functions: a map function and a reduce

function. A map function takes as input a single 〈key, value〉 pair, and produces as output

any number of new 〈key, value〉 pairs. It is crucial that the map operation is stateless –

that is, it operates on one pair at a time. This allows for easy parallelization as different

inputs for the map can be processed by different machines.

A reduce function takes all of the values associated with a single key k, aggregates

them and outputs a possibly smaller multiset of 〈key, value〉 pairs with the same key k.

Typically just zero or one output pair is produced per reduce invocation. This highlights
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one of the sequential aspects of MapReduce computation: all of the maps need to finish

before the reduce stage can begin.

Between map and reduce, there is a shuffling stage whereby the underlying system

that implements MapReduce sends all of the values that are associated with an individual

key to the same machine. This occurs automatically, and is seamless to the programmer.

More specifically, programmers only need to specify the two map and reduce functions,

while the MapReduce framework handles the complicated tasks of scheduling and data

movement during execution, providing high scalability and fault-tolerance. Thus, it is

easier for programmers, even with no experience in parallel/distributed systems, to write

programs working on large clusters.

Formal Definition

We now give a more formal definition of the MapReduce programming model. As men-

tioned above, the fundamental unit of data in MapReduce computation is the 〈key, value〉

pair, where keys and values are binary strings.

DEFINITION 3.1 A mapper µ takes as input an ordered 〈k, v〉 pair with r as the auxil-

iary bits for randomness,3 outputs a finite multiset of new pairs {〈k1, v1〉, 〈k2, v2〉, . . . ,

〈km, vm〉} for some m, i.e.,

µ(〈k, v〉) → {〈k1, v1〉, 〈k2, v2〉, . . . , 〈km, vm〉}

DEFINITION 3.2 A reducer ρ takes as input a multiset of pairs {〈k, v1〉, 〈k, v2〉, . . . ,

〈k, vn〉} of the same key k with r as the random bits, outputs a new multiset of pairs

{〈k, w1〉, 〈k, w2〉, . . . , 〈k, wn′〉} for some n and n′, i.e.,

ρ({〈k, v1〉, . . . , 〈k, vn〉}) → {〈k, w1〉, . . . , 〈k, wn′〉}
3As the map function can be probabilistic, the string r provides the randomness. r can be removed if µ

is deterministic.
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One simple consequence of the above two definitions is that mappers can manipulate

keys arbitrarily, but reducers cannot change the keys.4

Next we describe how the system executes MapReduce computations. A MapReduce

program consists of a sequence 〈µ1, ρ1, µ2, ρ2, . . . , µR, ρR〉 of mappers and reducers. The

input is a multiset of 〈key, value〉 pairs denoted by U0. To execute the program on input

U0:

For r = 1, 2, . . . , R, do:

• EXECUTE MAP: Feed each 〈k, v〉 in Ur−1 to mapper µr, and run it. The mapper

will generate a sequence of tuples, {〈k1, v1〉, 〈k2, v2〉, . . . , 〈km, vm〉} for some m.

Let U ′r be the multiset of intermediate 〈key, value〉 pairs output by µr, that is, U ′r =

∪〈k,v〉∈Ur−1 µr(〈k, v〉).

• SHUFFLE: For each k, let Vk,r be the multiset of values vi such that 〈k, vi〉 ∈ U ′r.

The underlying MapReduce implementation constructs the multiset Vk,r from U ′r.

• EXECUTE REDUCE: For each k, feed k and some arbitrary permutation of Vk,r to

a separate instance of reducer ρr, and run it. The reducer will generate a sequence

of tuples {〈k, v′1〉, 〈k, v′2〉, . . . , 〈k, v′n′〉} for some n′. Let Ur be the multiset of pairs

generated by ρr, that is, Ur = ∪k ρr(〈k, Vk,r〉).

The computation halts after the last reducer, ρR, halts.

As stated before, the main benefit of this programming model is the ease of paral-

lelization. Since each mapper µr only operates on one tuple at a time, the system can

have many instances of µr operating on different tuples in Ur−1 in parallel. After the map

step, the system partitions the set of intermediate tuples output by various instances of µr

based on their key. That is, part i of the partition has all 〈key, value〉 pairs that have key

ki. Since reducer ρr only operates on one part of this partition, the system can have many

instances of ρr running on different parts in parallel.
4In this thesis, we adopt the definition given by Karloff et al. [104] whereby the key in the reduce output

must be identical to the key in its input. However, in the original MapReduce paper by Dean et al. [74]
they do not have such restriction and simply ignore the keys in the reduce output. In actual MapReduce
implementations such as Hadoop, reducers can also output keys different from those in the input.
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Applications in Security Domains

By virtue of its simplicity, scalability, and fault-tolerance, MapReduce is becoming ubi-

quitous, gaining significant momentum from both industry and academia. However,

MapReduce has inherent limitations on its performance and efficiency. A large num-

ber of variants and improvements have been proposed over the years, including high-level

languages (e.g., SQL) support like Microsoft SCOPE [56] and Apache Hive [161], loop

programs support like HaLoop [51] and Twister [79], I/O optimizations [75, 138], im-

proved scheduling algorithms [61, 91, 119], automatic performance tuning [96] and etc.

Most of these works are performance-centric.

Depending on the applications and infrastructure, there could also be security and pri-

vacy requirements which cannot be met by the current MapReduce framework. Hence,

several studies have endeavored to augment MapReduce with certain security features.

HybrEx [108] and Sedic [175] are two examples that extend MapReduce to support

privacy-aware computation on hybrid clouds. Airavat [144] integrates decentralized in-

formation flow control (DIFC) [110] and differential privacy [77] into MapReduce to

provide rigorous privacy and security control in the computation for individual data. Mo-

han et al. then present GUPT [126], an improvement to Airavat, that can automatically

learn and distribute the differentially private parameters. In addition, Xiao et al. propose

Accountable MapReduce [171] which allows detecting of malicious nodes which gener-

ate inaccurate results through an A-test on every node in the system. Huang et al. study

the similar problem of detecting cheating services under the MapReduce environment but

based on techniques of watermark injection and random sampling [93].

There are other works employing the MapReduce framework for more efficient cryp-

tographic operations. Mayberry et al. propose PIRMAP [122], a Private Information

Retrieval (PIR) protocol that allow for optimal parallel computation during the “Map”

phase of MapReduce, and homomorphic aggregation in the “Reduce” phase. Blass et

al. present PRISM [43] that transforms the problem of word search into a set of parallel

instances of PIR on small datasets, which can be efficiently computed in MapReduce.

27



Kamara et al. show how to construct parallel homomorphic encryption (PHE) schemes

that can support various MapReduce operations on encrypted datasets, including element

testing and keyword search [100]. Li et al. formulate the problem of outsourcing ABE to

cloud service providers to relieve local computation burden, and propose a construction

based on MapReduce [115]. Francois et al. show an interesting work of using MapReduce

to detect botnets [81].

3.2.2 Overview of the Proposed Framework

MapReduce is not designed for processing a mix of sensitive and non-sensitive data in the

hybrid cloud, as data can flow freely between all nodes in the two clouds, increasing the

risk of information leakage. To prevent such leakage, we propose to extend MapReduce

by explicitly tagging each key-value pair as either sensitive or non-sensitive. The tags

serve as auxiliary information for the system to move data during execution, ensuring that

sensitive tuples never leave the private cloud. We propose tagged-MapReduce, as shown

in Figure 3.1, which involves: (1) a scheduler in the private cloud that schedules map and

reduce tasks to workers and controls the flow of intermediate data with respect to their

security tags, and (2) multiple workers across the public and private clouds that carry out

the assigned tasks.

Tagged-MapReduce programs are similar to MapReduce programs, the difference be-

ing that a programmer can program in the map and reduce routines various policies that

guide how the sensitivity should be changed during execution. For instance, in the classic

word-count example that reads in text files and counts how often each word occurs, one

can code in the map routine that: a tuple, i.e. 〈word, 1〉 is output as sensitive iff word

is from a sensitive input file and not in the set of “stop words”. The logic for deciding

the sensitivity of the output tuples is broadly called the sensitivity policy (in Section 3.3).

Figure 3.2 illustrates how sensitivity policies can be programmed using the word-count

example with the aforementioned security policy.

To perform a computation over tagged-MapReduce, the input data have to be tagged
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mers. Shaded rectangles are files/tuples marked as sensitive, shaded ellipses are workers/-
scheduler run in the private cloud. Note that the output tuples carry sensitivity information
which can be fed to the next job, thus multiple MapReduce computation can be naturally
supported.

first by indicating the sensitive portions. As manual tagging or individual tuple-level tag-

ging can be tedious, for simplicity and usability, our prototype implementation considers

file-level tagging,5 i.e., the input data consists of multiple files and each file contains ei-

ther all sensitive data or all non-sensitive data. The sensitivity of input files is specified

in a meta file which is then uploaded to the framework together with the input data. The

underlying distributed file system then starts to replicate the data in a privacy-aware way,

ensuring that sensitive files are only stored in the private cloud.

In addition, the programmer can also specify certain properties that the map or reduce

function meets. The two properties we particularly looked into are partition-able reduce

and unique tag (in Section 3.4). Roughly speaking, a reduce function is partition-able if it

can be carried out in a “divide-and-conquer” manner; a map function meets the unique tag

property if each key in its output is tagged as either sensitive or non-sensitive, but never

both. These properties can be directly coded into users’ tagged-MapReduce programs

using an additional API provided by us. Such information helps the system to decide how

to schedule the tasks using an appropriate scheduling mode (in Section 3.4). We have

5File-level tagging is simple and yet does not lose generality as more sophisticated tagging, e.g., tuple-
level tagging, can be simply done by having an initial tagged-MapReduce job with all input files being
tagged sensitive and output tuples with the desired sensitivities.
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provided four scheduling modes that allow the reduce computation to be redistributed

across the hybrid cloud for improved efficiency and reduced performance overhead.

3.3 Programming Model

Original MapReduce has map and reduce functions operating on key-value tuples. Our

tagged-MapReduce framework extends the programming model of MapReduce to sup-

port tags with the corresponding functions tagged-map and tagged-reduce operating on

tagged-tuples. Specifically, we extend the key-value pair 〈k, v〉 in MapReduce where

k and v are binary strings with tagged-tuples of the form 〈k, v; t〉, where t is a symbol

sensitive or non-sensitive,6 and k and v are as in MapReduce.

A tagged-map µ̂ extends a given map µ in the original MapReduce framework. If µ

on input 〈k, v〉 with a random string r as the auxiliary bits for randomness, outputs a finite

multiset

{〈k1, v1〉, . . . , 〈km, vm〉}

for some m, then the corresponding tagged-map µ̂ is a function that on input 〈k, v; t〉 and

with r as the auxiliary data, outputs

{〈k1, v1; t1〉, . . . , 〈km, vm; tm〉}

for some tags t, t1, . . . , tm.

Similarly, a tagged-reduce ρ̂ extends a given reduce ρ. If ρ on input a multiset

{〈k, v1〉, 〈k, v2〉, . . . , 〈k, vn〉} with random string r as the auxiliary bits, outputs a multiset

of pairs

{〈k, w1〉, . . . , 〈k, wn′〉}

for some n and n′, then the tagged-reduce ρ̂ is a function that on input {〈k, v1; t1〉, 〈k, v2; t2〉,
6For simplicity, we use binary tags of sensitive and non-sensitive but a larger attribute set is possible.

30



. . . , 〈k, vn; tn〉} with r as the auxiliary data, outputs the multiset

{〈k, w1; t
′
1〉, . . . , 〈k, wn′ ; t

′
n′〉}

for some tags t1, t2, . . . , tn, t′1, t
′
2, . . . , t

′
n′ .

The tags in tagged-tuples are just auxiliary data which do not affect the keys and

values. Two different tagged-reduces ρ̂1 and ρ̂2 that extend the same reduce ρ but with

different algorithms for deciding the output tags, will output the same distribution of keys

and values.7 Hence, our extension is conservative since the program will not be changed if

all data are non-sensitive and it does not affect the output distribution. The role of the tags

is to feed information to the scheduler which decides where computation is to be carried

out. This segregation of roles provides clarity in coding programs to process sensitive

data and in analyzing algorithms. Moreover, the tags also carry sensitivity information

for data across multiple MapReduce jobs (see Section 3.7), and thus complex MapReduce

computation with chained or iterative MapReduce can be supported naturally.

Figure 3.2 gives Hadoop Java code in our prototype of tagged-map for the extended

WordCount job working on a set of sensitive and non-sensitive files (right). Compared

to the original map (left), the difference is the extra statement (in the dashed box) to

compute the sensitivity of each word based on some sensitivity rules (see below) and an

API setIsSensitive() to set the tags of output tuples.

When it is clear from the context, we will omit the word “tagged” and call tagged-

tuple, tagged-map and tagged-reduce as tuple, map and reduce respectively.

3.3.1 Sensitivity Policy

In addition to normal MapReduce programs (which do not have code for data sensitivi-

ty), with explicit tagging, programmers can now implement MapReduce programs which

are sensitivity-aware, applying a policy to govern the sensitivity of tuples created during

7The overall MapReduce computation may be non-deterministic, hence we consider the possible outputs
to be a distribution. In the case that they are deterministic, they always output the same key-value pairs.
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public void map(LongWritable key, Text value,  
                                               Context context) 
{        
         Boolean sensitive = false; 
         String line = value.toString();  
         StringTokenizer tokenizer =  
       new StringTokenizer(line);  
         while (tokenizer.hasMoreTokens())  
        {  
                  String val = tokenizer.nextToken(); 
                  sensitive = context.getInputSplit().getSensitivity()  
       && !inStopWords(val); 
                  word.setIsSensitive(sensitive); 
                  word.set(val);  
                  context.write(word, one);   
        }    
}     

public void reduce(Text key, Iterab
                       Context context)  
{ 
        // key: word 
        // values: a list of occurrences   
        int sum = 0; 
        Boolean sensitive = false; 
        for (IntWritable val : values) { 
                sum += val.get(); 
                if(val.getSensitivity()) 
                        sensitive = true; 
        } 
        if(sum > 1000 && sensitive) 
                sensitive = false;  
        key.setIsSensitive(sensitive); 
        result.set(sum); 
        context.write(key, result); 
} 

        private IntWritable one = new IntWritable(1);  
        private Text word = new Text(); 
        public void map(LongWritable key, Text value, Context context){  
                String line = value.toString();  
                StringTokenizer tokenizer = new StringTokenizer(line);  
                while (tokenizer.hasMoreTokens()) {  
                        String val = tokenizer.nextToken(); 
                        Boolean sensitive = context.getInputSplit().getSensitivity()  
  && !inStopWords(val); 
                        word.setIsSensitive(sensitive); 
                        word.set(val);  
                        context.write(word, one);  }    }    

        private IntWritable one = new IntWritable(1);  
        private Text word = new Text(); 
        public void map(LongWritable key, Text value, Context context) {  
                // key: line number 
                // value: content of this line 
                String line = value.toString();  
                StringTokenizer tokenizer = new StringTokenizer(line);  
                while (tokenizer.hasMoreTokens()) {  
                        String val = tokenizer.nextToken(); 
                        word.set(val);  
                        context.write(word, one);  }    }     

                public void map(LongWritable key, Text value,  
                                      Context context)  
                {  
                        // key: line number 
                        // value: content of this line 
                        String line = value.toString();  
                        StringTokenizer tokenizer =  
                     new StringTokenizer(line);  
                        while (tokenizer.hasMoreTokens())  
                        {  
                                String val = tokenizer.nextToken(); 
                                word.set(val);  
                                context.write(word, one);   
                         }     
                 }     

Figure 3.2: Example code corresponding to original map (left) and tagged-map (right) for
the WordCount job. The difference is the code within the dashed box that computes and
sets the tags of the output tuples.

execution in the map and reduce routines. Such policies are broadly called the sensitivity

policies in our framework. An example policy has the following rules: (1) A map µ̂ does

not modify the sensitivity of the data, i.e., each tuple in the output of µ̂ has the same sensi-

tivity as the input tuple; and (2) the output of the reduce is sensitive iff at least one input is

sensitive. Our prototype uses this policy as the default if the program does not specify any

policy. It is also how legacy (normal) MapReduce programs are supported. Programmers

can choose to implement more sophisticated and application-specific policies to override

the default policy. Figure 3.2 gives an example of programming sensitivity policies.

We now address the question of whether the sensitivity of an output tuple can be

upgraded or downgraded. Let us first consider upgrading.

Non-upgrading policy

An upgrading happens if, for either a map or reduce, (all of) the input is non-sensitive

but the output contains sensitive tuples. Assume that all map and reduce algorithms are

public knowledge, the public servers can collude and all non-sensitive tuples are stored

in the public servers, then it is meaningless to have a policy that deems the output as

sensitive when all of the input data are non-sensitive, given that an adversary in the public

cloud can compute the output anyway. This gives the following condition for tagged-map
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µ̂ and tagged-reduce ρ̂:

CONDITION 3.1 (NON-UPGRADING MAP AND REDUCE) Consider map µ̂(t), if input

tuple t is non-sensitive then all tuples output from µ̂ will be non-sensitive. Similarly for

reduce ρ̂(k, {t1, . . . , tn}), if all input tuples ti’s are non-sensitive, all tuples output from ρ̂

will be non-sensitive.

Violation of the above condition during execution does not compromise confidentiali-

ty of tuples previously tagged as sensitive, and thus may not be harmful in terms of secu-

rity. Nevertheless, it tags data already known to the public cloud as sensitive, and hence

imposes unnecessary constrains which in turn lowers the effectiveness of the scheduler.

Downgrading policy

However, there are situations where the sensitivity may be “downgraded” to non-sensitive,

even if the input is sensitive. The downgrading can occur in either a map or reduce. For

example, consider a tagged-map that takes in a surveillance video (tagged as sensitive),

analyzes the video, and outputs a set of short video clips. Video clips with a low-level of

activity are to be tagged as non-sensitive, whereas video clips with a high-level of activity

are to be tagged as sensitive. Here, the final sensitivity is derived from both the key and

value of the input, allowing certain video clips to be downgraded from sensitive to non-

sensitive. Another application is data anonymization where a tagged-reduce takes as input

a list of sensitive values and outputs an aggregated value. The output value is considered

“anonymized” and thus tagged as non-sensitive. In general, downgrading allows to further

push computation to the public cloud and is useful for applications where the input data

are sensitive but only few of them turn out to be important after simple pre-processing.

Explicit tagging makes such downgrading possible.
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Figure 3.3: Default scheduling mode: Single-Phase (SP).

3.4 Scheduling Modes

After being tagged, input data are selectively distributed and replicated to the public and

private clouds based on their sensitivity status with sensitive data placed in private nodes.

Upon the data placement, a set of tagged-map tasks are then created, across the private

and public clouds, to operate on the sensitive and non-sensitive data accordingly. Af-

ter all tagged-map tasks have completed, a key can appear in tuples that are produced

by both the public and private clouds with different sensitivities in different tuples. As

a tagged-reduce task may receive both sensitive and non-sensitive tuples, it cannot be

directly executed on the public cloud.

To prevent data leakage, a conservative scheduler might push all intermediate results

produced in both clouds to the private cloud for reducing. This scheduling strategy is

illustrated in Figure 3.3 which we call the single-phase (SP) mode. However, SP mode

may overload the private servers (i.e., public servers are not enrolled in the reduce phase)

and also lead to high volumes of data flowing from the public to the private cloud during

MapReduce shuffling. Inter-cloud data traffic can be significant as inter-cloud bandwidth

may be much smaller than the intra-cloud one (internally, within each cloud). Inter-cloud

traffic may also be charged by the cloud provider.8 What is desired is to outsource more

reduce computation to the public cloud when needed while reducing the total amount of

8For example, Amazon does not charge for data transfer in the same Availability Zone within the Ama-
zon AWS, but charges as high as $0.19 per GB for data transfer out from Amazon EC2 to the Internet.
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Figure 3.4: Two-Phase Crossing (TPC) mode.

inter-cloud data movement.

To this end, we investigate certain properties of the map and reduce functions which

allow re-scheduling of the reduce computation on the two clouds for more effective load-

balancing and reduced inter-cloud network traffic while maintaining MapReduce correct-

ness. More specifically, we consider two properties: partitionable reduce and unique tag

with three scheduling modes: two-phase crossing (TPC), two-phase non-crossing (TPNC)

and hand-off (HO) modes, as follows.

3.4.1 Two-Phase Crossing Mode (Partitionable Reduce)

If a reduce function can be carried out in a “divide-and-conquer” manner, one could first

enroll public workers to aggregate the non-sensitive tuples, and then combine them with

the sensitive data. Let us first define the following form of distributive property on the

reduce function which holds for many regular MapReduce programs:9

PROPERTY 3.1 (PARTITIONABLE REDUCE) We say that a tagged-reduce ρ̂ is partition-

able if

ρ̂(k, L1 ∪ L2) = ρ̂(k, ρ̂(k, L1) ∪ ρ̂(k, L2))

for all k, L1 and L2.

If ρ̂ is partitionable, then it can be performed in two phases:
9This is the commutative and associative property that the Combiner function satisfies in MapReduce.
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Figure 3.5: Two-Phase Non-Crossing (TPNC) mode.

1. (Phase 1) For each key k, a worker pk (can be private or public) is selected and

assigned to perform a reduce task on all non-sensitive tuples with k. A private

worker qk (possibly different) is selected and assigned to perform a reduce task on

all sensitive-tuples with k.

2. (Phase 2) A private worker is selected and assigned to perform a reduce task on the

output of pk and qk for each key k.

Figure 3.4 illustrates the above process. Since sensitivity can be downgraded, map

tasks running on the private cloud may produce many non-sensitive tuples. This mode

allows such tuples to be passed to the public cloud for partial reducing. In general, this

mode leads to higher utilization of public servers but may incur increased dataflow from

the private to the public cloud during shuffling.

3.4.2 Two-Phase Non-Crossing Mode

This mode is a potential improvement of the above two-phase crossing mode, whereby

the reduce function is first applied on each map-task’s output locally (like the Combiner

in Hadoop). This local-reduce phase typically can reduce the size of the intermediate

results, thus, speed up the internal shuffling and sorting phase. After the local-reduce

phase, the produced intermediate results are first aggregated on the public and the private

cloud separately, and then combined on the private cloud, as illustrated in Figure 3.5. In
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other words, data downgraded in the local-reduce phase still remains in the private cloud

for subsequent processing to prevent unintentional information leakage. Specifically, this

scheduler performs the following steps.

1. (Local-reduce) Suppose that worker p is assigned to a map-task. After p has com-

pleted the map-task giving the output L, the same p is selected to perform the

reduce-task on tuples in L.

2. (Phase 1) For each key k, the output from the local-reduce tasks are partitioned into

two groups: Pk consisting of tagged-tuples generated by private workers, and Qk

consisting of tagged-tuples generated by public workers. Next, a private worker is

selected and assigned to perform reduce-task on Pk, and a worker (can be private

or public) is selected and assigned to perform reduce-task on Qk respectively.

3. (Phase 2) For each k, a private worker is selected and assigned to perform reduce-

task on the output from phase 1.

Compared to the two-phase crossing mode, under this mode, the utilization of public

servers is expected to be lower, but the volume of inter-cloud data traffic may decrease.

3.4.3 Hand-Off Mode (Unique Tag)

In both of the above TPC and TPNC modes, an additional phase (i.e., phase 2) is required

to combine the partial reduce outputs produced in the two clouds as a key may be associ-

ated with both sensitive and non-sensitive tuples. Now we consider a property of the map

function whereby this additional combining phase is not required.

PROPERTY 3.2 (UNIQUE TAG) Given a multiset of tagged-tuples U , we say that the keys

in U have unique tag if there does not exist a key k such that both 〈k, v; sensitive〉 and

〈k, v′; non-sensitive〉 are in U for some v and v′.

We say that a map function meets the unique tag property if, on any input and any

execution, completion of the map phase gives a set of tagged tuples with unique tag.
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Figure 3.6: Hand-Off (HO) mode.

An example of the unique tag property is a map function that outputs 〈k, v; t〉 where t

is a deterministic function of k. When a map function meets the unique tag property, after

the map phase, a key appears either in the sensitive tuples or in the non-sensitive tuples,

but never in both. Then, there is an easy way to schedule the reduce tasks – simply assign

keys tagged as sensitive to private workers, and keys tagged as non-sensitive to either a

public or a private worker. Since no combination or morphing of tasks is required, we call

this mode the hand-off mode. Figure 3.6 illustrates this mode.

3.4.4 Mode Selection

Selection of the scheduling modes can be done automatically by the system if properties

of the MapReduce computation are specified. Algorithm 1 provides a simple logic for de-

ciding the scheduling mode to be used. The parameter isAggregateReduce indicates

whether the reduce is an aggregating function or not, that is, whether the reduce output

is expected to be smaller in size than its input. However, as shown by the experiments in

Section 3.7, the best mode also depends on other factors like the ratio of sensitive data

and the scale of the public and private clouds. We allow programmers to directly set the

scheduling mode by providing an additional API setSchedulingMode().
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Algorithm 1 Simple logic for deciding the scheduling mode

// compProperty: property of the computation
// isAggregateReduce: whether reduce is an aggregating function
if (compProperty == unique tag)

mode = HO
else

if (compProperty == partitionable reduce)
if (isAggregateReduce == true)

mode = TPNC
else

mode = TPC
else

mode = SP

3.5 Security Analysis

A key observation we have in designing the above scheduling modes is that, different

schedulers could leak different information and some schedulers leak much more infor-

mation than others. This motivates us to give a security model to compare the information

leakage made by different schedulers and to determine whether a scheduler is secure or

not. This section describes the proposed security model.

We consider public servers to be honest-but-curious. That is, the public servers will

follow the protocol as expected and carry out the computations honestly, but may retain

knowledge derived from the computations for malicious purpose. We allow public servers

to collude, thus, we assume that our adversaries have control of all the public servers. In

addition, we assume that the identities of the private servers, the scheduling algorithms

and the map/reduce operations are public information. Although the scheduling algo-

rithms are public, the scheduler resides in the private cloud and thus our adversaries do

not have direct access to the scheduler’s internal states, rather, they are limited to observ-

ing the interactions with the public cloud.
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3.5.1 Motivating Examples

A subtle consequence of allowing schedulers to rearrange the computations is that, dif-

ferent scheduling algorithms could lead to different dataflows during execution, resulting

in sending different data to the public cloud. Hence, from a curious public server’s view-

point, the amount and types of information leaked by different schedulers can be different.

In particular, a scheduler that aggressively rearranges the tuples and tasks, while preserv-

ing MapReduce correctness and improving efficiency, may leak more information than a

“conservative” scheduler that carries out all reduce computation in the private cloud. To

illustrate the concerns, let us consider the following two examples:

Example I

Consider a simple reduce function that on input a list of values with the same key k,

outputs 〈k, (s,m)〉 where s is the sum of the values, and m is the total number of input

tuples. The output is tagged as non-sensitive iff m is greater than a threshold, say 50.

Since this reduce function is partitionable, it can be computed in a divide-and-conquer

manner. An ambitious scheduler might divide the sensitive input tuples into groups of 50,

and assign the reduce-task on each group to a private worker. Next, the aggregated non-

sensitive output from each group is sent to a public worker for further aggregation. Now,

let us consider a conservative scheduler whereby all reduce-tasks are assigned to private

workers. Compare to this conservative scheduler, the ambitious scheduler will reveal the

sum of each group to the public cloud. One may argue that the sum of any sufficiently

large group is deemed to be non-sensitive by the programmer and thus it is acceptable to

reveal the sums of many large subgroups. However, that may not be the intention of the

programmer and hence we need a clear security model to establish a baseline.

Example II

Here is a more subtle example. Consider another ambitious scheduler who dynamically

tracks the intermediate tuples generated by the map-tasks. If a particular key k has only
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non-sensitive intermediate tuples, then the scheduler will assign the reduce-task on k to

a public worker. Since no sensitive tuple is sent to the public worker, it seems that this

scheduler does not leak sensitive information. Now, compare to the conservative sched-

uler described in the previous example, the action of this scheduler reveals an additional

piece of information on a key k: the fact of whether there exists a sensitive intermediate

tuple with the key k. Although this piece of information might be insignificant or irrele-

vant in some applications, we need a security model that clearly accepts or disallows such

leakage.

The above two examples bring out the subtlety and challenges in formulating the se-

curity model. What should be the “baseline” of leakage that is acceptable, and how to

compare the leakages incurred by different schedulers? We handle this issue by treating

the conservative scheduler described above as the baseline, and propose a security model

to compare a scheduler with this conservative scheduler. Essentially, we say that a sched-

uler S1 does not leak more than another scheduler S2 iff we can simulate S1 and generate

the information revealed by S1 based on the information revealed by S2. Schedulers that

do not leak more than the baseline are considered secure.

3.5.2 Scheduler-View and Public-View

A scheduler assigns map and reduce tasks to workers based on some scheduling algo-

rithm. Hence, the scheduler has knowledge about all the input and output relationships

between the tuples and workers. Let V = Vp∪Vq be the set of entities of all the public and

private workers. Let us first define the scheduler-view as what information a scheduler can

gather during an execution.

DEFINITION 3.3 (SCHEDULER-VIEW) Given a scheduler S, a MapReduce jobC and an

inputD, the scheduler-view of an execution ofC onD under S is a (possibly randomized)

directed, acyclic graph GSC,D = 〈T, V,E〉 where T is the set of all (input, intermediate

and output) tagged-tuples, V ⊆ V is the set of involved workers and E represents the
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input/output relations between the tuples and workers.

Figure 3.3–3.6 give examples of the scheduler-view. In a scheduler-view, each tuple

t is associated with a source srct indicating the identity of the worker that outputs t,

or a destination dstt indicating the identity of the worker that takes t as input, or both.

Note that on a same instance of C and D, the execution could be different since the

scheduler and/or the computation could be non-deterministic. Hence, we are interested in

the distribution of the scheduler-view.

Next, let us define public-view as what information the public cloud can gather during

an execution.

DEFINITION 3.4 (PUBLIC-VIEW) Given a scheduler S, a MapReduce job C and an in-

put D, the public-view of an execution of C on D under S is a (possibly randomized)

directed, acyclic graph PS
C,D = 〈Tp, Vp, Ep〉 which is a subgraph of the corresponding

scheduler-view GSC,D = 〈T, V,E〉, where Tp = {t|t ∈ T ∧ (srct ∈ Vp ∨ dstt ∈ Vp)}, Vp =

{v|v ∈ V ∧ ∃t ∈ Tp, srct = v ∨ dstt = v}, and Ep ⊆ E.

Essentially, a public-view contains information that is visible to the public cloud dur-

ing an execution, which includes:

I.1. All the tuples that are taken as input or generated by the public workers (i.e., Tp).

I.2. The identities of the private workers that output or take as input any tuples in Tp.

I.3. The internal states of all the public workers in Vp.

Figure 3.7 gives examples of the public-view corresponding to the scheduler-views

shown in Figure 3.3–3.6. Similar to the scheduler-view, we are also interested in the

distribution of the public-view.

3.5.3 Baseline - the Conservative Scheduler

Now let us consider a conservative scheduler which performs in the follow way:
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Figure 3.7: Examples of the public-view corresponding to the scheduler-views illustrated
in Figure 3.3–3.6.

1. It assigns map-tasks operating on sensitive tuples to randomly chosen private work-

ers, and map-tasks on non-sensitive tuples to randomly chosen public workers re-

spectively;

2. It assigns all reduce-tasks to randomly chosen private workers;

3. All non-sensitive intermediate tuples will be sent to some public workers for tem-

porary storage. 10

This scheduler is “conservative” since it does not attempt to re-arrange the tasks for

better performance. While there may be still some information leakage by virtue of data

going to the public cloud, one assumes by definition that non-sensitive tuples can be

disclosed. Since the goal is outsourcing of “some” computations to the public cloud,

such leakage is considered to be acceptable. In this sense, the conservative scheduler is

reasonable for analyzing the security of scheduling algorithms. Hence, we choose this

simple execution model as the baseline and call it the baseline scheduler. We denote the

baseline scheduler as SB.
10In other words, all non-sensitive tuples are public information.
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Figure 3.8: Illustration of the baseline scheduler: (a) scheduler-view; (b) the correspond-
ing public-view.

DEFINITION 3.5 (PUBLIC-VIEW OF THE BASELINE SCHEDULER) Given the baseline sched-

uler SB, a MapReduce job C and an input D, the public-view PSB
C,D = 〈TB, VB, EB〉 of

executing C on D under SB is a subgraph of the corresponding scheduler-view GSB
C,D =

〈T, V,E〉 where TB = {t|t ∈ T ∧ t is non-sensitive}, VB = {v|v ∈ V ∧ ∃t ∈ TB, srct =

v ∨ dstt = v}, and EB ⊆ E.

In other words, the public-view of an execution under the baseline scheduler includes

the content of all non-sensitive tuples and the identities of the workers that generate or read

those non-sensitive tuples. Figure 3.8 illustrates the scheduler-view and corresponding

public-view of the baseline scheduler. Note the difference from the public-view of the

single-phase mode as shown in Figure 3.7(a).

3.5.4 Security Model

Given a particular scheduler S, we want to analyze and determine whether it leaks “more”

than the baseline scheduler SB. Let us first define what it means by “a scheduler S leaking

more information than another scheduler S̃”.

For a MapReduce job C, let us consider an oracle O that, on any input dataset D,

generates a public-view P S̃
C,D of the scheduler S̃. Note that this is just one sample from

the distribution of the public-view of S̃. Now, let us consider a simulator M that has

access to O once. Based on the generated public-view P S̃
C,D, this simulator simulates
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the behavior of S and attempts to generate a public-view P̃S
C,D of the scheduler S in

question. We say that a scheduler S does not leak additional information than another S̃

on a particular job C if, there exists a simulatorM such that, for any input D, P̃S
C,D and

PS
C,D are statistically close on D. Note that the simulatorM can be different for different

jobs. A scheduler S does not leak more than another S̃ if the above holds for any job C.

More specifically,

DEFINITION 3.6 A scheduler S does not leak more information than another scheduler

S̃ if, for any MapReduce job C, there exists a simulatorM that, for any input D,M can

simulate and generate a public-view P̃S
C,D for S from the public-view P S̃

C,D of S̃ such that

∑
x

|Pr[P̃S
C,D = x]− Pr[PS

C,D = x]| ≤ ε

We say that the leakage of a scheduler S is acceptable if S does not leak more infor-

mation than the baseline scheduler SB.

3.5.5 Leaky Implementation

Given the security model defined in Section 3.5.4, we are able to prove that the four

scheduling modes presented in Section 3.4 are secure. Before that, let us first revisit the

two examples given in Section 3.5.1 and show that they indeed leak more information

than the baseline scheduler.

Two-Phase Crossing with Local-Reducer

Let us consider a scheduling mode that is related to Example I. This mode is another

“optimization” of the TPC mode, where the reduce function is first applied locally to each

map-task’s output, and then followed by the original two phases in TPC, as illustrated in

Figure 3.9. The difference from the TPNC mode is that, under this mode, tuples down-

graded to be non-sensitive from local-reduce tasks are allowed to go to the public workers

for partial reducing. Potentially, this mode increases the utilization of the public servers
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Figure 3.9: Two-Phase Crossing with Local-Reducer.

and thus may give more effective load-balancing. Let us denote this scheduling mode as

SL.

However, this SL mode leaks more information than the baseline scheduler SB. Sup-

pose that on a particular job C with an input D, a tuple t (marked as dark blue in Figure

3.9) is tagged as non-sensitive from the local-reducer of r3. The tuple t is then sent to the

public cloud for partial reducing, hence, t ∈ PSL
C,D. However, t /∈ PSB

C,D according to our

definition of the baseline scheduler SB. Hence, any simulator is unable to generate the

public-view of this scheduler.

Dynamic Scheduling

The dynamic scheduling described before in Example II can potentially lead to more

effective load-balancing. Unfortunately, it also leaks additional information. A simulator

is unable to generate the public-view of the dynamic scheduler (denoted as SY ). This is

because the simulator does not know the existent of the sensitive tuples, and thus is unable
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to decide whether to assign the task to a private or a public worker. More precisely, for

a particular job C, we can construct two different data inputs D0 and D1 such that the

distributions of PSB
C,D0

and PSB
C,D1

are the same but PSY
C,D0

and PSY
C,D1

are different. Hence,

no simulator can generate the correct public-view for this dynamic scheduler.

3.5.6 Security of the Proposed Modes

Now we show that the proposed modes are secure in the sense that they do not leak more

than the baseline scheduler.

THEOREM 3.1 The leakage of each of the proposed SP, TPC, TPNC and HO scheduling

modes is acceptable, that is, they do not leak more information than the baseline scheduler

SB.

Proof In order to demonstrate the security of the proposed modes, it is sufficient to show

that a simulator can be constructed for each mode so that, for any MapReduce compu-

tation C and any input D, the simulator’s output is statistically close to the public-view

of the scheduling mode in question. We will only analyze the security of the Two-Phase

Non-Crossing mode (denoted as SN ). Analysis of the other three modes can be similarly

done. For each PSB
C,D obtained from the oracle O, our simulator constructs a public-view

P̃SN
C,D for SN by simulating the process described in Section 3.4.2:

1. First, it simulates the TPNC scheduler in selecting the workers for map-tasks on

non-sensitive tuples, and carries out the map-tasks (with local reduction). Note

the some private workers might be selected to perform on the non-sensitive tuples.

Ignore these private workers.

2. Next, it performs a reduce-task on the non-sensitive partition produced by the public

workers for each k (i.e., phase 1).

3. Finally, it simulates the TPNC scheduler in selecting the private workers for final

reducing in phase 2. Recall that the private workers are randomly selected from the
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pool of all private workers, and thus can be simulated.

It is clear that the constructed public-view P̃SN
C,D is statistically equal to the public-view

PSN
C,D of SN in distribution. Since we can simulate the TPNC mode and generate its public-

view from that of the baseline scheduler, the leakage of the TPNC mode is acceptable

under our security model.

3.5.7 Side-Channel Information

During execution, adversaries in the public cloud could measure the size and timing of

packets received from each private server. Analysis of such network traffic might provide

information on the workload of individual private servers. The workload may depend

on the actual content of sensitive tuples, which although unlikely, could potentially leak

information of the content. Since the network traffic is heavily influenced by other fac-

tors like overall network conditions and time of the day, and these information may still

present even if encrypted computation (e.g., homomorphic encryption) is used, we con-

sider these as “side-channel” information and do not capture them in our security model.

Nevertheless, there are mechanisms to reduce such leakage such as hiding the identities of

the private servers by routing the traffic to a proxy and “translating” the identities (which

is similar to NAT (Network Address Translation)), inserting random delays to the traffic,

adding noise in the scheduling, etc. The issue of side-channels is orthogonal to this work.

In Section 3.8 later, we will explore in detail how one of the mechanisms can be used to

reduce such side-channel leakage.

3.6 Implementation

We have prototyped tagged-MapReduce based on Hadoop 1.0.1. To help understand our

implementation, we first provide an overview of Hadoop.

48



3.6.1 Hadoop Overview

Apache Hadoop [18] is a popular open-source implementation of MapReduce. Hadoop

consists of two main components: the Distributed File System (HDFS) and the MapRe-

duce engine. The HDFS is a distributed file system that supports huge amount of data

storage across the cluster nodes, providing very high availability and bandwidth access to

the applications’ data. Above HDFS is the MapReduce engine where the work is divided

into many small pieces of tasks, each of which may be executed or re-executed on any

node in the cluster.

Hadoop Distributed File System (HDFS)

The design of HDFS is based on the design of GFS, the Google File System [87]. HDFS is

a block-structured file system: individual files are broken into blocks of a fixed size (e.g.,

64 MB) when they are being loaded in. These blocks are stored across a cluster of one or

more machines with data storage capacity. Individual machines in the cluster are referred

to as DataNodes. A file can be made of several blocks, and they are not necessarily stored

on the same machine; the target machines which hold each block are chosen randomly

on a block-by-block basis. Thus access to a file may require the cooperation of multiple

machines. For reliability, each file block is replicated across a number of machines (3, by

default), such that the loss of any one copy of the block will not render the whole file as

unavailable. An overview of the HDFS architecture is illustrated in figure 3.10.

HDFS uses a dedicated single machine, called the NameNode, to store and maintain

all its metadata (e.g., the names of files and directories, the locations of each block of

each file). To open a file, a client contacts the NameNode and retrieves a list of locations

for the blocks that comprise the file. These locations identify the DataNodes which hold

each block. Clients then read file data directly from the DataNode servers, possibly in

parallel. The NameNode is not directly involved in this bulk data transfer, keeping its

overhead to a minimum. Of course, NameNode information must be preserved even if the

NameNode machine fails; there are multiple redundant systems that allow the NameNode
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Figure 3.10: Overview of Hadoop distributed file system (HDFS). DataNodes store actual
blocks from files while NameNode stores only the metadata.

to preserve the file system’s metadata even if the NameNode itself crashes irrecoverably.

Fortunately, as the NameNode’s involvement is relatively minimal, the odds of it failing

are considerably lower than the odds of an arbitrary DataNode failing at any given point

in time. More details about the design and implementation of HDFS can be found in a

guide document [47].

Hadoop MapReduce

Above HDFS comes the Hadoop MapReduce engine, which is designed for easily writ-

ing applications that process vast amount of data in-parallel. Typically the MapReduce

framework and HDFS are working on the same set of cluster nodes, allowing the sys-

tem to effectively schedule tasks to the nodes where data is already present there. Such

manner results in very high aggregate bandwidth across the cluster while minimizing the

communication cost. Figure 3.11 gives a high-level overview of the MapReduce work

flow.

MapReduce inputs are typically loaded from the HDFS, where data files are evenly

distributed across all the nodes. Running a MapReduce program involves running map-

pers on many or all of the nodes in the cluster, in a parallel manner. Each of these mappers

is equivalent: no mappers have particular “identities” associated with them. Therefore,
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Figure 3.11: High-level overview of Hadoop MapReduce workflow.

any mapper can process any input file. Each mapper loads the set of files local to that

machine and processes the interesting user-specified work. Given an input (i.e., a key and

a value), the Mapper emits new 〈key, value〉 pair(s) which are forwarded to the reducers.

When the mapping phase has completed, the intermediate 〈key, value〉 pairs are ex-

changed between machines to send all values with the same key to a single reducer, which

is known as shuffling. The intermediate key space is divided into several different subsets,

each of which is assigned to a different reduce node; these subsets (known as “partitions”)

are the inputs to the reducer. Each mapper may emit 〈key, value〉 pairs to any partition;

all values for the same key are always reduced together regardless of which mapper it

comes from. The Partitioner class determines which partition a given 〈key, value〉 pair

will go to. The default partitioner computes a hash value for the key and assigns the parti-

tion based on this result. Of course, users can write their own Partitioner implementation.

Note that this is the only communication step in MapReduce. Individual mappers do not

exchange information with one another, nor do the reducers discussed later. The user

never explicitly manipulates information from one machine to another; all data transfer

is handled by the Hadoop MapReduce platform itself, guided implicitly by the different

keys associated with values.

Several reducers are also created which spread across the same nodes in the cluster as
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Figure 3.12: The word count example on Hadoop. Suppose we have two files, foo.txt and
bar.txt. Two mappers (and reducers) were created to process them. Intermediate results
with the same key were sent to the same reducer.

the mappers. They are instances of user-provided code that perform the second important

phase of program-specific work. Each reducer receives a key as well as an iterator over all

the values associated with the key. The values associated with a key are returned by the

iterator in an undefined order. The reducer will go through all these values, performing the

user-specified computations. Reducing results are written back to an output file, typically.

Figure 3.12 illustrates the “word count” computation on Hadoop.

3.6.2 Input Data Tagging

Note that our framework works on tagged key-value pairs, while normal input data, e.g.,

network log files or surveillance videos, are typically not tagged. To perform a privacy-

preserving computation over our tagged-MapReduce, one has to first tag the input data

by indicating the sensitive part. While in principle each key-value pair should be tagged,

doing so for big data may be cumbersome and time-consuming, and may itself require

another MapReduce job. For usability, we implemented a simple and yet practical labeling

process, file-level tagging, whereby each file in the input is labeled as sensitive or non-

sensitive. As mentioned in Section 3.2.2, this file-level tagging is simple but does not

lose generality. For example, a file containing both sensitive and non-sensitive data can
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be simply tagged as sensitive and fed into an initial tagged-MapReduce job that outputs

two separate files, each containing all the records with a particular sensitivity. To label the

input, the user creates a meta file specifying the sensitivity of each file in the input. The

meta file is then submitted, together with the input data, to the modified HDFS. Note that

this tagging step is only required for the initial input data. For inputs to the subsequent

jobs (in the case of chained MapReduce), the data are already associated with sensitivity

tags.

3.6.3 Data Uploading and Replication

The Hadoop’s data replication process is modified to prevent sensitive files from being

stored in the public cloud. Specifically, we extended Hadoop’s INodeFile class by

adding a private boolean field, sensitive, whose value is to be determined from the

sensitivity of the corresponding file, as specified in the meta file. The namenode, which

runs in the private cloud, now allocates data blocks in a privacy-aware manner: a data

bock from a sensitive file is always allocated and replicated to the private datanodes,

while a data block from a non-sensitive file is first allocated to a public datanode, and

then replicated to random targets among all the remaining public and private datanodes.

3.6.4 Map Task Management

Upon receiving a computing job from the user, the jobtracker in Hadoop creates a list of

map and reduce tasks for that job where each map task is associated with one data block

(i.e., InputSplit). Task scheduling is done by the jobtracker based on the heartbeat

mechanism: whenever a heartbeat message comes indicating that a tasktracker is ready to

run a task, the jobtracker chooses from the unassigned task list the most appropriate task

for that node (e.g., considering data locality when choosing a map task), and then assigns

it to that tasktracker.

We modified the above process by adding to each task (the TaskInProgress class)

a binary label which is either sensitive or non-sensitive. A map task is sensitive iff the
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associated InputSplit comes from a sensitive input file. A sensitive task will always

be assigned to a tasktracker running in the private cloud while there is no constraint for

non-sensitive tasks.

3.6.5 Reduce Task Management

The assignment of sensitive and non-sensitive reduce tasks depends on the scheduling

modes. For example, in the single-phase mode, all reduce tasks are created as sensi-

tive. In other modes, the ratio of sensitive and non-sensitive reduce tasks is automati-

cally determined by the system according to the computing power of the private and the

public cloud. Suppose the cluster has Np private nodes and Nq public nodes with uni-

form processing capability, and the user wants to create n reduce tasks, then the first

L(Np, Nq, n) =
⌈

nNp

Np+Nq

⌉
reduce tasks are reserved as sensitive. The choice of the func-

tion L() here is a reasonable default to balance the workload between the public and the

private cloud, however, a different L() is feasible.

For TPC and TPNC modes that require two phases of reduce, additional L(Np, Nq, n)

sensitive reduce tasks are then created to combine the partial reduce-output produced in

the first phase. The data shuffling and sorting phase between reduce-reduce is similarly

implemented to that between map-reduce.

We also extended the default HashPartitioner class of Hadoop to consider tags

when partitioning the intermediate data. Specifically, a map task generates a set of in-

termediate tuples where each tuple (k, v; t) is to be stored in the Hash(k, t)-th partition,

where Hash(·, ·) is some deterministic hash function. The hash function is defined in

such a way that, if t is sensitive, then

0 ≤ H(k, t) < L(Np, Nq, n)

otherwise

L(Np, Nq, n) ≤ H(k, t) < n
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Note that the i-th partition is going to be processed by the i-reduce task. Hence, the above

hash function ensures that a sensitive tuple will always be passed to a sensitive reduce

task running in the private cloud. Note that the intermediate shuffling and sorting phase

between map-reduce is not affected.

3.7 Evaluation

We experiment with our prototype on Amazon EC2 to evaluate the practicality of the

system and the effectiveness of the proposed scheduling modes in terms of: (i) inter-

cloud communication cost; (ii) total job running time; and (iii) computation outsourcing

ratio. The experiments are run using both simple (single) and complex (chained) jobs. In

addition, we also study the effect of different public cloud sizes.

3.7.1 Experimental Setting

We describe here the setting of our experimental study, including the data and computing

jobs, and the hybrid-cloud environment over which our system is run.

Computing Jobs and Datasets

We run 5 simple MapReduce jobs where it is natural to have input data with mixed-

sensitivity: Word Count, Sort, Inverted Index, Traffic Statistics and Face Detection. The

word count job, which is an extension to the classic MapReduce example [74], counts the

occurrences of each word in a large set of text files. The map output is sensitive iff the

word is from a sensitive input file and not in the set of “stop words”; the reduce output

is sensitive iff at least one of its input is sensitive. We run this job with the Wikipedia

dataset [9] that contains English wikipedia articles up to July 2012. The sort job, working

on the Google 1-Ngram dataset [21], sorts the input tuples by the number of times that

each word occurs. The inverted index job, as a representative usage of MapReduce in

large-scale search indexing systems, computes in which files and lines each word occurs,
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Table 3.1: Summary of the computing jobs and datasets
Job Dataset Descriptions

Word Count Wikipedia dataset (36.8GB) Count the occurrences of each word
Sort Google 1-gram dataset (9.7GB) Sort the records by the number of occurrence

Inverted Index Wikipedia dataset (36.8GB) Compute the locations of each word
Traffic Statistics DARPA IDS dataset (17GB) Count the total traffic generated by each host
Face Detection Image dataset (17.2GB) Detect human faces from the images

with Wikipedia dataset as the input. Both the sort and inverted index jobs have similar

sensitivity policies as word count. The traffic statistics job, on input a set of network

logs from the DARPA intrusion detection systems (IDS) dataset [20], outputs the total

amount of traffic generated by individual hosts (for detecting DoS attacks). The default

tagging policy described in Section 3.3.1 is applied for this job. The face detection job

detects human faces from a database of 80,000 images crawled from the web via Google

Images. The output are extracted images of successfully detected faces where a face is

tagged as sensitive if it is from a sensitive image which contains no more than 3 faces.

The computing jobs and datasets are summarized in Table 3.1.

We split the Wikipedia, Google Ngram and IDS datasets each into 10 separate files

of roughly the same size. Our experiment will vary the ratio of sensitive data over the

whole input dataset by randomly tagging files approximately up to the ratio as sensitive.

For the image dataset, to obtain a particular ratio of sensitive data, an appropriate number

of randomly selected images are tagged as sensitive.

The Hybrid Cloud Setting

We build a hybrid cloud on Amazon EC2 across Singapore and US West. The private

cloud consists of 3 instances located at Singapore and the public cloud has 0, 3 or 6 in-

stances at N. California (i.e., we experiment on different scales of the public cloud). All

instances (m1.large) run Ubuntu 12.04, and each provides 2 virtual cores with 4 ECUs

(EC2 Compute Unit, each provides the equivalent CPU capacity of a 1.0–1.2 GHz 2007

Opteron or Xeon processor), 7.5 GB memory and 850 GB storage. The bandwidth be-

tween these instances is not specified by Amazon. An informal test of file transfer using
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scp gives 35–40 MB/s within the same region (e.g., from Singapore to Singapore), and

3–8 MB/s across different regions (e.g., from Singapore to US West). Though our cluster

is small, our dataset size is quite modest and hence matches the cluster.

3.7.2 Experiments on Scheduling Modes

In this experiment, 3 instances are utilized on the public cloud, hence, the whole hybrid

cluster has 6 instances in total. We run the above 5 jobs under the four scheduling modes

presented in Section 3.4. As baselines, we also run them on original Hadoop over the

whole hybrid cloud. Note that original Hadoop run is only meant for comparisons because

Hadoop cannot be securely used in a hybrid cloud with sensitive data. For each case, we

vary the ratio of sensitive data over the whole input between 20% to 80%. We record

the total job running time (job elapsed time), the execution time of each task (individual

CPU time) and the total amount of traffic across the public and private cloud (inter-cloud

communication) by analyzing the Hadoop log files.

The hand-off mode requires the unique tag property which is not met by the word

count, sort, inverted index and traffic statistics jobs as a same key can occur in both

sensitive and non-sensitive files. Fortunately, we can use the following observation. Given

a map µ̂ which produces 〈k, v1, s〉 and 〈k, v2, n〉 where s and n denote sensitive and non-

sensitive, a simple transformation to meet the unique tag property is to instead output

〈1.k, v1, s〉 and 〈0.k, v2, n〉 where the dot is bit concatenation. Face detection uses image

name as the key which is either sensitive or not, thus fits the unique tag property.

Inter-Cloud Communication

This measures how much data is transferred across the two clouds during computation.

Note that due to the limited inter-cloud bandwidth, this could be a potential performance

bottleneck. The result is shown in Figure 3.13.

The result of the word count, inverted index and traffic statistics jobs shows the effec-

tiveness of our proposed modes in reducing the inter-cloud communication. In these jobs,
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Figure 3.13: Inter-cloud communication.

our TPC, TPNC and HO modes can lessen the total amount of inter-cloud data traffic by

orders of magnitude as compared to original Hadoop or the basic SP mode. In particu-

lar, the TPNC mode mostly incurs the least inter-cloud communication overhead as the

reduce output is much smaller in size than the map output, hence the data (i.e., partial

reduce output) transferred from the public to the private cloud is small.

The result of the sort and face detection jobs is different. Surprisingly, both TPC

and TPNC modes incur larger inter-cloud communication than the SP mode or original
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Hadoop. We observed that this is due to the behavior of the reduce function in these

two jobs, which simply takes the input and outputs them. This means that the output

from reduce is similar in size to the map output. The TPC and TPNC modes move all

the intermediate results produced on the public cloud, together with those non-sensitive

ones from the private cloud, back to the private cloud for final reduce, and hence incurs

the largest inter-cloud data movement. In contrast, the SP mode only involves one step

of data movement, giving less inter-cloud data traffic. The HO mode in these two jobs

has the least inter-cloud communication cost indicating that very few sensitive data are

downgraded to be non-sensitive.

Job Elapsed Time

The job elapsed time measures how long it takes to compute a MapReduce job. The result

is illustrated in Figure 3.14. It is not surprising that most of our modes require a longer

time to compute a same job than original Hadoop mainly due to the additional security

constraint. However, the original Hadoop run does not preserve data-privacy. When the

ratio of sensitive data is lower than 50%, there are roughly equal data processed on the

public and private cloud, hence the time is low. As the ratio increases, the private nodes

bear the burden of increased data so the time increases. Our modes can outperform the

basic SP mode in the word count, inverted index and traffic statistics jobs. However, in

the sort and face detection jobs, both the TPC and TPNC modes incur longer time than

SP. Again this is due to the reduce behavior of these two jobs, which does not decrease the

data size but incurs computational overhead. The HO mode in the word count, inverted

index and face detection jobs can approach the performance of original Hadoop at a ratio

of around 50% while constantly outperforming Hadoop in the sort and traffic statistics

jobs, mainly due to the optimized inter-cloud data traffic. The TPNC mode in word count

and inverted index completes even much faster than Hadoop. This indicates that inter-

cloud data movement is indeed a significant performance bottleneck.
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Figure 3.14: Job elapsed time.

Computation Outsourcing Ratio

The computation outsourcing ratio gives the percentage of total CPU time used in the

public cloud over the total CPU time. It measures how much compute is outsourced to

the public cloud. The result is given in Figure 3.15. The Hadoop baseline is around 50%

which is expected as it randomly assigns tasks to all the nodes. The SP mode assigns all

reduce tasks to the private cloud and thus serves as a lower bound of the other modes. The
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Figure 3.15: Computation outsourcing ratio.

HO mode achieves the best outsourcing as it saves the final reduce phase in the private

cloud. The TPC and TPNC modes are not far behind and close to each other. Further, as

the sensitive data ratio increases, naturally the outsourcing ratio decreases since less work

is available to be outsourced.

61



20 40 60 80
0.5

1

1.5

2

2.5

3

3.5

4

4.5

Sensitive data ratio (%)

M
on

et
ar

y 
co

st
 o

n 
pu

bl
ic

 c
lo

ud
 (

$)

Word Count

 

 

SP
TPC
TPNC
HO
Hadoop

20 40 60 80
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Sensitive data ratio (%)

M
on

et
ar

y 
co

st
 o

n 
pu

bl
ic

 c
lo

ud
 (

$)

Face Detection

 

 

SP
TPC
TPNC
HO
Hadoop

Figure 3.16: Monetary cost incurred on the public cloud.

Monetary Cost

Though our scheduling modes are not particularly designed for minimizing monetary cost,

evaluating the cost with the above experiments is also instructive. Let us take Amazon

EC2’s pricing model as an example, the computation costs $0.19 per hour for each sta-

ndard large Linux/UNIX instance and bandwidth costs $0.12 per GB for the inter-cloud

data traffic.11 We want to estimate how much will be charged by the public cloud provider

(i.e., Amazon) when the jobs are computed on our hybrid cloud. The total cost is CPU

+ bandwidth costs. Taking the word count job with the SP mode as an example, at a

sensitive ratio of 60%, the SP mode requires 4375 seconds to complete the job, giving a

computation cost of (4375/3600)×0.19×3≈$0.693, and incurs 28.72GB inter-cloud data

traffic, giving a bandwidth cost of 28.72×0.12≈$3.446. This amounts to a total cost of

$4.139. We similarly calculate the costs for the other modes of the word count job, and

also for all the modes of the face detection job. The results are shown in Figure 3.16

Figure 3.16 shows that our optimized scheduling modes, e.g., the TPC, TPNC and HO

modes in word count and HO mode in face detection, can also reduce the monetary cost,

as compared to the default SP mode or original Hadoop runs. Figure 3.16 shows similar

trends to Figure 3.13 of inter-cloud communication as bandwidth cost dominates within

11Prices are taken from the N. California region in August 2013. Note that while Amazon only charges
for data traffic from Amazon EC2 out to the Internet, for simplicity, we assume that both two-way traffics
incur monetary cost.
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the total cost.

Summary The above results demonstrate that, our proposed scheduling modes (i.e.,

TPC, TPNC and HO) can effectively reduce the inter-cloud communication and job ex-

ecution time while being able to outsource more computation to the public cloud, as

compared to the general SP mode. The time overheads are also reasonable as compared

to original Hadoop runs on the same hybrid cluster which ignore the data security and pri-

vacy constraints. Besides, the monetary costs could also be reduced with carefully chosen

scheduling modes.

3.7.3 Experiments on Different Baselines

The above Hadoop runs on the hybrid cloud do not meet the security requirement. In

practice, one can only run Hadoop on private servers in order to prevent data leakage.

We therefore experiment with Hadoop on the sole private cloud (i.e., only 3 nodes) as the

baseline. We only compare the job elapsed time since there is no inter-cloud communica-

tion or computation outsourcing for Hadoop with the pure private cloud setting.

The result is illustrated in Figure 3.17. In the word count, inverted index and traffic

statistics jobs, all of our modes give smaller job elapsed time compared to the Hadoop

runs on the sole private cloud, as much work is outsourced to the public cloud. In the

sort and face detection jobs, the TPC and TPNC modes incur high elapsed time which is

comparable to that of the private Hadoop runs, mainly due to the overheads in two phases

of computation and the high amount of inter-cloud data traffic.

In summary, while both preserving data security and privacy, our system has the ad-

vantages of reducing job execution time and outsourcing partial computation, as com-

pared to Hadoop runs on the pure private cloud.
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Figure 3.17: Job elapsed time with different baselines.

3.7.4 Experiments on Different Public Cloud Sizes

Next, we are interested in the effect of different public cloud sizes. We rerun the word

count and sort jobs with our prototype under 3 different cloud settings: S1 – 3 private

nodes only; S2 – 3 private + 3 public nodes; and S3 – 3 private + 6 public nodes. We

record the job elapsed time, inter-cloud communication and computation outsourcing ra-

tio similarly as in Section 3.7.2. The ratio of sensitive data over the whole input is around
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Figure 3.18: Job elapsed time with different public cloud sizes (left: word count; right:
sort).
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Figure 3.19: Inter-cloud data traffic with different public cloud sizes (left: word count;
right: sort). The 3 private nodes only setting does not incur inter-cloud communication,
and hence is not shown in the figure.

The results are shown in Figure 3.18–3.20. As expected, with a larger public cloud, we

are able to outsource more work, giving a higher outsourcing ratio and lower job elapsed

time. The time difference between S2 and S3 is small indicating that not much more work

is available to be outsourced when increasing the public nodes from 3 to 6. For the SP,

TPC and TPNC modes, the inter-cloud data traffic increases with a larger public cloud,

since more data are computed on the public cloud which are finally shuffled back to the

private cloud for merging. In contrast, the HO mode incurs less inter-cloud data transfer

65



Table 3.2: Mode assignment for individual MapReduce jobs
Application Job Mode

Wordcount+Sort Word Count Two-Phase Non-Crossing
Sort Single-Phase

Face Anonymization
Face Detection Hand-off

Average Hand-off
Sort Single-Phase

when the public cloud size increases as it does not require the second-reduce phase.
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Figure 3.20: Computation outsourcing ratio with different public cloud sizes (left: word
count; right: sort). The 3 private nodes only setting does not involve computation out-
sourcing, and hence is not shown in the figure.

3.7.5 Experiments with Chained MapReduce

Last, we experiment on more complex MapReduce jobs that involve chained MapReduce:

wordcount+sort and face anonymization. We choose the most appropriate mode, as sum-

marized in Table 3.2, for each individual job in the chain according to the properties of

the computation. The ratio of sensitive data over the whole input is around 50% in both

jobs. The result is compared with two columns, running with the (default) SP mode and

the original Hadoop.

Table 3.3 gives the overall job execution time and inter-cloud data traffic for each

complex job. The result shows that the total amount of inter-cloud data traffic can be

significantly reduced with the appropriate modes. For example, knowing that the first two
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Table 3.3: Experimental results on chained MapReduce

Application Job
Hadoop SP Mode Only Assigned Modes

Time Traffic Time Traffic Time Traffic
(sec) (MBs) (sec) (MBs) (sec) (MBs)

Wordcount Word Count 3020 36551 4082 32150 2275 685
+ Sort 278 505 307 621 307 621

Sort Total 3298 37056 4389 32771 2582 1305
Face detection 5220 4109 5776 4521 5093 847

Face Average 2158 1020 2534 1453 2064 0
Anonymization Sort 483 1007 528 1407 528 1407

Total 7861 6136 8838 7381 7685 2254

jobs of face anonymization meet the unique tag property, we can assign to them the HO

mode, where data are separately processed in the public and the private cloud in parallel.

The sensitivity information is then naturally handed over to the next job, so there is no

need to transfer the output of each job back to the private cloud. Such avoidance of

unnecessary data movement leads to further optimization in inter-cloud communication

across multiple MapReduce jobs. Overall, we can reduce the inter-cloud data traffic by

more than 90% for the wordcount+sort job and around 70% for the face anonymization

job as compared to the SP mode or original Hadoop.

The total elapsed time also has significant improvements with correctly chosen modes

compared to the SP mode. The times are also comparable to the original Hadoop runs.

We remark that choosing the mode can be done automatically by the system if the prop-

erties of the MapReduce job are specified. In summary, the total overheads for the hybrid

framework are reasonable for realistic complex MapReduce jobs in the hybrid cloud set-

ting with data confidentiality constraints. We believe that in many cases, the conditions

for the non-single phase modes can be met which lead to further optimizations.

3.8 Extension – Routing Traffic through a Proxy

Recall that under our security model in Section 3.5, adversaries in the public cloud have

knowledge about the identities (e.g., IP addresses) of the private servers who interact with

the public cloud (i.e., the information I.2 as defined in Section 3.5.2). Through analyz-

ing the timing and size of packets received from individual private servers, one could
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Figure 3.21: Routing inter-cloud traffic through a trusted proxy to prevent side-channel
leakage on private worker identities.

potentially collect additional information about the input. In Section 3.5.7 we discussed

multiple mechanisms to prevent such side-channel information leakage. To facilitate the

security analysis and remove the leakage of private worker identities, we implement the

mechanism of routing inter-cloud data traffic through a trusted proxy server.

3.8.1 Main Idea

The intension is to hide the identities of the private servers. To this end, we add one more

proxy server in the private cloud, as illustrated in Figure 3.21(a), whose responsibility

is to route the traffic across the public and the private cloud. Workers in one cloud can

only contact the proxy server to retrieve the output of workers in the other cloud. Traffics

within the public or the private cloud are as usual. Figure 3.21(b) provides a low-level

view of the dataflow during a MapReduce execution from the perspective of tasks.
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Figure 3.22: Overheads of routing inter-cloud data traffic through a proxy.

3.8.2 Implementation and Evaluation

We implemented the above mechanism as an extension to our tagged-MapReduce proto-

type. Essentially, for each job, the proxy maintains the locations of its map and reduce

tasks. Such information can be easily obtained from the JobTracker. Whenever a reduce-

task contacts the proxy, it knows exactly where to retrieve the corresponding map-tasks’

output. The proxy then copies the data and forwards them to the requesting reduce-task

“on the fly”.12

Experiments are conducted to evaluate the overheads incurred by the proxy. Specifi-

cally, we run the word count job under our prototype system, with and without the proxy

enabled. The hybrid cloud contains 3 private and 3 public nodes as described in Section

3.7.2. The proxy is deployed on an additional standard large instance in the private cloud.

The ratio of sensitive data over the input is 40%. We compare only the job elapsed time

and computation outsourcing ratio since there will be no difference in the inter-cloud data

traffic.

The result in Figure 3.22 shows that there are only small differences between the cases

of using and not using a proxy. The time overhead of routing traffic through a proxy is less

than 4% in our experiments. This is foreseeable since the original inter-cloud data traffic

12Relaying data on the fly can generally reduce the overhead but introduce difficulties in fail-over. Alter-
natively, one can start to forward the data only after it is fully copied to the local storage.
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needs to go through some gateway anyway. Hence, we conclude that, routing inter-cloud

data traffic through a trusted proxy server is an effective approach to prevent side-channel

leakage, with only negligible overhead in the job execution time.

3.9 Discussion

Comparison with Sedic

Sedic [175] is closely related to our work but with fundamental differences. It takes a dif-

ferent sanitization approach whereby data are duplicated to both clouds, but with sensitive

portions sanitized in the public cloud. This approach, however, is less flexible for complex

MapReduce computation with chained or iterative MapReduce. We address this problem

by explicitly tagging. With tagging, data directly carry sensitivity information which can

be fed to the next job, and thus multiple MapReduce computation can be carried out natu-

rally. This flexibility also allows legacy MapReduce code to be easily supported. Besides

flexibility issues, the sanitization approach also reveals relative locations and length of

sensitive data, which potentially could leak important information [118]. In contrast, data

in our framework are segregated according to their sensitivity and distributed to the two

clouds separately. Since the segregation of data does not explicitly reveal the locations

of sensitive data, the propose approach is arguably more secure. Furthermore, tagged-

MapReduce is also more expressive. Sedic can be expressed as a special case of our

model (with a single-phase mode and default tagging policy) but tagged-MapReduce pro-

grams with expressive security policies and sensitivity downgrading are not catered to in

Sedic. In addition, Sedic does not consider the problem of a general security framework

for analyzing of data leakage on a hybrid cloud which we do.

Practical Considerations

The idea of tagging data with different sensitivity levels for security purposes has been

studied in many scenarios [135, 147, 175] and is also implemented in the industrial com-
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munity. For example, Oracle introduced the Oracle Label Security13 (OLS) as an exten-

sion of the database where each row can be associated with a multi-level security label

(e.g., unclassified, confidential, sensitive, highly-sensitive). Apache Accumulo [8], a dis-

tributed key/value store based on Google’s BigTable [57], has even finer cell-level access

labels where a label is a logical combination of any user-specified strings. Access to the

data is controlled by comparing the data label with the requesting user’s label or security

clearance. We remark that the tagging approach, although conceptually simple, is a prac-

tical approach for data access control in a complex environment such as a hybrid cloud.

While the tag in our framework is only binary: sensitive or non-sensitive, it can be ex-

tended to other types such as the labels used in Accumulo. More sophisticated labels can

be useful in applications where data cannot be simply classified as “sensitive” and “non-

sensitive”, or situations where a piece of information can be considered as sensitive only

within a specific context or only when it is associated with another piece of information.

Potential Improvements

The design of the scheduling modes can also be improved. For example, the experimental

study on job elapsed time gave a rough “V-shape” curve over the sensitive data ratio (e.g.,

the word count job in Figure 3.14). With a sensitive ratio lower than 50%, the time de-

creases when the sensitive data ratio increases, which is counter-intuitive. This is because

a “smart” scheduler can choose to push non-sensitive data to either the private or public

cloud, and thus the performance of this “smart” scheduler with x-percent sensitive data

should not be worse than that with y-percent sensitive data if x < y. This observation

indicates a potential improvement to the scheduler: by dynamically monitoring the ratio

of sensitive/non-sensitive data and the processing capability of both clouds, a scheduler

could move some computation on non-sensitive data to the private cloud to achieve opti-

mal load-balancing and get a constant job execution time when the sensitive ratio is below

50%. However, such “smart” scheduler may not be easy to realize.

13http://www.oracle-base.com/articles/9i/oracle-label-security-9i.php
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Our current implementation requires programmers to indicate whether a map and re-

duce function is partition-able or unique-tag. However, the specified properties may not be

correct due to programmers’ misunderstanding or limited knowledge of the programs. An

interesting question is whether it is possible to apply certain program analysis techniques

to automatically extract the properties from a given MapReduce program. However, the

question of whether this property is achievable remains open.

3.10 Summary

In this chapter, we present a general solution for computing in the hybrid cloud by extend-

ing MapReduce with sensitivity tags. Our goal is to give a simple and generic framework

for programmers who are already familiar with MapReduce and want to have data privacy

awareness in the hybrid cloud setting. However, it allows complex MapReduce programs

which can have sophisticated security policies as well as chained MapReduce jobs. We

also pair it with a general security framework to analyze what kind of security leaks can

occur through execution in the hybrid cloud. It considers subtle cases when there can be a

difference between the programmers’ views of the MapReduce programs versus informa-

tion leakage that may be gained by the public cloud during actual execution. Our security

model can be used to compare and determine what additional information a scheduler

leaks over the baseline scheduler.

We exploit properties of the map and reduce functions which allow the scheduler to

optimize and rearrange the computation, pushing more work to the public cloud while

reducing the inter-cloud communication. We present scheduling modes which can uti-

lize these properties while being secure under our model. Our experiments demonstrate

the importance of the optimizations. Tagged-MapReduce in the hybrid cloud only in-

curs small overheads as compared to a Hadoop run which ignores the data confidentiality

and security constraints, and thus is fairly practical. In addition, the framework can also

handle legacy MapReduce code naturally.
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Chapter 4

Privacy-preserving Video Surveillance

Stream Processing on Hybrid Clouds

4.1 Introduction

This chapter studies the issues of processing large-scale video surveillance streams on the

hybrid cloud.

Video surveillance systems, as an effective means to ensure safety of individuals and

communities, have been widely deployed in various environments like homes, shops and

banks etc. Video surveillance systems are inherently data-intensive, and often compute-

intensive with the needs to carry out various computation like transcoding, indexing and

video analysis. Such computational requirement could be seasonal, for example, heav-

ier workload in the morning of workdays while lighter workload during weekend nights,

as observed in typical video streaming systems [174]. An organization’s in-house pri-

vate datacenter may be overloaded during peak hours due to its limited computing ca-

pability. While with cloud computing, it is possible to offload all the video streams and

computation to a public cloud like Amazon AWS, such strategy can incur high mon-

etary cost [127]. More importantly, video surveillance streams often contain sensitive

information that cannot be directly handled on the public cloud due to potential data leak-
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ages [30, 141].

The hybrid cloud turns out to be a feasible solution where one can push out partial

video streams to the public cloud while keeping those sensitive streams in the local private

cloud, addressing both of the aforementioned issues on seasonal workload and security.

However, the scheduling decisions of how much and which part of the computation to

outsource is generally hard to make due to frequent changes of system status (e.g., system

configuration and stream sensitivity) as well as multiple factors to consider including

costs, performance and security etc. Also, from application developers’ point of view,

it is preferred that they only need to specify how computations are to be carried out,

without caring about where they are executed and how data are moved during execution.

Such transparency makes it easier for developers with no experience in parallel/distributed

systems to write applications working on large clusters. Therefore, it is desired to have a

middleware that can unify the two clouds and effectively schedule the processing on large

video surveillance streams.

Many stream processing systems have been developed in the past few decades, from

centralized settings like Aurora [63] to distributed settings like Borealis [32], Nephele [117],

S4 [128] and Storm [16]. Together with these systems, there are a large number of stud-

ies focusing on scheduling among multiple servers, with various goals such as to mini-

mize the end-to-end application latency [113, 172], to maximize the aggregated through-

put [36,112], to optimize a combination of latency and throughput referred to as network-

usage [35, 136], to balance the workload and resource usage among all servers [40, 76],

or to maximize the reuse among multiple queries [111, 153]. Although our problem can

be treated as a special case of some known general scheduling models, its specialized set-

tings can be exploited for more effective solutions, making it scalable to larger instances.

Observed that in our setting, servers within each cloud are typically connected by a high-

bandwidth, low-latency network (e.g., Gigabit LAN), whereas connections across the two

clouds have to go through a wide area network or the Internet, having relatively smaller

bandwidth and higher latency. Also, according to today’s typical cloud pricing mod-
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els [25], data transmission within each single cloud is free-of-charge while data traffic

across the two clouds incurs high monetary cost, e.g., $0.19/GB. Hence, we can group

and treat the servers in our setting as two servers: one private server with a fixed amount

of computing power and one public server with elastic resources, and connections be-

tween these two servers are costly. In addition, in many scenarios the effect of public

cloud’s computation cost is much lower than the inter-cloud communication cost [25].

Therefore, we can stress less on the public servers’ computation cost in the cost model.

The security requirement places another hard constraint on where certain streams can be

processed. These specialized properties in turn allow us to focus on the processing of

larger number of streams (e.g., hundreds) with reasonable length of tasks, e.g., around 10

operations per task.

We model stream processing as a set of task templates whereby each template can be

independently instantiated to multiple video streams. Each task template is represented

as a loop-free, directed graph of operations, with the code provided by application devel-

opers. In addition, the developers can specify multiple connection points [63] in a task

graph whereby clients can dynamically tap into the stream data during execution. The

locations of the connection points provide useful information to the scheduler, so that

dynamic changes to the task graphs do not necessarily trigger rescheduling. However, as

sensitivity of video streams can change during run-time, rescheduling might be required

occasionally. In particular, if the sensitivity of a stream in the public cloud changes from

non-sensitive to sensitive, the stream must be rescheduled to the private cloud to prevent

potential data leakages. This can be done by buffering or dropping data frames before the

rescheduling is completed.

We formalize the scheduling problem as an optimization problem that minimizes the

overall monetary cost to be incurred on the public cloud, with the resource, security and

Quality-of-Service (QoS) constraints. We propose an algorithm that exploits the afore-

mentioned specialized properties of hybrid clouds for more efficient solutions. Essential-

ly, for each task template of the input, we search for the set of “minimal configurations”
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and then employ integer programming to select the desired configurations. For templates

that are reasonably short (around 10 operations), the set of minimal configurations is typ-

ically sufficiently small for state-of-the-art solvers [125]. In cases where the number of

minimal configurations is large, we provide a heuristic that selects only a few represen-

tatives to further improve the performance. Informally speaking, the challenge in our

scheduling problem is more on determining how a large number of relatively short tasks

are to be scheduled on the two servers, instead of scheduling a single large task among

multiple servers considered by many existing works.

The proposed stream processing model and scheduling mechanism can be built on

top of existing stream processing systems like Storm [16]. To facilitate experiments and

testing, instead of using existing platforms, we implemented a proof-of-concept system

with basic functionality of video streaming and several operations including transcoding,

face detection, etc. We conducted extensive experiments, through both large-scale sim-

ulations and actual runs with our proof-of-concept system on Amazon EC2. The result

shows that it is feasible to process large-scale video streams in a hybrid cloud, preserving

data-privacy and reducing monetary cost as compared to a pure public cloud deployment.

The overheads of our scheduler are much lower than other alternatives.

4.2 Background on Video Surveillance

We first give a brief introduction to traditional video surveillance systems as well as the

current moving trend to the cloud computing environment. We then summarize traditional

approaches to preserving privacy in surveillance videos.

4.2.1 Video Surveillance Systems

Video surveillance systems, as illustrated in Figure 4.1, use multiple cameras to observe

the events and activity of an area. They are often connected to multiple recording devices,

and may be inspected by security personals. Over the past few decades, video surveillance
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Figure 4.1: Illustration of a video surveillance system [150]. Video cameras (and micro-
phones) capture the events and activities of the environment.

systems have grown from the original closed-circuit video transmission (CCTV) environ-

ments into the self-contained digital video recorder (DVR) environments, and now into

the centrally managed Internet Protocol (IP) cameras. IP cameras can be easily deployed

on current computer networks, and video streams can be sent to anywhere on the Internet

including mobile devices and smartphones.

Video surveillance systems have been deployed in a wide spectrum of scenarios like

traffic surveillance in cities, detection of military targets, and physical perimeter securi-

ty [139]. Modern video surveillance systems often involve a large number of cameras

(Figure 4.2). For example, the city of Chicago, Illinois, used a $5.1 million Homeland

Security grant to install an additional 250 surveillance cameras, and connect them to a

centralized monitoring center, along with its preexisting network of over 2000 cameras,

in a program known as Operation Virtual Shield [159]. As another example, the China’s

Golden Shield Project aims to install millions of surveillance cameras throughout China,

along with advanced video analytic and facial recognition techniques, which will identify

and track individuals everywhere they go [107].

Video surveillance systems used to require human personnel to monitor camera footage,
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(a) (b)

Figure 4.2: Multiple cameras installed at a single site.

which now becomes difficult due to the large number of cameras. Automated video anal-

ysis and understanding techniques are therefore needed to ease the workload of human

operators and reduce the risk of miss-detection. Most of current surveillance systems

employ various video analysis techniques, including motion/object detection, objection

classification, objection tracking, behavior and activity analysis and understanding, face

detection and person identification etc. Moreover, video surveillance systems are also

preferred to be interactive in the sense that operators can feed in parameters and con-

trol commands during runtime. For example, once a particular object is detected in one

camera, the operator can instruct the system to detect whether the same object appears

in any of the other 100 cameras in the next 10 minutes. A large number of automated

video surveillance systems have been proposed over the past few decades, from research

prototypes [69, 86, 89, 101, 106, 167] to industry productions [11, 13, 14].

4.2.2 Video Surveillance in the Cloud

Traditional surveillance systems send video streams to a centralized location, e.g., an

in-house private datacenter, whereby video data are analyzed and stored. However, as

computation in video surveillance system becomes increasingly intensive, the local sys-

tem could be overloaded during peak hours due to its limited computing capability. With

recent advances in cloud computing, one natural solution is to offload all video streams

and computation to a public cloud like Amazon AWS. There are a number of works dis-
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cussing such possibility of transitions.

Karimaa [103] reviews the transition alternatives from a traditional to a cloud-based

surveillance system, points out the advantages and analyzes the dependability charac-

teristics, namely, availability, security, reliability and maintainability. Chang et al. [58]

propose an architecture for ubiquitous video surveillance (UVS) services over the Inter-

net. To protect privacy against the public Internet, they apply various techniques includ-

ing encryption, multicast overlay network and forward error correction (FEC). Saini et

al. [149] investigate how to dynamically balance the workload of video processing over

multiple servers on the cloud. Li et al. [116] investigate how to process massive floating

car data (FCD) in cloud environments, exploiting emerging cloud computing technologies

to solve data-intensive geospatial problems in urban traffic systems. Pereira et al. [133]

present Split&Merge, a MapReduce-based architecture for high-performance video pro-

cessing (i.e., encoding) on the cloud. Neal et al. [127] investigate the economy of moving

video surveillance to the cloud. They conclude, after examining various SaaS, PaaS and

IaaS providers that, it is more expensive and requires additional reviews for legal impli-

cations as well as emerging security threats. Our work will demonstrate that, with the

hybrid cloud and effective scheduling, the above issues can be significantly mitigated.

4.2.3 Security and Privacy in Video Surveillance

Video surveillance provides increased safety for individuals and community. However,

this increased safety also comes at the cost of privacy loss of individuals. Privacy concerns

have prohibited video cameras from being deployed at many critical places that are needed

to be monitored. Existing works on video privacy can be broadly summarized as the

following two steps: privacy modeling, followed by data transformation.

Privacy Modeling To protect video data, the first step is to understand what character-

istics of a video cause privacy loss. Generally, existing work on privacy modeling can

be divided to two categories: sensitive information as privacy loss and identity as privacy
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loss. In the first category, it is assumed that the identity is known through other means and

the semantic information of the video, such as the activity or location of an object, causes

privacy loss [33,114,160,177]. For instance, Zhao et al. [177] filter the videos so that the

individuals are identified, but other sensitive information like where they are, what they

are doing, or who are with them, cannot be detected.

In the second category, it is assumed that if the adversary can recognize a person in

the video, it leads to privacy loss. With this assumption, they model the privacy loss in

terms of the characteristics of the video which reveal the identity of the person. This is

the most common approach of privacy modeling in video surveillance community [48,60,

95,164,169,176]. For example, Wickramasuriya et al. [169] define four levels of privacy:

original image, blurred silhouette, monotonically colored silhouette, and bounding box.

Venkatesh et al. [164] use object detection to determine the bounding boxes covering the

whole human body and replace these regions with background. However, identity loss

can still occur when the human silhouette or face is obfuscated, through implicit channels

like priori-knowledge or environments/activities in the video. Saini et al. [148] provide a

more comprehensive privacy modeling considering both explicit and implicit channels.

Data Transformation Once the characteristics of a video are identified that cause pri-

vacy loss such as image regions or event sequences, the next step is to transform the video

data such that the privacy can be protected. One trivial solution is to remove everything

from the images, but such video has no utility. Most researchers have used selective obfus-

cation to preserve the privacy in the surveillance videos [55,98,109,152]. They adopt the

traditional approach which first detects the region of interest (e.g., face) and then hides it.

Since this approach is limited by the accuracy of the detectors, privacy cannot be guaran-

teed. The other set of works go for global transformation of the whole image [33,48,114].

In these works, the obfuscation function (blurring, pixelization etc.) is applied on the wh-

ole image to hide the private information. This approach is too pessimistic and affects the

utility of the video data. Chinomi et al. [64] give a survey comparing different methods
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Figure 4.3: System model for hybrid cloud video surveillance.

for obscuring people in the video data, including monotone, blur, pixelization, border and

etc.

4.3 Hybrid Cloud Video Surveillance Model

The above traditional approaches for video privacy are generally expensive for large-

scale video surveillance data with the real-time requirement. In this work, we assume that

video surveillance streams can be tagged in some way indicating the sensitivity level and

the privacy is achieved by preventing sensitive streams from being processed on untrusted

servers. Now we start to describe our model for the hybrid cloud-based video surveillance

system.

4.3.1 System Model

We consider a hybrid cloud model, as shown in Figure 4.3, for video surveillance systems

with highly dynamic workloads. In this model, the private cloud has a fixed number of

servers, each of which has limited computing power. In contrast, the public cloud has

elastic computing resources that can be allocated and de-allocated on-demand. Servers

within each cloud are connected to each other by a high-bandwidth, low-latency network
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(e.g., Gigabit LAN) whereas connections between servers across the two clouds have to go

through a WAN or the Internet. Hence, the inter-cloud connections have relatively smaller

bandwidth and larger delay. In addition, under current typical cloud pricing models, data

transmission within each single cloud is free-of-charge while data traffic to the Internet

(i.e., inter-cloud data traffic) incurs high monetary cost, e.g., $0.19/GB [25]. Based on

these observations, we group and treat the servers in our system as two servers: a private

server with a limited aggregated computing power, denoted as C, and a public server with

elastic computing capacity. These two servers are connected by a long-distance link with

an estimated bandwidth B and link delay L, while data transfer within each server incurs

no cost.

The system contains a large number of surveillance cameras distributed over a wide

area. Each camera generates a video stream that is to be sent to some servers in the two

clouds. The stream is processed in the hybrid cloud, in a way specified by application

developers, and then streamed to multiple clients. Besides, input/output streams can also

be originated from/written to storage servers. Note that both the cameras and clients can

be within or outside the local area network of the private cloud. Hence, streaming to the

public and private servers incur different costs.

4.3.2 Stream Processing Model

The system has to process a large number of video surveillance streams in parallel. We

model the processing as a set of task templates where each task template consists of

a sequence of operations that can be applied to multiple input streams. Similar to many

previous works [63,94,165,172], each task template T is represented as a directed, acyclic

and labeled graph G(V,E) where V = Vsrc ∪ Vop ∪ Vsink. The set Vsrc is the set of

stream sources which could be cameras or recorded videos retrieved from storage systems;

Vsink is the set of streaming sinks which could be display devices or storage systems

as well. Vop contains the set of operations such as transcoding, background extraction,

object detection etc. Application developers can provide the code for each operation or

82



… 

…
 Processing 

results 

Stream Processing System 

Public 
Cloud 

Private 
Cloud 

Video 
streams 

c3 

v1 

v2 

c4 

c5 

c6 

c7 

c8 

c9 

c10 c11 

v12 

v13 

b1,3 

b2,4 

b3,5 

b4,6 

b5,8 

b6,8 

b7,9 

b8,10 

b9,10 

b10,11 

b11,12 

b11,13 b4,7 

v3 

v4 

v5 

v6 

v7 

v8 

v9 

v10 v11 

Private 

Public 

Historical 
storage 

Private 
Scheduler 

Public 
Scheduler 

Scheduler 
Sensitivity 
Analyzer 

… 
WAN/Internet 

CP1 

CP2 CP3 

Figure 4.4: Illustration of a stream processing task.

select it from a library. The edges in E define the data flows between the vertexes in

V . Figure 4.4 gives an example of task template. Recall that a single template can be

independently instantiated to multiple input streams. In an instantiated task, each source

and sink node is associated with a location, e.g., IP address, indicating in which cloud,

private or public, the node resides, while operations in Vop have not been assigned. In

contrast, in an assigned task, not only the source and sink nodes are instantiated, each

operation in Vop is also assigned a label, private or public, indicating in which cloud the

operation is to be executed.

Similar to Aurora* [63], an application developer can specify multiple connection

points in a task graph where data streams will be cached in some storage for a certain

amount of time e.g., 10 hours. Such connection points are useful in supporting ad-hoc

queries and dynamically joined clients. For example, one might be interested in finding

out whether a particular person appeared in a building yesterday evening between 6-12pm.

Such a query can be similarly defined and attached to the connection points of existing

running tasks that have the required data, without rescheduling the whole set of tasks. The

introduction of connection points is especially useful for our system since rescheduling

and operation migration are more expensive in the hybrid cloud setting.

4.3.3 Security Model

We consider the servers on the public cloud to be honest-but-curious, that is, they will

follow the protocol and carry out the required computation honestly, but may retain in-
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formation collected from the computation for malicious purposes. In contrast, the private

servers are fully trusted.

Every stream in an instantiated task is tagged with an attribute, sensitive or non-

sensitive, while in general a larger attribute set is also possible. The tagging can be done

manually by the users or by an automated program. In its simplest form, one could spec-

ify certain policies for deciding the sensitivity. For example, “the video stream generated

by camera x is sensitive iff the time is between 2–4pm”; “the output of operation o is

sensitive if at least one of its input is sensitive” etc. In this work, we do not discuss in

detail how streams are to be tagged, and simply assume that there is a component (i.e., the

Sensitivity Analyzer in Figure 4.5) to do this tagging when instantiating the task templates

to different stream sources and sinks. Sensitive streams must not leave the private cloud

in order to prevent data leakages while there is no constraint for non-sensitive streams.

Unless otherwise specified, all streams in an instantiated task are tagged.

Note that not all possible ways of tagging streams are valid. If all the input streams of

an operation are non-sensitive, the output stream has to be non-sensitive as well. We refer

it to as the non-upgrading policy. The non-upgrading policy imposes a constraint which

excludes certain undesired scenarios, e.g., excluding cases where non-sensitive streams

that have been pushed to the public cloud are later tagged to be sensitive. On the other

hand, it is possible that on sensitive input, the output is non-sensitive. For example, an

operation that takes in a sensitive video stream may output a lower resolution stream that

is deemed as non-sensitive. We refer it to as the downgrading policy. This policy allows

pushing more computation to the public cloud which is useful in many scenarios.

The sensitivity of a stream can change during runtime, from sensitive to non-sensitive

or vice versa, and a rescheduling might be required due to such realtime changes. In par-

ticular, if a stream assigned to the public cloud suddenly becomes sensitive, it must be

rescheduled to the private cloud so as to meet the security requirement. Data frames have

to be properly “buffered” or dropped before the rescheduling is fully carried out. This

will introduce certain performance overhead, either in terms of extra delays or data loss-
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es. Fortunately, there are existing techniques supporting fast operation migration during

runtime [63, 136].

4.3.4 Cost Model

Each operation in a task graph implements a video processing function, requiring a certain

amount of computing power, denoted as c, to generate the output in realtime. In this work,

we measure computing cost in terms of the number of ECUs (Amazon EC2 Compute

Unit, each ECU provides the equivalent CPU capacity of a 1.0–1.2 GHz 2007 Opteron

or Xeon processor). We assign the cost of 1 ECU to an operation if the operation can

be carried out in realtime by a machine with 1 ECU capacity. The computing cost can

be estimated based on the input streams’ frame size and data rate, combined with pre-

conducted resource profiling baselines for the operations. Each connection in the graph

represents a data flow from one operation to another, which requires a certain amount of

bandwidth, denoted as b, to transfer the data in realtime. The bandwidth cost is measured

in MB/s, which can be similarly estimated from the user-desired stream rate and frame

size.

One advantage of our cost model is that, it directly approximates monetary cost, giving

system administrators a good overview of the projected cost. Potentially, this cost model

could also lead to further cost-saving. For example, to handle an operation of 0.75 ECU

requirement, one can allocate a virtual machine of 1 ECU capacity instead of 2, since the

latter usually costs more (e.g., $0.08/hour vs. $0.16/hour by Amazon).

4.3.5 System Architecture

Figure 4.5 shows the overall architecture of the proposed hybrid cloud video surveillance

system. The Sensitivity Analyzer, provided by application developers, takes as input a set

of task templates and the corresponding source and sink locations, evaluates the sensitivity

of the streams, and outputs a set of instantiated tasks (whose streams are all tagged).

The instantiated tasks are then fed into the Scheduler, together with the information of
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Figure 4.5: Architecture of the hybrid cloud video surveillance system.

performance requirement and system configuration including private cloud’s computing

power, inter-cloud bandwidth and link delay etc. Based on these inputs, the Scheduler

decides how to assign the operations in each task to the two clouds.

Each cloud, public or private, has an intra-cloud scheduler. Scheduling within the

public and private cloud could be different, and have different objectives. As scheduling

within a single cluster is not within the scope of this work, in our experiment, we use a

simple greedy algorithm that always picks the next available server.

The Event Detector is responsible for detecting changes in the task graph structure

(i.e., dynamic clients and ad-hoc queries), changes in stream sensitivity as well as in other

system configurations. Whenever a rescheduling is required due to such changes, the

Event Detector notifies the Scheduler to initiate the rescheduling.

4.4 Problem Formulation

Given a set of stream processing tasks, we want to decide the proper assignment of each

operation to the public or private cloud. As mentioned before, although our scheduling

problem can be treated as a special case of some known general scheduling models, its
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specialized “two-server” setting could lead to more efficient solutions and allow scaling

up to larger instances.

To meet the security requirement, one natural approach is to assign tasks with (any)

sensitive streams to the private cloud and tasks with only non-sensitive streams to either

the public or private cloud. This approach, while being simple to implement, has two

main issues in terms of scalability and cost. First, it does not scale well due to the short-

sightness in using the private cloud resources. Second, this approach can also incur high

monetary cost mainly due to the non-optimized inter-cloud bandwidth usage. Hence, a

more scalable and efficient solution is desired. This section formalizes the scheduling

problem, followed by a potential extension to the stream processing model. The proposed

approach will be elaborated in Section 4.5.

4.4.1 Optimization Problem

Usage of public cloud resources incurs additional monetary cost, including both the com-

pute and bandwidth cost. Essentially, given a set of tasks each consisting of multiple

operations, our goal is to assign each operation to either the public or private cloud, such

that the total monetary cost to be incurred on the public cloud is minimized, subject to

the constraints that the private cloud cannot be overloaded, sensitive streams cannot flow

into the public cloud and the QoS requirements can be met. Note that there could be

other scheduling objectives such as minimizing the total amount of inter-cloud data traffic

(which could potentially lead to improved performance). Fortunately, as shown in Section

4.6 later, minimizing the cost often gives good approximations to solutions that optimize

the bandwidth usage, as bandwidth cost dominates within the total cost under our cost

model.

The Scheduling Problem

The input is a sequence of task templates T = 〈T1, . . . , Tm〉 and a sequence of integers R

= 〈r1, . . . , rm〉 where each template Ti is to be instantiated ri times to different sources
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and sinks. For ease of exposition, let us rewrite the input in the equivalent form of T̂

= 〈T̂1, . . . , T̂n〉 where each T̂i is an instantiated task, and n =
∑m

i=1 ri. Each operation

vij in T̂i is associated with a computing cost cij and each connection from vij to vik in T̂i

requires a bandwidth cost bijk. Let the QoS requirement be the maximum allowed end-to-

end delay di for each T̂i. The scheduling problem is to decide the binary assignment xij

for each operation vij in T̂i (where value 0 and 1 corresponds to being assigned to public

and private respectively), in such a way that the total incurred monetary cost on the public

cloud

α
∑
i,j

cij(1− xij) + β
∑
i,j,k

bijk|xij − xik| (4.1)

is minimized, subject to the following constraints: (1) the private cloud must not be over-

loaded, i.e.,
∑

i,j c
i
jx

i
j ≤ C; (2) sensitive streams must not leave the private cloud; and (3)

any task T̂i with the corresponding assignment Xi can meet the delay requirement, i.e.,

∀i ∈ [1, n], Delay(T̂i, Xi) ≤ di. Details on the determination of the delay Delay(·, ·)

will be discussed in the following section. Recall that in the input, the source and sink

nodes for each task are already labeled to be in either the public or private cloud and thus

cannot be reassigned.

Determining α and β

In the above objective function 4.1, the first term represents the computation cost on the

public cloud and the latter represents the bandwidth cost for inter-cloud data transmis-

sion.14 Since we are handling stream data, we measure the cost rate, e.g., dollars per

hour. The parameters α and β represent the unit-price for computation and bandwidth

respectively, whose values could be determined according to the pricing model of the

cloud provider. Taking Amazon EC2’s pricing model as an example [25], each ECU costs

$0.08/hour and inter-cloud bandwidth usage costs $0.19/GB; hence, α and β can be set

as 0.08 and 0.684 accordingly. Due to the huge volumes of video data, computation cost

14Similar to the previous work, we assume that both two-way traffics incur monetary cost. However, the
objective function can be easily changed to consider only the out traffic.
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is typically much less than the communication cost. To illustrate, let us assume that an

instance with 1 ECU is able to handle realtime processing of one high-definition video

stream with 1 MB/s inter-cloud bandwidth requirement, then the cost would be $0.764

for a 1-hour run ($0.08 for computation + $0.684 for bandwidth), where the computation

cost is around one-eighth of the bandwidth cost. This suggests that minimizing only the

bandwidth could give good approximations to solutions that minimize the monetary cost.

This is verified in our experiments in Section 4.6. Hence, to speed up the scheduler, one

could omit the computation cost in the cost model.

Estimating end-to-end delay

For a task graph, let us call the dataflow from any source to any sink node a path. Along

a path P with corresponding assignment X for its operations, the total delay is the sum

of the processing time and the communication latency, that is,

∑
∀i,vi∈P

proc t(vi) +
∑

∀i,j,vi,vj∈P,|xi−xj |=1

bij/B +
∑

∀i,j,vi,vj∈P,bij>0

|xi − xj|L

where the first term represents the total processing time, the second represents the time

for data transmission across the two clouds, and the third represents the total amount of

network latency. Recall that the intra-cloud communication is assumed to incur no delay;

however, it can be included in the calculation if required. Then, we have Delay(T,X) =

maxPi
Delay(Pi, Xi). Hence, we can estimate the end-to-end delay for each assigned

task.

4.4.2 Extension of the Stream Processing Model

Our scheduler can also handle the variation where there could be multiple ways to car-

ry out a task. In this variation, an application developer can specify multiple template

graphs for a task whereby these graphs are considered to be “functionally equivalent”. To

illustrate, let us consider the task shown in Figure 4.6(a) which could be carried out in
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Figure 4.6: Illustration of the case where there could be multiple ways to complete a task.

2 different ways: (1) first combine the two streams and then lower the resolution; or (2)

first lower the resolution of each stream and then combine. Although the results might

not be exactly the same, one may consider the differences to be acceptable and deems

the two processes to be functionally equivalent. Consider another example as shown in

Figure 4.6(b), the task of performing face detection and drawing boxes on detected faces

on a high-resolution video stream can also be carried out in another way: first, transcodes

the high-resolution video stream to a low-resolution stream; performs face detection on

the low-resolution stream; and then draws boxes on the original high-resolution stream.

Note that face detection can achieve high accuracy on low-resolution videos [178]. If the

low-resolution stream is tagged as non-sensitive, and the above two ways are specified

as functionally equivalent, when necessary, the scheduler can push face-detection to the

public cloud to reduce load in the private cloud.

For each task T , our proposed approach will consider all the possible alternative

graphs G1, . . . , Gk when making the scheduling decisions.

4.5 Proposed Approach

Not surprisingly, the scheduling problem defined in Section 4.4 is NP-hard.15 Neverthe-

less, by pruning, we are able to handle fairly large instances. Essentially, for each task

template of the input, our algorithm searches for the set of “minimal configurations” with
15This can be proved by a reduction from the 0-1 knapsack problem.
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respect to the private cloud computation load and the public cloud monetary cost, and then

employs integer programming to select the desired configurations. For a task template of

reasonable length, e.g., with 10 operations, although there are 210 configurations, typical-

ly it can be pruned down to around 20, which is sufficiently small for current solvers. For

larger templates, we provide a heuristic to further reduce the number of configurations.

4.5.1 Transforming to Integer Programming

A task template with t operations gives 2t ways of assigning its operations to the two

clouds. Let us call each assignment a configuration and denote it as f = 〈fp, f q〉 where

fp and f q are the set of operations assigned to the private and the public cloud respectively.

Let us denote F(T ) as the set of all configurations for a task template T .16

For each configuration f ∈ F(T ), we can calculate a 2-tuple load-cost value (a, b)

where a is the computing load on the private cloud and b is the cost that one wants to

minimize. For our choice of the objective function, b is the monetary cost to be incurred

on the public cloud. More specifically,

a =
∑
∀i,vi∈fp

ci

and

b = α
∑
∀i,vi∈fq

ci + β
∑

∀i,j,vi∈fp,vj∈fq or vi∈fq ,vj∈fp

bi,j

We can also estimate the end-to-end latency `(f) for each f using theDelay(·, ·) function

described in Section 4.4.1. Additionally, let F(T ) = F(T1) ∪ · · · ∪ F(Tm).

The scheduling problem described in Section 4.4 can be easily transformed to the

following integer programming problem:

16If T has multiple alternative graphs G1, . . . , Gk, F(T ) = F(G1) ∪ . . . ∪ F(Gk).
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Integer Programming

Given the input T = 〈T1, T2, . . . , Tm〉 andR = 〈r1, r2, . . . , rm〉where each task template Ti

is to be instantiated to ri streams. We want to find xi, the number of times a configuration

fi in F(T ) is to be instantiated, such that the total monetary cost,

∑
∀i,fi∈F(T )

bixi

is minimized, subject to: (1) the private cloud resource constraint, i.e.,
∑

i aixi ≤ C; (2)

the number of instances constraint, i.e., ∀j ∈ [1,m],
∑
∀i,fi∈F(Tj)

xi = rj; (3) the security

constraint, i.e., if xi > 0, then the corresponding configuration fi does not push sensitive

streams to the public cloud; and (4) the QoS constraint, i.e., ∀j ∈ [1,m], ∀i, if fi ∈ F(Tj)

and `(fi) > dj , xi = 0. This is an integer programming problem [170] with |F(T )|

unknowns and about 3m+ 1 constraints.

4.5.2 Minimal Configurations

There are existing solvers for integer programming problems, for example, LP SOLVE17

and CPLEX18. However, integer problems with a large number of unknowns are difficult

to solve in general. H. Mittelmann benchmarked existing solvers on a set of real-world

testcases taken from the MIPLIB 2010 library19 (with 338–18360 unknowns and 169–

14163 constraints). The result showed that, current non-commercial solvers either fail or

are only able to provide sub-optimal solutions within a 1-hour run; commercial solvers,

although can solve most of the problems, take as long as tens to hundreds of seconds. Such

performance certainly cannot meet the real-time requirement in typical video surveillance

systems.

For a task template T , the set of all configurations in F(T ) could be large. Fortu-

nately, only a small number of them need to be considered. Let us consider two different

17http://sourceforge.net/projects/lpsolve/
18http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
19http://miplib.zib.de/
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Figure 4.7: Configurations in the 2D load-cost graph. Those marked as dark red diamonds
are the minimal configurations.

configurations f and f̃ with respective load-cost value of (a, b) and (ã, b̃) satisfying a ≤ ã

and b ≤ b̃. Note that f̃ will not appear in an optimal solution (otherwise, we can replace

it by f , yielding a solution with smaller cost). Hence, consider the partial order � on

F(T ) where fi � fj iff ai ≤ aj and bi ≤ bj , the optimal solution must be in the minimal

configurations.20 Figure 4.7 gives an example of minimal configurations, marked in the

dark red diamonds. LetMF(T ) be the set of minimal configurations for each T .

Study on the size ofMF(T )

To validate thatMF(T ) is typically small, we use the 13 task graphs created in Section

4.6.1 as templates, with a random computing cost within (0, 2] ECUs to each operation

and a random bandwidth cost within (0, 1] MB/s to each connection. For the test purpose

only, we assume that the source and sink nodes are in the private cloud. The values of α

and β are set to be 0.08 and 0.684 respectively. The process is repeated 1,000,000 times

for each template.

The result is shown in Table 4.1. Interestingly, for more than 95% of the instances,

20Minimal configuration is similar to the concept of Pareto frontier [28] in economics.
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Table 4.1: Study on the size of minimal configurationsMF(T ).
Task Template |V | |F(T )| |MF(T )|

min max avg 95th percentile
T1 3 23 2 8 4.21 6
T2 4 24 2 10 3.8 6
T3 5 25 2 17 7.33 11
T4 6 26 2 19 7.35 11
T5 7 27 2 23 8.48 13
T6 8 28 3 30 9.68 15
T7 9 29 3 33 11.35 17
T8 10 210 3 36 13.44 20
T9 11 211 4 37 13.47 21
T10 12 212 5 39 14.25 22
T11 13 213 7 42 17.60 27
T12 14 214 7 45 19.78 30
T13 15 215 8 53 20.59 31

the size ofMF(T ) grows linearly rather than exponentially with respect to the number

of operations. The maximal value of |MF(T )| observed in all the runs is only 53. This

concludes that, for reasonable length of task graphs, MF(T ) is sufficiently small for

state-of-the-art solvers.

4.5.3 Heuristic Selecting Method

However, there could be cases where |MF(T )| is large, e.g., when T is extremely large.

For such cases, we provide a heuristic to select a constant number ε (e.g., ε = 10) of

representatives among the minimal configurations. Different from using all the minimal

configurations, the heuristic may not lead to optimal solutions.

As illustrated in Figure 4.8(a), let us consider three consecutive configurations fi−1,

fi, fi+1 inMF(T ), which form a concave curve. If both fi−1 and fi+1 contribute to an

optimal solution (with ni−1 and ni+1 instances respectively), then the aggregated load-

cost value (i.e., (ai−1ni−1 + ai+1ni+1

ni−1 + ni+1
, bi−1ni−1 + bi+1ni+1

ni−1 + ni+1
)) may fall on the dotted line l2 as

shown in Figure 4.8(a), leading to a configuration that is greater than fi under �. In this

sense, there is a good chance that both fi−1 and fi+1 are not in the optimal solutions, and

can be replaced by fi.

Let us define the ratio of l2 over l1 as the “likelihood” that fi−1 and fi+1 can be ex-
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(a) Key observation (b) Selection result (ε = 5)

Figure 4.8: Illustration of the heuristic.

cluded. Our heuristic repeatedly picks the fi with the largest “likelihood” among the cur-

rent consecutive minimal configurations, until ε configurations are selected. Figure 4.8(b)

illustrates the selection result of 5 representatives among a total of 31 minimal configura-

tions. The configurations selected are marked in the red circles.

Effectiveness of the heuristic

To investigate the effectiveness of the heuristic, we use the task graphs T8–T13 created in

Section 4.6.1 as the templates. For each template, we set r = 100 and C to be ranging

from 400 to 800 ECUs. Similarly, we assign a random computing cost within (0, 2] ECUs

to each operation and a random bandwidth cost within (0, 1] MB/s to each connection.

We compare the optimal cost derived from all the minimal configurations, and the optimal

cost derived from the selected configurations (with ε = 5). The result is shown in Table

4.2.

The empirical result shows that our heuristic is effective in selecting the most signif-

icant configurations, giving solutions that are mostly within 0.1% of the optimal ones of

using all the minimal configurations.
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Table 4.2: Effectiveness of the heuristic.
Private cloud computing Max Avg

Template Configuration Set power (# of ECUs) Difference Difference
400 600 800

T8
Minimal 94.920 65.829 36.739 0.03% 0.014%Selected 94.922 65.833 36.744

T9
Minimal 128.234 93.930 60.075 0.16% 0.070%Selected 128.440 93.981 60.075

T10
Minimal 142.152 106.684 71.171 0.14% 0.073%Selected 142.166 106.761 71.270

T11
Minimal 85.886 63.003 41.029 0.12% 0.051%Selected 85.886 63.074 41.044

T12
Minimal 137.168 113.363 89.549 0 0Selected 137.168 113.363 89.549

T13
Minimal 175.409 148.481 121.614 0.09% 0.061%Selected 175.409 148.624 121.711

4.6 Evaluation

We conduct experiments to evaluate the feasibility of processing large-scale video streams

on hybrid clouds, as well as the effectiveness of the proposed scheduling approach. The

experiments are carried out through both simulations and actual runs with our proof-of-

concept system on Amazon EC2. The simulations can be repeatedly conducted on large

instances, whereas the actual runs involve more accurate running environment but are on

relatively smaller instances.

4.6.1 Simulations

The simulations are performed under two different settings: with and without security

constraint. As illustrated in Figure 4.9, 13 different task template graphs are created using

the method described in [172]. First, we generate a number of independent operations

with random computing cost between (0,2] ECUs. Next, we randomly link the operations

with random bandwidth cost between (0,1] MB/s. Since most image processing oper-

ations have either one or two inputs and outputs, the average in and out-degree of the

task graphs is set to 1.5. Finally, among all the generated DAGs, we randomly choose

13 graphs with differing number of operations ranging from 3 to 15 (with a step of 1).

These graphs represent 13 different task templates, each is to be instantiated to 10 video
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Figure 4.9: The task templates created for simulations.
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streams, hence there are a total of 130 video streams to process. The source and sink

nodes are in the private cloud. We apply a few schedulers (described below) and vary the

computing power of the private cloud from 200 to 600 ECUs with a step size of 100. The

values of α and β are set to be 0.08 and 0.684 respectively. The bandwidth and delay of

the inter-cloud connection are set to be 10 MB/s and 250ms respectively. The end-to-end

delay constraint for each template T is set to be P + 1s where P is the total processing

time along the longest path in T . Hence, the delay incurred by the communication is

constrained to be at most 1 second.

We compare among the following 5 scheduling algorithms: 1) Task-Level Water-filling

(TLW): assign all operations in a task to private if one of the streams is tagged as sensitive,

otherwise assign all operations to the public cloud; 2) Task-Level Random (TLR): same as

TLW for tasks with at least one sensitive stream. For tasks tagged with only non-sensitive

streams, the whole task is randomly assigned to the public or private cloud; 3) Greedy:

consider each task one-by-one iteratively. In each round, choose the optimal assignment

(i.e., the one minimizing the cost) with respect to the updated resource requirements. 4)

ProposedC: our proposed approach with objective to minimize the monetary cost; and 5)

ProposedB: our proposed approach with objective to minimize the inter-cloud bandwidth

usage.

Simulation result without security constraint

In this simulation, all of the streams are non-sensitive, i.e., there is no security constraint.

Figure 4.10 shows the result under this setting.

The TLW algorithm sends all video streams to the public cloud since all the streams

are non-sensitive. Hence, TLW incurs the highest load on the public cloud as well as

the highest inter-cloud bandwidth usage, giving the largest monetary cost. TLR can keep

some streams in the private cloud, which reduces both the public cloud load and band-

width usage, hence, giving a smaller cost than TLW. As shown in Figure 4.10(c), both

TLR and TLW underutilize the private cloud resources. In contrast, the Greedy algorithm
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Figure 4.10: Simulation result without security constraint (ProposedC, ProposedB and
Greedy are indistinguishable in (c)).

can fully load the private cloud, leading to costs that are smaller than TLW and TLR. Both

of our proposed schedulers outperform the others in all the three measures. Note that the

differences between ProposedC and ProposedB are indistinguishable as bandwidth cost

dominates within the total cost. Hence, they tend to choose the same configurations.

Table 4.3 shows the average time taken by the proposed scheduler. By considering

only the minimal configurations, we are able to reduce the total number of unknowns from

65528 to 247, which in turn reduces the computing time from around 143 seconds to be

less than 0.1s. This optimization is essential for supporting realtime scheduling. Note that

the heuristic is not applied in our evaluation since the number of minimal configurations

is already sufficiently small.
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Table 4.3: Time taken to solve the integer problem.
F(T ) MF(T )

# of Configurations 65528 247
Corresponding Solving Time 143.684s 0.078s
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Figure 4.11: Simulation result with security constraint (ProposedC, ProposedB and
Greedy are indistinguishable in (c)).

Simulation result with security constraint

We then randomly tag some of the streams to be sensitive and repeat the above simulation.

The result, averaged over 3 random runs, is shown in Figure 4.11. TLW, TLR and Greedy

cannot schedule all the tasks when the private cloud has low computing power (i.e., C =

200), partly due to the short-sightedness in using the private cloud resources. In contrast,

the proposed schedulers exploit global knowledge on all the tasks and hence can schedule

all of them. Our schedulers again outperform the other three alternatives.
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Monetary cost

Observed that with 200 ECUs in the private cloud, and assuming at the peak overall

workload of about 650 ECUs, the number of ECUs employed in the public cloud is about

450 (Figure 4.10(c)), incurring about 13 MB/s inter-cloud bandwidth (Figure 4.10(b)).

This amounts to monetary cost of approximately 36 + 8.9 = $44.9/hour during peak.

Considering an “offload all” strategy that pushes all video streams and computation to the

public cloud, the overall cost would be around $63.1/hour. Hence, we have a reduction in

cost of about 29%. With more private resources, the monetary cost can be further reduced,

as demonstrated in Figure 4.10 and 4.11.

4.6.2 Proof-of-concept System Evaluation

We also implemented a proof-of-concept system (in C/C++) for this hybrid cloud video

surveillance, with basic functionality of video streaming and several operations including

transcoding, background/foreground extraction, face detection and recognition etc. For

streaming, we simulate a “camera” by writing a program that reads in a video from the

local storage, chops the video into 1-second segments and sends them sequentially in

real-time (through TCP). The basic operations are implemented using the FFmpeg [26]

and OpenCV [27] libraries. We remark that our scheduling mechanism can also be easily

incorporated into existing stream processing systems, for example, Apache Storm [16].

Hybrid Cloud Setting

We build a hybrid cloud on Amazon EC2 across Singapore and US West. The private

cloud has 6 standard large instances located at Singapore. Each instance provides 2 virtual

cores with 4 ECUs, 7.5GB memory and 840GB storage. Hence, the private cloud in

our setting has a total computing power of 24 ECUs. The public cloud, located at N.

California, has 10 large instances that can be allocated and released on-demand. All

instances run Ubuntu 12.04. The available bandwidth between these instances is not
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Figure 4.12: Task template for proof-of-concept system evaluation. This task has two
alternative ways to complete.

specified by Amazon. An informal test of file transfer using scp indicates a speed of

around 40 MB/s within the same region (e.g., from Singapore to Singapore), and 5–8

MB/s across different regions (e.g., from Singapore to California). The network delay

is less than 1 millisecond for intra-cloud connections and around 250 milliseconds for

inter-cloud connections.

Experimental Setting

We experiment on one task template, which performs face recognition and behavior anal-

ysis that can be carried out in the two different ways illustrated in Figure 4.12. We assign

the computation and bandwidth costs to the graph based on a few test runs with our select-

ed video streams for human detection and action recognition [120]. The values are also

indicated in Figure 4.12. Note that both the computation and bandwidth costs could vary

in practice depending on the data. We gradually increase the number of streams from 4 to

12, with randomly half of them being tagged as sensitive. The maximum allowed end-to-

end delay is set to be 5 seconds. We record the actual amount of data transfer across the

two clouds, the average end-to-end delay, and calculate the monetary cost spent on the

public cloud for a 1-hour run.
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Figure 4.13: Experimental result of prototype evaluation. ProposedC and ProposedB
produce the same result, hence they are rendered as one line (Proposed).

Result and Analysis

The result is shown in Figure 4.13. Both TLW and TLR fail to schedule all the tasks when

the number of streams is greater than 8. Greedy can handle more tasks by pushing some

non-sensitive operations to the public cloud, but still fails when the number of streams

reaches 12. In contrast, our schedulers can handle all of them. Again, the proposed

schedulers give the smallest cost, inter-cloud bandwidth usage and average end-to-end

delay. Since bandwidth cost dominates within the total cost, in the experiment, ProposedC

and ProposedB always choose the same configurations. Hence, they are rendered as one

line (Proposed) in Figure 4.13.
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Summary of the Evaluation Both the simulation and proof-of-concept system evalu-

ation demonstrate the effectiveness of our proposed scheduling approach. The scheduler

is able to outsource more computation to the public cloud while reducing monetary costs

and improving the performance, as compared to other alternative schedulers. The mone-

tary costs can also be reduced as compared to employing a pure public cloud setting.

4.7 Summary

The hybrid cloud naturally addresses the issues on security and seasonal workload in large

video surveillance systems. Nevertheless, to fully utilize the potential of the hybrid set-

ting, it is desired to have an effective scheduler, so as to reduce cost and enhance usability.

We proposed a scheduler that exploits the two-server setting, and gave empirical result to

show that, with an effective scheduler, it is feasible to process large mixed-sensitivity

video streams in the cloud. The costs are much lower than a pure public cloud deploy-

ment, and overheads are smaller than other alternatives. For future work, it would be

interesting to employ existing techniques of fast operation migration [63,136] to facilitate

real-time rescheduling. It is also important to consider different pricing models (vary-

ing the ratio between α and β) to show how much improvement we can get in terms of

monetary cost under various conditions.
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Chapter 5

Conclusions

Data security and privacy have long been recognized as one of the top concerns in cloud

computing. While users want to use cloud resources due to the various benefits, they con-

cern about the risk of leaking sensitive data to the cloud. Existing solutions on encrypted

domain processing and trusted computing have been found either limited, or impractical,

or expensive, which do not qualify as building blocks for a general-purpose, cost-efficient

and scalable cloud computing infrastructure. For instance, some cryptographic approach-

es such as homomorphic encryptions “would more than undo the economy gained by the

outsourcing and show little sign of becoming practical” [72].

In view of this, this thesis focuses on another light-weight approach of segregating

computation under the emerging hybrid cloud setting. If data can be tagged and separated

based to their sensitivity, one could simply distribute computation on non-sensitive data

to both the public and private clouds, while keeping sensitive data in the private cloud.

In this way, privacy-preserving computation can be achieved easily and scalably. The

challenge actually shifts to problems of scheduling the non-sensitive computation on the

two clouds to reduce performance overhead as well as cost. Unfortunately, there is no

platform that can naturally work on hybrid clouds to protect data privacy, not to mention

the scheduling for improved performance.

The thesis first considered running computation using the MapReduce paradigm in
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a hybrid cloud, and proposed a new programming model for MapReduce that supports

tagging of sensitive data. This simple extension provides us with greater flexibility by

supporting security policies and complex MapReduce jobs. We then presented multiple

scheduling modes to distribute map and reduce tasks on the two clouds appropriately, and

showed the efficiency of the proposed algorithms in terms of inter-cloud data traffic, task

completion time and monetary cost, through an extension of Hadoop that we have imple-

mented. More interestingly, we observed that keeping sensitive data in the private cloud

does not provide full security guarantees, and schedulers can leak information uninten-

tionally in the process of task scheduling and data shuffling. Accordingly, we presented a

security model to compare the information leakage by different schedulers and to deter-

mine whether a scheduler is secure or not.

The second work shifted the focus to computation using the stream processing paradi-

gm in a hybrid cloud, and dealt with partitioning and scheduling of video processing

operations in the domain of video surveillance. In this work, we modeled the schedul-

ing problem as an integer programming problem and solved it using a simple heuristic.

Experimental results through both simulations and system runs on Amazon EC2 clouds

illustrated the effectiveness and efficiency of the proposed approach. Video surveillance

represents a large class of applications in which data streams consist of mixed-sensitivity

information. Hence, this approach is able to contribute to many real-world applications.

The hybrid cloud is a fairly practical approach for scaling out computation and data

processing needs. Our work investigated the fundamental security and scheduling issues

for two widely used programming paradigms on hybrid clouds. Through the above two

works, we demonstrated that privacy-preserving computation on hybrid clouds can be

made efficient, cost-effective and automatic. In addition, as the main idea of data tagging

and segregation is general, it could be easily extended to other cloud computing platforms

such as Apache Storm [16] and/or Spark [23].
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Future Work

One basic assumption of our work is the ability to tag and separate data based on their

sensitivity. This is the common case for many real-world datasets such as business data

and healthcare records that involve data with mixed sensitivity. However, there are also

cases where the sensitivity cannot be easily determined. For example, a piece of infor-

mation can be considered as sensitive only within a specific context or only when it is

associated with another piece of information. It is an interesting work to investigate how

tagging should be done under these situations. On the other hand, the levels of tagging

in our work are coarse-grained, either at the file level or at the stream level. It would be

valuable to study the effect of different granularities of tagging and their implications to

the security as well as to the efficiency.

A second direction for future work is to combine our work with user privilege lab-

elling. Our work only considers machines with different trust levels and we study how

to move data across these machines to achieve security and efficiency. Nevertheless, in

real-world applications, users may have different privileges to access a same piece of data.

For example, different users may be limited to access different portions of the data. We

can also label the users in a way similar to tagging, so that users computing on the same

data will get different results according to their access privileges. Hence, not only can

we prevent information leakage to untrusted machines during execution, but we can also

control what information can be presented to each user, preventing information leakage

from computation result to unauthorised users. All these can happen automatically inside

the system by combining data, machine and user tagging.

Another potential direction is to integrate this hybrid cloud approach with practical

encryption techniques. Our work assumes that sensitive data only take up a small portion

of the whole input, and can be efficiently handled in the private cloud. It is also possible

to encrypt the data using some practical homomorphic encryption schemes and put all the

encrypted data on the public cloud. In most cases, computation can be handled on the

encrypted data by the public cloud, but when necessary, the private cloud can retrieve the
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data, decrypt and compute on them. This kind of combination could be more efficient and

scalable than the combination of encrypted domain processing and trusted computing [65,

145]. But it is still not clear how this combination can be made transparent to the users

and how much the efficiency can be improved.

Finally, our work also opens a potential research direction for anonymity in cloud

computing. Recall that in our tagged-MapReduce framework, revealing of private work-

er identities leaks certain sensitive information and we introduced a proxy mechanism

to prevent such leakage. This is indeed a common issue in many distributed and cloud

computing environments. We found that, by only observing the dataflow across different

machines in the computing cluster, an adversary is able to derive much sensitive infor-

mation without tapping into the data. For example, consider a PageRank computation

using the MapReduce framework. By looking at the input/output relationship between

the map and reduce tasks, an adversary could know the in and out-degree of each node

and therefore can infer the structure of the whole graph, leading to crucial information

leakage. In response, we want to provide an oblivious RAM-like [137] service in cloud

computing where each process or machine will receive the data they need to work on, but

does not know where the data come from and where the output is sent. This property of

anonymity would provide stronger security guarantees for cloud applications and would

also complement existing research work on cloud security. This would be an interesting

future direction.
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