233 research outputs found

    Semantic Segmentation of Histopathological Slides for the Classification of Cutaneous Lymphoma and Eczema

    Full text link
    Mycosis fungoides (MF) is a rare, potentially life threatening skin disease, which in early stages clinically and histologically strongly resembles Eczema, a very common and benign skin condition. In order to increase the survival rate, one needs to provide the appropriate treatment early on. To this end, one crucial step for specialists is the evaluation of histopathological slides (glass slides), or Whole Slide Images (WSI), of the patients' skin tissue. We introduce a deep learning aided diagnostics tool that brings a two-fold value to the decision process of pathologists. First, our algorithm accurately segments WSI into regions that are relevant for an accurate diagnosis, achieving a Mean-IoU of 69% and a Matthews Correlation score of 83% on a novel dataset. Additionally, we also show that our model is competitive with the state of the art on a reference dataset. Second, using the segmentation map and the original image, we are able to predict if a patient has MF or Eczema. We created two models that can be applied in different stages of the diagnostic pipeline, potentially eliminating life-threatening mistakes. The classification outcome is considerably more interpretable than using only the WSI as the input, since it is also based on the segmentation map. Our segmentation model, which we call EU-Net, extends a classical U-Net with an EfficientNet-B7 encoder which was pre-trained on the Imagenet dataset.Comment: Submitted to https://link.springer.com/chapter/10.1007/978-3-030-52791-4_

    Advantages of manual and automatic computer-aided compared to traditional histopathological diagnosis of melanoma: A pilot study

    Get PDF
    Background: Cutaneous malignant melanoma (CMM) accounts for the highest mortality rate among all skin cancers. Traditional histopathologic diagnosis may be limited by the pathologists’ subjectivity. Second-opinion strategies and multidisciplinary consultations are usually performed to overcome this issue. An available solution in the future could be the use of automated solutions based on a computational algorithm that could help the pathologist in everyday practice. The aim of this pilot study was to investigate the potential diagnostic aid of a machine-based algorithm in the histopathologic diagnosis of CMM. Methods: We retrospectively examined excisional biopsies of 50 CMM and 20 benign congenital compound nevi. Hematoxylin and eosin (H&E) stained WSI were reviewed independently by two expert dermatopathologists. A fully automated pipeline for WSI processing to support the estimation and prioritization of the melanoma areas was developed. Results: The spatial distribution of the nuclei in the sample provided a multi-scale overview of the tumor. A global overview of the lesion's silhouette was achieved and, by increasing the magnification, the topological distribution of the nuclei and the most informative areas of interest for the CMM diagnosis were identified and highlighted. These silhouettes allow the histopathologist to discriminate between nevus and CMM with an accuracy of 96% without any extra information. Conclusion: In this study we proposed an easy-to-use model that produces segmentations of CMM silhouettes at fine detail level

    Segmentation of epidermal tissue with histopathological damage in images of haematoxylin and eosin stained human skin.

    Get PDF
    Background: Digital image analysis has the potential to address issues surrounding traditional histological techniques including a lack of objectivity and high variability, through the application of quantitative analysis. A key initial step in image analysis is the identification of regions of interest. A widely applied methodology is that of segmentation. This paper proposes the application of image analysis techniques to segment skin tissue with varying degrees of histopathological damage. The segmentation of human tissue is challenging as a consequence of the complexity of the tissue structures and inconsistencies in tissue preparation, hence there is a need for a new robust method with the capability to handle the additional challenges materialising from histopathological damage.Methods: A new algorithm has been developed which combines enhanced colour information, created following a transformation to the L*a*b* colourspace, with general image intensity information. A colour normalisation step is included to enhance the algorithm's robustness to variations in the lighting and staining of the input images. The resulting optimised image is subjected to thresholding and the segmentation is fine-tuned using a combination of morphological processing and object classification rules. The segmentation algorithm was tested on 40 digital images of haematoxylin & eosin (H&E) stained skin biopsies. Accuracy, sensitivity and specificity of the algorithmic procedure were assessed through the comparison of the proposed methodology against manual methods.Results: Experimental results show the proposed fully automated methodology segments the epidermis with a mean specificity of 97.7%, a mean sensitivity of 89.4% and a mean accuracy of 96.5%. When a simple user interaction step is included, the specificity increases to 98.0%, the sensitivity to 91.0% and the accuracy to 96.8%. The algorithm segments effectively for different severities of tissue damage.Conclusions: Epidermal segmentation is a crucial first step in a range of applications including melanoma detection and the assessment of histopathological damage in skin. The proposed methodology is able to segment the epidermis with different levels of histological damage. The basic method framework could be applied to segmentation of other epithelial tissues

    Superpixel-based conditional random fields (SuperCRF) : incorporating global and local context for enhanced deep learning in melanoma histopathology

    Get PDF
    Computational pathology-based cell classification algorithms are revolutionizing the study of the tumor microenvironment and can provide novel predictive/prognosis biomarkers crucial for the delivery of precision oncology. Current algorithms used on hematoxylin and eosin slides are based on individual cell nuclei morphology with limited local context features. Here, we propose a novel multi-resolution hierarchical framework (SuperCRF) inspired by the way pathologists perceive regional tissue architecture to improve cell classification and demonstrate its clinical applications. We develop SuperCRF by training a state-of-art deep learning spatially constrained- convolution neural network (SC-CNN) to detect and classify cells from 105 high-resolution (20×) H&E-stained slides of The Cancer Genome Atlas melanoma dataset and subsequently, a conditional random field (CRF) by combining cellular neighborhood with tumor regional classification from lower resolution images (5, 1.25×) given by a superpixel-based machine learning framework. SuperCRF led to an 11.85% overall improvement in the accuracy of the state-of-art deep learning SC-CNN cell classifier. Consistent with a stroma-mediated immune suppressive microenvironment, SuperCRF demonstrated that (i) a high ratio of lymphocytes to all lymphocytes within the stromal compartment (p = 0.026) and (ii) a high ratio of stromal cells to all cells (p < 0.0001 compared to p = 0.039 for SC-CNN only) are associated with poor survival in patients with melanoma. SuperCRF improves cell classification by introducing global and local context-based information and can be implemented in combination with any single-cell classifier. SuperCRF provides valuable tools to study the tumor microenvironment and identify predictors of survival and response to therapy

    Computer aided classification of histopathological damage in images of haematoxylin and eosin stained human skin

    Get PDF
    EngD ThesisExcised human skin can be used as a model to assess the potency, immunogenicity and contact sensitivity of potential therapeutics or cosmetics via the assessment of histological damage. The current method of assessing the damage uses traditional manual histological assessment, which is inherently subjective, time consuming and prone to intra-observer variability. Computer aided analysis has the potential to address issues surrounding traditional histological techniques through the application of quantitative analysis. This thesis describes the development of a computer aided process to assess the immune-mediated structural breakdown of human skin tissue. Research presented includes assessment and optimisation of image acquisition methodologies, development of an image processing and segmentation algorithm, identification and extraction of a novel set of descriptive image features and the evaluation of a selected subset of these features in a classification model. A new segmentation method is presented to identify epidermis tissue from skin with varying degrees of histopathological damage. Combining enhanced colour information with general image intensity information, the fully automated methodology segments the epidermis with a mean specificity of 97.7%, a mean sensitivity of 89.4% and a mean accuracy of 96.5% and segments effectively for different severities of tissue damage. A set of 140 feature measurements containing information about the tissue changes associated with different grades of histopathological skin damage were identified and a wrapper algorithm employed to select a subset of the extracted features, evaluating feature subsets based their prediction error for an independent test set in a Naïve Bayes Classifier. The final classification algorithm classified a 169 image set with an accuracy of 94.1%, of these images 20 were an unseen validation set for which the accuracy was 85.0%. The final classification method has a comparable accuracy to the existing manual method, improved repeatability and reproducibility and does not require an experienced histopathologist

    Capturing Global Spatial Context for Accurate Cell Classification in Skin Cancer Histology

    Get PDF
    The spectacular response observed in clinical trials of immunotherapy in patients with previously uncurable Melanoma, a highly aggressive form of skin cancer, calls for a better understanding of the cancer-immune interface. Computational pathology provides a unique opportunity to spatially dissect such interface on digitised pathological slides. Accurate cellular classification is a key to ensure meaningful results, but is often challenging even with state-of-art machine learning and deep learning methods. We propose a hierarchical framework, which mirrors the way pathologists perceive tumour architecture and define tumour heterogeneity to improve cell classification methods that rely solely on cell nuclei morphology. The SLIC superpixel algorithm was used to segment and classify tumour regions in low resolution H&E-stained histological images of melanoma skin cancer to provide a global context. Classification of superpixels into tumour, stroma, epidermis and lumen/white space, yielded a 97.7% training set accuracy and 95.7% testing set accuracy in 58 whole-tumour images of the TCGA melanoma dataset. The superpixel classification was projected down to high resolution images to enhance the performance of a single cell classifier, based on cell nuclear morphological features, and resulted in increasing its accuracy from 86.4% to 91.6%. Furthermore, a voting scheme was proposed to use global context as biological a priori knowledge, pushing the accuracy further to 92.8%. This study demonstrates how using the global spatial context can accurately characterise the tumour microenvironment and allow us to extend significantly beyond single-cell morphological classification.Comment: Accepted by MICCAI COMPAY 2018 worksho

    Data-driven Representation Learning from Histopathology Image Databases to Support Digital Pathology Analysis

    Get PDF
    Cancer research is a major public health priority in the world due to its high incidence, diversity and mortality. Despite great advances in this area during recent decades, the high incidence and lack of specialists have proven that one of the major challenges is to achieve early diagnosis. Improved early diagnosis, especially in developing countries, plays a crucial role in timely treatment and patient survival. Recent advances in scanner technology for the digitization of pathology slides and the growth of global initiatives to build databases for cancer research have enabled the emergence of digital pathology as a new approach to support pathology workflows. This has led to the development of many computational methods for automatic histopathology image analysis, which in turn has raised new computational challenges due to the high visual variability of histopathology slides, the difficulty in assessing the effectiveness of methods (considering the lack of annotated data from different pathologists and institutions), and the need of interpretable, efficient and feasible methods for practical use. On the other hand, machine learning techniques have focused on exploiting large databases to automatically extract and induce information and knowledge, in the form of patterns and rules, that allow to connect low-level content with its high-level meaning. Several approaches have emerged as opposed to traditional schemes based on handcrafted features for data representation, which nowadays are known as representation learning. The objective of this thesis is the exploration, development and validation of precise, interpretable and efficient computational machine learning methods for automatic representation learning from histopathology image databases to support diagnosis tasks of different types of cancer. The validation of the proposed methods during the thesis development allowed to corroborate their capability in several histopathology image analysis tasks of different types of cancer. These methods achieve good results in terms of accuracy, robustness, reproducibility, interpretability and feasibility suggesting their potential practical application towards translational and personalized medicine.Resumen. La investigación en cáncer es una de las principales prioridades de salud pública en el mundo debido a su alta incidencia, diversidad y mortalidad. A pesar de los grandes avances en el área en las últimas décadas, la alta incidencia y la falta de especialistas ha llevado a que una de las principales problemáticas sea lograr su detección temprana, en especial en países en vías de desarrollo, como quiera a que de ello depende las posibilidades de un tratamiento oportuno y las oportunidades de supervivencia de los pacientes. Los recientes avances en tecnología de escáneres para digitalización de láminas de patología y el crecimiento de iniciativas mundiales para la construcción de bases de datos para la investigación en cáncer, han permitido el surgimiento de la patología digital como un nuevo enfoque para soportar los flujos de trabajo en patología. Esto ha llevado al desarrollo de una gran variedad de métodos computacionales para el análisis automático de imágenes de histopatología, lo cual ha planteado nuevos desafíos computacionales debido a la alta variabilidad visual de las láminas de histopatología; la dificultad para evaluar la efectividad de los métodos por la falta de datos de diferentes instituciones que cuenten con anotaciones por parte de los patólogos, y la necesidad de métodos interpretables, eficientes y factibles para su uso práctico. Por otro lado, el aprendizaje de máquina se ha enfocado en explotar las grandes bases de datos para extraer e inducir de manera automática información y conocimiento, en forma de patrones y reglas, que permita conectar el contenido de bajo nivel con su significado. Diferentes técnicas han surgido en contraposición a los esquemas tradicionales basados en diseño manual de la representación de los datos, en lo que se conoce como aprendizaje de la representación. El propósito de esta tesis fue la exploración, desarrollo y validación de métodos computacionales de aprendizaje de máquina precisos, interpretables y eficientes a partir de bases de datos de imágenes de histopatología para el aprendizaje automático de la representación en tareas de apoyo al diagnóstico de distintos tipos de cáncer. La validación de los distintos métodos propuestos durante el desarrollo de la tesis permitieron corroborar la capacidad de cada uno de ellos en distintivas tareas de análisis de imágenes de histopatología, en diferentes tipos de cáncer, con buenos resultados en términos de exactitud, robustez, reproducibilidad, interpretabilidad y factibilidad, lo cual sugiere su potencial aplicación práctica hacia la medicina traslacional y personalizada.Doctorad

    Computer-Assisted Annotation of Digital H&amp;E/SOX10 Dual Stains Generates High-Performing Convolutional Neural Network for Calculating Tumor Burden in H&amp;E-Stained Cutaneous Melanoma

    Get PDF
    Deep learning for the analysis of H&E stains requires a large annotated training set. This may form a labor-intensive task involving highly skilled pathologists. We aimed to optimize and evaluate computer-assisted annotation based on digital dual stains of the same tissue section. H&E stains of primary and metastatic melanoma (N = 77) were digitized, re-stained with SOX10, and re-scanned. Because images were aligned, annotations of SOX10 image analysis were directly transferred to H&E stains of the training set. Based on 1,221,367 annotated nuclei, a convolutional neural network for calculating tumor burden (CNN(TB)) was developed. For primary melanomas, precision of annotation was 100% (95%CI, 99% to 100%) for tumor cells and 99% (95%CI, 98% to 100%) for normal cells. Due to low or missing tumor-cell SOX10 positivity, precision for normal cells was markedly reduced in lymph-node and organ metastases compared with primary melanomas (p < 0.001). Compared with stereological counts within skin lesions, mean difference in tumor burden was 6% (95%CI, −1% to 13%, p = 0.10) for CNN(TB) and 16% (95%CI, 4% to 28%, p = 0.02) for pathologists. Conclusively, the technique produced a large annotated H&E training set with high quality within a reasonable timeframe for primary melanomas and subcutaneous metastases. For these lesion types, the training set generated a high-performing CNN(TB), which was superior to the routine assessments of pathologists
    corecore