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Abstract

Cancer research is a major public health priority in the world due to its high incidence,

diversity and mortality. Despite great advances in this area during recent decades, the

high incidence and lack of specialists have proven that one of the major challenges is

to achieve early diagnosis. Improved early diagnosis, especially in developing coun-

tries, plays a crucial role in timely treatment and patient survival. Recent advances

in scanner technology for the digitization of pathology slides and the growth of global

initiatives to build databases for cancer research have enabled the emergence of digital

pathology as a new approach to support pathology workflows. This has led to the devel-

opment of many computational methods for automatic histopathology image analysis,

which in turn has raised new computational challenges due to the high visual vari-

ability of histopathology slides, the difficulty in assessing the effectiveness of methods

(considering the lack of annotated data from different pathologists and institutions),

and the need of interpretable, efficient and feasible methods for practical use. On the

other hand, machine learning techniques have focused on exploiting large databases to

automatically extract and induce information and knowledge, in the form of patterns

and rules, that allow to connect low-level content with its high-level meaning. Several

approaches have emerged as opposed to traditional schemes based on handcrafted fea-

tures for data representation, which nowadays are known as representation learning.

The objective of this thesis is the exploration, development and validation of precise,

interpretable and efficient computational machine learning methods for automatic rep-

resentation learning from histopathology image databases to support diagnosis tasks

of different types of cancer. The validation of the proposed methods during the the-

sis development allowed to corroborate their capability in several histopathology image

analysis tasks of different types of cancer. These methods achieve good results in terms

of accuracy, robustness, reproducibility, interpretability and feasibility suggesting their

potential practical application towards translational and personalized medicine.

Keywords: Digital pathology, histopathology image analysis, representation learning,

deep learning, whole slide images.



Resumen

La investigación en cáncer es una de las principales prioridades de salud pública en el

mundo debido a su alta incidencia, diversidad y mortalidad. A pesar de los grandes

avances en el área en las últimas décadas, la alta incidencia y la falta de especialistas

ha llevado a que una de las principales problemáticas sea lograr su detección tem-

prana, en especial en páıses en v́ıas de desarrollo, como quiera a que de ello depende

las posibilidades de un tratamiento oportuno y las oportunidades de supervivencia de

los pacientes. Los recientes avances en tecnoloǵıa de escáneres para digitalización de

láminas de patoloǵıa y el crecimiento de iniciativas mundiales para la construcción de

bases de datos para la investigación en cáncer, han permitido el surgimiento de la pa-

toloǵıa digital como un nuevo enfoque para soportar los flujos de trabajo en patoloǵıa.

Esto ha llevado al desarrollo de una gran variedad de métodos computacionales para el

análisis automático de imágenes de histopatoloǵıa, lo cual ha planteado nuevos desaf́ıos

computacionales debido a la alta variabilidad visual de las láminas de histopatoloǵıa; la

dificultad para evaluar la efectividad de los métodos por la falta de datos de diferentes

instituciones que cuenten con anotaciones por parte de los patólogos, y la necesidad

de métodos interpretables, eficientes y factibles para su uso práctico. Por otro lado, el

aprendizaje de máquina se ha enfocado en explotar las grandes bases de datos para ex-

traer e inducir de manera automática información y conocimiento, en forma de patrones

y reglas, que permita conectar el contenido de bajo nivel con su significado. Diferentes

técnicas han surgido en contraposición a los esquemas tradicionales basados en diseño

manual de la representación de los datos, en lo que se conoce como aprendizaje de la

representación. El propósito de esta tesis fue la exploración, desarrollo y validación

de métodos computacionales de aprendizaje de máquina precisos, interpretables y efi-

cientes a partir de bases de datos de imágenes de histopatoloǵıa para el aprendizaje

automático de la representación en tareas de apoyo al diagnóstico de distintos tipos

de cáncer. La validación de los distintos métodos propuestos durante el desarrollo de

la tesis permitieron corroborar la capacidad de cada uno de ellos en distintivas tareas

de análisis de imágenes de histopatoloǵıa, en diferentes tipos de cáncer, con buenos

resultados en términos de exactitud, robustez, reproducibilidad, interpretabilidad y

factibilidad, lo cual sugiere su potencial aplicación práctica hacia la medicina trasla-

cional y personalizada.

Palabras clave: Patoloǵıa digital, análisis de imágenes de histopatoloǵıa, aprendizaje

de la representación, aprendizaje profundo, láminas virtuales de patoloǵıa.
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1 Introduction

The primary goal of this thesis is to address the problem of analyzing histopathology

images, using computational tools, to automatically find patterns related with patho-

logy signatures associated to healthy and abnormal tissues, which are a fundamental

support for cancer diagnosis. Computational pathology is a relatively recent research

area devoted to providing accurate and efficient computational methods to support

quantitative detection, diagnosis, and prognosis in pathology. This work presents sev-

eral computational learning methods and frameworks for automatic histopathology

image representation learning from histopathology image databases for different digi-

tal pathology tasks including tumor and tissue detection, location and quantification

in several cancer types.

This introduction chapter includes the motivation for this work followed by the state-

ment and definition of the research problem and a description of the computational

challenges faced in this thesis. The chapter also includes a review of the current state

of the art on representation learning for digital pathology image analysis. Finally,

the contributions and academic products developed during this thesis are presented,

followed by the description of thesis document organization.

1.1 Motivation

Cancer research is a major public health priority in the world due to its high incidence,

diversity and mortality. Cancer is the common name used to identify a collection of

related diseases which involve abnormal cell growth with the potential to invade or

spread to other parts of the body. Hence, there are more than 100 different types

of cancer depending on cell type origin and grade of aggressiveness. Particularly, the

types of cancers addressed in this work include those of the skin, brain and breast:

• Skin cancer has gradually become more common worldwide and in white pop-

ulations is the most common malignancy. In Colombia, skin cancer comprises

30% of the total cancer diagnosed [52]. About 80% of skin carcinomas that are

not melanoma corresponds to basal cell carcinoma whereas the remaining 20%
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of cases are squamous cell carcinoma [2,143]. Despite not being the most deadly

skin cancer, basal cell carcinoma is the most common and its incidence is growing

worldwide [65].

• Brain cancer and other nervous system cancer have been diagnosed on approx-

imately 0.6% of men and women at some point during their lifetime. This rep-

resents 2.4% of cancer deaths in United States. In Colombia, the deaths caused

by malignant brain cancer is around 1.5 per each 100,000 inhabitants. Medul-

loblastoma brain cancer is one of the most common types of malignant brain

tumors [141]. In adults, the disease is rare whereas in children the incidence

amounts to a 25% of all pediatric brain tumors. Different histologic types of

medulloblastoma have different prognoses. For instance, anaplastic medulloblas-

tomas have worse prognosis than non-anaplastic variants. The therapeutic man-

agement changes radically depending on the subtype of medulloblastoma; hence,

histopathological diagnosis is useful in determining the potential outcome of the

disease.

• Breast cancer is the most common type of cancer in women and the second cause

of death in developed countries [125, 148], with the American Cancer Society

estimating that 1 in 8 women develop breast cancer during their life in United

States [1]. In Colombia, this is the main cause of death by cancer in women. In-

vasive breast cancers are those that spread from the original site (either the milk

ducts or the lobules) into the surrounding breast tissue. These kinds of breast

cancer comprises about 70% of cases [48,53] and they have poorer prognosis than

in-situ types [53]. Isolation of invasive breast cancer allows further analysis of tu-

mor differentiation via the Bloom-Richardson and Nottingham grading schemes,

which estimate cancer aggressiveness by evaluating histologic characteristics in-

cluding: tubule formation, nuclear pleomorphism and mitotic count [71].

According to World Health Organization estimates for 2011, cancer now causes more

deaths than all coronary heart diseases or all strokes. The continuing global demo-

graphic and epidemiologic transitions indicate an ever-increasing cancer burden over

the next decades, particularly in low and middle income countries, with over 20 million

new cancer cases expected annually as early as 2025. The last report of cancer inci-

dence of prevalence and mortality from GLOBOCAN project, reveals that there were

14.1 million new cases and 8.2 million deaths in 2012, where 60% of world’s total new

annual cases occur in Africa, Asia and Central and South America and 30% of those

cancers could be prevented [64].

Despite the great advances in cancer research, diagnosis and treatment in recent

decades [13, 146], the high incidence and lack of specialists have proven that one of
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the major challenges is to achieve early diagnosis [79]. The possibilities of timely treat-

ment and the survival chances of patients can be improved with an early diagnosis,

especially in developing countries such as Colombia [63]. The development of new

technologies to support cancer detection and diagnosis could help to reduce the work-

load for expert pathologists by triaging relatively simple cases and allowing them to

spend additional time focusing on the more challenging cases, potentially speeding up

the screening process in the early stages.

Histopathology is the study of cell anatomy and tissues to determine the presence of

elements associated to a particular pathology or disease in a microscopic level with

diagnosis purposes. Histopathology images are very important for diagnosis purposes.

These images are a fundamental resource to determine the state of a particular biolog-

ical structure, to support diagnosis of diseases like cancer, or to analyze the state of

organs and tissues [6]. Pathologists are trained in histopathology to interpret the ap-

pearance of tissues according to their structure, functionality and cellular organization

at different organs, those features can be highlighted using several staining processes.

This kind of images are used for both cancer research and for making clinical decisions,

and are mainly used as diagnosis ground truth for other screening studies such as X-ray

and magnetic resonance imaging [68,78].

Thanks to recent advances in scanning technology for pathology slides digitization

and the growth of global initiatives to build databases for cancer research, such as

The Cancer Genome Atlas 1, digital pathology has emerged as a new approach to

improve and support routine clinical and research pathology workflows, based on the

analysis and diagnosis of digitalized whole-slide histopathology images by pathologists

[113]. Typically, a digital pathology image analysis workflow consists of the following

stages (see Figure 1-1): i) image preprocessing for color normalization, ii) automatic

detection and segmentation of biological structures (e.g. nuclei, cells, tissues), iii)

feature extraction algorithms to capture color-based, morphological, topographical and

multi-scale visual patterns, and iv) classification or quantification of biomedical or

diseases signatures as diagnosis support [68,73].

Digital pathology has boosted the development of several computational methods, pro-

posed by the image processing, machine learning and computer vision communities.

Some applications include nuclei and cell detection [44,120], morphological and archi-

tectural cell arrangement characterization [9,58], tissue type classification [51,69,132],

tumor detection [121], aggressiveness estimation and grading [10, 44] and patient out-

come estimation [14,24,157].

In fact, thanks to the usage of computerized methods for histopathology image analysis,

such as was described above, and the analysis of public available databases, currently

1The Cancer Genome Atlas: http://cancergenome.nih.gov/
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known as in-silico analysis, some remarkable works have been published in the litera-

ture with interesting contributions and findings. For instance, Beck et al. [14] found

that some stromal features are significantly associated with survival in breast cancer,

and this association was stronger than the association of survival with epithelial char-

acteristics of the C-path (Computational pathologist) system. On the other hand,

there are other works using the conventional histopathology image analysis framework

to identify image-based features associated with molecular or genetic cancer subtypes

for outcome and survival prediction [24,157].

Despite the fact that most of these approaches had shown its capability and potential

for supporting diagnosis in pathology for different cancer types and pathology tasks,

still there are some limitations and drawbacks for their application in clinical practice.

Among the major limitations is the development of accurate, robust and time-efficient

methods applicable on independent data sources in related tasks over different cancer

types, which could be able to guarantee quantifiable objectivity in terms of confidence

and reproducibility.

Figure 1-1: Common digital pathology workflow.

On the other hand, machine learning techniques have focused on exploiting large data-

bases (a.k.a. Big Data) for designing data-driven automatic learning methods. Several
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new approaches have emerged in opposition to traditional schemes based on combi-

nations of manually engineered (or hand-crafted) features and machine learning clas-

sifiers, which nowadays are part of an area known as representation learning. Repre-

sentation learning is related to learn transformations of the data that make easier the

extraction of useful information when building classifiers or other predictors [16]. This

definition includes most of the data-driven approaches used in the last years, which

have been leading the state of the art in most pattern recognition tasks until now,

including: bag of features [43, 109, 128], dictionary learning [115, 153], sparse repre-

sentations [110,115,130,161], matrix factorization methods [54,55,103,104], and deep

learning [16,145].

Thanks to the growth of diverse whole-slide histopathology image databases and the

convergence of both trends, digital pathology and representation learning, several suc-

cessful works have been proposed for different pathology tasks, such as nuclei and mi-

tosis detection [28, 87, 112, 156, 159], tissue classification [24, 31, 51, 69, 132, 139], tumor

detection and grading [7, 121,140], with very promising results.

Exploiting the increasing number of databases in digital pathology through data-driven

machine learning approaches, such as representation learning methods, there could be

a breaking point in how cancer diagnosis and research are performed in current pa-

thology workflows. It is important that these methods can be time-efficient, robust,

reproducible, accurate and with quantifiable performance to support the decision mak-

ing of pathologists, in terms of early cancer detection and diagnosis, tumor grading,

prognosis and theragnosis, all of these tasks fundamental to evolving towards person-

alized medicine.

1.2 Research Problem

In contrast with the annotations of visual patterns and concepts in natural images

which are associated with subjects, objects and actions [46], histopathology image an-

notations are related to pathological lesions, morphological and architectural features,

which encompass a complex mixture of visual patterns that allow to decide about the

illness presence. In general, histopathology images with the same annotations present

a high visual variability, which can be generated by several factors, starting with the

inevitable uncertainty coming from the fact that a very complicated 3D biological struc-

ture is randomly projected onto a 2D image. For achieving so, tissues are subjected

to a series of histological procedures: they are initially fixated with a basic aldehyde,

then dehydrated, embedded and finally cut [6] (Figure 1-2). This chain of events is

very susceptible to different kinds of cumulative errors that result in histopathological

images with a complex mix of patterns and sub-patterns which are interpreted by an
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Figure 1-2: Histotechnique procedure and digitalization process. From top left to bot-

tom right: 1) Small cuts are made from the tissue 2-3) The smaller cuts

are put into cassettes and (after processing) embedded in paraffin 4) Thin

sections are made from the paraffin blocks with a microtome 5) The sec-

tions are put onto glass slides for staining 6) H&E stained slide which is 7)

digitized with a pathology slide scanner to obtain 8) a whole-slide image.

(Adapted from: http://amida13.isi.uu.nl/?q=node/2)

expert, even in cluttered biological circumstances. In addition, image capturing param-

eters such as environment illumination, exposure time, microscope magnification, etc.,

are a source of image variability. Finally, the ground truth annotations from expert

pathologists have a subjectivity component that produces a certain degree of inter- and

intra- variability for diagnosis or pattern location [61].

Therefore, the relevant visual pathological patterns highly change their visual appear-

ance according to their spatial location, severity and co-occurrence with others bi-

ological structures (Figure 1-3). Hence, considering the above reasons, histopatho-

logy image databases are highly variable and susceptible to yield on batch effects, i.e.,

non-biological experimental variations such as age of sample, method of slide prepa-

ration, staining, specifications of the imaging device, and type of post-processing soft-

ware [90,137].

A characteristic feature of digital pathology is the large volume of data produced.

There are two main different causes for this phenomenon. First, whole-slide images

(WSI) in histopathology are large, typically each WSI could have a spatial resolution of

80,000 × 80,000 pixels and have a size around 20 GB [83,92]. Second, the emerging of

world-wide initiatives in cancer research had been collecting large data bases including
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different source of biomedical data such as clinical and pathology reports, digitized

whole-slide histopathology images and several types of genomic data. Examples of this

are the National Cancer Institute (NCI) Cooperative Prostate Cancer Tissue Resource,

the National Institute of Health (NIH) Cancer Genome Atlas, the Human Protein

Atlas [118,119,154], and the Cancer Genome Atlas (TCGA) [126] . The TCGA started

in 2005 and it had collected around 11,079 cases from 34 different types of cancer. In

fact, TCGA project is a good example of big data in cancer research involving different

types of data (clinical, pathological and genomic). The TCGA now has an approximate

size of 1,095 Terabytes (1 Petabyte) comprising more than 79,000 files and growing at

the rate of 10 Terabytes per year [74].

Considering the above statements, translational medicine in histopathology is still an

open problem. Despite that there are several works designing computerized methods

for image analysis in digital pathology tasks [6,73,106,155] and significant advances in

high-speed and high-resolution scanning devices, there are not enough works tackling

the robustness, reproducibility and feasibility of those computerized solutions in whole-

slide images for real clinical and research scenarios [81, 83, 91, 92, 147]. The two main

reasons are: first, the few public databases from different institutions or pathology labs

in several cancer types to evaluate the reproducibility and robustness of computerized

methods in different patient cohorts and digital pathology tasks, and second, the large

size and volume of whole-slide images with heterogeneous tissues, which require not

only accurate but also high-throughput, time-efficient computerized methods [68, 92,

113].

1.2.1 Research Question

Despite the fact that there are several computerized methods applied to different pa-

thology tasks, few of them focus on extracting the best underlying data structure

that represent the meaningful histopathology patterns through feasible, efficient, ro-

bust and reproducible solutions to support digital pathology workflows in real clinical

and research scenarios. Nowadays, this goal becomes more relevant considering the

advancements of digital pathology, the growth of public databases with thousands of

large size whole-slide images and the rise of data-driven methods based on machine

learning methods. Thus, these considerations have led us to the main research ques-

tion in this work: how to efficiently learn an appropriate data representation directly

from histopathology image databases that can be effective in different digital pathology

tasks?
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Figure 1-3: Visual variability of several normal and pathological patterns in histopa-

thology images in different cancer types (skin, breast and brain).
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1.3 Challenges

Satisfactorily answering this question posses different technical challenges, which were

addressed in this thesis, and are described next:

• To tackle the high visual variability of histopathology images by adapting or

proposing successful and accurate state-of-the-art computational learning meth-

ods that learn directly from data.

• To take advantage of growing histopathology image databases available to learn

appropriate and useful representations of the data that could be reproducible for

several digital pathology tasks.

• To devise robust learning algorithms that can be applicable to different cancer

types, variable and noisy data sources and heterogeneous digital pathology goals.

• To achieve accurate and efficient computational learning models for prediction,

which can obtain comparable results with ground truth annotations from expert

pathologists in feasible computing time.

• To deal with the large size resolution and volume storage of whole-slide images

for high-throughput image analysis in terms of efficient or feasible computing

time.

1.4 Contributions and Academic Products

This work presents several contributions to digital pathology image analysis through

computational machine learning approaches supported by several histopathology data-

bases and high-throughput computing. The main contributions of this work are data-

driven representation learning frameworks for automatic histopathology image analysis

to support diagnosis in different cancer types. These methods are focused to provide

accurate, robust, reproducible and time-efficient tools that can be applicable in clinical

practice and cancer research. The different publications done as a part of this thesis

are listed as follows organized according to the main biomedical application:

1.4.1 Semantic Part-based image Representations

Classification of Basal Cell Carcinoma in Skin Cancer

• Angel Cruz-Roa, Gloria Dı́az, Eduardo Romero, Fabio González. Automatic

Annotation of Histopathological Images Using a Latent Topic Model Based On
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Non-negative Matrix Factorization. Journal of Pathology Informatics. 2011; 2:4.

ISSN: 2153-3539. doi:10.4103/ 2153-3539.92031

• Angel Cruz-Roa, Juan C. Caicedo, Fabio A. González. Visual Pattern Mining

in Histology Image Collections Using Bag of Features. Journal Artificial Intel-

ligence in Medicine. Vol 52 (2011) pp. 91-106. ISSN: 0933-3657, doi:10.1016/

j.artmed.2011.04.010

• A. Pastor López-Monroy, Manuel Montes-y-Gómez, Hugo Jair Escalante, Angel

Cruz-Roa, Fabio A. González. Bag-of-Visual-Ngrams for Histopathology Image

Classification. Proc. SPIE 8922, IX International Seminar on Medical Infor-

mation Processing and Analysis - SIPAIM 2013, 89220P. Mexico D.F. (Mexico).

11-14 Noviembre (2013). doi:10.1117/12.2034113

• Angel Cruz-Roa, Gloria Dı́az, Eduardo Romero, Fabio González. Automatic

Annotation of Histopathological Images Using a Latent Topic Model Based On

Non-negative Matrix Factorization. MICCAI 2011, the 14th International Con-

ference on Medical Image Computing and Computer Assisted Intervention - His-

topathology Image Analysis Workshop. September 18-22 (2011)

• Angel Cruz-Roa, Gloria Dı́az, Fabio González. A Framework for Semantic

Analysis of Histopathological Images Using Nonnegative Matrix Factorization.

Computing Congress (CCC), 2011 6th Colombian. May 4-6 2011. Universidad

Nacional de Colombia, Sede Manizales. Manizales (Colombia). ISBN: 978-1-

4577-0285-3, doi:10.1109/COLOMCC.2011.5936285

Classification of Medulloblastoma Tumor in Brain Cancer

• Angel Cruz-Roa, Fabio González, Joseph Galaro, Alexander R. Judkins, David

Ellison, Jennifer Baccon, Anant Madabhushi, Eduardo Romero. A Visual La-

tent Semantic Approach for Automatic Analysis and Interpretation of Anaplastic

Medulloblastoma Virtual Slides. MICCAI 2012, the 15th International Confer-

ence on Medical Image Computing and Computer Assisted Intervention. Nice

(France), October 1-5 2012. Lectures Notes in Computer Sciences. Vol. 7510.

pp 157-164. ISSN 0302-9743. doi:10.1007/978-3-642-33415-3 20
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1.4.2 Feature and Representation Learning

Mitosis Detection in Breast Cancer

• Haibo Wang, Angel Cruz-Roa, Ajay Basavanhally, Hannah Gilmore, Natalie

Shih, Mike Feldman, John Tomaszewski, Fabio González, and Anant Madab-

hushi. Mitosis Detection in Breast Cancer Pathology Images by Combining Hand-

crafted and Convolutional Neural Network Features. Journal of Medical Imaging.

1(3):034003 (2014). ISSN: 2329-4302. doi:10.1117/1.JMI.1.3.034003

• Mitko Veta, Paul J. van Diest, Stefan M. Willems, Haibo Wang, Anant Mad-

abhushi, Angel Cruz-Roa, Fabio González, Anders B. L. Larsen, Jacob S.

Vestergaard, Anders B. Dahl, Dan C. Cireçan, Jürgen Schmidhuber, Alessandro

Giusti, Luca M. Gambardella, F. Boray Tek, Thomas Walter, Ching-Wei Wang,

Satoshi Kondo, Bogdan J. Matuszewski, Frederic Precioso, Violet Snell, Josef

Kittler, Teofilo E. de Campos, Adnan M. Khan, Nasir M. Rajpoot, Evdokia

Arkoumani, Miangela M. Lacle, Max A. Viergever, Josien P.W. Pluim Assess-

ment of algorithms for mitosis detection in breast cancer histopathology images.

Journal of Medical Image Analysis. Volume 20, Issue 1, Pages 237-248. 2015.

ISSN:1361-8415. doi: 10.1016/j.media.2014.11.010

• Haibo Wang, Angel Cruz-Roa, Ajay Basavanhally, Hannah Gilmore, Natalie

Shih, Mike Feldman, John Tomaszewski, Fabio González, and Anant Madab-

hushi. Cascaded Ensemble of Convolutional Neural Networks and Handcrafted

Features for Mitosis Detection. Digital Pathology Conference. SPIE Medical

Imaging 2014, 15 - 20 February 2014. Town & Country Resort and Convention

Center, San Diego, California, USA. doi:10.1117/12.2043902

Invasive Tumor Detection in Breast Cancer

• Angel Cruz-Roa, Hannah Gilmore, Ajay Basavanhally, Michael Feldman, Shri-

dar Ganesan, Natalie Shih, John Tomaszewski, Fabio Gonźlez, Anant Madab-

hushi. Accurate and reproducible invasive breast cancer detection in whole-slide

images: A Deep Learning based tool for quantifying tumor location and extent.

Submitted to Journal of the American Medical Informatics Association. 2015.

• Angel Cruz-Roa, Ajay Basavanhally, Fabio Gonzalez, Michael Feldman, Shri-

dar Ganesan, Natalie Shih, John Tomaszewski, Hannah Gilmore, and Anant

Madabhushi. A Feature Learning Framework for Reproducible Invasive Tumor

Detection of Breast Cancer in Whole-Slide Images. USCAP 104th Annual Meet-

ing, In Labortory Investigation (Vol. 95, pp. 40A-40A). March 21-27, 2015 in
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Boston, MA. 75 Varick ST, 9TH FL, New York. USA: Nature Publishing Group.

(Abstract)

• Angel Cruz-Roa, Ajay Basavanhally, Fabio González, Hannah Gilmore, Michael

Feldman, Shridar Ganesan, Natalie Shih, John Tomaszewski and Anant Madab-

hushi. Automatic detection of invasive ductal carcinoma in whole slide images

with Convolutional Neural Networks. Digital Pathology Conference. SPIE Medi-

cal Imaging 2014, 15 - 20 February 2014. Town & Country Resort and Convention

Center, San Diego, California, USA. doi:10.1117/12.2043872

Classification of Basal Cell Carcinoma in Skin Cancer

• John Arévalo, Angel Cruz-Roa, Viviana Arias, Eduardo Romero, Fabio A.

González. An unsupervised feature learning framework for basal cell carcinoma

image analysis. Journal of Artificial Intelligence in Medicine, Available online 23

April 2015, ISSN 0933-3657. doi:10.1016/j.artmed.2015.04.004 (In press)

• John Arévalo, Angel Cruz-Roa and Fabio A. González. Hybrid image represen-

tation learning model with invariant features for basal cell carcinoma detection.

Proc. SPIE 8922, IX International Seminar on Medical Information Processing

and Analysis - SIPAIM 2013, 89220M. Mexico D.F. (Mexico). 11-14 Noviembre

(2013). doi:10.1117/12.2035530

• Angel Cruz-Roa, John Arévalo, Anant Madabhushi, Fabio González. A Deep

Learning Architecture for Image Representation, Visual Interpretability and Au-

tomated Basal-Cell Carcinoma Cancer Detection. MICCAI 2013, the 16th Inter-

national Conference on Medical Image Computing and Computer Assisted Inter-

vention. Nagoya (Japan), September 22-26 2013. Lectures Notes in Computer

Sciences. Vol. 8150. pp 403-410. (Student Travel Award)

Classification of Medulloblastoma Tumor in Brain Cancer

• Angel Cruz-Roa, John Arévalo, Ajay Basavanhally, Anant Madabhushi, Fabio

González. A comparative evaluation of supervised and unsupervised representa-

tion learning approaches for anaplastic medulloblastoma differentiation. Proc.

SPIE 9287, Tenth International Symposium on Medical Information Process-

ing and Analysis (SIPAIM 2014), Cartagena, Colombia. October 14-16, 2014.

92870G (January 28, 2015); doi:10.1117/12.2073849
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1.4.3 Accurate and high-throughput whole-slide histopathology

image analysis

Invasive Tumor Detection in Breast Cancer

• Angel Cruz-Roa, Ajay Basavanhally, Michael Feldman, Shridar Ganesan, Na-

talie Shih, John Tomaszewski, Hannah Gilmore, Anant Madabhushi and Fabio

González. Scaling up convolutional networks for invasive breast cancer detection

in whole-slide histopathology images through high-throughput adaptive sampling.

Submitted to Journal IEEE Transactions on Medical Imaging. 2015.

1.4.4 Other contributions

Additional papers were published as a result of collaborations performed in different

and related research areas.

Histopathology image analysis

• Sebastian Otálora, Angel Cruz-Roa , John Arévalo, Manfredo Atzori, Anant

Madabhushi, Alexander R. Judkins , Fabio González, Henning Müller, Adrien

Depeursinge. Anaplastic medulloblastoma tumor differentiation by combining

unsupervised feature learning and Riesz wavelets for histopathology image rep-

resentation. MICCAI 2015, the 18th International Conference on Medical Image

Computing and Computer Assisted Intervention. Munich (Germany), October

5-9 2015. (Accepted)

• David Romo, Ricardo Moncayo, Angel Cruz-Roa, Eduardo Romero. Identify-

ing Histological Concepts on Basal Cell Carcinoma Images using Nuclei based

Sampling and Multi-Scale Descriptors. Biomedical Imaging: From Nano to

Macro, ISBI’2015: Proceedings of the 9th IEEE International Symposium on.

April 16-19 2015. New York, NY, USA.

• John Arévalo, Angel Cruz-Roa, Fabio A. González. Histopathology image rep-

resentation for automatic analysis: A state-of-the-art review. Revista Med. Vol.

22 (2), pp. 79-91. 2014. ISSN: 0121-5256

• Angel Cruz-Roa, Jun Xu, Anant Madabhushi. A note on the stability and

discriminability of graph based features for classification problems in digital pa-

thology. Proc. SPIE 9287, Tenth International Symposium on Medical Informa-

tion Processing and Analysis (SIPAIM 2014), Cartagena, Colombia. October 14,

2014. 928703 (January 28, 2015); doi:10.1117/12.2085141.
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• Angel Cruz Roa, Eduardo Romero Castro, Fabio González Osorio. An adap-

tive image representation learned from data for cervix cancer tumor detection.

Digital Pathology Conference. SPIE Medical Imaging 2013, Volume 8676. 9 - 14

February 2013. Disney’s Coronado Springs Resort, Lake Buena Vista (Orlando

Area), Florida USA (Poster Award Cum Laude).

• Angel Cruz-Roa, John Arévalo, Fabio González. Prediction of Morphometric

Measures from Bag-of-Features Image Representation of Cervix Cancer Cells. 8th

International Seminar on Medical Information Processing and Analysis - SIPAIM

2012. San Cristobal (Venezuela). 12-15 Noviembre (2012)

Radiology image analysis

• Andrea Rueda, John Arévalo, Angel Cruz-Roa, Eduardo Romero, Fabio A.

González. Bag of Features for Automatic Classification of Alzheimer’s Disease

in Magnetic Resonance Images. Progress in Pattern Recognition, Image Anal-

ysis, Computer Vision, and Applications. The 17th Iberoamerican Congress on

Pattern Recognition (CIARP) Lecture Notes in Computer Science Volume 7441,

2012, pp 559-566. September 3-6, Buenos Aires (Argentina). 2012. ISSN 0302-

9743.

• Angel Cruz-Roa, Angélica Atehortúa, Fabio González. An evaluation of differ-

ent image features for modality classification in ImageClefmed 2012 dataset. 8th

International Seminar on Medical Information Processing and Analysis - SIPAIM

2012. San Cristobal (Venezuela). 12-15 Noviembre (2012).

• Angel Cruz-Roa and Fabio González. Multi-label Annotation of Radiological

Images Based On Visual Latent Semantic Analysis. 7th International Seminar

on Medical Information Processing and Analysis -SIPAIM 2011. 5-7 December

2011. Universidad Industrial de Santander. Bucaramanga (Colombia).

Lung sounds detection

• Germán Sosa, Angel Cruz-Roa, Fabio González. Automatic detection of Wheezes

by evaluation of multiple acoustic feature extraction methods and C-weighted

SVM. Proc. SPIE 9287, Tenth International Symposium on Medical Informa-

tion Processing and Analysis (SIPAIM 2014), Cartagena, Colombia. October

14-16, 2014. 928709 (January 28, 2015); doi:10.1117/12.2073614

• Germán Sosa, Angel Cruz-Roa, John Arévalo, Fabio González. An unsuper-

vised feature learning approach based on denoising autoencoders for wheeze lung
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sounds detection. 2015. (In preparation)

High-performance computing for image analysis

• Raúl Ramos-Pollán, Fabio González, Juan C. Caicedo, Angel Cruz-Roa, Jorge

E. Camargo, Jorge A. Vanegas, Santiago A. Pérez, Jose David Bermeo, Juan

Sebastián Otálora, Paola K. Rozo, John E. Arévalo. BIGS: A Framework for

Large-Scale Image Processing and Analysis Over Distributed and Heterogeneous

Computing Resources. In IEEE International Conference on eScience. October

8-12, Chicago (USA). 2012.

• Raúl Ramos-Pollán, Angel Cruz-Roa, Fabio González. A Framework for High

Performance Image Analysis Pipelines over Cloud Resources. The Latin Ameri-

can Conference on High Performance Computing (CLCAR), Panamá 2012.

• Raúl Ramos-Pollán, Angel Cruz-Roa, Fabio González. A Framework for High

Performance Image Analysis Pipelines. 7th Colombian Computing Congress

(7CCC) 2012.

• Paola K. Rozo, Angel Cruz-Roa, Jorge A. Vanegas, Jorge E. Camargo, Juan C.

Caicedo, Fabio A. González. Sistema de almacenamiento, recuperación semántica

y anotación automática de imágenes histológicas en una infraestructura Grid por

medio de RENATA. Revista e-colabora. Vol 2, No 4 (2012). ISSN: 2027 - 7415.

1.5 Organization of this thesis

The remaining thesis chapters are organized as follows:

• Chapter 2: Automatic Annotation of Histopathological Images with

a NMF-based Latent Topic Model. This chapter presents a new method for

automatic annotation of morphological and architectural patterns on histopatho-

logy images. The proposed method is an annotation framework using a latent

topic model based on non-negative matrix factorization which learned the rela-

tionship between the visual content of an image represented as bag of features

and its high-level concept meaning. In addition to the annotation framework,

the method includes interpretation support in its results by providing probability

values for each annotation class and a visual map highlighting the correspond-

ing regions. The method was validated in two different scenarios: identification

of normal and cancerous tissues in basal-cell carcinoma skin cancer and tumor

differentiation of medulloblastoma brain cancer. In both scenarios, the proposed
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approach outperformed previous and related works from the state of the art, and

also improved the interpretability of the results.

• Chapter 3: Unsupervised histopathology image representation learn-

ing. This chapter presents novel approaches based on unsupervised representa-

tion learning using a different kind of auto-encoders in two different digital pa-

thology tasks for histopathology image analysis: basal-cell carcinoma tumor de-

tection in skin cancer and tumor differentiation of medulloblastoma brain cancer.

In both tasks, auto-encoders with different characteristics were evaluated includ-

ing sparse auto-encoders, reconstruct independent component analysis and topo-

graphic reconstruct independent component analysis. Each method was trained

in a totally unsupervised manner directly from tissue samples of histopathology

images and then a supervised training was performed by using a softmax classi-

fier for each particular classification task. In addition, a new method to provide

interpretable support was developed, which works as a digital staining that high-

lights the spatial regions associated to cancerous tissues. The best results that

improved the state of the art in both tasks were achieved by the topographic re-

construct independent component analysis auto-encoders, which learned features

with invariance properties in scale and orientation that captured the complexity

of histopathology patterns.

• Chapter 4: Supervised histopathology image representation learning.

This chapter presents novel approaches based on supervised representation learn-

ing using convolutional neural networks in two different digital pathology tasks

for histopathology image analysis in breast cancer: mitosis and invasive tumor

detection. For mitosis detection, a combined approach between handcrafted fea-

tures from the state of the art and learned features from a 3-layer convolutional

neural network was able to obtain good results in the challenging task of mitosis

detection in high-resolution histopathology images with efficient computing time.

For invasive breast cancer detection, a shallow convolutional neural network was

trained from manual annotations of pathologists of invasive tumor regions to

predict a probability map of invasive breast cancer regions in large whole-slide

histopathology images. In both tasks, the convolutional neural networks were

trained and validated with independent data cohorts and compared with ground

truth annotations from expert breast cancer pathologists. The approaches show

good performance in two challenging and relevant tasks for breast cancer diag-

nosis. Firstly in mitosis detection, one of the three criteria to determine the

tumor grade according to Bloom-Richardson and Nottingham grading schemes.

Secondly in invasive breast cancer detection, which is around of 80% of breast
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cancer cases that comprises the more aggressive forms (invasive ductal carcinoma

and invasive lobular carcinoma), where the accurate and fast detection is deter-

minant for posterior analysis of difficult cases or tumor grade estimation.

• Chapter 5: High-throughput whole-slide histopathology image anal-

ysis. This chapter presents a new high-throughput adaptive sampling method

for accurate whole-slide histopathology image analysis. Our method includes a

quasi-Monte Carlo sampling and a gradient-based uncertainty mapping for it-

eratively and adaptively take more samples in higher uncertain regions and less

samples in confident areas with only a type of tissue (invasive or not). Each tissue

sample is classified by an accurate supervised feature learning classifier based on

convolutional neural networks, which provided a probability between zero and

one of belonging to an invasive breast cancer tissue. The method was validated

in the task of automatic region detection of invasive tumors in larger whole-slide

images of estrogen receptor positive patients of breast cancer. The evaluation

was done by comparing the predicted regions of our method and the ground

truth annotations from pathologists to measure the accuracy in different and in-

dependent data cohorts including a subset of the public and well known database

of The Cancer Genome Atlas. The proposed tissue classification method based

on convolutional networks was evaluated and compared against the state-of-the-

art handcrafted features for histopathology image analysis obtaining the best

results. The high-throughput in computing time of our method was compared

with traditional and conventional Monte Carlo sampling methods achieving the

best performance in terms of accuracy and time for whole-slide image analysis.

• Chapter 6: Conclusions and Perspectives. This final chapter presents the

main conclusions of this thesis, highlighting the main contributions, the most

important findings and their impact in research and practical areas. Finally,

future research directions and perspectives are presented and discussed.



Part I

Semantic Part-based image

Representations



2 Automatic Annotation of

Histopathological Images with a

NMF-based Latent Topic Model

The first step in histopathology image analysis is to identify morphological and archi-

tectural features from nuclei, cell and tissues that could be associated with pathological

or normal patterns. These histopathology features are very important for posterior dif-

ferential diagnosis to determine the patient condition, either healthy or pathological

including cancer. This chapter presents a novel method for representation, annotation

and interpretable visual analysis, through semantic digital staining, of histopathology

images, and its application in skin (see into Section 2.1) and brain cancer (see into Sec-

tion 2.2) histopathology images. The following sections correspond to papers presenting

the details of the methods and applications.

2.1 Histopathology Image Annotation in Basal-cell

Carcinoma

Histopathological images are an important resource for clinical diagnosis and biomedi-

cal research. From an image understanding point of view, the automatic annotation of

these images is a challenging problem. This paper presents a new method for automatic

histopathological image annotation based on three complementary strategies, first, a

part-based image representation, called the bag of features, which takes advantage

of the natural redundancy of histopathological images for capturing the fundamental

patterns of biological structures, second, a latent topic model, based on non-negative

matrix factorization, which captures the high-level visual patterns hidden in the image,

and, third, a probabilistic annotation model that links visual appearance of morpho-

logical and architectural features associated to 10 histopathological image annotations.

The method was evaluated using 1,604 annotated images of skin tissues, which included

normal and pathological architectural and morphological features, obtaining a recall

of 74% and a precision of 50%, which improved a baseline annotation method based
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on support vector machines in a 64% and 24%, respectively. The complete content

of this section has been published as a research article in the Journal of Patho-

logy Informatics, and previous works had been published in MICCAI 2011, the

14th International Conference on Medical Image Computing and Com-

puter Assisted Intervention - Histopathology Image Analysis Workshop

and 2011 6th Colombian Computing Congress (CCC) (see [30, 39, 40]).

2.1.1 Introduction

Recent advances in microscopical acquisition technology have allowed to collect huge

numbers of histopathological images, an important resource for the diagnosis act as

well as for pathologist training [113]. The interest in developing the suitable image

technology to address the automatic analysis of this kind of images has rapidly grown

over the last years [94,107,151]. As a consequence, a new research area, called bioimage

informatics, has emerged integrating data mining, database visualization, extraction,

searching, comparison and management of biomedical visual data [135,151]. This area

combines both image analysis and computational techniques to provide powerful tools

that facilitate high-throughput/high-content analysis of biological tissues [135].

Automatic annotation of histopathological images is a very challenging problem. In

contrast with natural images, high level annotations are not usually associated to

particular objects in the image. In histopathological images, annotations are related

to pathological lesions, morphological and architectural features, which encompass a

complex mixture of visual patterns that allow to decide about the illness presence.

In general, images with the same annotations present a high visual variability, which

can be generated by several factors, starting with the inevitable uncertainty coming

from the fact that a very complicated 3D biological structure is randomly projected

onto a 2D image i.e. the tissue must become a solid structure from which surface

cuts of barely 1 − 5 µm are obtained. For achieving so, tissues are subjected to a

series of histological procedures: they are initially fixated with a basic aldehyde, then

dehydrated, embedded and finally cut. This chain of events is very susceptible to dif-

ferent kinds of cumulative errors that result in histopathological images with a complex

mix of patterns and sub-patterns that only can be interpreted by an expert, even in

cluttered biological circumstances. In addition, image capturing parameters such as

environment illumination, exposure time, microscope magnification, etc., are a source

of image variability. Therefore, the relevant visual pathological patterns highly change

their visual appearance according to their spatial location, severity and co-occurrence

with others biological structures. Figure 2-1 shows examples of some histopathological

images of skin tissues with different annotations associated with acellular, cellular and
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Figure 2-1: Example of histopathological images globally annotated with multiple an-

notations (multi-labeled images). These images correspond to the test

data set used in this work and they have a resolution of 1024× 768 pixels.

Histopathological annotations of morphological and architectural features

such as epidermis, collagen and hair follicles appear in different images

illustrating the high visual variability for the same annotation.

architectural features, illustrating the visual variability problem.

Commonly, bioimage analysis methods encompass two main components: a feature

extraction and representation process that allows to properly describe the visual image

content, which ideally should be robust to the visual variability problem of histopatho-

logical annotations, and an interpretable knowledge extraction process, capable of link-

ing low-level visual patterns and high-level annotations. In this paper we propose a

novel strategy for automatic annotation of histopathological images, which combines

a part-based image representation (bag of features, BOF), a latent topic model (non-

negative matrix factorization, NMF) and a probabilistic annotation strategy that allows

to connect visual latent topics with high-level annotations. The proposed method pro-

vides both a robust automatic annotation method and a coarse location of them inside

the images. The proposed method has a remarkable characteristic, it is exclusively

trained with images that exhibit only one histopathological annotation. However the

resulting annotation model is able to assign multiple histopathological annotations to

full microscopical field of views. Therefore, it is not necessary to collect a representative

training set that includes images that have different combinations of histopathologi-

cal annotations. To the best of our knowledge, this is the first work that proposes

an automatic annotation algorithm based on a part-based image representation and a
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probabilistic latent topic model in histopathological images. The proposed approach

was evaluated using a set of images of a skin cancer, known as basal cell carcinoma,

which contains regions with ten different histopathological annotations, including acel-

lular, cellular, and architectural features (i.e. collagen, sebaceous glands, hair folli-

cles, inflammatory infiltration, eccrine glands, epidermis) and pathological lesions (i.e.

nodular basal cell carcinoma, morpheiform basal cell carcinoma, micro-nodular basal

cell carcinoma, cystic basal cell carcinoma).

The next sections are organized as follows: subsection 2.1.2 describes the proposed

method based on BOF and NMF. Subsection 2.1.3 describes the basal-cell carcinoma

data set and the performance measures used. Subsection 2.1.4 presents the evaluation

results obtained for automatic annotation compared with a classical model of Support

Vector Machines (SVM). Finally the conclusions are presented in Subsection 2.1.5.

2.1.2 Methodology

The proposed method for automatic annotation of histopathological images is depicted

by the Figure 2-2. This approach comprises two main stages: i) training, and, ii)

prediction. In the former stage, a probabilistic model that is able to automatically

generate multiple annotations for new images (multi-label images) is generated from

a set of images globally annotated with only one histopathological annotation (mono-

label images). In this stage, a training set of images is represented by two matrices F

and L, which codify the distribution of the visual information and the annotations of the

images contained in the set, respectively. Note that, L will be a sparse matrix with 1 in

the annotation assigned to each image and 0 in the other cases. The visual information

is represented using a bag-of-features approach [109]. Therefore, F corresponds to a

matrix of visual words versus images. To obtain an image representation using latent

topics, the matrix F is factorized in two matrices (W and H), using a NMF model

that allows to find the probability distribution of visual latent topic models (H) in the

images. Finally, the visual latent topics are linked to the annotations distribution (L)

using a probabilistic model that generates a matrix (C) with the latent representation

of annotations. The prediction stage also starts with the bag of features representation

of non-annotated images using the same visual codebook constructed in the training

stage. A new image is projected to the latent topic space, given by W , to generate

the vector Hnew. Finally, the above vector (Hnew) and the latent representation of

annotations (C) are multiplied to obtain the vectors Lnew that indicates the probability

that the new image has each histopathological annotation. The new image is finally

annotated with the corresponding histopathological annotation associated with one of

the morphological features or pathological lesions with the highest probability by a
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binarization process.

The details of the bag of features representation of images, latent topic model, and

automatic-annotation process in training and prediction stages, using a probabilistic

interpretation of non-negative matrix factorization, are introduced below.

Figure 2-2: Overview of proposed method for automatic annotation of histopatholog-

ical images based on non-negative matrix factorization.

Bag of Features representation

The visual representation of histopathological images is obtained as a bag of features

(BOF) [109]. A model inspired by the fact that the visual system perceives an object by

integrating its constituent parts [17, 130]. Therefore, this representation is basically a

histogram of small parts, called visual words, which are defined by a clustering analysis
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of small patches extracted from an image collection. The general BOF representation

approach comprises three main stages: feature detection and description, codebook or

visual vocabulary construction, and BOF image representation [43].

Figure 2-3 depicts the BOF setup used in this work. The hypothesis underneath the

proposed representation is that all biological structures are also represented by a proba-

bilistic model that describe the distribution (histogram occurrence) of quantized small

microstructures described by the visual patches. In the first step, the local feature

detection consists in extracting small square patches that will be used for describing

the whole visual image content. Herein, we extract these patches from a regular im-

age partition of 8 × 8 pixels without overlapping, which corresponds to the minimum

resolution that a visual pattern require for covering biological structures such as cell

nuclei. On the other hand, taking into account that from a pathologist point of view,

visual identification of biological microstructures is based on the stain variations, we

use the discrete cosine transform (DCT) coefficients of the RGB color components for

describing each patch, because this local feature has been used to effectively describe

this kind of variations in small regions [49, 89]. Local region descriptor results into a

single feature vector of 192 dimensions by the concatenation of the three color compo-

nent descriptors [37,38,50]. The second step, the codebook construction, is performed

using a k-means clustering algorithm over a sample of patches from the training image

set. The number of clusters, k , corresponds to the codebook size. The centroids found

with this clustering are the visual words of the codebook and the visual representation

of them can be obtained applying the inverse DCT. In this paper the codebook size

was set to 700, which is a good value according to [38], where a systematic experimen-

tation was performed on similar kind of images (histology and histopathology) using

this visual features. Finally, each image is represented by a k-bin histogram. This is

accomplished by associating the feature vector, describing each patch in the regular

grid, to the closest visual word in the codebook. Then, the histogram is generated with

each bin counting the number of patches in the image assigned to the corresponding

visual word.

Visual Latent Topic Analysis

The BOF representation of an image collection could be seen as a term-vs-document

matrix, F ∈ Rn×m, where rows correspond to visual words and columns to images.

Each element Fij indicates the frequency of the i-th visual word in the j-th image.

The goal of latent topic analysis is to find a set of latent factors that explain the visual

content of each image as a mixture of different probability distributions of visual words.

NMF is a well known matrix decomposition approach that approximates a matrix

F ∈ Rn×m as a product of two simpler non-negative matrix factors W ∈ Rn×k and
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Figure 2-3: Bag of feature setup used for representing histopathology images. In this

work the local features extraction is performed using regular grid extrac-

tion and each patch of 8×8 pixels is represented by the first coefficients of

a discrete cosine transform applied to each color component (RGB) inde-

pendently, the visual codebook is built using k-means with k = 700, and

finally each image is represented by a histogram of 700 bins normalized

with L1 norm.
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H ∈ Rm×k as follows:

F = WHT (2-1)

with W containing a set of k latent factors that are linearly combined to represent the

images in F using the coefficients in H.

The solution to NMF involves iterative optimization techniques using a cost function

that describes the “closeness” ofWHT to F . Lee and Seung [104] proposed two different

cost functions: Euclidean distance and Kullback Leibler (KL) divergence. In this work

we use the last one because of its probabilistic interpretation [55]. The optimization

problem based on KL divergence is defined as follows:

J = argmin
W,H

D(F ||WH)KL =
∑
ij

Fij log
Fij

[WHT ]ij
− Fij +

[
WHT

]
ij

(2-2)

An equivalence between NMF and probabilistic latent semantic indexing (PLSI) was

reported by Ding et al. [55]. PLSI has a strong statistical foundation that models

documents as a mixture of term probabilities conditioned on a latent random vari-

able [80]. The parameters of the model are estimated by a likelihood maximiza-

tion process based on expectation maximization algorithm. The mixture calculated

by PLSI induces a factorization of the original term-document matrix: P (wi, dj) =∑r
k=1 P (wi|zk)P (dj|zk)P (zk), if F is normalized according to Fij ← Fij/

∑
ij Fij, it can

be interpreted as the joint probability p(wi, dj) = Fij. Ding et al. showed that the

factorizations produced by NMF and PLSI are equivalent [55], with W containing the

visual-word-latent-factor conditional probabilities, p(wi|zk), and H the image-latent-

factor joint probability, P (dj|zk)P (zk) = P (dj, zk).

In conclusion, NMF generates a model of the image collection that explains the occur-

rence of visual words in images by a mixture of probability distributions conditioned

on a small set of latent factors. These latent factors can be interpreted as general

visual patterns. Additionally, each latent factor can be associated to a cluster of im-

ages [54], the centroid of the cluster given by the columns of W and the assignment of

images to clusters given by the rows of H, where the values can be interpreted as soft

image-cluster membership functions.

Probabilistic Annotation Model

Following the probabilistic model described in the previous subsection, the annotation

task can be seen as the process of calculating the annotation-vs-image conditional
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probabilities, p(lc|dnew) , where lc is the c-th annotation and dnew corresponds to the

new unannotated image. This is done by extending the latent topic model of the

previous subsection with information from the annotations of the training images.

This information is represented in a annotation-vs-image matrix, L ∈ Rc×m. The first

step is to assign histopathological annotation to each one of the visual latent topics,

i.e., to calculate the conditional probability p(lc|zk). This is accomplished by applying

NMF to the L matrix as follows:

L = CHT (2-3)

where H is the same matrix obtained from the visual latent topic factorization, which

is kept fixed during the optimization process. After an appropriate normalization and

according to the discussion of previous subsection, C contains the annotation-vs-latent-

topic conditional probabilities p(lc|zk). The second step is to project the new image to

the visual latent space, this is done by applying NMF to solve:

Fnew = WHT
new (2-4)

where Fnew is the BOF representation of the new image, W is the same matrix obtained

from the visual latent topic analysis and is kept fixed during the optimization process.

After an appropriate normalization, HT
new contains the joint probabilities p(dnew, zt).

Finally, the conditional probability p(lc|dnew) is calculated using Bayes rule and law of

total probability as follows:

p(lc|dnew) =
p(lc, dnew)∑
c p(lc, dnew)

=
p(lc, dnew)

p(dnew)
(2-5)

where p(lc, dnew) is the factorized joint probability

p(lc, dnew) =
∑
k

p(lc, dnew|zk)p(zk) =
∑
k

p(lc|zk)p(dnew, zk) (2-6)

assuming that lc and dnew are independent given zk. It is easy to see that Equation 2-6

corresponds to the following matrix multiplication:

Lnew = CHT
new (2-7)

According to the above discussion we propose a straightforward method for automatic

annotation of images based on NMF (A2NMF) that consists in two stages (training

and prediction) described in Algorithms 1 and 2.
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Algorithm 1 Training stage for automatic annotation of images using NMF.

1. Normalize F matrix to get joint probabilities of visual words and images.

2. Normalize L matrix to get joint probabilities of histopathological annotations

and images.

3. Apply NMF with the visual information of the training data set (i.e. F visual-

word-vs-image matrix) to get W and H matrices. Equation (2-1)

4. Apply NMF with the annotation information of the training set (i.e. L

annotation-vs-image matrix) fixing H matrix to get C matrix.

Algorithm 2 Prediction stage for automatic annotation of images using NMF.

1. Apply NMF with the visual information of new images (i.e. Fnew) fixing W

matrix to get Hnew. Equation (2-4)

2. Multiply C and Hnew matrices to get Lnew. (Equation 2-7)

3. Normalize Lnew to get conditional probabilities p(lc|dnew)

Lc,new ← Lc,new/
∑

c Lc,new. Equation (2-5)

4. Binarize Lnew assigning 1 if Lc,new > p(lc) and 0 in otherwise

2.1.3 Experimental design

Basal cell carcinoma data set

The proposed method was evaluated on a histopathological image data set, which

was annotated by an expert, identifying the presence of architectural or morphological

features, and pathological lesions inside each image. Images correspond to field of

views with a 10X magnification, extracted from Hematoxilyn-eosin (H&E) stained skin

tissues diagnosed with different types of basal cell carcinoma. These images contain

a particular richness in architectural and morphological features, i.e., characteristic

arrangements of cells, surrounded by several combinations of epithelial and connective

tissues, also found in many other pathologies [117].

The entire image set, composed of 655 digital images, was randomly divided into train-

ing (80%) and test (20%) sets. Square subimages that contained single histopatho-

logical annotations were manually cropped from the training image set. Although,

there is no typical size for those annotations, because of their large intrinsic variabil-
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ity, subimage size was estimated as an average value of a set of regular regions that

the pathologist marked as containing a single histopathological annotation i.e. square

subimages of 300 × 300 pixels. A total of 1, 466 training subimages were finally ob-

tained, each containing a single annotation among the ten possibilities. On the other

hand, the test set was composed of 138 images of 1024 × 768 pixels, which, in gen-

eral, are annotated as containing more than one histopathological annotation. Latter,

images were globally annotated, i.e., the actual location of these annotations was not

provided, which makes the task of automatic annotation even more challenging. The

data set distribution by histopathological annotation is detailed in Table 2-1.

In order to reduce the visual image variability, a color normalization strategy, based

on the transfer of the statistical properties of the stain contributions, was firstly ap-

plied [51]. Examples of some morphological features and a pathological lesion (collagen,

epidermis, hair follicles and cystic basal cell carcinoma) are shown in Figure 2-4, in

which the large appearance variability exposed by them can be appreciated. For exam-

ple in the same figure Epidermis refers to outer layer of skin which comprises stratified

squamous epithelium, i.e. several layers with different morphology of cells. However,

typically a whole digital image of histopathology have one or more visual patterns asso-

ciated with different morphological and architectural features of tissues like the images

shown in Figure 2-1, which belong to the test image set. These images have in some

located regions particular patterns, e.g. epidermis or hair follicles, whereas others are

sparsely distributed without a well defined spatial location, e.g. collagen.

Table 2-1: Data set distribution per histopathological annotation for training and test.

Histopathological annotation Train Test Total
Collagen (c) 337 70 407

Sebaceous glands (gs) 108 36 144
Hair follicles (ap) 106 33 139

Inflammatory infiltration (i) 135 90 225
Eccrine glands (ge) 108 22 130

Epidermis (ep) 144 39 183
Nodular Basal cell carcinoma (cb) 208 33 241

Morpheiform basal cell carcinoma (cbm) 132 14 146
Micro-nodular basal cell carcinoma (cbn) 83 9 92

Cystic basal cell carcinoma (cbq) 105 9 114
Total 1,466 138 1,604
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Figure 2-4: Examples of training images with the corresponding histopathological an-

notations. These images have a resolution of 300× 300 pixels and exhibit

only one annotation per image.

Performance evaluation

The performance of the proposed automatic annotation method was evaluated using

standard measures such as precision, recall, accuracy and f-measure which are defined

as follows:

Precision =
tp

tp+ fp
,Recall =

tp

tp+ fn

Accuracy =
tp+ tn

tp+ tn+ fp+ fn
, F −measure =

2× Precision×Recall
Precision+Recall

where tp is the number of correctly predicted annotations, fp is the number of wrong

predicted annotations, tn is the number of correctly omitted annotations, and fn is

the number of missed annotations.

Note that these measures are not evaluated independently by class. This is a bet-

ter way to evaluate the performance in an automatic annotation task where images

simultaneously exhibit multiple annotations.

As baseline, a state-of-the-art supervised annotation method based on support vector

machines (SVM) was used. We train a one-vs-all SVM model with an RBF kernel for

each class, the best parameters were chosen using a 10-fold cross-validation over the
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training data set. As well the proposed approach, the SVM model uses the same BOF

image representation for visual content of the images.

The performance of the proposed and baseline annotation methods was evaluated in

both training and testing data sets. When evaluating the performance in the training

data set, 20% of the training images are withheld during training and later used to

evaluate the generalization performance. The purpose of this two-way evaluation was to

contrast the performance of the annotation methods in two scenarios: a simple mono-

label annotation task, corresponding to annotate images with the same characteristics

as that ones used for training, and the original complex multi-label annotation task.

2.1.4 Results and discussion

An important parameter for a latent-topic model is the size of latent space dimension,

i.e the number of latent topics required for representing the collection visual content.

Therefore, the effect of varying the number of latent topics was assessed on the mono-

label annotation task. Figure 2-5 shows the average performance of the proposed

method in the training data set against the number of latent topics (dimension of the

latent space). With a small number of latent dimensions, the annotation model has

a high recall, but with low precision, accuracy and f-measure. This indicates that

the annotation model tends to assign a high number of annotations per image. The

situation improves with a higher number of latent dimensions, and all the measures

steadily increase beyond 32 dimensions.

These results suggest selecting a k value as big as possible. Lee and Seung in [103]

suggested a number of latent topics k < nm/(n + m). The reason is that beyond

of this value the number of parameters in the factorization, the maximum number of

dimensions in the latent space according to the rule (n + m)k, will be greater than

the number of values in the original matrix, nm. We decided to use this limit for the

experiments, taking into account that n is the codebook size and m is the number

of images in training stage. This gives a number of latent topics k = 438 for the

mono-label scenario and k = 473 for the multi-label scenario.

The proposed approach was compared against a state-of-the-art SVM model in both

mono-label and multi-label scenarios. Table 2-2 shows the average value for each

performance measure, for both scenarios on the respective test set. The results show

that the SVM model performs better on the mono-label annotation tasks. The reason

could be because the test images are similar to those used in the training stage, i.e.

small images containing a unique annotation. However, when test images contain more

than one histopathological annotation, the proposed approach takes advantage of the

intermediate representation in the latent semantic space, and outperforms the results
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reported by the SVM learning model.

The results suggest that the proposed model is doing a better work characterizing

the high visual variability of the different histopathological annotations. A supervised

learning model, such as SVM, requires a representative set of training images that

exhibit combination of morphological and architectural features of tissues similar to the

ones expected in the test set. In contrast, the proposed method initially characterizes

the visual variability of the training data set in an unsupervised fashion. Annotations

of the training data set are used in a later step to build a probabilistic annotation

model that connects latent visual topics with histopathological annotations.

One important characteristic of the proposed method for automatic annotation is its

interpretability. Whereas SVM is one of the most powerful models for supervised learn-

ing, the generated classifiers are not easily interpretable. The improved interpretability

of the proposed method is due to the fact that it is possible to map back the gener-

ated labels to particular regions of the image by each morphological and architectural

feature. This is accomplished by assigning a histopathological annotation posterior

probability to each small image patch. Figure 2-6 illustrate the concept mapping

strategy: a test image is shown in Figure 2-6a and the corresponding probabilities

maps of its patches for each of the ten histopathological annotations are shown in Fig-

ure 2-6b-k. Each of these maps have in the top the real binary membership value of

the histopathological annotation (v), the posterior probability of the predicted anno-

tation given the image by the proposed method in Equation 2-5 (p), and the binary

classification of image with the corresponding histopathological annotation according

to the step 4 of Algorithm 2 (b).

These results are relevant in the biomedical context because the high-variability of ar-

chitectural and morphological features in healthy and pathological tissues is a common

phenomena. In general, it is very difficult to have enough examples of each possible

structural arrangement of the morphological features for training a supervised learning

model such as the SVM algorithm. This scenario is also a more realistic in biomedical

image domain, where regions of interest in the image, which cover an example of bio-

logical structures, are commonly annotated by the presence or absence of a given set

of histopathological annotations whereas computer-aided diagnosis or image retrieval

systems require the annotation of full images.
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Figure 2-5: Performance evaluation on training mono-label images by each number of

dimensions in the latent space.

Table 2-2: Average in automatic annotation performance in both experiments with

standard performance measures, Accuracy (Acc), Precision (Pr), Recall

(Rc) and F-measure (F)

Mono-label images Multi-label images

Method Acc Pr Rc F Acc Pr Rc F
SVM-RBF 0.96 0.84 0.69 0.76 0.70 0.26 0.10 0.11
A2NMF 0.92 0.67 0.46 0.51 0.76 0.5 0.74 0.55
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Figure 2-6: Example of an image from the test data set automatically annotated by the

proposed method. The original multi-label image (a) is showed with the

salient maps of the patches inside the image according with each one of the

ten histopathological annotations: collagen (b), sebaceous glands (c), hair

follicles (d), inflammatory infiltration (e), eccrine glands (f), epidermis

(g), nodular basal cell carcinoma (h), morpheiform basal cell carcinoma

(i), micro-nodular basal cell carcinoma (j), cystic basal cell carcinoma (k)),

on the top of each salient image is the real membership of the class (v),

the conditional probability estimated by the proposed method (p) and the

final concept binarization value (b).

2.1.5 Conclusions

We presented a novel method for histopathological images annotation with probabilistic

support for prediction and spatial location of morphological and architectural features

in healthy and pathological tissues. The method was evaluated in a challenging scenario

were training images corresponded to small subimages exhibiting only one histopatho-

logical annotation, although test images included multiple annotations. The proposed
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method exhibited an improved performance when compared to a state-of-the-art su-

pervised annotation method. The distinctive characteristic of the proposed method

is that it builds an enhanced representation of the visual image collection content in

an unsupervised fashion finding latent visual topics, which encode high-level visual

patterns.

Histopathological images are particularly challenging to analyze because of their high

variability and complex visual structure. The results reported here suggest that la-

tent semantic characterization of the visual structure is a viable alternative to build

competitive annotation models for histopathological images.

2.2 Anaplastic Tumor Differentiation and Visual

Interpretation in Medulloblastoma

A method for automatic analysis and interpretation of histopathology images is pre-

sented. The method uses a representation of the image data set based on bag of

features histograms built from visual dictionary of Haar-based patches and a novel

visual latent semantic strategy for characterizing the visual content of a set of im-

ages. One important contribution of the method is the provision of an interpretability

layer, which is able to explain a particular classification by visually mapping the most

important visual patterns associated with such classification. The method was evalu-

ated on a challenging problem involving automated discrimination of medulloblastoma

tumors based on image derived attributes from whole slide images as anaplastic or non-

anaplastic. The data set comprised 10 labeled histopathological patient studies, 5 for

anaplastic and 5 for non-anaplastic, where 750 square images cropped randomly from

cancerous region from whole slide per study. The experimental results show that the

new method is competitive in terms of classification accuracy achieving 0.87 in aver-

age. The complete content of this section has been published as a research article in the

proceedings of 15th International Conference on Medical Image Computing

and Computer Assisted Intervention (MICCAI’2012) (see [42]).

2.2.1 Introduction

This paper presents a new method, ViSAI, for automatic analysis and interpretation of

histopathological images. The method comprises three main stages: learning of an im-

age representation based on bag of features (BOF), characterization of the rich visual

variety of a histopathological image collection using visual latent topic analysis, and

connection of visual patterns with the semantics of the problem using a probabilistic

classification model. The learnt probabilistic model is applied to new images, and the
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class posterior probability is used to determine the corresponding class. The method is

applied to the classification of a type of brain cancer called medulloblastoma, which is

one of the most common types of malignant brain tumors [141]. In adults, the disease is

rare whereas in children the incidence amounts to a 25% of all pediatric brain tumors.

Tumor classification of medulloblastoma is currently performed by microscopical exam-

ination and no quantitative image analysis and classification tools are so far available

for this task. Different histologic types of medulloblastoma have different prognosis.

The differential diagnosis is a hard task and tends to be qualitative. Determine the

subtypes of medulloblastoma are difficult to establish and subject to inter-observer vari-

ability because of the similarity between the two basic histologic subclasses: anaplastic

and non-anaplastic and their similarity with a long list of differential diagnoses. The

anaplastic medulloblastoma have worse prognosis and this is mostly characterized by

the presence of large, irregular cells that lack organization and in some cases attempt

to wrap around each other. The therapeutical management changes radically depend-

ing on the subtype of medulloblastoma so that histopathological diagnosis is useful in

determining the potential outcome of the disease. Hence computerized and quantita-

tive image analysis tools are useful in this kind of problem for better estimation of

medulloblastoma subtype allowing potentially make better prognostic decisions.

Recent investigations [114] have pointed out the importance of provide computerized

and automatic image analysis tools as support to diagnosis and prognosis for different

types of cancer. Recent work in histologic image analysis has explored the use of

automated methods for breast cancer and prostate cancer diagnosis and grading [44,95]

using other images modalities. Galaro et al. [69] classified anaplastic and non-anaplastic

medulloblastoma subtypes, using a BOF of Haar wavelet coefficients as local pixel-

based descriptors. The authors of [69] reported on average a classification accuracy

of 0.80. The above works have essentially developed tools to improve the quality of

diagnosis in terms of objective support and some level of quantification. Bag of features

approach is an image content representation commonly used in computer vision area

which comprises three main stages: local feature extraction, dictionary construction,

and image representation. This approach have been successful adapted and applied

in histology images previously in image analysis and classification tasks [38, 40]. On

the other hand, latent topic analysis is an approach widely used in text document

collection analysis to find the semantic topics related with these documents. The

representative techniques are latent semantic analysis (LSA), pLSA [80] and latent

Dirichlet analysis (LDA) [18]. Both pLSA and LDA suppose a generative model for

documents. The main assumptions here are: first, the image content of image could

be represented by an appropriate set of visual words from dictionary learnt from whole

image collection represented by a good visual word representation, and second, the
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large visual variability in the image collection is generated from a relatively small set

of visual latent factors. Under our analysis, visual latent factors correspond to high-

level patterns that mix sets of visual words that co-occur with high frequency in the

collection. Semantics is then linked to visual latent factors coding the relationship

between the visual appearance and particular classes.

The new method in this paper addresses the problem of automated classification of

histological slides. The method provides higher accuracy coupled with an interpretation

of classification results for the expert in terms of semantic domain, rather than being

a black-box approach. In particular, the main contributions of the present work are:

• A strategy to characterize the rich visual content of histology images combining

an image representation, based on BOF, and a texture local descriptor for image

patches based on a Haar wavelet transform.

• A visual latent-topic analysis model for finding higher-level visual patterns that

combine multiple visual words.

• A method that is able, not only to globally classify a virtual slide, but also pro-

vides interpretability determining the most important visual patterns associated

with such classification, and identifying their location in the original image.

2.2.2 Methodology

ViSAI method performs an implicit semantic identification of the visual patterns that

characterize each class (anaplastic and non-anaplastic). The strategy is built upon an

image representation, based on BOF, and a visual latent semantics analysis, based on

probabilistic latent semantic analysis (pLSA). The overall scheme is depicted in Figure

2-7.

Image Representation

Step 1: Local features extraction. square patches of 50 pixels, that is the minimum

spatial resolution that covers a cellular unit (nucleus and cytoplasm), are extracted

using a dense grid strategy with an overlap of 80%. Each patch is represented by two

different local descriptors, raw-blocks (block) and Haar wavelet coefficients (haar). The

raw-block descriptor corresponds to luminance values of pixels in the patch, whereas

the Haar descriptor corresponds to the filter responses of two scales of a Haar-wavelet-

based wavelet transform. Luminance differences are reduced by applying, before feature

extraction, a mean-zero-variance-one normalization.
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Figure 2-7: Overall scheme for the visual latent semantic analysis for automatic clas-

sification and interpretation method.

Step 2: Dictionary construction. the dictionary is built by applying a conventional

k-means clustering strategy to a sample of image patches from the training set. The

number of clusters, k, corresponds to the dictionary size, and each centroid corresponds

to a visual concept. An important difference with a previous texton-based approach [69]

is that our dictionary is constructed from images randomly selected from both classes,

regardless of whether it belongs to the class anaplastic or not, by which the visual

concepts are mixed up within a very heterogeneous dictionary.

Step 3: Novel Image representation. each image is then represented by a k-bin

histogram, capturing the frequency of each visual word in the image given the local

descriptor and the visual dictionary. A collection of images can be represented then

by a matrix, X, where each column corresponds to an image and each row to a visual

word. If each column is normalized (L1 normalization), each position in the matrix,

Xi,j, corresponds to the conditional probability of finding a visual word wi in an image
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dj, i.e.,p(wi|dj).

Visual Latent Semantic Image Analysis

Step 1: Visual latent factors analysis. The new method uses an approach similar

to pLSA that assumes that the presence of different terms (visual words) in a set

of documents (images) can be explained by the presence of a reduced set of hidden

variables called latent factors. Specifically, the conditional probability P (wi|dj) can be

represented as:

P (wi|dj) ≈
∑
k

P (wi|zk)P (zk|dj) (2-8)

where P (wi|zk) is the conditional probability of visual word wi given latent factor zk
and P (zk|dj) is the conditional probability of a latent factor zk given the image dj. The

latent factors can be found by solving an optimization problem that looks for P (W |Z)

and P (Z|D) that minimizes the Kullback-Leibler divergence between the left and right

sides of Equation 2-8 [55]. In our case, we solve the optimization problem by modeling

it as a matrix factorization problem: P (W |D) = P (W |Z)P (Z|D), where P (W |D) = X

is the histogram representation of the image collection discussed in Subsection 2.2.2,

P (W |Z) contains the latent factors represented in terms of visual words, and P (Z|D)

contains the representation of the images in the collection, in terms of latent factors.

Step 2: Semantic latent factors. Given a set of annotated training images, each

image, di, is associated with one of two classes: anaplastic (C1 = A) or non-anaplastic

(C2 = NA). If, for instance, the image is anaplastic then P (C1|di) = 1 and P (C2|di) =

0. Following the same reasoning as in previous subsection this probability can be

expressed in terms of the latent factors as follows:

P (Ci|dj) ∼=
∑
k

P (Ci|zk)p(zk|dj) (2-9)

The probability P (Ci|zk) effectively connects each latent factor with the semantics of

the problem represented in terms of the biological concept associated with each class.

These probabilities can be found applying a matrix factorization algorithm [55] that

fixes P (Z|D) from the previous step and looks for P (C|Z) such that: P (C|D) =

P (C|Z)P (Z|D).
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Step 3: New image classification. A new image, d∗, is first represented using the

strategy discussed in Subsection 2.2.2. This produces a normalized histogram P (W |d∗).
The image is then represented in terms of latent factors (zk) finding P (Z|d∗) such that:

P (W |d∗) ∼= P (W |Z)P (Z|d∗), where P (W |Z) was previously found in step 1 solving

Equation 2-8. Then, the posterior class probability of the image P (C|d∗) is calculated

using: P (C|d∗) ∼= P (C|Z)P (Z|d∗), where P (C|Z) was previously calculated in step

2 solving Equation 2-9 and obtained P (Z|d∗). Finally, the class assigned to the new

image is the one with the maximum class posterior probability.

2.2.3 Experimental design

The dataset comprises 10 labeled histopathological cases from St. Jude Children’s

Research Hospital, which 5 are anaplastic and 5 are non-anaplastic. Each slide is a

whole virtual slide of 80000× 80000 pixels with one or more cancerous regions with a

large tumoral variability, manually annotated by a neuro-pathologist. For every slide,

750 individual images of 200×200 pixels non-overlapping where extracted uniformly at

random from these cancerous regions, resulting in a database of 7500 different images:

half of them anaplastic. The local feature extraction is carried out as was described in

Subsubsection 2.2.2 for two local descriptors block and haar. The dictionary size was

tested with different sizes, 10, 20, 40, 80, 160 and 320 visual words. Finally the number

of latent factors was fixed to the dictionary size since this amounts to a maximum

number of elemental building blocks (visual words) to be represented by visual semantic

concepts (latent factors). The probabilistic analysis described in Subsubsection 2.2.2

provides a probability value associated with the semantic importance of each of the

initial visual features so that these can be grouped together (into latent factors) by

similar levels of relevance per class (Equations 2-8 and 2-9).

In this sense, three different experiments were proposed to evaluate each parameter of

the proposed method. First, determine the visual words appearance from dictionaries

and impact of dictionary size for each local descriptor (block or haar) evaluation average

accuracy in test data set over multiple trials of cross-validation. Second, evaluate the

classification performance of the proposed image representation (Subsubsection 2.2.2)

for each local descriptor using the proposed method (Subsubsection 2.2.2) compared

with a k-NN classifier. Third, a visual mapping of high-level concepts to identify spatial

regions associated by each one (anaplastic and non-anaplastic).
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Figure 2-8: Dictionary size vs average accuracy for both local features (block and haar).

2.2.4 Results and discussion

Visual dictionary construction

Figure 2-8 shows the impact of the dictionary size on the validation average accuracy.

Overall, haar-based dictionary outperforms the raw-block representation by about 7%.

For both representations the best performances were obtained with the largest dictio-

nary size obtaining 0.77 (blocks) and 0.86 (haar) in average accuracy. Visual words can

be related to a particular class calculating the posterior class probability. Table 2-3

shows the 20 visual words with highest posterior class probability for both classes, for

the two types of representation. In all the cases the visual dictionary is composed basi-

cally of smooth samples of nuclei and cells in different orientations and arrangements,

a result that matches perfectly with a very basic principle in pathology analysis which

introduces the cell as the basic unit of information. Also some differences between

the visual words associated to each class can be observed, for both (block and haar),

non-anaplastic patterns are more homogeneous. This is consequent with the biological

definition of anaplasia, where cells are undifferentiated and nuclei shapes and sizes have

high variability.
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Table 2-3: A sample of the visual dictionaries obtained using different local features.

Second column shows the 20 visual words with highest probability by class

(A:anaplastic, NA:non-anaplastic) for each kind of local feature in a dictio-

nary size of 160.

Feature 20 visual words with highest probability by class

block
A

NA

haar
A

NA

Table 2-4: Classification performance in terms of accuracy, specificity and sensitivity

for dictionary size of 320.

ViSAI k-NN

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

block 0.78 0.89 0.67 0.80 0.79 0.81

haar 0.87 0.86 0.87 0.84 0.88 0.79

Classification performance

For each of multiple trials of cross-validation, we used 4 anaplastic and 4 non-anaplastic

slides for training the visual semantic model and 1 anaplastic and 1 non-anaplastic

slides for testing. For comparison, the k-NN classifier was employed. An optimal

value for k, 10, was found by cross validation such as was suggested in [69]. Differ-

ent dictionary sizes and patch representations were evaluated to determine the best

configuration for this classification task in terms of classifier accuracy, specificity, and

sensitivity. The results are presented in Table 2-4, which shows the performance ob-

tained with each image representation strategy and classification algorithm. Clearly

the haar-based representation outperforms the block-based representation, indepen-

dent of classifier choice. The new classification method is competitive with respect to

the k-NN, a classical classifier used in [69]. The improvement obtained by our method

using haas-based representation was 3.6% in accuracy and 10.1% in specificity.

Visual pattern mapping and interpretation

The methodology presented in this paper allows for new unknown images to deter-

mine the spatial probability maps for each class using conditional probabilities. Figure
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Figure 2-9: Visual semantic maps for test images from a cross validation trial. Images

in the first column were correctly classified (A-anaplastic and NA-non-

anaplastic). See Subsection 2.2.4 for description.
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2-9 illustrates the semantic visual maps generated for two unknown test images in a

particular trial of cross validation. Rows one and two show images of the same size

used in training (200 × 200), whereas rows three and four show a larger field of view

(2000× 2000). The center column shows the corresponding BOF histogram represen-

tation for each image (i.e. occurrence frequency of each visual word of the dictionary

in the image). Bin (visual words) has been sorted according to the posterior class

probabilities: visual words with a higher class probability of being anaplastic are at

the left, and visual words with a higher class probability for non-anaplastic are at the

right. The third column shows the posterior class probability. The fourth column

shows a map that indicates how likely a particular region of the image is to be related

to one of the semantic classes. This is depicted by the log-odds of the posterior class

probabilities to emphasize the differences. A positive value (red) indicates a higher

probability for class anaplastic, a negative value (blue) indicates a higher probability

for class non-anaplastic. An advantage of the BOF image representation is that new

method is able to scale towards larger image size as shown in the rows three and four

of Figure 2-9, where the correct prediction of classes and spatial location of semantic

regions is more challenging.

2.2.5 Conclusions

The new method ViSAI was successfully applied to the challenging problem of auto-

matic discrimination between two subtypes of medulloblastoma using computer derived

image features extracted from whole slides. The goal of our method was not just to im-

prove classification accuracy, but to provide interpretable results using latent semantic

analysis and BOF image representation. The method provides an interpretation layer

that helps out the pathologist to determine the type of patterns present in the sample

under examination with a potential improvement of diagnostic significance. This at-

tribute is particularly useful in problems relating to stratification of the disease where

the distinction between disease sub-classes might reside in very subtle visual cues. The

experimental results are promising and indicate that visual latent semantic analysis

has potential as a tool for analyzing the complex visual patterns exhibited by histopa-

thology images.
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Feature and Representation Learning



3 Unsupervised histopathology image

representation learning

The two main digital pathology tasks are tumor detection and tumor grading. Patho-

logical analysis and diagnosis focus on tumor regions. The tumor aggressiveness is

determined by tumor differentiation and grading according to particular morphological

and arrangement properties of tumoral cells. This chapter presents methods for un-

supervised representation learning applied to the analysis of histopathology images of

skin (see into Section 3.1) and brain cancer (see into Section 3.2) for tumor detection

and grading. The following sections correspond to papers presenting the details of the

methods and applications.

3.1 Tumor Classification of Basal Cell Carcinoma

This paper presents and evaluates a deep learning architecture for automated basal cell

carcinoma cancer detection that integrates (1) image representation learning, (2) im-

age classification and (3) result interpretability. A novel characteristic of this approach

is that it extends the deep learning architecture to also include an interpretable layer

that highlights the visual patterns that contribute to discriminate between cancerous

and normal tissues patterns, working akin to a digital staining which spotlights image

regions important for diagnostic decisions. Experimental evaluation was performed on

set of 1,417 images from 308 regions of interest of skin histopathology slides, where the

presence of absence of basal cell carcinoma needs to be determined. Different image

representation strategies, including bag of features (BOF), canonical (discrete cosine

transform (DCT) and Haar-based wavelet transform (Haar)) and proposed learned-

from-data representations, were evaluated for comparison. Experimental results show

that the representation learned from a large histology image data set has the best

overall performance (89.4% in F-measure and 91.4% in balanced accuracy), which rep-

resents an improvement of around 7% over canonical representations and 3% over the

best equivalent BOF representation. The complete content of this section has been pub-

lished in the 16th International Conference on Medical Image Computing

and Computer Assisted Intervention - MICCAI 2013 (see [33]), and extended
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versions had been published in IX International Seminar on Medical Informa-

tion Processing and Analysis - SIPAIM 2013 and Journal of Artificial

Intelligence in Medicine (see [4, 5]).

3.1.1 Introduction

This paper presents a unified method for histopathology image representation learn-

ing, visual analysis interpretation, and automatic classification of skin histopathology

images as either having basal cell carcinoma or not. The novel approach is inspired by

ideas from image feature representation learning and deep learning [16] and yields a

deep learning architecture that combines an autoencoder learning layer, a convolutional

layer, and a softmax classifier for cancer detection and visual analysis interpretation.

Deep learning (DL) architectures are formed by the composition of multiple linear

and non-linear transformations of the data, with the goal of yielding more abstract

– and ultimately more useful – representations [16]. These methods have recently

become popular since they have shown outstanding performance in different computer

vision and pattern recognition tasks [16, 93, 98]. DL architectures are an evolution

of multilayer neural networks (NN), involving different design and training strategies

to make them competitive. These strategies include spatial invariance, hierarchical

feature learning and scalability [16]. An interesting characteristic of this approach is

that feature extraction is also considered as a part of the learning process, i.e., the

first layers of DL architectures are able to find an appropriate representation of input

images in terms of low-level visual building blocks that can be learnt.

This work addresses the challenging problem of histopathology image analysis and in

particular the detection of basal-cell carcinoma (BCC), the most common malignant

skin cancer and may cause significant tissue damage, destruction and, in some cases,

disfigurement. Unlike natural scene images, where typical automated analysis tasks

are related to object detection and segmentation of connected regions that share a

common visual appearance (e.g. color, shape or texture), histopathology images reveal

a complex mixture of visual patterns. These patterns are related to high variability

of biological structures associated with different morphology tissue architecture that

typically tend to significantly differ in normal and diseased tissue. Another source

of visual variability is the acquisition process itself, going from a 3D organ biopsy to

a 2D sample (histopathological slide). This process involves different stages: sam-

pling, cutting, fixing, embedding, staining and digitalization, each one contributing

inherent artifacts [40]. Figure 3-1 shows histopathology image samples stained with

hematoxylin-eosin (H&E) from cancerous and non-cancerous tissue samples. These

images illustrate the high intra-class visual variability in BCC diagnosis, caused by the
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Figure 3-1: Example of BCC histopathology images (both cancer and non-cancer)

stained with H&E at 10X.

presence (or absence) of different morphological and architectural structures, healthy

(eccrine glands, hair follicles, epithelium, collagen, sebaceous glands) or pathological

(morpheiform, nodular and cystic change).

There is an extensive literature in automatic histopathology image analysis where dif-

ferent strategies for image representation have been tried: discrete cosine transform

(DCT), wavelet coefficients, Gabor descriptors, and graph representations among oth-

ers [106]. In all cases, the goal is to capture the visual features that better characterize

the important biological structures related to the particular problem been addressed.

This means that some representations may work better than others depending on the

particular problem. On account of recent advances in computer vision [93, 98], there

is an encouraging evidence (mostly for natural scene images) that learned representa-

tions (induced from data) may have a better performance than canonical, predefined

image feature representations. To the best of our knowledge, this is the first attempt

to evaluate learned-from-data image features in BCC histopathology image analysis

using a DL architecture. A related approach is a bag of features (BOF) representation,

which attempts to learn a set of visual code words from training data and uses them to

represent images. However, this representation strategy still needs the definition of a

local feature descriptor in advance (e.g. raw-block, SIFT histogram, DCT coefficients).

Previous research has suggested that the particular local feature descriptor choice has

an important effect on BOF performance [38,42].

This paper presents a convolutional auto-encoder DL architecture for histopathology

image classification as a tool to support BCC diagnosis. The DL architecture is en-

hanced by an interpretation layer that highlights the image regions that most contribute



50 3 Unsupervised histopathology image representation learning

in the discrimination of healthy tissue from cancer. The main novel contributions of

this work are:

• A BCC histopathological image analysis method, which integrates, in a unified

DL model, the following functionalities: image feature representation learning,

image classification, and prediction interpretability.

• An evaluation of learned-from-data image representations in BCC histopatho-

logy image analysis, which shows that this approach could produce improved

classification performance while enhancing model interpretability.

• A novel strategy to exploit the information in the intermediate representation

layers of the DL architecture to produce visual interpretable predictions. In that

sense this method is analogous to a digital stain which attempts to identify image

regions that are most relevant for making diagnostic decisions.

While there has been some previous related work in the use of DL architectures for

automatic segmentation and classification in histopathology images for breast cancer

cell detection, unlike our approach, the methods in [121, 133] do not focus on image

representation learning. Hence these methods do not analyze the learned features

and do not explore their potential for visual prediction interpretation. Prediction

interpretability is not an important issue when analyzing natural images, so it has not

been typically studied in classical computer vision literature. However, in the context of

systems for performing predictions and decision support there is a need to explain and

identify those visual patterns which are relevant for prediction. While some approaches

have been for visual prediction interpretation [38,40,42,51], these approaches have not

used a DL architecture and in all of them the interpretation ability is provided by

an additional stage, subsequent to image classification. By contrast, in our approach,

visual interpretability is tightly integrated with the classification process.

3.1.2 Methodology

The new method for histopathology image representation learning, BCC cancer clas-

sification and interpretability of the results of the predictor, is based on a multilayer

neural network (NN) architecture depicted in Figure 3-2. The different stages or mod-

ules of the framework, corresponding to different layers of the NN are described as

follows:
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Figure 3-2: Convolutional auto-encoder neural network architecture for histopathology

image representation learning, automatic cancer detection and visually in-

terpretable prediction results analogous to a digital stain identifying image

regions that are most relevant for diagnostic decisions.

Step 1. Unsupervised feature learning via autoencoders:

Training images are divided into small patches (8×8 pixels), which are used to train an

autoencoder NN [16] with k hidden neurons. This produces a set of weight vectors W =

{w1, . . . , wk}, which can be interpreted as image features learned by the autoencoder

NN. The autoencoder looks for an output as similar as possible to the input [16]. This

autoencoder learns features by minimizing an overall cost function with a sparsity

constraint to learn compressed representations of the images defined by:

Jsparse(W ) = J(W ) + β

k∑
j=1

KL(ρ||ρ̂j), (3-1)

where J(W ) is the typical cost function used to train a neural network, β controls the

weight of sparsity penalty term. KL(ρ||ρ̂j) corresponds to Kullback–Leibler divergence

between ρ, desired sparsity parameter, and ρ̂j, average activation of hidden unit j

(averaged over the training set).
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Step 2. Image representation via convolution and pooling:

Any feature wk can act as a filter, by applying a convolution of the filter with each image

to build a feature map. The set of feature maps form the convolutional layer. Thus,

a particular input image is represented by a set of k features maps, each showing how

well a given pattern wi spatially matches the image. This process effectively increases

the size of the internal representation (≈ k×the size of the original representation)

of the image. The next layer acts in the opposite direction by summarizing complete

regions of each feature map. This is accomplished by neurons that calculate the average

(pool function) of a set of contiguous pixels (pool dimension). The combination of

convolution and pooling provide both translation invariance feature detection and a

compact image representation for the classifier layer.

Step 3. Automatic detection of BCC via softmax classifier:

A softmax classifier, which is a generalization of a logistic regression classifier [93], takes

as input the condensed feature maps of the pooling layer. The classifier is trained by

minimizing the following cost function:

J(Θ) = − 1

m

[
m∑
i=1

y(i) log hΘ(x(i)) + (1 + y(i)) log(1− hΘ(x(i)))

]
, (3-2)

where
{

(x(1), y(1)), . . . , (x(m), y(m))
}

is the corresponding training set of m images, where

the i-th training image is composed of y(i) class membership and x(i)image representa-

tion obtained from the output of the pooling layer, and Θ is a weight vector dimension

k × n (where n is the pool dimension). The output neuron has a sigmoid activa-

tion function, which produces a value between 0 and 1 that can be interpreted as the

probability of the input image being cancerous.

Step 4. Visual interpretable prediction via weighted feature maps:

The softmax classifier weights (Θ) indicate how important a particular feature is in

discriminating between cancer and non-cancer images. A weight Θj (associated1 to

a feature wk) with a high positive value indicates that the corresponding feature is

associated with cancer images, in the same way a large negative value indicates that

the feature is associated with normal images. This fact is exploited by the new method

to build a digitally stained version of the image, one where cancer (or non-cancer)

1In general, a feature has as many weights associated with it as the pool dimension. When the pool

dimension is larger than one, the average weight is used.
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related features are present. The process is as follows: each feature map in the convo-

lutional layer is multiplied by the corresponding weight (Θ) in the softmax layer, all

the weighted feature maps are combined into an integrated feature map. A sigmoid

function is applied to each position of the resulting map and finally the map is visual-

ized by applying a colormap that assigns a blue color to values close to 0 (non-cancer)

and a red color to values close to 1 (cancer).

3.1.3 Experimental design

Histopathology basal cell carcinoma dataset description (BCC dataset):

The BCC dataset comprises 1417 image patches of 300 × 300 pixels extracted from

308 images of 1024×768 pixels, each image is related to an independent ROI on a slide

biopsy. Each image is in RGB and corresponds to field of views with a 10X magni-

fication and stained with H&E [40, 51]. These images were manually annotated by a

pathologist, indicating the presence (or absence) of BCC and other architectural and

morphological features (collagen, epidermis, sebaceous glands, eccrine glands, hair fol-

licles and inflammatory infiltration). The Figure 3-1 shows different examples of these

images.

Learned image feature representations:

The main focus of the experimental evaluation was to compare the image represen-

tations learned from the histopathology data, generated by the DL-based proposed

method, against two standard canonical features (discrete cosine transform (DCT)

and Haar-based wavelet transform (Haar)). Since the focus of this experimentation

was the evaluation of different image representations, the same classification method

was used in all the cases (steps 2 to 4 of the new architecture, Figure 3-2). Also a

comparison against BOF image representation was included with the same number of

features and patch size employing the same local feature descriptors (DCT and Haar)

based on previous work [40, 42]. In the case of canonical image representations, the

feature weights {w1, . . . , wk} were replaced by the basis vectors that define either DCT

or Haar. In addition to the image features learned from the BCC dataset, two other

sets of image features were learned from different data sets: a histology data set com-

posed of healthy histological tissue images (HistologyDS2 [38]) and a natural scene

image data set commonly used in computer vision research (STL-10 dataset3). In or-

2Available in: http://www.informed.unal.edu.co/histologyDS/
3Available in: http://www.stanford.edu/~acoates//stl10/
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der to choose an appropriate parameter configuration for our method, an exhaustive

parameter exploration was performed. The parameters explored were: image scales

(50%,20%), number of features (400, 800), pool dimension (7, 13, 26, 35, 47, 71, 143)

and pooling function (average or sum). The best performing set of parameters were a

image scale of 50%, 400 features, a pool dimension of 71 with average pooling function,

and all the reported results correspond to this configuration. A patch size of 8 × 8

pixels was used since this was ascertained to be the minimum sized region for covering

a nucleus or cell based off the recommendations from previous related work using the

same datasets [40,42].

Cancer detection performance:

Once the best parameter configuration for the DL architecture is selected, each rep-

resentation was qualitatively evaluated for comparison using a stratified 5-fold cross-

validation strategy on a classification task (discriminating cancer from non-cancerous

images) in the BCC dataset. The performance measures employedwere accuracy (Acc),

precision (Pr), recall/sensitivity (Rc/Sen), specificity (Spc), f-measure (F1) and bal-

anced accuracy (BAC).

3.1.4 Results and discussion

Learned representations vs canonical representations:

Figure 3-3 shows a set of 200 image features learned from three different data sets, (a)

BCC, (b) HistologyDS and (c) STL-10, along with the set of features corresponding to

and obtained from the DCT representation, (d). In all the cases, features were sorted

according to their frequency when representing the BCC data set. As expected features

learned from BCC and HistologyDS images better capture visual patterns related to

dyes, edges of large nuclei in different orientations and perhaps most interestingly

small dots related to common/healthy nuclear patterns that do not appear in the

other feature sets. Features learned from the natural image dataset (STL-10), also

capture visual patterns such as edges, colors, and texture but are less specific. The

features associated with DCT representation are even less specific and only capture

general color and texture patterns.

Automatic cancer detection performance:

Table 3-1 presents the classification performance results in terms of accuracy, preci-

sion, recall, specificity, f-measure and balanced accuracy (BAC). The results show a
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(a)

(b)

(c)

(d)

Figure 3-3: Comparison of learned features (a.k.a. dictionaries or basis) by autoen-

coders from: a) BCC (histopathology), b) HistologyDS (healthy tissues)

and c) STL-10 (natural scenes) datasets, and d) DCT basis.
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Table 3-1: Classification performance for each learned features from different image

datasets using the new DL based method, canonical features, along with

different configurations of BOF. The best results are in bold typeface.

Acc Pr Rc/Sen Spc F1 BAC

(DL) BCC 0.90+/-0.03 0.87+/-0.03 0.86+/-0.04 0.92+/-0.02 0.87+/-0.03 0.89+/-0.03

(DL) HistologyDS 0.92+/-0.03 0.90+/-0.04 0.88+/-0.03 0.94+/-0.03 0.89+/-0.03 0.91+/-0.02

(DL) STL-10 0.90+/-0.02 0.87+/-0.04 0.86+/-0.02 0.92+/-0.03 0.86+/-0.02 0.89+/-0.02

(DL) DCT 0.86+/-0.03 0.82+/-0.04 0.79+/-0.05 0.90+/-0.03 0.80+/-0.03 0.84+/-0.03

(DL) Haar 0.84+/-0.03 0.78+/-0.03 0.78+/-0.06 0.87+/-0.04 0.78+/-0.02 0.82+/-0.03

(BOF) Haar-400 0.79+/-0.02 0.79+/-0.05 0.68+/-0.06 0.86+/-0.04 0.70+/-0.03 0.77+/-0.02

(BOF) GrayDCT-400 0.88+/-0.02 0.88+/-0.03 0.83+/-0.04 0.90+/-0.01 0.83+/-0.02 0.87+/-0.02

(BOF) ColorDCT-400 0.89+/-0.02 0.89+/-0.02 0.85+/-0.03 0.91+/-0.01 0.85+/-0.02 0.88+/-0.02

clear advantage of learned features over canonical and BOF representations. A t-test

showed that differences among DL models with learned features was not significant

(p > 0.05) and that DL models were significantly better (p < 0.05) than canonical fea-

tures and BOF representations. The fact that features learned from histology images

produced the best results for histopathology image classification is an interesting re-

sult, suggesting that the proposed approach is learning important features to describe

general visual pattern present in different histopathological images. This is consistent

with the findings in [138], which had shown that the strategy of learning features from

other large datasets (known as self-taught learning) may produce successful results .

Digital staining results:

Table 3-2 illustrates some examples of the last and most important stage of the new

DL method– digital staining. The table rows show from top to bottom: the real image

class, the input images, the class predicted by the model, the probability associated

with the prediction, and the digital stained image. The digitally stained version of the

input image highlights regions associated to both cancer (red stained) and non-cancer

(blue stained) regions. These results were analyzed by a pathologist, who suggested

that our method appeared to be identifying cell proliferation of large-dark nuclei. A

caveat however is that this feature also appears to manifest in healthy structures where

the epidermis or glands are present. Nonetheless, this enhanced image represents an

important addition to support diagnosis since it allows the pathologist to understand

why the automated classifier is suggesting a particular class.
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Table 3-2: Outputs produced by the system for different cancer and non-cancer input

images. The table rows show from top to bottom: the real image class, the

input image, the class predicted by the model and the probability associated

to the prediction, and the digital stained image (red stain indicates cancer

regions, blue stain indicates normal regions).

True

class
Cancer Cancer Cancer Non-cancer Non-cancer

Input

image

Pred/Prob Cancer (0.82) Cancer (0.96) Cancer (0.79) Non-cancer (0.27) Non-cancer (0.03)

Digital

staining

3.1.5 Conclusions

We presented a novel unified approach for learning image representations, visual in-

terpretation and automatic BCC cancer detection from routine H&E histopathology

images. Our approach demonstrates that a learned representation is better than a

canonical predefined representation. This representation could be learned from images

associated with the particular diagnostic problem or even from other image datasets.

The paper also presented a natural extension of a DL architecture to do digital staining

of the input images. The inclusion of an interpretability layer for a better understand-

ing of the prediction produced by the automated image classifier.

3.2 Tumor Differentiation of Medulloblastoma Brain

Cancer

Learning data representations directly from the data itself is an approach that has

shown great success in different pattern recognition problems, outperforming state-

of-the-art feature extraction schemes for different tasks in computer vision, speech

recognition and natural language processing. Representation learning applies unsu-

pervised and supervised machine learning methods to large amounts of data to find
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building-blocks that better represent the information in it. Digitized histopathology

images represents a very good testbed for representation learning since it involves large

amounts of high complex, visual data. This paper presents a comparative evaluation of

different supervised and unsupervised representation learning architectures to specifi-

cally address open questions on what type of learning architectures (deep or shallow),

type of learning (unsupervised or supervised) is optimal. In this paper we limit our-

selves to addressing these questions in the context of distinguishing between anaplastic

and non-anaplastic medulloblastomas from routine haematoxylin and eosin stained

images. The unsupervised approaches evaluated were sparse autoencoders and topo-

graphic reconstruct independent component analysis, and the supervised approach was

convolutional neural networks. Experimental results show that shallow architectures

with more neurons are better than deeper architectures without taking into account

local space invariances and that topographic constraints provide useful invariant fea-

tures in scale and rotations for efficient tumor differentiation. The complete content

of this section has been published as a research article in the Tenth International

Symposium on Medical Information Processing and Analysis - SIPAIM

2014 (see [31]).

3.2.1 Introduction

Recently, there has been a surge of interest in representation learning [16], owing to

their improved performance over state of the art machine learning approaches. These

approaches, which implicitly involve finding optimally class separable data representa-

tions, differ from classical supervised learning approaches in that they do not require

prior feature extraction or classifier training.

Recently there has been a great deal of interest in developing pattern recognition

schemes in order to identify prognostic patterns for disease from digitized images of

histopathology slides [113]. Most of these approaches have focused on a traditional

pipeline of feature extraction, feature selection, and classification to identify patterns

and regions of interest from very large and complex histopathology images [68]. How-

ever this may not always be the optimal approach, particularly in scenarios where it

may not always be obvious what the pattern of interest is. Most pattern recogni-

tion approaches in digital pathology therefore involve some form of supervised learning

(e.g. tumor and mitosis detection [28,36,116]) and relatively few approaches are geared

towards unsupervised learning [5, 33].

However, it is still not clear as to what the best methods for digital pathology tasks

are and the most desirable properties for these models in this domain. For natural

scene images, several papers have investigated the application of representation learn-
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ing [16,93,101]. These comparative studies have focused on the use of more data, deeper

architectures (more hierarchical layers), and role of pooling layers in providing spatial

invariance for object detection. In histopathology images there are still many open

questions regarding what the best learning approach is, supervised or unsupervised.

Additional questons linger as to which is the architecture that works best, deeper or

shallow, and what assumptions or properties of models are appropriate, spatial, scale,

and/or rotation invariance. Like most machine learning methods, representation learn-

ing is mainly categorized as either unsupervised and supervised. Among unsupervised

representation learning methods there are several types of autoencoders (AE), such

as Sparse AE, Denoise AE, Reconstructed Independent Component Analysis (RICA)

or Topographic ICA (TICA). Whereas supervised representation learning methods are

mostly configured as Convolutional Neural Networks (CNN). In this paper we present

a comparative evaluation of the most popular representation learning methods applied

to histopathology images in the context of the challenging problem of distinguishing

between anaplastic and non-anaplastic medulloblastoma.

The primary novel contributions of this work include: 1) the first comparative evalua-

tion of representation learning approaches, supervised and unsupervised, for problems

in digital pathology, 2) new findings about how topographic properties of unsupervised

learning methods yields improved detection results, 3) the first successful application

of representation learning methods to medulloblastoma tumor differentiation.

The rest of this paper is organized as follows: Section 2 describes supervised and

unsupervised representation learning methods; Section 3 presents the medulloblastoma

dataset used for validation, the experimental setup, the performance measures and

the corresponding evaluation results; Section 4 summarizes the novel contributions,

whereas in Section 5 we present our concluding remarks and directions for future work.

3.2.2 Methodology

Supervised feature learning approach: Convolutional Neural Networks

A CNN [102] is a multilayer neural network with an architecture that comprises one

or more consecutive convolutional and pooling layers followed by a final full-connected

layer. The convolution layer applies a 2D convolution of the input feature maps and

a convolution kernel. The pooling layer applies a L2 pooling function over a spatial

windows without overlapping (pooling kernel) per each output feature map, L2 pool-

ing, in particular, allows the learning of invariant features. The output of the pooling

layer is the input of a fully-connected layer which mixes them into a feature vector.

The outputs of the full-connected layer are two neurons (anaplastic, non-anaplastic)
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Figure 3-4: Overview of representation learning framework for medulloblastoma dif-

ferentiation between anaplastic and non-anaplastic tumors by comparing

unsupervised and supervised feature learning approaches.

activated by a logistic regression model. For this work we evaluate different CNN

architectures with only one convolutional and pooling layer (shallow) or two convolu-

tional and pooling layers (deeper), varying also the number of features (neurons) per

layer and learned patch sizes (feature kernels). The whole CNN model is trained using

Stochastic Gradient Descent to minimize the loss function:

JCNN(Θ) = − 1

m

[
m∑
i=1

k∑
j=1

1
{
y(i) = j

}
log

eΘT
j x

(i)∑k
l=1 e

ΘT x(i)
l

]
+
λ

2

k∑
i=1

N∑
j=0

Θ2
ij, (3-3)

where m is the number of samples in training dataset, k is the number of classes,

x(i) is the output of full-connected layer corresponding to i-th sample, y(i) is the class

label of i-th sample, 1 {.} is the indicator variable, Θ is the parameters of logistic

model. The second term corresponds to weight decay which penalizes large values

of the parameters. During the training process, weight parameters in all layers are

updated by the backpropagation algorithm.

Unsupervised feature learning approaches: Sparse Autoencoders and TICA

In contrast to supervised feature learning methods, like CNN, unsupervised feature

learning approaches learn a set of feature detectors (feature kernels) that can explain

better the content directly from the data without taking into account the class labels

associated. Similarly to supervised approaches, the input data is represented by linear

or non-linear transformations of learned features.

There are different approaches to perform unsupervised feature learning (UFL). Among

the most popular are variants of auto-encoding UFL, which are methods that learn an
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encoding function, built from learned features, able to reconstruct its input. Here we

evaluate two of them: Sparse Autoencoders and Topographic Reconstruct Independent

Component Analysis.

Sparse Autoencoders (sAE): One of the inherent properties that is desirable for an

efficient and compact representation of data is sparseness. It means to represent the

input data by fewer elements of learned features as possible. The objective function to

learn this representation for sAE is given by:

Jsparse (Θ) =
1

2

m∑
i=1

∥∥rΘ(x(i))− x(i)
∥∥2

2
+ β

n∑
j=1

KL (ρ||ρ̂j) +
γ

2

(
‖W‖2

F + ‖W′‖2
F

)
, (3-4)

where x(i) ∈ Rd is the i-th sample in the training set X, β ∈ R is the hyperparameter

that controls the trade-off between regularization and reconstruction, and KL(ρ||ρ̂j) =

ρ log
(
ρ
ρ̂j

)
+(1− ρ) log

(
1−ρ
1−ρ̂j

)
is the Kullback-Leibler divergence between two Bernoulli

distributions with means ρ ∈ R, the desired sparsity parameter percentage, and ρ̂j ∈ R,

the average activation of the j-th feature detector. Θ = {W,W′, b, c} is the set of

parameters, W ∈ Rn×d and W′ ∈ Rd×n are the encoder and decoder weight matrices,

and b ∈ Rn and c ∈ Rd are encoder and decoder bias vectors. Finally, the third term

regularizes magnitudes of the weights through the Frobenius norm (‖·‖F ), with the

hyperparameter gamma ∈ R controlling the importance of the term in the objective

function.

Topographic Reconstruct Independent Component Analysis (TICA): Topo-

graphic models seek to organize learned features such that similar activations are close

together, while different ones are set apart. This arrangement follows the visual cortex

model where cells have a specific spatial organization and response of neurons change

in a systematic way [5]. Particularly, TICA builds a square matrix to organize fea-

ture detectors in l groups such that adjacent feature detectors activate in a similar

proportion to the same stimulus. TICA cost function is given by:

JTICA(W) =
λ

m

m∑
i=1

∥∥WTWx(i) − x(i)
∥∥2

2
+

m∑
i=1

l∑
k=1

√
Hk (Wx(i))

2
+ ε, (3-5)

where l is the number of desired groups in the topography, H ∈{0, 1}l×n is the to-

pographic organization with H
(j)
k = 1 if the j-th feature detector belongs to the

k-th group, 0 otherwise. This model sets H fixed and learns W. TICA is uncon-

strained and it can be treated with efficient optimization solvers like L-BFGS. TICA

calculates two types of features: basic features, fj(x) = Wjx, and invariant features

f ∗j (x) =
√

H (Wx)2. Invariant features group several basic features based on their

adjacency in the topographic map.
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3.2.3 Experimental design

Medulloblastoma histopathology cancer dataset

The database is composed by 10 pathology slide cases (patients) stained with hema-

toxylin and eosin (H&E) diagnosticated as Medulloblastoma Cancer from St. Jude

Children‘s Research Hospital (5 anaplastic and 5 non-anaplastic). Each slide is a

whole-slide image of 80, 000× 80, 000 pixels with one or more cancerous regions manu-

ally annotated by a neuropathologist. The final dataset was built by uniform random

sampling without overlapping of 750 square regions (200×200 pixels) per slide, resulting

into 7,500 square regions (3,750 anaplastic and 3,750 non-anaplastic). For this work,

all square regions were converted to grayscale images and normalized by mean zero

and unit variance, because color is not discriminative enough and luminance variation

support.

Experimental setup

In order to evaluate the performance of each representation learning approach, we

applied the same experimental design described in [42, 69]. For comparison, baseline

methods are the ones described in those previous works. Hence, the evaluation was

done by multiple trials of cross-validation. For each trial, a subset of 4 anaplastic and

4 non-anaplastic slides randomly selected were used for training whereas the remaining

slides, 1 anaplastic and 1 non-anaplastic, were used for validation. The classification

performance of each approach is presented as the average over all trials in terms of

Accuracy, Sensitivity and Specificity. The details for unsupervised and supervised

feature learning methods are described next:

• For sAE, two different models were trained (sAE225
F :8,P :1 and sAE225

F :8,P :2) with 225

features and feature kernel size of 8× 8 only varying the pooling size by 1 and 2

respectively.

• For TICA, three different models were trained (TICA100
F :8,P :1, TICA100

F :16,P :1 and

TICA225
F :8,P :1) using a pool size of 1 for all of them, while two used 100 features

varying feature kernel size by 8× 8 and 16× 16 and the remaining model using

225 features with a feature kernel size of 8× 8.

• For CNN, two models were trained (CNNCP16−CP32−FC128
F :8−8,P :2−2 and CNNCP225−FC225

F :8,P :2 ),

the first is a 3-layers architecture with 16 features in the first layer, 32 features

in the second layer, and 128 neurons in the full-connected layer, whereas the sec-

ond model is a 2-layers architecture with 225 features in the first layer and 225



3.2 Tumor Differentiation of Medulloblastoma Brain Cancer 63

neurons in the full-connected layer. In both CNN, the feature kernel size was of

8× 8 and pool kernel of 2× 2.

3.2.4 Results and discussion

Table 3-3 shows the results of medulloblastoma classification performance for each

method in descending order of accuracy. It is clear that TICA, in all its configurations,

achieve the best results. This suggests that topographic constraints improve the learned

representation thanks to their invariant properties of scale and rotation in contrast to

sAE. This has been also observed in previous works on another histopathology image

analysis tasks different from tumor detection in basal cell carcinoma images [5].

The best results obtained for this tasks was achieved by TICA225
F :8,P :1 with 97% accuracy,

98% of sensitivity and 97% specificity, which outperforms by 10% the best previously

reported results [42,69].

Interestingly, CNN model, which had yielded very good results for natural scene image

classification tasks, yields lower performance than TICA for CNNCP225−FC225
F :8,P :2 model,

and even lower than sAE the best baseline results for CNNCP16−CP32−FC128
F :8−8,P :2−2 , in spite

of the fact that it is a supervised learning method.

Finally, it is interesting to note that increasing the number of layers for CNN does

not improve its performance. In fact, it looks like the most important factor for im-

proving overall classification performance is to increase the number of features, even

for shallow architectures. This suggests that pooling layers, which performed a spatial

subsampling, are not as useful for the problem considered in this work since the object

of interest (i.e. tumor type, anaplastic or non-anaplastic) tends to comprise the whole

image, while in natural scene images the object of interest (e.g. car or person) ap-

pears only in a specific regions within the whole image. Hence, local spatial invariance

provided by pooling layers is not particularly useful in our case.

3.2.5 Conclusions

In this paper we presented a comparative evaluation of supervised and unsupervised

representation based learning methods for the problem of distinguishing anaplastic

and non-anaplastic medulloblastoma from digitized histopathology. This comparative

evaluation reveals some interesting findings of representation learning methods in the

context of digital pathology related problems.

Deeper architectures do not necessarily produce better performance, experimental re-

sults showed a better performance for shallow architectures with more neurons. This

suggests that the pooling layers for subsampling are not useful, contrary to the trend

observed for natural scene images. Basically because the pooling layers provide local
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Table 3-3: Medulloblastoma classification performance comparison between unsuper-

vised and supervised feature learning approaches.

Method Accuracy Sensitivity Specificity

TICA225
F :8,P :1 0.97 0.98 0.97

TICA100
F :8,P :1 0.92 0.88 0.96

TICA100
F :16,P :1 0.91 0.86 0.95

CNNCP225−FC225
F :8,P :2 0.90 0.89 0.90

sAE225
F :8,P :1 0.90 0.87 0.93

sAE225
F :8,P :2 0.89 0.86 0.92

CNNCP16−CP32−FC128
F :8−8,P :2−2 0.85 0.97 0.74

BOF 320 + A2NMF (Haar) [42] 0.87 0.86 0.87

BOF 320 + A2NMF (Block) [42] 0.78 0.89 0.67

BOF +K −NN (Haar) [69] 0.80 - -

BOF +K −NN (MR8) [69] 0.62 - -

space invariance, a property that is not sorely required for the problem considered. A

reason may be that the object of interest (tumor type) does not appear is small regions

of the image, in contrast with natural scene images. In this context, learning invariant

feature representations based on topographic constraints produce better results since

these features better capture scale and rotation invariance. This suggests that fea-

tures that capture relevant information independent of scale and/or rotation are more

discriminating.

In addition, this comparative evaluation corroborates what has been seen in other

application areas, representation learning approaches obtain competitive results, and

usually better, when they are compared against other data-driven representation meth-

ods such as bag of features. Future work will include a more exhaustive experimen-

tation of deeper architectures for unsupervised and supervised approaches, evaluating

interpretation capabilities of both approaches, evaluate methods that use context in-

formation (multi-resolution or multi-view), and evaluate them in other histopathology

applications.



4 Supervised histopathology image

representation learning

Breast cancer is the most common type of cancer in women and the second cause

of death in developed countries, whereas in Colombia it is the main cause of death by

cancer. Precise invasive tumor delineation in the pathology slide is the very first step for

a diagnosis workflow and allows further analysis of tumor differentiation via the well-

known Bloom-Richardson and Nottingham grading schemes. These grading schemes

estimate the grade of aggressiveness by evaluating histologic characteristics including:

tubule formation, nuclear pleomorphism and mitotic count. This chapter presents a set

of methods for mitosis detection (see into Section 4.1) and invasive tumor detection

(see into Section 4.2) in breast cancer for digitized high-power fields and whole-slide

images, based on supervised representation learning. The following sections correspond

to papers presenting the details of the methods and applications.

4.1 Mitosis detection in Breast Cancer

Breast cancer (BCa) grading plays an important role in predicting disease aggressive-

ness and patient outcome. A key component of BCa grade is mitotic count, which

involves quantifying the number of cells in the process of dividing (i.e. undergoing

mitosis) at a specific point in time. Currently mitosis counting is done manually by a

pathologist looking at multiple high power fields on a glass slide under a microscope,

an extremely laborious and time consuming process. The development of comput-

erized systems for automated detection of mitotic nuclei, while highly desirable, is

confounded by the highly variable shape and appearance of mitoses. Existing meth-

ods use either handcrafted features that capture certain morphological, statistical or

textural attributes of mitoses or features learned with convolutional neural networks

(CNN). While handcrafted features are inspired by the domain and the particular ap-

plication, the data-driven CNN models tend to be domain agnostic and attempt to

learn additional feature bases that cannot be represented through any of the hand-

crafted features. On the other hand, CNN is computationally more complex and needs

a large number of labeled training instances. Since handcrafted features attempt to
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model domain pertinent attributes and CNN approaches are largely supervised feature

generation methods, there is an appeal to attempting to combine these two distinct

classes of feature generation strategies to create an integrated set of attributes that

can potentially outperform either class of feature extraction strategies individually.

In this paper, we present a cascaded approach for mitosis detection that intelligently

combines a CNN model and handcrafted features (morphology, color and texture fea-

tures). By employing a light CNN model, the proposed approach is far less demanding

computationally, and the cascaded strategy of combining handcrafted features and

CNN-derived features enables the possibility of maximizing performance by leveraging

the disconnected feature sets. Evaluation on the public ICPR12 mitosis dataset that

has 226 mitoses annotated on 35 High Power Fields (HPF, 400x magnification) by sev-

eral pathologists and 15 testing HPFs yielded an F-measure of 0.7345. Our approach

is accurate, fast and requires fewer computing resources compared to existent meth-

ods, making this feasible for clinical use. The complete content of this section has been

published as a research article in the Journal of Medical Imaging (see [159]), the

results of our participation in the Assessment of Mitosis Detection Algorithms

Challenge (AMIDA 2013) were published in the Journal of Medical Image

Analysis (see [156]) and preliminary work had been published in Digital Pathology

Conference. SPIE Medical Imaging 2014 (see [158]).

4.1.1 Introduction

Bloom Richardson grading [19], the most commonly used system for histopathologic di-

agnosis of invasive breast cancers (BCa) [62], comprises three main components: tubule

formation, nuclear pleomorphism, and mitotic count. Mitotic count, which refers to

the number of dividing cells (i.e. mitoses) visible in hematoxylin and eosin (H & E)

stained histopathology, is widely acknowledged as a good predictor of tumor aggres-

siveness [71]. In clinical practice, pathologists define mitotic count as the number of

mitotic nuclei identified visually in a fixed number of high power fields (400x magni-

fication). However, the manual identification of mitotic nuclei often suffers from poor

inter-interpreter agreement due to the highly variable texture and morphology between

mitoses. Additionally this is a very laborious and time consuming process involving the

pathologist manually looking at and counting mitoses from multiple high power view

fields on a glass slide under a microscope. Computerized detection of mitotic nuclei

will lead to increased accuracy and consistency while simultaneously reducing the time

and cost needed for BCa diagnosis [73].

The detection of mitotic nuclei in H & E stained histopathology is a difficult task (see

Fig. 4-1). First, mitosis is a complex biological process during which the cell nucleus
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(a) (b) (c) (d) (e) (f)

Figure 4-1: An illustration of the visual similarity between true mitotic processes and

confounding false positives. (a)-(c): true mitoses. (d)-(f): confounding

non-mitotic figures.

undergoes various morphological transformations. This leads to highly variable size

and shape across mitotic nuclei within the same image. Another issue is rare event

detection, which complicates classification tasks where one class (i.e. mitotic nuclei) is

considerably less prevalent than the other class (i.e. non-mitotic nuclei).

Recently, the development of computerized systems for automated mitosis detection

has become an active area of research with the goal of developing decision support

systems to be able to relieve the workload of the pathologist. In a contest held in

conjunction with the ICPR 2012 conference 1 [142] to identify the best automated

mitosis detection algorithm, a variety of approaches competed against each other in

the contest, which can be categorized as handcrafted feature based or feature learning

based. The commonly used handcrafted features include various morphological, shape,

statistical and textural features that attempt to model the appearance of the domain

and in particular the appearance of the mitoses within the digitized images [82,86,87,

149].

While domain inspired approaches (hand crafted) are useful in that they allow for

explicit modeling of the kinds of features that pathologists look for when identifying

mitoses, there is another category of feature generation inspired by convolutional neural

networks (CNN) [33, 102], CNN are multi-layer neural networks that learns a bank of

convolutional filters at each layer [28,116]. In contrast to handcrafted features, CNN is

fully data-driven, therefore being more accurate in representing training samples and

able to find feature patterns that handcrafted features fail to describe. However, CNN

is computationally demanding and sensitive to the scalability of training data. The

winner [28] of the ICPR contest used two 11-layers to achieve an F-measure of 0.78.

However, this approach is not feasible for clinical use since each layer of the CNN model

comprised hundreds of neurons and required a large amount of time (several weeks)

for both training and testing.

1http://ipal.cnrs.fr/ICPR2012/
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Other methods achieved an F-measure of up to 0.71, based primarily on combining var-

ious handcrafted features. While handcrafted feature approaches are faster, drawbacks

include (1) the fact that the identification of salient features are highly dependent on

the evaluation dataset used and (2) the lack of a principled approach for combining dis-

parate features. Hence, it stands to reason that a combination of CNN and handcrafted

features will allow us to exploit the high accuracy of CNN while also reducing the com-

putational burden (in terms of time) of training deep CNN models. By employing a

light CNN model, the proposed approach is far less demanding computationally, and

the cascaded strategy of combining handcrafted features and CNN-derived features en-

ables the possibility of maximizing performance by leveraging the disconnected feature

sets. Previous work in this approach includes the NEC team [116], where an attempt

was made to stack the CNN-learned features and handcrafted features yielded an F-

measure of 0.659, suggesting that more intelligent combination of CNN and handcraft

features are required.

In this paper, we present a cascaded approach to combining CNN and handcrafted

features for mitosis detection. The workflow of the new approach is depicted in Fig-

ure 4-2. The first step is to segment likely mitosis regions. This initial phase serves

as a triage to remove obviously non-mitotic regions. For each candidate region, both

CNN-learned and handcrafted features were extracted independently. Independently

trained classifiers were constructed using the handcrafted and CNN-learned features

alone. For the regions on which the two individual classifiers highly disagree, they are

further classified by a third classifier that was trained based on the stacking of hand-

crafed and CNN-learned features. The final prediction score is a weighted average of

the outputs of all the classifiers.

Our approach differs from the NEC system in two key aspects. First, we perform clas-

sification via CNN and handcrafted features separately, only using their combination

to deal with confounders. Simply stacking handcrafted and CNN features will bias the

classifier towards the feature set with the larger number of attributes. Our approach is

less prone to this issue. Secondly, CNN works on a 80×80 patch size while handcrafted

features are extracted from clusters of segmented nuclei (normally 6 30 × 30). This

way we capture attributes of not only mitotic nuclei, but also its local context. Local

context around candidate mitoses is an important factor for pathologists in correctly

identifying mitoses. In summary, key novel contributions of this work include:

• A cascaded approach for combination of CNN and handcrafted features,

• Learning multiple attributes that characterize mitosis via the combination of

CNN and handcrafted features,

• Achieving a high level of mitosis detection while minimizing the computing re-
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Figure 4-2: Workflow of our methodology. Blue-ratio thresholding [23] is first applied

to segment mitosis candidates. On each segmented blob, handcrafted fea-

tures are extracted and classified via a Random Forests classifier. Mean-

while, on each segmented 80 × 80 patch, convolutional neural networks

(CNN) [102] are trained with a fully connected regression model as part

of the classification layer. For those candidates that are difficult to clas-

sify (ambiguous result from the CNN), we train a second-stage Random

Forests classifier on the basis of combining CNN-derived and handcrafted

features. Final decision is obtained via a consensus of the predictions of

the three classifiers.

sources required.

4.1.2 Methodology

Candidate Segmentation

We segment likely mitosis candidates by first converting RGB images into blue-ratio

images [23]. By assigning a higher value to a pixel with a high blue intensity relative

to its red and green components, blue-ratio is proven capable of highlighting nuclei

regions [23]. Laplacian of Gaussian (LoG) [75] responses are then computed to dis-

criminate the nuclei region from the background, followed by integrating globally fixed

thresholding and local dynamic thresholding to identify candidate nuclei. One segmen-
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(a) (b)

Figure 4-3: Example of blue-ratio segmentation. (a) is the original HPF slice while (b)

is the segmentation mask. Note that a majority of the objects identified

via this approach in (b) are indeed mitotic figures.

tation example is shown in Fig. 4-3. We can see that most dark-blue spots are retained

as potential mitotic figures.

Detection with Convolutional Neural Networks

CNN architecture

First, each HPF is converted from the RGB space to the YUV space and normalized to

a mean of zero and variance of one. The CNN architecture employs 3 layers (Fig. 4-4):

two consecutive convolutional and pooling layers and a final fully-connected layer. The

convolution layer applies a 2D convolution of the input feature maps and a convolution

kernel. The pooling layer applies a L2 pooling function over a spatial window without

overlapping (pooling kernel) per each output feature map. Learning invariant features

will be allowed through the L2 pooling. The output of the pooling layer is subsequently

fed to a fully-connected layer, which produces a feature vector. The outputs of the

fully-connected layer are two neurons (mitosis and non-mitosis) activated by a logistic

regression model. The 3-layer CNN architecture comprises 64, 128, and 256 neurons,

respectively. For each layer, a fixed 8× 8 convolutional kernel and 2× 2 pooling kernel

were used.
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C1: feature maps
64@74x74 S2: pooled maps

64@37x37

C3: feature maps
128@30x30 S4: pooled maps

128@15x15

8x8 8x82x2 2x2

256

Figure 4-4: Architecture of the CNN model. The CNN architecture comprises 3 layers:

two consecutive convolutional-pooling layers and a fully-connected classifi-

cation layer. The two convolutional-pooling layers use the same fixed 8×8

convolutional kernel and 2×2 pooling kernel, but have 64 and 128 neurons,

respectively. The last layer has 256 neurons, which are all connected to

the final two neurons for mitosis/non-mitosis classification.

Training stage

To deal with class-imbalance and achieve rotational invariance, candidate image patches

containing mitotic nuclei were duplicated with artificial rotations and mirroring. The

whole CNN model was trained using Stochastic Gradient Descent [20] to minimize

the loss function: L(x) = −log
[

exi∑
j e

xj

]
, where xi corresponds to outputs of a fully-

connected layer multiplied by logistic model parameters. Thus the outputs of CNN are

the log likelihoods of class membership.

Testing stage

An exponential function is applied to the log likelihoods of each candidate nucleus

belonging to the positive (mitosis) class in order to calculate the probability that it is

mitotic. In our experiments, a candidate nucleus is classified as mitosis if the probability

is larger than an empirically-determined threshold of 0.58.

Detection with handcrafted features

Features and Their Selection

The handcrafted features can be categorized into three groups: morphology, inten-

sity and texture (Table 4-1). The morphological features are extracted from binary

mask of mitosis candidate, which is generated by blue-ratio thresholding [23] and local
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Table 4-1: Brief description of handcrafted features used for mitosis detection.

Category LengthFeatures

Morphology15 Area, eccentricity, equiv diameter, euler number, extent, perime-

ter, solidity, major axis length, minor axis length, area overlap

ratio, average radial ratio, compactness, hausdorff dimension,

smoothness and standard distance ratio.

Intensity 8× 7 Mean, median, variance, maximum/minimum ratio, range, in-

terquartile range, kurtosis and skewness of patch intensities at

7 color channels.

Texture 26×7 Concurrence features: mean and standard deviation of 13 Har-

alick [76] gray-level concurrence features grabbed at four orien-

tations;

Run-Length features [70]: mean and standard deviation of gray-

level run-length matrices at four orientations;

non-maximum suppression. The morphological features represent various attributes

of mitosis shape. Intensity and textural features are extracted from seven distinctive

channels of squared candidate patches (Blue-ratio, Red, Blue, Green, L in LAB and

V, L in LUV) according to [87]. The intensity features capture statistical attributes of

mitosis intensity and the texture features capture textural attributes of mitosis region.

The total length of handcrafted features is 15 + 8× 7 + 26× 7 = 253. We then perform

dimensionality reduction with principal component analysis [134]. The best features

are retained in pearson1901pca by keeping 98% of the total component variations.

Class Balancing and Classifier

We correct for the classification bias that occurs due to the relatively small number

of mitotic nuclei compared to non-mitotic nuclei. To train a balanced classifier, we

(1) reduce non-mitotic nuclei by replacing overlapping non-mitotic nuclei with their

clustered center; (2) oversample mitotic cells by applying the Synthetic Minority Over-

sampling Technique (SMOTE) [26], and (3) use an empirically-selected threshold 0.58.

For classification, a Random Forest classifier with 50 trees is used. Using more trees

tends to cause overfitting while using less trees leads to low classification accuracy.

Cascaded Ensemble

The cascaded ensemble consists of two stages (shown in Fig. 4-5). First, we perform

classification with CNN and handcrafted features individually. During training, we de-

note via Ld and Lh the classification labels associated with using CNN and handcrafted



4.1 Mitosis detection in Breast Cancer 73

Handcrafted 
features

CNN-derived 
features

Classification

Classification

Classified?

Y

output

N Handcrafted + 
CNN-derived 

features
Classification

output

Figure 4-5: Workflow of the cascaded ensemble, which comprises two stages. First, we

perform classification with CNN-learned and handcrafted features individ-

ually, and if the two classification scores are consistent, a binary decision

(mitosis/non-mitosis) will be made directly. Secondly, for those instances

whose individual classification scores are highly inconsistent, we classify

them again by combining their CNN and handcrafted features.

features, respectively. For instances with Ld 6= L or Lh 6= L, where L is the ground

truth label, we combine their CNN and handcrafted features to train a second-stage

classifier }. During testing, given the output probabilities Pd and Ph of CNN and

handcrafted feature classifiers, respectively, we calculate their combined probabilities

P = wdPd +whPh, where wd and wh are weighting factors. In the second stage, for in-

stances with P ∈ [λl, λu] (λl and λu are certain lower and upper bounds, respectively),

we let } classify them again. The instance having a final probability p larger than a

certain threshold is categorized as mitosis, otherwise, non-mitosis.

4.1.3 Experimental design

ICPR Dataset

The dataset includes 50 images corresponding to 50 high-power fields (HPF) in 5

different biopsy slides stained with Hematoxylin and Eosin (H&E) (illustrated in Fig. 4-

6). Each field represents a 512 × 512µm2 area, and is acquired using three different

setups: two slide scanners and a multispectral microscope. Here we consider images

acquired by the widely-used Aperio XT scanner. The Aperio scanner has a resolution of

0.2456µm per pixel, resulting in a 2084×2084 pixels RGB image for each field. A total

of 326 mitotic nuclei are manually annotated by expert pathologist. The centroids of

these mitoses are used as ground truth. According to the test, the first 35 HPF images

(226 mitosis) are used for training, while the remaining 15 HPF images (100 mitosis)

for evaluation.
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(a) (b) (c)

Figure 4-6: H&E-stained HPF examples from the ICPR dataset. The HPFs are ac-

quired by a Aperio XT scanner with a resolution of 0.2456µm per pixel.

Each HPF has a size of 2084 × 2084 pixels, representing a 512 × 512µm2

area annotated by pathologists.

Performance Measures

Evaluation is performed according to the ICPR 2012 contest criteria, where true pos-

itives (TP) are defined as detected mitoses whose coordinates are closer than 5µm

(20.4 pixel) to the ground truth centroid. Nuclei that do not meet this criteria are de-

fined as false positive (FP) and false negative (FN) errors. We compute the following

performance measures:

Recall =
TP

TP + FN
, Precision =

TP

TP + FP
, F−measure =

2× Precision×Recall
Precision+Recall

.

(4-1)

We compare the proposed approach (HC+CNN) with approaches of using hand-

crafted features only (HC), using CNN only (CNN), as well as the reported approaches

in [142].

4.1.4 Results and discussion

The mitosis detection results on ICPR12 dataset are shown in Table 4-2. The HC+CNN

approach yields a higher F-measure (0.7345) than all other methods except that of ID-

SIA (0.7821). The false negative rate associated with HC+CNN is relatively high as

compared to other methods. As Table 4-3 illustrates, this is partially due to the fact

that the blue-ratio segmentation has a false negative error of 7 mitoses. In addition,
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Table 4-2: Evaluation results for mitosis detection using HC+CNN and comparative

methods on the ICPR12 dataset.

Dataset Method TP FP FN PrecisionRecall F-

measure

Scanner

Aperio

HC+CNN 65 12 35 0.84 0.65 0.7345

HC 64 22 36 0.74 0.64 0.6864

CNN 53 32 47 0.63 0.53 0.5730

IDSIA [28] 70 9 30 0.89 0.70 0.7821

IPAL [87] 74 32 26 0.70 0.74 0.7184

SUTECH 72 31 28 0.70 0.72 0.7094

NEC [116] 59 20 41 0.75 0.59 0.6592

Table 4-3: Performances of the blue-ratio segmentation module and the detection mod-

ule. The blue-ratio segmentation finds 2484 mitosis candidates, among

which 93 are true mitoses while the other 2391 are non-mitoses. 7 true

mitoses are lost in this step. The detection module identifies 65 true mi-

toses and 12 false mitoses from these 2484 candidates. 28 mitoses are mis-

classified as non-mitotic figures in this module.

Segmentation module Detection module Final

TP FP FN TP FP FN TP FP FN

93 2391 7 65 12 28 65 12 35

HC+CNN outperforms NEC (F-measure=0.6592), the only other approach to com-

bine CNN and handcrafted features. Note that CNN based approaches (HC+CNN,

IDSIA and NEC) tend to produce fewer FP errors, reflecting the capacity of CNN to

accurately recognize non-mitotic nuclei.

The most critical parameter of the HC+CNN classifier is the classification threshold

that is used to decide mitosis/non-mitosis. Based off our empirical results the optimal

threshold was identified to be ≈0.6. In general, a larger threshold will lead to less

TPs, FPs and more FNs, and vice versa. In order to evaluate the influence of this

threshold parameter, we generate the Precision-Recall (PR) curves by varying the

threshold from 0.45 to 0.7. Fig. 4-7 shows that the performance of the other methods

(except IDSIA) lie in the interior of the areas spanned by the curve. This fact suggests

that the performance of HC+CNN is resilient to the precise choice of the classification

threshold. Table 4-4 shows the influence of the number of random forests trees on

mitosis detection. We can clearly see that fewer trees will most likely lead to worse
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Figure 4-7: Precision-Recall (PR) curve of the proposed HC+CNN method. The per-

formance of the other methods is also plotted for comparison. The curve

is generated by varying the classification threshold between 0.45 and 0.7

(The threshold for each point is marked along the curve.). The fact that

the performance of the other methods (except IDSIA) lie in the interior of

the areas spanned by the curve suggests that the performance of HC+CNN

is resilient to the precise choice of the classification threshold.

classification, while more trees may cause overfitting.

Figure 4-8 shows some detected mitosis examples. As one can see, the FNs tend to

be poorly colored and textured while the FPs have similar color and shape attributes

compared to the TPs. Although the textural patterns between FPs and TPs are

different, this difference is not well appreciated at this pre-specified HPF resolution.

Figure 4-9 shows a mitosis detection example using CNN and HC+CNN, respectively,

revealing the improvement obtained by integrating handcrafted features and CNN in

HC+CNN. Figure 4-10 show two mitotic detection results of HC+CNN, which also

revealing some FN examples. Both the segmentation and detection steps contribute to

the loss of these mitotic figures.

The two 11-layers neural networks used by IDSIA [28] requires roughly 30 epochs,

which takes two days for training with GPU optimization. Our 3-layer CNN needs

less than 10 epochs, and requires only 11.4 hours using 9 epochs without GPU op-
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Table 4-4: The influence of the number of RF trees.

Number of Trees 10 20 30 50 100 200

F-measure 0.57 0.57 0.67 0.7345 0.65 0.66

timization. Including the time needed to extract handcrafted features (6.5 hours in

pure MATLAB implementation), the training stage for HC+CNN was completed in

less than 18 hours. At the detection stage, the Matlab implementation of HC+CNN

takes about 1.5 minutes to process each H&E image, which is roughly 5x faster than

the winner of the ICPR challenge [28].

Figure 4-8: Mitoses identified by HC+CNN as TP (green rectangles), FN (yellow rect-

angles), and FP (red rectangles) on the ICPR12 dataset. The TP examples

have distinctive intensity, shape and texture while the FN examples are less

distinctive in intensity and shape. The FP examples are visually more alike

to mitotic figures than the FNs.

4.1.5 Conclusions

Mitosis detection is one of the three key factors in breast cancer grading. Existing

approaches attempt to detect mitosis using either stacked handcrafted features or CNN-

learned features. However, the problem of low detection accuracy arises when only

handcrafted features are used while CNN-based approaches suffer from the issue of high

computational complexity. To tackle these problems, we presented a new approach that

combines handcrafted features and a light CNN in a cascaded way. Our approach yields

a F-measure of 0.7345, which would have secured the second rank in the ICPR contest,
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Figure 4-9: Mitoses identified by CNN and HC+CNN as TP (green circles), FN (yellow

circles), and FP (red circles) on a HPF of ICPR12 dataset. On the left

side, only using CNN leads to 7 TPs, 5 FNs and 3 FPs. On the right

side, using HC and CNN leads to 9 TPs, 3 FNs and 1 FP, which clearly

outperforms the use of CNN alone.

and higher than the NEC approach that combines CNN and handcrafted features at

feature level. Compared to the leading methodology (two 11-layer CNN models) at the

ICPR contest (F-measure = 0.78), our approach is faster, requiring far less computing

resources.

Experimental results shows that it is still necessary to improve the accuracy of the

presented approach. Future work will use GPU to implement a multi-layer (more than

3) CNN model.

4.2 Invasive BCa detection in Breast Cancer

With the increasing ability to routinely and rapidly digitize whole slide tissue images

with slide scanners, there has been substantial interest in developing and applying

computerized image analysis algorithms for automated detection and quantification

of disease extent from digital pathology images. In the context of breast cancer, the

manual identification of presence and extent of disease by a pathologist is critical for

patient management in terms of tumor staging as well as assessing treatment response.
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Figure 4-10: Mitoses identified by HC+CNN as TP (green circles) and FN (yellow

circles) on two HPFs of the ICPR12 dataset. Mitoses on the left HPF

have distinctive intensities and shapes, and confounding nuclei are few.

Therefore, most mitoses can be correctly detected on this HPF. Compar-

atively, intensity of most mitotic nuclei on the right HPF is not distinctive

enough for HC+CNN to identify, as a result, leading to a high FN.

However this process is often tedious and subject to inter- and intra-reader variability.

Machine learning based image analysis methods offer the possibility of automatically

detecting disease extent on digitized slide images. However, for these methods to be

useful as decision support tools for the pathologist, they need to be resilient to data

acquired from different sources, different staining and cutting protocols and different

scanners. Therefore, the objective of this study was to quantitatively evaluate the

accuracy and robustness of a deep learning based machine classifier to automatically

identify the extent of invasive breast cancer on digitized whole slide images. In this

study, we present a new machine learning method that employs a convolutional neural

network for detecting presence and extent of invasive breast carcinoma on whole slide

images. Our approach involves training the classifier on nearly 400 exemplars from

multiple different sites, labs, and scanners, enabling the construction of an accurate

and reproducible classifier, which was then independently validated on almost 200 cases

from The Cancer Genome Atlas. Our approach yielded a Dice coefficient of 75.86%,

a positive predictive value of 71.62% and a negative predictive value of 96.77% when

compared against an expert pathologists annotation of cancer extent. Additionally, the
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classifier yielded a negative predictive value of 100%, a true negative rate of 99.45%

and a false positive rate of 0.55% in 11 normal control cases. Our results suggest

that our approach could be employed as a decision support tool to aid pathologists in

quantifying the extent and location of invasive breast cancer. . The complete content of

this section has been submitted as a research article in the Journal of the American

Medical Informatics Association (see [41]), preliminary results had been published

in Digital Pathology Conference. SPIE Medical Imaging 2014 (see [36]) and

an abstract was presented in USCAP 2015 (see [35]).

4.2.1 Introduction

Detection of tumor cells in a histologic section is the first step for the pathologist when

diagnosing breast cancer (BCa). In particular, tumor delineation from background

uninvolved tissue is a necessary prerequisite for subsequent tumor staging, grading

and margin assessment by the pathologist [71]. However, precise tumor detection and

delineation by experts is a tedious and time-consuming process, one associated with sig-

nificant inter and intra-pathologist variability in diagnosis and interpretation of breast

specimens [62,67,72,111,136]. Therefore, an automated and reproducible methodology

for detection of invasive breast cancer on tissue slides could potentially reduce the total

amount of time required to sign out a breast case and reduce some of this inter- and

intra-observer variability [8,160]. Digital pathology refers to the process of digitization

of tissue slides. The process of slide digitization could enable more efficient storage,

visualization, and pathologic analysis of tissue slides and could potentially improve

overall efficiency of routine diagnostic pathology workflow [113]. Quantitative histo-

morphometry refers to the application of computational image analysis and machine

learning algorithms to identify and characterize disease patterns on digitized tissue

slides [108]. In the context of breast cancer pathology, a number of computational

imaging approaches have been recently applied for problems such as (i) detection of

mitoses [28,87,112,156,159], tubules [11,44], nuclei [44,120], and lymphocytes [12], (ii)

cancer grading [10, 44], (iii) correlation of quantitative histologic image features and

molecular features of breast cancer aggressiveness [9], and (iv) identification of his-

tologic image features that are predictive of breast cancer outcome and survival [14].

These previous approaches have typically limited their analysis to only small portions

of tissue or tissue microarrays (TMAs) as opposed to larger whole slide images. Basa-

vanhally et al [10], looked at the problem of computerized Bloom-Richardson grading

of estrogen receptor positive breast cancers within manually defined regions of interest

on whole slide images. While some approaches have looked at the problem of classify-

ing images as either containing cancer or not [60,124], no approach, that we are aware
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of, has tackled the problem of automated delineation of invasive carcinoma on whole

slide images. Neural network learning refers to a class of machine learning methods

that is gaining popularity in histopathology image analysis [4,5,28,31,36,100,116,159].

A neural network is composed of artificial neurons which are usually arranged in lay-

ers and interchange information through connections. In recent years, neural network

models comprising thousands of neurons arranged in several layers have been shown to

perform exceptionally well in computer vision and pattern analysis tasks [56,77,93,99].

Multi-level neural network learning approaches have recently acquired the name d̈eep

learningb̈ecause of their multi-layer architecture. These networks are able to learn mul-

tiple levels of image representation in order to model complex relations among data,

discovering more abstract and useful features that make it easier to extract useful

information for high-level decision tasks such as segmentation, classification or predic-

tion [15, 16, 47]. Because of the large number of parameters involved, deep learning

methods require a large number of labeled training exemplars, in order to be opti-

mally trained. In problems where large numbers of training exemplars are available,

deep learning methods have shown impressive prediction results, often outperforming

state-of-the-art classification methods [16, 93, 99]. The advent of digitized whole pa-

thology slides and the concomitant increase in the number of publicly available large

histopathology image databases, such as The Cancer Genome Atlas, has made digital

pathology a good candidate for the application of deep learning based classification

models [28, 33, 36, 100, 116, 159]. In this study, we present a classification approach for

detecting presence and extent of invasive breast cancer on whole slide digitized patho-

logy images using a ConvNet classifier [16, 102]. To ensure robustness of the classifier

to variations in slide preparation, staining, and choice of scanning platform, we trained

and validated the classifier with a large number of training exemplars drawn from three

different institutions. Additionally the classifier was also independently evaluated on

a large number of pathologic and normal cases drawn from The Cancer Genome Atlas

(TCGA) and University Hospitals Case Medical Center. The goal of this study was to

quantitatively evaluate the accuracy and robustness of a deep learning based machine

classifier to automatically identify the extent of invasive breast cancer on digitized

whole slide images.

4.2.2 Methodology

Invasive Breast Cancer Tissue Detection in Whole-Slide Images

Our deep-learning based approach for detection of invasive breast cancer on whole-

slide images is illustrated in Figure 4-11. The approach comprises three main steps:

(i) tile tissue sampling, (ii) tile pre-processing, and (iii) convolutional neural network
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Figure 4-11: Overview of the process of training and testing of the deep learning clas-

sifiers for invasive breast cancer detection on whole-slide images.

(ConvNet) based classification. In this work, a tile is a square tissue region with a size

of 200 × 200 µm. The tile tissue sampling process involves extraction of square regions

of the same size (200 × 200 µm), on a rectangular grid for each whole-slide image. Only

tissue regions are invoked during the sampling process and any regions corresponding

to non-tissue within the background of the slide are ignored. The first part of the

tile pre-processing procedure involves a color transformation from the original Red-

Green-Blue color space representation to a YUV color space representation. A color

normalization step is then applied to the digitized slide image to get zero mean and unit

variance of the image intensities, and to remove correlations among the pixel intensity

values. Tiles extracted from new whole-slide images, different from the ones used for

training, are preprocessed using the same mean and standard deviation values in the

YUV color space learnt during training. The ConvNet classifier [102], was trained

using a set of image tiles extracted from invasive (positive examples) and non-invasive

(negative examples) tissue regions, annotated on whole slide digitized images by expert

pathologists. The ConvNet’s architecture is comprised of 3-layers, the first layer is the
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convolutional and pooling layer and the second is a fully connected layer, where each

layer has 256 units (or neurons). The third is the classification layer with two units

as outputs, one for each class (invasive and non-invasive), corresponding to a value

between zero and one which can be interpreted as the probability of a given image tile

being invasive cancer or not.

The ConvNet classifier was trained with images from HUP and UHCMC/CWRU. The

best parameter configuration of the classifier was identified using the average area un-

der the ROC curve (AUC) calculated over all slides in the CINJ data cohort, n=40.

The AUC is a non-biased classification measure that allows for the evaluation of clas-

sification performance independent of a fixed threshold. In this work classification

performance was evaluated over all the image tiles extracted from all the whole-slide

images in the CINJ data cohort, tiles that correspond to either invasive or non-invasive

tissue classes. This evaluation allows for the selection of a ConvNet classifier with the

best classification performance (Avg. AUC = 0.9018 +/- 0.0093) for the subsequent

experiments involving the independent test set.

4.2.3 Experimental design

Patients and Data Collection

This study involved images from five different cohorts from different institutions/pathology

labs in the United States of America and TCGA [118,126]. The five cohorts were used

for training, validation and independent testing of our method. The training data set

had 349 estrogen receptor-positive (ER+) invasive breast cancer patients, of which 239

were from Hospital of the University of Pennsylvania (HUP), and 110 from University

Hospitals Case Medical Center/Case Western Reserve University (UHCMC/CWRU).

Patients from the HUP cohort ranged in age between 20 and 79 (average age 55 +/-

10). In the UHCMC/CWRU cohort, the patient age’s ranged from 25 to 81 (average

age 58 +/- 10). The validation data set contained 40 ER+ invasive breast cancer pa-

tients from the Cancer Institute of New Jersey (CINJ). The test data set was composed

of two distinct subsets of positive and negative controls. For the test data set, we ac-

crued a set of 195 ER+ invasive breast cancer cases from TCGA, age’s ranging from

26 to 90 (average age 57 +/- 13). For the negative controls (NC) in the test data set,

we used normal breast tissue sections taken from uninvolved adjacent tissue from 11

patients diagnosed with invasive ductal carcinoma from UHCMC/CWRU, Cleveland,

OH. Patient specific information pertaining to race, tumor grade, and outcome were

not explicitly recorded for this study.

Hematoxylin and eosin (H&E) slides were reviewed by the four study pathologists (NS,

JT, MF, HG) to confirm the diagnosis of at least one type of invasive breast cancer
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tumor. Tumors were categorized into one of the following histological types: Invasive

carcinoma were categorized as either invasive ductal carcinoma (IDC) or invasive lobu-

lar carcinoma (ILC), while pre-invasive carcinoma was categorized as ductal carcinoma

in situ (DCIS) or lobular carcinoma in situ (LCIS).

Slide Digitization and Pathologists Ground Truth

H&E stained histopathology slides were digitized via a whole-slide scanner at 40x

magnification for this study. An Aperio Scanscope CS scanner was used to digitize

cases from the HUP, CINJ and TCGA cohorts. The Ventana iCoreo scanner was used

for scanning the UHCMC/CWRU and NC data cohorts. 40x magnification corresponds

to Aperio’s slides at 0.25 µm/pixel resolution and to Ventana’s slides at 0.23 µm/pixel.

Expert pathologists provided the ground truth annotations of invasive breast can-

cer regions over digitized histopathology slides for all the data cohorts (HUP, CINJ,

UHCMC/CWRU, TCGA). The region annotations were obtained via manual delin-

eation of invasive breast cancer regions by expert pathologists using the viewing soft-

ware applications ImageScope v11.2 from Aperio and Ventana Image Viewer v3.1.4

from Ventana. To alleviate the time and effort required to create the ground truth an-

notations for extent of invasive breast cancer, the pathologists were asked to perform

their annotations at 2x magnification or less. All whole-slide images previously sam-

pled at 40x were thus subsequently downsampled (by a factor of 16:1) to a resolution

of 4 µm/pixel.

Method evaluation

We evaluated the accuracy of the ConvNet classifier in whole slide images by comparing

the predictions of invasive regions in the test dataset against the corresponding ground-

truth regions annotated by expert pathologists. The test data sets included the slides

in the TCGA and NC cohorts. A quantitative evaluation was performed by measuring

the Dice coefficient, positive predictive value (PPV), negative predictive value (NPV),

true positive rate (TPR), true negative rate (TNR), false positive rate (FPR) and false

negative rate (FNR) across all the test slides. These measures were evaluated for each

whole-slide image and the mean and standard deviation in performance measures were

calculated for each test data cohort.

In addition to training the ConvNet classifier with the full training data set (HUP and

UHCMC/CWRU), two additional classifiers were trained using, in each case, one of the

training cohorts: ConvNetHUP trained with the HUP cohort and ConvNetUHCMC/CWRU

trained with the UHCMC/CWRU cohort. The motivation was to analyze the sensitiv-

ity of the classifier to the training data sets. Both ConvNetHUP and ConvNetUHCMC/CWRU
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were evaluated on both the validation (CINJ cohort) and test datasets (TCGA and

NC cohorts) to analyze how and where their predictions diverged. Specifically we mea-

sured the correlation coefficient r between the prediction performance measures for

ConvNetHUP and ConvNetUHCMC/CWRU across all slides in each test cohort.

4.2.4 Results and discussion

Quantitative evaluation for automatic invasive breast cancer detection

Table 4-5 shows the detection performance in terms of mean and standard deviation of

Dice coefficient, PPV, NPV, TPR, TNR, FPR and FNR through the validation dataset,

comprised of the TCGA and the NC cohorts. Figure 4-12 shows some representative

slide images from the validation dataset. Figures 4-12A-C depict the ground truth

annotations from the pathologists on three whole-slide images from the TCGA data

cohort and Figures 4-12D-F represent the automatic predictions of the fully-trained

ConvNet classifier as a probability map of invasive breast cancer, with the color bar

reflecting the probability values, high probability values reflected in red colors and low

probability values in blue colors. Finally, three example slides without any malignant

pathology and part of the NC cases are illustrated in Figures 4-12G-I. As may be

seen in Figures 4-12G-I, the ConvNet classifier did not identify any regions as having

invasive breast cancer.

Table 4-5: Performance measures for the ConvNet classifier on the TCGA (patholog-

ical) and NC (normal) data cohorts. The measures included Dice, PPV,

NPV, TPR, TNR, FPR and FNR. Note that for the normal cases consid-

ered, not all the performance measures are shown because the NC data

cohort did not have cancer annotations.

Dataset Dice PPV NPV TPR TNR FPR FNR

TCGA 0.7586

+/-

0.2006

0.7162

+/-

0.2204

0.9677

+/-

0.0511

0.8691

+/-

0.1582

0.9218

+/-

0.0764

0.0782

+/-

0.0764

0.1309

+/-

0.1582

NC N/A N/A 1 +/- 0 N/A 0.9945

+/-

0.0147

0.0055

+/-

0.0147

N/A
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Figure 4-12: (A-C) Example whole-slide images from test TCGA data cohort with

ground truth annotations from pathologists, (D-F) the corresponding re-

gion predictions produced by the ConvNet classifier and (G-I) region pre-

dictions for whole-slide images from the test NC data cohort of normal

breast tissue without cancer.

Robustness and reproducibility analysis inside heterogeneous histopathology

slides

A detailed analysis by subgroups of only a type of invasive breast cancer (i.e. IDC or

ILC) and mixture of invasive and other types of in situ lesions (e.g. DCIS and LCIS)

is presented in Table 4-6 for each of ConvNetHUP and ConvNetUHCMC/CWRU classifiers.

Each of ConvNetHUP and ConvNetUHCMC/CWRU was trained with one of either the

HUP or the UHCMC/CWRU cohorts. The quantitative performance results for both

classifiers, ConvNetHUP and ConvNetUHCMC/CWRU, on the validation CINJ data cohort
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(ConvNetHUP: Dice = 0.6771, PPV = 0.6464, NPV = 0.9709; ConvNetUHCMC/CWRU:

Dice = 0.6596, PPV = 0.6370, NPV = 0.9663) are similar. The results in Table 4-6 are

also arranged according to the type of tumors in the sample (mixture or only invasive)

and reveal that our method has better performance when the whole-slide images have

only one type of invasive tumor (ConvNetHUP: Dice = 0.7578, PPV = 0.7462, NPV =

0.9654; ConvNetUHCMC/CWRU: Dice = 0.7596, PPV = 0.7462, NPV = 0.9614).

Table 4-6: Performance of the ConvNetHUP and ConvNetUHCMC/CWRU classifiers on

the CINJ data cohort in terms of means and standard deviation of Dice

coefficient, PPV and NPV. The results in Table 4-6 are organized in terms

of all cases in the CINJ cohort (N=40), a subset of the CINJ cohort with

invasive breast cancer alone (N=19), and a mixture of invasive and other

in situ subtypes of breast cancer (N=21).

ConvNetHUP

Group N Dice PPV NPV

All cases 40 0.6771 +/- 0.2445 0.6464 +/- 0.2870 0.9709 +/- 0.0350

Only invasive 19 0.7578 +/- 0.2166 0.7462 +/- 0.2480 0.9654 +/- 0.0355

Mixture 21 0.6041 +/- 0.2501 0.5560 +/- 0.2953 0.5560 +/- 0.2953

ConvNetUHCMC/CWRU

Group N Dice PPV NPV

All cases 40 0.6596 +/- 0.2527 0.6370 +/- 0.2941 0.9663 +/- 0.0421

Only invasive 19 0.7596 +/- 0.2074 0.7499 +/- 0.2423 0.9614 +/- 0.0440

Mixture 21 0.5691 +/- 0.2602 0.5348 +/- 0.3045 0.9708 +/- 0.0409

Figure 4-13 illustrates representative examples of whole slide images from the valida-

tion CINJ data cohort, involving only a single type of invasive tumor. The detection

results obtained via ConvNetHUP classifier were compared against the ground truth

annotations. Some cases from the CINJ validation data cohort where the ConvNetHUP

classifier resulted in a poor detection performance are illustrated in Figures 4-14 and

4-15. The true-positives (TP), true-negatives (TN), false-positives (FP) and false-

negatives (FN) regions, based on the predictions of the ConvNetHUP classifier, are

illustrated in green, blue, yellow and red respectively. Figure 4-14 shows a case of

mucinous (colloid) carcinoma which is a rare type of invasive ductal carcinoma with

a very low prevalence (2-3% of the total invasive breast cancer cases) [96]. Figure 4-

15 depicts a challenging case, which is composed of a mixture of invasive and in situ

carcinoma elements.
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Figure 4-13: Example results for the ConvNetHUP classifier on the CINJ validation

data cohort. The probability map predicted by the ConvNetHUP classifier

(second row, D-F) was compared against ground truth annotations by a

pathologist (first row, A-C). The third row shows the evaluation results of

the ConvNetHUP classifier in terms of TP (green), FN (red), FP (yellow),

and TN (blue) regions.

Correspondence and reproducibility analysis among different classifiers and data

cohorts

Table 4-7 presents the performance measures for the ConvNetHUP and ConvNetUHCMC/CWRU

classifiers on the TCGA and NC testing cohorts. The consistency of the predictions of

both models is estimated by calculating the correlation coefficient, r, between the per-

formance measures obtained for each of ConvNetHUP and ConvNetUHCMC/CWRU. On

the TCGA cohort, the correlation coefficient for ConvNetHUP and ConvNetUHCMC/CWRU

in Dice coefficient was r=0.8733, reflecting a high degree of consistency between the
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Figure 4-14: Whole-slide image from CINJ validation data cohort diagnosed with a

rare type of IDC: mucinous carcinoma of the breast. (A) The compari-

son between the ground truth annotations and the predictions from the

ConvNetHUP classifier reveal both FN (red) and FP (yellow) errors. (B-C)

Most of the FN regions, i.e. tissues wrongly labeled as non-invasive tu-

mor, correspond to mucinous carcinoma, whilst (D) most of FP regions,

i.e. tissues wrongly predicted as invasive tumor, are actually invasive

mucinous carcinoma that was not included in the annotations by the

pathologist.

two classifiers trained on two different data cohorts. Figure 4-16 shows a scatter plot

where the X axis corresponds to the Dice coefficient of the predictions generated by

the ConvNetHUP and the Y axis corresponds to the Dice coefficient of the predictions

generated by the ConvNetUHCMC/WRU, each dot correspond to a slide sample from

the TCGA data cohort. The scatter plot reveals a well defined cluster with most of

cases aggregating in the upper-right corner, allowing us to visually conclude that both

ConvNetHUP and ConvNetUHCMC/CWRU have a high degree of precision and agreement

in their predictions. Figure 4-16 also allows us to identify some cases (red circles)

where both ConvNetHUP and ConvNetUHCMC/CWRU disagreed in their predictions. Fig-

ure 4-17 which showcases these images suggests that the discrepancy might be due to

variations in slide staining. Figures 4-17A-B illustrate a couple of slides characterized



90 4 Supervised histopathology image representation learning

Figure 4-15: The most challenging whole-slide image in the CINJ validation cohort

achieved the poorest performance via the ConvNetHUP classifier with (A)

many FP regions and a Dice coefficient of 0.0745. (B) Some of the FN

errors are due to the confounding morphologic attributes of the tumor,

arising due to a mixing of IDC with fat cells and irregular, infiltrating

looking cribriform glands with DCIS. The FP regions appear to be pri-

marily be due to (C) sclerosing adenosis, and (D) DCIS surrounded by

IDC.

by low levels of hematoxylin and high levels of eosin. The slide shown in Figure 4-17C

represents an example of a ”black discoloration artifact” due to air bubbles on the slide,

a common problem when the slide has been in storage for a long time. Usually, these

cases are not appropriate for diagnosis and a pathologist would probably reject them

in a quality control process requiring a repeat of the histopathology slide mounting

process.

Despite these special cases of disagreement caused by staining issues, both the ConvNetHUP

and ConvNetUHCMC/CWRU classifiers yielded similar predictions and performance. How-

ever, the ConvNetHUP classifier appears to have a slightly higher confidence interval

associated with the Dice and PPV performance measures. On the other hand, NPV
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Table 4-7: Comparison and correlation of the ConvNetUHCMC/CWRU and ConvNetHUP

classifiers in terms of Dice, PPV, NPV, TPR, TNR, FPR and FNR. Note

that for the normal cases considered, not all the performance measures are

shown because the NC data cohort did not have cancer annotations.

TCGA

Dice PPV NPV TPR TNR FPR FNR

ConvNetHUP 0.7494

+/-

0.2071

0.7071

+/-

0.2254

0.9658

+/-

0.0514

0.8600

+/-

0.1705

0.9188

+/-

0.0805

0.0812

+/-

0.0805

0.1400

+/-

0.1705

ConvNetUHCMC/CWRU0.7068

+/-

0.2061

0.6464

+/-

0.2188

0.9629

+/-

0.0584

0.8676

+/-

0.1706

0.8880

+/-

0.0824

0.1120

+/-

0.0824

0.1324

+/-

0.1706

r 0.8733 0.9258 0.8109 0.6345 0.8055 0.8055 0.6345

NC

Dice PPV NPV TPR TNR FPR FNR

ConvNetHUP N/A N/A 1 +/- 0 N/A 0.9716

+/-

0.0693

0.0284

+/-

0.0693

N/A

ConvNetUHCMC/CWRUN/A N/A 1 +/- 0 N/A 0.9546

+/-

0.0816

0.0454

+/-

0.0816

N/A

r N/A N/A N/A N/A 0.6876 0.6876 N/A

and TNR from both classifiers show high mean values with very small standard devia-

tion. Similarly on the NC data cohort, which is exclusively composed of normal breast

samples, both the ConvNetHUP and ConvNetUHCMC/CWRU classifiers exhibited a very

high mean TNR and a very low FPR, with very low associated standard deviation.

This appears to suggest that both classifiers are able to confidently and consistently

reject non-invasive tissue regions.

Example results of the predictions from the ConvNetHUP and ConvNetUHCMC/CWRU

classifiers on the TCGA and NC test datasets are presented in Figures 4-18 and 4-

19. While both the ConvNetHUP and ConvNetUHCMC/CWRU classifiers tend to produce

consistent predictions, the ConvNet classifier which was trained using the complete

training dataset, had the best overall performance (Figure 4-12).
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Figure 4-16: Agreement plot of the Dice coefficient for the ConvNetHUP (X-axis) and

ConvNetUHCMC/CWRU (Y-axis) classifiers for each slide (blue circles) in

the TCGA cohort. The slides with higher disagreement are identified

with red circles (see Figure 4-17).

Discussion

The experimental results show that the method is able to detect invasive breast cancer

regions on whole slide histopathology images with a high degree of precision, even

when tested on cases from a cohort different to the one used for training. The most

challenging cases for the method were slides where invasive breast cancer was mixed in

with in situ disease (which is not surprising and could be reduced by training a more

complex network that included examples of these precursor lesions).

An important part of the experimental setup was the analysis of the detection sensi-

tivity of the method to the data used for training. The results show that the classifiers

trained with two different data cohorts, HUP and UHCMC/CWRU, exhibit highly

correlated performance measures (r ≥ 0.8) over the independent TCGA test data

cohort (see Table 4-7). Despite this, there are some differences in the prediction per-

formance of the two classifiers, possibly suggesting ”batch effects” [90], that originated



4.2 Invasive BCa detection in Breast Cancer 93

Figure 4-17: (A-C) Slides from from the TCGA cohort which revealed disagreement

between the predictions of the ConvNetHUP and ConvNetUHCMC/CWRU

classifiers. The predictions of the (D-F) ConvNetHUP and (G-I)

ConvNetUHCMC/CWRU classifiers were compared against the ground truth

annotations in terms of TP (green), FN (red), FP (yellow) and TN (blue)

regions.

from the process of ground truth annotation or slide digitization. This is illustrated

in Figures 4-16 and 4-17, which shows representative slides with artifacts due to

problems in the histotechnique process. The method shows a very low false positive

rate, this is evidenced by the results in the NC cohort (ConvNetHUP: FPR = 0.0284;

ConvNetUHCMC/CWRU: FPR = 0.0454), which comprised only normal breast sections.

The performance of machine learning methods improved as the number of training

samples increased, with the ConvNet classifier which was trained with both the HUP

and UHCMC/CWRU data cohorts yielding the best overall performance (Table 4-5

and Figure 4-12).

Our study did however have its limitations. There are some subtypes of invasive breast

cancers that our method is not able to detect in a precise way such as the rare special

histologic subtype mucinous carcinoma that comprises around 3% of the invasive breast
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Figure 4-18: (A-C) Example whole-slide images from the TCGA data cohort with

corresponding ground truth annotations. The probability maps generated

by the ConvNetUHCMC/CWRU and ConvNetHUP classifiers are shown in

panels (D-F) and (G-I) respectively.

cancers. In fact, in the test dataset there are two cases similar to Figure 4-14, with

mucinous carcinoma that were not detected. Another limitation is that some in situ

breast cancer regions were incorrectly classified as invasive breast cancer, in situ disease

is different from invasive cancer. However, the reporting of the presence of both invasive

and in situ carcinoma is a critical part of a diagnostic pathology workup. It is worth

noting though that our approach was able to achieve a very high level of accuracy in

terms of rejecting non-invasive tissue regions (normal controls) as not being cancer.

This is a remarkable fact considering that invasive tissue samples were the key training

variable and that exemplars of DCIS and LCIS were not explicitly included in the
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Figure 4-19: The probability maps obtained via the ConvNetUHCMC/CWRU and

ConvNetHUP classifiers on whole-slide images of normal breast sections

from the UHCMC/CWRU and NC data cohorts are shown in panels (A-

C) and (D-F) respectively.

training set employed for the ConvNet model. Exemplars of DCIS and LCIS could, in

future work, be included as part of an expanded learning set, as it would not doubt

improve the classification performance and generalizability of the model. Additionally

and as part of future work, the learning set could be expanded to include other rare

variants of invasive ductal carcinoma, such as mucinous invasive carcinomas.

Batch effects are one of the main sources of variation in evaluating the performance of

automated machine learning approaches. These batch effects include stain variability

due to different histology protocols from different pathology labs and variations in the

digitization process on account of the use of different slide scanners [90]. Our results

suggest a slight batch effect when we train our ConvNet with two different data cohorts.

However, the use of all available training data (HUP and UHCMC/CWRU) results in a

more confident, accurate and robust ConvNet classifier. Clearly, increasing the training

dataset size and diversity results in a better and more robust algorithm. ConvNet also

performs better when a case has only a single morphologic pattern of invasive breast

cancer in the whole slide images. Cases with a mixture of invasive and in situ breast

cancer resulted in a reduction in the overall accuracy of the ConvNet classifier (in situ

tumors may be incorrectly classified as invasive carcinoma). One way of potentially

reducing batch effects is to apply color normalization on the digitized images prior to

training or application of the ConvNet classifier. To reduce false positive classification

errors we are exploring the expansion of the current two class ConvNet classifier into
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a multiclass predictor. This will allow for the ConvNet classifier to explicitly deal

with the detection of additional subtypes of invasive and in situ breast cancers. One

interesting aspect of our work is that the trained ConvNet classifier can be easily

integrated into other computational frameworks such as automated tumor grading of

ER+ breast cancer subtypes in histopathology images [10]. Our automated invasive

cancer detection algorithm could thus pave the way for creation of decision support

tools for breast cancer diagnosis, prognosis and theragnosis for use by the pathology

community. Future studies will address these opportunities.

4.2.5 Conclusions

We presented an automatic invasive breast cancer detection method for whole slide

histopathology images. Our study is unique in that it involved several hundred studies

from multiple different sites for training the model. Independent testing of the model

on multi-site data revealed that the model was both accurate and robust. This method

can be applied to large, digitized whole slide images to detect invasive tissue regions,

which could be integrated with other computerized solutions in digital pathology such

as tumor grading.
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5 Scaling up convolutional networks

through high-throughput adaptive

sampling: Applications in Digital

Pathology

For real world application of digital pathology it is require efficient and accurate methods

to analyze the digitized large whole-slide images. This chapter presents a novel adaptive

sampling method for high-throughput whole-slide image analysis applied to the problem

of automatic invasive breast cancer detection (see into Section 5.1). The following

section correspond to a paper presenting the details of the method and its application.

5.1 High-throughput whole-slide image analysis in

Invasive Breast Cancer

Precise invasive tumor region detection on whole-slide images is the very first step for

a pathology diagnostic workflow and allows further analysis of tumor differentiation

using standard grading schemes. Convolutional neural networks (CNNs) are the most

popular representation learning methods for computer vision tasks involving image

classification and object detection. While some researchers have employed CNNs for

problems in digital pathology including tumor and mitosis detection, these approaches

typically use relatively small image sizes (200x200 pixels). Application of CNNs directly

to learning patterns from whole slide images is not feasible because the overall size of a

CNN depends on the size of the input image; for a WSI this would translate to trillions

of parameters in the CNN. To alleviate this issue, in this paper we present a novel

method, High-throughput Adaptive Sampling for whole-slide Histopathology Image

analysis (HASHI), which involves: i) a new time-efficient adaptive sampling method

based on probability gradient and quasi-Monte Carlo sampling, and, ii) a state-of-the-

art representation learning classifier based on CNNs. In this work we applied HASHI to

the problem of automated detection and quantification of invasive breast cancer extent
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on whole-slide images. The method was trained and validated using three different data

cohorts involving near 500 cases and then independently validated on an additional

195 studies from The Cancer Genome Atlas (TCGA). The experimental results show

that HASHI (1) outperforms state-of-the-art classification approaches involving hand-

crafted features, (2) the adaptive sampling method is an effective strategy to deal

with large whole-slide images without compromising prediction accuracy, and (3) on

an independent test dataset, our approach is effective and robust, with the prediction

results being highly consistent across data from multiple sites, scanners, and platforms.

The complete content of this chapter has been submitted as a research article in the

Journal of IEEE Transactions on Medical Imaging (see [34]).

5.1.1 Introduction

The advent of whole-slide digital scanners has allowed for rapid digitization of histo-

pathology slides, making these digitized slides images easy to store, visualize, share

and analyze using computational tools. This rapidly growing field of Digital Patho-

logy [113] is resulting in one of the newest forms of “big data”. Whole-slide images

(WSI) in histopathology are large, typically each WSI could have a spatial resolution of

80,000×80,000 pixels and approximately 20 GB in storage size. Additionally, projects

like the The Cancer Genome Atlas (TCGA) [126] have resulted in the creation of very

large digital slide repositories. The TCGA currently hosts 11,079 cancer studies involv-

ing 34 different types of cancer and hosting over 1,095 Terabytes (1 Petabyte) [126].

This high volume of data requires the development and application of high throughput

computational image analysis approaches for mining the digital image data. In par-

ticular, representation learning and deep learning approaches have been shown to be

promising for automated interpretation and analysis of large volumes of images. These

approaches have shown significant better performance compared to several state-of-the-

art computer vision approaches for tasks such as object detection, object recognition

and image annotation [16,145]. Deep representation learning refers to a family of ma-

chine learning methods which learn multiple levels of representation to model complex

relations among data. These methods attempt to discover more abstract features via

higher levels of representation which then could help facilitate high-level decision tasks

such as classification or prediction [15,16,47]. In the particular case of image analysis,

convolutional neural networks (CNN) represent one of the most successful deep repre-

sentation learning methods. CNNs are multilayer neural networks, combining different

types of layers (convolutional, pooling, classification) which then need to be trained in

a supervised manner [16] for image analysis and classification tasks.

Most previous approaches employing CNNs for image classification and object detection
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have focused on very small images (e.g. 224×224 pixels) [56, 77, 93]. Some of these

previous works have involved the application of CNN to histopathology image analysis

[28, 32, 36, 116, 121, 159]. However, all of these approaches have limited their analysis

to small regions of interest within the larger WSI. The main reason is that the overall

size of the network depends on the size of the input image. For instance, a CNN with

an input image of 200×200 pixels and 250 feature maps in the first convolutional layer

would involve 10 million hidden units, whilst the same architecture with an input RGB

color image of size 80,000×80,000 (a typical whole slide digitized image) would require

around 4.8 trillion hidden units, which far exceeds the computational capabilities of

most current high performance computing clusters by several orders of magnitude. This

means that a direct application of the traditional CNN approach for object detection

or pixel-level classification in WSIs is not tenable.

Perhaps for this reason very few works involving histopathology image analysis have

been attempted on WSIs, most of these focusing on image registration, preprocessing

and information systems [25,45,123]. A very limited number of approaches have been

proposed for tissue classification, tumor detection or grade scoring on WSIs [81,91,92,

147].

Breast cancer (BCa) is the most common type of cancer in women and the second cause

of death in developed countries [125, 148]. Invasive BCa refers to those breast cancers

that have spread from the original site and typically tend to have poorer prognosis

[48, 53]. Precise invasive tumor delineation on the pathology slide is the very first

step as part of diagnostic workflow for breast cancer. This enables the subsequent

analysis of tumor differentiation by the pathologist, via the Bloom-Richardson and

Nottingham grading schemes [62,71]. While approaches for breast cancer grading have

been previously presented [10], these approaches need for the target region of interest

to first be defined.

This paper presents a novel, accurate and high-throughput framework that combines

the powerful capabilities of CNN models for image recognition and an adaptive sam-

pling method for high-throughput analysis to detect invasive breast cancer on whole

slide images. The method is based on a CNN tiIe classifier which is used to estimate

the probability of the presence of invasive BCa in a small WSI region. Instead of ap-

plying the tile classifier densely over the entire WSI, the method adaptively chooses

WSI regions with high uncertainty of the tissue type, either invasive or not. These

regions are typically associated to the borders of tumor, which exhibit mixtures of

tissues. The rationale behind the approach is that regions where the predictor has a

greater uncertainty about the type of tissue the region represents, will require more tile

samples for improving the confidence of the prediction model. Conversely those regions

where the predictor has higher certainty about the tissue class may require fewer tile
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samples for making a good prediction. Regions that are identified by the prediction

model as having a high certainty of belonging to a specific tissue class (invasive or not)

typically tend to present similar visual characteristics in its micro-environment neigh-

bourhood associated to their morphological and architectural histopathology features.

By contrast, regions that represent a mixture of tissue classes tend to result in a low

certainty of class belongingness, typically at the boundaries between two or more tis-

sue interfaces. This information could be exploited to determine those regions where

more samples are needed, however each type of tissue could be located in arbitrary

sections of the WSI and could have different sizes and shapes, and this is not known

in advanced. To address the problem of identifying where to selectively sample regions

corresponding to a specific class, we present a new sampling strategy that alternates

between exploration and exploitation. The initial exploration involves a random sam-

pling in turn providing a coarse overview of the tissue type distribution in the WSI.

This information is then used to perform detailed spatial analysis of small regions, or

local exploitation, via a denser sampling of local regions with higher uncertainty. This

process is iterated several times.

More specifically our approach integrates: i) a new high-throughput adaptive sampling

method based on quasi-Monte Carlo sampling, and ii) a state-of-the-art representation

learning classifier based on CNN. In this work we applied our new approach to the

problem of automated detection and quantification of invasive breast cancer extent on

whole-slide images. The method was trained and validated using three different data

cohorts involving near 500 cases and then independently validated on an additional

195 studies cohort from TCGA.

5.1.2 Previous and related work

A number of histopathology image analysis methods focused on feature extraction

have been recently presented, where the goal has been to identify the ability of image

features in conjunction with a machine learning classifier to predict presence or severity

of disease from surgical or biopsy tissue specimens [6, 10,68,73,105,106,108,150].

Most approaches involving feature extraction from digital pathology images are based

off hand-crafted feature design. These hand-crafted features aim to capture different

tissue morphologic and spatial properties including nuclear morphology, nuclear archi-

tecture, color intensities, and tissue texture. Table 5-2 details a set of state-of-the-art

hand-crafted features in histopathology image analysis and breast cancer digital pa-

thology tasks [10,155,159]. These features are used as baseline in this work.

Despite that there are a lot of work based on hand-crafted features taking advantage

of knowledge domain priors and assumptions, there are some limitations. For instance,
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these features are more sensible to visual variability and artifacts coming from different

sources and processes such as staining, magnification, digitization, etc. [6]. In addition,

these features are approximations based on mathematical and statistical formulations

to represent the visual content that does not capture all the relevant characteristics and

complex mixtures and relationships of the histopathology patterns [40]. In contrast,

representation learning automatically learns the transformation of data that make eas-

ier the extraction of useful information for posterior high-level tasks using one level or

multiple levels of representation (i.e. deep learning) [16, 93, 145]. The main difference

in comparison to hand-crafted features is that representation learning learns the more

appropriate representation or features without any prior domain knowledge, learning

the representation directly from the data.

Recently, approaches based on representation learning and deep learning have been ap-

plied for histopathology image analysis, either in a supervised or unsupervised manner.

Most of previous studies are based on supervised learning (e.g. tumor and mitosis de-

tection [28,32,36,116]) and relatively few approaches are geared towards unsupervised

learning [5, 32, 33]. In fact, the more successful representation learning approach in

histopathology image analysis had been convolutional neural networks, outperforming

hand-crafted features in several problems [156].

Kothari et al. [92] provide an excellent review of the state of the art in histopathological

whole-slide imaging informatic methods, associated challenges, and future opportuni-

ties. They describe how most approaches to feature analysis of whole slide images are

typically limited to manually selected regions of interest (ROI). In [147], the authors

describe a multi-resolution framework for tile-based tissue classification to determine

the grade of neuroblastic differentiation. Kothari et al. [91] proposed a visualization

framework for studying visual morphological patterns across 1,301 histopathological

whole-slide images from 571 patients with ovarian serous cystadenocarcinoma from

TCGA. In [81], the authors assessed the impact of different classification algorithms

and features sets on both accuracy and computing time for quantification of necrosis

in whole-slide images.

Huang et al. [83] attempted to address the problem of time-efficient analysis of breast

cancer whole-slide images to determine the nuclear pleomorphism score. They used

sparse coding to learn in an unsupervised way the visual representation combined with

first- and second-order statistics of multivariate Gaussian distributions. These statistics

were then employed in conjunction with a machine learning classifier (support vector

machine) to identify invasive and non-invasive cancer patches over whole slides at a

low magnification. ROIs are then selected from higher nuclear pleomorphism score

regions using a dynamic sampling based on Voronoi tessellation. The final nuclear

pleomorphism scoring is calculated in detail from the high-scaled versions of the ROIs
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selected.

In this paper we present a new approach, combining convolutional neural networks and

a novel adaptive sampling based on probability gradient and quasi-Monte Carlo sam-

pling, for the task of invasive breast cancer detection from whole-slide images. Monte

Carlo and Quasi-Monte Carlo methods have been traditionally applied for simulation

and sampling of complex probability density functions [144]. While these methods

have been previously applied in the medical imaging domain for problems involving

radiation dose calculation [27,88] or for segmentation of different biological structures

and organs from medical imaging data [3,66,85], to the best of our knowledge, the new

method presented in this paper represents the first attempt to employ Quasi-Monte

Carlo sampling for efficient whole slide histopathology image analysis.

The main limitations of these previous approaches has been that the analysis has

been limited to small ROIs within the larger whole slide images. Additionally, hand-

crafted features tend to be very specific to particular domains or data sources and

not seamlessly generalizable to different tasks or applications. Finally most of these

approaches have involved evaluating the methods on a relatively small cohort of cases

typically originated from a single institution. Consequently it is not clear whether

these approaches will actually be useful for routine clinical practice.

Unlike previous approaches [28,32,36,81,83,91,116,147], our method has the following

advantages and makes the following contributions: i) accurate and reproducible de-

tection of invasive breast cancer regions on new unseen whole slide images, ii) ability

to generalize to images acquired from different data sources and domains since it is

based on the representation learning method of CNNs, and iii) a new high-throughput

adaptive sampling method that makes our approach feasible for whole slide images

and is an order of magnitude more efficient compared to the naive implementation of

CNNs, while simultaneously not compromising detection accuracy.

In order to explicitly address the issues of variability in staining, slide preparation, and

scanning across multiple sites, our training and validation sets were comprised of slide

images from multiple different institutions. In contrasts with works such as Huang et

al. [83], where a total of nine WSIs from a single site were employed for training and

testing of a classifier for cancer detection, in this work we employed almost 600 patient

slides from four different sites for training, validation, and independent testing of our

CNN model.

5.1.3 Methodology

Figure 5-1 presents the general overview of the high-throughput framework for invasive

BCa detection in WSI. Training exemplars for the CNN are generated by pathologists
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who annotated the regions of invasive BCa on WSIs. The training phase of the CNN

uses as input a tile-based dataset obtained by applying a regular sampling of WSIs

from the training data cohort to extract tiles of a fixed square size both from within

pathologist annotated invasive and non-invasive tissue regions. The prediction stage

on new unseen WSIs involves the following steps: first, tiles are extracted from the

WSI using random sampling; the CNN classifier is applied to each tile; the prediction

produced by the CNN is used to build an interpolated probability map which is then

used to identify those regions with high uncertain about the tissue type, whereby

is needed a more dense sampling, this is done choosing the high gradient magnitudes

associated to border of tumors or mixture of tissue types; the newly sampled exemplars

are used to produce an improved probability map estimation; the process is iterated

several times, producing as result a final invasive BCa probability map. The details of

each step are explained in the following subsections.

Figure 5-1: Overview of the high-throughput adaptive sampling for whole-slide histo-

pathology images method (HASHI) based on convolutional neural networks

(CNN) for automated detection of invasive BCa in WSIs.
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Adaptive gradient-based sampling for efficient Invasive BCa prediction in WSI

Algorithm 3 describes the adaptive gradient-based sampling strategy, which iteratively

refines an initial coarse estimation of an invasive BCa probability map. Inputs to the

algorithm include a WSI X, the algorithm parameters: maximum iterations T and

number of sample points per iteration N . The algorithm begins with a tile sampling

process resulting in N tile samples. Each tile is classified using the CNN-trained model

M to obtain the probability of the presence of invasive BCa at the particular location of

each tile. By interpolating the probabilities calculated at each tile sample, a probability

map P for the WSI is obtained. In order to determine regions with higher uncertainty,

the gradient of the probability map is calculated G. The values of the gradient of

the probability map are used to prioritize the sampling selection of new tiles for the

next iteration. The process is repeated until the maximum number of iterations T is

reached.

Algorithm 3 Adaptive gradient-based Quasi-Monte Carlo sampling.

INPUT:

M : CNN-trained model

X: whole-slide image

T : maximum iterations

N : number of samples per iteration

1: samples ← uniform sampling (X,N)

2: for i = 1 to T do

3: predictions ← tile classification (M ,samples)

4: P ← invasive BCa probability map interpolation (predictions,samples)

5: G ← probability gradient (P )

6: samples ← gradient based sampling (G,X,N)

7: end for

return invasive BCa probability map P

Tile-based CNN classifier training

Tile-based dataset construction and preprocessing To extract tissue samples for

the training process of the tile-based classifier, a regular sampling was performed on

each WSI from the training set. Only tiles corresponding to tissue regions were in-

cluded, background regions were ignored. Additionally a tile sample was considered

to be a positive sample (i.e. invasive BCa) if a certain pre-defined proportion of its
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area overlaps with the region manually annotated by pathologists as invasive tumor,

otherwise it is labeled as a negative sample (i.e. non-invasive BCa) [36].

Each image patch or tile is converted from RGB to YUV color space and normalized to a

mean of zero and variance of one. This initial step allows to decorrelate and accentuate

the differences between the input image tiles and helps to accelerate gradient-based

learning [101].

Tile-based CNN classifier We evaluated different CNN architectures (this is dis-

cussed in detail in Section 5.1.4), the best one being a 2-layer CNN (CS256-FC256),

illustrated in Figure 5-2. This architecture is composed of a convolutional and a pool-

ing layer of 256 units followed by a fully-connected layer of 256 units. The classification

layer is a softmax classifier with two outputs (invasive and non-invasive) activated by

a logistic regression function. The convolution layer involves application of a 2D con-

volution of the input image with a kernel of 8×8 pixels. The pooling (or subsampling)

layer applies a spatial L2-pooling function without overlapping using a pooling kernel

of 2× 2 pixels for each feature map obtained from the convolution step. An advantage

of the L2-pooling function is that it allows the learning of invariant features [97]. The

output of the pooling layer is fed to a fully-connected layer followed by a final classifi-

cation layer. The training process uses the set of tiles sampled from both the invasive

and non-invasive tissue regions. The CNN model is then trained using a stochastic

gradient descent approach [20] to minimize a softmax loss function, which is presented

in Eq 5-1:

L(w) = −log

[
exi(w)∑
j e

xj(w)

]
(5-1)

where w represent the weights of the network, xi(w) correspond to the output of

the i-th neuron in the fully-connected layer, preceding the output layer. The CNN

training process involves searching for a weight vector w which aims to minimize this

loss function (Eq. 5-1). During testing, the probability that a particular image tile

corresponds to invasive BCa is calculated by applying an exponential function to the

output of the CNN. The implementation of the CNN model, its training and testing

were performed using Torch 7, a scientific computing framework for machine learning

[29].

Adaptive prediction of invasive BCa region

In order to apply the classifier for predicting the likelihood of individual tiles within

the WSI representing invasive cancer or not, the classifier would need to be repeatedly
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Figure 5-2: Illustration of the Convolutional Neural Network architecture used to dis-

tinguish between invasive BCa and non-invasive BCa. Amongst the various

architectures considered, this architecture was found to perform the best.

applied to each tile in the WSI. For a WSI of size 80,000×80,000 pixels, a tile sampling

involving patch sizes of 101×101 pixels translates to over 6.39× 109 predictions, which

is clearly infeasible. Hence our approach is to perform the prediction on a sample of

patches from the WSI and extrapolate this prediction to the whole image. Traditional

ways of performing this sampling are: dense, regular and random with a uniform dis-

tribution [128]. The method presented in this paper uses an adaptive scheme which

performs a guided sampling that focuses on those image areas with higher uncertainty.

Each of the individual steps involved in the adaptive tile based classification are de-

scribed below.

Tile sampling The goal of this step is to select a set of tiles (in this case 101 × 101

tiles) from the WSI, which will be later used to create a probability map over the

entire WSI. The tiles may be selected by deterministic (dense or regular) or random

sampling. The different sampling approaches are discussed here below.

Regular sampling: This strategy involves sampling tiles at equally spaced intervals

on a regular grid. For instance, given a WSI of K ×K size and tiles of k × k size, the

step size s, in both X and Y axis is 1 ≤ s ≤ k. The extreme case is using a step size

s = 1, which means an expected number of samples of (K − k)2. This case corresponds

to a dense sampling of the WSI.

Uniform random sampling: Regular sampling is deterministic. An obvious alter-

native strategy is random sampling, i.e. to select the tiles using random coordinates
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generated from a particular probability distribution. Without a priori knowledge of

the image content, a uniform probability distribution is a natural choice for the random

sampling algorithm.

Quasi Monte Carlo sampling: Uniform random sampling may concentrate samples

in some regions of the image while leaving other regions under-represented. This may

not be the most efficient strategy since the predictions on overrepresented regions

will be redundant.. Regular sampling may also produce sub-optimal results if the

boundaries of the region to be be estimated is not aligned with the axis. Quasi Monte

Carlo (QMC) sampling represents a good compromise between regular and random

sampling. QMC sampling accomplishes this by using a random sampling procedure

based on deterministic (pseudo-random) sequences designed to have low discrepancy,

where discrepancy is a measure of the uniformity of a distribution of finite point sets

[127]. This property is an advantage for QMC in contrast to Monte Carlo methods

(based on random sampling) since QMC does not result in clumping, which in turns

results in better accuracy for the sampling process [22]. We chose the Sobol and

Halton sequences [122, 127, 152] for our iterative adaptive sampling method. With

these sequences it is possible to incrementally add sample points without discarding

those already previously generated [129]. Thus, for a 2D image we can generate N

points per iteration for each low discrepancy sequence. Figure 5-3 depicts an example

of sampling points generated using random, Sobol and Halton sequences, respectively.

Invasive BCa probability map estimation The sampled tiles are fed to the CNN

classifier to determine the probability of the presence of invasive or non-invasive BCa

in each particular tile. Cubic interpolation is then applied to extrapolate this estimation

to all the pixels in the WSI, resulting in an invasive BCa probability map at the end

of each iteration.

Probability gradient A gradient image ∇P is calculated to identify the directional

changes of the probability map P as follows:

∇P =
∂P

∂x
x̂+

∂P

∂y
ŷ (5-2)

where ∂P
∂x

is the gradient in the X direction and∂P
∂y

is the gradient in the Y direction.

Then, the gradient magnitude image |∇P | is calculated to identify regions with high

or low variations among tissue types in the probability map P . High values correspond

to heterogeneous spatial distribution of both invasive and non-invasive tissue types in

tumor boundaries (strong changes), whereas low values corresponds to homogeneous
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(a) (b) (c)

Figure 5-3: Example of 1000 2D-points generated by (a) random (uniform distribution)

and quasi-random sampling strategies, (b) Halton and (c) Sobol sequences.

(a) We can notice that random generation results in clumping and there

are more regions without samples. On the other hand, (b) Halton and (c)

Sobol sequences have a more uniform distribution over the whole space

with very few clumps, i.e. low discrepancy.

distribution of either invasive or non-invasive tissue types (soft changes). Formally, the

gradient magnitude image|∇P | is defined as follows:

|∇P | =

√(
∂P

∂x

)2

+

(
∂P

∂y

)2

(5-3)

where the magnitude |∇P | has low values or zero if the local spatial regions of P has

similar or constant values. In contrast, the magnitude |∇P | has high values if the local

spatial regions of P has different values changing from low towards high probability

and vice versa.

Gradient-based sampling selection The probability gradient enables a more intelli-

gent spatial sampling of points, with a more dense sampling directed at high magnitude

regions within the gradient map (representing transitional areas from one tissue type

to another where the uncertainty is higher), while fewer samples are extracted from ho-

mogeneous regions (representing a single tissue type region with smaller uncertainty).

This is accomplished by the following procedure: first, 2N samples are generated us-

ing the corresponding sampling mechanism (random or QMC); second, the samples
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are ranked according to the magnitude of the gradient in the corresponding position;

finally, the top N samples are returned.

5.1.4 Experimental design

Breast Cancer data cohorts

Table 5-1: Breast cancer data cohorts used for training, validation and testing in the

experimental evaluation.

ID Site Number

of

pa-

tients

Scanner Dataset Use

HUP Hospital of the University

of Pennsylvania

239 Aperio Training Experiment

1,

Experi-

ment

2

UHCMC/CWRUUniversity Hospitals Case

Medical Center/Case

Western Reserve University

110 Ventana Training Experiment

3

HUP +

UHCMC/CWRU

Hospital of the University

of Pennsylvania and

University Hospitals Case

Medical Center/Case

Western Reserve University

349 Aperio

and

Ventana

Training Experiment

3

CINJ Cancer Institute of New

Jersey

40 Aperio Validation Experiment

1,

Experi-

ment

2

TCGA The Cancer Genome Atlas1 195 Aperio Testing Experiment

3

The data used in this study are H&E-stained histological slides from patients with

estrogen receptor-positive (ER+) breast cancer obtained from four different sites. The

WSIs were digitized with Aperio or Ventana scanners. We used only those images
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which had been scanned in at a 40x magnification. Images were further downsampled

by a factor of 32:1 for each axis. As illustrated in Table 5-1, different data cohorts

were used for training, validation or testing. The training and validation sets were

used for model parameter tuning and optimization. Independent model evaluation was

performed on the independent test set.

Two expert pathologists (NS, HG) independently provided the ground truth annota-

tions of invasive breast cancer regions over digitized whole slide images for each data

cohort (NS for HUP and CINJ; HG for UHCMC/CWRU and TCGA). The patholo-

gists manually delineated the invasive regions at 2x magnification using the viewing

software applications ImageScope v11.2 from Aperio and Ventana Image Viewer v3.1.4

from Ventana.

Experiment 1: Invasive BCa tile classification performance using CNN vs

handcrafted features

Our goal in this experiment was to compare the most commonly used hand-crafted

features in histopathology image analysis, in general and for breast cancer diagnosis,

(Table 5-2) [6,73,106,155,158], against different CNN based feature learning architec-

tures in the task of tile-based tissue classification between invasive and non-invasive

BCa. This experiment uses as training data set the HUP data cohort (239 cases) and

as test dataset the CINJ data cohort (40 cases). Parameter tuning was performed

using cross validation over the training dataset. The performance of the classifier was

evaluated using the area under the ROC curve (AUC).

Each hand-crafted feature listed in Table 5-2 was combined with each of two classifiers:

random forests (RF) and support vector machines (SVM). For RF, the training step

was used to optimize the parameter corresponding to the number of trees, while for

the SVM different kernel functions were evaluated: linear, radial basis function (RBF),

intersection, Chi-square (χ2), and Jenson-Shannon’s.

For the CNN-based approach, three different architectures were evaluated. The first

was the architecture employed in [36] which was a 3-layer CNN, called ConvNet. This

architecture comprises of 16 neurons in the initial convolutional and pooling layers,

32 neurons in the second stage, and 128 neurons in the third fully-connected layer

(CS16-CS32-FC128). The second architecture explored was the one that was previously

successfully applied to the problem of mitosis detection in breast cancer histopathology

images [28], which comprises four layers of convolutional and pooling neurons with 16

neurons in each, and a fully-connected layer of 128 neurons (CS16-CS16-CS16-CS16-

FC128). The third architecture explored was a 2-layer CNN with 256 neurons in the

first layer and 256 neurons in the fully-connected layer (CS256-FC256).

In order to determine the statistical significance of the performance difference among
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methods, we applied a multiple comparison Kruskal-Wallis test using the following

procedure: we built 100 different datasets with the 60% of the instances from HUP

data cohort applying bootstrap sampling. The AUC for each method in each dataset

was evaluated and the methods were ranked according to performance for each group.

Based on these ranks, the Kruskal-Wallis test statistic was calculated and a post-

hoc Tukey’s honestly significant difference criterion was applied to check for pairwise

differences between methods.

Experiment 2: Evaluation of the impact of the sampling strategy on the

effectivity and efficiency of the method

Seven different sampling methods were evaluated to determine the more efficient strat-

egy for WSI analysis in terms of both detection accuracy and computing time. The

baseline sampling method is (i) regular sampling (regular) which takes equally-spaced

samples by varying the step size. For the random and pseudo-random sampling meth-

ods, we evaluated (ii) uniform random sampling (uniform), (iii) quasi-Monte-Carlo

sampling using the Sobol sequence (qmc-sobol), and (iv) quasi-Monte-Carlo sampling

using the Halton sequence (qmc-halton). In addition, sampling strategies including

information from the gradient image to select more samples on high uncertain regions

per iteration were combined with the previous sampling strategies, (v) gradient-based

uniform sampling (grad-uniform) and (vi) gradient-based quasi-Monte-Carlo sampling,

using either Sobol (grad-qmc-sobol) and (vii) Halton (grad-qmc-halton) sequences. All

sampling approaches (with and without incorporation of gradient image information)

were applied iteratively with the same set of parameters: 20 iterations and 100 samples

per iteration, resulting in 2000 samples for each sampling approach.

This experiment used the best performing CNN model identified in Experiment 1 in

conjunction with all the various sampling strategies that were evaluated. The per-

formance of the classifier in conjunction with the different sampling strategies was

evaluated on the CINJ data cohort using 12 cases.

The output of our method is an invasive BCa probability map over the WSI, i.e. a

measure of the probability of presence of invasive BCa for each pixel in the WSI. Since

the ground-truth annotations provided by pathologists correspond to binary masks

indicating the presence of invasive BCa in particular regions, we need to extract a

binary mask from the estimated probability map that can be compared against the

ground truth. This is accomplished by defining a threshold α and extracting the region

enclosed by the α-level set of the probability map. A good value of α is calculated using

cross validation over the training dataset.

The quantitative evaluation was done by measuring the Dice coefficient between the

predicted mask and the ground truth annotation from the expert pathologist. The



5.1 High-throughput whole-slide image analysis in Invasive Breast Cancer 113

Dice coefficient is defined as follows:

Dice =
2|P ∩G|
|P |+ |G|

(5-4)

where P corresponds to the predicted binary mask by our method, and G is the ground

truth binary mask from the pathologist annotation. For each of seven sampling strate-

gies, the average Dice coefficient over the test data set is calculated for different number

of samples.

Experiment 3: Overall method effectivity evaluation over an independent test

cohort

We trained a CNN model with the best configuration found in Experiment 1. Addi-

tionally a linear SVM with the best performing handcrafted feature (CF) was trained

using the complete training data cohort (i.e. HUP and UHCMC/CWRU, n = 349)

for both approaches. The testing dataset was a random selection of a subset of ER+

breast cancer whole-slide images from TCGA (n = 195). The quantitative evaluation

was done by comparing the manual annotations of invasive tumor regions by expert

pathologists versus the predictions obtained by each approach in terms of the Dice

coefficient measure.

Using the pathologists ground truth mapping of cancer extent, we also identified which

regions corresponded to true positive (TP), true negative (TN), false positive (FP) and

false negative (FN) errors. The performance measures used to evaluate the accuracy of

our method were Dice coefficient (Dice), true positive rate (TPR), true negative rate

(TNR), false positive rate (FPR) and false negative rate (FNR).

5.1.5 Results and discussion

Experiment 1: Invasive BCa tile classification performance using CNN vs

handcrafted features

Table 5-3 shows the AUC values (mean and standard deviation) across all the images in

the independent test set for the three proposed CNN models described in Subsection IV-

B (CS16-CS32-FC128, CS16-CS16-CS16-CS16-FC128, CS256-FC256) and the hand-

crafted features presented in Table 5-2 combined with RF and SVM classifiers. The

experimental results in Table 5-3 show that the three CNN classifiers outperform the

best combinations of hand-crafted features and classification methods. Additionally,

the CNN classifiers exhibit a smaller variance in terms of the AUC measure.
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The multicomparison Kruskal-Wallis test, using a post-hoc Tukey’s honestly significant

difference criterion, reveals that there is no statistical difference (p < 0.05) in terms of

critical difference 2 among the CNN classifiers (CS16-CS16-CS16-CS16-FC128, CS256-

FC256, CS16-CS32-FC128), and that the two top performing CNN models significantly

outperform hand-crafted features. For the rest of the experimental evaluation we used

CNN model with the second best performance (CS256-FC256) since it has a simpler

architecture (fewer layers).

Experiment 2: Evaluation of the impact of the sampling strategy on the

effectivity and efficiency of the method

Figure 5-4 shows the invasive BCa probability map produced for a test WSI using a

common sampling strategy and one configuration of the proposed adaptive sampling,

which were presented above: regular sampling (regular) and gradient-based quasi-

Monte-Carlosampling using Halton sequence (grad-qmc-halton). Figure 5-4-A shows

a test WSI while Figure 5-4-B shows the ground truth annotation provided by an

expert pathologists. Figure 5-4-C is the prediction using regular grid sampling with

a step size equal to the tile size (i.e. 50×50 pixels). While this sampling is fast (31

secs), the resulting probability maps are extremely coarse and imprecise. Figure 5-

4-D shows the probability map obtained using dense regular sampling, which is the

extreme case of regular grid sampling where the step size is 1 pixel. The resulting

probability map from the dense regular grid sampling is highly specific and detailed.

Unfortunately with a run time of 22 hours it is also quite unfeasible for application

in a clinical setting. Figures 5-4-E to 5-4-L show the iterative process of the new

adaptive sampling method (grad-qmc-halton). Figures 5-4-E to 5-4-H visualize the

sampled points for CNN classification process from iterations 1st, 2nd, 8th and 20th,

respectively. Whilst Figures 5-4-I to 5-4-L depict the invasive BCa predictions using

the gradient-based adaptive sampling strategy: grad-qmc-halton. Qualitatively, grad-

qmc-halton sampling strategy shows a comparable performance with dense sampling

providing more details than regular sampling. This is corroborated by the quantitative

evaluation results shown in Figure 5-5.

The different sampling strategies were quantitatively evaluated in terms of the Dice

coefficient for 12 images from CINJ data cohort. The performance of each sampling

strategy was evaluated for different number of samples. Figure 5-5 shows the quantita-

tive results of the sampling strategies in terms of Dice coefficient to predict the invasive

BCa regions versus the number of tile samples required in the WSI taken per iteration.

The x-axis, in a logarithmic scale, corresponds to the number of tile samples required

2mean differences above the critical difference are suppose to be statistically significant.
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by each sampling method and the y-axis corresponds to the Dice coefficient between

the region predicted as invasive breast cancer by our approach and the ground-truth

annotation provided by pathologists. Note that the number of samples (x-axis) is pro-

portional to the computing time because classifying each tile sample takes the same

time. Each sampling strategy is depicted as a line. The regular sampling strategy

was evaluated using different step sizes (200, 150, 100, 75, 50, 25, 1 pixels), while the

random and pseudo-random sampling strategies (uniform, qmc-sobol, qmc-halton) were

evaluated using the same algorithm’s parameter configuration, i.e. 20 iterations with

100 samples per iteration.

The experimental results show that adaptive sampling methods (grad-qmc-sobol, grad-

qmc-halton and grad-uniform) not only outperform regular sampling and non-adaptive

random sampling (uniform, qmc-sobol, qmc-halton) but achieve the same detection

performance as dense sampling but with a significantly fewer number of samples having

to be classified, resulting therefore in substantial computational time reductions. While

dense sampling takes around of 6 millions of tile samples in average and a compute

time of around 24 hours per WSI, our adaptive sampling strategies (grad-qmc-sobol and

grad-qmc-halton) achieve a comparable detection performance with 1000-2000 samples

taking less than one minute for a WSI.

Experiment 3: Overall method effectivity evaluation over an independent test

cohort

In the third experiment we applied the best combination of tile-based tissue classi-

fier (CS256-FC256) and adaptive sampling method (grad-qmc-halton) for our HASHI

method (HASHICS256−FC256
grad−qmc−halton) to the independent testset from TCGA (n = 195). Ta-

ble 5-4 summarizes and compares the performance of our selected methodHASHICS256−FC256
grad−qmc−halton

versus the best classifier based on hand-crafted features, i.e. HASHICF−SVM−Lineargrad−qmc−halton ,

in terms of average Dice, TPR, TNR, FPR and FNR. These results show that the

CNN-based method HASHICS256−FC256
grad−qmc−halton has a 75% agreement with the manual an-

notations from pathologists in terms of Dice, whereas the method using the machine

classifier trained with the best hand-crafted feature HASHICF−SVM−Lineargrad−qmc−halton has a 73%

Dice coefficient.

A more detailed analysis of the distribution of the Dice coefficient per case reveals that

most cases had a Dice value between 0.7 and 0.9 and an overall median value of 0.8228

using the CNN-based method HASHICS256−FC256
grad−qmc−halton whereas the best hand-crafted-

based features HASHICF−SVM−Lineargrad−qmc−halton achieved a median value of 0.8007. Some of the

cases with the lowest Dice coefficient were because the classifier also identified ductal

carcinoma in situ (DCIS), a stage 0 breast cancer that is also sometimes considered as a

pre-malignancy. However, since we set a very stringent requirement on only identifying
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Figure 5-4: Comparison between common sampling methods (regular and dense) with

our novel adaptive sampling method using gradient-based quasi-Monte

Carlo sampling (grad-qmc-halton). The new unseen WSI (A) with its cor-

responding ground truth annotation from an expert pathologist (B). The

probability maps using regular sampling with step size equal to the patch

size (C) and regular dense sampling with step size equal to 1 pixel (D).

The new adaptive sampling method shows the iterative process to extract

patch samples (E-H) and obtain the probability maps (I-L) for the 1st it-

eration (E, I), the 2nd iteration (F, J), the 8th iteration (G, K) and the

20th iteration (H, L).

invasive cancer, the detection of DCIS was deemed to be a false positive error. Most

other cases with a low Dice coefficient corresponded to slides with poor staining quality.

Figure 5-6 shows the sensitivity of both methodsHASHICS256−FC256
grad−qmc−halton andHASHICF−SVM−Lineargrad−qmc−halton

to the threshold used to determine the tumor area, evaluated in the TCGA test

data cohort. Interestingly, the performance of the Dice coefficient of the CNN-based

method HASHICS256−FC256
grad−qmc−halton is more stable and robust achieving high performance,

i.e. greater than 0.7, for most of the possible thresholds between 0.1 and 0.6 achieving

its optimal value of 0.7586 for a threshold of 0.24. In contrast, the adaptive sampling

method using the Linear SVM trained with Color Features, i.e. HASHICF−SVM−Lineargrad−qmc−halton ,

is more sensitive to the selected threshold achieving good results only in the interval
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Figure 5-5: Quantitative evaluation in a subset of 12 cases from CINJ data cohort

among different sampling strategies for invasive BCa detection on WSIs in

terms of the Dice coefficient (y-axis) trained with HUP data cohort versus

number of samples (x-axis) required for this prediction using a logarithmic

scale.

between 0.35 and 0.45 with its best result of 0.7305 for a threshold of 0.39. These

results appear to suggest that HASHICS256−FC256
grad−qmc−halton is more confident, robust and

accurate compared to hand-crafted features for this particular problem.

Figure 5-7 shows the predictions of the HASHI method for representative slides chosen

from the test TCGA dataset. Note the good concordance between the predictions

from the best configuration of our HASHICS256−FC256
grad−qmc−halton method (i.e. tile-based tissue

classifier of 2-layers CNN and adaptive sampling of grad-qmc-halton) and the manual

annotations by expert pathologists.
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Figure 5-6: Performance comparison between HASHICS256−FC256
grad−qmc−halton and

HASHICF−SVM−Lineargrad−qmc−halton in terms of Dice coefficient in the indepen-

dent TCGA test data cohort by varying the classification threshold of the

invasive BCa probability map.

5.1.6 Conclusions

This paper presented a novel accurate and high-throughput method for automatic inva-

sive breast cancer detection in whole-slide images. We addressed the challenges of high

complexity and visual variability of tissues, invasive and non-invasive, and the large size

of whole-slide images by combining a state-of-the-art image analysis technique, con-

volutional neural networks, with an efficient adaptive sampling strategy. The model

was trained to learn the most appropriate representation using a considerable amount

of whole-slide images from different institutions for training, validation and testing.

To deal with large-size images, we developed a novel adaptive sampling method which

integrates quasi-Monte-Carlo sampling with a gradient-based adaptive strategy which

focuses sampling on those areas with higher uncertainty.

The method was systematically evaluated using nearly 600 whole-slide images from

four different institutions for training and validation, and around 200 slides from the

publicly available TCGA dataset for testing. The results revealed that our approach

is effective and robust, with reproducible results across data from different sources.
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The experimental results also demonstrated that convolutional neural network models

are more robust and have the best classification performance to discriminate invasive

from non-invasive tissue regions in comparison to state-of-the-art features used for

histopathology image classification. In addition, the novel adaptive sampling method

showed to be an effective strategy to deal with the large size of WSI using less sam-

ples than those required by regular dense sampling while keeping the same prediction

performance.

Considering that invasive breast cancers are the most common subtypes of breast cancer

and that precise delineation is time consuming, but required for further analysis such

as tumor grading, the histopathology image analysis framework presented in this paper

has a great potential as a support tool that helps pathologists to speed up the invasive

tumor identification and localization, alleviating their workload.

Despite of the good results obtained in the evaluation, the method did not perform

well on some particular slides which exhibited ductal carcinoma in situ (DCIS) that

was confounded with invasive breast cancer. While DCIS is considered as zero stage of

breast cancer, it is still not aggressive but sometimes is considered as a pre-malignancy.

However, since we set a very stringent requirement on only identifying invasive cancer,

the detection of DCIS was deemed to be a false positive error. The other few cases with

low prediction performance of invasive BCa were in some WSI corresponding to slides

with poor staining quality, which are typically rejected in a common quality control by

a pathologist to guarantee an appropriate diagnosis.

These results are a promising and encouraging advance towards translational medicine

in digital pathology and cancer research that could be validated and extended, in our

future work, with additional cancer subtypes and confounding cases such as atypia

hyperplasia, adenosis and ductal carcinoma in situ among others.
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Table 5-2: Set of hand-crafted features used for comparison against the CNN based

feature learning approach.

ID Category Length Features

CF Color/intensity 56 Statistics (average, standard deviation,

median, and mode) of 14 color channels

(blue-ratio, Hematoxylin, Eosin, Red,

Green, Blue, Hue, Saturation, Value,

Luminance from Lab, a from Lab, b from

Lab, U from LUV, V from LUV) [6,58,106].

GeF Geometrical 48 Statistics (average, standard deviation,

median, and mode) of geometrical and

morphological features (area, eccentricity,

equiv diameter, Euler number, Extent,

perimeter, solidity, major axis length, minor

axis length, elongation, circularity,

compactness) [6, 21, 73,106].

CH Color

Histograms

8×3 Histogram of 8 bins for each channel of

RGB color space [6, 106].

SH Shape Index

Histogram

8×3 Shape index histogram of 8 bins for each

channel of RGB color space [57].

MLBPMulti-scale LBP 8×3 Multi-scale local binary patterns histogram

of 8 bins for each channel of RGB color

space [6].

HF Haralick

features

26×3 Statistics (average and standard deviation)

of 13 Haralick gray-level [76] concurrence

features grabbed at four orientations for

each channel of RGB color space [6, 59, 106].

RLF Run-Length

features

11×3 Statistics of 11 gray-level run-length

matrices properties [70] at four orientations

for each channel of RGB color space [73].

GWF Gabor wavelet

features

71×3 Statistics (average and standard deviation)

of 71 bank of Gabor wavelet filters from

eight orientations for each channel of RGB

color space [6, 58,59,106].

TGF Topography/Graph

features

51 12 features from Voronoi diagram, 8

features from Delaunay triangulation graph,

4 features from minimum spanning tree,

and 27 nuclear features [6, 58,73].
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Table 5-3: Classification performance comparison in the CINJ validation dataset

among different architectures of CNN models and state-of-the-art hand-

crafted features trained with HUP dataset and evaluated in terms of AUC.

Methodology AUC

CS16-CS16-CS16-CS16-FC128 0.9021 +/- 0.0097

CS256-FC256 0.9018 +/- 0.0093

CS16-CS32-FC128 0.8915 +/- 0.0093

CF + SVM-Linear 0.8711 +/- 0.0947

RLF + SVM-Linear 0.8689 +/- 0.0963

CH+ SVM-Linear 0.8448 +/- 0.1047

SH + SVM-Linear 0.8444 +/- 0.1065

HF + SVM-Linear 0.8385 +/- 0.0942

TGF + SVM-Linear 0.7998 +/- 0.1068

RLF + RF 0.7985 +/- 0.0892

CH + RF 0.7927 +/- 0.0994

GWF + SVM-Linear 0.7911 +/- 0.1210

SH + RF 0.7748 +/- 0.1111

MLBP + SVM-Linear 0.7732 +/- 0.0944

HF + RF 0.7649 +/- 0.1015

TGF + RF 0.7314 +/- 0.1038

GeF + SVM-Linear 0.7291 +/- 0.1414

MLBP + RF 0.7034 +/- 0.0919

MLBP + SVM-INT 0.2134 +/- 0.0931

SH + SVM-RBF 0.1590 +/- 0.1056

CH + SVM-2 0.1308 +/- 0.0918

Table 5-4: Invasive BCa detection performance of our HASHI method on the testing

data cohort of TCGA in terms of Dice, PPV, NPV, TPR, TNR, FPR and

FNR.

Dice PPV NPV TPR TNR FPR FNR

HASHICS256−FC256
grad−qmc−halton0.7586

+/-

0.2006

0.7162

+/-

0.2204

0.9677

+/-

0.0511

0.8691

+/-

0.1582

0.9218

+/-

0.0764

0.0782

+/-

0.0764

0.1309

+/-

0.1582

HASHICF−SVM−Linear
grad−qmc−halton0.7305

+/-

0.2099

0.6852

+/-

0.2378

0.9658

+/-

0.0531

0.8634

+/-

0.1871

0.9091

+/-

0.0762

0.0909

+/-

0.0762

0.1366

+/-

0.1871
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Figure 5-7: Results of the invasive BCa probability maps (second, fourth and sixth

rows) predicted by our CNN-based method HASHICS256−FC256
grad−qmc−halton on rep-

resentative WSIs from the TCGA test dataset compared to the ground

truth annotations from expert pathologists (first, third and fifth rows).



6 Conclusions and Perspectives

This thesis has proposed and validated several histopathology image representation

learning methods for different digital pathology tasks and cancer types. The aim of

these methods is to learn, directly from image collections, the appropriate image repre-

sentation that is the basis for predictive models with accurate, robust and interpretable

results. This thesis has produced novel methods to address several challenging tasks

in the digital pathology domain. Some of these methods adapt state-of-the-art com-

puter vision techniques, which were originally designed for natural image analysis, to

the challenging particularities of histopathology images. This methods address digital

pathology tasks at nuclei, tissue and whole slide levels of analysis. In all cases the

proposed methods were able to exploit and learn an appropriate image representation

from both small and large histopathology image databases taking advantage of domain

knowledge provided by expert pathologists in each cancer type.

The methods were systematically evaluated in diverse digital pathology tasks and can-

cer types, such as, basal cell carcinoma detection in skin cancer, anaplastic medulloblas-

toma tumor differentiation in brain cancer, and mitosis and invasive tumor detection

in breast cancer.

The representation learning approaches used here start from the assumption that com-

putational learning algorithms can be able to learn not only the high-level tasks but

also a good representation of the data for a particular task directly from the database.

The main conclusion of this work is that representation learning methods are applica-

ble in digital pathology tasks for different cancer types, improving the results of the

previous state-of-the-art approaches. In addition, the new methods introduced more

visually interpretable models providing informative support for pathologists. Unsuper-

vised representation learning methods worked better than supervised representation

learning methods for small histopathology image databases, while the latter worked

better in cases where a large database of annotated cases was available. In contrast

with results reported for natural image , we found that the combination of hand-crafted

and learned features achieved better performances than each type of feature indepen-

dently, for histopathology image analysis tasks such as mitosis detection in breast

cancer.

An important effort in this thesis was the evaluation of the robustness of the methods
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and reproducibility of the results. Because of the scarce availability of publicly avail-

able annotated histopathology image databases, it is difficult to find works where the

methods are validated on more than one database. In this work, 8 different dataset

from different sources were used. In the particular case of invasive BCa detection, three

different data cohorts from different institutions, comprising 389 cases, were used for

training and parameter tuning, and an additional fourth data cohort, with 195 cases,

was used for testing.

A successful translation of research results to clinical practice require efficient meth-

ods that can be deployed as part of routine clinical workflows. Time-efficient high-

throughput whole-slide image analysis was successfully addressed through a general

framework based on supervised representation learning and adaptive sampling achiev-

ing fast prediction times, while keeping high accuracy.

All of above contributions and findings suggest that histopathology image represen-

tation learning approaches are very promising for real applications in cancer research

and clinical decision making to support pathologist’s workflows.

6.1 Perspectives

This thesis was developed attempting to provide novel computational solutions to sup-

port digital pathology workflows. For pathologist’s routine is important to have con-

fident, interpretable, quantitative and robust tools for diagnosis support in his/her

clinical practice. Successful deployment of these methods could impact different as-

pects in pathology by alleviating the pathologist’s workload for early detection and

screening process, providing objective and quantitative image-based analysis for repro-

ducible and robust diagnosis, resulting in more specific diagnosis and guided treatments

of patients. The translation of these methods to clinical practice and in-silico cancer

research requires further evaluation in additional data cohorts and cancer types.

During the development of this thesis important challenges were addressed for auto-

matic histopathology image analysis in several digital pathology tasks. However, these

challenges are far from being totally solved, on the contrary they are the starting point

of new directions for future research work:

1. Interpretable learning models. Conventional hand-crafted features for im-

age representation and machine learning methods for high-level tasks usually are

abstract and with low interpretability. Despite representation learning methods

such as bag of features, dictionary learning, sparse coding and deep learning,

learn visual features similar to the ones detected by receptive fields of the hu-

man visual system [84], still they are not interpretable enough for pathologists.
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The open challenge is to provide semantic and visually interpretable features for

pathologists providing effective biological signatures for histopathology diagno-

sis [92].

2. Fully-integrated computerized solutions for pathology workflow. There

are lots of works proposing computerized solutions for different digital patho-

logy tasks. However, there are very few works suggesting general frameworks or

proposing integrable solutions for each state of the pathology workflow analysis,

starting from tumor detection, tumor characterization and grading, diagnosis and

survival prognosis.

3. Combining learned and handcrafted features obtains better results.

The main trend in histopathology image analysis have been specialized hand-

crafted features to represent different visual patterns in histopathology images.

Such as it was proposed in this thesis and other preliminary works, there is

a new trend based on representation learning techniques to address the same

problems with successful and promising results. However, in the challenging tasks

of mitosis detection in breast cancer (Section 4.1) and medulloblastoma tumor

differentiation in brain cancer [131], the best performance have been achieved

by combining hand-crafted features and learned features. This suggests that

hybrid approaches could be a better alternative, hence more research in this

direction is required for taking advantage of prior domain knowledge from hand-

crafted features and implicit and hidden complex relationships of visual patterns

captured by the representation learning approaches.

4. Towards translational and personalized medicine. This work showed that

it is possible to develop effective and efficient methods for supporting pathology

diagnosis and grading. However, the translation of these methods to real scenarios

in clinical practice, require further work to guarantee: high-throughput analysis of

whole-slide images in feasible computing time, reproducibility and the integration

of different evidence sources.
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[20] Bottou, Léon ; Bousquet, Olivier: The Tradeoffs of Large Scale Learning.

Version: 2008. http://leon.bottou.org/papers/bottou-bousquet-2008. In:

Platt, J.C. (Ed.) ; Koller, D. (Ed.) ; Singer, Y. (Ed.) ; Roweis, S. (Ed.):

Advances in Neural Information Processing Systems Bd. 20. NIPS Foundation

(http://books.nips.cc), 2008, 161–168

[21] Boucheron, Laura E.: Object- and Spatial-Level Quantitative Analysis of Mul-

tispectral Histopathology Images for Detection and Characterization of Cancer,

Diss., Mar 2008



Bibliography 129

[22] Caflisch, Russel E.: Monte carlo and quasi-monte carlo methods. In: Acta

numerica 7 (1998), S. 1–49

[23] Chang, H. ; Loss, L. ; Parvin, B.: Nuclear segmentation in H&E sections

via multi-reference graph cut (MRGC). In: ISBI’2012: Proceedings of the Sixth

IEEE international conference on Symposium on Biomedical Imaging, 2012

[24] Chang, Hang ; Han, Ju ; Borowsky, A. ; Loss, L. ; Gray, J.W. ; Spellman,

P.T. ; Parvin, B.: Invariant Delineation of Nuclear Architecture in Glioblastoma

Multiforme for Clinical and Molecular Association. In: Medical Imaging, IEEE

Transactions on 32 (2013), April, Nr. 4, S. 670–682. http://dx.doi.org/10.

1109/TMI.2012.2231420. – DOI 10.1109/TMI.2012.2231420. – ISSN 0278–0062

[25] Chappelow, Jonathan ; Tomaszewski, John E. ; Feldman, Michael ; Shih,

Natalie ; Madabhushi, Anant: HistoStitcher(c): an interactive program for

accurate and rapid reconstruction of digitized whole histological sections from

tissue fragments. In: Computerized medical imaging and graphics : the of-

ficial journal of the Computerized Medical Imaging Society 35 (2011), Jan-

uar, Nr. 7-8, 557–67. http://www.sciencedirect.com/science/article/pii/

S0895611111000218. – ISSN 1879–0771

[26] Chawla, N. V. ; Bowyer, K. W. ; Hall, L. O. ; Kegelmeyer, W. P.:

SMOTE: synthetic minority over-sampling technique. In: Journal of Artificial

Intelligence Research 16 (2002), Nr. 1, S. 321–357

[27] Chen, Wei ; Kolditz, Daniel ; Beister, Marcel ; Bohle, Robert ; Kalender,

Willi A.: Fast on-site Monte Carlo tool for dose calculations in CT applications.

In: Medical Physics 39 (2012), Nr. 6, 2985-2996. http://dx.doi.org/http://

dx.doi.org/10.1118/1.4711748. – DOI http://dx.doi.org/10.1118/1.4711748

[28] Ciresan, Dan. ; Giusti, Alessandro ; Gambardella, LucaM. ; Schmidhu-

ber, Jürgen: Mitosis Detection in Breast Cancer Histology Images with Deep

Neural Networks. In: Medical Image Computing and Computer-Assisted Inter-

vention - MICCAI 2013 Bd. 8150, Springer Berlin Heidelberg, 2013 (Lecture

Notes in Computer Science). – ISBN 978–3–642–40762–8, S. 411–418

[29] Collobert, R. ; Kavukcuoglu, K. ; Farabet, C.: Torch7: A Matlab-like

Environment for Machine Learning. In: BigLearn, NIPS Workshop, 2011

[30] Cruz-Roa, A. ; Diaz, G. ; Gonzalez, F.: A framework for semantic analysis of

histopathological images using nonnegative matrix factorization. In: Computing

Congress (CCC), 2011 6th Colombian, 2011, S. 1 –7



130 Bibliography
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