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Abstract 

Excised human skin can be used as a model to assess the potency, immunogenicity 

and contact sensitivity of potential therapeutics or cosmetics via the assessment of 

histological damage. The current method of assessing the damage uses traditional 

manual histological assessment, which is inherently subjective, time consuming 

and prone to intra-observer variability. 

Computer aided analysis has the potential to address issues surrounding 

traditional histological techniques through the application of quantitative analysis. 

This thesis describes the development of a computer aided process to assess the 

immune-mediated structural breakdown of human skin tissue. Research presented 

includes assessment and optimisation of image acquisition methodologies, 

development of an image processing and segmentation algorithm, identification 

and extraction of a novel set of descriptive image features and the evaluation of a 

selected subset of these features in a classification model. 

A new segmentation method is presented to identify epidermis tissue from skin 

with varying degrees of histopathological damage. Combining enhanced colour 

information with general image intensity information, the fully automated 

methodology segments the epidermis with a mean specificity of 97.7%, a mean 

sensitivity of 89.4% and a mean accuracy of 96.5% and segments effectively for 

different severities of tissue damage. 

A set of 140 feature measurements containing information about the tissue 

changes associated with different grades of histopathological skin damage were 

identified and a wrapper algorithm employed to select a subset of the extracted 

features, evaluating feature subsets based their prediction error for an 

independent test set in a Naïve Bayes Classifier. The final classification algorithm 

classified a 169 image set with an accuracy of 94.1%, of these images 20 were an 

unseen validation set for which the accuracy was 85.0%. The final classification 

method has a comparable accuracy to the existing manual method, improved 

repeatability and reproducibility and does not require an experienced 

histopathologist.  
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Glossary 

Term (and 

acronym) 

Definition 

Acanthocyte An red blood cell characterized by multiple spiny cytoplasmic 

projections. 

Acantholysis A loss of intercellular connections (desmosomes) between 

keratinocytes; causes change in cell shape from polygonal to round.  

Algorithm A formula or set of steps with unambiguous rules for solving a 

particular problem. 

Allergenicity The degree to which a substance can cause allergic sensitisation. 

Allogeneic  Cells or tissues taken individuals of the same species, which are 

genetically different to each other because they are derived from 

separate individuals. 

Alloreactivity The reaction of lymphocytes or antibodies with alloantigens. 

Area of Interest 

(AOI) 

The area containing the features of interest, to be used in 

subsequent analysis. 

Assay A procedure in molecular biology for testing or measuring the 

activity of a drug or biochemical in an organism or organic sample. 

Basal (relating 

to epidermis) 

The deepest layer of the epidermis, located next to the dermal-

epidermal junction. 

Benign A condition which will not metastasize and is not harmful in and of 

itself. Treatment/removal can alleviate symptoms (e.g., pressure on 

surrounding organs), and treatment/removal is considered 

sufficient for complete recovery. 

Bone Marrow 

Transplant 

(BMT) 

Delivers healthy bone marrow stem cells into the patient to replace 

damaged or defective bone marrow. 

Brightfield 

microscopy  

Microscopy techniques using a broad spectrum light source to 

visualize the specimen, where light passing through sample is 

differentially absorbed, creating contrast. 

Carcinoma A cancer of the epithelium. 

Chromacity An objective specification of the quality of a colour determined by 

hue and colourfulness (not luminance). 
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Chromacity An objective specification of the quality of a color regardless of its 

luminance determined by its hue and colorfulness  

Chromatin Nuclear material that is readily stained, consisting of the nucleic 

acids and associated proteins. 

Cleft A space or opening, made as if by splitting. 

Colourimetric 

stains 

Coloured stain that binds specifically to certain chemical/biological 

constituents in the body. 

Counterstain A stain used as contrast to another, generally more specific, stain. 

Cytology The study of cells at a microscopic level, generally via a light 

microscopy technique. 

Cytoplasm All cell contents outside of the nucleus and enclosed within the cell 

membrane. 

Cytotoxic Toxic to cells. 

Densitometry Measurements related to the optical density of a sample. 

Desmosomes Specialised cell junctions characteristic of epithelia, especially 

obvious in skin. 

Dyskeratosis Abnormal, premature, or imperfect keratinisation of the 

keratinocytes below granular cell layer; often have brightly 

eosinophilic (pink-staining) cytoplasm. 

Epithelium The internal and external lining of cavities within the body; also the 

external covering (skin). 

Field of View 

(FOV) 

The diameter of the image that can be viewed at the microscope 

eyepiece. Also refers to the rectangular area that is captured by the 

camera sensor. 

Gleason grading A grading for prostate cancer, characterizing the tumor into one of 5 

categories based on tumour differentiation. 

Graft versus 

Host Disease 

(GVHD) 

A complication following bone marrow/ stem cell transplants in 

which the transplanted material attacks the transplant patient’s 

body. 

Graft versus 

Host Reaction 

(GVHR)  

In this thesis this will be used to refer to the skin reactions created 

in the skin explant assay which mimic cutaneous GVHD. 

Grey-level co-

occurrence 

matrix (GLCM) 

A matrix representing the spatial relationship between grey levels of 

neighbouring pixels. 
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Ground truth The correct/desired output (i.e., truth) for an image analysis 

algorithm. Originally a term from the remote sensing community, 

reflecting the truth obtained from a ground-based survey. 

Haematopoietic Associated with the formation of blood or blood cells in the body. 

Haematopoietic 

stem cell 

A stem cell from which red and white blood cells evolve. 

Haemotoxylin 

and Eosin (H&E) 

The popular staining method in histology, widely used stain in 

medical diagnosis. 

Histology The anatomical study of microscopic structure of plant and animal 

cells and tissues. In this thesis it will only be used to refer to animal 

tissue. 

Histopathology The application of histology for disease diagnosis. 

Human 

Leukocyte 

Antigen (HLA) 

Any of the numerous antigens (substances capable of stimulating an 

immune response) involved in the major histocompatibility complex 

in humans. 

Immunogenicity The ability of a particular substance, such as an antigen or epitope, 

to provoke an immune response in the body of a human or animal. 

Immunohistoche

mistry (IHC) 

The process of localizing antigens (e.g. proteins) in cells of a tissue 

section exploiting the principle of antibodies binding specifically to 

antigens in biological tissues. 

Immunomodulat

ory 

Capable of modifying or regulating immune functions. 

in vitro Experimentation performed not in a living organism but in a 

controlled environment such as a test tube. 

in vivo Biological process or experiment within a living organism. 

Keratinocyte The predominant cell type in the epidermis specialised to synthesise 

keratin. 

k-means A widely known and used unsupervised classification algorithm 

which clusters data into k clusters while minimising the intra-

cluster variance. 

L*a*b* 

Colourspace 

A colourspace made up of luminance (L*), red-green chromacity (a*) 

and yellow-blue chromacity (b*) 

Lymphocyte A type of leukocyte (white blood cell) that is of fundamental 

importance in the immune system. 
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Maculopapular 

rash 

A rash characteristic of GVHD which contains both macules and 

papules, a macule being a flat discoloured area of the skin, and a 

papule a small raised bump.  

Major 

Histocompatibili

ty Complex 

(MHC)  

A set of molecules displayed on cell surfaces that are responsible for 

lymphocyte recognition and "antigen presentation". 

Malignant A condition which will eventually lead to death if untreated. 

Malignant conditions tend to metastasize, grow uncontrollably, and 

lack proper tissue differentiation. 

Markup The specification of ground truth, often obtained from an expert by 

the physical marking of an image for regions of interest, etc. 

Mathematical 

Morphology 

(MM) 

A theory and technique for the analysis and processing of 

geometrical structures, based on set theory, lattice theory, topology, 

and random functions. 

Mononuclear 

cell 

A collective term for certain leukocytes and phagocytes cells in the 

haematopoietic system. 

Morphology The form or structure of an organism or one of its constituent parts, 

the term does not include the function. 

Necrosis The death of most or all cells in tissue (or an organ due to disease or 

injury. 

Nucleus Membrane bound structure inside cell containing hereditary 

information. 

Optical Density 

(OD) 

Provides a linear relationship between image intensity and stain 

density, based on Lambert-Beer’s law describing the intensity of 

light transmitted through a specimen. 

Pathophysiology The functional changes associated with a disease or an injury. 

Posterior 

Probability 

The probability of assigning observations to groups given the data. 

Prior Probability The probability that an observation will fall into a group before you 

collect the data. 

Scalar In linear algebra, real numbers are called scalars and relate to 

vectors in a vector space through the operation of scalar 

multiplication. 

Segmentation The process of delineating an image object. 
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Sensitivity A measure of the proportion of positives that are correctly identified 

as such. 

Skin Explant 

Assay 

An in vitro test producing GVHR using a skin biopsy. 

Specificity A measure of the proportion of negatives that are correctly 

identified as such. 

Spongiosis An increase of fluid between the epidermal cells, causing the sells to 

splay apart in the upper epidermal layers (resembling a sponge). 

Stroma Connective tissue. 

Supervised 

Learning 

A machine learning technique for deducing a function from training 

data. 

T cell An important type of white blood cell in the immune system.  

Thresholding A simple procedure to segment an image by setting all pixels whose 

intensity values are above a threshold to a foreground value and all 

the remaining pixels to a background value. 

Toxicity The degree to which a substance can damage an organism. 

Transform A procedure that changes one function into another. 

Vacuole 

(vacuolisation) 

A small cavity in the cytoplasm of a cell, bound by a single 

membrane and containing water, food, or metabolic waste. 

Vacuolisation is the state of having become filled with vacuoles. 

Vector A one dimensional array. 

Wrapper 

methodology  

A method for feature selection which searches for the optimal 

feature subset for a particular classifier and domain. 
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Chapter 1 Introduction 

This thesis describes the development of a digital image analysis process to assess 

the immune-mediated structural breakdown of human skin tissue. While 

optimised and modified versions of the developed process may be applicable in a 

number of other applications in digital histopathology, particularly those 

concerned with analysis of epithelial tissue, this research looks specifically at the 

assessment of histological damage in haematoxylin and eosin stained human skin 

samples. In this chapter the motivation for the research is introduced, some of the 

issues associated with traditional histopathology approaches are highlighted and 

the potential benefits of applying digital image analysis to this field are presented. 

This thesis is being submitted as the research element for an Engineering 

Doctorate, which by its nature addresses an industrial engineering challenge. The 

industrial context, including background on the industrial partner, Alcyomics Ltd, 

is given in this introductory chapter, along with the commercial and industrial 

drivers for the research. An overview of the multi-disciplinary nature of this 

project and the general research approach taken is provided, and the main 

research contributions summarised. Finally, a summary of the organisation of this 

thesis is provided.  

1.1 Academic Drivers for Research Project 

Histopathology refers to the microscopic examination of human cell tissue for the 

study and diagnosis of disease through expert medical interpretation. Traditionally 

in histopathology the patient diagnosis or prognosis is made based on the 

appearance of specific features within stained tissue biopsies viewed through a 

microscope. Manual grading methods are time and labour-intensive, and the lack 

of quantitative characterisation can lead to issues relating to subjectivity and inter 

and intra-observer variability (Farmer et al., 1996; Standish et al., 2006; Van 

Putten et al., 2011).  

Digital image analysis has the potential to address some of the issues associated 

with traditional histopathological methods. Automated software to analyse 

characteristic features of damage quantitatively and classify the grade of damage, 
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provides the opportunity to reduce the analysis time required from the 

histopathologist, and in some cases allow a less experienced operator to carry out 

the analysis. A major benefit of using image analysis for histopathological analysis 

and grading is the opportunity to capture and use quantitative information. This 

could replace the histopathologist by providing a grading decision; however a 

more likely use would be to aid the decision-making process of the 

histopathologist, researcher or clinician. Although semi-quantitative grading 

criteria incorporating procedures such as cell counting are sometimes used in 

manual histopathology, image analysis offers the opportunity to significantly 

increase the amount of quantitative data which can be extracted from the image 

and analysed,  with the ultimate aim being to improve the repeatability, 

reproducibility, objectivity and accuracy of the process.  

Automated image processing and analysis have been used in other medical 

disciplines including cytology and radiology for a number of years, however the 

general uptake of these methods in histopathology has only occurred recently as a 

consequence of the development of high quality digital slide scanning technology, 

the increased level and availability of computing power and the development of 

new image analysis algorithms that are able to handle the inherent complexity in 

tissue images. Following the widespread adoption of digital scanning systems in 

pathology, the development of automated image analysis procedures for scanning, 

segmentation and ultimately diagnosis has become the focus of significant 

research in recent years (Gurcan et al., 2009). Theoretically it is now possible for 

the entire histopathology assessment process to be automated, including slide 

digitisation, image processing and enhancement, identification of key features and 

final diagnosis. In practice, individual parts of the process tend to be automated 

and combined with some manual intervention, often identifying non-routine or 

complex cases for manual assessment. There are a number of examples in the 

literature which propose automated image analysis as a useful aid to 

histopathological and clinical diagnosis. They include a diagnostic tool for HER-2 

status used to support treatment decisions in breast cancer (Dobson et al., 2010) 

and an automated workflow for staining, slide-scanning, and image analysis to 



Chapter 1 Introduction:  

Academic Drivers for Research Project 

18 

explore cancer biomarkers which can be used in conjunction with traditional 

pathology to support drug discovery and development (Shinde et al., 2014).  

Although there is a growing body of work relating to image segmentation, feature 

extraction and classification in digital histopathology, the majority of research 

publications in the area relate to cancer pathology and have been developed for 

specific applications. In particular there are very few papers describing 

segmentation (identification) techniques for application to epithelial tissue such as 

human skin, and none specifically for epidermis tissue. The challenge of applying 

image analysis to histopathology relates to the high structural complexity of the 

images, the biological variation and the complex sample preparation procedures. 

An additional challenge of this research is that the skin tissue must be identified in 

various states of structural breakdown.  

In histopathology mathematically driven feature extraction, based for example on 

texture or wavelets, can be used to provide a representation of spatial information 

for use in a classification algorithm. Such mathematically driven features can be 

difficult for a histopathologist or clinician to interpret as they do not relate to 

traditional histological criteria, which can in turn lead to mistrust and a 

subsequent slow uptake of the developed technologies. An alternative approach is 

to use object level features based on shape and size which have a stronger 

association with traditional histopathological grading criteria. Quantitative object 

based features offer an opportunity to build on traditional histological criteria and 

domain knowledge by analysing shape and size more accurately and in greater 

detail. In addition, using a computer based system enables existing methods such 

as counts of abnormal cells to be carried out much more quickly and accurately. 

There is a significant amount of published research presenting classification 

algorithms for use in the histological diagnosis and grading of cancer. Grade based 

classification accuracies in the literature vary significantly, and often accuracy for a 

cancer/ non-cancer decision is much higher than the accuracy when discriminating 

between different grades.  For instance, Keenan  et al (2000), reported accuracies 

of between 62.3%-98.7% for discrimination of different grades in haematoxylin 

and eosin (H&E) stained cervical tissue and whilst Tabesh et al (2007) could 
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discriminate between cancer and non-cancer in 96.7% of prostate cancer tissue 

slides, discrimination between low and high cancer grades was much lower at 

81%. Consistent discrimination between different grades of cancer is a challenge in 

histopathology, which researchers are attempting to tackle using ever more 

complex ensemble methods consisting of multiple classifier types. A different 

approach has been adopted in this research, with the focus being to extract 

relevant features, thus enabling a simpler classification method to be used 

successfully. The use of these features to train a Naïve Bayes classification 

algorithm, and the optimisation, testing and validation of that system formed the 

final part of the research. 

1.2 Industrial Partner – Alcyomics Ltd 

Alcyomics Ltd provides screening services and novel solutions for product safety, 

potency, toxicity and efficacy testing in the pharmaceutical, chemical and cosmetics 

industries. The core technology is Skimune™, a laboratory test (or assay) which 

uses skin samples from healthy volunteers to carry out safety and efficacy 

assessments of novel compounds and drugs. These compounds may cause allergic 

or immunogenic responses, contact sensitivity or inflammatory damage in the 

tissues of the body, which is mimicked in the skin response. The Skimune assay is 

based on an approach originally used to predict the occurrence and study the 

pathophysiology of graft versus host disease (GVHD), a common complication 

following bone marrow transplants (BMT) (Vogelsang et al., 1985; Sviland et al., 

1990). Alcyomics was spun out from Newcastle University in 2007 to exploit the 

commercial potential of the assay in the pharmaceutical, chemical and cosmetics 

industries.  

1.3 Research Problem and Commercial Motivation for Alcyomics Ltd 

In the Skimune assay, a sample of human skin is removed and co-cultured with 

immune cells in the presence of the test compound. Any immune response caused 

by the test substance creates an immune reaction in the skin, which is assessed 

and graded for severity using histopathology. Traditionally in histopathology, a 

trained specialist examines a small sample of sectioned and stained tissue under 

the microscope, and uses qualitative analysis guided by a descriptive grading scale 
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to make a diagnosis. The requirement for a specialist limits the reach of 

technologies which use histopathology, as not all potential customers have access 

to a histopathologist with the relevant experience. For Alcyomics to expand their 

business beyond a service based model to a product, technology or platform 

model, the expert knowledge of the in-house team must be captured and made 

available for use by others in an accurate, reliable and reproducible way. The 

highly regulated industries which Alcyomics are targeting demand that any assay 

used in their research, development and product testing is reliable, repeatable, 

objective and validated.  Moving to an automated computer-based grading 

procedure will improve the repeatability and objectivity of the assay output by 

removing the subjectivity associated with human interpretation of the qualitative 

grading criteria. Some of the issues associated with the current manual grading 

system, and the potential benefits offered by changing to an automated, computer-

aided system are summarised in Table 1.1. 

Table 1.1 Summary of limitations and issues with manual grading in histopathology and 
potential for computer-aided grading to solve these issues. 

Manual Grading Limitations Potential Improvement offered by 

Computer Aided Grading 

Required operator training Can be run by non-expert 

Labour intensive Potential for high throughput 

Qualitative Quantitative 

Subjective Objective 

High inter/ intra operator variability Improved repeatability 

 

1.4 Project Aim and Objectives 

The overall project aim was to develop an automated system to enable non-expert 

users to grade histological skin damage in the Skimune assay with a comparable 

level of accuracy, repeatability and reproducibility to that achieved through 

manual grading. 
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More specifically, the project objectives were defined as: 

 Compare different image acquisition methods and determine the most 

appropriate in terms of resolution and practicality. 

 Identify the specific histological features associated with damage in the 

Skimune assay and extract quantitative measurements associated with those 

features.  

 Train a classification algorithm using the extracted features so that it is capable 

of identifying positive examples of histological skin damage with high 

sensitivity and specificity and which is capable of handling the normal variation 

within the skin images. 

1.5 Industry Drivers for Research Project 

1.5.1 Pharmaceutical Industry Drivers 

The pharmaceutical industry is facing considerable challenges, including low 

revenue growth, the arrival of the patent cliff, a faltering product pipeline, poor 

stock performance, public concerns over transparency and ethics, and high 

attrition rates during development (DiMasi et al., 2010). Drug development is an 

expensive process, with the main factors affecting cost being time and risk. High 

failure rates are a major source of risk in the pharmaceutical industry, with many 

drug candidates rejected at late stages of development due to issues of toxicity and 

lack of efficacy (Kola, 2008). As a result of these issues, there is a growing drive in 

the industry to identify promising candidates early, and to ensure toxic or non-

efficacious candidates fail early in the process. The identification of products with a 

high chance of failure may use in silico prediction, pre-clinical laboratory screening 

or animal models. 

Within the pharmaceutical industry, skin explant assays can be used to provide 

information on mode of action, toxicity, adverse reactions, safety and efficacy of 

therapeutics, prior to first in man clinical trials. The data generated can be 

analysed to investigate dose response and it also offers the potential to implement 

a stratified medicine approach to patient selection in clinical trials by identifying 

patient groups who respond differently to particular drugs. Through such in vitro 
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technology, it may be possible to minimise the risks to patient safety, reduce the 

financial risk associated with drug development, shorten development times and 

reduce costs due to costly animal trials.  

The Skimune skin explant assay developed by Alcyomics is an alternative to the 

animal models traditionally used for pre-clinical safety testing. Alternative 

procedures are required as animal models are expensive and do not always predict 

human response accurately (Hackam and Redelmeier, 2006; Perel et al., 2007). 

One reason proposed by Sena et al (2010) for the poor conversion of successful 

animal studies to drug approvals is bias against publishing negative results in the 

pharmaceutical industry.  

One example of the potential impact of the skin explant test is provided by the 

TGN1412 phase I trial in 2006, where six human volunteers suffered multi-organ 

failure after being given a dose of CD28 superagonist antibody five hundred times 

smaller than that found safe in animal studies (Attarwala, 2010). The TGN1412 

drug, when tested using the skin explant assay by Alcyomics, gave a positive result 

indicating the likely immunogenicity in humans. 

1.5.2 Cosmetics Industry Drivers 

In the cosmetics industry, Alcyomics are taking advantage of a move to replace and 

reduce the use of animal models, as typified by the 7th Amendment to the 

Cosmetics Directive (Directive 76/768/EEC2), which prohibits all animal testing 

for cosmetics and toiletries. This Directive requires that alternative methods are 

introduced for a range of toxicological end points, including testing for skin 

sensitisation. The skin explant assay offers an alternative to animal testing for 

cosmetics that require human safety testing and could therefore be described as 

part of the 3R movement. The 3R movement, first described by Russell and Burch 

(1959), aims to refine, reduce and replace the use of animal models in scientific 

research. The market for 3R tests is likely to increase significantly in the next 5-10 

years, due to a combination of macro-environment forces including EU legislation, 

UK government programmes, high costs of animal testing and strong public 

opinion (particularly regarding cosmetics testing).   
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The current procedure has limited throughput due to skin supply and manual 

measurement, and the subjectivity of assessment may concern industry regulators. 

Automating the assay read out, reducing bias, and improving the objectivity of the 

assay will allow Alcyomics to compete with some of the other alternatives to 

animal testing being used in the cosmetics industry such as artificial skin models 

and in silico prediction methods. 

1.5.3 Chemical Industry Drivers 

There is a drive in the chemical industry, typified by the REACH system for 

controlling chemicals in Europe, to understand the risks associated with new and 

existing chemicals on the market. REACH is a European Union regulation 

concerning the Registration, Evaluation and Authorisation of CHemicals. The 

REACH proposal requires industry to register all existing and future new 

substances with a new European Chemicals Agency.  Part of the registration 

process requires the submission of data on toxicological properties of the chemical 

and any risks it may pose to human health. One of the aims of REACH is to promote 

the use of alternative methods in the chemical industry to assess the hazardous 

properties of substances. 

In the chemical industry, Skimune could be used to test the immunogenicity, 

potency and toxicity of novel chemicals and identify those likely to create 

hypersensitivity responses. An automated, objective skin explant assay could serve 

as a useful, high throughput tool in this industry. 

1.6 Research Field 

This EngD research project has involved the application of image analysis and 

classification methods from the fields of mathematics, engineering and computing, 

to a biological process. The project has been approached from an interdisciplinary 

perspective, combining knowledge and experience from a range of fields to 

develop the best solution to this industrial problem. It was necessary to gain a full 

understanding of the biology of skin reactions in the Skimune assay, including the 

nature of the different tissue types and cells within the skin, typical biological 

variation, and the appearance and typical features of a Graft versus Host Reaction 
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(GVHR). An understanding of the traditional methods used in histopathology and 

their limitations was also essential when designing a new approach to the grading 

of the skin explant assay. Having understood the problem, knowledge of the 

mathematical tools necessary to automate a complex human process was required; 

these tools can be split into data acquisition, image processing, and feature 

selection and classification. Figure 1.1 summarises the main areas of importance to 

the research and how each area is linked to the research project. Areas relating to 

biology are shown in red and those relating to mathematics or engineering are 

shown in blue. 

 

Figure 1.1 Diagram showing the key areas in which knowledge is required for the project and 
the specific details of knowledge required. 

1.7 Research Methodology and Approach 

The particular dataset of images used in this study and the needs of the industrial 

partner guided the choice of research methodology and approach. The large degree 

Traditional 
Histopathology 

•Knowledge of strengths/ weaknesses of current 
methods. 

•Knowledge of industry requirements for grading. 

GVHR in 
Skumune 

•Knowledge of critical histological features in GVHR and 
relationships. 

•Ability to grade manually and spot artefacts. 

Image 
Acquisition 

•Knowledge of industry-standard acquisition methods 
and appreciation of their strengths/ weaknesses. 

Image Processing 

•Knowledge of key methods for image pre-processing 
(contrast enhancement, colour normalisation), 
segmentation, morphological processing and feature 
extraction. 

•Ability to implement image processing methods in 
MATLAB. 

Feature Selection 
and 

Classification 

•Knowledge of different feature selection and 
classification algorithms and appreciation of their 
strengths, weaknesses and underlying assumptions. 

•Ability to implement feature selection and classification 
methods in MATLAB. 
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of variation within the images which is not related to the changes associated with 

histological damage presented a major challenge in this research. Although the 

current trend in machine learning and image analysis is moving away from 

mimicking expert systems towards a more data driven approach (Bishop, 2010), 

this research attempts to show that there is value in combining expert knowledge 

with computational numerical capability and accuracy.  

The human method for carrying out the assessment of histological grading is 

hierarchical. It proceeds by first locating the specific regions of interest within the 

image, then identifying the specific features before making an estimate of their 

extent. The human approach has been used as a guide to locate the regions of 

interest and identify the features of interest. It is after this point that the strengths 

of the computer system are utilised, extracting a large number of size and shape 

based statistics describing the features which a human would not be capable of 

doing. Wrapper based feature selection and finally the automated training of a 

classification model were used to identify the most useful features without any 

human bias to create the most accurate classifier possible.  

The thesis does not attempt to present new individual image processing or 

classification methods, but rather describes the novel application of a variety of 

image processing, segmentation, feature extraction and classification techniques to 

a new and challenging industrial problem. The research is not presented as a 

computer sciences thesis as are many in the field of image analysis, instead the 

general approach has been to design an industrially useful solution based on a 

deep understanding of the biological system and process. Computing is used to 

enhance the parts of the process in which humans are weakest, but the new 

process learns from the parts of the human approach which are well adapted. In 

summary, the research has aimed to design of a system to capture expert 

histological knowledge and apply it in a reproducible manner through a computer-

based algorithm. 
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1.8 Research Significance and Contribution 

In this thesis, an image analysis process for the automated grading of histological 

skin damage is described. The overall industrial goal is to create a solution for 

Alcyomics which enables the output in the Skimune assay to be assessed in an 

objective and repeatable manner without an expert histopathologist. The main 

academic contributions of this work are three-fold: 

 First, a method has been developed which is able to identify epidermis tissue 

from H&E stained skin sections showing varying degrees of histopathological 

damage. Although many methods have been described for segmentation of 

histology images, most are for cell, gland or nuclear segmentation rather than 

tissue segmentation. The epidermis segmentation algorithm is a useful addition 

to this small but growing area of research and could provide a framework for 

segmentation of other epithelial tissues. The author is unaware of any 

segmentation methods that have been applied to images showing severe 

histological damage such as graft versus host type reactions. This part of the 

work has been published in the peer reviewed open access academic journal, 

BMC Medical Imaging, where it has been classified as highly accessed. The 

paper is available online at 

http://www.biomedcentral.com/content/pdf/1471-2342-14-7.pdf. 

 Second, a novel set of object and spatial level quantitative features have been 

defined and a method for their extraction created. The extracted feature 

measurements are relevant to the expert grading criteria for histological 

damage but add a quantitative dimension. While this has direct application to 

the grading the Skimune assay, this set of feature measurements could also be 

applied in an automated version of the Lerner grading used in the diagnosis 

and prediction of GVHD. 

 An approach to histopathological tissue classification, which combines expert 

domain knowledge in the design of potential features, with a fully objective 

feature selection and classification approach. 

http://www.biomedcentral.com/content/pdf/1471-2342-14-7.pdf
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1.9 Ethics 

All postgraduate research projects require ethical review by both the university, as 

part of the project approval process, and by funding bodies such as the EPSRC. 

Newcastle University Ethics Committee requires ethical approval in cases where 

research involves human subjects (including the use of organs, tissue or 

information) or certain live animal subjects. The Alcyomics research project uses 

skin tissue samples from NHS patients for research. It was therefore necessary to 

complete an ethics approval form at the start of the project, so that it could be 

reviewed by the Ethics Committee.  

The 2004 Human Tissue Act provides a legislative framework around the removal, 

use, storage and disposal of human tissue, sets out the requirements for 

participant consent, and the mechanism of regulation by the Human Tissue 

Authority. Alcyomics Ltd had external approval from the local ethics research 

committee for the use of human bodily samples in research and development in 

place prior to the start of the EngD project. This approval was for the use of skin 

and blood samples in the development of an in vitro skin safety assay for the 

detection of immunogenicity and hypersensitivity reactions to novel compounds 

and drugs. The approval was granted for five years from November 2010, on the 

basis that all patients gave informed consent for their tissue to be stored and used 

for commercial research. The tissue is stored in a HTA licensed tissue bank 

(Newcastle upon Tyne Research Tissue Bank, Licence No. 12048). 

1.10 Organisation of Thesis 

Chapter 1 introduces the industry partner, research problem, industry drivers for 

the research and highlights the research significance and general approach.  

Chapter 2 presents the background theory required for full understanding of the 

thesis in terms of: human skin histopathology; microscopy and grading in 

histopathology; the Skimune assay; digital image processing and analysis theory; 

and theory of machine learning, feature selection and classification.  
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Chapter 3 examines the relevant published literature and current state of the art in 

the research area. The challenges of grading in histopathology and potential 

solutions are examined, and some of the technologies competing with the Skimune 

assay are described. The application of image processing and analysis techniques 

in histopathology is surveyed, focusing on the specific areas of colour 

normalisation, segmentation (with particular emphasis on the segmentation of 

epithelial tissues), features for histological assessment, automated grading, and 

assessment of performance through the use of a ground truth. 

Chapter 4 is focussed on Image Acquisition, and gives technical background 

information, a description of the systems tested and an analysis of the suitability of 

each system for the project.  

Chapter 5 describes the development of new processes for the hierarchical 

segmentation of the sample, the relevant tissue types and finally the features of 

damage. The final segmentation algorithms are described fully in this chapter. An 

analysis of the key epidermal segmentation stage is presented, using a manual 

segmentation to determine the sensitivity, selectivity and accuracy of the 

algorithm. 

Chapter 6 describes the extraction of a set of feature measurements, the pre-

processing of the feature vector dataset, the selection of an appropriate feature 

subset and the training and testing of the classification algorithm.  

Chapter 7 includes a general discussion of the research contributions, and a set of 

suggestions for future work to improve and extend the current research. 
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Chapter 2 Background and Theory 

This chapter presents the background and theoretical knowledge that underpins 

the development of an automated image analysis and classification procedure for 

the grading of histological reactions in human skin. Background theory in a 

number of areas is introduced in this chapter to explain both the nature of the 

histological reactions and the potential approaches for image analysis and 

classification that can be applied. A general introduction to the histopathology and 

the structure of human skin is provided in sections 2.1 and 2.2, prior to explaining 

the skin explant assay in section 2.3. Section 2.4 describes typical image 

acquisition methods used in digital histopathology and the background and 

mathematical basis to the relevant image processing and analysis techniques used 

in the research. Section 2.5 gives a general introduction to the field of machine 

learning, with particular emphasis on feature selection, supervised classification 

techniques, the training and evaluation of classification models and the 

classification algorithm used in this research.  

2.1 Histology and Histopathology  

Histology is the microscopic study of plant and animal cell tissue and 

histopathology refers to the use of histology for the study and diagnosis of disease 

through expert medical interpretation. Histopathology can be used in the diagnosis 

of disease and is the “gold standard” in cancer diagnosis (Rubin et al., 2007). It is 

also used to assess the severity and progression of a disease or to research disease 

mechanisms. Traditional histopathology relies on the examination of tissue 

samples obtained through biopsy by an expert histopathologist. A biopsy is 

performed by removing a small piece of tissue (often from a lesion or tumour) 

surgically. Commonly used procedures for biopsy include excision, punch biopsy, 

shave biopsy and curettage biopsy (Kempf et al., 2008). The punch biopsy used in 

the skin explant assay involves the removal of a 3-4mm diameter cylindrical plug 

of skin tissue.  

2.1.1 Sample Preparation 

The tissue from the biopsy must be prepared before it can be assessed by a 

histopathologist. This preparation stage ensures the sample is stable, thin enough 
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to be examined under the microscope and has sufficient contrast between the 

structures of interest. Although there are a variety of methods used in 

histopathology, the following method is typical of the preparation used in the skin 

explant assay. The tissue is first cut into small pieces, and then chemically fixed 

using a formaldehyde solution to preserve the sample while retaining the original 

tissue morphology. The fixed sample is then embedded in paraffin to harden; this 

enables it to be sectioned into slices 3-10 microns thick using a specialised 

automated instrument called a microtome. The tissue cross sections can then be 

mounted on to glass slides before removing the paraffin from the tissue so it is 

ready for staining. 

2.1.2 Colourimetric Staining and Brightfield Microscopy 

Many biological specimens do not have sufficient contrast for structural details to 

be easily visible under a microscope. However, the tissue can be stained with 

colourimetric stains to improve the contrast. A variety of light-absorbing stains can 

be used to visualise cells and cell constituents, and they are essential for the 

recognition of tissue types and morphological features. The method of 

haematoxylin and eosin (H&E) staining has been used for over a century and 

remains one of the most widely applied in histology for reasons of cost, availability, 

simplicity and historical precedent (Gartner et al., 2007). Haematoxylin stains the 

chromatin in the nuclei of cells a blue/purple shade. Eosin is a counterstain that 

binds non-specifically to proteins in the cytoplasm, connective tissue and other 

extracellular substances, staining them various shades of pink. Alternative stains 

can be used to stain the tissue selectively, for instance Oil Red O is used to stain 

lipids red and nuclei blue/ black, and Prussian Blue is used to stain iron bright 

blue.  

Once the tissue samples have been sectioned and stained they are ready to be 

examined under a microscope. Although newer techniques such as digital slide 

scanning are becoming more common in histology to visualise tissue, the more 

traditional technique of brightfield microscopy is still commonly used for the 

visualisation of H&E stained tissue and is the current method of assessment used 

in the Skimune assay.  
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In brightfield microscopy the sample is placed on a stage above the light source 

and light is focussed onto the sample by a condenser lens placed between the light 

source and the sample. Light which is not absorbed by the sample is captured by 

an objective lens above the stage, which magnifies the light before transmitting it 

through an eyepiece into either the operator’s eyes or onto an optical sensor. The 

sample appears dark in contrast to the bright viewing field, hence the name 

“brightfield”. Brightfield microscopy images are generally acquired using either a 

digital camera attached to a microscope, a specialised microscope imaging system, 

or a digital slide scanner.  

The simplest systems consist of a digital camera mounted on a standard 

microscope. This was the first digital set-up adopted in many histology labs, due to 

the low cost and simplicity. In addition to the quality of camera, the accuracy of the 

system set-up can also have a large impact on the image resolution in these 

systems. The main issues with such systems are maintaining consistency in terms 

of lighting and focusing, and the challenge of creating a whole slide image. To 

address the issues with the simple camera/ microscope systems, more complex 

specialised microscope-based systems have been designed. Motorised stages on 

which the sample is mounted can be linked with software to allow adjacent fields 

of view to be captured by automatically moving the microscope stage to a new 

position beneath the fixed optics. The stored stage positions can then be used to 

join together individual field of view images to create a single whole slide image. 

These systems often come with additional functionality and software to allow 

auto-focussing, background correction, and reproducible illumination and contrast 

setting. Digital slide scanners convert glass microscope slides to high resolution 

whole slide digital images using a completely automated process.  

2.1.3 Grading in Histopathology 

In manual histopathology a medical specialist known as a histopathologist will 

examine the tissue and look for the presence of features associated with a 

particular disease. Scoring and grading systems with detailed criteria are then 

used to determine the severity of the disease. For example, grading systems in 

cancer histopathology are used to assess the extent of the disease, estimate patient 
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prognosis and determine the optimal treatment. Grading subdivides a diagnostic 

category to assist clinicians in making decisions about treatment, and is commonly 

used when assessing tumours and inflammatory conditions. The primary purpose 

of most grading systems is to help predict the biological behaviour of a disease and 

direct clinicians to the appropriate treatment.  

2.2 Structure of human skin 

The skin is the largest organ in the human body and is the primary interface 

between the body and its environment. It has multiple functions including 

protection, sensation, thermoregulation, synthesis, storage, excretion and 

absorption (Gartner et al., 2007). The anatomy of the skin reflects this functional 

complexity and comprises many different cell types, extracellular structures, and 

specialised appendages such as hair follicles and sweat glands. There is significant 

regional variation in the skin in terms of skin thickness, composition and 

appendage density; the appearance and structure of normal skin also varies 

according to the age, sex and ethnicity of the subject (Freinkel and Woodley, 2001). 

The skin comprises three separate layers, the epidermis, dermis and hypodermis, 

with the epidermis being the layer closest to the surface. The main features of the 

three layers are described in Table 2.1. As this research involves images showing 

only the epidermis and dermis, and is primarily concerned with changes in the 

epidermis and at the dermal–epidermal junction (DEJ), these areas will be 

described in more detail.  
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Table 2.1 Description of the main features, cell and tissue types in the three main skin layers 
(Cox and Coulson, 2010) 

Skin Layer Description Main cell and tissue types 

Epidermis A keratinised, stratified, 

continually renewing epithelium. 

Mainly keratinocytes, some 

melanocytes, Langerhans cells, and 

Merkel cells 

Dermis A dense, fibrous connective tissue 

consisting of a thin papillary and 

thicker reticular layer. 

Extracellular collagen fibers, ground 

substance, and fibroblasts. Mast 

cells, lymphocytes and macrophages 

Hypodermis Adipose/fibrous connective tissue Adipocytes (fat cells), fibrous tissue. 

 

2.2.1 The Epidermis 

The thin outer layer of the skin, known as the epidermis, is a type of stratified 

squamous epithelium. Epithelium is a type of animal tissue used to line cavities 

and surfaces in the body; stratified squamous epithelium comprises multiple 

layers of flat, plate-like epithelial cells resting on a basement membrane. The 

epidermis consists predominantly of structural cells known as keratinocytes, 

which synthesise a protein called keratin. The keratinocytes are organised into 

several epidermal layers according to their state of maturity. Langerhans cells are 

present in the epidermis, and are a type of dendritic cell which have a role in the 

skin’s immune system. Merkel cells in the epidermis are thought to have a sensory 

touch function, and are difficult to visualise, requiring a specific 

immunohistochemical stain. Migrating cells such as lymphocytes, which are an 

essential component of the human immune system, may also be present in the 

epidermis transiently in diseased states. The epidermis regenerates in an orderly 

fashion starting with cell division of keratinocytes in the basal layer (stratum 

basale) of the epidermis. In the basal layer, keratinocytes are columnar in shape 

and attached to surrounding cells by structures known as desmosomes. 

Melanocytes are also present in the basal cell layer and are the cells responsible for 

the production of melanin, which protects skin from ultraviolet radiation.   

The next layer is the spinous layer (stratum spinosum), so-called because of the 

‘spiny’ appearance of the desmosome connections between keratinocytes. The 
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spinous cells change from a polyhedral shape near the basal layer to a larger, 

flatter shape near the granular layer. The granular layer (stratum granulosum) is 

characterised by cells with visible granules in the cytoplasm and once these cells 

die, they become keratinised and form the tough, outermost layer of skin, the 

horny layer (stratum corneum). The four layers of the epidermis and the changing 

shape of the cells throughout the layers can be observed in Figure 2.1. (Gartner et 

al., 2007)   

 

Figure 2.1 H&E stained section of normal skin at x40 magnification showing the typical layers 
within the epidermis: the basal cell layer (stratum basale); the spinous layer (stratum 
spinosum); the granular layer (stratum granulosum): the horny layer (stratum corneum). Image 
credit: Lutz Slomianka 1998-2009, Blue Histology (http://www.lab.anhb.uwa.edu.au/mb140/) 

2.2.2 The Dermal-Epidermal Junction. 

The junction of the epidermis and dermis, known as the dermal-epidermal junction 

(DEJ) is a type of basement membrane. Basement membranes are complex multi-

layered structures found at the interface between cell sheets or between cells and 

connective tissue. The DEJ is important for the mechanical support of the 

epidermis, the anchoring and adhesion of the two layers, and the transport to and 

stratum spinosum 

stratum basale 

stratum granulosum 

stratum corneum 

dermis 

epidermis 

http://www.lab.anhb.uwa.edu.au/mb140/
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from the epidermis (Gartner et al., 2007). The complex variety of proteins present 

in this layer can affect proliferation, migration and differentiation of keratinocytes. 

The basal layers of the epithelium are folded to form dermal papillae where the 

dermis tissue forms projections into the epidermis, giving a characteristic wave-

like appearance to the DEJ which can be seen in Figure 2.2. 

 

Figure 2.2 H&E stained section of normal skin at x10 magnification showing the epidermis and 
dermis. The dermal-epidermal junction is highlighted and has clear projections caused by 
folding of the layers. 

2.2.3 The Dermis 

The dermis is a tough, supportive cell matrix comprising a thin papillary and thick 

reticular layer, as shown in Figure 2.2. The papillary dermis connects with the 

epidermis and consists of thin, collagen fibres which stain light pink in traditional 

H&E staining. The collagen fibres, which make up 70-80% of the dermis, are 

loosely arranged in the papillary layer, but form a dense network in the reticular 

layer (Fraga, 2012). This gives the two dermal layers different textures within the 

image. In addition to the collagen fibres, the dermis is made up of collagen-

producing fibroblasts, elastin, structural proteoglycans, immunocompetent mast 

DEJ 

Reticular dermis 

Papillary dermis 
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cells and macrophages (Gartner et al., 2007). Groups of cells clustered throughout 

the dermis stain in a similar manner to the keratinocytes in the epidermis with 

H&E stain, and can therefore appear similar to a small patch of epidermis tissue.   

2.2.4 The Hypodermis 

The hypodermis lies immediately below the dermis and mainly consists of fat cells 

(called adipocytes), nerves and blood vessels. The fat cells are organised into 

lobules, which are separated by structures called septae containing nerves, larger 

blood vessels, fibrous tissue and fibroblasts. This layer will not be discussed again, 

as the specific skin damage that is the subject of this thesis does not cause changes 

in this layer. The hypodermis tissue layer is not captured in the biopsy samples 

being used in this research, and so there is no requirement to eliminate it from the 

analysis. 

2.2.5 Histopathology of the Skin 

Skin diseases tend not to have a single cause, unique to the particular disorder, and 

as a consequence skin disease definitions often rely on a complex combination of 

clinical, histopathological, immunopathological and genetic features (Cox and 

Coulson, 2010). However, four broad groupings can be defined (Fraga, 2012): 

 Genodermatoses – skin changes associated with abnormal development of the 

epidermis. 

 Inflammatory dermatoses – a broad category of skin diseases associated with 

inflammation. 

 Infections and infestations – skin diseases caused by external organisms such as 

bacteria, viruses or fungi (infection) or parasites (infestation). 

 Neoplasms – abnormal tissue mass due to abnormal cell proliferation which can 

be benign, premalignant (pre-cancer), or malignant (cancer).                 

The GVHRs which form the basis of this research are a form of interface dermatitis, 

where damage to the epidermis is caused by a T-cell mediated immune reaction. 

This type of reaction can be classified as an inflammatory dermatosis.  
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2.3 Graft versus Host Reactions 

In transplant operations, blood-forming stem cells are given to a patient 

intravenously to restore hematopoietic function. GVHD occurs when immune cells 

in the transplanted material mount an immunologic attack against the patient’s 

own tissues.  The skin is usually the first and most commonly affected organ in 

GVHD. The typical histological reactions found in GVHD are known as graft versus 

host reactions (GVHR). Lerner et al (1974) described the histopathology of GVHR 

in detail following the investigation of a large number of marrow graft recipients 

and investigating typical histological reactions. The study resulted in a grading 

system being established to assess the severity of the reactions and predict clinical 

outcome based on a series of histological criteria. The grading system described by 

Lerner continues to be used to assess GVHR today. The criteria utilised in the 

Lerner grading system are given in Table 2.2 as a baseline for comparison with the 

reduced set of criteria used in the skin explant assay (Table 2.3 in the following 

section). 

Table 2.2 Lerner’s histological criteria for grading GVHR 

Grade Description by Lerner 1974 

0 Normal skin 

I Focal or diffuse vacuolar degeneration of epidermal basal cells and 

acanthocytes. Lesion varies from vacuolization of basal cell cytoplasm to 

frank necrosis in the basal and suprabasal layers. 

II In addition to Grade I changes, focal and diffuse spongiosis (separation 

and intracellular edema of basal cells and acanthocytes), dyskeratosis or 

eosinophilic degeration of epidermal cells, tending to occur in scattered 

individual cells. 

III In addition to Grade II changes, occurrence of clefts/spaces (acantholysis, 

epidermolysis) after necrosis of basal cells and acathocytes in the basal 

cells and more superficial layers, resulting in separation of the dermal-

epidermal junction. 

IV In addition to Grade III changes, frank loss of epidermis. 

 



Chapter 2 Background and Theory:  

Graft versus Host Reactions 

38 

The main changes described by Lerner relate to the appearance of vacuoles, clefts 

and changes at the basement membrane. Vacuoles are membrane bound cavities in 

the cytoplasm or between cells, which appear as white regions in H&E stained 

images as they are not stained by either haematoxylin or eosin. Vacuolisation 

describes a state where the tissue becomes filled with vacuoles either within or 

adjacent to the cells, and is often seen at the base of the epidermis in skin 

histopathology. Clefts are a progression of vacuolisation at the basement 

membrane, i.e., as vacuolisation becomes more severe the vacuoles begin to fuse 

together and clefts occur at the DEJ. As the severity of the immune reaction 

increases, the clefts cover an increasing proportion of the DEJ until there is 

complete separation of the epidermis and dermis.  

2.3.1 Skimune skin explant assay 

The Skimune assay is based on an in vitro skin explant assay that uses a surgically 

excised section of skin tissue (Vogelsang et al., 1985).The assay has been used to 

predict both the occurrence of GVHD in human leukocyte antigen matched bone 

marrow transplant patients (Sviland et al., 1990) and to study the pathophysiology 

of the disease (Dickinson et al., 1994; Jarvis et al., 2002). The commercialised assay 

applies the technology in such a way that the immunological, allergenic and toxic 

effects of a particular compound can be tested in a practical and safe in vitro 

environment, while retaining an authentic human immune response. Although the 

assay in its commercial form is not being used to classify GVHD, the immune 

reactions and histological changes being measured in the assay are assessed using 

criteria based on those used to classify GVHD. The original skin explant assay 

protocol is described in detail in Sviland and Dickinson (1999) the modified assay 

used for commercial applications is now discussed. 

The modifications include using blood and skin tissue from single healthy 

volunteers rather than combining cells and tissue from patients and potential 

donors. There are also some changes to the laboratory procedures which have 

been made to improve the reproducibility of the assay. For the assay, blood 

samples and punch skin biopsies are taken from healthy volunteers after informed 

consent is attained. The 4mm2 punch biopsies are taken from the back below the 
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waist-line and each biopsy is dissected into four equally sized sections. In the 

culture phase, primary dendritic and T-cells are extracted from the blood sample 

and then cultured with the test compound or drug. These pre-primed immune cells 

are then co-cultured with the skin samples to induce tissue damage in cases where 

there has been an immune response. Skin sections cultured in medium alone are 

used as controls. After 72hr incubation at 37oC, skin sections are fixed in formalin, 

sectioned and stained with H&E. The manual histopathological grading is then 

assessed and confirmed independently by two experts.  

The Skimune assay is assessed using a modified version of Lerner’s original 

grading criteria. Table 2.3 shows the simplified criteria adopted by Alcyomics 

during the development of the commercial assay. These criteria focus on the major 

morphological changes in the tissue such as vacuolisation, cleft formation and the 

appearance of dyskeratotic bodies, disregarding some other features such as 

necrosis and spongiosis which were determined not to be critical in the 

commercial application. 

Table 2.3 Histological criteria for grading GVHR in the Skimune assay 

Grade Skimune Histological Criteria 

0 Normal skin 

I Vacuolisation of epidermal basal cells. 

II Diffuse vacuolisation of basal cells with dyskeratotic bodies. 

III Sub-epidermal cleft formation 

IV Complete epidermal separation 

 

Controls are included in every assay and include skin biopsies cultured in medium 

only. The in vitro culture process creates some baseline histopathological changes 

even when there is no immune response, and so grade 0 tissue with no damage at 

all is not usually observed in the assay.  The control samples usually show grade I 

changes and so a grade I reaction is counted as a negative result. Reactions of 

grade II or above are considered a positive result in this assay, however if the 

control sample has grade II, III or IV changes the assay is repeated. In addition to 

vacuolisation, cleft formation and the presence of abnormal cells with a high 
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keratin content called dyskeratotic bodies, some of the samples generated in the 

assay include regions of necrotic (dead) tissue. 

Figure 2.3 is an image of an H&E stained skin section from the Skimune assay 

showing grade I changes. The epidermis tissue boundary is shown in blue and the 

rest of the tissue shown is part of the dermis. The part of the epidermis outlined in 

yellow is the stratum corneum, the uppermost layer of the epidermis consisting of 

dead, keratinised cells (first described in section 2.2.1). This layer is highlighted as 

it is the only part of the epidermis not of interest when assessing GVHR and other 

immunological reactions. Figure 2.3 is characteristic of a grade I reaction, in that 

the cells of the epidermis are tightly packed, with very few vacuoles within the 

cells and no clefts at the DEJ.  

A tissue sample with classic grade II changes is shown in Figure 2.4. There is 

extensive vacuolisation throughout the epidermis, causing the structure of the 

tissue to break down. Dyskeratotic bodies, which while not always present at 

grade II, are indicative of at least a grade II reaction when present. Characterised 

by highly stained pink cytoplasm and a condensed, small, dark nucleus, 

dyskeratotic bodies are difficult to identify for an inexperienced operator. 
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Figure 2.3 Section of H&E stained skin tissue showing changes associated with grade I damage. 
The whole epidermis is outlined in blue; the stratum corneum layer of the epidermis is outlined 
in yellow 

 

Figure 2.4 Section of H&E stained skin tissue showing changes associated with grade II 
damage. Arrows indicate some of the sites of vacuolisation. 

 

Figure 2.5 is an image of an H&E stained tissue section showing grade III changes, 

typified by extensive cleft formation at the DEJ. Two of the clefts are outlined in 

blue.  
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Figure 2.5 Section of H&E stained skin tissue showing grade III changes, typified by extensive 
cleft formation at the dermal-epidermal junction. Two such clefts have been outlined in blue to 
highlight. 

 

An H&E stained skin section showing grade IV changes is shown in Figure 2.6. The 

epidermis has completely separated from the dermis tissue in this skin section. It 

is of interest to note that the vacuolisation within the epidermis in the grade III 

and grade IV images does not always appear as severe as in some of the images of 

grade II reactions. For grade III and grade IV reactions, the presence of clefts at the 

DEJ takes precedence over the amount of vacuolisation when determining the final 

grading. 
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Figure 2.6 Section of H&E stained skin tissue showing grade IV changes, with complete 
separation of the epidermis from the dermis. 

2.4 Digital Image Processing and Analysis Theory 

Digital image processing and analysis involves the use of computer algorithms to 

create, process, communicate, display, analyse and extract information from 

images. Image processing and analysis involves many different processes, and they 

can be classified and described as low, mid and high level processes. Low-level 

processes are used to manipulate and process information within the image and 

include image transformations, noise reduction, and contrast enhancement; both 

the input and the output of these steps are images. The overall aim of low level 

processing in the context of an image classification process is to suppress image 

characteristics and features which are not relevant to the image classification, and 

enhance those features which aid discrimination between classes. Mid-level 

processes extract information from the image, using tasks such as segmentation 

and edge detection to partition the image into regions of interest, and feature 

extraction to isolate quantitative measurements that represent important image 

characteristics. High-level processes interpret the information extracted from 

images, and include image recognition and classification through to systems 

mimicking human vision and cognition. Low, mid and high level processes are all 

used within this research, and the rest of this chapter will give background theory 
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on the processes and operations used in the final algorithm. First an introduction 

to the terminology and conventions used when discussing images is provided to 

aid understanding of the image processing operations that follow. 

2.4.1 Digital Image Representation 

Images are representations of an analogue world and to enable computer 

processing they must be digitised. The image acquisition techniques described in 

Section 2.1.2 give an output which is a quantised representation of the sample that 

has been converted from an analogue to a digital signal. The real word image scene 

can be represented by a continuous 2-dimensional function f(x, y), where x and y 

are coordinates and the amplitude of f is the intensity or grey level. The 

information in the analogue signal is digitised by the two operations of sampling 

and quantisation. Sampling is the discretisation of space, while quantisation is the 

discretisation of intensity and once the image is digitised, f, x and y are all discrete 

quantities. Each finite element within an image is called a picture element or pixel. If 

an image has m pixels in the vertical direction and n pixels in the horizontal 

direction, the image can be described as a matrix, A, of order m × n with the 

individual matrix elements given by ai,j. 

𝐀 = 

[
 
 
 
 
𝑎11 𝑎12 … 𝑎1𝑛

𝑎21 𝑎22 … 𝑎2𝑛

⋮ ⋮ … ⋮

𝑎𝑚1 𝑎𝑚2 … 𝑎𝑚𝑛]
 
 
 
 

 

The density of the sampling grid with regards to spatial resolution, the number of 

different intensity levels chosen for the discretisation and the level of noise 

generated in the system are the most important factors in terms of defining the 

quality of the digital representation. 

Once the digital image has been captured it must be imported into a suitable 

environment capable of performing the different image processing operations. A 

range of image processing systems are available:  

 Adobe Photoshop is a graphics editing program which is easy to use and has 

many existing functions and processing operations accessed through a graphic 
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user interface. While there are many useful features, the program does not 

offer advanced feature selection or classification functions. 

 ImageJ: This freeware has powerful image processing functionality to edit, 

process and enhance images, but like Adobe Photoshop, it is lacking the 

functionality for higher level processing such image classification.  

 Specialised operating systems set up to implement algorithms written in C++, 

Python and Java programming languages. These systems offer maximum 

flexibility and functionality, but require advanced computer programming 

skills. 

In this research project, MATLAB® (The Mathworks®, Nantick, Mass), a technical 

computing and programming language and environment has been used. MATLAB 

can be used for algorithm development, data analysis, visualisation, and numerical 

computation, and is particularly appropriate for image processing as it is designed 

around matrix manipulation. A number of toolboxes are available which offer 

tailored algorithms and tools in different application areas. Those used in the 

course of this research include the Image Processing Toolbox™, which provides 

algorithms and graphical tools for image processing, visualisation, analysis and 

algorithm development and the Statistics Toolbox™, which provides statistical and 

machine learning algorithms and tools to organise, analyse and model the data. 

This environment was chosen as it is flexible enough to allow tailored 

development of low, mid and high levels processes, offers a good range of pre-

existing functions, and can be used to develop new algorithms. In addition, the 

programming language was more easily mastered within the time frame of a 

doctorate than other options such as C++. 

2.4.2 Image Types 

A greyscale image measures light intensity, and can be represented by a two 

dimensional matrix with each pixel value proportional to the brightness. The least 

bright areas are represented by black, and the brightest, by white. In addition to 

brightness information, a colour image also contains information about colour. For 

the most common colour image representation, the RGB representation, the 

intensity matrix is three dimensional (x, y, z) with three separate matrices (or 
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planes) representing the intensity of red, blue and green light. A representation of 

the RGB image is given in Figure 2.7, which shows the three 2D planes which 

contain information about the intensity of each colour at each location in the 

image.  

 

Figure 2.7 A representation of an RGB image of order, m x n. A pixel at spatial coordinates (x,y) 
will be represented by the column vector, x, shown in the figure. 

2.4.3 Image Resolution: Spatial and Intensity 

The spatial resolution determines the level of detail which can be attained from an 

image. When considering an m × n matrix representing an image, the values of m 

and n tend to be powers of 2 (e.g., 128, 256, 512) to align with standard computer 

architecture. The resolution of an image is dependent on the magnitude of m and n; 

if the magnitude is too small (e.g., <32) then the image appears to be a collection of 

squares and interpretation is lost. In Figure 2.15 the shape of the bike can be seen 

clearly in the first two images which have a spatial resolution 412 x 550 and 206 x 

275, it is just discernible in the 41 x 55 image, but cannot be identified in the 21 x 

28 resolution image. The exact pixel number required is dependent on the 

complexity of the image, the image contrast, and the information required, but it 

should be a high enough resolution to observe the required detail but not so high 

that unnecessary computer power and storage space are required.  

𝒙 = [

𝑥1

𝑥2

𝑥3

] 
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Figure 2.8 An RGB image displayed at four spatial resolutions, 412 x 550, 206 x 275, 41 x 55 
and 21 x 28. 

As with spatial resolution in an image, intensity resolution is usually measured in 

powers of 2 with an 8-bit greyscale image having 256 (28) possible intensity levels 

(or grey-levels). Measurement noise or the display system used can limit 

resolution; computer screens are typically limited to the values of 0-255. The most 

common image representation is 1 byte per pixel (8-bit), which has intensity levels 

over the range 0-255. Images where intensity is limited to two values, 0 or 1, are 

known as binary images. These images are important in segmentation, 

morphological processing and classification of objects within an image as will be 

described later in this chapter. 

2.4.4 Colour Image Processing 

Visible light is made up of electromagnetic radiation within the 380nm – 780nm 

band of frequencies. Different coloured light corresponds to set wavelengths, and 

the colour of an object is the product of the wavelength spectrum of the incident 

light and the absorption and reflection properties of the object.  
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Colour theory is made more complex due to the fact that human colour perception 

and vision is limited by our optical system. The tristimulus theory of colour 

perception states human colour vision and perception is based on three types of 

colour receptors (called cones), which integrate over the red, green and blue parts 

of the spectrum. Humans see colour as variable combinations of the primary 

colours, red, green and blue. Combing two primary colours of light produces the 

secondary colours magenta (red and blue), cyan (green and blue) and yellow (red 

and green) and combining all three primaries produces white light. In contrast, 

coloured pigments work using a subtractive colour model, where a particular 

coloured pigment will absorb one primary colour of light and reflect the other two 

(e.g., absorb magenta, and transmit cyan and yellow). While the red, blue, green 

colour representation is the most familiar, there are a variety of other 

representations grouped under the term colourspaces. 

2.4.5 Colourspace Theory 

Colourspaces are mathematical models which describe the representation of 

colour using colour components. More specifically, they aid the description, 

specification, visualisation and transfer of information about colour, between 

people and machines, or between different machines. Colourspaces can exist in 2D, 

3D or 4D, so a set of 2, 3 or 4 coordinates can be used to express any colour and its 

position within the colourspace. Most models are based on a three components 

system similar to the human colour system. There are a variety of colourspaces 

and the application under study and equipment being used often determines 

which is the most appropriate. Some of the colourspaces investigated in this 

research are described in the following section. 

Red, Green, Blue (RGB) Colourspace:  The RGB colourspace is based on human 

visual trichromatic theory and is an additive colourspace, meaning that from a 

start point of black (or darkness), colours are created by the addition of different 

coloured light. The colourspace uses a Cartesian coordinate system and can be 

represented as a cube, Figure 2.9. Images from colour cameras are RGB images, 

and consist of three m x n, 1 byte-per-pixel images, each representing the intensity 

of red, green or blue. For an 8-bit image the coordinates (0, 0, 0) represent black, 
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(255, 255, 255) white and (0, 255, 255) cyan. The 1 x 3 colour vector used to 

represent some of the colours commonly found in the research images are given in 

Figure 2.9.  

 

Figure 2.9 Representation of the RGB colourspace cube and representation in RGB colour model 
of three colours. 

The RGB colourspace is not particularly intuitive or easy to interpret. Figure 2.10 

shows the different colour channels of an RGB image; counter-intuitively the 

oranges and carrots have higher red intensity than objects which appear a pure 

red to the human eye (e.g., the red pepper) and the yellow objects also appear to 

have a higher green intensity than the more obviously green objects. The 

reasoning behind this is that orange colour contains a high intensity of red light, 

but the high intensity of green light combines with the red to produce orange.  

 

Figure 2.10 RGB image and the three colour channel intensity images of the RGB colourspace 

 

RGB Red Plane

Green Plane Blue Plane
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A number of colourspaces separate the lightness/ brightness component from the 

colour components. This enables the colour and greyscale information to be stored 

and transmitted at different resolutions and bandwidths, and in microscopy 

applications isolates staining and lighting differences from the lightness 

component. Many colourspaces use hue and saturation as the colour components 

and a third descriptor such as value, brightness, intensity or luminance. Examples 

include hue saturation luminance (HSL) model, where the RGB data is transformed 

to give an achromatic additive RGB signal and two differential chromatic signals 

(Garbay et al., 1981) HSV (hue, saturation and value) which is described in more 

detail in the following section, HSL (hue, saturation, lightness) and HSI (hue, 

saturation, intensity) (Geladi and Grahn, 1996; The Mathworks, 2010). 

HSV Colourspace:  HSV represents colour in an intuitive manner, a hue can be 

selected and then the saturation and intensity modified. Hue represents the 

wavelength of the colour, saturation is the dominance/ purity of a hue in the final 

colour (0% being grey and 100% the pure colour) and value relates to the lightness 

of the colour. Figure 2.11 shows the HSV colour channels. While the yellow, orange 

and red objects are difficult to differentiate using hue, the purple cabbage and 

green vegetables exhibit greater contrast. Some of the different shades of green, 

red and orange can be identified using the saturation and value channels; however 

similar colours (e.g., carrots and oranges) are difficult to differentiate by eye. It 

may be possible to quantify these finer differences when examining the numbers, 

which is a benefit of computer based image analysis. 
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Figure 2.11 RGB image and the three colour channel intensity images of the HSV colourspace 

Other colourspaces separate out the colour component using two or more 

measures of chromaticity (an objective colour specification independent of 

luminance which combine hue and saturation information), and a measure of 

brightness. 

YCbCr Colourspace: Widely in digital video and photography systems, this is not a 

true colourspace, but rather a way of encoding RGB information differently using a 

linear transformation. The transform rotates the RGB reference axis so the 

diagonal of the cube (from the black to white corners in Figure 2.9) forms the main 

x axis, representing luminance (Y). The two remaining axes (y and z) contain the 

colour information. This approach is taken because humans are more sensitive to 

luminance than colour, and splitting the information in this way allows a greater 

emphasis to be given to the luminance component and bandwidth compression to 

be performed.  The two colour channels are named blue-difference (Cb) and red 

difference (Cr). Figure 2.12 shows the YCbCr colour channels. The Cb channel 

highlights the contrast between the orange objects and the red and green objects, 

while the Cr enhances the contrast between the red/ orange objects and the green 

objects. 

RGB Hue

Saturation Value
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Figure 2.12 RGB image and the three colour channel intensity images of the YCbCr colourspace 

L*a*b* Colourspace: While the tristimulus theory implies that any colour can be 

created using a combination of red, green and blue, this is not the case for all 

visible colours. This issue was addressed by the Commission Internationale de 

l'Éclairage (CIE), who defined three standard primaries in 1931, X, Y and Z, which 

can be combined to make any visible colour. The CIE has developed a number of 

additional colourspaces which aim to improve on the original CIE XYZ, including 

L*a*b* which aims to provide a perceptually uniform colourspace. In a uniform 

colour scale, differences between points defined in the colourspace correspond to 

visual differences as perceived by a human. The colourspace is a non-linear system 

in contrast to those already discussed, and these non-linear relationships of the 

components are based on the logarithmic response in the human visual system.   

L*a*b* has a luminance channel (L*) and two chromaticity channels for red-

greenness (a*) and yellow-blueness (b*). The representation in Figure 2.13 shows 

a vertical axis which contains the luminance information, and two perpendicular 

axes to show the two colour channels. 

RGB Luminance

Blue Chrominance Red Chrominance
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Figure 2.13 Representation of the L*a*b* colourspace. (The Mathworks, 2010).   

A similar colourspace to the L*a*b* is the Lαβ, obtained by applying principal 

components analysis to a set of natural images (Ruderman et al., 1998). The first 

three principal components were found to represent luminance, yellow-blue and 

red-green. This finding demonstrates the usefulness of these two colourspaces 

when processing images from nature. Figure 2.14 shows the L*a*b* colour 

channels. The a* (red-green) channel enhances the contrast between red and green 

objects very effectively, while the b* (yellow-blue) channel enhances the contrast 

between the purple cabbage and the yellow/ orange objects. The L* channel allows 

similar hues of differing luminance to be differentiated, e.g., green lettuce, broccoli 

and pepper. 

 

Figure 2.14 RGB image and the three colour channel intensity images of the L*a*b* 
colourspace 

 

RGB L*

a* b*
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It is sometimes desirable to convert colour images to greyscale, so that an overall 

measure of intensity can be made. An image can be converted from colour to 

greyscale in a number of ways, including: 

 The lightness method, which averages the most prominent and least prominent 

colours: (max(R, G, B) + min(R, G, B)) / 2. 

 The average method, which averages the values: (R + G + B) / 3. 

 The luminosity method, which forms a weighted average to account for the fact 

that humans are more sensitive to green than other colours.  

One approach for converting from RGB images (the effect of which is shown in 

Figure 2.15) is to apply the MATLAB function rgb2gray, which extracts the 

luminance information based on conversion from the RGB colourspace to the 

National Television System Committee’s YIQ colourspace. The luminance (Y) is the 

greyscale signal used to display pictures on monochrome (black and white) 

televisions, and the other components carry the hue and saturation information. 

The underlying calculation (Eq.2.1) uses the weightings that define the luminance 

when converting from RGB to YIQ:  

 𝒀(𝑖,𝑗) = (0.2989 × 𝐑(𝑖,𝑗)) + (0.5979 × 𝐆(𝑖,𝑗)) + (0.1140 × 𝐁(𝑖,𝑗)) Equation 2.1 

where R is the red colour channel image, G is the green colour channel image and  

B is the blue colour channel image. The weighting Figure 2.15 compares a RGB 

image and the equivalent greyscale image produced using rgb2gray. The figure 

shows how much information is lost during this process, the red pepper, lettuce 

and grapes which were easily distinguishable by colour contrast in the colour 

image all have a similar intensity in the greyscale image. To prevent this loss of 

information, it is sometimes better to consider the intensity of the colour planes 

separately. 
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Figure 2.15 Colour RGB image and the same image converted to greyscale  

2.4.6 Image Transforms 

Image transforms are transformative operations performed on an image to change 

its representation. These may involve mathematical operations (simple image 

arithmetic, Fourier transform, Hough transform), histogram modification 

(equalisation and adaptive equalisation), or geometric operations (rotation, 

scaling). Simple image arithmetic operations involve the point wise combination of 

two images using basic arithmetic or logical operators including addition, 

subtraction, multiplication, division, logical AND and NOT. For the addition of two 

images, A and B, the (i,j)th element of the output image (C) is given by  

 C(𝑖,𝑗) = 𝐀(𝑖,𝑗) + 𝐁(𝑖,𝑗) Equation 2.2 

If an operation, H, is carried out on an image matrix, C, the result can be described 

using standard matrix notation. If the operation produces a new image D, then D = 

H(C). Typical low level operations of this form include shading correction, contrast 

enhancement, binarisation and noise reduction, and geometric transforms such as 

rotations, stretching and shrinking. If the operation produces a vector d, then d = 

H(C). This type of mid-level operation is a usually a data reduction and the vector, 

d, may be the grey-level histogram of the original image. If the operation produces 

a scalar d, then d = H(C). This mid or high level operation is always a data 

reduction operation and the scalar output might be a key piece of information such 

as number of cells present in the image. It is likely that such an operation would be 

complex and involve a number of steps to move from the original image to the final 

scalar value, (Geladi and Grahn, 1996). 

Original (RGB) Grayscaled
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2.4.7 Pixel Neighbourhoods 

The pixels surrounding a particular pixel define the pixel neighbourhood. This 

neighbourhood might consist of the pixels above, below and at either side of the 

pixel (4-connected) or it may also include the diagonal pixels (8-connected). In 

image to image operations, the pixel neighbourhood is an important difference 

between global, local and point operations. Point, local and global operations are 

summarised in Figure 2.16, for an input image A and an output image B, the pixel 

output at B(i,j) is dependent only on the pixel at A(i.j.) for point operations, while for 

local operations the pixel output also depends on a neighbourhood of pixels 

around A(i.j.). For global operations B(i,j) is dependent on all pixels in image A, 

(Gonzalez and Woods, 2008). 

 

Figure 2.16 Diagram showing how pixel neighbourhoods relate to point, local and global image 
operations 

2.4.8 Image Mean Filtering 

Mean filtering can be used to smooth images by reducing the intensity variation 

within defined pixel neighbourhoods. When mean filtering is applied, each pixel in 

the input image is replaced with the average value of its neighbours. The technique 

uses a matrix of numbers of a smaller order than the input image, which is known 

as a kernel. The kernel defines the shape and size of the neighbourhood over which 

the average calculated. An example of a square 3x3 kernel is shown in Figure 2.17. 

For a kernel of size m × n, each element is given a value of 1/ (m × n) which is then 
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used to perform a weighted multiplication. The origin pixel, shaded in the figure, 

defines the position of the pixel being affected in the output image and can be any 

position within the kernel, but is usually placed at the centre. 

1/9 1/9 1/9 

1/9 1/9 1/9 

1/9 1/9 1/9 

Figure 2.17 Square 3x3 Kernel for Mean Filtering, with the origin placed in the centre. 

Convolution is the process by which the two matrices (the input image and kernel) 

are multiplied together. The kernel slides over the input image into each position 

in which the kernel fits in its entirety. In each position, each kernel pixel (or 

weighting) is multiplied with the underlying input image pixel, then the sum of all 

these pixel products are added together and used to define the pixel value in an 

output image at the origin position of the kernel. 

2.4.9 Contrast enhancement methods 

Formally, the contrast c between two intensity values x1 and x2 can be defined as 

the absolute value of their difference: c(x1, x2) = |x1 −  x2|. Low contrast images have 

intensity values across a narrow distribution (i.e., mainly bright, mainly mid-tone, 

or mainly dark). Contrast enhancement adjusts the relative brightness and 

darkness in an image to improve the visibility of certain objects or features. Grey 

level histograms can be used to illustrate image contrast as they show the 

frequency distribution of pixels with regards to pixel intensity. Contrast 

enhancement can be achieved using remapping, a process by which the grey levels 

in the original image are mapped onto new values using a transform mapping 

function. A function g can be used to generate a contrast enhanced image, B, from 

image, A: 

 

𝑩(𝑖,𝑗) = 𝑔(𝑨(𝑖,𝑗)), 

𝑓𝑜𝑟 𝑖 = 0,… , 𝑛 − 1, 𝑗 = 0,… ,𝑚 − 1 

Equation 2.3 
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The transform determines how the intensity distribution is remapped, as shown in 

Figure 2.18. In the figure a sigmoidal transfer function is shown which can be used 

to map any input grey level (on the x axis) to a new grey level on the y axis. A 

variety of linear and nonlinear fixed functional forms including log, nth root, linear, 

nth power, inverse log and gamma correction can be used to transform the original 

grey levels to their new values. Alternatively adaptive transforms including 

histogram equalisation or histogram matching can be used.  

 

Figure 2.18 Remapping grey-levels using a transform function 

One of the simplest transforms used to enhance contrast is a linear transform 

which stretches the grey-level values to create a histogram spanning the full 

dynamic range (0 255). A low contrast image, G, is transformed to a high contrast 

image, G’, by remapping the grey levels. The lowest grey level in G, GLmin, is 

mapped to a new minimum grey level GL’min , and the highest grey level in G, GLmax , 

to a new maximum grey level GL’max. The linear transform is given by: 

 𝐆′i,j = 𝐼𝑁𝑇 {
GLmax

′ − GLmin
′

GLmax − GLmin
[𝐆i,j − GLmin] + GL′min} Equation 2.4 

where the INT  function returns the integer value. GLmin and GLmax  can be replaced 

with points Pmin and Pmax which lie within the grey level histogram. Figure 2.19 

illustrates the effect of the linear transform on a grey level histogram and shows 

that the original intensity distribution is approximately preserved in this type of 

contrast enhancement.  
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Figure 2.19 Diagram illustrating the effect of contrast stretching the intensity histogram, using 
a linear transform. Two sets of potential high and low values for the remapping are show. 

The penetration points can be determined using a cumulative percentage 

histogram which shows the percentage of pixels between zero and each grey-level. 

Figure 2.20 shows the selection of Pmin and Pmax from a cumulative percentage 

histogram. The proportion of pixels excluded can be chosen based on the 

application, for example the lowest and highest 1% of intensities could be mapped 

to 0 or 255 respectively, meaning resolution at the extremes of intensity is lost. 

This is a useful technique if the intensity band of interest is at the mid grey level as 

opposed to the extreme grey levels.  

 

Figure 2.20 Diagram illustrating how penetration points can be selected using a cumulative 
percentage histogram.  

An alternative method to enhance resolution in a set band of intensities is to select 

penetration points bordering a particular band of intensities, as shown in Figure 

2.21. This has the effect of removing the high intensity “shoulder” from the 

Pmin Pmax 
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distribution (which may represent a particular region of the image which is not of 

interest, such as background), and allowing the rest of the distribution to be 

contrast enhanced by stretching the remaining pixels out to intensities of 0-255. 

 

Figure 2.21 Diagram illustrating the effect of selecting a set band of intensities for a linear 
remapping.  

More complex histogram equalisation methods are available which modify the 

dynamic range and enhance the contrast in images by adjusting the shape of the 

intensity histogram. In some forms of histogram equalisation (e.g., the histeq 

function in MATLAB), the pixel intensities from an image histogram are mapped to 

new values using a non-linear transfer function, such that the resulting new image 

has a uniform distribution of intensities and a flat intensity histogram.  In contrast, 

adaptive histogram equalisation defines a pixel neighbourhood then derives a 

transfer function which will ensure each pixel is mapped to any new distribution 

specified. The adapthisteq function in MATLAB uses this type of process. The 

process can be limited by specifying a certain range for the final mapping which 

may help to avoid amplifying noise. Figure 2.22 shows the effect of the histeq and 

adpathisteq functions on a greyscale image and its histogram. The adaptive 

histogram equalisation preserves the “sense” in the original image better, with the 

background remaining white and the contrast enhancement showing the tissue in 

more detail. Performing the contrast enhancement on separate tiles means that 

variations in intensity across the image (e.g., due to lighting inconsistencies) do not 

create problems. In some cases the non-adaptive mapping to a flat intensity 

histogram can reveal hidden features that were not obvious in the original image. 

The selection of an appropriate method for contrast enhancement is dependent on 

the shape and dynamic range of the original image, the regions of interest, and the 

variation in contrast across the image.  
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Figure 2.22 The effect of normal and adaptive histogram equalisation on a greyscale image and 
its intensity histogram.  

2.4.10 Set and logical operations 

Set theory is a mathematical field that studies sets of objects, and it is an essential 

tool when working with binary images and identifying objects in an image. Each 

member of a set is referred to as an element of the set. In image processing, the set 

can represent the whole image, or alternatively an object or feature in the image, in 

which case the pixel coordinates of all pixels in the object will be the elements of 

the set. Typically, sets are represented by uppercase letters, such as A, B, and C, 

and set members by equivalent lowercase letters, such as a, b, and c. If an element 

a is a member of a set A, then 𝑎 ∈ 𝐴, and if it is not a member of A, then 𝑎 ∉ 𝐴. For 

example, if E is set comprising all even numbers, the set, F, of all even numbers less 

than 100 can be denoted as: 

 𝐹 = {𝑓 ∈ 𝐸 | 𝑓 < 100} Equation 2.5 
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If all the members of set A are also members of set B, then A is a subset of B, 

denoted as 𝐴 ⊆ 𝐵. A set with no elements or members is known as an empty or 

null set and is referred to using the symbol ∅. Binary operations can be carried out 

on sets and those that are useful in image analysis were defined by Gonzalez and 

Woods (2008):  

 Union of sets, e.g.,  𝐴 ∪ 𝐵, is the set of all objects which are members of A, or B 

or both. Sets A and B are shown in Figure 2.23a, the union is labelled C in 

Figure 2.23b. 

 Intersection of sets, 𝐴 ∩ 𝐵, is the set of all objects which are members of both 

A and B. The intersection of sets A and B is labelled D in Figure 2.23c. 

 Complement of a set, A, is all the elements (a) in a given object universe (e.g., 

the whole image) that are not in set A. It is defined as 𝐴𝑐 = {𝑎|𝑎 ∉ 𝐴}, and the 

complement of set A is labelled  𝐴𝑐  in Figure 2.23d. 

 Reflection (transposition) of set A, �̂� is the reflection of all elements of B 

about the origin. If 𝐴 = �̂�, the set is symmetric. It is denoted �̂� = {−𝑎|𝑎 ∈ 𝐴} 

and is labelled E in Figure 2.23e. 

 Translation of set A, (A)z is the translation of the origin of A to point z. It is 

defined as (𝐴)𝑧 = {𝑎|𝑎 = 𝑎 + 𝑧,    for 𝑎 ∈ 𝐴} and is labelled F in Figure 2.23. 

 

Figure 2.23 Diagrammatic representation of set theory, showing union (b), intersection (c), 
complement (d), reflection (e) and translation (f). 
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The low level processes described in the previous sections include image 

transforms, image filtering, contrast enhancement methods and logical operations. 

These processes can either be used to pre-process an image before segmentation 

or as part of the segmentation step itself. The process of segmentation is described 

in the following section. 

2.4.11 Segmentation 

After image pre-processing, the first step in image analysis is typically 

segmentation, a process in which an image is partitioned into constituent parts or 

objects, comprising sets of pixels. This key step marks the transition from 

analysing the image at pixel level to analysing the objects comprising sets of 

contiguous pixels. Identifying objects in a complex image can be made easier by 

converting the image to a logical or binary form where the pixels of the objects of 

interest are labelled with a 1, and the remaining pixels are labelled with a 0.  Once 

the objects have been identified, a variety of measurements including area, 

position or texture can be extracted and the resulting data analysed statistically 

and used for image classification. 

Segmentation approaches are generally sub-divided into region and contour based 

approaches. Region-based methods create sets using pixel or neighbourhood 

properties such as colour, intensity, location or texture. Examples of region based 

methods are thresholding, region growing, and region splitting/ merging. Contour 

based approaches look for discontinuities in an image, using edge or boundary 

detection with local processing techniques, global approaches or more complex 

methods such as active contours. Segmentation is simplest either when pixels in a 

particular object or regions of interest have similar greyscale values (in which case 

a region based approach is most appropriate), or when neighbouring pixels in 

different objects have dissimilar values (in which case a contour based method will 

be most suitable). 

In histopathology, segmentation is usually used to identify the presence, number, 

distribution, size and morphology of diagnostic features including tumours, 

specific cells, nuclei and glands. The accurate identification of these structures is an 
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essential first step in the diagnosis, staging and grading of disease using image 

analysis.  

2.4.12 Thresholding – A region based approach to segmentation 

Thresholding provides one approach to identifying regions of interest in an image. 

In the underlying process, the intensity or colour characteristics of pixels are used 

to classify them as either background or foreground, although multiple thresholds 

can be used to create more complex segmentations. The input for thresholding is 

typically a colour or greyscale image with the output being a binary image in which 

pixel intensities are assigned as 0 (background) or 1 (foreground). In the simplest 

form of thresholding a single intensity threshold is set, with pixels above the 

threshold in the input image assigned a 1 and displayed as white and those below 

assigned a 0 and displayed as black in the output image. For the conversion of an m 

× n 8-bit image A with values from 0-255, to a 𝑚 × 𝑛 binary image, BW, using a 

threshold value of 100 then: 

 𝑩𝑾(𝑖,𝑗) = {
1                            if         𝑨(𝑖,𝑗) > 100  

 0                            else    𝑨(𝑖,𝑗) ≤ 100   
 Equation 2.6 

More complex thresholding techniques specify pixels within a certain intensity 

band, specify multiple thresholds or bands for different colour channels, or retain 

colour information in the feature regions rather than changing them to black or 

white. Figure 2.24 is an illustration of how thresholds might be selected using 

intensity distribution histograms, the arrows represent potential points for 

thresholds or thresholding bands to be set to create a segmentation (Gonzalez and 

Woods, 2008). In Figure 2.24, a simple selection method has been illustrated, 

whereby each separate peak in the intensity histogram is assumed to represent a 

region of interest that should be segmented. However this may not be the case and 

so often more sophisticated methods are required. 
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Figure 2.24 Representation of typical intensity histogram distributions and suitable threshold or 
threshold bands 

While thresholds can be set manually using application knowledge, automating the 

process is quicker and less subjective. In their survey of image thresholding 

methods, Sezgin and Sankur (2004) defined six algorithm categories based on the 

information used to create the threshold: histogram shape, measurement space 

clustering, histogram entropy, image attribute detail, spatial data and local 

characteristics. Methods for selecting the threshold automatically include: 

 The mean method: The mean grey level in the image is used as a threshold. 

This method is most useful as a first guess threshold used as the starting point 

for some of the other methods.  

 The intermeans algorithm (or IsoData): Proposed by Ridler and Calvard 

(1978) and Trussell (1979), this method starts with an estimate of the 

threshold value from which the mean values of pixels in each set (foreground 

and background) are made. In an iterative process of mean determination and 

incremental threshold change, the threshold is repositioned to lie exactly half 

way between the two means 

 The intermodes algorithm: This approach assumes a bimodal distribution. 

The histogram is iteratively smoothed until two local maxima remain,  j and k. 

The threshold is then calculated as (𝑗 + 𝑘)/2  (Prewitt and Mendelsohn, 1966). 

 The Otsu thresholding method: Proposed by Otsu (1979), the method is a 

point-dependent global thresholding technique that can be applied to bimodal 

grey-level histograms. The clustering algorithm maximises the separation of 

the foreground and background pixel sets by searching for a threshold which 

minimises the intra-class variance. To do this, the variance of the foreground 
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set (weighted according to the number of pixels in this set) is added to the 

variance of the background set (weighted according to pixel number). While 

this approach can be used to screen all possible thresholds until the weighted 

inter class variance is minimised, a faster approach exploits the fact that the 

threshold with the minimum intra-class variance also has the maximum inter-

class variance. As the inter-class variance is much quicker to calculate than the 

intra-class variance this approach is most commonly used. 

The relative merits and the reasons for the choice of method used in this research 

are discussed in Chapter 3. The final image processing technique to be introduced 

is mathematical morphology, which can be performed after segmentation to 

modify the segmented regions within the image and extract information from 

them. 

2.4.13 Connectivity and mathematical morphology 

First described by Georges Matheron (1975), Mathematical Morphology (MM) is a 

theoretical approach to the analysis of geometric structures and encompasses a 

range of operations utilising set theory. MM processing can be applied to greyscale 

or binary images, but discussion of it in this thesis focusses on its use for 

processing binary images. MM operations are particularly useful for object 

recognition in image analysis, as the operations can preserve the key shape 

characteristics of an image while removing uninformative variations in intensity 

(Haralick et al., 1987). By distinguishing between meaningful shape information 

and irrelevant shape information, this approach mimics human visual perception. 

Morphological processing operations require the interaction of an input image 

pixel set with an external pixel set in the form of a structuring element (SE). A SE is 

a matrix of 0’s and 1's, generally much smaller than the image being processed. 

The 1’s define the shape and size of a pixel neighbourhood. An example of a disk 

and diamond shaped SE is shown in Figure 2.25. In MM and binary processing, 

objects are contiguous regions of foreground pixels with a value of one. Objects 

within the input image are analysed using an appropriately shaped SE, and the 

output image pixels are based on a comparison of the corresponding pixel in the 

input image with its neighbourhood, as defined by the SE. By varying the size and 
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shape of the SE, it is possible to extract shape information for different parts of the 

image. The shape of the SE is chosen based on the shape of the regions or features 

of interest. For example, when MM is applied to images of circuit boards, 

horizontal and vertical linear SEs tend to be used to help identify the circuits, while 

biological applications attempting to identify cells are more likely to use a disk 

shaped SE. 

 

Figure 2.25 Structuring element matrices which form the basis of disk and diamond shaped 
structuring elements with a size (radius) of 3. 

The most basic MM operations are dilation and erosion; these two operations are 

used both on their own and as the basis of more complex operations including 

opening and closing. An example of the effect erosion and dilation have on binary 

objects is shown in Figure 2.26.  The 3 x 3 SE is moved sequentially across the 

original image, and the pixels in the 3 x 3 neighbourhood are averaged to 

determine the output pixel in the new image. Dilation tends to make objects bigger, 

smooth uneven edges and bridge gaps whereas erosion tends to make objects 

smaller, remove protuberances and break bridges.  The definitions and 

mathematical notation in this thesis are based on those used by Gonzalez and 

Woods (2008). 
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Figure 2.26 Diagram showing the effect of erosion and dilation with a 3x3 structuring element 
on a simple binary image. 

Dilation and Erosion 

In dilation, pixels are added to the boundaries of objects using a rule stating that 

the output pixel is set to 1 if any pixels in the input neighbourhood are 1. In 

mathematical terms, if A is a set of pixels in the input image and B  a SE, then �̂� is a 

reflection of B about its origin and dilation, 𝐴⨁𝐵, is the set of all pixel locations z, 

where the reflected SE overlaps with pixels in A with a value of 1 when translated 

to z: 

 𝐴 ⊕ 𝐵 = {𝑧|(�̂�)𝑧 ∩ 𝐴 ≠ ∅} Equation 2.7 

Erosion is the opposite of dilation; pixels are removed from the outside of objects 

based on a rule stating the output pixel is set to 0 if any pixels in the input 

neighbourhood are 0. The erosion, 𝐴 ⊖ 𝐵,  of set A by structuring element B, is the 

set of all pixel locations z such that B overlaps with pixels in A with a value of 1 

when translated to z: 

 𝐴 ⊖ 𝐵 = {𝑎|(𝐵)𝑎 ⊂ 𝐴} Equation 2.8 

Erosion and dilation are dual with respect to reflection and complementation, 

more specifically, erosion of the image background is equivalent to dilation of the 

image foreground, i.e., (𝐴 ⊖ 𝐵)𝑐 = 𝐴𝑐⨁ �̂�. 
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Opening and Closing 

Morphological opening can be used to remove small objects, smooth object 

contours, remove thin protrusions from and bridges between objects in a similar 

manner to erosion, however it also approximately preserves object size. The 

opening operation is erosion of a set A by a structuring element B followed by 

dilation of the resulting set by B. Opening, denoted A ∘ B is given as: 

 A ∘ B = (A ⊖ B)⨁B Equation 2.9 

Morphological closing can be used to smooth object contours, fuse narrow breaks 

and thin gulfs, and remove small holes in objects like dilation, while approximately 

preserving object size. The closing operation is dilation of a set A by a structuring 

element B, followed by erosion of the resulting set by B. Closing, denoted A ⋅ B can 

be given as: 

 A ⋅ B = (A ⊕ B) ⊖ B Equation 2.10 

Hit-or-Miss Transform 

This transform for shape detection aims to identify the location of a shape, X in a 

set A. It can be used to locate isolated foreground pixels, or endpoints and contour 

points of foreground objects. If B is the set including X and its background, the 

match of B in A, denoted 𝑋 ⊛ 𝐵 is given as: 

 𝐴 ⊛ 𝐵 = (𝐴 ⊖ 𝐵1) − (𝐴 ⊕ 𝐵2̂) Equation 2.11 

where B1 is the set of elements of B associated with the object, X, and B2 is the set 

of elements of B associated with the corresponding background. 

Locating Boundaries/ Object Perimeters 

The perimeter or boundary of a set of connected pixels A, denoted 𝛽(𝐴) can be 

found by eroding A by B, then calculating the set difference of the original and 

eroded A. This is given as: 

 𝛽(𝐴) = 𝐴 − (𝐴 ⊖ 𝐵) Equation 2.12 
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Locating objects/ region filling 

This process takes known point inside the boundary of an object, and then fills the 

object region with 1’s. Let Y represent a connected component (object) in set A. 

The process of selecting the object begins with a zero array X0 the same order as A, 

with a point p at some location inside the boundary of the object. An iterative 

procedure can then be applied to grow the region until all the elements of Y have 

been found. The iteration applied is given as: 

 𝑋𝑘 = (𝑋𝑘−1 ⊕ 𝐵) ∩ 𝐴,       𝑘 = 1,2,3,…,  Equation 2.13 

where B is the SE. The intersection with A limits the dilation so it is does not 

extend beyond the region of interest. The iteration process continues until Xk = Xk-1 

at which point Y = Xk. The process can be applied to multiple objects, as long as a 

pixel location within each object is known.            

Filling Holes 

A hole can be defined as a connected region of background pixels surrounded by 

foreground pixels. If A is the set of pixels surrounding a hole, the task is to fill the 

holes with foreground pixels. The process of filling a hole begins with a zero array 

X0 the same size as A, with a point p at some location inside the boundary of the 

hole. The following procedure is then used to fill the hole with foreground pixels: 

 𝑋𝑘 = (𝑋𝑘−1 ⊕ 𝐵) ∩ 𝐴𝑐 ,           𝑘 = 1,2,3,…, Equation 2.14 

where B is the SE. The intersection with the complement of A, limits the dilation so 

it is always inside the region of interest. The iteration process continues until Xk = 

Xk-1. To fill a hole within an object already identified, A is replaced with Y 

determined as described in the previous section. 

Thickening 

Thickening is used to thicken and grow concavities in objects without them 

merging completely. The thickening of set A using SE B can be defined as a hit-or-

miss transform and union: 
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 𝐴 ⊙ 𝐵 = 𝐴 ∪ (𝐴 ⊛ 𝐵) Equation 2.15 

The additional pixels identified by the hit-or-miss operation are added to the 

original pixels in the object. The operation can also be defined as a sequential 

operation: 

 𝐴 ⊙ {𝐵} = ((((𝐴 ⊛ 𝐵1) ⊛ 𝐵2)… ) ⊛ 𝐵𝑛) Equation 2.16 

where a series of rotated SEs (B1, B2,…,Bn) is used to carry out the procedure. 

2.5 Machine Learning, Feature Selection and Classification Theory 

In machine learning a computer or automated system learns to carry out a task or 

solve a problem from a series of data based examples, as opposed to from a set of 

programmed rules. It is generally used to describe processes which aim to 

reproduce human learning. The data examples (known as observations), are 

analysed and a set of properties extracted and used as inputs for the learning 

machine. These inputs are known called features (or explanatory variables), and 

can be binary (e.g., true, false), categorical (e.g., blonde, brunette and red), ordinal 

(e.g., low, medium and high), integer-valued (e.g., number of words in an email) or 

real-valued (e.g., cholesterol level in the blood). Once the features are extracted 

they are used to adjust internal parameters of a predictive model so that the model 

captures the underlying patterns and can begin to make accurate predictions. 

Further background theory on classification is provided in section 2.5.2. Prior to 

this some background is given on methods for extracting the features used in the 

classification algorithm.  

2.5.1 Feature Extraction 

Features are measurements or attributes which capture important information 

representing the differences and similarities between input observations in a 

classification system. A set of feature measurements can be stored in a feature 

vector, which represents the information in a 3 dimensional colour image (e.g., a 

RGB image with 3 colour channels) in a 1 dimensional list of numbers. Feature 

extraction aims to capture the information required to develop an accurate 

classifier within a significantly smaller dataset than the original image. For 
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example, a typical RGB image used as an input in this research project is of the 

order of 2666 x 3863 x 3 pixels, and hence will be represented by 30,896,274 

values. The extraction of pertinent high level features could allow the image to be 

represented by as few as five numbers in the final classification model. Feature 

extraction is one form of dimensionality reduction used in image analysis, other 

forms will be discussed in section 2.5.6. 

To be useful for image classification, the features should vary between classes/ 

categories, remain as resistant as possible to other variation in the image including 

lighting, rotation and staining and also be detectable using an automated process. 

Features used in histological image analysis can be categorised as:  

 Morphometric features, e.g., size, shape  

 Intensity/ colour features, e.g., hue, intensity, saturation, optical density  

 Texture, e.g., co-occurrence matrix, Gabor, energy, fractal and wavelet. 

 Architectural or graph based spatial features, e.g., node number, clustering co-

efficient, spectral radius  

In histopathology, morphometric features are often based on visual attributes used 

by clinicians and histopathologists to grade or classify disease. These features are 

usually object based and associated with the shape and size of tissue structures 

such as glands, tumours, whole cells or cellular components including nuclei or 

cytoplasm. Typically these structures or cellular components have been segmented 

in the previous stage of image processing. In addition to size and shape based 

features, measurements such as intensity, optical density or hue can be used to 

determine and quantify specific colourimetric or immunohistochemical stains 

which highlight biochemical and structural changes in the cell and tissue. Features 

such as texture, intensity and colour can also be extracted from a limited set of 

pixels representing an object (such as a cell or nucleus) in which case they can also 

be defined as object level features. 

Features can also be extracted which attempt to represent or describe the global 

image texture. These features capture repeating patterns of variation in image 

intensity, capturing information about the spatial distribution of intensity levels. 
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These statistical methods analyse the spatial distribution of grey values, by 

computing local features at each point in the image, and deriving statistics from the 

local feature distributions. 

First order statistical features estimate properties (e.g., mean, median, standard 

deviation) of pixels in the region of interest and can be calculated using the image 

histogram. First-order statistics ignore the spatial interaction between image 

pixels whereas second- and higher-order statistics estimate properties of two or 

more pixel values occurring at specific locations relative to each other. Second 

order statistical features are calculated using a grey-level co-occurrence matrix 

(GLCM). This form of statistical texture description specifies the grey-level spatial 

dependencies within a texture, and quantifies the distribution of co-occurring 

grey-level values at various angles and distances (Haralick et al., 1973).  

For an image, I, the GLCM, P(i,j), is defined by counting all pairs of pixels with grey-

levels i and j, which are separated by a distance, k, in direction, d. The normalised 

GLCM, PN(i,j),  is created by dividing each element in P by N, the total number of co-

occurrence pairs in P: 

 

𝑁 = ∑∑𝑷𝑑(𝑖,𝑗)

𝑗𝑖

 

𝑷𝑵𝑑(𝑖.𝑗)
=

1

𝑁
𝑷𝑑(𝑖,𝑗)

∙ 𝑷𝑵𝑑 

Equation 2.17 

The GLCM can be scaled to include different numbers of intensity levels by 

increasing N. The offset can also be changed, by altering k and d.  The spatial 

statistics calculated from the GLCM can be used to compute various features which 

capture textural information about the image. 

Graph based spatial and architectural methods for extracting features include 

Voronoi Tesselation (Toussaint, 1980) and Delauney Triangulation (S. Doyle et al., 

2007). These type of features are used to quantify the spatial arrangement of 

specific features, usually cell nuclei in histopathology. In Voronoi Tesselation (VT), 

a set of nodes is identified (e.g., centroids of nuclei) and the VT creates polygonal 
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cells around the nodes such that all pixels within a given cell are closer to the cell 

node than any other node in the image. The VT is often used in combination with 

Delaunay Triangulation, which is a commonly used triangulation algorithm. From 

the set of all possible triangles, a triangle is accepted if its circumcircle contains no 

other nodes besides the triangle vertices.  

The main feature types used in this research were object level features and texture 

features. The object level features provide information about the features of 

interest such as clefts and vacuoles, texture features give a more general measure 

of tissue structure in the epidermis and at the DEJ. The reasons for these choices 

are discussed in Chapter 3. The two feature types are described below in more 

detail.  

Object level features 

Once histological objects such as clefts and vacuoles have been identified within 

the skin explant images, morphological features can be extracted to describe them. 

Many of these features can be applied to various regions of interest including the 

epidermis, individual clefts and vacuoles. The specific features investigated in this 

research are listed below: 

 Area – The total number of pixels in the region of interest. 

 Bounding box – The smallest rectangle which can contain the region of interest. 

The bounding box of an object is plotted over the binary mask of an object as 

illustrated in Figure 2.27. 

 Eccentricity – The eccentricity of an ellipse with the same second moments as 

the region of interest. It is calculated as the ratio of the distance between the 

foci of the ellipse, and the ellipse’s major axis length. An ellipse has two foci, 

and is the locus of points such that the sum of the distance to each focus is 

constant. Examples of the equivalent ellipses are shown in Figure 2.28. 

 Extent – This is the area divided by the area of the bounding box  

 Major Axis Length – The length (in pixels) of the major axis of the ellipse with 

the same normalised second central moment as the region of interest. Marked 

with the blue arrow in Figure 2.28. 
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 Minor Axis Length – The length (in pixels) of the minor axis of the ellipse with 

the same normalised second central moment as the region of interest. Marked 

with the green arrow in Figure 2.28. 

 Perimeter – The distance around the outer boundary of the region of interest. 

 

Figure 2.27 An example of a bounding box (in red) for a specific object 

 

Figure 2.28 Examples of ellipses with the same second moment as specific objects in the image 
(marked with red ellipse boundaries). The major and minor axis lengths of one of the ellipses 
are shown by blue and green arrows respectively. 

Statistical features describing the all examples of a particular shape within the 

image may also be informative; for instance, the median area of a vacuole in an 

image, or the mean inter-quartile range of vacuoles in a particular image. Object 

population statistics used in this research include count, mean, median, standard 

deviation, interquartile range, range, skewness and kurtosis. 

Texture Features 

For this research the following features were investigated: 
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 Contrast: Measure of intensity variance or contrast between the pixel pairs i 

and j over a whole image. 𝑝(𝑖,𝑗) is the element 𝑖, 𝑗 of the normalised symmetrical 

GLCM. Contrast is zero for a constant image. Contrast is defined as: 

 ∑|𝑖 − 𝑗|2

𝑖,𝑗

𝑝(𝑖,𝑗) Equation 2.18 

 Correlation: Measure of joint probability occurrence or correlation of pixel 

pairs i and j over the whole image. 𝜇 is the GLCM mean, 𝜎 is the variance. 

Correlation is 1 for a completely positively correlated image, -1 for a perfectly 

negatively correlated image and NaN for a constant image. Correlation is 

defined as: 

 ∑
(𝑖 − 𝜇𝑖)(𝑗 − 𝜇𝑗)𝑝(𝑖,𝑗)

𝜎𝑖𝜎𝑗
𝑖,𝑗

 Equation 2.19 

 Energy: The sum of squared elements in the GLCM, which is the angular second 

moment and is a measure of uniformity. The fewer grey level transition within 

an image, the higher the energy will be; energy is 1 for a constant image. It can 

be defined as: 

 ∑𝑝(𝑖,𝑗)
2

𝑖,𝑗

 Equation 2.20 

 Homogeneity: Measure the closeness of the distribution of elements in the 

GLCM to the GLCM diagonal, and is a measure of uniformity in the image. 

Homogeneity can be defined as: 

 ∑
𝑝(𝑖,𝑗)

1 + |𝑖 − 𝑗|
𝑖,𝑗

 Equation 2.21 

These features can be calculated using the graycoprops function in MATLAB for 

different directions and distances, and for different colour channels (e.g., R, G and 

B). It is important to calculate features for a variety of directions and distances to 

capture texture and pattern for different orientations and at different scales. 
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The features extracted from the images were used to represent the images during 

classification, which is described in the following section. 

2.5.2 Classification 

In this research, the technique of interest within machine learning is classification, 

which is a method for assigning class labels or identifying to which of a set of 

categories (or classes) a new observation belongs, based on a training set of 

observations. The classification process depends on the type of data used, for 

instance data vectors, lists, text strings and images all provide different challenges. 

Classification problems may be binary and require a simple yes/ no output, or 

multiclass, in which case multiple categories are possible.  

In image classification the numerical properties of various image features are 

analysed and organised into categories. There are two main learning approaches 

used in classification, supervised and unsupervised. In supervised classification a 

set of training observations (e.g., a set of features representing each image) are 

accompanied by the correct output label (e.g., the grade of damage shown in the 

image). This enables the classifier to determine rules or patterns and predict the 

grade of a new image that has not previously been presented to the classifier. More 

specifically, the training phase uses a data set of inputs, X and targets, y, with each 

observation consisting of an input vector, xi and a class label, yi. The input vector, xi 

can also be described as a feature vector. The relationship between the feature 

vectors and equivalent class labels is analysed and this information is used to build 

a mathematical model which contains a unique description of the features relevant 

to each training class. In the testing phase the model is used to predict output label 

of a new observation given the feature vector. The performance of the classifier in 

the testing phase is known as the generalisation ability of the classifier.  

Unsupervised classification, often described as clustering, differs in that the 

training images are not labelled with a particular output; instead the observations 

are grouped or clustered into categories based on some underlying similarity or 

pattern present in the data. No information is provided on the number or type of 

classes during the learning process, instead decisions on the number and nature of 

categories are based purely on the input data. The important features of each class 
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are extracted, and this information is used to enable the classification of a new 

observation. Supervised and unsupervised approaches to classification are 

compared in Table 2.4. 

Table 2.4 Comparison of unsupervised and supervised approaches to classification tasks 

Unsupervised Supervised 

Number of classes unknown.  Number of classes known.  
Allocates patterns to naturally occurring 

groups based on similarity/ cluster density. 

Uses a training set of patterns to set up the 

internal parameters of model. 
Number of classes and class structure must 

be learnt. 

Uses a model to estimate class 

membership for an unknown observation/ 

image. 

Advantages 

Fast and consistent for large data sets, as 

there is no requirement for a separately 

determined label set.  

Utilises domain knowledge, but may 

introduce bias if class labelling is subject 

to bias.   
No need to label observations. Can learn complex patterns 

Disadvantages 

Clusters may not correspond with desired 

groups if irrelevent features are included 

and may be difficult to interpret. This can 

be mitigated using careful feature selection. 

Selection and preparation of training data 

can be expensive and time consuming as 

training data must be represenattive of the 

true distribution and labelled accurately. 

Examples 

k-means, Mixture Models (e.g., Gaussian), 

Hierarchical Clustering, Self-Organising 

Maps 

Support Vector Machines, Decision Tree, 

Naïve Bayes, Nearest Neighbours 

 

A supervised approach was chosen for this research due to the availability of labels 

for the training set and the existing categories in place for grading the samples. 

Supervised learning approaches often use probability as a basis. Probability is used 

in different approaches, discriminative and generative, which build models in 

different ways. 
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Determining the posterior probability is a useful first step as this knowledge 

allows the image to be classified so as to minimise a particular loss function, for 

example, the misclassification rate.  In the discriminative approach a parametric 

model is used to calculate the posterior probabilities, inferring the values of the 

parameters from a set of labelled training data. Posterior probabilities are 

estimated directly and there is no attempt to model underlying probability 

distributions.  In the generative approach the joint distribution of images and 

labels is modelled. One way of doing this is to learn the class prior probabilities 

and the class-conditional densities separately using Bayesian classification, a 

generative supervised learning method. Based on a probabilistic model, the 

method captures uncertainty by determining probabilities of each possible output. 

The classification method is named after Thomas Bayes (1702-1761), who 

proposed Bayes Theorem (Equation 2.22). Bayes Theorem describes how the 

probability of a hypothesis (ℎ) being true is affected by new evidence and can be 

written: 

 𝑝(ℎ|𝐷) =
𝑝(𝐷|ℎ)𝑝(ℎ)

𝑝(𝐷)
 Equation 2.22 

where p(h) is the prior probability of h, p(D) is the prior probability of the training 

data, D, p(h|D) is the probability of h, conditional on D and p(D|h) is the probability 

of D, conditional on h. 

One implementation of the Bayesian classification is the naïve Bayes classifier 

which was used in this research project. A full evaluation of classification 

approaches used in the field and the rationale for the choice of the generative naïve 

Bayes classifier is given in Chapter 3, section 3.2.8. 

2.5.3 Naïve Bayes Classification 

In the Naïve Bayes Classifier, the most likely class is assigned to a given image 

based on its feature vector. Learning in such classifiers can be simplified by 

assuming that features are independent given class, meaning the 1-dimension class 

conditional density can be determined for each feature individually: 
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 𝑃(𝐱|𝑐) = ∏ 𝑃(𝑥𝑖𝑐)
𝑛

𝑖=1
 Equation 2.23 

where 𝐱 = (𝑥1 , ⋯ , 𝑥𝑛) is a feature vector and c is a class.  

The assumption of independence allows the method to estimate model parameters 

using less training data, so it is particularly useful where the number of features is 

high and the number of observations is low. The independence assumption greatly 

reduces the variance of this model; however the bias can be large. 

For the Naïve Bayes classifier, each feature in each class is modelled using a 

distribution which is used in the prediction phase to determine the posterior 

probabilities of class membership. A Gaussian distribution can be used, in which 

case a normal distribution is estimated for each class based on the mean and 

standard deviation. Kernel density estimation (KDE) is a nonparametric technique 

for estimating the probability density function, f(x), of a continuous variable X. KDE 

was first described for use with Naïve Bayes classifiers by John and Langley (1995) 

and the major benefit  is that it does not assume normality for each class 

distribution. The method estimates the f(x) of class distribution by averaging a 

known density or weighting function (the kernel) over the observed data to create 

a smoothed approximation.  

2.5.4 Considerations in Statistical Classification 

Prior Probabilities: In many classification problems there is not an equal 

likelihood of a given observation belonging to each class. The performance of a 

classification algorithm can sometimes be improved if information on the typical 

proportions of known observations in each of the classes is included in the 

classification algorithm. This information can be incorporated using prior 

probabilities which increase the likelihood of predicting classes with higher priors. 

If the detection of a rare class is particularly important, it is advisable to over 

represent the class in the training set.  

Curse of Dimensionality: In most decision making activities, having more 

information is considered to provide an advantage in arriving at the correct 

conclusion. In a classification task, it would be expected that including more 
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features in a classification model would result in a more accurate result. However 

this is not the case when working with high dimensional data, due to an effect 

referred to as the “curse of dimensionality”, first described by Bellman (1961). The 

effect occurs because observations become more sparsely spaced and dissimilar as 

the number of dimensions is increased, making the statistical grouping of 

observations difficult. The effect can be illustrated by considering a set of 10 

training observations plotted across a 1 dimensional feature axis. Assuming the 

total range of feature measurements covers 5 unit intervals, the sample density 

would be 10/5=2. If a second feature is added, the same 10 observations cover a 

feature space of 5 x 5=25 unit squares, giving a sample density of 10/25=0.4 

samples per interval. For 5 features, the sample density would be 10/3125=0.0032 

and this exponential decrease in sample density continues as more features are 

added.  

The sparsity of samples in high dimension feature space makes it easy for a 

classifier to obtain a hyperplane which separates two groups of observations. 

However, because the classifier has learned based on the appearance and position 

of specific instances and exceptions in the training set, it may be modelling random 

error or noise rather than the correct underlying relationship of features.  This 

issue is referred to as overfitting, and is a direct effect of the curse of 

dimensionality. An overfitted model will perform poorly when presented with a 

new observation that does not adhere to the same exceptions, and is said to have 

poor generalisation ability. In order to avoid overfitting, either the number of 

dimensions must be kept low, or the training set must grow exponentially as 

features are added to maintain coverage of the feature space. Reducing the number 

of dimensions using feature selection is discussed next. 

2.5.5 Feature Selection 

Feature selection involves selecting a subset of features (or variables) from the 

whole set, to use in the training and application of a classifier. It reduces the total 

number of features and avoids overfitting, facilitates data understanding, reduces 

measurement and storage requirements, and can reduce the time required for 

model training and utilisation. The general objective is to remove redundant 
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features (which provide no additional information to other features in the subset), 

or irrelevant features (which provide no useful information). Two approaches to 

feature selection which differ with respect to their treatment of redundant and 

irrelevant features are filter and wrapper methods. 

Filter methods rank features using an evaluation criterion based on correlation 

coefficients or by other statistical tests such as t-tests or Chi-squared, to assess the 

relationship between individual features and the response or output of interest. 

Kohavi and John (1997) proposed an alternative methodology for feature selection 

with the objective of identifying the set of features most useful for building a 

classifier, rather than those most relevant to the output. Referred to as the 

wrapper methodology, this approach assesses subsets of features based on their 

ability to maximise the predictive performance of a classifier.  

Feature selection methods commonly used to identify subsets in the wrapper 

methodology include the sequential search methods, sequential forward selection 

(SFS) and sequential backward selection (SBS) (Whitney, 1971). SFS starts with a 

single feature that is either chosen at random or selected as the most relevant to 

the classification task using a filter method. Features are then added sequentially, 

based on whether their addition improves classification performance. SBS starts 

with all features included and they are removed successively until any further 

removal results in a decrease in classifier performance. Floating search methods, 

including sequential floating forward search (SFFS) and sequential floating 

backward search (SFBS)  have been proposed, which allow previously 

selected/discarded features to be re-evaluated at a later stage (Pudil et al., 1994). 

Both sequential methods and their floating counterparts suffer from the “nesting” 

effect, where suboptimal subsets are possible due to the fact that previously 

selected features cannot be discarded and discarded features cannot be reselected. 

Two highly correlated variables might be included if it gives the best performance 

in the SFS evaluation.  

2.5.6 Dimensionality Reduction – an Alternative Approach to Feature Selection 

An alternative method for dealing with high dimensional data is to carry out 

dimensionality reduction. Feature extraction is one approach to dimensionality 
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reduction used in image analysis already discussed in section 2.5.1, whereby a 1-

dimensional vector of feature measurements is extracted from the original 3-

dimensional matrix of the RGB image. The techniques more commonly implied by 

the term dimensionality reduction are typically based on data projection 

techniques. The main linear technique for dimensionality reduction is Principal 

Component Analysis which remaps the data onto a lower dimensional space in a 

way that maximises the variability in the lowest dimension (Kohavi, 1995). In each 

subsequent dimension less of variability is explained. The principal components 

can be used as an alternative to the untransformed features to capture more 

information in fewer features.  

2.5.7 Classifier Evaluation 

Classification can be evaluated in a number of ways, including accuracy, speed, 

robustness to noise, computational resource requirements, scalability, 

interpretability, ability to fully use the information content of the data, uniform 

applicability, and objectiveness. In reality, no classification algorithm can satisfy all 

these requirements nor be applicable to all studies, due to the complexity of 

histological classification. Classification accuracy assessment is, however, the most 

common approach for an evaluation of classification performance, which is 

described next. 

 Accuracy: measures the probability of a correct classification. At pixel level 

(for segmentation) it refers to Ncp/Np, where Ncp is the number of correctly 

classified pixels and Np is the total number of pixels. For whole image 

classification it refers to Nci/Ni, where Nci is the number of correctly classified 

images and Ni is the total number of images. 

 Misclassification Rate: measures the probability of an incorrect classification, 

Ni /N, where Ni is the number of incorrect cases (pixels or images), and N is the 

number of cases.  

 Sensitivity: measures the probability that a known positive case will be 

classified correctly. This may be quoted as a probability or rate, or as a 

percentage. Ntp/(Ntp+Nfn) where Ntp is the number of true positives and Nfn is 

the number of false negatives. 
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 Specificity: measures the probability that a known negative case will be 

classified correctly. This may be quoted as a probability or rate, or as a 

percentage. Ntn/(Ntn+Nfp) where Ntn is the number of true negatives and Nfp is 

the number of false positives. 

 Robustness measures the ability of the classifier to perform effectively while 

its variables or assumptions are altered, operating without failure under a 

variety of conditions. For instance, can the system grade a mild positive 

reaction accurately using feature measurements in the presence of non-

relevant variability in the input images such as staining differences? 

 Repeatability means that given the same inputs, the same result will 

consistently occur. For instance, will the system give the same grade given the 

same input image each time?  

 Reproducibility is a measurement of consistency between systems. For 

example, when run on different computers by different users, does the system 

give the same output? Will images acquired from different acquisition systems 

be graded the same? How much variation does any user interaction introduce? 

A commonly used method to evaluate the performance of a classifier is to estimate 

the misclassification rate for new unseen images using cross validation. This 

measurement is informative because it evaluates the generalisation ability of the 

model. One form of cross validation method is k-fold cross validation.  In this 

method, a dataset of size N is first divided randomly into k mutually exclusive 

subsets. Each subset in turn is used as the test set for the classification model 

which has been trained using a training set made up the remaining k-1 subsets. 

Once the model training and testing has been repeated k times, the average 

number of incorrectly and correctly classified observations across k tests is 

calculated. The size of k can vary from 2 to N, with the case of k=N known as 

leaveout or leave-one-out cross validation. As k is increased, the bias of the error 

estimate is reduced and the variance increases. Higher k values result in large 

training sets and small test sets and because larger training sets tend to result in 

similar performance on multiple iterations, higher k can lead to overfitting. It has 

been demonstrated that leaveout cross validation is a high variance estimator of 

generalisation error and gives overly optimistic results, the method often overfits 
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through the inclusion of too many features in the model, resulting in poor 

prediction performance for new data (Hastie et al., 2011). 

Monte-Carlo cross-validation can also be used as an alternative to k-fold cross-

validation (Lu and Mandal, 2012). In this method the data is split randomly into 

training and test sets and observations can be included in multiple test or training 

sets, unlike k-fold cross-validation where the k subsets are mutually exclusive and 

no repeats are permitted. While k-fold cross-validation will give a very low bias, 

the estimation can have a high variance if the test set is small. For example, 10-fold 

cross-validation for a sample of 100 observations will test prediction on 10 

observations at a time. Monte Carlo cross-validation tends to result in low variance 

models as many more possible partitions of the dataset can be explored due to the 

fact that the subsets do not need to be mutually exclusive. However a consequence 

of this is that some observations may be used more than others resulting in a 

higher bias. One approach to balance bias and variance is to repeat k-fold several 

times, which retains low bias but reduces the variance of the estimate.  

This chapter has introduced the theory and background of the biological and 

computational aspects of the research. Some of the key aspects will be considered 

in more detail in the next chapter, and the relevant published literature evaluated 

with a view to justify some of the research decisions made and qualify the need for 

this research. 
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Chapter 3 Literature Review 

This chapter provides a review of relevant literature, providing evidence of the 

need for an alternative to manual grading systems in histopathology both generally 

and in the case of the skin explant assay used by Alcyomics. A review of the 

competing technologies for toxicity, allergenicity and immunogenicity is also 

provided. Literature relating to the main aspects and challenges of the research is 

given next, specifically relating to colour normalisation, segmentation, feature 

extraction, classification and ground truth.  Finally, literature on the application of 

image analysis to analysis of human skin is reviewed 

3.1 Grading Variability in Manual Histopathology 

Manual grading methods used in histopathology are time and labour-intensive, and 

the lack of quantitative characterisation can lead to issues relating to subjectivity 

and inter and intra-observer variability. Many grading scales used in 

histopathology are qualitative or semi-quantitative (Pilette et al., 1998; Taylor and 

Levenson, 2006). A qualitative histological grading system uses information such 

as the presence/ absence, severity, distribution and morphology of particular 

histological features to determine the final grade. More advanced semi-

quantitative systems, such as the Nottingham Grading System used for breast 

cancer staging and grading, combine quantitative information such as mitotic 

count and rate with qualitative information such as the ‘degree of nuclear 

pleomorphism’ (C. W. Elston and Ellis, 2002). A key barrier to objectivity for many 

current grading scales stems from the attempt to use a qualitative system to 

measure continuous variables; boundaries are not set clearly and instead ordinal 

variable language (low, medium, high) is used to guide decisions.   

High signal to noise ratio, low inter and intra-observer variability and the placing 

of category boundaries to separate natural cluster of cases are all important 

considerations when designing grading systems (Morris, 1994). In both clinical 

and research situations it is important to consider the purpose of grading and 

decide whether multiple subdivisions provide useful information. When Morris 

(1994) discussed the theory of information transmission when applied to 

histopathology grading systems, he showed that reducing the number of categories 
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improved inter-observer agreement but reduced the amount of information 

transmitted. His suggestions of 100 point scales and quotation of confidence limits 

could provide a more rigorous but useful system in histopathology.  

The qualitative visual assessment at the heart of histopathology is inherently 

subjective, resulting in a high degree of variation in analysis between different 

histopathologists. The inter-observer disagreement in manual histopathology 

diagnoses has been reported in numerous published studies, some of which are 

described below. 

In a review of 500 neuropathology diagnoses of brain or spinal cord biopsies, 

Bruner et al (1997) reported some degree of disagreement in 42.8% of cases, with 

8.8% classified as serious disagreements  which were defined as having immediate 

significance for therapy or intervention. Reviewing inter-observer variation in 

pathological diagnosis of brain tumour patients, van de Bent (2010) stated that 

‘more objective, quantitative and reproducible criteria are urgently needed’. Van 

Putten also stated that poor performance in grading of non-advanced and 

advanced adenomas in colorectal cancer diagnosis suggested that more objective 

criteria were required (2011) A comparison of essential thrombocythemia in bone 

marrow biopsies in 370 patients by 3 experienced haematopathologists using 

World Health Organization classification criteria showed substantial inter-

observer variability both for overall diagnosis and certain cellular characteristics 

(Wilkins et al., 2008). Elsewhere there have been reports of poor agreement in 

diagnosis of melanomas and melanocytic nevi (Hastrup et al., 1994; Farmer et al., 

1996), analysis of cervical biopsy specimens (Robertson et al., 1989; de Vet et al., 

1990), scoring of chronic hepatitis in liver biopsy (Rousselet et al., 2005) and 

grading of dysplasia in ulcerative colitis (Eaden et al., 2001). Even a relatively 

simple task of classifying cell nuclei in renal cell carcinoma highlighted inter-

observer variability; when classifying 180 nuclei, five experts agreed on 24 normal 

and 81 atypical nuclei, but there was an inter-observer classification error of 18-

30% for the other 75 nuclei (Fuchs and Buhmann, 2011). Improvements in inter-

observer agreement have been obtained by adding quantitative measures to 

previously qualitative grading systems. For example, the Nottingham modification 
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of the Scarff-Bloom-Richardson grading for breast carcinoma that added 

quantitative measures reported inter-observer agreement of 70-90% (C.W. Elston 

and Ellis, 1991; Frierson et al., 1995; Dalton et al., 2000).  

While subjective language and qualitative grading criteria are responsible for some 

of the grading variability, fatigue, training level and sampling may be important 

factors. Manual grading is time consuming and the drive for more consistent 

grading through the collection of more detailed quantitative data is likely to 

increase analysis time unless automated processes are adopted. Fatigue and lapses 

in concentration can become significant when carrying out repetitive tasks and 

periods of intense concentration may result in changes of visual perception that 

reduce the chance of detecting unusual events, a state termed “inattentional 

blindness” by Mack and Rock (1998).  

Tissue sections used in histopathology can be large (cm rather than mm in 

dimension) and high magnifications are often required to assess specific 

histological features at the microscope. The size of the sections means that a full 

assessment of the whole tissue sample at high magnification is often not practical, 

therefore sampling is often used to increase throughput. Unfortunately sampling of 

such large images may miss isolated or focal areas of change, increasing the chance 

or false negative results. 

The requirement of an experienced histopathologist may exacerbate the issues 

mentioned above by increasing workload on key staff. The level of experience of 

the histopathologist is known to be an important factor in grading and was found 

to be the most important factor affecting scoring variability in a study investigating 

chronic viral hepatitis grading (Rousselet et al., 2005). 

The prevalence of variability in manual histopathology supports the development 

of new automated methods. Based on a review of the literature, new methods 

should increase quantitative measurement, reduce the workload of experienced 

histopathologists and incorporate automation in order to succeed. 
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3.1.1 Skin Explant Assay 

In the case of both the Lerner scale and the modified Lerner scale used in the 

Skimune assay, the differentiation between grade I and grade II reactions is 

particularly challenging. The distinction is made by considering the presence of 

dyskeratotic bodies and the severity of vacuolisation in grade II when compared to 

grade I. Unfortunately dyskeratotic bodies are not always present in grade II 

samples, consequently sometimes the degree of vacuolisation alone must be used 

for grading. The difficulty of grade I and II differentiation is supported by the 

findings of Massi et al (1999) who found that while inter-observer agreement was 

almost perfect for grade III reactions, grades 0, I and II showed lower levels of 

agreement. Massi et al suggested this situation could be improved by the inclusion 

of an additional manual estimation of inflammatory infiltrate as an additional 

criterion for grade II damage. The appearance of mononuclear cell infiltrate into 

the tissue was also proposed as a better indicator of early GVHD than the presence 

of dyskeratotic bodies by Horn et al (1994), who proposed modifying Lerner’s 

criteria to include dermal lymphocytic infiltrate at Grade II. In the in vitro skin 

explant assay there is no inflammatory infiltrate so this approach cannot be used.  

The inter-observer variability for the original skin explant assay was assessed 

using three transplant centres across Europe (Sviland et al., 2001), with 503 slides 

graded by each of the centres  then reviewed and graded blindly by an experienced 

independent pathologist. Of the 503 slides, there was disagreement in 8% of cases 

across the four centres, with 14.5% disagreement found for samples with grades 

II- IV damage, compared to the 2.2% disagreement for samples with grades 0-I 

damage. Most of the differences were for cases at the boundary between grade I 

and II, which is the borderline between a normal and positive result.   

The boundary between grade III and IV changes can also be open to interpretation 

in cases of very severe cleft formation. For instance, some operators would only 

classify a sample as grade IV if there is complete separation of the epidermis and 

dermis, while others may also grade a sample with a very small proportion of DEJ 

intact as a grade IV. Despite the challenges described, the simplified criteria used in 

the Skimune assay have been shown to retain good prediction of GVHD in bone 
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marrow transplant patients (Sviland et al., 1990) and so have been retained for use 

by Alcyomics in their commercial assay. 

3.1.2 Alternative Methods to test for Toxicity, Allergenicity and Immunogenicity 

In the commercial environment into which Alcyomics are launching the Skimune 

assay, there are a number of alternative tests and assays available. The Skimune 

assay can be used as an alternative for animal tests, which are established and 

accepted methods for measuring safety, toxicity and allergenicity in the 

pharmaceutical, chemical and cosmetics industries. In vivo experimental animal 

models have traditionally been used to provide information about the safety and 

toxicity of a range of products, including pharmaceuticals, industrial and 

household chemicals, cosmetics and agrochemicals. Testing of acute systemic 

toxicity to estimate the acute lethal does (LD50) or concentration (LC50) and tests 

of skin and eye irritation account for many of the tests carried out on mammals.  A 

combination of public opinion, new regulations, cost and logistics are making these 

industries look to alternative methods. For instance, the unprecedented numbers 

of new chemicals being introduced every year which REACH regulations now 

require to be tested make the sole use of animal tests logistically impossible, as 

well as extremely time and cost intensive (Frazier, 1992).  

There are a number of 3R methods available, all of which aim to reduce, refine and 

replace the use of animal tests including: the use of human volunteers; artificial 

skin tests; molecular and cell culture methods; and in silica methods such as 

Quantitative Structure Activity Relationships. There are a number of companies 

offering in vitro skin models, which grow human skin cells into a life-like structure. 

Some models are long established, such as Epiderm (MatTek Corporation, US) 

which has been available for >15 years. Several of the models have already been 

though European validation, including EpiSkinTM (SkinEthic Laboratories, France), 

which the European Centre for the Validation of Alternative Methods (ECVAM) 

Scientific Advisory Committee recommended as a ‘reliable and relevant method for 

predicting skin irritation’ (SCCP (Scientific Committee on Consumer Products), 

2007). There are also models which use ex vivo mouse skin, but the ex vivo human 

skin model from Alcyomics is unique because it mimics the autologous immune 
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system, matching immune cells and skin from specific individuals to give an 

accurate representation of the human immune response. 

In the pharmaceutical market, immunogenicity assessment of biotherapeutics has 

received significant attention in recent years, with a number of industry white 

papers  being published (Lu and Mandal, 2014; Xu and Mandal, 2015) alongside 

EMEA and FDA guidance on the clinical assessment of antidrug antibodies and the 

need for an immunogenicity screening framework. Immunogenicity in many cases 

leads to the loss of efficacy of a drug, but can also lead to the production of severe 

adverse side effects. New and improved methods to assess immunogenicity of 

potential drug candidates are therefore in demand by drug developers to help 

them reduce risk during drug development. 

3.2 Digital Histopathology 

As increasing numbers of high resolution, high quality images are produced in 

pathology labs utilising the latest slide scanning technology, the analysis of these 

images becomes the bottleneck in the process. It is for this reason that there is 

currently intense focus in industry, academia and clinical environments on the 

development of useful and accurate image analysis algorithms.  

3.2.1 Challenges of applying Computer Analysis in to Histopathology  

Application of computer analysis to any biological sample is challenging due to the 

high degree of biological variability, complexity and problems of sampling bias 

(Paizs et al., 2009).  In histopathology, additional challenges are presented by the 

high data density of histopathology images, the complexity of the tissue structures, 

and the inconsistencies in tissue preparation (Gurcan et al., 2009). McCann et al 

(2014) describe the three main sources of variability in a histology-based 

diagnosis as: 

 Biological variability, which encompasses the differences between people and 

also the variability of pathological process occurring in the tissue, meaning that 

slides of the same tissue from different people will look different. 

 Inter-observer variability, which describes the impact of subjectivity and 

human judgement on histopathology analysis 
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 Technical variability, which is caused by differences in how the slide is 

prepared.    

Biological variability can lead to significant variation within a single cell type, 

compounded by variation in the formation of tissue and the number, placement 

and morphology of tissue structures such as glands. This structural variation is 

often exacerbated by technical variability such as inconsistent sample preparation 

and staining procedure, differences in stain colour or reactivity between batches 

and the effect of section thickness on light transmission (Magee et al., 2009). There 

are a broad range of histological patterns and features seen in different diseases 

and organs, with significant overlap in features both between different diseases 

and between different grades of the same disease. In addition to the general 

technical challenges, Levenson (2004) reported limited enthusiasm among 

pathologists for a switch from subjective to more quantitative scoring schemes due 

to difficulties of multi-centre implementation and a lack of recognised image 

analysis standards. 

When replacing a manual process with a digital one, it is worth considering the 

strengths and weaknesses of the original system. The human visual perception 

system is particularly skilled and well adapted to interpreting visual scenes and 

this provides advantages when evaluating tissue sections. Human perception has 

the advantage of being reasonably resistant to image noise and contrast and 

invariant to changes in position, scale and orientation (Gonzalez and Woods, 

2008). In histopathology, this means that humans can easily switch from low to 

high magnification, search for features of interest, and ignore artefacts and noise. 

The object oriented nature of our visual perception system is also well suited to 

identifying histological features such as cells, regions of tissue and structures such 

as glands. The analysis of cellular shape, size and organisation in histology uses 

pattern recognition, a process fundamental to human cognition which has been 

perfected over years of evolution. However, while certain facets of human 

perception bring significant advantages to histopathological analysis, the 

weaknesses associated with manual grading such as inter and intra-operator 
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variability, subjectivity, bias and fatigue that have already been discussed in detail 

are also related to the ‘human factor’.  

Replacing a manual process carried out by a human with an automated computer 

system provides significant challenges. It is challenging to try and replicate any 

human process of image understanding, interpretation and decision-making, as it 

can be difficult for the expert to explain exactly how certain decisions are made. In 

manual histopathology there are often significant levels of implicit knowledge 

required to make accurate decisions which are gained through experience and not 

always included in the traditional written grading criteria. One solution is to work 

more deeply with the experts to try and ascertain as much of this implicit 

knowledge as possible, and then codify this knowledge in the image analysis 

algorithm. Alternatively, researchers are increasingly extracting huge numbers of 

features in the hope that both explicit and implicit knowledge will be captured 

somewhere within the dataset (Bins and Draper, 2001) 

Although the objective of both the human and computer process is the perception, 

understanding and interpretation of image information, the way in which this is 

achieved is fundamentally different. In contrast to the object-oriented world view 

that the human visual perception system uses, computer vision tends to represent 

images of the world at a pixel level. Although this approach is increasingly used 

(Bishop, 2010), and can be very successful, it can be difficult to separate the 

variation of interest to the other background variation already discussed. 

Computers are more suited than the human visual system for quantitative 

functions such as counting or area estimation, creating the potential for 

improvements in quantitation, throughput, objectivity, repeatability and 

reproducibility. Rather than examining a small percentage of the total cells as in 

manual histopathology, it is possible for a computer to analyse every pixel in every 

cell of the whole slide. Once algorithms and software programs are set up, 

computer-aided analysis has the potential to be much faster than manual analysis, 

although this is dependent on image file size, computer processing speed, and 

algorithm complexity. In this thesis, the research presented aims to mimic and 

capture human expertise and domain knowledge, but utilise the key strengths of 
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computational methods, i.e. quantitative measurement, objectivity, speed and 

reproducibility of analysis.  

Although extremely common, claims that computer-aided image analysis is a 

completely objective solution have been disputed, with the argument that human 

devised and implemented algorithms are subject to human bias and judgement. 

Tadrous (2010) argued that image analysis methods simply implement the 

subjective decisions taken by the programmer throughout algorithm design in an 

objective manner, and the real benefits of the methods were speed, indefatigability 

and standardisation. In this research, the influence of domain knowledge and the 

bias that this may bring is not disputed, one of the main hypotheses of this 

research is that incorporating such knowledge into the early stages of the image 

processing and feature extraction will enable variation relevant to skin damage to 

be distinguished from non-relevant image variation. 

In light of the challenges of histopathology, a number of commentators have 

suggested that image analysis tools in histopathology are not at present able to 

compete with the breadth and depth of expertise of a pathologist and their role 

should be to complement the role of the pathologist or histopathologist rather than 

to replace (Madabhushi, 2009). At the very least, a close relationship with the 

histopathologist is required to obtain feedback, and aid interpretation of results 

(Gurcan et al., 2009). 

3.2.2 Colour Normalisation in Digital Histopathology 

In histology, coloured chemical stains which bind specifically to proteins are used 

to aid identification of different tissue types. The final colour is affected by the 

quantity/ density of protein molecules in the stain, variability of the chemical stain 

colour or reactivity, variability of the staining procedure, tissue thickness (light 

transmission is a function of tissue thickness) and lighting during image capture 

and digitisation (Magee et al., 2009). These differences, often referred to as batch 

effects, do not create insurmountable issues in manual analysis because in the 

human vision system colours can be perceived and identified easily under varying 

illumination conditions. However these batch effects can create bias in the 

performance of automated classification methods and so approaches are required 
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to normalise the colour distribution in an image and facilitate subsequent 

processing steps.  

Much work in histopathology bypasses the issue of colour by converting to grey-

scale, and while this can be successful in cases where there are clear intensity 

differences between features and non-features, there is a significant amount of 

information lost concerning which stains are present and in what proportions. It is 

often necessary to compensate for differences in staining intensity by normalising 

the image intensities. One method to allow for staining inconsistencies is 

presented by Paizs et al for the quantification of inflammation in murine spinal 

cord (Paizs et al., 2009).  An internal reference area unaffected by experimental 

treatment or disease condition was used to specify a staining baseline. However 

this technique requires operator input to identify areas of interest and so is not an 

ideal solution due to the impact on throughput, the requirement for operator 

intervention and the potential introduction of subjectivity. Reinhard et al (2001) 

described a method for colour normalisation which maps the pixels in an input 

image to the colour distribution of a target image by equalising the mean and 

standard deviation for each dimension of a lαβ colourspace. Reinhard’s method has 

been applied to H&E stained histology images by Wang et al (2007b), and Magee et 

al (2009) used the method as a benchmark to test their novel colour normalisation 

methods against. This approach is simple and can be applied to multiple images, 

however it assumes that all areas of the image can be normalised with the same 

transform. In reality, the inter-image variation for different image regions (e.g. 

background, different tissue types), results from differing sources. The approach 

works well when a single stain (e.g. Eosin) dominates the image, however because 

the approach uses a single linear transform for all pixels it would result in the 

incorrect mapping of many typical histology images. 

When multiple stains are used in the same slide, overlapping absorption spectra 

can create difficulties in identifying and quantifying features. This is particularly 

important in immunohistochemistry (IHC) where different stains are used to 

locate and quantify particular substances; however it is also important in H&E 

stained slides to identify structures. Narrow band filters have been used during 
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image acquisition to separate the stains (Zhou et al., 1996), however overlapping 

spectrums are still a problem with this method. Methods based on colourspace 

transforms have been described, for example Lehr et al (1999) applied 

Photoshop® tools to tissue images utilising their hue-saturation-luminance (HSL) 

characteristics and other used a stain-specific transform (Ruifrok, 1997). A further 

development by Ruifrok, allowing the determination of the relative contribution of 

each stain to a pixel’s colour is a method known as colour deconvolution. This 

method uses the specific optical density (OD) for each of the RGB channels rather 

than the intensity to describe each stain. Each pure stain can be characterised by a 

specific OD for the light in each of the three RGB channels, which means it can be 

represented by a 3 x 1 OD vector describing the stain in the OD-converted RGB 

colourspace. 

3.2.3 Segmentation  

Segmentation is a critical first step in many image analysis applications since by 

locating regions of interest early in the analysis subsequent steps can become 

more accurate and computationally efficient. A full review of segmentation 

approaches is beyond the scope of this thesis and thorough reviews have been 

published including one by Segzin and Sankur (2004). A brief discussion of the 

limitations of traditional segmentation techniques in histopathology follows, but a 

comprehensive discussion of segmentation approaches being used in histology for 

global scene segmentation and local structure, cell and nuclear segmentation can 

be found in the review paper by Gurcan et al (2009).  

Traditionally, segmentation approaches can be sub-divided into contour or edge 

detection based methods and region or histogram based approaches. A widely 

used contour based approach for the segmentation of biomedical images is active 

contours (or snakes) which were first described by Kass et al as energy-minimising 

deformable splines “guided by external constraint forces and influenced by image 

forces” that localise towards edges and boundaries (Kass et al., 1988). However, 

active contours can only be semi-automated; an initial curve must be defined by 

the user and this initialisation step influences processing time and result quality 

(Angenent et al., 2006). The inherent structural complexity of histopathology 
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images and the frequent presence of overlapping objects make the application of 

contour based approaches in histopathology problematic. The skin images used in 

this research contain a number significant discontinuities that are likely to be 

identified by edge detection algorithms, including the loose, linear surface layers of 

the epidermis (the stratum corneum), the fibrous structures of connective tissue in 

the dermis tissue, the basement membrane at the junction of the epidermis and 

dermis, cleft boundaries at the DEJ and cell membrane boundaries.  The large 

number of potential ‘edges’ in the images make the use of edge or contour based 

approaches to find the boundary of the epidermis tissue difficult and prone to 

error. Region-based methods create sets using pixel or neighbourhood properties 

such as colour, intensity, location or texture. Location cannot be used for the skin 

images used in this research, as the orientation and structure of the images varies 

significantly. Colour, intensity and texture are more applicable as the different 

tissue types (epidermis and dermis) stain differently and have different 

morphology (and therefore texture).  

Thresholding is the simplest of the region-based methods. It involves selecting an 

intensity threshold to create a binary image with the two image states 

representing foreground and background. While the threshold can be selected 

manually, automating the process is quicker and more objective. The aim in this 

research is to threshold the epidermis as foreground, leaving the dermis tissue as 

background. To achieve this, a threshold must be chosen to separate the epidermis 

and dermis pixel sets.  The relative proportion of epidermis varies between images 

and so algorithms based on the percentage of foreground pixels are not useful. 

Simpler methods for choosing the threshold automatically including the 

‘intermodes’ algorithm (Prewitt and Mendelsohn, 1966) introduced in Section 

2.4.12, which finds two local maxima and sets the threshold half way between 

them. This method does not work well when the grey level histogram has very 

unequal peaks, which can be the case for the images used in this research. The 

‘intermeans’ algorithm proposed by Ridler and Calvard (1978) and Trussell (1979) 

and described in Section 2.4.12 iteratively adjusts the threshold so it lies half-way 

between the means of the background and foreground pixels sets. This algorithm 

tends to find a threshold which splits the pixels into two sets of approximately 
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equal number, and this would not be appropriate for the skin images used in this 

research, which have varying proportions of dermis and epidermis tissue.  

One of the most popular approaches for automatic threshold selection, proposed 

by Otsu (1979), chooses a threshold to minimise intra-class variance in the 

foreground and background pixel sets. This approach of minimising variance 

within each set has potential as there is usually an intensity difference in the pixels 

in the dermis and epidermis. However, the variation within the epidermis and 

dermis pixel sets (the inter-class variance) due to the biological and technical 

variability described in section 3.2.1 causes problems when using all thresholding 

techniques, including Otsu’s method, which work best when there is relatively 

little variation within a set of images (Gurcan et al., 2009).   

The use of hybrid segmentation methods is becoming more common as 

researchers find that a single technique is unable to segment all structures 

adequately; multi-resolution approaches, feature based classifiers and post-

processing steps are all popular additions to the traditional segmentation 

approaches. For instance, the addition of binary morphology to adaptive 

thresholding resulted in correct segmentation of 89% of three nuclei types used in 

cancer grading, albeit with a limited sample size of 24 (S. Petushi et al., 2004). 

Fuzzy c-means clustering and active contours were combined to segment prostate 

cancer tissue with an accuracy of 84% (Hafiane et al., 2008). A Bayesian classifier 

used to inform level set and template matching algorithms identified nuclear and 

glandular structures in prostate and breast cancer with comparable accuracy to 

manual segmentation(Naik et al., 2008). A modification to the EM algorithm, using 

Linear Discriminant Analysis in neuroblastic tumour segmentation, was deemed a 

success based on a faster convergence rate than k-means clustering, despite 

similar accuracy (Jun Kong et al., 2007). 

3.2.4 Segmentation of Morphological Structures  

Automated detection of tissue structures is of particular interest in histopathology. 

Traditionally quantitative analysis of morphological structures, or morphometry, 

has involved superimposing grids over the sample to aid counting, however these 

methods are susceptible to human counting errors. Automated detection of 
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nuclear and glandular structures has been achieved by combining information 

from multiple scales; low level pixel information in a Bayesian classifier and high 

level extracted with level set and template matching algorithms (Naik et al., 2008). 

Segmentation of nuclei or cells is a very common first step in the image analysis of 

biological tissue. One fully automated method proposed by di Cataldo et al (2009) 

used the morphological and chromatic characteristics of tissue to segment nuclei. 

The methodology incorporated Ruifrok and Johnson’s (2001) colour deconvolution 

algorithm to separate an RGB image into two monochromatic images for the H and 

DAB stains prior to local adaptive thresholding and classification, resulting in a 

higher segmentation accuracy than either edge or region based snakes. Local 

adaptive thresholding was identified as the key factor in the success of the 

morphological approach; this approach has the ability to cope with 

inhomogeneous staining and illumination by taking into account the specific 

neighbourhood of the relevant pixels.   

3.2.5 Segmentation of Tissue  

While there have been a number of methods proposed for nuclear and individual 

cell segmentation in H&E stained tissues and segmentation of structures such as 

glands, there are few which attempt to segment particular tissue types as a whole, 

a useful first step in identifying disease features if these features are known to 

occur within a particular tissue. The wide variety of tissues and their complexity of 

appearance make this a challenging problem. Chen et al (2011) segmented bone, 

cartilage, and fat tissue in teratoma tumour images using local pixel intensities as 

features with accuracies of 59.7%, 73.18%, 91.09% respectively which shows the 

difficulty of creating a generalised solution applicable to multiple tissues.   

The following papers are those most closely related to segmentation of epidermal 

tissue in H&E stained samples. 

Lu and Mandal (2012) used a multi-resolution approach to segment the epidermis 

in images of skin. The approach uses global thresholding and shape analysis on a 

monochromatic image to get a coarse segmentation, before generating high 

resolution image tiles for further manual or automated analysis. Results on 16 

whole slide skin images resulted in a 92% sensitivity rate, 93% precision and 97% 
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specificity rate. The average processing time to segment the epidermis area for an 

image with 2800 by 3200 pixels was ~ 2.38 seconds, which is 3,764,705 pixels per 

second. 

Mokhtari et al. (2014) proposed an epidermal segmentation procedure as part of a 

system for measuring melanoma depth of invasion in microscopic images. Using 

morphological closing and global thresholding, it assumes that the morphological 

closing operation will remove components such as cell nuclei from the dermis area. 

While it is of relevance to this research, there is no quantitative measure of 

performance by which to compare it with other techniques. 

A relatively simple approach consisting of shading correction, a low pass filter and 

a threshold finding algorithm based on the grey-level histogram was also proposed 

to segment the epidermis (Smolle and Hofmann-Wellenhof, 1998), however no 

quantitative data was given relating to how accurate the segmentation is and the 

authors stated that this type of approach was dependent on good quality staining 

of the sample. 

Wang et al (2007a) described an approach for the segmentation of squamous 

epithelium from cervical virtual slides using a multi-resolution approach. They 

used block based texture features in a support vector machine algorithm to create 

a rough segmentation at x2 magnification, then fine-tuned at x40 magnification. 

They reported excellent accuracies of 94.9 – 96.3%, however performance 

statistics were only reported for two of the 20 test images, in addition, sensitivity 

and specificity were not quoted and it is noted in the paper that the approach 

tended to misclassify red blood cells and columnar epithelium cells. The algorithm 

was reported to take 21 minutes to segment one image on a 120000 x 80000 pixel 

image on a on a Pentium 4 3.4GHz processor with 2GB RAM, which can be scaled to 

approximately 7,619,048 pixels per second. This speed raises questions over the 

suitability of the approach in its current form in any application with large images 

requiring high throughput. 

Datar et al (2008) segmented prostate tissue microarrays into their constituent 

tissue types, using Hierarchical Self-Organizing Maps to classify pixels based on 
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colour and texture features, followed by unsupervised colour merging. While the 

segmented images appear to show good performance against a benchmark 

method, it is not possible to quantitatively compare the results with other methods 

as no accuracy metrics are quoted and no indication of computational efficiency or 

segmentation time is given. 

Eramian et al (2011) presented a graph-cut method to segment epithelium in 

haematoxylin & eosin (H&E) stained samples of odontogenic cysts. They also 

included a luminance and chrominance standardisation procedure to reduce the 

variation resulting from sample preparation. For a set of 35 test images they 

reported mean sensitivity and specificities of 91.5±14% and 85.1±19% 

respectively, and a mean segmentation accuracy of 85±16%. The average run time 

of their method was 7.2s per image, which can be scaled to 189,583 pixels per 

second. 

This area of research is relatively new with few groups working on the 

segmentation of epidermal tissue. The five papers presented provide the most 

useful benchmark by which to assess the success of the segmentation procedures 

developed in this research. A full comparison is included in Chapter 5 when 

discussing the results of the epidermal segmentation algorithm.  

3.2.6 Feature Extraction 

Feature extraction and selection are essential components of many image 

processing and analysis applications, including image retrieval (Antani et al., 

2002), registration and matching (Zitová and Flusser, 2003) and pattern 

recognition (Gonzalez and Woods, 2008). Features used in the majority of 

histopathology classification systems presented in the literature tend to be 

inspired in some way by visual patterns or attributes used by clinicians for disease 

diagnosis in traditional histopathology. Often the features will relate to particular 

objects of importance such as cell nuclei, glands, or particular tissue types. An 

extensive review by Gurcan et al (2009) categorises the features used in 

histopathology into object level and graph based features. The object level features 

are split into four categories: size and shape; radiometric and densitometric; 

texture; and chromatin-specific. The graph based spatial features named include 
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Voronoi Tesselation, Delauney Triangulation and a variety of neighbourhood based 

graphs. One problem with this categorisation is the grouping of very different 

feature types under the label of “object based”, which have very little in common 

except that they can be applied to sets of pixels. The splitting out of chromatin 

based features is understandable as they are so commonly used, however the 

majority of the features named (e.g. area, optical density, number of regions) could 

be applied to any object and so are not strictly chromatin-specific. An alternative 

categorisation is proposed here which groups features in the following way: 

morphometric features (e.g. size, shape); intensity/ colour features (e.g. hue, 

intensity, saturation, optical density); texture (e.g. co-occurrence matrix, energy, 

fractal and wavelet), and graph based spatial features (e.g. node number, 

clustering co-efficient, spectral radius). Some of the published work using these 

types of features in histological image analysis is summarised in Table 3.1. 

Morphometric and colour based features are popular with histopathologists (and 

those designing automated programs for histopathologists) as they are easier to 

interpret than some of the other types of features such as texture and they were 

some of the earliest features to be used in this field. The ease of interpretation of 

morphometric features can be attributed to the fact that human visual perception 

is object based. However because computer vision tends to be largely pixel based it 

can be challenging to try and replicate human visual analysis such as 

histopathology classification using a computer system. As is clear from the 

selection in Table 3.1, texture based features have been widely used by computer 

scientists developing automated methods for use in histopathology. They offer a 

way of extracting a quantitative measure to represent complex tissue architecture 

and staining patterns.  However, the limited biological interpretability of some 

texture features has been highlighted as barrier to acceptance by clinicians and 

pathologists (Kothari et al., 2013).  Graph based features offer an alternative way 

of capturing and representing complex spatial architecture and structural 

information by defining a large set of topological features. Graphs have the ability 

to represent spatial arrangements and neighbourhood relationships of different 

tissue components. Very large numbers of graph based features are extracted to 

represent the structural and spatial information used by histopathologists to 
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classify disease states and they offer a new way of capturing the tacit knowledge a 

histopathologist uses when grading a tissue sample (Ghaznavi et al., 2013). 

Table 3.1 Summary of literature in digital histopathology grouped according to feature type 
used 

Feature 

Classification 

Feature Type Appearance in published 

literature 

Morphometric 

Area, size (Adiga et al., 2006; Sokol Petushi 

et al., 2006; Kothari et al., 2011) 

Boundary (perimeter, perimeter 

curvature and fractal dimension) 

(Naik et al., 2008; Kothari et al., 

2011) 

Shape (eccentricity, sphericity, 

elongation, compactness, 

major/minor axis length) 

(Price et al., 2003; S. Doyle et al., 

2007; Naik et al., 2008; Filipczuk 

et al., 2011; Kothari et al., 2011) 

Intensity/ 

colour 

Hue, saturation, optical density, 

intensity 

(Jun Kong et al., 2007; Tabesh et 

al., 2007; Kothari et al., 2011) 

Colour texture features (J. Kong et al., 2009; Sertel et al., 

2009; Kothari et al., 2011) 

Texture 

Co-occurrence matrices (inertia, 

energy, entropy, homogeneity) 

(Scott Doyle et al., 2006; S. Doyle 

et al., 2007; Al-Kadi, 2010) 

Haralick and Gabor filter features  (Diamond et al., 2004; S. Doyle et 

al., 2007; Kothari et al., 2011) 

Discrete texture, Markovian texture, 

run length texture  

(Al-Kadi, 2010) 

Wavelets (Scott Doyle et al., 2006; Kothari 

et al., 2011) 

Graph based / 

Spatial 

Voronoi diagram,  (S. Doyle et al., 2007; 

Basavanhally et al., 2008; Jondet 

et al., 2010; Kothari et al., 2011) 

Delaunay triangulation  (S. Doyle et al., 2007; 

Basavanhally et al., 2008; Jondet 

et al., 2010; Kothari et al., 2011) 

Minimum spanning tree (Basavanhally et al., 2008; 

Kothari et al., 2011) 
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3.2.7 Feature Selection 

It can be challenging to find out the exact basis on which a human expert makes a 

particular decision, and so it may be an advantage to generate a relatively large set 

of potential features despite the fact that many may be redundant. However, this 

feature set must be reduced to avoid the curse of dimensionality and model 

overfitting (introduced in section 2.5.4). An exhaustive search of all possible 

features sets is not viable for large feature initial feature sets and so sequential 

forward or backwards feature selection or sequential floating feature selection 

tend to be used (Pudil et al., 1994; Gurcan et al., 2009). More advanced techniques 

such as genetic algorithms (Sahiner et al., 1996; Li et al., 2011) or boosting (S. 

Doyle et al., 2012) are increasingly being used; however such techniques are more 

complex to set up and run than traditional techniques.  

3.2.8 Classification 

In this research, a classification model has been used to predict the correct grading 

of an image based on a set of feature measurements.   There is a significant amount 

of published research relating the use of classification algorithms in the diagnosis 

and grading of cancer using histological image analysis. A summary of some of the 

classification approaches used for cancer grading using histopathology and the 

reported classification accuracy is given in Table 2.3. 

. 
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Table 3.2 Classification Approaches used in Histopathology and Published Performance 

Method Tissue Dataset Performance Ref. 

Augmented cell graphs Brain 646 biopsy 

images 

Accuracy 97.1%, 

sensitivity 97.5%, 

specificity 93.3% 

(inflamed), 98.% 

(healthy) 

(Demir et 

al., 2005) 

Processing (adaptive 

thresholding, 

morphological 

processing) and 

supervised 

classification. 

Breast 1062 

section 

images 

Accuracy of 95.6% (Sokol 

Petushi 

et al., 

2006) 

Modified k-Nearest 

Neighbour 

Brain 43 images Accuracy of 87.8% (J. Kong 

et al., 

2009) 

Linear Guassian 

classifier (diagnosis) 

 

k-Nearest Neighbour 

(grading) 

Prostate 367 

(diagnosis) 

268 

(grading) 

Accuracy of 96.7% for 

diagnosis. 

 

Accuracy of 81% for 

grading 

(Tabesh 

et al., 

2007) 

Support Vector 

Machine 

Prostate 54 biopsy 

images 

Accuracy 92.8% (grade 

3 vs stroma), 92.4% 

(epithelium vs 

stroma), 76.9% (grade 

3 vs grade 4) 

(S. Doyle 

et al., 

2007) 

Support Vector 

Machine (with 

Guassian kernel), 

using hyperspectral 

images 

Colon 45,056 

features -

from 11 

image 

cubes 

Accuracy 99.72% (Rajpoot 

and 

Rajpoot, 

2004) 

AdaBoost (multiclass 

adaptive boosting 

classifier) 

Breast 34 images Accuracy 98.3% (non-

malignant), 99.3% 

(invasive) and 90% 

(non-invasive) 

(Oztan et 

al., 2013) 
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The excellent classification accuracies reported by Rajpoot and Rajpoot (2004) 

reflect the exhaustive optimisation of the SVM kernel functions they have 

undertaken which improved the accuracy of their classification method from 87% 

to > 99%. Grade based classification accuracies in the literature vary significantly, 

and often accuracy for a cancer / non-cancer decision is much higher than 

accuracy in discrimination of different grades.  For instance, Keenan et al reported 

accuracies varying between 62.3%-76.5% for discrimination of different grades in 

H&E stained cervical tissue (Keenan et al., 2000), and while Tabesh et al (Tabesh et 

al., 2007) could discriminate between cancer and non-cancer in 96.7% of prostate 

cancer tissue slides, discrimination between low and high cancer grades was much 

lower at 81%. The difficulty of differentiating lower cancer grades is also shown in 

the results of Oztan et al (Oztan et al., 2013) which show 10% of non-invasive 

cancers were misclassified as non-malignant, despite reporting accuracies of > 

98% for non-malignant and invasive cases. 

The literature can also be viewed in terms of whether the favoured methods are 

generative or discriminative in their approach. Generative methods include 

Gaussians, naïve Bayes, mixtures of multinomials, mixtures of Gaussians, mixtures 

of experts, hidden Markov models, Bayesian networks, and Markov random fields. 

Popular discriminative methods include logistic regression, support vector 

machines, traditional neural networks, nearest neighbour and conditional random 

fields. It can be seen that in general discriminative methods have been favoured. 

This is not unexpected, as there is a tendency in machine learning to favour 

discriminative models for classification tasks, as they solve the problem directly 

rather than doing so through an additional intermediate step of modelling the 

underlying distribution (Ruderman et al., 1998). However when Ng and Jordan 

(1960) compared the two types of models, they showed that while the generative 

model had a higher asymptomatic error than the discriminative model when the 

number of training examples became large, the generative model can reach its 

lowest error with a lower number of training examples.  

There are a number of reasons why the generative method of naïve Bayes 

classification was selected for this research project: 
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 The number of training examples was limited and so a generative model 

offered the possibility of achieving a reasonably low error classifier.  

 The naïve Bayes classifier is well known to be a robust method, which generally 

shows good classification accuracy (Zhang, 2004; Demichelis et al., 2006). A 

number of researchers compared the naïve Bayes classifier with rule based 

learning algorithms and proved the effectiveness of the naïve Bayes classifier 

empirically (Clark and Niblett, 1989; Cestnik, 1990). 

 The naïve Bayes classifier has been proved robust to noise and irrelevant 

attributes (Zheng and Webb, 2000), an issue identified as very important in this 

research problem due to the presence of many image variables unrelated to 

immune mediated damage. 

 It has been reported that domain experts in the field of medicine found the 

learning theory easy to understand, a point that should be given consideration 

given that this application was being developed for a company focussed on the 

biologic and clinical aspects of their technology (Kononenko, 1993). 

It is for some of these reasons that that the naïve Bayes classifier is often used as a 

benchmark when new classification methods are being designed. Using a known 

method provides a useful starting point to assess the success of the image 

segmentation and feature extraction methods developed in the research and 

means a usable solution is available for Alcyomics at the earliest opportunity. 

Due to the large and dense datasets typically generated in histopathology image 

classification tasks, the use of ensemble classification methods is becoming 

prominent in the field. Ensembles of classifiers have been reported to reduce the 

bias or variance associated with single classifiers and improve classification 

accuracy (Kuncheva and Whitaker, 2003). While it has not been possible within the 

scope of this research project, it would be valuable in the future to assess potential 

improvements in classification accuracy using ensemble methods or extensions to 

the Naïve Bayes such as the hierarchical approach  proposed by Demichelis et al 

(2006) or the non-parametric version used by Soira et al (2011).  



Chapter 3 Literature Review:  

Imaging and automated analysis of skin 

108 

3.2.9 Ground Truth 

When designing a computer aided system for image analysis or classification, the 

final performance is usually validated against an appropriate ground truth or 

reference standard. The term “ground truth” is used in machine learning and 

statistics to refer to the known data used to train a classification or regression 

model and to calibrate or measure the accuracy of the new system’s performance 

against. While manual grading can be used as the ground truth for a computer 

system attempting to perform the same task, the issues of inter and intra-observer 

variability have raised some concern (Jannin et al., 2006). One way of improving 

the ground truth is to use a system based on multiple human experts to generate 

the known data, for example, Warfield et al (2004) use expectation maximisation 

to estimate a ground truth for  segmentation from multiple expert inputs. Realistic 

simulated images known as phantoms have also been used (Aubert-Broche et al., 

2006), however the imagery in histopathology may be too complex to simulate 

adequately. The ideal situation is the use of clinical data/ patient outcome as 

ground truth, thus avoiding the uncertainty of the manual grading, however this 

data may not always be available. 

3.3 Imaging and automated analysis of skin 

3.3.1 Alternative Imaging Modalities 

Skin imaging is widely used in the cosmetic industry and in dermatology. Digital 

colour photography is used to create images which are used to analyse skin colour 

and texture, and investigate facial lesions. While colourimetric staining combined 

with brightfield microscopy is the standard technique for visualising tissue in 

histology, there are a number of other imaging modalities which have been used to 

visualise skin tissue.  

There are many imaging modalities that can be used to analyse the skin in vivo 

rather than from surgically excised skin biopsies. Optical coherence topography 

(OCT) provides cross sectional images of tissue structure in situ by measuring 

back-reflected or back-scattered light. The OCT technique provides images of much 

lower resolution than the light microscopy images used in this research, but is 

used widely in dermatopathology applications due to its non-invasive nature and 
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the opportunity it offers to analyse live tissue in vivo. It has been used for the 

detection of basal cell carcinoma (Avanaki et al., 2009) and the analysis and 

detection of active inflammation, necrosis, hyperkeratosis and formation of 

intradermal cavities (Gladkova et al., 2000). The particular changes analysed in the 

paper by Gladkova would suggest that this technique may be of use in analysing 

GVHRs in vivo to minimise the number of biopsies that need to be taken and 

provide a more general assessment of damage over a larger area of skin. However 

since the in vitro nature of the Skimune assay is fundamental for its commercial 

application, the technique does not have a direct application for this research 

project. In the skin explant assay the GVHRs are only created after very small 

sections of skin have been incubated in the lab with the test compounds. Applying 

OCT prior to fixing and staining the skin samples may damage the samples through 

additional handling and would be unlikely to provide additional information given 

the limited resolution of the technique. 

A large proportion of the published literature relating to image analysis of skin is 

the detection and analysis of skin lesions and skin cancer. Images are taken from 

the skin surface using techniques such as epiluminence microscopy (ELM, or 

dermoscopy) (Binder et al., 1998; Ganster et al., 2001), digital video microscopy 

(Seidenari et al., 1999) and confocal scanning laser microscopy (Busam et al., 

2002). Although some of these techniques are capable of penetrating the upper 

layers of the skin, they generally have much poorer resolution than traditional 

light microscopy on sectioned tissue. 

As an extension to standard staining techniques, multi-channel techniques have 

been used to overlay images generated using different imaging wavelengths and 

immuno-fluorescent labels have been used to identify, quantify and localise 

proteins and molecular markers within tissue. Camp et al (2002) located 

subcellular compartments using fluorescently labelled tags in order to identify 

regions of tumour using co-localisation of tumour-specific antigens. Sequential 

imaging and registration were used for simultaneous imaging using fluorescent 

biomarkers and traditional H&E staining using fluorescent and brightfield 

microscopy respectively (Can et al., 2008).  
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3.3.2 Application of Image analysis techniques for skin histopathology 

The only papers identified during this literature review which have applied image 

analysis techniques in the analysis of GVHR in skin biopsies were by Sahmoud et al 

(Sahmoud et al., 1993) and Fleming et al (Fleming et al., 1998). Sahmoud et al 

focussed on the lymphocyte infiltrate in biopsies taken soon after a transplant. The 

ability of the spatial and texture parameters of the lymphocyte nuclei to 

discriminate between the high and low risk groups was investigated; a 

combination of five texture related features resulted in 100% correct classification. 

Fleming et al carried out a similar study investigating whether the size, shape and 

texture of lymphocyte nuclei could be used as a predictor of GVHD based on a 

biopsy taken during the early onset non-specific symptoms. In this case, the image 

analysis was not found to be a useful predictor of GVHD onset. Other uses of image 

analysis in research relating to bone marrow transplantation and GVHD include: 

analysis of bone marrow in situ following limb/ extremity transplantation (Hewitt 

et al., 1995; Ramsamooj et al., 1996); measurement of immunohistochemistry 

(IHC) stained Langerhans cells following BMT (Zambruno et al., 1992); 

differentiation of lichen planus from chronic graft-versus-host disease using 

quantitative IHC (Hitchins et al., 1997) and morphological analysis of skin 

thickness and IHC in murine sclerodermatous GVHD. 

In summary, image analysis has been used to predict the onset of GVHD from 

nuclear characteristics of lymphocyte infiltrate, however this is not a parameter 

that will be investigated in this research. Other research has generally used image 

analysis as a tool to assist in quantification of IHC or to analyse basic features such 

as epidermal thickness, this type of use would involve significant user interaction 

and is quite different from the automated system that is the aim of this research.  

Except for the work from Lu and Mandal (2012) and Mokhtari et al. (2014) on skin 

segmentation already presented, there is relatively little reported in the literature. 

One other source of literature published on image analysis of skin is the University 

of Graz in Austria. Research in the 1980s and 1990s focussed on the assessment 

and diagnosis of melanoma through morphological analysis of mononuclear cells 

(Smolle, 1988), nuclei (Smolle et al., 1989a; Leitinger et al., 1990), vasculature 
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(Smolle et al., 1989b) and collagen (Smolle et al., 1996), moving from subjective 

counting and manual identification and grouping of features through to fully 

automatic measurement procedures. A relatively simple approach consisting of 

shading correction, a low pass filter and a threshold finding algorithm based on the 

grey-level histogram was able to segment the epidermis (Smolle and Hofmann-

Wellenhof, 1998), however no quantitative data is given relating to how accurate 

the segmentation is and this type of approach is dependent on good quality 

staining of the sample. In 2000, a methodology was developed by Josef Smolle 

known as Tissue Counter Analysis which used hierarchical cluster analysis to 

classify electronically dissected image sections (called tissue elements) based on 

texture, colour and grey-level features. Skin structures such epidermis, papillary 

dermis, and dermal infiltrate were identified and the approach has been applied to 

the quantification of immunostaining in combination with fractal analysis (Gerger 

et al., 2004), quantitative analysis of skin biopsies (Smolle and Gerger, 2003) and 

classification of malignant melanoma in combination with Classification and 

Regression Trees (CART) (Gerger and Smolle, 2003a; Gerger and Smolle, 2003b; 

Wiltgen et al., 2007). In combination with CART, the technique resulted in correct 

classification of the tissue elements at a rate of 91.7% for cellular elements, 90.0% 

of collagen based elements, 79.9% of fatty elements and 64.3% of other tissue 

components. The authors identified difficulties in correctly classifying elements at 

the section margin, in the stratum corneum and other histological artefacts. 

Image analysis has been used for the quantitative assessment of immunostained 

eosinophilic granule protein (EGP) in skin tissue (Kiehl et al., 2001). Following 

additive shading correction, the colourspace transformation and recombination of 

the greyscale images was carried out according to methods put forward by Smolle 

(Smolle, 1996) and Ruifrok (Ruifrok, 1997), this was followed by an automated 

thresholding step based on Otsu’s method. This combination of pre-existing 

methods is common to many of the published studies in histopathology. However 

it differs from this research in that it is quantifying specific immune based staining 

rather than looking at structural breakdown.  
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Given the relative paucity of image analysis literature relating to skin, literature 

relating to image analysis applications in cancer on H&E stained images is most 

relevant to this research, due to the structural changes seen in both GVHR and 

some forms of cancer. This is reflected in the focus of the preceding literature 

review. Although the results of these applications will be a useful benchmark to 

assess the success of any developed classification method, it is most important that 

the classifier provides a useful solution for Alcyomics. This will require that the 

accuracy is at least as good as that of the existing manual grading method, and that 

objectivity and reproducibility are improved.  

The next chapter will described the creation of the image dataset used in this 

research, and this will be followed by chapters describing the development and 

assessment of an automated image classification method for the images. 

  

 Feature 1 Feature 2                                                                       
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Chapter 4  Data Generation and Image Acquisition  

In this chapter, the data set used in the research is described, the selection and 

optimisation of the image acquisition and initial pre-processing procedures is 

presented. The manual grading of the dataset is also described and the inter-

operator agreement analysed. 

4.1 Data Source: Skin Explant Assay 

While the aim of the research was to develop a classification process to be used as 

part of the commercial use of the assay, a data set of skin samples generated using 

chemical and pharmaceutical test compounds was not available when the research 

project was started. As an alternative, 125 clinical samples generated when using 

the skin explant assay (described fully in Chapter 2, section 2.3.2) for assessment 

of donor patient pairs in preparation for bone marrow transplant procedures were 

provided instead. A further 57 slides were provided later in the research project 

which had been generated during testing of pharmaceutical test compounds. 

For the application of computer based image analysis techniques, information that 

is traditionally viewed by a human using a microscope must be captured in a 

digital form. The slides provided by Alcyomics needed to be converted to a digital 

form and determination of the most appropriate way of doing this necessitated 

consideration of the specific challenges of the dataset.  

4.2 Image variation in skin explant data set 

There were a number of challenges associated with the images being used in this 

research project that include: inconsistent sample preparation and histological 

staining; significant variation in size, shape and orientation of skin sections; and a 

complex combination of features to differentiate between grades. Despite previous 

attempts by Alcyomics to reduce variation by optimising sample preparation and 

staining, this source of variation has not been eradicated. The challenges were an 

unavoidable part of this particular research problem. Handling this variation was 

one of the most important aspects of this research.  
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The length of time between the biopsy being carried out and the start of the assay 

alongside the storage conditions may result in some degradation of the sample. 

This potential source of variation is mitigated by dissecting the biopsy into 

multiple sections and running at least one of the sections as a control in the assay. 

This is performed by culturing the control sample in culture media in the absence 

of immune cells or the test substance. Any damage caused by processing 

techniques during the assay procedure or biopsy storage will be evident in the 

control sample as a consequence. In the case of a grade II or higher grading for the 

control sample, the assay will be repeated.  

The skin sections are stained using the haematoxylin and eosin staining 

methodology. Any histological staining process can result in varying colour 

intensity or saturation when performed with different stain batches, on different 

samples or on different days. Although great effort has been made to try and make 

this process more consistent by employing standard operating procedures, a 

significant amount of variation remains and any automated system developed had 

to be be suitably robust to handle this inherent source of variability. The variation 

in staining can be observed in Figure 4.1A-D, although it should be noted that the 

colour variation is a combination of staining differences, lighting variation and 

biological variation. Dissection of the original biopsy creates variation in terms of 

sample size, the proportion of epidermis to dermis and sample. The samples vary 

in size, shape and orientation, but are generally less than 2mm in diameter. In 

some cases the epidermis forms a fairly linear structure across one edge of the 

sample (Figure 4.1A); in other samples it curves around the outside edge (Figure 

4.1B). In rare cases the epidermis forms an unbroken ring around the edge of the 

sample (Figure 4.1C). In addition to vacuolisation, cleft formation and the presence 

of dyskeratotic bodies, a number of the images also included regions of necrotic 

(dead) tissue, which can be observed in Figure 4.1D. Ordinarily, samples with 

necrotic tissue are not manually scored and biopsies with such artefacts are 

excluded in the standard assay readout, however these images were included in 

this research to enable the software to identify and ignore artefacts or necrotic 

regions.  
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Figure 4.1 Four examples of H&E stained skin images, showing variation in shape, structure and 
orientation 

 

For some slides, several fragments of tissue make up the sample, this may be due 

to the sample being are particularly small or the person preparing them believing 

that a single sample was not representative, or it may be the result of a severe 

GVHR which has broken down the tissue structure and detached the epidermis 

from the dermis. The sectioning in paraffin at the end of the assay can also 

introduce variation and artefacts such as tears, particularly in fragile areas such as 

the DEJ. Tears such as the one indicated by the arrow in Figure 4.2 can be difficult 

to distinguish from clefts at the DEJ. 
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Figure 4.2 Section of H&E stained skin section showing a tear at the dermal epidermal junction, 
indicated by the arrow.  

Regions close to the cut edge often show more damage than internal regions and 

this can be observed in the sample shown in Figure 4.3, where the affected areas 

are circled in blue. Any unusual damage located in these areas is discounted during 

manual grading. 

 

Figure 4.3 H&E stained skin image with grade I damage. Unusual break down in cell and tissue 
structure at cut sample edges is circled in blue. 
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4.3 Manual Slide Examination 

Considering how information is processed and decisions made during the manual 

grading process provides a useful starting point when considering how to 

represent the information in the slide digitally. During the manual grading of 

histology slides the expert operator quickly ‘scans’ the microscope slide at low 

magnification and identifies the epidermal tissue and the DEJ. The operator will 

then typically focus on an area of interest that appears to contain features of skin 

damage and subsequently switch to a higher magnification lens to confirm the 

presence and severity of the damage. While this hierarchical examination method 

is an efficient way of working, the operator is only examining a limited number of 

image regions in detail and it is possible for some information to be missed at the 

‘scanning’ stage. To minimise or eliminate this issue in the automated method, the 

image acquisition procedure should be designed to eliminate (or minimise) any 

operator based decision processes. 

The type of technology used for slide digitisation is important in terms of costs, 

ease of use, availability to the industrial partners and image quality. However, 

before the different systems were tested, the general approach used to capture the 

information digitally was selected. 

4.4 Digital Representation Framework 

There are three main frameworks that can be used to capture and represent 

information in a slide.  The first is a sampling based approach, the second uses a 

multi-resolution acquisition system and the third uses whole slide imaging. An 

overview of each approach is given in the following sections. 

4.4.1 Sampling 

The large size of the image data sets generated in digital histopathology can make 

it impractical to process, measure and analyse the whole sample, making sampling 

an attractive proposition. There are a number of ways in which sampling can be 

carried out.  Probability based sampling, which includes random and systematic 

methods, can be used to avoid operator bias, but critical histological features may 

be missed as they tend not to be distributed evenly throughout the sample. Figure 
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4.4 shows an image where most of the sample has the appearance a grade I 

reaction but small regions of focal grade III changes are also present (circled in 

green on the figure). A random sampling approach could easily miss these focal 

grade III regions that the expert evaluators have identified as important indicators 

of damage. 

 

Figure 4.4 H&E stained skin section showing grade I changes with some focal grade III changes, 
circled in green. 
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A second sampling approach would be to take a series of images covering the area 

of interest (AOI), which would be the epidermis in this research. However, this 

approach would require the location of the epidermis to be specified by an 

operator which could introduce operator bias into the system from the start of the 

analysis process. To improve upon the current manual grading, the use of data 

from the whole sample would be preferable to a sampling based approach as this 

would remove the issue of sampling bias, and ensure all available information is 

captured and used in the subsequent classification process.  

4.4.2 Multiresolution Image Acquisition 

An alternative to sampling is multi-resolution imaging. In this approach a low 

resolution image is taken of the whole sample, computer-aided image analysis is 

used to identify the AOI and finally the identified areas are imaged again at a 

higher resolution. Alternatively, a series of different resolution images are taken 

and the low resolution image is used to define which parts of the high resolution 

image to examine in detail. This method mirrors the manual approach described in 

section 4.3 and has been described in a number of patents and papers. It aims to 

limit memory usage by confining high resolution imaging or image analysis to the 

AOI (Bouman and Liu, 1991; Ong et al., 1996; Ifarraguerri et al., 2003). The multi-

resolution approach is an attractive option when using histopathological images, 

as it offers a framework to handle the significant quantity of data to be analysed. 

One example described by Madabhushi (2009) of the quantity of input data is the 

prostate biopsy procedure, where up to 20 biopsy samples may be taken, each of 

which may contain 225 million pixels once digitised in RGB colour at x40 

magnification. High magnification is often required due to some important image 

features, such as those within the cell nucleus, only being visible at high 

resolutions. In this research project the features are generally visible at x10 and 

x20 magnification, so higher magnifications are unnecessary. 

4.4.3 Whole Slide Imaging 

In whole sample capture, the whole sample is captured as a single image. This 

approach is not possible using many traditional microscope imaging systems due 

to the inability of the lens to capture the entire field of view (FOV) when working 
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at magnifications high enough to identify the tissue features (at least x10 

magnification). More complex imaging systems, such as the Zeiss Axio Imager 

discussed in section 4.6, are able to take a series of separate images at a high 

resolution and stitch them together to create a single image. The majority of newer 

microscope systems include this type of software as a standard feature.  

Another solution would be to source and use a dedicated slide scanner to digitise 

the whole slide at high resolution. Digital slide scanners work by moving an 

objective lens across the microscope slide and capturing the magnified image 

scene with technology such as a CCD (charge coupled device). The scanners tend to 

generate a very high resolution image at high magnification (x40) which can also 

be viewed at lower resolutions. This size of file creates data handling and storage 

issues, which is why most scanner manufacturers also offer web hosting and 

sharing facilities. One potential issue with using a slide scanner is the use of 

proprietary image formats which make implementation of a novel image analysis 

approach difficult; scanner manufacturers sell their own image analysis software 

and frequently make it difficult to develop customised algorithms to use alongside 

their systems.  Despite these issues, digital scanning is a growing technology in 

histopathology and would be worthy of investigation in the future, however a 

scanner was not available for this research project and consequently alternative 

methods were investigated focussing on a system to enable whole slide imaging.  

Two different image acquisition systems were investigated. The Leitz Wetzlar/ 

Canon system is available to Alcyomics at zero cost for the routine analysis of 

slides, and for reasons of cost, simplicity and ease of access would have been the 

logical choice for the research project. However a second system is also accessible. 

The Zeiss Axio Imager is of a higher specification than the Leitz Wetzlar/ Canon 

system, with additional functionality including autofocus, white balance correction 

and image tiling. Limitations of this are that it is not available at all times and a cost 

of £13/hr is incurred each time it is used. 
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4.5 Assessment of Leitz Wetzlar Microscope/ Canon Digital Camera  

The Leitz Wetzlar microscope is currently used by Alcyomics to examine slides in 

the Skimune assay, the camera is used in cases where a record is required for 

reporting purposes. The equipment set up is shown schematically in Figure 4.5. 

 

Figure 4.5 Schematic representation of the Leitz Wetzlar microscope and Canon camera image 
acquisition system. 

The microscope uses bright field illumination (1), which was previously 

introduced in Chapter 2 section 2.1.2, to create image contrast through the 

absorbance of light by colourimetric dyes in the sample (2). The available objective 

lenses include x5, x10 and x25 magnification (3). The image can be viewed through 

the microscope eyepieces (4). An adaptor (5) links the phototube on the trinocular 

microscope to a Canon EOS 350D digital camera (6). The camera lens has been 

removed so that the image can be captured directly from the microscope 

phototube by an 8 megapixel complementary metal–oxide–semiconductor (CMOS) 

sensor. The image can be taken using a remote switch to avoid camera vibration 

(7). The digital information is transferred via a USB cable (8) to the computer (9) 

where a software package displays the captured images on the monitor (10). The 

camera produces final image size of 3456 x 2306 pixels at 24 bit depth.  
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4.5.1 Field of View 

The field of view (FOV) of a microscope is the area of the sample that can be 

viewed or captured by an optical sensor at one time.  Using the lowest 

magnification lens (x5) the majority of the skin sample could be observed when 

viewing through the microscope eyepiece, however the camera was only able to 

capture a portion of the microscope FOV, as can be observed in Figure 4.6.  

 

Figure 4.6 Diagram indicating the portion of the microscope field of view that is captured by 
the camera sensor. Note the image used was not taken with this system. 

A whole sample image could only be obtained from this system if several 

overlapping images of the sample were stitched together using a separate software 

program. The higher the magnification required for the analysis, the more separate 

images would be required, and the greater the complexity of the stitching process. 

4.5.2 Magnification and Image Resolution 

When using a digital camera attached to a microscope, the final magnification of 

the image is the product of the magnification of the microscope objective lens, the 

camera optics and an enlargement factor dependent on the size of the pixels in the 

final viewed image.  For the determination of the appropriate set up of the 

microscope and camera a range of images were taken of the same slide using 

different objective lenses. The lower the objective lens magnification (e.g. x5), the 

lower the resolving power of the microscope. The microscope magnification 

selected determines the optimal camera resolution. There is no advantage in using 

a higher camera resolution than that of the microscope. The requirement for 
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resolution must be balanced with the need for a large field of view (FOV) on which 

to perform the analysis.  

Four images were taken using the x5, x10, x25 and x50 objective lenses. Figure 4.7 

shows the same field of view cropped from each image and enlarged to a set image 

size to allow comparison of the detail and resolution at each magnification.  

  

Figure 4.7 Comparison of image resolution with four different microscope objective lenses. 

The main observation from Figure 4.7 is that the image taken with the x5 objective 

lens has lost a significant amount of detailed information about the individual cells 

compared to the other images. The resolution of the other images is more difficult 

to explain as there appears to be a drop in resolution when the x25 lens is used 

when compared to the x10 lens. This is unexpected, as the x25 lens should provide 

more detail. While it is possible that the microscope wasn’t focussed correctly, this 

is unlikely as the images appeared well focussed when viewed through the 

eyepiece. A mismatch in the focus of the microscope and camera caused by the 

camera being mounted at the wrong height would explain a general lack of focus, 

but this would be consistent across all the images. It is clear that there are other 

factors limiting the resolution when using the x25 objective lens. The colour 

contrast is also poor in this image and so one possible explanation is that the lens 

itself was flawed in some way. The colour difference must result from the lenses, as 

no other changes were made to the system. 
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The inconsistency observed raises questions about the ability of this system to 

produce high quality images. The x10 objective lens is producing focussed images 

which show some detail of the cells and tissue structure, however if this image 

acquisition system were to be selected, further investigations into the focussing 

inconsistencies would need to be made. 

4.6 Assessment of Zeiss Axio Imager A2 System 

The Zeiss Axio Imager A2 system is a high quality imaging system which can be 

rented by the hour, and is based in the Bio-Imaging Unit, Newcastle University 

Medical School. The system offers transmitted light, fluorescence and confocal-like 

modes of operation. For the H&E stained slides used in this project, the 

transmitted light mode is the most suitable as H&E is not a fluorescent stain and 

the 3-dimensional images produced during confocal microscopy are not required 

for this application. The transmitted light mode works in the same way as the 

previously described Leitz Wetzlar microscope; however the camera is built into 

the system and can be controlled using a touchscreen on the system or through a 

linked desktop computer. Additionally, the Zeiss microscope has automatic 

autofocussing, background correction and white balance adjustment, and a 

motorised stage to enable automated tiling and stitching of multiple images post-

capture using in-built MosaiX software. The available objective lenses range from 

x2.5 to x100.The colour camera on the system has a resolution of 1388 x 1040 

pixels (a lower resolution than the Canon camera which had a resolution of 3456 x 

2306 pixels).  

4.6.1 Magnification and Image Resolution 

Initially single fields of view were taken to compare the level of detail that could be 

resolved at different magnifications. Single 1388 x 1040 pixel images were taken 

using x2.5, x10, x20 and x40 objective lenses, resulting in a 4.12MB TIFF file for 

each image.  The most suitable magnifications were x10 and x20. The x2.5 

magnification did not show the individual cell components in sufficient detail to 

clearly see vacuoles, while the x40 magnification did not provide significantly 

more relevant cellular and structural detail than the x10 or x20 magnification. The 

increased spatial resolution at x20 magnification results in more sharp and 
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detailed images than those created using the x10 magnification. The x10 and x20 

images are shown in Figure 4.8 and Figure 4.9 respectively, both were able to 

capture the main detail of individual cells including the darker purple central 

nuclei, white vacuoles and pink cytoplasm. The x20 images show the internal detail 

of the cells more clearly.  

    

Figure 4.8 A 1388 x 1040 pixel image captured using a x10 microscope objective lens. The 
image on the right is an enlarged section to show cellular detail 

 

    

Figure 4.9 A 1388 x 1040 pixel image captured using a x20 microscope objective lens. The 
image on the right is an enlarged section to show cellular detail 

The MosaiX software supplied with the Axio Imager system was used to define the 

area that would contain the whole sample, and control the motorised stage and 

camera to take digital images of multiple overlapping FOV covering the defined 
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area. The software includes an image stitching algorithm which matches the 

overlapping parts of the images to create a single image of the whole sample. 

Image tiling was attempted at both x10 and x20 magnifications. Although the x20 

magnification provided very good resolution a major disadvantage to using it was 

that the number of image tiles increased significantly. The camera resolution is 

fixed in this system, and so when the system is set to capture the whole sample, the 

total image size is dependent on the physical size of the skin sample. In theory an 

image at x20 magnification will require four times more tiles than an image taken 

at x10 magnification. In practice the increase can be less than this due to differing 

amounts of background included in the image, for instance an image captured at 

x10 magnification in 16 tiles required 56 tiles at x20 magnification. Using a x20 

magnification would increase the time of the acquisition by a factor of four, and use 

four times more memory. While the impact of the acquisition time would only 

become an issue if Alcyomics wanted to increase their sample throughput 

significantly, the increased image size would have increased the time and 

processing power required for all the subsequent image processing steps. 

4.6.2 Image Tiling, White Balance Correction and Background Correction 

A number of images were taken, altering the settings for white balance, 

background correction and magnification. In Figure 4.10 the colour balance has a 

blue tint, however this was addressed by using an interactive “colour picker” tool 

to select an area of white background against which to normalise the other colours. 

The results of this procedure can be seen in Figure 4.11 where the blue cast has 

been removed. The separate image tiles can be seen clearly in Figure 4.10 and 

Figure 4.11; this is due to variation in lighting across the microscope FOV. This was 

resolved by taking an image of a blank area of the slide once the microscope had 

been set up, and using an automatic built in software tool to subtract this 

“background image” from each subsequent image taken with the same settings. 

The process can be compared to a baseline correction procedure used in signal 

processing. The result of the background correction can be seen in Figure 4.12. The 

final step of image acquisition was to utilise the image stitching feature in the Zeiss 

system software. When the stitching was not carried out, the overlapping image 

tiles did not always align, as can be observed in Figure 4.10 at the point indicated 
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by the arrow.  When the image tiling was used in combination with white balance 

correction and background correction, the process resulted in a high quality image 

that represented the sample accurately, as shown in Figure 4.12. 

 

 

Figure 4.10 Skin sample image, requiring 56 tiles at x20 magnification (objective). White 
balance, background correction and image stitching NOT applied. 
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Figure 4.11 Skin sample image, requiring 56 tiles at x20 magnification (objective). White 
balance applied, background correction and image stitching NOT applied. 

 

 

Figure 4.12 Skin sample image, requiring 16 tiles at x10 magnification (objective). White 
balance, background correction and image stitching applied 

A standard operating procedure (SOP) was prepared for Alcyomics to enable them 

to capture images using the appropriate methodology. This SOP is attached in 

Appendix A. 
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4.7 Image Grading using Manual Approach  

The manual grading process was performed on all images provided by Alcyomics, 

but a full grading assessment was performed on the initial 125 image. The images 

were initially assessed at the microscope by the author and checked by an 

experienced histopathologist. After further discussions it became obvious that 

certain images were difficult to grade and were a source of disagreement in 

grading between different experts. Since this grading was being used as the basis 

of the training information for the classification model, it was vital that this 

information was as accurate as possible.  

To get the most accurate grading (and to check the precision of manual grading), 

two experts with significant experience in grading GVHRs were asked to grade 125 

whole slide images independently to avoid an agreement measurement bias. Of the 

125 samples, eight were deemed unsuitable, either because they contained 

significant artefacts (e.g. necrotic tissue, tears), had missing tissue, faint staining or 

were generally atypical tissue sections. Table 4.1 shows the reasons why each of 

the eight images were deemed unsuitable and excluded from further analysis. 

Table 4.1 Images excluded from further analysis and reason for exclusion 

Image ID Reason for Exclusion 

16 Large area of necrotic tissue in epidermis 

28 Large area of necrotic tissue, and little normal epidermis. 

31 Dermis completely detached and not present on slide 

35 Tear in epidermis has artificially split sample 

36 Staining of dermis very pale and subsequently difficult to see. 

59 Tear in epidermis has artificially split sample 

91 Very small sample of epidermis 

95 Unusual morphological structure to epidermis 

The grading of the remaining 117 samples was analysed using kappa statistics 

(Cohen, 1960). Kappa statistics can be used to analyse agreement of multiple 

operators evaluating the same samples. Kappa measures agreement between 

operators and is a ratio: 
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 𝑘𝑎𝑝𝑝𝑎 =
P(A) − P(E)

1 − P(E)
 Equation 4.1 

where P(A) is the proportion of times the two operators agree, P(E) is the 

proportion of times the operators would be expected to agree by chance.  Kappa 

values range from -1 to +1, with a kappa value of 1 indicating perfect agreement 

and a kappa value of 0 indicating the same agreement as would be expected by 

chance. Kappa values of less than zero are rare, and indicate the agreement is 

weaker than would be expected by chance. 

Table 4.2 shows the grading agreement between the two expert operators, XW and 

AD when grading 117 skin explant samples. The table shows the correlation in 

grading scores between the two experts. For instance, the table shows there were 

16 cases where both experts agreed a particular sample was grade II and 2 cases 

when AD gave a grading of IV and XW gave a grading of III.  

 

Table 4.2 Grading agreement of skin explant samples by two expert operators 

  

AD 

  

Grade 

I 

Grade 

II 

Grade 

III 

Grade 

IV All 

XW 

 

Grade I 29 13 1 0 43 

Grade II 1 16 1 0 18 

Grade III 0 1 40 2 43 

Grade IV 0 0 0 13 13 

All 30 30 42 15 117 
 

The observed agreement P(A) is the percentage of all images for which the two 

operators’ evaluations agree and was calculated in the following way: 

𝑃(𝐴) =  
 29 + 16 + 40 + 13

117
=

98

117
= 0.838 Equation 4.2 
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The agreement that would be expected to be present by chance alone, P(E), was 

determined using the following calculation: 

This results in a kappa value of 0.833, indicating good agreement between the 

operators. While the general agreement is good and all but one of the 

disagreements are by a single grade, there is one interesting observation around 

the grade I and II border. In 13 cases, XW gave a grading of I and AD gave a grading 

of II; the opposite situation with XW grading II and AD grading I only occurred 

once. This indicates that at this critical border between a negative and positive 

result, AD is much more likely to give a positive grading than XW.  The decision 

between grade I and II was described anecdotally to be the most difficult to make 

due to the absence of a clear differentiating feature such as cleft formation or 

complete separation of the tissue layers. This analysis supports this conclusion 

showing that there was disagreement at the grade I/II borderline in 15 of the 117 

images (a rate of 12.8%). In the cases of disagreement, a discussion with both 

experts present was used to decide on the final grading of each training sample. 

In the course of this discussion the experts also suggested a simplified binary 

classification grading scales during classification development. A binary 

classification of negative (grade I), vs positive (grade II, III or IV) was determined 

to be the most important and useful classification. While a secondary multiclass 

classification consisting of negative (grade I), mild reaction (grade II) or severe 

reaction (grade III or IV) would be a useful additional classifier, it was decided that 

this would form the basis of future work beyond the scope of this project. 

4.8 Discussion of Data Generation and Image Acquisition 

In the images obtained using the Leitz Wetzlar system the colour balance was 

skewed towards yellow tones, which means a white balance correction would be 

needed prior to any other image processing. Unusual colour casts typically result 

from the type of illumination used or faults with the camera sensor. There were 

𝑃(𝐸) = [
43

117
×

30

117
] + [

18

117
×

30

117
] + [

43

117
×

42

117
] + [

13

117
×

15

117
]

= 0.094 + 0.039 + 0.132 + 0.014 = 0.280 

Equation 4.3 
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also focusing issues with this system, probably resulting from a mismatch in the 

focus of the microscope and camera.  This mismatch is likely to have been caused 

by the height at which the camera is mounted and solving the problem would have 

a required a new adaptor tube. While this was not a significant barrier to the use of 

this system, there were other issues which made the Zeiss system a better choice. 

First, the reliance on manual focussing when using the Leitz system would 

introduce more variation into the images than when using the Zeiss autofocus.  The 

FOV limitations of the Leitz would also require images to be taken at the x10 

magnification and then stitched together using a separate program either sourced 

or developed in MATLAB. Background correction would also be required to correct 

uneven illumination across the FOV, which would require a separate image of a 

blank area of the slide to be taken at each imaging session, and later subtracted 

from each sample image. While it would have been possible to develop new 

methods for image tiling and image correction, this would not have been an 

effective use of research time. Overall the images from Leitz system would require 

a significant amount of processing before they could be used in image analysis and 

there is no guarantee that the image focussing problems could be addressed.  

The Zeiss Axio Imager II system offered a more consistent approach to obtaining 

images than the Leitz Wetzlar system. In-built features were available for 

autofocus, automatic white balance, background correction and image tiling and 

stitching. These low level image processing techniques all helped to improve the 

performance of the system and reduce operator associated variation.  The Zeiss 

Axio Imager II was chosen to create the image data set, and this was done in 5 

sessions over a period of several months. The image dimensions and aspect ratio 

varied because of the variation in sample sizes, with heights of 1047 to 4819, and 

widths from 2676 to 5254 pixels. The slight differences in microscope set up, and 

lighting in particular led to some variation in colour balance between sets of 

images created on the same day. This issue would be solved by using a digital slide 

scanner, and while this was not an available option during this research project, it 

would be a useful technique to use in the future. 
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The potential differences between skin samples generated using chemical and 

pharmaceutical test compounds compared to those generated when the assay used 

for clinical assessment of donor patient pairs are worthy of consideration. The 

clinical samples appear to show the same GVHRs as are produced in the 

commercial assay, however there is a possibility that there may be some 

differences between the traditional GVHRs and those produced when a test 

compound or drug is present. Without the commercial dataset, it was not possible 

to rule out differences at the start of the research project. An additional set of 56 

test images provided by Alcyomics towards the end of the study were all generated 

in the commercial assay. While there are no obvious visual differences in the 

clinical and commercial sample sets, visual comparison of the two image groups is 

a very subjective assessment.  

While a multi-class classification system that classifies new images as either grade 

I, II, III or IV would be the preferred solution in this research, it was decided that 

the initial focus should be to develop an accurate binary classifier due to the 

challenges of the grading process. A binary classification provides the information 

required by Alcyomics to determine whether a test compound causes an 

immunogenic reaction. More specifically, when a manual grading is carried out, 

grade I is quoted as a negative result whilst a grade II, III or IV is determined to be 

a positive result. A positive result indicates that the test compound has caused a 

significant immune based reaction in the skin. This binary classification is a 

challenging problem as it is this classification that is the most difficult for a human 

grading manually to determine, mainly due to the lack of a clear differentiating 

feature between grade I and II damage. 

This chapter has provided information on the image set used in the research and 

the optimisation of the process by which the images were digitised. The challenges 

of the dataset and the rationale behind the decision to focus on binary 

classification have also been presented. Finally an assessment of the current 

manual grading process was made. The next chapter will describe the 

development of the procedure used to pre-process the images and identify the 

regions of interest showing immune mediated damage. 
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Chapter 5 Image Processing and Segmentation 

In this chapter, the development of the methodology used to process the images 

and identify (or segment) the regions of interest is described. The segmentation of 

particular regions in an image is the fundamental basis on which all subsequent 

steps in the automation process depend. 

The objective of the research project was to successfully classify input images into 

particular grades based on the severity of immune mediated histological reactions. 

The grade is based on the presence and extent of particular features including 

epidermal vacuolisation, clefts at the DEJ and dyskeratotic bodies. Successful 

classification relies on being able to identify these features within an image. The 

histological features associated with GVHRs are found exclusively within particular 

tissue types and hence the first step must be to locate the different tissue types in 

the skin sample, prior to identifying specific features. The image processing, 

segmentation and feature extraction process that has been developed is split into a 

number of separate operations and when carried out in series, the process 

segments the image in a hierarchical manner. This approach works on the basis of 

feature scale; the first segmentation splits the image into background and sample, 

the next splits the sample into epidermis and dermis, and the final segmentation 

splits the epidermis down into vacuoles, clefts and normal tissue, and the dermis 

down into clefts and normal tissue. The hierarchical process is summarised in 

Figure 5.1. 

 

Figure 5.1 Hierarchical structure of segmentation process, starting with the whole image and 
resulting in the segmentation of the critical histological features, vacuoles and clefts. 
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A three-stage platform process for the segmentation of histological images is 

presented in this chapter. The initial method development and optimisation 

focussed on sample and epidermal segmentation and this is presented in section 

5.1. The performance of this segmentation is evaluated in section 5.2. The outputs 

from the sample and epidermal segmentation step are used as the starting point 

for dermal segmentation, which is described in section 5.3. The modifications of 

the platform segmentation process required for the identification of clefts and 

vacuoles are described in sections 5.4  and 5.5 respectively. An alternative set of 

criteria to identify clefts and vacuoles is presented in section 5.6 and finally the 

research outputs are discussed in section 5.7.  

There are many parameters which were optimised during the development of this 

process, some of which are dependent on the exact image spatial resolution and 

the specific staining and lighting properties of the image data set used to develop 

the process. In order to aid future development and application of the method, a 

list of all parameters which would needed to be re-optimised if images of a 

different spatial resolution or colour profile were being analysed are presented in 

Appendix C. 

5.1 Sample and Epidermal Segmentation: Method Development 

The three-stage platform process for image segmentation consists of: (1) colour 

image pre-processing primarily for the purpose of contrast enhancement, (2) Otsu 

thresholding and (3) morphological processing and object classification of the 

binary segmentation mask. The proposed method is a novel approach to enabling 

highly variable sets of complex histopathological images to be segmented using the 

well-known Otsu thresholding method.  Unlike the multi-resolution approach of 

Wang et al (2007a) which requires images at x2 and x40 magnification, this 

procedure can be performed on a single image at x10 magnification.The 

thresholding approach was improved by pre-processing the colour image prior to 

thresholding and post-processing the binary image produced by the thresholding 

operation. This is a similar approach to that described by Eramian et al (2011), 

who included a pre-segmentation colour standardisation and post-segmentation 

processing step based on domain specific rules.  
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The previously published methods for tissue segmentation all use classification or 

clustering of single pixels or pixel sets based on a feature vector of properties, 

including support vector machines (Y. Wang et al., 2007a), Hierarchical Self-

organizing Maps (Datar et al., 2008) and a graph cut method (Eramian et al., 2011).  

The process was optimised and tested on whole slide images of H&E stained 

human skin sections that exhibited varying levels of histopathological damage 

including vacuolisation, sub-epidermal cleft formation, dyskeratosis and necrosis. 

The presence of varying levels of structural damage and image variation created by 

inconsistencies in tissue preparation and staining means accurate segmentation of 

specific tissue types is particularly challenging for this dataset. The development of 

a segmentation algorithm able to handle the challenges of this dataset is essential 

to the creation of a computer assisted process for histological grading. 

Figure 5.2 summarises the main stages of the segmentation algorithm. The 

algorithm is based on the differences in the colour and intensity of staining in the 

different tissue types, the texture within each tissue and the overall shape and size 

of tissue regions. A colour normalisation step has also been included to handle 

colour variations in the images resulting from differences in sample thickness, 

staining procedure, and lighting during sample preparation and image acquisition. 

The text on the right of the figure describes the main functions of the processing 

steps shown in the flow diagram. The algorithm was implemented using the Image 

Processing Toolbox™ in MATLAB®, Version 7.11, R2010b (The MathWorks, Inc.). 
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Figure 5.2 Main processing steps in the algorithm to segment the epidermis from a digital 
image of an H&E stained skin section. The text boxes on the right describe the function of the 
processing steps throughout the algorithm. 

 

5.1.1 Sample segmentation and Image Cropping 

The first stage in the algorithm is the segmentation of pixels in the image 

representing the skin sample. This first segmentation increases the efficiency of 

the algorithm by limiting the number of pixels being processed during subsequent 

steps. While segmentation of the skin sample could be achieved by locating either 

the background or the sample pixels, the background pixels are used as they have 

lower intra-image variance. Background pixels within a single image show very 

little variation in colour or intensity as there is no tissue present and illumination 

correction to remove variation resulting from the microscope lighting is performed 

during acquisition. The main variation present in the background is due to very 

small tissue fragments or dust. The background pixels are located by creating a 

composite image, K, which is the summation of the red, green and blue (R, G and B) 

intensities for each pixel in the RGB image (Eq. 5.1).  
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 K = R + G + B Equation 5.2 

Black pixels are present at the image edges due to the image tiling procedure, as 

can be seen in Figure 4.12. The location of these black pixels is not fixed and so 

they are located by finding all zero elements in K.  The most frequently occurring 

value in K, excluding the black pixels, is used to approximate the background 

colour and this value as the background threshold, bgthresh. The black pixels at the 

image edge are replaced with the background threshold intensity, bgthresh, to create 

a consistent background.  

The calculation of bgthresh can be written as: 

 𝑏𝑔𝑡ℎ𝑟𝑒𝑠ℎ =  𝑚𝑜𝑑𝑒 ({𝑘𝑖𝑗|𝑘𝑖𝑗 is an element of 𝐊 and 𝑘𝑖𝑗 > 0}) Equation 5.3 

When the bgthresh values of the first 50 images obtained were examined it was 

observed that while the majority of images had a bgthresh of 640-710, there was a 

second group with values in the range of 531- 561. On closer examination it was 

found that all of the images with the lower bgthresh values were taken on the same 

day; it is thus likely that the lighting on the microscope was set at a slightly 

different level. Figure 5.3 shows the bgthresh values of the 50 images with the images 

taken on 31/05/2012 highlighted in red. This type of variation is typical in this 

application, and must be accounted for in solution developed. The fact that the 

difference in lighting can be seen in the bgthresh value confirms the validity of the bg-

thresh measurement. 
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Figure 5.3 Bar chart showing the mode composite intensity, bgthresh, values for 50 images. 

To reduce memory requirements in the implementation of this algorithm, excess 

outer rows and columns of background pixels which do not intersect the sample 

are cropped. For an m x n size image, this is done by cropping any rows where the 

sum of composite pixels in the row is less than bgthresh*n (an approximation of the 

sum of values in one row of the composite image, K, assuming only background 

pixels are present), and cropping any columns where the sum of composite pixels 

in the column is less than bgthresh*m. The result of cropping is shown in Figure 5.4 

for a particularly challenging image showing grade IV damage. Images with many 

small tissue fragments are the most prone to errors using this approach as small 

fragments can be mistaken for normal background variation. The original image is 

shown in Figure 5.4a and in Figure 5.4b all excess background has been cropped 

without cropping more than a few pixels of tissue at the sample edges. The 

cropped sample pixels are either part of the stratum corneum, which is the only 

part of the epidermis that is not deemed important in GVHR, or those located at the 

cut edges of the sample, which are prone to artefacts and generally discounted 

from the analysis. 
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Figure 5.4 Effect of the automated image cropping procedure on an image which includes a 
number of small tissue fragments. 
 

Prior to thresholding, the colour image is smoothed using a mean filter that 

replaces each image pixel with the mean value of its pixel neighbours in each 

colour channel. This approach was introduced in Chapter 2, section 2.4.8. The 

operation is performed using convolution with a kernel filter to represent the pixel 

neighbourhood (Ksmoothed = K * kernel). Mean filtering reduces variation within the 

background and sample pixel sets and facilitates the choice of threshold when 

creating the binary sample mask. A new binary image sMask is created by 

thresholding the smoothed image, Ksmoothed. The value of the threshold was based 

on bgthresh , however since bgthresh is a measure of central tendency, the actual 

threshold used must be lower to ensure the majority of background pixels fall 

below it. Calculation of the appropriate threshold was based on the standard 

deviation of the background pixels in 40 smoothed composite images. The value 

lay between 1.2 and 3.2, and hence subtracting three standard deviations of the 

image with the highest standard deviation (3*3.2) from bgthresh will mean that 

99.8% of the background pixels should be thresholded correctly: 

 𝒔𝑴𝒂𝒔𝒌𝑖,𝑗 = {
 1         𝑖𝑓 𝑲𝑖.𝑗 > 𝑏𝑔𝑡ℎ𝑟𝑒𝑠ℎ–  9.6 

0         𝑖𝑓 𝑲𝑖.𝑗 ≤ 𝑏𝑔𝑡ℎ𝑟𝑒𝑠ℎ–  9.6
 

Equation 5.4 

a b 
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The effect of the changing the parameters in the mean filtering operation on the 

subsequent sample thresholding was investigated. The effect of the mean filter and 

its size on the thresholding operation is shown in Figure 5.5. A variety of kernel 

filter sizes were tested to determine their effect on the thresholding step. The 

figure shows the post-thresholding binary masks created after thresholding was 

performed with no smoothing, and when thresholding was performed after 

smoothing with 9x9, 29x29 and 49x49 mean filters. These sizes were empirically 

selected based on the typical size of vacuoles and clefts in the images.  Although 

more filter sizes were tested, only three examples are shown. 

 

Figure 5.5 Effect of a pre-thresholding smoothing step on the subsequent thresholding 
operation. The figure shows the binary mask created by the thresholding operation without 
smoothing, and when the smoothing step is performed using a 9x9, 29x29 and 49x49 sized 
filter. 

The dimensions of the mean filter must be large enough to smooth the coarse 

texture in the lower parts of the dermis and clefts at the DEJ so that these features 

are included in the sample mask, while still able to prevent the loss of accuracy at 

the perimeter of the sample. Figure 5.5 shows that without any smoothing, the 

thresholding results in a mask which is very detailed but does not include any 
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vacuoles or clefts in the white mask foreground. By smoothing, a simpler mask is 

created that includes increasingly more clefts, vacuoles and white regions within 

the dermis as the filter size is increased. While mean filters of sizes between 9 and 

49 could be used successfully, an intermediate value of 29 was selected. The 

rationale for this was that the thresholded masks produced using the 29 x29 filter 

had fewer separate objects than when lower order filters were used and improved 

segmentation accuracy at the sample perimeter compared to the higher order 

filters.  

The original RGB image and the image after smoothing with the 29x29 mean filter 

are shown in Figure 5.6. The filtering causes a reduction in variation within the 

internal parts of the tissue as a means of facilitating the thresholding of sample and 

background pixels. This can be seen as a strong blurring effect in the figure. 

In some images the clefts at the DEJ are very large and the smoothing operation is 

not sufficient to include them as foreground objects in the sMask. This can be seen 

Figure 5.5, where the large clefts appear as black regions within the mask after 

thresholding. Mathematical Morphology (Chapter 2, section 2.4.13) is used to in-fill 

these “holes” in the binary sample mask and also to remove small objects such as 

dust or tissue debris on the slide which have been captured during thresholding, 

but which are not informative for subsequent analysis. The sequence of operations 

used to refine the segmentation is as follows.  

 Fill holes - Fills internal regions of background pixels within foreground 

objects in the binary image using the MATLAB, imfill function, an 

implementation of morphological reconstruction described by Soille (1999). 

 Remove small objects - Removes foreground objects that consist of less than 

25,000 connected pixels. This value was chosen so that the smallest fragments 

of tissue typically found in the image set used in this research were not 

excluded, but the value was large enough to exclude smaller objects such as 

dust or other tissue debris. 
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Figure 5.6 The effect of a mean filtering step using a 29x29 filter on an RGB image. 

5.1.2 Colour Normalisation 

The initial optimisation of the following epidermal segmentation method and 

parameters was carried out without colour normalisation, however the addition of 

this step was found to improve the performance of the epidermal segmentation in 

terms of sensitivity, specificity and overall accuracy. The relative improvement is 
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discussed in the results section 5.2.5. The mean filtering is used only to facilitate 

the segmentation of the sample pixels to create the sMask. The subsequent 

epidermal segmentation uses the original cropped RGB image retaining the fine 

resolution of the internal tissue texture. Staining inconsistencies in the input 

images are addressed by mapping the histogram for each individual colour channel 

of the cropped RGB image to those of a target image, Iref, identified as well stained 

by an expert histopathologist. Only the sample pixels identified in the appropriate 

sMask are included in this colour normalisation step. 

The colour normalisation is performed by application of a greyscale 

transformation, T, to all the sample pixel intensities, k, in the image. The pixels are 

located using the sMask. A transform is calculated for each colour plane in the RGB 

image so as to minimise the difference between the cumulative histogram, 𝑐input , of 

the transformed input image intensities and the cumulative histogram 𝑐ref of the 

well stained target image Iref. The function to be minimised is: 

 |𝑐input (𝑇(𝑘)) − 𝑐ref(𝑘)| Equation 5.5 

This can be implemented in MATLAB using the function histeq (section 2.4.9). 

The effect of the colour normalisation on two images with significant differences in 

staining and lighting is shown in Figure 5.7. The two original images are shown in 

column (a) in Figure 5.7 and the images with the normalised sample pixels are 

shown in column (b). The non-sample pixels have been changed to white in Figure 

5.7b. The two normalised images have a similar contrast between the epidermis 

and dermis, and a similar range of colour hues and saturation. 
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Figure 5.7 Effect of colour normalisation on RGB skin images showing two RGB skin images 
before and after colour normalisation with different staining contrast, lighting during 
acquisition, overall colour hues, and proportions of epidermis and dermis tissue. The non-
sample pixels have been changed to white in the normalised images. 

5.1.3 Colourspace Conversion 

Following colour normalisation in the RGB colourspace, the next part of the 

segmentation procedure is a coarse segmentation of the epidermis based on the 

thresholding of a high contrast image. A number of colourspaces were investigated 

to identify a representation that would maximise the contrast between the 

epidermis and the rest of the skin tissue. Those tested included RGB, CMYK (cyan, 

magenta, yellow and black) which is based on subtractive colour mixing, HSV (hue, 

saturation and value), YCbCr (luminance, blue chrominance and red chrominance) 

and the L*a*b* (lightness, red/green, yellow/blue) colourspaces. The contrast 

between the epidermis and dermis in each of the colourspace planes was assessed 

visually by two independent observers. The two observers, experienced in 

identifying the two tissue types, scored each of 20 images a 1 if the contrast was 

good and a 0 if the contrast was poor. The results are summarised in Table 5.1. 

 

a b 
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Table 5.1 Visual analysis of dermal epidermal contrast in 5 colourspaces. 

  

The Cb channel in the YCbCr colourspace and the b* channel in the L*a*b* 

colourspace were selected as those providing the best contrast between the 

epidermis and the rest of the tissue. While this is a fairly subjective method, the 

two colour channels selected had significantly better contrast than the others 

tested. The Cb (blue chrominance) and the b* (yellow/blue) colour channels both 

highlight the blue staining of haematoxylin which stains the nuclei in the cells of 

the epidermis. Although there are nuclei-containing cells present in the dermis, 

they are few in number. When the contrast enhancement was performed on a 

second set of 20 images selected to include images with different damage levels, 

staining and lighting levels, the L*a*b* colourspace enhanced the contrast of the 

tissue types more successfully than the YCbCr colourspace. More specifically, when 

the contrast enhancement was performed on the some of the images with lower 

overall illumination, the Cb channel of the YCbCr  colourspace did not enhance the 

contrast between the epidermis and dermis tissue as much as when the same 

procedure was performed on the images in the b* channel of the YCbCr 

colourspace. The b* plane of the L*a*b* colourspace was therefore chosen for use 

in the algorithm due to its ability to show contrast between epidermal and dermal 

tissue despite differing levels of illumination. 

It was noted that during optimisation of the subsequent contrast enhancement 

(section 5.1.4) and thresholding (section 5.1.6) stages that a contrast enhanced 

greyscale image (G) could provide useful additional information to the b* colour 

channel. More specifically, the contrast enhanced greyscale images displayed good 

contrast in the few images where the b* colour channel was displaying poor 

contrast. The images showing poor contrast of the epidermis in the b* colour 

channel tended to have weak nuclear staining by haemotoxylin, which appears as a 

strong blue/purple colour and therefore stands out in this yellow/ blue colour 

channel .The complement image of the greyscale representation highlights more 

R G B H S V Y Cb Br C M Y K L* a* b*

Scorer 1 8 6 8 0 4 12 8 18 6 8 2 0 0 10 6 15

Scorer 2 8 8 8 0 4 11 8 16 6 6 3 0 0 9 6 18

Total 16 14 16 0 8 23 16 34 12 14 5 0 0 19 12 33

RGB HSV YCbCr CMYK L*a*b*
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intensely stained areas, but is not specific to a particular colour. It therefore tends 

to highlight both the pink cytoplasm and blue nuclei in the epidermis which are 

usually stained more intensely than the dermis tissue.  When testing a set of 20 

images, the image variation meant that in different images the epidermis was 

highlighted best in either the b* or the G image, it was therefore decided that a 

combination of the data in the greyscale and b* images could be used to enhance 

the robustness of the following steps.  

5.1.4 Contrast Enhancement 

Contrast enhancement was applied to the b* and the G image to increase the intra-

class variance of pixels in the epidermis and dermis. A linear transformation 

preserving the intensity histogram shape difference was selected (see section 

2.4.9, equation 2.3). Only sample pixels were included in the contrast enhancement 

process, as the aim was to maximise the contrast between the dermis and 

epidermis, and background pixels are not relevant to the rest of the process. 

Remapping a narrow, more specific band of intensities was investigated to try to 

improve the contrast. When tested manually using a variety of absolute intensity 

levels as penetration points, the optimal intensity band for remapping to enhance 

contrast of the epidermis varied significantly for different images. This issue was 

addressed by determining penetration points based on the cumulative percentage 

histogram so that a set percentage of low and high intensity pixels were saturated 

in the final image. Removing a percentage of  low and high pixel intensities is a 

better way of handling any remaining staining variation and pixel intensity outliers 

than choosing absolute intensity levels, and the approach was used on both the b* 

and greyscale image planes to create new contrast enhanced images, b’ and G’.  

The optimal values for the upper and lower penetration points for the G and b* 

images were determined using a Design of Experiments approach. This 

optimisation is described in detail in section 5.2.3. The usual 0 – 255 intensity scale 

is changed to a mapping from 0 to 1 for these steps as this is a requirement to 

perform these operations in Matlab. The optimal values determined in the DoE 

study are used in the remapping functions: 
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 𝐆′𝐢,𝐣 = 𝐼𝑁𝑇 {
1

1 − 0.2743
[𝐆𝐢,𝐣 − 0.2743]} Equation 5.6 

 
𝐛′𝐢,𝐣 = 𝐼𝑁𝑇 {

1

1 − 0.4034
[𝒃∗

𝐢,𝐣 − 0.4034]} 
Equation 5.7 

Following the contrast enhancement, the two images G’ and b’ were smoothed 

using an averaging mean filter, as described for sample segmentation in section 

5.1.1. The operation is performed using convolution with a kernel filter to 

represent the pixel neighbourhood (𝑲𝒔𝒎𝒐𝒐𝒕𝒉𝒆𝒅 = 𝑲 ∗ kernel). This has the effect of 

reducing variation within the sample pixels and smoothing minor variations within 

the epidermis and dermis regions. This reduction in intra-class variation in the 

epidermis and dermis pixel sets was sought in order to emphasise the inter-class 

variation and facilitate the choice of threshold (section 5.1.6).  

The size of this smoothing mean filter was optimised using the Design of 

Experiments study described in section 5.2.3. Based on the optimisation a mean 

filter size of 40x40 (where each element is 1/(40*40)) was chosen during the 

optimisation. 

5.1.5 Linear Combination 

Once the colourspace conversion and contrast enhancement of both images has 

been performed, the information from both must be combined in a single image to 

be thresholded to create a binary image. The binary image (sometimes referred to 

as a mask) contains information on regions of interest; in this case it will identify 

the location of epidermis pixels and non-epidermis pixels. A set of 30 images was 

used to assess the effect of different weightings in the linear combination and to 

find a threshold value. Three different linear combinations of the two enhanced 

and smoothed images G’ and b’ were tested (G’/2 + b’, G’/1.5 + b’/1.5, and G’+ 

b’/2) before each was thresholded at 100. Using a qualitative visual assessment, an 

equal addition of the two images was found to result in good and specific 

segmentation of the epidermis for the highest number of images. The optimal 

combination is very much dependent on the staining properties of the individual 

image and it was decided that detailed optimisation using an image subset was 
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unlikely to prove useful. These parameters were not therefore included in the DoE 

optimisation. 

The equal weighted linear combination applied to the two enhanced and smoothed 

images G’ and b’ to create a new image, Gb is given as: 

 𝑮𝒃𝑖,𝑗 =    0.5 × 𝑮′𝑖𝑗 +  0.5 × 𝒃′𝑖𝑗 Equation 5.8 

Combining the two images captures both staining intensity and colour information 

in a single greyscale image. The effect can be observed in Figure 5.8.  

In image 1 of Figure 5.8 the greyscale image shows good contrast between the 

epidermis on the right edge of the sample and the dermis. The b* colour channel 

contains regions of high intensity in the epidermis and internal regions of the 

dermis. Combining the two colour channels retains high intensity in the epidermis 

and results in lower intensity and reduced intra-class variance in dermis.  In image 

2, the b* colour channel shows the whole of the epidermis as high intensity, 

whereas the greyscale image does not have high intensity in epidermal regions 

which are not stained as intensely (indicated by green arrows). A similar 

difference can be seen in image 3. It is important that these regions of less intense 

staining are included in the epidermal mask as they are often areas with significant 

vacuolisation or cleft formation. Although the difference between the greyscale 

and b* colour channels varies between images, a general effect is that the 

combination of the two data sources has the effect of cancelling out some of the 

intra-class variance, an effect that helps to maximize inter-class variance and 

facilitate the subsequent thresholding step. 
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Figure 5.8 Effect of linear combination of three sets of greyscale and b* images. 

5.1.6 Thresholding 

Following colour normalisation and contrast enhancement, Otsu’s automated 

thresholding method (section 2.4.12) was applied to determine the optimal 

threshold based on the intensity distribution of sample pixels in the combined, 

enhanced image, GB’. The Otsu method uses discriminant analysis to determine a 

threshold, t, which maximises the separability of two pixel classes by minimising 

the intra-class variance. In this process, the aim is to maximise the separability of 
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the dermis and epidermis pixel sets. GB’ is converted into a binary image, BW, 

using the threshold, t. Any non-sample pixels are changed to black (as 

background): 

 𝑩𝑾𝑖,𝑗  = {
1       𝑖𝑓 𝑮𝑩′𝑖.𝑗 > 𝑡

0       𝑖𝑓 𝑮𝑩′𝑖.𝑗 ≤ 𝑡
           Equation 5.9 

Figure 5.9 shows a histogram of a typical GB’ image. The method assumes an 

approximately bimodal distribution. The Otsu threshold, t, attained using the 

method described in section (section 2.4.12) is labelled in the figure at the 

intersection of the upper and lower intensity components. The threshold does not 

intersect at the valley of the two intensity peaks, but at a mid grey level of 137.  

The higher intensity pixels (between 215-255) represent the cell nuclei, which are 

mainly found in the epidermis, however the cytoplasm and weakly stained nuclei 

are also above the threshold in this case.  

 

Figure 5.9 Histogram of enhanced additive image showing Otsu threshold. 

5.1.7  Morphological Processing 

Morphological processing is used to further process the binary image, BW, by 

removing small misclassified objects such as groups of cells within the dermis, 

merging multiple objects, in-filling holes and closing gaps. These operations are 

applied to the whole image, however once the operations are completed, any non-

sample pixels which may have been affected are reverted to black. The sequence of 
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operations summarised below is used to refine the segmentation. The choice of 

structuring element size (radius = 6) for the morphological closing and opening 

steps was optimised based on the final sensitivity and specificity of the algorithm 

as described in section 5.2.3. A disk shaped structuring element was used as this 

shape reflects biological structures more accurately than sharp angles or linear 

shapes. 

 Morphological closing - Morphological closing (dilation then erosion) 

enlarges the boundaries of foreground (bright) objects in the image and closes 

gaps between them, and shrinks background-coloured holes in the foreground 

objects. A disk shaped structuring element with radius = 6 pixels is utilised.  

 Morphological opening - Morphological opening (erosion then dilation) 

removes some of the foreground (bright) pixels from the edges of foreground 

objects, breaking fine bridges between objects while preserving the object size. 

A disk shaped structuring element with radius = 6 pixels is utilised.  

Steps 1 and 2 combine to smooth the objects edges without changing the size of 

objects. Smooth object perimeters are more reflective of the tissue edges seen in 

the real images.  

 Remove small objects – Removal of foreground objects that comprise fewer 

than 4000 connected pixels. The threshold of 4000 pixels was selected based 

on the number of pixels contained within the regions of dermis identified 

incorrectly as epidermis objects prior to this step. The majority of correctly 

identified epidermis regions at this stage included more than 4000 pixels.  

 Fill holes – In-fills internal regions of background pixels within foreground 

objects in the binary image that comprise fewer than 7000 connected pixels. A 

threshold is required as in some images there are regions of dermis tissue 

surrounded by epidermis tissue (due to tissue slicing technique) and if these 

regions are filled the specificity of the final algorithm is compromised. Again 

the value was selected based on the typical size of enclosed dermis regions 

within the epidermis which were misclassified. 
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5.1.8 Object Classification 

Following morphological processing, the binary mask, BW, includes objects that 

are not part of the epidermis. These include collections of cells within the dermis 

that have a similar appearance to epidermis tissue and parts of the dead surface 

layer, the stratum corneum, which can be segmented with the epidermal tissue in 

cases where it is highly stained. For each object, Z, the object area, ZArea, and the 

area of the object’s bounding box, ZBoundBox, are determined (for definition, see 

section 2.5.1). The ratio of ZArea to ZBoundBox gives the extent, ZExtent, of the object:   

 𝑍𝐸𝑥𝑡𝑒𝑛𝑡 =
𝑍𝐴𝑟𝑒𝑎

𝑍𝐵𝑜𝑢𝑛𝑑𝐵𝑜𝑥
 

Equation 

5.10 

The ZArea and ZExtent can both be used to classify the remaining objects as either 

epidermis or non-epidermis. While the area provides information on region size, 

the extent is a shape based measure that can differentiate between the long thin 

objects of the epidermis and the more compact, circular clusters of cells within the 

dermis. Including the area measurement prevents very small regions being 

classified as epidermis. 

The thresholded objects are either retained or removed based on their area and 

extent and hence the impact of adjusting the area and extent thresholds on the 

sensitivity and specificity of the algorithm was investigated. The two thresholds 

are critical values, and the exact values were determined in an optimisation study 

described fully in Section 5.2.4. The values used in this classification were 

determined once all the other critical parameters had been set. The parameters 

determined first were the upper and lower histogram penetration points used for 

the greyscale and b* contrast enhancement, the size of this smoothing mean filter 

used after the contrast enhancement, and the size of the SE used for morphological 

processing after thresholding. Based on the optimisation, the following 

classification rule was used to classify each object pixel, z, in the binary mask: 

 𝑧 = {
1     {∀ 𝑧 ∈ 𝑍| 𝑍𝐸𝑥𝑡𝑒𝑛𝑡 < 0.44,  𝑍𝐴𝑟𝑒𝑎 > 20000   }

  0      𝑒𝑙𝑠𝑒                                                                           
           

Equation 

5.11 

where z are the pixel elements in the object Z. 



Chapter 5 Image Processing and Segmentation:  

Epidermal Segmentation Optimisation and Evaluation 

154 

The final binary mask showing the location of the epidermis pixels, eMask, is the 

image, BW, which has been morphologically processed using the steps in section 

5.1.7, and then subjected to further processing by the conversion of any pixels, z, to 

either 1 or 0 based on Equation 5.11. 

5.1.9 User Interaction  

The object classification step can be used to fine tune the specificity and sensitivity 

of the final algorithm, however the algorithm also includes the option for the user 

to interact with the programme and select or remove objects in the final epidermis 

mask. Epidermis segmentation is critical to the performance of the subsequent 

steps in the skin damage classification process and hence this optional interaction 

step is included to improve the performance of the algorithm if required. It is 

relatively straightforward for a user to determine whether a given object is part of 

the epidermis when shown next to an image of the RGB image. This is confirmed by 

the expert histopathologists at Alcyomics, who agree that identifying epidermis 

and dermis tissue can be mastered by a non-expert after a short period of training 

looking at a selection of skin images.  The user has the option to (1) approve the 

object selection, (2) remove objects that are incorrectly classified, or (3) select 

additional objects, which were removed during the object classification step 

described in section 5.1.8. For a fully automated process, this step can be excluded. 

The effect of the user interaction step on algorithm performance is given in section 

5.2.5. 

5.2 Epidermal Segmentation Optimisation and Evaluation 

This section first describes the optimisation of six key parameters in the epidermal 

segmentation algorithm. They are the upper and lower histogram penetration 

points used for the G’ and b’ contrast enhancement, the size of this smoothing 

mean filter used after the contrast enhancement, and the size of the SE used for 

morphological processing after thresholding. Following this optimisation, the 

performance of the final epidermis segmentation approach was evaluated with and 

without the optional user interaction step. 
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The optimisation and final evaluation were performed using “ground truth” images 

created through the manual mark-up of the epidermis in a set of images made up 

of equal numbers of grade I, II, III and IV images with varying staining and lighting. 

The 40 image set included 25 images used for the initial optimisation and an 

additional 15 “validation” images for evaluation.  

Before the optimisation and evaluation is described, the procedure for generating 

the ground truth images and performance metrics is given. 

5.2.1 Generation of a Ground Truth Data set 

The manual mark-up was achieved by drawing the boundary of the epidermis onto 

the original RGB images in green with the aid of a graphics tablet (Wacom Bamboo 

Fun S Pen and Touch Digitiser). The high colour contrast boundary was easily 

identified using a thresholding procedure on the red channel of the RGB image. The 

outlined regions were flood-filled with a morphological reconstruction algorithm 

implemented using the MATLAB function, imfill. The stratum corneum, the 

epidermal surface layer which appears as a looser collection of flaky layers was 

excluded from the manual epidermis mark-up as it consists of dead cells that do 

not provide useful information about the state of damage in the tissue. Evaluation 

of the segmentation procedure was undertaken by comparing the area of the 

algorithm-segmented epidermis with the “true” epidermis area generated during 

manual segmentation.  

5.2.2 Performance Metrics 

The total number of pixels identified as part of the epidermis in the manual mark-

up and generated segmentation mask, and the total number of pixels in each image 

were used to determine: 

 True positive – Epidermis in mark-up, epidermis in generated mask.  

 True negative – Not epidermis in mark-up, not epidermis in generated mask. 

 False positive – Not epidermis in mark-up, epidermis in generated mask. 

 False negative – Epidermis in mark-up, not epidermis in generated mask. 
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The total pixel number in the image was based on the cropped image, to avoid an 

excessive number of background pixels skewing the results.  This is the case 

because although both background pixels and dermis pixels are non-epidermis 

pixels, the background pixels are more likely to be classified correctly as non-

epidermis pixels than dermis pixels due to the simple segmentation of background 

and sample pixels. If As and At represent the pixel sets identified as epidermis by 

the algorithm and manual methods respectively, the various fractions can be 

calculated as follows: 

 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁) = (𝐼𝑚𝑎𝑔𝑒𝐴𝑟𝑒𝑎 − 𝐴𝑠) ∩ 𝐴𝑡 Equation 5.12 

 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃) = 𝐴𝑠 ∩ (𝐼𝑚𝑎𝑔𝑒𝐴𝑟𝑒𝑎 − 𝐴𝑡) Equation 5.13 

 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃) = 𝐴𝑠 ∩ 𝐴𝑡 Equation 5.14 

 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁) = (𝐼𝑚𝑎𝑔𝑒𝐴𝑟𝑒𝑎 − 𝐴𝑠) ∩ (𝐼𝑚𝑎𝑔𝑒𝐴𝑟𝑒𝑎 − 𝐴𝑡) Equation 5.15 

These fractions were used to calculate the percentage sensitivity, specificity and 

accuracy of the automated segmentation for each image by comparing the 

algorithmic method to manual segmentation. The three metrics were calculated as 

follows: 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
× 100 Equation 5.16 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

(𝑇𝑁 + 𝐹𝑃)
× 100 Equation 5.17 

 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁)
× 100 Equation 5.18 

In combination, the three metrics provide an indication of the performance of the 

segmentation algorithm. Sensitivity is a measure of the algorithms ability to 

identify epidermis pixels, while specificity measures the ability to identify non-

epidermis pixels. In the skin explant assay, a balance between sensitivity and 

specificity is required. Typically an increase in one will lead to a decrease in the 

other.  The accuracy measurement combines the two metrics within one 

measurement, and quantifies the percentage of pixels correctly classified as 

epidermis and non-epidermis when compared to manual segmentation. 
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5.2.3 Optimisation of Algorithm Parameters  

The six key parameters in the algorithm were optimised by executing the 

algorithm without user interaction and assessing the effect that changing their 

values had on the mean sensitivity and specificity. The sensitivity and specificity 

were calculated as described in section 5.2.2. The algorithm was optimised using 

25 of the H&E stained skin sections. The optimisation was carried out using a 

Design of Experiments (DOE) approach using the software program MINITAB 

v16.2.4. This approach was adopted so that the interaction between the various 

parameters could be assessed. Initially a 2-level Fractional Factorial design was 

used to screen the six parameters (called factors in DOE). Factorial designs change 

two or more factors in a single experiment and they are used to determine the 

effect of multiple variables on a single response, or output. A full factorial study 

investigating six factors at two levels would require 26, or 64 experiments (or in 

this case algorithm executions). Fractional factorial experiments use a carefully 

prescribed and representative subset of a full factorial design to reduce the 

number of experiments required. A Resolution IV design was utilised, in which ¼ 

of all possible factor combinations were tested. The design included 16 

experiments where the six factors were set at high or low levels, and one with the 

factors set at the mid-point between the low and high levels (called a centre point). 

The high and low levels were selected by iteratively changing each factor on a set 

of 20 images and assessing the outcome visually. For example, for the b’ image 

penetration points were selected to accentuate the blue/ purple pixels of the 

keratinocyte cell nuclei within the epidermis, while the G’ image values were 

selected to highlight the whole of the epidermis including the cytoplasm and cell 

membranes. The upper and lower size limits of the smoothing mean filter were 

selected to reduce in variation within the epidermis and dermis pixel sets. 

Morphological processing using the SE aims to smooth object edges to create a 

more biologically meaningful representation. To do this, the upper and lower size 

limits of the structuring element (SE) were set by measuring the pixel dimensions 

of cells within the tissue images. Figure 5.10 shows the dimensions of normal and 

vacuolised cells within the epidermis and maximum and minimum values chosen 

to cope with biological variation. 
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Figure 5.10 Enlarged sections of images showing H&E stained epidermal cells. The arrows 
highlight the diameter of normal and vacuolised cells 
 

Each set of experimental conditions was used to test epidermal segmentation on 

25 images.  The values of the factors used for an initial screening run and the mean 

sensitivity and specificity of epidermal segmentation for the 20 images are shown 

in Table A in Appendix B. The best performing sets of factors were identified in 

runs 2, 11, 15 and 16, which all had sensitivity values of > 73% and specificity 

values of > 97%. These runs are starred in the first column of Table A.  

The effects and coefficients of the main effects and interactions were analysed to 

determine the relative strength of the factors (the effect is two times the 

coefficient). The effect data is shown in Table 5.2. The factors with effects of the 

greatest magnitude (positive or negative) have the greatest effect on the 

responses. Varying the factors within the range tested had a small effect on 

specificity with all of the runs resulting in specificities of between 93% and 99%. 

The effect of the factors on sensitivity was much greater. The B term, which is the 

upper threshold for contrast enhancement of the G’ image, had the greatest effect 

on both specificity (1.99) and sensitivity (21.85), increasing both outputs when set 

at the higher level. The next most important effects on sensitivity were the positive 

effect of increasing A (the lower G’ threshold) and the negative effect of increasing 

F (the size of the SE). The most important interaction effects on sensitivity were 

A*B and A*D. The sensitivity model had an R2 value of 99.45% and the specificity 
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model had an R2 value of 96.08%. This measure describes the amount of variation 

in the observed response values explained by the factors in the model; the high 

values indicate the models explain the data well. 

Table 5.2 Effects and Coefficients for Factors and Interactions in the Sensitivity and Specificity 
Screening  

Term 

Constant 

Factor Description Specificity Effect Sensitivity Effect 

A Lower penetration point, G’ -0.69 13.30 

B Upper penetration point, G’ 1.99 21.85 

C Lower penetration point, b’ -0.62 1.52 

D Upper penetration point, b’ 0.12 0.95 

E Mean Filter Kernel Size -0.08 6.50 

F Radius of SE 0.86 -13.71 

A*B Interaction of Factors A and B 1.31 -4.89 

A*C Interaction of Factors A and C 0.32 -1.05 

A*D Interaction of Factors A and D 0.14 4.91 

A*E Interaction of Factors A and E 0.05 -0.03 

A*F Interaction of Factors A and F -0.30 2.82 

B*D Interaction of Factors B and D -0.28 0.27 

B*F Interaction of Factors B and F -0.86 2.12 

 

The p-values in the analysis of variance table were used to find the statistically 

significant effects. Considering the interaction effects first, none of the interactions 

had p-values lower than the threshold of 0.05 usually used to indicate significance. 

The interaction effect p-values were between 0.086 and 0.919 for specificity and 

between 0.094 and 0.989 for sensitivity. For the main effects, only factor B had a p-

value < 0.05 for specificity and factors A, B and F had p-values < 0.05 for 

sensitivity. 

The results of the screening study indicated that only factors A, B and F were 

significant, however a feature of fractional factorial designs is the presence of 

confounding, which means that one or more of the effects cannot be estimated 

separately from each other and are said to be aliased. In the Resolution IV design 
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used the main effects are confounded with three-way interactions and two-way 

interactions are confounded with other two-way interactions. For example, it 

cannot be determined whether an effect is due to factor A or the combined effect of 

factors B, C and D.  It was decided that a more detailed experiment was required to 

investigate interactions given the potential confounding masking complex 

interactions. The screening study indicated that factor B should be set at the higher 

level and as the value of 1 used for the upper threshold was the highest possible, 

this factor was fixed in the optimisation study.  

A more detailed optimisation was undertaken on factors A, C, D, E and F, fixing the 

upper grey threshold (factor B) at the higher value of 1, but varying the other five 

factors using a Response Surface Design. This type of design allows the 

optimisation of one or more outputs which are influenced by several independent 

variables (factors). The ability of this design to detect curvature (nonlinearity) in 

the responses means it can be used to find the factor settings which optimise the 

responses. This second optimisation considered additional levels and 

combinations, including extreme points to investigate the relationship between the 

factors, including possible interactions and curvature in the data. A Central 

Composite Design was selected that uses the two level factorial design as a base 

with additional axial points to investigate extreme conditions and centre points to 

enable curvature and second order responses to be investigated. A representation 

of the initial cube points, the centre point and the axial points is shown in Figure 

5.11 for a two factor, two level study. 
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Figure 5.11 Representation of box, centre and axial points in a Central Composite Design 
 

A full quadratic response surface model was fitted to the data using MINTAB. 

Considering specificity first, the significant square and interaction terms (with p-

values < 0.05 in the Analysis of Variance table) were E*F, A*A, E*E and F*F and the 

significant linear terms were A, C, E and F. In the coefficients table the interaction 

term E*F had a p-value of 0.000, the squared terms A*A, E*E and F*F had p-values 

of 0.001, 0.000 and 0.009 respectively, and the linear terms A, C, E and F had p-

values of 0.000, 0.003, 0.000 and 0.001 respectively. Variance inflation factors 

(VIF) can be used to evaluate correlation between factors. VIFs inflate the variance 

of the coefficients and although theoretically a VIF > 1 could indicate correlation 

between factors, in practice values < 5 tend to indicate that the estimation of the 

regression coefficient is acceptable. All VIF values were between 1 and 2, giving 

reasonable confidence in the results. 

For sensitivity the significant square and interaction terms (with p-values > 0.05 in 

the Analysis of Variance table) were A*F, C*E, E*F, A*A, E*E and F*F and the 

significant linear terms were A, C, E and F. In the coefficients table the interaction 

terms A*F, C*E, E*F had p-values of 0.000, 0.037 and 0.000 respectively, the 

squared terms A*A, E*E and F*F had p-values of 0.000, 0.000 and 0.000 

respectively, and the linear terms A, C, E and F had p-values of 0.000, 0.007, 0.000 

and 0.000 respectively. All VIF values were between 1 and 2. 

Initial factorial “cube” 

points 
Centre point 

Axial points 
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Squared and interaction terms which were insignificant for both specificity and 

sensitivity were removed sequentially, starting with the term with the highest p-

value. This process was performed sequentially as the significance of terms can 

change as insignificant terms are removed and the model becomes more accurate. 

After all the squared and interaction terms with p-values > 0.05 had been removed 

the following terms were still included in the model: 

 Linear – A, C, D, E and F 

 Squared – A*A, E*E and F*F 

 Interaction – A*E, A*F, C*E and E*F 

The only insignificant term remaining was the linear term, D, which had a p-value 

of 0.822, and so this term was removed. The final regression equations for 

sensitivity and specificity were: 

 

The models for specificity and sensitivity were analysed next. For sensitivity, the 

R2 value showed that 95.67% of the variation in specificity was explained by the 

model. The predicted R2 highlights potential overfitting when it is much lower than 

the R2 and it was 88.66% for sensitivity, which indicates a good model. For 

specificity, the R2 value showed that 91.02% of the variation in specificity was 

explained by the model, however the predicted R2 was 20.07%. This may indicate 

that the model requires further simplification, however it is not of great concern as 

specificity was varying within the small range of 95.29% and 98.24%. The more 

important consideration was to find conditions which increased sensitivity, which 

varied between 48.56% and 81.44% during the optimisation runs. Table 5.3 shows 

𝑀𝑒𝑎𝑛 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

= 64.28 + 51.9𝐴 − 5.17𝐶 + 0.512 − 0.927𝐹                       

− 90.0(𝐴2) − 0.00947(𝐸2) − 0.03438(𝐹2)      

− 0.384(𝐴𝐸) + 1.972(𝐴𝐹) + 0.02001(𝐸𝐹) 

Equation 5.19 

𝑀𝑒𝑎𝑛 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

= 94.885 + 15.28𝐴 − 1.60𝐶 + 0.1001 − 0.0588𝐹

− 25.13(𝐴2) − 0.001802(𝐸2) − 0.002715(𝐹2)

− 0.0309(𝐴𝐸) + 0.0120(𝐴𝐹) + 0.003500(𝐸𝐹) 

Equation 5.20 
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the effect of each term in the final model on sensitivity and specificity. The 

magnitude of the effect is greater for sensitivity, and the most influential effects are 

A, E and F which also show curvature and interaction. The magnitude of the effects 

on specificity is much smaller.  

Table 5.3 Effect of each term in the final model on sensitivity and specificity 

Term Factor Description Sensitivity Effect Specificity Effect 

A Lower penetration point for G’ 5.81 0.89 

C Lower penetration point for b’ 1.84 -0.30 

E Order of Mean Filter kernel 4.95 0.53 

F Radius of SE -11.87 -0.29 

A*A Curvature of A -1.80 -0.50 

E*E Curvature of E -1.90 -0.36 

F*F Curvature of F -3.87 -0.31 

A*E Interaction between A and E -0.77 -0.06 

A*F Interaction between A and F 2.96 0.02 

C*E Interaction between C and E 0.87 -0.02 

E*F Interaction between E and F 3.00 0.53 

 

Residuals show the difference between observed and fitted response values and 

trends in residuals can indicate if underlying assumptions of the model have been 

satisfied and highlight problems with the model. Figure 5.12 and Figure 5.13 show 

four residuals plots for the sensitivity and specificity models respectively. The 

normal probablility graph plots the actual residuals versus their expected values 

when the distribution is normal; it can highlight non-normality, skewness, outliers 

and unidentified variables. A normal distribution is an underlying assumption of 

this analysis, however some deviations are typical. The histogram of the residuals 

shows their distribution and provides information on the spread, variation and 

distribution of the data and can be used to identify unusual values or outliers. The 

plot of residuals versus fitted values is used to look for constant variance, another 

assumption of this analysis, which should result in residuals scattered randomly 

around zero. This plot can also be used to highlight missing higher order terms, 

outliers or influential points. Finally, the residuals are plotted versus run order. 
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This plot is useful for identfying systematic effects in the data over time or data 

collection, and is particularly useful if runs are not randomised. In this analysis the 

runs were not randomised because they were being run automatically on a 

computer, and the same conditions run at a different time would always give the 

same result.  

 

Figure 5.12 Residuals plots for model of key factor effect on mean sensitivity 
 

 

Figure 5.13 Residuals plots for model of key factor effect on mean specificity. 

 



Chapter 5 Image Processing and Segmentation:  

Epidermal Segmentation Optimisation and Evaluation 

165 

For sensitivity, the normal plot shows curvature at the tails, which could either be 

normal variation or indicate skewness. The histogram shows that skewness is the 

most likely explanation, as the distibution of residuals is skewed towards positive 

residuals. The residuals versus fits shows that while the positive residuals are 

spread evenly across all fitted values, the negative residuals occur mainly at higher 

fitted values. For specificity, the residuals plots indicate a normal distribution, 

constant variance, and an even spread of residuals versus fits. The plots also 

indicate that there are two outliers with higher residuals. These two runs used 

extreme conditions for factor A and factor F, with each factor at a particularly low 

level in one of the runs.   

The models are not a perfect representation of the epidermis segmentation 

algorithm, however they were used to estimate optimal settings for the factors 

which were then tested in the algorithm. The Response Optimiser in MINITAB was 

used to find the optimal set of parameters. This algorithm is based on a reduced 

gradient approach with multiple starting points to identify the combination of 

input values that maximise the desired response.  

The optimiser identified the combination of factor settings that would maximise 

both specificity and sensitivity, using the two regression models. The sensitivity 

was given a higher importance than the specificity, which ensured it had greater 

influence on the final measure of composite desirability. This measurement 

combines the desirability of both sensitivity and specificity, and weights the 

combination according to the importance set. The suggested optimal value for each 

of the four parameters and the range that was tested in the screening and 

optimisation study is shown in Table 5.4. 

Table 5.4 Range tested and optimised values for the four factors included in the model 

Factor Low level  High level Optimised level 

Lower penetration point for G’ 0.0723 0.350 0.2743 

Lower penetration point for b’ 0.0466 0.4034 0.4034 

Order of Mean Filter kernel 15 65 40 

Radius of SE 5 30 6 
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The models indicate that if the algorithm was run with these four optimised 

parameters, a sensitivity of 81.4% could be achieved with 95% confidence limits of 

79.8% and 83.0%, and a specificity of 97.5% could be achieved with 95% 

confidence limits of 97.3% and 97.8%. Figure 5.14 contains three plots for each 

variable. The plots in the top row indicate how the composite desirability changes 

with each factor in the model, the plots in the second and third row indicate how 

the sensitivity and specificity change as each factor is varied.  The differing impact 

of the factors on sensitivity and specificity can be seen. An interesting observation 

is that if the lower b’ threshold increases, it causes an increase in sensitivity, and a 

decrease in specificity. It may be possible to tune the algorithm sensitivity and 

specificity using this parameter. The effect of the importance value set for the 

different responses can be seen in Figure 5.14, in cases where the optimal setting 

of a factor to maximise sensitivity and specificity is different (e.g. with the low b’ 

threshold, labelled B Low), the value is set to maximise sensitivity. 

 

Figure 5.14 Optimisation plot for key parameters to maximise sensitivity 
 

For the final implementation and evaluation of the epidermal segmentation 

algorithm the upper threshold used in the G’ contrast enhancement (factor B) was 

set at the upper level of 1 as indicated by the screening study results. The upper 
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threshold of the b* contrast enhancement was deemed insignificant in the 

subsequent optimisation study, but it was set at the higher level of 1 as 

sensitivities tended to be slightly higher.  

5.2.4 Optimisation of Object Classification Rules  

The algorithm was further enhanced by optimising the object classification rules 

described in section 5.1.8. These rules are completely dependent on the output 

from the previous parts of the image processing and segmentation process. They 

were not included in that optimisation as they would require impractically large 

factor ranges to be tested. Using the 25 image test set and optimised parameters 

from section 5.2.3, the algorithm was run without user interaction varying the area 

threshold between 15000 and 100000 pixels and the extent threshold between 

0.36 and 0.46 in a full factorial design. The values included in the optimisation 

were determined based on the typical extent and area of epidermis objects 

(measured manually) after all prior processing steps had been completed on the 

25 image test set. The resulting sensitivity and specificity measurements are given 

in Table 5.5 and the data is displayed as a contour plot in Figure 5.15.  

The response optimiser and models indicated that the optimised factors should 

result in sensitivities of ~ 81.4% (±1.5) and specificities of ~97.5% (±0.3). In this 

study the object classification thresholds were set at 0.36 (extent) and 80000 

(area), based on typical sizes and extents of objects in previous experiments. When 

tested at these conditions the sensitivity was 79.4% and the specificity was 97.3%, 

as shown in Table 5.5. This result shows the model gave an accurate prediction for 

specificity and slightly overestimated sensitivity. When the object classification 

thresholds were varied in this study the sensitivities varied between 75.0% and 

87.0% and the specificities varied between 95.3% and 97.4%.  

The contour plot (Figure 5.15.) is darker in colour when the sensitivity or 

specificity is higher. The plots shows that decreasing the area threshold and 

increasing the extent threshold improve sensitivity, however some combined 

settings which result in improved sensitivity do this at the cost of specificity. As the 

specificity was greater than 95% for all runs the aim with this optimisation was to 

try and increase sensitivity. An extent threshold of 0.44 and area threshold of 
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20000 were chosen to improve the sensitivity (86.9%) and maintain high 

specificity (95.3%). These settings do this by reducing the number of objects that 

are removed during the object classification stage, but ensuring that those that are 

retained have a high probability of being epidermis objects based on their shape 

and size. 

Table 5.5 Effect of the tested area and extent thresholds on algorithm sensitivity and specificity  

Extent Thresh Area Thresh Mean Specificity Mean Sensitivity 

0.36 60000 97.32 76.39 

0.38 60000 96.29 80.59 

0.4 60000 95.94 82.76 

0.36 80000 97.34 79.39 

0.38 80000 96.35 80.59 

0.4 80000 96.00 82.76 

0.36 100000 97.40 74.98 

0.38 100000 96.41 79.18 

0.4 100000 96.07 81.36 

0.42 60000 95.75 83.63 

0.42 80000 95.86 82.76 

0.42 100000 95.92 81.36 

0.44 40000 95.66 86.10 

0.44 60000 95.75 84.78 

0.44 80000 95.85 83.91 

0.42 40000 95.72 84.95 

0.44 20000 95.34 86.94 

0.4 40000 96.34 84.34 

0.38 20000 96.26 82.67 

0.4 20000 96.18 84.85 

0.42 20000 95.99 85.79 

0.43 30000 95.59 85.71 

0.46 20000 95.31 86.94 

0.44 15000 95.32 87.00 

0.43 18000 95.44 85.79 

0.43 23000 95.48 85.71 
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Figure 5.15 Contour plot of the effect of area and extent object classification thresholds on 
mean sensitivity and specificity for segmentation of epidermis. 

 

5.2.5 Final Performance Evaluation for Epidermal Segmentation  

The optimised parameter values and final method were tested on a new set of 40 

images with associated manual mark-ups, both with and without the user 

interaction step. This image set included the 25 images used for the optimisations 

and an additional 15 images which were used a validation set. 
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When this final evaluation was performed it was noted that some of the unseen 

images had significantly lower sensitivities and that these images had unusual 

lighting or staining colour profiles. Figure 5.16 shows three images for which 

sensitivities of less than 60% were achieved (A, B and C) and one image (D) with 

good staining and contrast for which a sensitivity of 81% was achieved.  

In Figure 5.16, images A, B and C have poor contrast between the epidermis and 

dermis, image B is also weakly stained and image C has a slightly altered colour 

cast, potentially due to the illumination level during image acquisition. 

 

Figure 5.16 Four H&E stained images showing varying staining and lighting. A, B and C had 
sensitivities of < 60% and D had a sensitivity of 81%. 
 

To address this issue, a colour normalisation step was added (section 5.1.2) and 

the 40 images were retested with the new colour normalisation step both with and 

without the user interaction step. Table 5.6 shows average accuracy, sensitivity 

and specificity for the training set of 25 images, the test set of 15 images and the 

average for the whole 40 image dataset. The standard error of the mean and 

minimum for each metric is also given. The standard error of the mean takes into 
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account both the standard deviation of the dataset and the sample size and is 

calculated thus: 

 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐸𝑟𝑟𝑜𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑀𝑒𝑎𝑛 (𝑆𝐸𝑀) =
𝜎

√𝑛
 Equation 5.21 

where 𝜎 is the population standard deviation and n is the sample size. The SEM 

tends to decrease as the number of samples in the dataset increases. It is an 

informative measure in this case because the samples size of the training and test 

set are different.  

Table 5.6 Summary of statistics for accuracy, sensitivity and specificity performance metrics 
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No User Interaction With User Interaction 

Spec Sens Acc Spec Sens Acc 

Training 
set 

(n=25) 

Mean 95.34 86.94 93.89 96.99 88.26 95.64 

SEM 1 2.04 1.08 0.73 1.55 0.84 

Min 70.91 48.32 71.56 76.79 61.35 77.18 

Test set 
(n=15) 

Mean 97.11 80.28 94.26 97.47 89.23 96.43 

SEM 0.39 4.07 1.01 0.22 0.87 0.29 

Min 90.68 0 72.69 94.27 80.29 92.74 

All 
(n=40) 

Mean 96 84.44 94.03 97.17 88.63 95.93 

SEM 0.83 2.96 1.04 0.59 1.33 0.69 

Min 70.91 0 71.56 76.79 61.35 77.18 
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No User Interaction With User Interaction 

Spec Sens Acc Spec Sens Acc 

Training 
set 

(n=25) 

Mean 97.69 91.79 96.75 98.14 92.87 97.25 

SEM 0.29 1.32 0.37 0.25 1.07 0.36 

Min 91.43 68.6 88.11 94.15 75.63 88.41 

Test set 
(n=15) 

Mean 97.7 85.32 95.96 97.63 87.76 96.13 

SEM 0.22 2.25 0.34 0.2 1.32 0.33 

Min 94.7 43.17 91.66 94.7 74.75 91.66 

All 
(n=40) 

Mean 97.69 89.37 96.45 97.95 90.95 96.83 

SEM 0.26 1.77 0.36 0.23 1.22 0.36 

Min 91.43 43.17 88.11 94.15 74.75 88.41 
 

Considering all 40 images, with no user interaction, the addition of the colour 

normalisation step increases the specificity by 1.69% and the sensitivity by 4.93%, 

resulting in a mean accuracy increase from 94.03% to 96.45%. The impact of the 

colour normalisation step is particularly apparent when the minimum sensitivities 

and specificities in the image set are examined. Whereas without colour 
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normalisation one image had a sensitivity of zero, the worst performing image 

with colour normalisation had a sensitivity of 43.17%. Normalising staining 

intensity ensures even very weakly stained epidermal tissue can be correctly 

identified and segmented. 

A comparison of the training and test set data with and without user interaction is 

presented as a boxplot in Figure 5.17. The boxplot defines the median, 

interquartile range and highlights outlying results, i.e., those that are more than 2.7 

standard deviations beyond the mean.  

There is a slightly reduced sensitivity in the test set (85.32%) compared to the 

training set (91.79%), as well as an increase in interquartile range and range of the 

test set compared to the training set. The difference in test and training set is 

slightly less when the user interaction step is included (87.76% compared to 

92.87%). Overall the training and test sets are similar which suggests that the 

model developed using the training set was not overfitted, and the optimised 

values parameters are likely to be valid for new images. Across the whole dataset 

of 40 images, including user interaction, the mean specificity is 97.95%, mean 

sensitivity is 90.95% and mean accuracy 96.83%. Without user interaction, the 

mean specificity is 97.69%, mean sensitivity is 89.37% and mean accuracy 96.45%. 

The user interaction step improves the algorithm by reducing the level of 

variability. More specifically, the standard error of the mean sensitivity for the test 

set reduces from 14.2 to 8.4 when the user interaction step is added.  

 



Chapter 5 Image Processing and Segmentation:  

Epidermal Segmentation Optimisation and Evaluation 

173 

 

Figure 5.17 Boxplot of specificity, sensitivity and accuracy for epidermal segmentation  in 
training and test sets– with and without user interaction 
 

The six worst segmentations in the dataset of 40 had sensitivities of 75-78% and 

these were not specific to a particular class of damage with two grade I, two grade 

II, one grade III and one grade IV. Figure 5.18 shows boxplots for specificity and 

sensitivity grouped by grade of damage. 
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Figure 5.18 Boxplots showing effect of damage grade on specificity, sensitivity and accuracy of 
epidermal segmentation. 
 

From these results, it can be observed that there are small differences between the 

data, but no major differences. The 40 image dataset contained 12 grade I, 14 

grade II, 6 grade III and 8 grade IV images. Considering the relatively small sample 

size once the data set is split into the four damage types, it is difficult to draw 

definite conclusions about the distributions. However, one observation is that as 

the damage grade increases the specificity appears to decrease and the sensitivity 
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increases. While this may due to chance, it is possible that the algorithm may be 

misclassifying more dermis tissue as epidermis when there is damage present. 

While this non-specificity is not ideal, identifying dermis tissue as epidermis would 

be more of an issue if it was happening in the grade I images, as this may lead to 

false positive identification of spaces in the dermis as clefts or vacuoles.  

Once the epidermis had been segmented, the next task was to accurately segment 

the dermis tissue so that the DEJ could be identified. Locating the DEJ correctly is 

essential for objects to be identified accurately as clefts because location at the DEJ 

is a specific property of clefts. The epidermal segmentation was optimised using 

performance metrics that were based on an accurate manual mark-up of the 

“correct” epidermal pixels by an expert. While this was a labour intensive process, 

it provided the best method for optimising the multiple parameters included in the 

algorithm utilising multiple images. The drawback of such a method is the 

potential inaccuracy and human bias inherent with such a process due to the 

manual annotation. In practice, annotation of the outer edge of the epidermis was 

relatively straight forward. The boundary of the epidermis was relatively smooth 

and small errors of < 10 pixels in the location of the marked-up boundary had 

minimal impact due to the relatively large dimensions of the epidermis (20,000 to 

80,000 pixels).  

Creating a mark-up for the dermal, cleft and vacuole segmentation would be a 

significantly more challenging task. The dermis perimeter is often highly 

convoluted, making an accurate and repeatable mark-up difficult.  For vacuoles 

and clefts, the small size and large number make the potential for error during 

mark-up much greater due to the high ratio of perimeter to total area. Individual 

vacuoles comprising between 100 and 500 pixels may have perimeters of between 

50 and 300 depending on their shape. Small (1-2 pixel) errors in the mark-up of 

the boundary could have a significant effect on the final segmentation and feature 

measurements. Although the segmentation of these features is very important, it 

would be extremely time consuming and error prone to mark-up vacuoles and 

clefts in sufficient images to get a representative sample. 
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In light of the issues, it was decided that as opposed to utilising a quantitative 

approach, a qualitative visual assessment would be used to optimise the dermal, 

cleft and vacuole segmentation based on 16 images and a set of 30 images would 

be used to assess the final accuracy of the segmentation. The images were selected 

to include varying cleft and vacuole densities, and variable staining.  

5.3 Dermal Segmentation 

The dermis segmentation starts with a simple logical operation that locates the 

dermis pixels using the assumption that any sample pixels that are not epidermis 

pixels, must therefore be dermis pixels. Initially this was followed by a 

classification of objects based on major and minor axis length and object area, the 

aim of which was to exclude any very long and thin objects such as the long 

sections of stratum corneum. A binary image containing information on the 

location of all dermis pixels was then used during cleft segmentation to identify the 

DEJ. However this simple approach to dermal segmentation was not successful in 

avoiding misclassification of the stratum corneum as part of the dermis, and led to 

false identification of clefts at the boundary of the main epidermis and the stratum 

corneum. 

The stratum corneum is the top layer of the epidermis and although it can be linear 

in nature or curve around the sample, it is always located at the sample perimeter. 

Firstly, as has already been stated, the stratum corneum should be excluded from 

both the dermis and epidermis masks even though it is part of the epidermis. 

However excluding this part of the tissue is difficult because the thickness, 

structure and staining intensity of the layer varies significantly between samples 

making identification challenging. One reason for the variation is the areas of 

necrotic (dead) tissue that sometimes build up at the top of the epidermis around 

the stratum corneum. This layer of tissue can become very thick and irregular in 

structure, and because it is dead tissue it should not be included in either the 

dermis or epidermis masks. Figure 5.19 shows three images with the stratum 

corneum outlined in green. The images give an indication of the typical variation 

observed within the data set. An area of necrotic tissue is outlined in blue and filled 

with blue hatching. The necrotic tissue is pale pink in colour and has sparsely 
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distributed purple/blue nuclei; these are also properties of dermal tissue and so it 

can easily be misclassified.  

A perimeter masking step was designed to address the issues of misclassification 

of stratum corneum as dermis tissue, and the presence of necrotic tissue. This step 

is described in the following section. 
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Figure 5.19 A selection of images highlighting differences in the stratum corneum and areas of 
necrotic tissue. 

5.3.1 Sample Perimeter Masking 

A mask based on the perimeter of the sample mask, 𝑠𝑀𝑎𝑠𝑘 (Equation 5.4), was 

tested to determine whether it could be used to remove the stratum corneum 

without removing important areas near the DEJ. The perimeter mask of the tissue 
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sample was created by subtracting a version of 𝑠𝑀𝑎𝑠𝑘 eroded by one pixel from 

the original version of 𝑠𝑀𝑎𝑠𝑘. The perimeter mask was then morphologically 

thickened by adding pixels to the exterior of the perimeter. Some sample masks 

had very convoluted perimeters due to the loose and fibrous structure of the 

dermis tissue. When these convoluted edges were thickened it had the effect of 

masking out too much tissue, in particular the dermis pixels at the DEJ.  To avoid 

this issue a morphological closing step was performed on the 𝑠𝑀𝑎𝑠𝑘 to smooth the 

edges prior to the perimeter extraction. Figure 5.20 illustrates the benefit of 

adding the smoothing step when creating the perimeter mask.  

 

Figure 5.20 Diagram illustrating the effect of smoothing on the perimeter masking step. 
 

In diagram A, the dermis perimeter is highly convoluted and at certain points the 

perimeter reaches deep within the tissue sample and masks out some pixels at the 

DEJ. In diagram B the perimeter has been smoothed, reducing the convolution and 

ensuring that the stratum corneum is masked but the DEJ pixels are not. 

Figure 5.21 shows an overlay of a thickened, smoothed perimeter over the original 

image. In this case, the perimeter mask overlays the stratum corneum, some of the 

epidermis, and also parts of the dermis. The masking of the dermis pixels deeper in 

the tissue (indicated by the black arrows in Figure 5.21) is not an issue as these 

pixels are not adjacent to the epidermis and therefore not required to locate the 

DEJ. The masking of the epidermis pixels also does not have an impact, since the 

location of these pixels is already known from the epidermal segmentation 

procedure. If they are masked out, they can be recovered using the epidermis 

mask, eMask, described in section 5.1.8 . The side edges of the tissue (identified 

A B 
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within rectangles in Figure 5.21), have adjacent epidermis and dermis pixels, 

however the masking of these regions is a positive outcome as histopathology 

experts tend to disregard these areas from the analysis due to the high probability 

of artefacts from the sample slicing procedure being present. 

 

Figure 5.21 RGB image of H&E stained skin sample overlaid with mask of thickened perimeter 

5.3.2 Dermal Segmentation: Method 

The correct segmentation of the dermis tissue and the disregarding of the stratum 

corneum, requires a variety of processing steps to be used in series. First, a new 

binary mask dMask is created containing only pixels within the sample mask 

sMask that are not present in the epidermis mask eMask. 

 𝒅𝑴𝒂𝒔𝒌𝑖,𝑗 = {
 1         𝑖𝑓    𝒔𝑴𝒂𝒔𝒌𝑖,𝑗 = 1, 𝒆𝑴𝒂𝒔𝒌𝑖,𝑗 = 0                  

0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                            
 Equation 5.22 

The outer contour of the sample mask is smoothed using morphological closing: 

 𝒔𝑴𝒂𝒔𝒌𝒄𝒍𝒐𝒔𝒆𝒅 = 𝒔𝑴𝒂𝒔𝒌 ⋅ SE = (𝒔𝑴𝒂𝒔𝒌 ⊕ SE) ⊖ SE Equation 5.23 
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where SE is a disk shaped structuring element with a radius of 20 pixels. 

Structuring elements of different sizes were tested, but the selection of SE with 

radius 20 was made based on the fact that this was the smallest size able to close 

the small openings in the perimeters of the dermis tissue. A larger size was 

avoided to minimise the loss of information in the image. 

The perimeter of sMaskclosed is found by subtracting a new version of sMaskclosed 

which has been morphologically eroded, ⊕ , using a structuring element with a 

radius of 1 pixel, SE1, from the original sMaskclosed. The resulting image is then 

dilated using a disk shaped structuring element of radius 60, SE2, to thicken it and 

create the perimeter mask, pMask. The value of 60 was selected based on the 

average depth of the stratum corneum layer in all but the most extreme examples. 

If the examples with the very thick layers of stratum corneum were included in this 

calculation then the mask would get rid of unnecessarily large parts of the tissue 

samples in the more typical examples : 

 𝒑𝑴𝒂𝒔𝒌𝑖,𝑗 = {

   
𝑖𝑓     (((𝒔𝑴𝒂𝒔𝒌𝒄𝒍𝒐𝒔𝒆𝒅 ⊕ 𝑆𝐸1) − 𝒔𝑴𝒂𝒔𝒌𝒄𝒍𝒐𝒔𝒆𝒅)  ⊖ 𝑆𝐸2)𝑖,𝑗 = 1

0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                         
 

Equation 

5.24 

The perimeter mask is subtracted from the dermis mask to remove regions of 

stratum corneum and pixels near the cut edge of the sample: 

 𝒅𝑴𝒂𝒔𝒌𝑖,𝑗 = {
 1         𝑖𝑓        𝒑𝑴𝒂𝒔𝒌𝑖,𝑗 = 0               

0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                  
 

Equation 

5.25 

For each object Z in dMask, the object area, the major axis length and minor axis 

length  are determined. The ratio of ZMajorAxisLength to ZMinorAxisLength gives the 

dimension measurement, ZDim, of the object, which is a measure that can be used to 

identify the thin objects which make up the stratum corneum. The following 

classification rule based on the object area and dimension was used to classify each 

object pixel, z, in the dMask: 

 𝑧 = {
1     {∀ 𝑧 ∈ 𝑍| 𝑍𝐷𝑖𝑚 < 7.7,  𝑍𝐴𝑟𝑒𝑎 < 42500  }

  0      𝑒𝑙𝑠𝑒                                                                   
           

Equation 

5.26 
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The values used in this classification were chosen based on the area and dimension 

measurements of dermis and non-dermis objects from 16 images. Figure 5.22 is 

the histogram of dimension measurements for all dermis and non-dermis objects 

in the 16 versions of dMask. Figure 5.23 is the histogram of area measurements for 

all dermis and non-dermis objects in the 16 versions of dMask. 

 

Figure 5.22 Histogram of dimension measurements for dermis and non-dermis objects 

 

Figure 5.23 Histogram of area measurements for dermis and non-dermis objects 

Visual examination of the 16 image data set and assessments of the histograms 

shown in Figure 5.22 and Figure 5.23 were used to determine appropriate 

threshold values for dimension and area. The area threshold of 42,500 was set at a 

level which excluded the majority of non-dermis objects and included all but the 

very smallest objects. The smaller dermis objects, sized between 20,000 and 
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42,500 pixels, were small fragments of tissue which were non-informative with 

regards to the DEJ location.  The extent threshold was easier to select manually as 

the separation of the dermis and non-dermis objects was greater. The highest 

dimension of a dermis object (8.1) and the lowest dimension of a non-dermis 

object (7.3) were identified, and the mean calculated to arrive at the final threshold 

of 7.7. 

5.3.3 Dermal Segmentation: Results 

The following series of figures show the impact of each step in the dermis 

segmentation. A particularly challenging example has been chosen to illustrate the 

reason for each step’s inclusion. Figure 5.24 shows the subtraction of the 

epidermis mask from the sample mask (Equation 5.22), and illustrates how it 

breaks the large sample objects in the mask into smaller objects, which are 

comprised of actual dermis tissue and other regions such as the stratum corneum 

and necrotic tissue. 

Figure 5.24 Subtraction of epidermis mask from sample mask 

 

Subtracting the thickened perimeter mask (Equation 5.25), either thins or 

completely removes objects around the edge of the sample including the stratum 

corneum and necrotic tissue. The radius of the SE used to thicken the perimeter 

mask is 60 pixels and so objects that are smaller than this in size are removed 

completely, larger objects are thinned. In Figure 5.25, the necrotic tissue combined 

  

boundary
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with the stratum corneum makes it extremely thick and so the mask thins rather 

than removes these objects. 

Figure 5.25 Subtraction of thickened sample perimeter mask 
 

Figure 5.26 illustrates the selective removal of the thinned objects using an object 

classification step based on object shape and size (Equation 5.26). The arrows 

indicate objects which are being misclassified as dermis objects at the end of this 

process. 

Figure 5.26 Removal of non-dermis objects with a classification rule 
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The dermal segmentation method was tested on a set of 16 images and a 

qualitative analysis performed in which the dermal segmentation was deemed to 

be inaccurate if it would lead to an over or underestimation of the true DEJ by 

~25%. The biological and staining variation of the samples resulted in inaccurate 

dermal segmentation in ~10% of cases.  

Although additional optimisation may be able to improve dermal segmentation, a 

user interaction step was added to create a workable solution. The overall process 

still works without the user interaction stage, but by incorporating the step it is 

possible to remove any regions that are still misclassified as dermis (such as the 

large areas of necrotic tissue indicated by arrows in Figure 5.26). Figure 5.27 

shows final dermis mask in white and perimeter of the epidermis mask in green, 

following the user interaction step. 

Figure 5.27 User-interactive removal of any remaining misclassified objects 

5.4 Cleft Segmentation 

The next stage of the process was to identify clefts at the DEJ. The clefts appear as 

white spaces between the dermis and epidermis when the damage reaction 

reaches Grade III severity. When examining the colour normalised images it was 

noted that the internal clefts sometimes appeared to have uneven colouring, rather 

than the consistent background colour that would be expected. This effect is an 

artefact of the histogram matching procedure. Despite the input images having 

  

boundary
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differing proportions of colours, they are matched to a target image with a set 

proportion of colours. As a result the consistent background colour of clefts is 

sometimes replaced with a greater range of light colours. This can be seen in the 

cleft outlined in Figure 5.28. In the original RGB image there is very little variation 

in colour throughout the cleft whereas in the normalised image there are more 

pale pink and grey pixels present. For this reason, the original, non-normalised 

images were used to identify the clefts. 

  

Figure 5.28 A sub-epidermal cleft in an original RGB image and an image which has been 
normalised using histogram matching.  
 

5.4.1 Cleft Segmentation: Method 

The basic platform process for cleft segmentation was the same as that developed 

for epidermal segmentation, i.e., colour image pre-processing for contrast 

enhancement, thresholding, morphological processing and size and shape based 

object classification. 

For the colour image pre-processing step, it would be expected that a measure 

such as luminance would highlight the clefts since they are visualised by light 

Original Image Normalised Image
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passing directly through spaces in the tissue. To do this, the RGB image was 

converted to the L*a*b* colourspace and the luminance (𝑳∗) image contrast 

stretched using a linear mapping function to create a new image, 𝑳, utilising the full 

dynamic range (see section 2.4.9, equation 2.4). This operation is a type of 

normalisation and is of value since the images being used have not been colour 

normalised. The function remapped the intensities in 𝑳∗ to exclude 1% of the 

lowest intensities and 1% of the highest intensities. The penetration points Pmin 

and Pmax  required to identify the lower and upper bounds of the intensities to be 

included in the remapped image were determined using the cumulative percentage 

histogram (section 2.4.9). The remaining pixels were pixels were remapped to 

utilise the full dynamic range of 0 to 1: 

 
𝐋i,j = 𝐼𝑁𝑇 {

1 − 0

Pmax − Pmin
[𝑳∗

i,j − c]} 
Equation 5.27 

 

The 𝐼𝑁𝑇 function converts the output into an integer which determines the 

intensity of a pixel in the new image. 

The next step developed was a thresholding operation on the 𝑳 image to identify 

potential clefts. The threshold 𝐶𝑡ℎ𝑟𝑒𝑠ℎ is based on the value of the mode intensity of 

all pixels in 𝑳. In a similar manner to sample thresholding (Equation 5.4), a lower 

threshold than the mode value was chosen to account for variation in the intensity 

of the background pixels: 

 𝐶𝑡ℎ𝑟𝑒𝑠ℎ =  𝑚𝑜𝑑𝑒 ({𝑙𝑖𝑗|𝑙𝑖𝑗 ∈  𝑳 }) − 20 Equation 5.28 

The decision to subtract 20 from the mode value was made by iteratively changing 

the value subtracted and then visually assessing the effect of changing the 

threshold on the proportion of cleft spaces identified on multiple images. This 

process is described fully in the results section 5.4.2 and the impact of changing 

this threshold on the segmentation of clefts is shown in Figure 5.31.  

The operation that is described next is applied twice to identify all potential clefts. 

The reason that cleft regions must be identified in two stages is that sometimes 
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clefts at the DEJ are included within the dermal mask and at other times they are 

included as part of the epidermal mask. First, 𝐶𝑡ℎ𝑟𝑒𝑠ℎ is used to threshold the 

dermis mask, 𝒅𝑴𝒂𝒔𝒌, and create a new binary mask 𝒄𝑶𝒃𝒋𝑫 containing all  

background coloured pixels within the dermis: 

 𝒄𝑶𝒃𝒋𝑫𝑖,𝑗 = {
 1                 𝑖𝑓    𝐋𝑖,𝑗 > 𝐶𝑡ℎ𝑟𝑒𝑠ℎ 𝐴𝑁𝐷 𝒅𝑴𝒂𝒔𝒌𝑖,𝑗 =  1  

0                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                      
 Equation 5.29 

The contiguous objects in 𝒄𝑶𝒃𝒋𝑫 are then classified based on whether they are 

located at the boundary of the epidermis and dermis, the DEJ. More specifically, 

any pixels part of a contiguous object in 𝒄𝑶𝒃𝒋𝑫 and within a 5 pixel distance of the 

epidermis are identified by utilising the 𝒆𝑴𝒂𝒔𝒌 and four translated versions of the 

𝒄𝑶𝒃𝒋𝑫 mask. The translated versions are 𝒄𝑶𝒃𝒋𝑫 masks which have been shifted 5 

pixels up, down, right or left. Pixel locations which have an intensity of 1 in both 

the 𝒆𝑴𝒂𝒔𝒌 and a translated 𝒄𝑶𝒃𝒋 mask must therefore be dermis pixels that have 

(1) been identified as being part of a potential cleft, and (2) be within a 5 pixel 

distance of the epidermis. The identified pixel locations in each 𝒄𝑶𝒃𝒋𝑫 mask are 

then subjected to a reverse translation operation and added into a single matrix, 

𝒆𝑨𝒅𝒋𝒂𝒄𝒆𝒏𝒕. Any object in 𝒄𝑶𝒃𝒋𝑫 that contains at least one of the adjacent pixels in 

𝒆𝑨𝒅𝒋𝒂𝒄𝒆𝒏𝒕 is retained in a new mask, 𝒄𝑴𝒂𝒔𝒌𝑫𝒆𝒓𝒎. 

The thresholding and location classification procedure is then repeated to identify 

clefts on the epidermal side of the DEJ.  More specifically, epidermis pixels are 

thresholded using 𝐶𝑡ℎ𝑟𝑒𝑠ℎ to create a mask 𝒄𝑶𝒃𝒋𝑬 that identifies background 

coloured pixels within the epidermis. Pixels within a 5 pixel distance of the dermis 

are located using the translation operation described above. Any objects in 𝒄𝑶𝒃𝒋𝑬 

that are within a 5 pixel distance of the epidermis are saved in a new mask, 

𝒄𝑴𝒂𝒔𝒌𝑬𝒑𝒊. 

The two masks, 𝒄𝑴𝒂𝒔𝒌𝑬𝒑𝒊 and 𝒄𝑴𝒂𝒔𝒌𝑫𝒆𝒓𝒎, are added together into a single 

binary mask, 𝒄𝑴𝒂𝒔𝒌. Figure 5.29 shows the dermal clefts objects identified 

adjacent to the epidermis (Figure 5.29a), the epidermal clefts adjacent to the 

dermis (Figure 5.29b), and the combination of both sets of clefts (Figure 5.29c). 
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Figure 5.29  Dermal cleft objects adjacent to the epidermis (Figure 5.29a ), the epidermal cleft 
objects adjacent to the dermis (Figure 5.29b), and the combination of both sets of cleft objects 
(Figure 5.29c). 
 

Clefts positioned near the edges of the tissue sample may be artefacts due to the 

slicing procedure, so the sample perimeter mask 𝒑𝑴𝒂𝒔𝒌 (Equation 5.24) was 

applied next to remove them. Figure 5.30 shows a skin sample with a tear at one of 

the cut edges, indicated on the image with an arrow. The perimeter mask is shown 

masking this artefact.  
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Figure 5.30 A skin sample showing grade III damage, with clefts at the DEJ. The thickened 
sample perimeter mask is shown masking a tear at one cut edge of the tissue. 
 

Any objects in 𝒄𝑴𝒂𝒔𝒌 that are fully or partially masked by the perimeter mask are 

removed from further analysis. 

5.4.2 Cleft Segmentation: Results 

Figure 5.31 shows the effect of changing 𝐶𝑡ℎ𝑟𝑒𝑠ℎ (Equation 5.28) on the cleft 

thresholding operation on two image sections, one with clefts and one without. A 

total of 8 thresholds were tested, but the results of three are shown to demonstrate 

the impact of this step. The first image in Figure 5.31 does not have any clefts and 

none of the thresholds considered result in false clefts being identified at the DEJ. 

More of the dermis tissue is included in the cleft mask as the threshold is 

decreased, as observed for both images in Figure 5.31 . In the second image, clefts 

are included in the mask when a subtraction of 20 or 40 is applied to the mode 

luminance value. A subtraction of 20 was selected to create the binary mask from 

contrast enhanced luminance image. This threshold resulted in clefts being 

identified and the majority of the areas of tissue with high luminance being 

excluded. 
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Figure 5.31 The effect of different thresholds on the binary cleft mask created during 
thresholding of two luminance images, one containing clefts and one with no clefts. 
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Figure 5.32 shows a section of the original RGB image which has been processed 

using the full cleft segmentation, with the cleft boundaries plotted in green over 

the colour normalised RGB image. The procedure has identified the clefts in this 

image accurately. There are two regions within the epidermis that have a similar 

appearance to the clefts, but as they are not at the DEJ they have not been classified 

as clefts. 

 

Figure 5.32 A section of the original RGB image, with the cleft boundaries identified using the 
cleft segmentation procedure plotted in green over the RGB image. 

5.5 Vacuole Segmentation 

Vacuoles are membrane bound cavities within the cells of the epidermis and they 

are not stained by H&E, meaning they are approximately the same colour as the 

background and lighter in colour than the surrounding cytoplasm.  As with clefts, 

the mode luminance is used as the basis of a thresholding operation. The vacuoles 

do not have as strong a contrast against the surrounding tissue as the clefts, and so 

the threshold needed to be lower to ensure all the vacuoles were appropriately 

segmented. The slight difference in colour of the vacuoles compared to the 
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background and clefts may be because the vacuoles contain fluid and the refractive 

index of this fluid may be affecting the passage of light through the sample. 

5.5.1 Vacuole Segmentation: Method 

The identification of the vacuoles within the epidermis is important as they are the 

second major feature of damage after the DEJ clefts. As this vacuolisation occurs 

exclusively in the cells of the epidermis, this is the only region that needs to be 

analysed. As with the cleft segmentation, the contrast enhanced luminance image 𝑳 

(Equation 5.27) is used as a starting point. The vacuoles do not have as strong 

contrast against the surrounding tissue as the clefts and so a larger value (100) 

was subtracted from the mode luminance to obtain the optimal threshold, 𝑉𝑡ℎ𝑟𝑒𝑠ℎ. 

The impact of varying the value subtracted from the threshold is described in 

section 5.5.2 and summarised in Figure 5.33: 

 𝑉𝑡ℎ𝑟𝑒𝑠ℎ =  𝑚𝑜𝑑𝑒 ({𝑙𝑖𝑗|𝑙𝑖𝑗 ∈  𝑳 }) − 100 Equation 5.30 

Potential vacuoles in the epidermis were located by thresholding the epidermis 

pixels in 𝑳  at 𝑉𝑡ℎ𝑟𝑒𝑠ℎ to create a new binary mask 𝒗𝑶𝒃𝒋: 

 𝒗𝑶𝒃𝒋𝑖,𝑗 = {
 1                 𝑖𝑓    𝐋𝑖,𝑗 > 𝑉𝑡ℎ𝑟𝑒𝑠ℎ  𝐴𝑁𝐷 𝒆𝑴𝒂𝒔𝒌𝑖,𝑗 =  1  

0                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                      
 

Equation 

5.31 

There was no need to perform this operation on the dermis pixels as vacuolisation 

occurs exclusively in the epidermis. Within the stratum corneum there are 

numerous gaps between the layers that are small and background-coloured and 

they can be incorrectly classified as vacuoles as a result of their similarity in 

appearance to them. The misclassified vacuoles occur in images where some of the 

stratum corneum has been previously misclassified as part of the epidermis. A 

slightly altered version of the perimeter mask, 𝒑𝑴𝒂𝒔𝒌 (Equation 5.24) was applied 

to mask out the stratum corneum in those images where it has not previously been 

removed. This version 𝒑𝑴𝒂𝒔𝒌 was created by locating the perimeter of the 𝒔𝑴𝒂𝒔𝒌 

and performing a morphological dilation using a radius 45 ‘disk’ shaped SE to 

thicken the perimeter mask. The size of SE was reduced compared to the radius 60 
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version used previously to exclude as much of the stratum corneum as possible 

without excluding real vacuoles located in the top layers of the epidermis.  Any 

𝒗𝑶𝒃𝒋 objects overlapping with pixels in the 𝒑𝑴𝒂𝒔𝒌 were discarded. A final mask, 

𝒗𝑴𝒂𝒔𝒌, showing the location of the vacuoles was created by discarding any objects 

in 𝒗𝑶𝒃𝒋 that were identified as clefts in 𝒄𝑴𝒂𝒔𝒌. This avoided double counting of 

objects on the epidermal side of the DEJ as both clefts and vacuoles. 

He object area of object Z in 𝒗𝑶𝒃𝒋, was then determined and any object greater 

than 1000 pixels in area were excluded. These very large objects are likely to be 

artefacts or misidentified clefts. The following classification rule based on the 

object area was used to classify each object pixel, z, in 𝒗𝑶𝒃𝒋,: 

 𝑧 = {
1     {∀ 𝑧 ∈ 𝑍| 𝑍𝐴𝑟𝑒𝑎 < 1000  }

  0      𝑒𝑙𝑠𝑒                                                                   
           

Equation 

5.32 

5.5.2 Vacuole Segmentation: Results 

The effect of changing the threshold, 𝑉𝑡ℎ𝑟𝑒𝑠ℎ, on the final vacuole segmentation 

procedure was tested by running the procedure on a set of 16 images showing 

differing levels of vacuolisation, staining and contrast. The effect of changing the 

threshold on two typical images with different staining hues and intensities is 

shown in Figure 5.33. Not all tested thresholds are shown, with the actual 

thresholds tested being the mode luminance, and mode luminance -15, -20, -40, -

60, -80, -100, and -120. 

When the mode luminance was used as the threshold to segment the vacuoles, 

many of the vacuoles were not adequately segmented. This can be seen 

particularly in the second image (image 2) in Figure 5.33. When a value of 80 was 

subtracted most of vacuoles were segmented accurately. When a value of 100 was 

subtracted from mode luminance, areas of lightly stained cytoplasm were 

misclassified as vacuoles in some cases. These misclassified regions are indicated 

by the yellow arrows in Figure 5.33. The impact of the final processing step using 

the cleft mask, 𝒄𝑴𝒂𝒔𝒌, can also be observed in Figure 5.33. The white region in the 

bottom left corner of image 2 is located at the DEJ and was classified as a cleft in 
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the previous step. It has therefore been excluded from the vacuole mask to avoid 

counting this region as a cleft and a vacuole. 

 

Figure 5.33 Sections of two RGB images, which have been through the whole vacuole 
segmentation procedure using thresholds of mode luminance, mode luminance – 80 and mode 
luminance -100. The final vacuole boundaries are plotted in blue over the RGB image. Yellow 
arrows indicate regions misclassified as vacuoles when using the lower threshold. 

5.6 Size-based Classification of Vacuoles and Clefts 

Once the initial segmentation of vacuoles and clefts had been tested it was noted 

that some of the vacuoles appeared to be larger than some of the clefts. This was 
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unexpected as clefts are formed when a number of vacuoles fuse together, meaning 

that clefts should be larger in size than vacuoles. The two regions within the 

epidermis highlighted in the discussion of Figure 5.32 were classified as vacuoles 

due to their location, but appear more like intra epidermal clefts or vacuole 

fusions. The cleft and vacuole segmentation procedures described in sections 5.4.1 

and 5.5.1 differentiate between vacuoles and clefts based on their location; an 

object is classified as a cleft if it is at the DEJ, other objects within the epidermis are 

classified as vacuoles.  

An alternative means of classifying the objects was developed based entirely on 

size. This method was tested by adding all the clefts and vacuoles identified in 

𝒄𝑴𝒂𝒔𝒌 and 𝒗𝑴𝒂𝒔𝒌 using the procedure in sections 5.4.1 and 5.5.1, to create a new 

mask of all the potential vacuoles and clefts, 𝒇𝒂𝒖𝒍𝒕𝑴𝒂𝒔𝒌: 

 𝒇𝒂𝒖𝒍𝒕𝑴𝒂𝒔𝒌𝑖,𝑗 = {
 1         𝑖𝑓𝒗𝑴𝒂𝒔𝒌 𝑖,𝑗 = 1 𝐴𝑁𝐷 𝒄𝑴𝒂𝒔𝒌 𝑖,𝑗 = 1 

0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                   
 Equation 5.33 

The objects in 𝒇𝒂𝒖𝒍𝒕𝑴𝒂𝒔𝒌  were then re-classified as vacuoles or clefts based on 

their area in pixels. The individual areas of clefts and vacuoles in a number of 

images were measured to determine an appropriate threshold. There was not a 

clear size threshold where a vacuole at the DEJ clearly transitions to a cleft. Instead 

the threshold was set at the maximum area of a “fault object” made up of 3 fused 

vacuoles measured within the epidermis tissue. This was done by manually 

removing objects at the DEJ from  𝒗𝑴𝒂𝒔𝒌 using a user interaction step like that 

described in section 5.1.9. This was performed on the whole 16 image data set and 

the maximum vacuole area identified in the image set was 150 pixels in area. 

Two copies of 𝒇𝒂𝒖𝒍𝒕𝑴𝒂𝒔𝒌 were created and renamed 𝒗𝒂𝒄_𝒃 and 𝒄𝒍𝒆𝒇𝒕_𝒃. For each 

object 𝑍 in 𝒗𝒂𝒄_𝒃, each pixel z within 𝑍 was changed to a zero if the area of the 

object was greater than 150 pixels: 

 𝑧 = {
1           {∀ 𝑧 ∈ 𝑍| 𝑍𝐴𝑟𝑒𝑎 ≤ 150  }

  0            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                          
           Equation 5.34 
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For each object 𝑍 in 𝒄𝒍𝒆𝒇𝒕_𝒃, each pixel z within 𝑍 was changed to a zero if the area 

of the object was less or equal to 150 pixels: 

 𝑧 = {
1           {∀ 𝑧 ∈ 𝑍| 𝑍𝐴𝑟𝑒𝑎 > 150  }

  0            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                          
           

Equation 

5.35 

The segmentation and image processing procedures described in this chapter 

created a number of output images used to extract features. The images include the 

epidermis pixel mask, 𝒆𝑴𝒂𝒔𝒌, the cleft and vacuoles masks based on location and 

size, 𝒄𝑴𝒂𝒔𝒌, and 𝒗𝑴𝒂𝒔𝒌 and finally the alternative cleft and vacuole masks based 

on object area, 𝒄𝒍𝒆𝒇𝒕_𝒃 and 𝒗𝒂𝒄_𝒃. 

5.7 Discussion of Image Processing and Segmentation 

The aim of this part of the research was to develop an algorithm capable of 

segmenting the epidermis, dermis and features of importance including clefts and 

vacuoles in images of H&E stained skin that exhibited varying degrees of 

histological damage. Epidermal segmentation is the first step in the automated 

procedure for the detection and classification of histological damage caused by 

immune responses within the skin. This first step is critical, because the epidermis 

is the part of the sample where the damage is manifested. Vacuolisation occurs 

within the keratinocytes (the main cells of the epidermis) and clefts form at the 

DEJ at the base of the epidermis.  The proposed method is robust in terms of its 

ability to segment the epidermis even in cases where the morphology and 

structure has broken down, as evidenced by a mean epidermal segmentation 

accuracy of between 96% and 97% for sets of images showing grade I, II, III and IV 

damage. The three-stage process presented enables the use of a traditional and 

well understood thresholding technique in a challenging domain in which it would 

not ordinarily give good results. 

After image cropping and an initial segmentation of sample pixels to improve 

algorithm efficiency, the main processes can be implemented. After a colour 

normalisation step based on histogram matching to a well-stained target image in 

the RGB colourspace, pixel colour and staining intensity information is captured 

through a linear combination of two image representations. Colour information 
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relating to the staining is captured using a contrast enhanced b* plane from the 

L*a*b* colourspace, and general staining intensity information is captured using a 

contrast enhanced greyscale image. The two image representations are then mean 

filtered to remove some of the cellular detail within the different tissue types and 

emphasise the variation between the two tissue types. Information from both 

image representations is combined before Otsu thresholding is performed. The 

segmentation is fine-tuned using morphological processing, and a final object 

classification step based on size and shape is applied.  

The proposed method segments the epidermis from whole slide skin images with a 

mean specificity of 98.0%, a mean sensitivity of 91.0% and a mean accuracy of 

96.8% when the performance is tested on 40 images. It offers improved 

performance over Lu and Mandal’s (2012) multi-resolution global thresholding 

and shape analysis (GTSA) approach which had a 92% sensitivity rate, 93% 

precision and 97% specificity rate when tested on 16 images.  It is also an 

improvement on previously published segmentation approaches for epithelial 

tissues such as those reported by Wang et al (2007a) who achieved accuracies of 

94.9 – 96.3%, and Eramian et al (2011) who achieved an accuracy of 85%, and 

mean sensitivity and specificity of 91.4% and 84.6% respectively. The balance of 

sensitivity and specificity required is dictated by the particular application. While 

attempts were made to increase sensitivity as much as possible by optimising 

parameters on the training set, doing this at the expense of specificity could easily 

result in false vacuole and cleft identification and an unacceptable number of false 

positive results in the subsequent classification process. 

The time efficiency is difficult to compare accurately with other published methods 

as it is dependent on the computer system. However an approximate number of 

pixels processed per second can be used to compare methods. The algorithm 

(without user interaction) processes approximately 866,432 pixels per second 

with a standard deviation of 124,764. On average, it takes 11.4 seconds (with a 

standard deviation of 5.1) to process a typical image in this dataset using an Intel 

quad-core 3.4GHz processor with 8GB RAM. The processing efficiency compares 

favourably with Eramian et al (2011) who quoted an average runtime of 7.2s per 
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image, which can be scaled to ~189,583 pixels per second. Wang et al (2007a) 

were processing much larger images, so despite a reported runtime of 21 minutes, 

the pixel processing per second is of the order of ~ 7,619,048. Both Wang et al and 

Lu and Mandal’s (2012) fast processing time 3,764,705 pixels per second are 

explained by their use of a multi-resolution approach.  

In the segmentation procedure developed in this research additional time 

efficiencies could be gained if the some of the more time consuming functions such 

as colourspace conversions were translated to MEX-files. As computer processing 

power and speed continues to improve there is also the option to run the 

algorithm using parallel or cloud computing. 

A colour normalisation step was included prior to the implementation of the main 

segmentation algorithm to enable the method to handle staining and lighting 

variation in the input images. The inclusion of a colour normalisation step is a 

trade-off between retaining as much colourimetric information as possible within 

the images and managing the variation resulting from sample preparation, staining 

and imaging. Mapping to an ideal target image can be problematic since each image 

has differing proportions of background to sample, and also of epidermis to dermis 

tissue. The effect of carrying out a mapping between differing images is that some 

differences are smoothed out, while others are enhanced. These effects were 

mitigated in this study by confining the colour mapping to sample pixels in the 

target and test images. The ability of the algorithm to achieve high accuracy, 

sensitivity and specificities despite significant variation in the input images shows 

the approach was effective. 

Applying colour normalisation prior to the colourspace conversion and contrast 

enhancement steps that follow ensures that the effects of staining and lighting 

variation in the input image are addressed early in the process and prior to the 

subsequent contrast enhancement and thresholding steps. The initial colour 

normalisation also enhances the contrast between epidermis and dermis in images 

where there is poor contrast between the two tissue types. This normalisation step 

enables the following contrast enhancement to be more finely tuned. Without the 

normalisation step, variations in overall colour hue, saturation and intensity 
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(caused by staining and lighting differences) have a significant impact on 

subsequent processing steps leading to reduction in final segmentation accuracy 

and sensitivity. When colour normalisation was added to the process, the 

specificity increased by 1.69% and sensitivity by 4.93%, resulting in a mean 

accuracy increase from 94.03% to 96.45%. 

Key parameters for the segmentation were simultaneously optimised because of 

the known interactions between them. For example, the mean filtering of the 

greyscale and b* images affects the scale and resolution of variation within the 

image, and therefore impacts on the size of the structuring element required to 

fine tune the thresholding. Once these parameters were optimised, the method was 

sufficiently robust enough to work effectively on the images in the dataset.  

Since the author’s paper on epidermal segmentation was published in 2014, a 

number of other papers in this area have been published. The GTSA approach first 

proposed by Lu and Mandal’s (2012) was improved to achieve a sensitivity of 

98.0%, specificity of 99.6%  and precision of 96.0% on 61 images  (Lu and Mandal, 

2014). In a further paper published by the same authors in 2015 on a larger set of 

105 skin sample set, there appears to have been a drop in performance with a 

sensitivity of 95.7%, specificity of 99.4% and precision of 93.1%. Another 

technique for epidermal segmentation using a morphological closing and global 

thresholding-based technique (MCGT) was proposed by proposed by Mokhtari et 

al as part of research paper developing a method to measure melanoma depth of 

invasion.(Mokhtari et al., 2014). As the epidermal segmentation was not the main 

subject of the paper, the accuracy of this individual step was not quoted. 

In 2015 a new technique was proposed which refined the global thresholding and 

shape analysis (GTSA) used by Lu et al by adding an epidermal thickness check and 

a k-means classification (Xu and Mandal, 2015). The paper compared the 

performance of their new technique against the original GTSA approach, 

Mokhtari’s MCGT approach and the approach developed and described in this 

thesis, referred to as the CET (contrast enhancement and thresholding) technique. 

The CET technique when reproduced and tested on a set of skin biopsies produced 

using a slide scanner showed precision, sensitivity and specificity of 56.5%, 91.4% 
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and 95.1% on the training set and 49.9%, 91.3% and 93.8% on the test set. The 

performance was negatively affected by the very high proportion of cell nuclei in 

the dermis area, which led to some of the dermis being misclassified as epidermis 

and resulting in a low specificity. The images used in the paper had more intense 

staining and a different colour profile in comparison to the training images used 

for this research.  While it a positive sign that the technique has been applied 

elsewhere and showed improved performance over other techniques in the 

literature, the results reinforce the point that most techniques in the area of 

histopathology image analysis are very application specific and would require 

tuning to be appropriate to different image sets. 

The algorithm proposed and described in this chapter has application beyond the 

grading of adverse immune reactions, and is a useful framework on which to build 

any skin segmentation, such as epidermal segmentation prior to epidermal 

thickness measurements, detection of melanoma, or diagnosis of dermatological 

conditions such as psoriasis. Furthermore the approach could be applied to other 

types of tissue, in particular other epithelial tissues with H&E staining. The four 

critical parameters identified and optimised in the Design of Experiments study 

would probably need to be re-optimised for different tissues and images generated 

in different ways (e.g. slide scanners). Additionally, the sensitivity and specificity 

could be tuned using the object classification step depending on whether it was 

more important to minimise false positives or negatives in the new application. 

The dermal segmentation is dependent on the epidermal segmentation and by 

focussing on the accuracy of epidermal segmentation, the accuracy of the dermal 

segmentation was improved. When the dermal segmentation method was tested 

on a set of 16 images the biological and staining variation of the samples resulted 

in at least a 25% over or underestimation of the DEJ  in ~10% of cases. It is 

important that the DEJ is located accurately as this location is used to classify the 

clefts correctly and clefts are a fundamental differentiator between grade II and 

grade III skin damage. A variety of other methods including edge detection and 

morphological processing were tested to improve the method further, however 

none of the methods worked effectively for all the images and they have not been 
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included in this thesis due to space constraints. The performance of this step was 

affected by biological variability in the samples with large differences in the 

appearance and morphology of the stratum corneum and the presence of necrotic 

tissue necessitating the inclusion of a user interaction step to improve the accuracy 

of subsequent steps. It is possible that further work in this area could result in a 

method for automatically classifying and excluding the necrotic tissue from further 

analysis, including the use  of a texture filter utilising the regular spacing of the 

dead cells’ condensed nuclei and the high contrast they have in relation to the rest 

of the pale pink necrotic tissue. 

The basic structure of the image processing and segmentation procedure 

developed during the epidermal segmentation was applied successfully for the 

segmentation of clefts and vacuoles. Using an appropriate colour channel 

(luminance), the subsequent contrast enhancement, thresholding, morphological 

processing and object classification was effective and relatively quick to develop 

and optimise. This would support the argument that the epidermal segmentation 

procedure provides a useful framework on which to build other tissue 

segmentations. 

Two different classification methods were used to identify clefts and vacuoles; one 

based on location and the other using size and location, resulting in two sets of 

potential clefts and vacuoles. While biological knowledge could have been used to 

decide which classification was a better representation of the biology, formation of 

vacuoles and clefts is a continuous biological process and identification of these 

incurs a significant degree of subjectivity. Instead an objective, automated method 

was used to select the best type of classification. During the feature selection 

process described in Chapter 6 (section 6.3), measurements based on vacuoles and 

clefts classified by both methods were tested, and those which differentiated best 

between different grades of damage were automatically included in the final 

classification model. 

The research described in this chapter is one of the main academic contributions in 

the thesis. There are very few published methods for the segmentation of 

epidermal tissue, the most similar were highlighted in the literature review and 
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used as benchmarks to evaluate the success of this method. The development of a 

new methodology is a useful contribution in the areas of dermatology, tissue 

segmentation, and in vitro assay technology. The robustness is shown by the 

method’s high accuracy in segmentation of a challenging dataset of epidermis 

tissue from H&E images of human skin showing varying degrees of histological 

damage.  

The next chapter shows how the information extracted from the skin explant 

images was transformed further into quantitative and histologically meaningful 

measures representative of the image. The information in the multiple tissue and 

feature masks is extracted and reduced so that it can be represented as a single 

column of numbers and used in an automated classification system.   
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Chapter 6 Feature Extraction, Selection and Classification 

The previous chapter described the segmentation of epidermal tissue, DEJ clefts 

and vacuoles within images of skin at various stages of immune-based damage and 

structural breakdown. In this chapter, the design and extraction of a set of 

representative feature measurements from the skin images is given in section 6.1. 

Section 6.2 describes the training of a classification model using these features and 

section 6.3 describes the validation of a classification model using an unseen 

feature subset. There are many parameters which were optimised during feature 

extraction, most of which are not dependent on the exact image spatial resolution 

and the specific staining and lighting properties of the image data set used to 

develop the process. However, in order to aid future development and application 

of the method, a list of parameters which would needed to be re-optimised if 

images of a different spatial resolution were being analysed are presented in 

Appendix C. 

6.1 Feature Extraction and Selection 

Following the completion of the epidermis, cleft and vacuole segmentation, a range 

of measurements derived from these objects were calculated to populate a feature 

vector for each image. Two types of features were extracted from the images, both 

of which were introduced in chapter 2, section 2.5.1: 

 Morphological Features: These measurements were designed to closely 

reflect the expert knowledge and histological guidelines and descriptions used 

by histopathologists to grade images. The features included measures of the 

number, size, shape and variability of the vacuoles and clefts in the image. 

 Texture Features: This set of feature measurements are mathematical 

descriptors of texture calculated using the grey level co-occurrence matrix 

(GLCM) of the epidermis regions. They offer a more abstract way of capturing 

the breakdown of tissue based on image texture. 

6.1.1 Morphological Features  

Standard qualitative histological descriptions of GVHRs include diffuse or severe 

vacuolisation, the presence of clefts at the DEJ and the complete separation of the 
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dermis from the epidermis a result of cleft formation. The appearance of vacuoles 

at the base of the epidermis is the first indication of damage, and as the damage 

becomes more severe these vacuoles fuse together and clefts are formed between 

the epidermis and dermis. This means that vacuole and cleft based features are 

linked.  

Vacuolisation increases in severity with increasing damage and this is shown by an 

increase in vacuole number and size. Features were created to attempt to capture 

and measure this quantitatively, based on counting the number of vacuoles 

normalised for epidermis area, determining the average area of a vacuole in an 

image and calculating the percentage area of the epidermis made up of vacuoles. 

Vacuole shape also appears to become more irregular with increasing damage as 

multiple vacuoles fuse together and so features such as extent and eccentricity 

were used to measure this change in shape. In addition to number, size and shape 

based measures the severity of clefts was also assessed based on the proportion of 

the DEJ affected. This was estimated using the major axis length and an 

approximation based on the halved perimeter of the epidermis. Finally, statistical 

descriptors such as inter-quartile range, skewness or kurtosis were used to 

describe the distribution and variability of these shape and size based 

characteristics across the vacuole or cleft population in an image. 

The point at which a vacuole becomes a cleft is not specified by the traditional 

histological criteria and is an issue which must be addressed in the developed 

algorithm. The only definite difference in the traditional manual grading criteria 

between clefts and vacuoles is that a cleft must be located at the DEJ, while a 

vacuole can occur anywhere in the epidermis. In the previous chapter, this issue 

was addressed by creating four masks based on two different classifications, the 

first used size and specific location, whilst the second primarily used size as a 

classifier and did not discriminate based on feature location. By creating these new 

classifications it is possible to include additional information in the classification 

process compared to the traditional approach. 

Size and location based discrimination of vacuoles and clefts 
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 Vac_a: These are transparent regions found within the epidermis with an area 

of less than 1000 pixels. A fairly high size threshold was chosen to ensure 

regions of fused vacuoles within the epidermis were included. As clefts were 

identified first, they were subsequently excluded from the set of vacuole 

objects to avoid double counting. 

 Cleft_a: These are transparent regions, of any size, located at the DEJ. This set 

will include even very small faults which could potentially be described as 

vacuoles, but only if they are located at the DEJ. 

Size based discrimination of vacuoles and clefts 

 Vac_b: These are transparent regions at the DEJ or in the epidermis with an 

area of less than 150 pixels. The lower threshold ensures that only single 

vacuoles and clusters of two or three fused vacuoles are included.  

 Cleft_b: These are transparent regions at the DEJ or in the epidermis with an 

area of greater than 150 pixels. This classification method ensures that very 

small faults are counted as vacuoles, even if they are located at the DEJ. 

For each of the four sets of objects, a number of properties were measured: 

 Number – The total number of a specific type of object in the image was 

determined and normalised by the area of epidermis in the image. 

 Area – For each set of objects in each image, the sum of all object areas was 

divided by the epidermis area and used to calculate the percentage area of the 

epidermis covered by this type of object. In addition the mean, maximum, 

median, standard deviation, interquartile range, skewness and kurtosis of the 

object areas were calculated. 

 Eccentricity – For each set of objects, in each image, the mean, maximum, 

median, standard deviation, interquartile range, skewness and kurtosis of the 

object eccentricities were calculated. 

 Extent – For each set of objects, in each image, the mean, maximum, median, 

standard deviation, interquartile range, skewness and kurtosis of the object 

extents were calculated. 
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In addition, for the two sets of clefts the following additional properties were 

measured: 

 Cleft coverage of DEJ – For each set of clefts, in each image, the total pixel 

distance covered by clefts was approximated in two ways. First by dividing the 

sum of all cleft perimeters by 2, and also by calculating the sum of all cleft 

major axis lengths. These two approximations were each normalised using two 

approximations for DEJ length. The first was the epidermis perimeter divided 

by 2 and the second was the sum of the epidermis major axis lengths. 

 Cleft Major Axis Length - For each set of clefts, in each image, the mean, 

maximum, median, standard deviation, interquartile range, skewness and 

kurtosis of cleft major axis lengths were calculated. 

 Cleft Dimension – For each set of clefts, in each image, the sum of all cleft major 

axis lengths was divided by the sum of all cleft minor axis lengths. 

Approximations, including major axis length and perimeter divided by 2, were 

used to estimate the proportion of the DEJ covered by clefts. A direct measurement 

of the DEJ based on adjacent dermis and epidermis pixels would be subject to the 

errors caused by misclassification of the stratum corneum discussed in chapter 5, 

section 5.3.3. To avoid these errors having an impact on the extraction of features 

indicating cleft coverage of DEJ, alternative approximations were used. A variety of 

approximations were used purposely, with the aim of identifying the best 

objectively in the subsequent feature selection step. 

6.1.2 Texture Features 

Texture is a property of image areas rather than individual pixels and involves the 

spatial distribution of grey level or colour. First order statistics describe properties 

of individual pixel colours, without considering interactions with neighbouring 

pixel values. These statistics therefore measure the likelihood of observing a given 

grey level or colour at a given location. Second order statistical features describe 

pixel grey level or colour relationships, and are properties of pairs of pixels, 

providing a quantitative measurement that can be used to describe the texture of 

an image. These features quantify the likelihood of observing two specific grey 

level or colour values at a given distance and orientation from one another using 
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the GLCM of an image. The mathematical theory behind the GLCM was described in 

chapter 2, section 2.5.1. 

The texture features were calculated based only on the epidermis regions, as this is 

the main area of damage. This means that any clefts or vacuoles near the DEJ which 

are included as part of the dermis segmentation rather than the epidermis 

segmentation did not contribute to the texture measurements. However, these 

features at the DEJ should have been captured in the morphological measures. The 

primary purpose of including the texture measurement was to provide additional 

features to differentiate between grade I and II damage by quantifying subtle 

changes in texture and colour patterns caused by vacuolisation. The grade I/ II 

classification is the most difficult and error prone for human operators (see 

chapter 4, section 4.3 for evidence of this).  It depends on an increase in 

vacuolisation and the occasional presence of dyskeratotic bodies rather than the 

definite presence or absence of a particular feature, making the decision prone to 

subjectivity. Dyskeratotic bodies are only sometimes present in grade II samples 

and are difficult to identify. As a result they were not a major focus within this 

research. It is however possible that dyskeratotic bodies, which generally have 

more intense pink staining and a smaller, darker nucleus than surrounding cells in 

the epidermis, could be identified by one of the texture features being extracted in 

addition to changes due to vacuolisation.  

Each texture measure was determined for the intensity distributions in six colour 

channels: red, green and blue channels of the mapped RGB image, and the 

luminance (L*), red-green chromacity (a*) and yellow-blue chromacity (b*) of the 

transformed L*a*b* image. The GLCM was calculated based on a version of the 

image scaled to 10 intensity levels. The rationale for this was to reduce the high 

spatial frequency components relating to noise in the image, and focus on major 

textural changes. The features were based on pixel pairs spaced at a distance of 

five pixels in four directions, as shown in Figure 6.1.  
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Figure 6.1 Four directions and sets of pixels pairs used to calculate texture features 

 

Including four directions ensured intensity distribution patterns occurring in 

different orientations were captured. This is important because the cells in the 

epidermis are not in a fixed orientation either between images or within a single 

image. The spacing of 5 pixels was chosen to capture variation within a single cell. 

Four texture features were calculated based on the intensity distributions within 

the epidermis, from 6 colour channels, yielding a total of 24 texture features for 

each image: 

 Contrast: Measure of intensity variance or contrast between the pixel pairs over 

the epidermal pixels (Chapter 2, Equation 2.17). This provides a measure of 

image smoothness. 

 Correlation: Measure of joint probability occurrence or correlation of the pixel 

pairs over the epidermal pixels (Chapter 2, Equation 2.18). Linear structures in 

a given direction will tend to result in a large correlation value in this direction. 

 Energy: The sum of squared elements in the GLCM, which is the angular second 

moment and is a measure of uniformity (Chapter 2, Equation 2.19). The fewer 

grey level transitions within the epidermis, the larger the energy. 

 Homogeneity: Measures the closeness of the distribution of elements in the 

GLCM to the GLCM diagonal, and is also measure of uniformity in the epidermis 

(Chapter 2, Equation 2.20). The measure reflects the degree of repetition 

amongst the grey level pairs. 
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The full feature set included 23 features based on Vac_a, 35 features based on 

Cleft_a, 23 features based on Vac_b, 35 features based on Cleft_b and 24 GLCM 

texture features. A full list of all the different features extracted and the objects 

sets they were extracted from is given in Appendix B. The set of 140 features 

generated included features likely to be highly correlated. For example, the 

measurement sets extracted from the two vacuole sets were likely to be correlated 

due to the sets containing many of the same objects. The following section 

describes how this feature set was reduced using an objective, mathematical 

approach to remove uninformative, correlated and redundant features and identify 

those features which, in combination, provide the greatest level of information to 

differentiate between grades of damage.  

6.1.3 Feature Selection 

The main categories of feature selection methods, introduced in chapter 2, section 

2.5.5, are filter, wrapper and hybrid methods. The filter approach was not selected 

as it ranks features based on their individual relevance to the classification task 

using a univariate approach, and hence does not account for complex inter-

dependence and correlation of features or account for feature redundancy. The 

reliance on individual features ignores interaction of features which is likely to be 

prominent in the skin image dataset due to the link between vacuolisation and cleft 

formation described in section 6.1.1. In addition, the failure of filter methods to 

consider redundancy could result in many very similar features being selected, for 

example, the five most relevant features identified using the filter approach may all 

be related to cleft area or shape, however using these features would be unlikely to 

help differentiate between grade I and II damage, where no clefts are present. 

Wrapper methods account for feature inter-dependence and feature redundancy 

and are therefore better suited than filter methods for selecting features when 

building a classifier.  Although they require more computational power than filter 

methods the feature set in this research is small enough that this approach is 

feasible. In the wrapper approach adopted, the feature selection algorithm 

searches for the subset of features which will maximise the predictive performance 

of a Naïve Bayes classifier using sequential forward and backward feature 
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selection (introduced in chapter 2, section 2.5.5). The classifier is used to estimate 

the predictive accuracy of the classifier with each potential subset of features. 

Cross-validation was employed to prevent make the best use of the limited dataset 

and avoid overfitting of the model. 

6.1.4 Data Preparation and Use in the Classification Task 

X Data: The matrix of feature vectors 

A 181 x 140 data matrix, X, was prepared using all the feature vectors. Each row 

represented one of the images, including 125 from the original dataset and 56 from 

the additional validation set provided by Alcyomics. Each column represented one 

of the 140 features.  

A review of these images with expert histopathologists from Alcyomics resulted in 

8 of these images being excluded from further analysis as they were deemed to be 

either too poorly stained, unrepresentative or “ungradeable” (see chapter 4, 

section 4.4 for full manual grading results). On review of the validation set, four 

images were removed for similar reasons as above. Once these samples were 

removed the data matrix, X, was 169 x 140 containing 61 negative (grade I) images 

and 108 positive (grade II, III, IV) images. 

Some entries contained “Not a Number” (NaN) values, which occurred where there 

was missing data for the calculation of a measurement, for example when 

calculating the cleft area normalised by epidermal area in images with no clefts, 

the calculation of 0/epidermal area would produce a NaN value.  One approach 

considered was to replace these values with the mean or median for the particular 

measurement relevant to the specific grade of damage. However it would not be 

possible to do this for new observations presented to the algorithm, as the grade of 

damage for these new samples would be unknown. Introducing a different pre-

processing procedure for training and test images would most probably lead to 

poor generalisation performance. Instead, it was decided that the NaN values 

would be left as they were for the feature selection process as the methods used 

for feature selection and model training are able to cope with the presence of this 

type of data. The next step was to scale the data so all the features were mapped to 

a common scale between 0 and 1: 
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 𝑏 =
(𝑎 − min(𝒂))

max(𝒂) − min (𝒂)
 Equation 6.1 

where a is the original value and b the scaled value.  

Y Data: The vector of grade labels 

A 169 x 1 vector, y, was created containing the correct grade for each image in X, 

agreed by two expert histopathologists. The manual grading process, including an 

assessment of the intra-observer agreement is presented in chapter 4, section 4.7. 

A second 169 x 1 vector, yb, was created containing a binary label of 0 for the 

Grade I images (a negative result in the assay), and 1 for the Grade II, III and IV 

images (a positive result).  

For the final, independent validation of the classifier, 20 images with the same 

proportion of positive and negative grades as in the original data set were 

removed. The remaining 149 images were used for feature selection and classifier 

optimisation. The validation set will be referred to as Xv and the training set as X. 

6.1.5 Methodology for Selecting Features  

To determine the feature subset, an initial state, termination condition and search 

strategy were defined. In the first round of feature selection, the initial state was an 

empty feature set, sequential forwards feature selection was used as a search 

strategy, and feature selection was terminated once 25 features had been selected. 

The criterion for adding or removing features was an improvement in the 

classification accuracy on the test set, determined using 10-fold cross-validation. 

The following section describes the method for this feature selection. 

For selection of first feature 

a) Create a random split of  X into training data and test data, putting 90% of the 

images into X_Train (149 x 140), and the remaining 10% in X_Test (20 x 140). 

b) Identify the equivalent grading data and store as yb_Train and yb_Test. 

c) Estimate the parameters of the Naïve Bayes model (see section 6.1.6 for further 

explanation of this process) using column 1 of   X_Train to predict the outputs 

in yb_Train. 
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d) Test the predictive accuracy of the model (see section 6.1.7 for further 

explanation of this process) by comparing predictions from X_Test with the 

actual grades in yb_Test and calculating the rate of misclassification. 

e) Repeat steps c and d for each of the remaining features, calculating the 

misclassification rate in X_Train each using each feature. 

f) Repeat steps (a – e) 10 times using a different split of the data each time, so all 

images have been used once in the test set. 

g) Calculate the average misclassification rate for each feature over the ten cross 

validation runs. 

h) Identify the feature with the lowest average misclassification rate, add to a new 

feature subset, Z and remove this feature from the dataset X. 

To select each subsequent feature (up to a maximum of 25) 

a) Create a random split of X into training data and test data, putting 90% of the 

images into X_Train, and the remaining 10% in X_Test. 

b) Identify the equivalent grading data and store as yb_Train and yb_Test. 

c) Estimate the parameters of the Naïve Bayes model using the feature/ features 

in Z plus the first column of X_Train to predict the outputs in yb_Train. 

d) Test the predictive accuracy of the model by using X_Test, comparing the 

predictions with the actual grades in yb_Test and calculating the rate of 

misclassification. 

e) Repeat steps c and d for each of the 139 remaining features in X_Train, 

calculating the misclassification rate when each feature is added. 

f) Repeat steps (a – e) 10 times using a different split of the data each time in step 

a, so all images have been used once as the test set. 

g) Calculate the average of the misclassification rates for each feature in X_Train 

over the ten cross validation runs.  

h) Identify the feature that resulted in lowest average misclassification rate when 

it was tested in the feature subset Z. Add the feature to Z and remove from X. 

i) Repeat steps six to ten until Z contains 25 features. 
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The whole subset selection as described above can be repeated to overcome the 

variance in prediction accuracy which results from choosing random subsets for 

training and testing during cross validation. 

6.1.6 Model Estimation of the Naïve Bayes Classifier 

For model estimation of the Naïve Bayes model, the training data was used to 

estimate the parameters of a probability distribution, assuming conditional 

independence of features given the class. The prior probabilities were estimated 

using the relative frequency of each class in the training set. The data was 

modelled using a kernel smoothing density estimate, which is suitable for features 

with a continuous distribution, but does not assume there is a normal distribution. 

It is therefore suitable when the distribution is skewed or has multiple peaks or 

modes. This is ideal, as the distribution of the features used in this research have 

complex and non-normal distributions. For each feature, a separate kernel density 

estimate was made for each class. Initial test runs suggested that a normal 

(Gaussian) kernel type showed similar or better results than other distribution 

types such as Box, Triangle or Epanechnikov and so this distribution was used 

during feature selection. It was decided that other distribution types would be 

tested more thoroughly when the model was being fine-tuned after feature 

selection. The classifier automatically selected a kernel width for each feature and 

class.  

6.1.7 Testing of Predictive Accuracy 

Once the model had been created, it was used to compute the posterior probability 

of a new observation belonging to each class. Each new sample was then classified 

into the class for which it had the highest posterior probability. Once all 

observations in the test set were classified, the number of observations which 

were classified incorrectly (based on the expert manual classification) were 

summed and the misclassification rate calculated by dividing the number of 

misclassified images by the total number of images in X_Test.  

6.1.8 Results for Forwards Feature Selection using Cross Validation 

Figure 6.2 shows how the misclassification rate changes as features are added. 

Only three of the ten runs are shown in the interests of clarity. In this forward 



Chapter 6 Feature Extraction, Selection and Classification:  

Feature Extraction and Selection 

215 

feature selection the misclassification rate drops as features which help the model 

to differentiate between observations are added. However as more features are 

added the problem of nesting, where a local minima rather than the real minima is 

reached, begins to have an impact on the results. The effect of nesting can be seen 

in run 3; a local minima was reached at 5 features, followed by an increase in 

misclassification at the addition of the 13th feature, and a subsequent further drop 

in misclassification rate to its lowest level once 25 features had been added.  

 

Figure 6.2 Change in misclassification rate as the 25 best features are added sequentially. 

The nesting issue makes it difficult to know if a true minima has been reached, but 

a clear sign is the peaking phenomenon where a sharp increase in misclassification 

rate is seen with the addition of features after the true minima has been reached. It 

was expected that the effect of peaking would be seen clearly in this experiment, 

with a sharp increase in misclassification rate caused by overfitting of the model as 

more features were added. However, since this was not the case, the experiment 

was repeated adding a total of 50 features in each run.  

As can be seen in Figure 6.3, there was no sharp increase in misclassification rate 

once the initial mimina had been reached even when up to 50 features were added. 

One explanation for the absence of peaking is that the initial features chosen were 

so dominant that the influence of the other features was masked.  
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A reduced subset of features was created, including the following features 

 Those present in Run 2 of the 25 feature test when the misclassification rate 

was at its minimum, 0.0403. 

 Those present in Runs 1 and 5 of the 50 feature test when the misclassification 

rate was at its minimum, 0.0604. 

 

Figure 6.3 Change in misclassification rate as the 50 best features are added sequentially. 

The feature selection process had created a reduced feature subset of 31 features. 

To test whether the subset could be reduced further without affecting the 

classification accuracy, backward feature selection (or feature removal) was 

carried out fitting with a normal kernel distribution.   

6.1.9 Wrapper-based Backwards Feature Selection using Cross Validation 

Rather than allowing the algorithm to stop the feature selection early, the removal 

of features was continued until only one feature remained to obtain more 

information and increase the likelihood of finding the real minima. Although it is 

usually accepted in the literature that 10 fold cross validation balances bias and 

variance when estimating prediction error in classification tasks (Kohavi, 1995; 

Rodríguez et al., 2010), an experiment was carried out to check this assertion and 

test whether the models had high bias or variance when the feature sets were 

changed significantly The backwards feature selection of the 31 feature subset was 
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repeated using k values of 2, 5, 10, 20 and 40 for the k-fold cross-validation. Each 

cross-validation train and test run was repeated 3 times, making a total of 15 runs. 

Figure 6.4 shows how the mean misclassification rate drops as redundant features 

are removed; the data plotted is the average over the three runs. The figure shows 

that the misclassification rate decreased initially as the first 10-15 features were 

removed (the first measurement made is on the right side of the graph, with all 31 

features). The misclassification rate then increased as the number of features still 

included in the model approached zero. This increase occurred because there was 

not enough information in the training data to teach the model to discriminate 

between classes.  

 

Figure 6.4 Change in misclassification rate as features are removed from the 31feature subset  

There was little difference in the average misclassification rates at a given number 

of features when using the different k values, however the lowest average 

misclassification rates resulted from the 10 and 20 fold cross validation 

experiments.  

The variance in the 3 runs when using the different k values was also investigated. 

The standard error of the mean (SEM) of the misclassification rate across the three 

runs is plotted in Figure 6.5. The SEM is the sample estimate of standard deviation 

divided by the square root of the number of samples.  
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Figure 6.5 Change in standard error of the mean as features are removed from the 31 feature 
subset  

It would be expected that there would be more variance at low values of k, when 

the influence of training-test set split is greater and less variance at high values of 

k. This can be seen in the cross-validation when k=5, where one run had a very 

different misclassification profile to the others, creating the large increase in 

variation between the runs as the final 20 features were removed. However in 

general there was not a clear trend of increasing variance with increased k value in 

this limited study. The other thing worthy of note in Figure 6.5 is that there was 

more variation between the runs at the start when the most redundant features 

were being removed; there was then a trend of decreasing variance as more 

features were removed. This is likely to be because the majority of the features 

were not particularly relevant to the task and so the choice of which one to remove 

was variable. 

While the difference in variance between the different cross-validation runs was 

not immediately obvious, the data does show that the lowest misclassification 

rates were achieved using the lower k values to split the data. While this may be 

the result of an unusual model being trained with a more novel training set, it is 

possible that it is simply the result of a favourable data split and so for this reason 
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the best runs from the 20 and 40-fold cross validation experiments were also 

included. 

The feature subset was reduced, by including only the following features 

 The 19 features present in Run 2 of the 5-fold cross-validation test when the 

misclassification rate was at its minimum, 0.0523. The smallest feature set to 

achieve this misclassification rate was chosen. 

 The 11 features present in Run 1 of the 10-fold cross-validation test when the 

misclassification rate was at its minimum, 0.0581.  

 The 15 features present in Run 2 of the 20-fold cross-validation test when the 

misclassification rate was at its minimum, 0.0640. The smallest feature set to 

achieve this misclassification rate was chosen. 

 The 13 features present in Run 2 of the 40-fold cross-validation test when the 

misclassification rate was at its minimum, 0.0698. The smallest feature set to 

achieve this misclassification rate was chosen. 

This resulted in a reduced subset of 22 features (some of the features were present 

in the more than one of the best performing runs). Although the feature set was 

reduced further, it is of interest to consider which type of features were still 

included at this stage as they had been selected as the most relevant to the 

classification task.  

6.1.10 Analysis of Feature Subset 

Table 6.1 shows the features included in the 22 feature subset. The features 

relating to the vacuoles in Vac_a describe the distribution of their areas and 

eccentricities. Those associated with Cleft_b relate to the area of clefts compared to 

the area of epidermis and also the shape measurements of extent and eccentricity. 

The features relating to the vacuoles in Vac_b describe the distribution of their 

areas and eccentricities, as with vacuoles set a, but there are also feature relating 

to the extent measurements. Those associated with Cleft_b relate to the area of 

clefts compared to the area of epidermis, the number of clefts and the proportion 

of the DEJ they cover. Finally there are six texture features, five of which were 

extracted from the L*a*b* image, a colourspace also found to be useful during the 

epidermal, cleft and vacuole segmentation. In summary, the remaining features are 
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a set of measurements that describe vacuolisation, cleft formation and changes in 

the texture of the epidermis. There remain features likely to be correlated, 

particularly those measuring the same property in the two vacuoles sets or the two 

clefts sets.  

Table 6.1 Summary of features retained in the 22 feature subset 

Feature Group Feature Description 

Vac_a (size and 

location based 

discrimination of 

vacuoles) 

Inter-quartile range of vacuole (a) areas in image 

Skewness of vacuole (a) areas in image 

Mean eccentricity of vacuole (a) areas in image 

Standard deviation of vacuole (a) eccentricities in image 

Kurtosis of vacuole (a) eccentricities in image 

Cleft_a (size and 

location based 

discrimination of 

clefts) 

Percentage area of epidermis covered by clefts (a) 

Median extent of clefts (a) in the image 

Max eccentricity of cleft (a) areas in image 

Vac_ b (size based 

discrimination of 

vacuoles) 

 

Standard deviation of vacuole (b) areas in image 

Inter-quartile range of vacuole (b) areas in image 

Mean eccentricity of vacuole (b) areas in image 

Skewness of vacuole (b) extents in image 

Kurtosis of vacuole (b) extents in image 

Cleft_b (size based 

discrimination of 

clefts) 

Percentage area of epidermis covered by clefts (b) 

Number of clefts (b) in image, normalised for epidermis area 

Sum of all cleft (b) major axis lengths, divided by sum of all 

epidermis object major axis lengths 

Texture based 

features  

Contrast of L*channel (epidermis pixels only) 

Contrast of a* channel (epidermis pixels only) 

Correlation of a* channel (epidermis pixels only) 

Energy of a* channel (epidermis pixels only) 

Contrast of b* channel (epidermis pixels only) 

Contrast of blue channel (epidermis pixels only) 
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6.1.11 Wrapper-based Backwards Feature Selection using 10 fold Cross Validation 

The 22 feature subset contained features which were likely to be correlated. A 

second backwards feature selection was carried out to see if the 22 feature subset 

could be further reduced without affecting the classification accuracy. 10-fold 

cross validation was used and run a total of 10 times, as previous experiments had 

not provided any clear evidence that an alternative approach was superior. The 

data is plotted in Figure 6.6. 

 

Figure 6.6 Change in misclassification rate as features are removed from the 22 feature subset 

As a whole, the data suggest that the optimal number of features is between 18 and 

16. The minimum misclassification rate seen was 0.0523, when the number of 

features had been reduced to 17 in Run 7, which is the same as the minimum seen 

during the previous round of feature selection, suggesting that the features 

removed were redundant. The 17 features present in Run 7 when the 

misclassification rate was 0.0523 were selected as the final feature set. In reducing 

the feature set from 22 to 17, two of the features removed related to the 

distribution of vacuole areas, of which two measurements remained. Another was 

a measure of cleft extent, and the final two features removed were extracted from 

the b* and blue images planes, meaning all remaining texture measurements were 

extracted from the L* (luminance) and a* (red-green) colour channels. 
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6.1.12 Final Feature List 

The final feature subset selected for the classification model is shown in Table 6.2. 

Table 6.2 Final feature subset used in classification model 

Feature Group Feature Description 

Vac_a (size and 

location classification) 

Skewness of vacuole (a) areas in image 

Mean eccentricity of vacuole (a) areas in image 

Standard deviation of vacuole (a) eccentricities in image 

Kurtosis of vacuole (a) eccentricities in image 

Cleft_a (size and 

location classification) 

Percentage area of epidermis covered by clefts (a) 

Max eccentricity of cleft (a) areas in image 

Vac_ b (size 

classification) 

 

Inter-quartile range of vacuole (b) areas in image 

Mean eccentricity of vacuole (b) areas in image 

Skewness of vacuole (b) extents in image 

Kurtosis of vacuole (b) extents in image 

Cleft_b (size 

classification) 

Percentage area of epidermis covered by clefts (b) 

Number of clefts (b) in image, normalised for epidermis area 

Sum of all cleft (b) major axis lengths, divided by sum of all 

epidermis object major axis lengths 

Texture based 

features 

Contrast of L*channel (epidermis pixels only) 

Contrast of a* channel (epidermis pixels only) 

Correlation of a* channel (epidermis pixels only) 

Energy of a* channel (epidermis pixels only) 

6.2 Final Model Training 

Having selected a set of representative feature measurements from the skin 

images, a classification model was trained using these features. The training was 

carried out multiple times and the best classification model was selected by 

estimating the error of each model that was produced. The resubstitution error is 

the proportion of misclassified images in the training set. This measure tends to be 

an optimistic indicator of future performance because it is based on the same 

training data used for learning by the classifier. For this reason an alternative 

measurement of error was used to select the optimal classifier. The cross 

validation error measures the proportion of misclassified images in a test set not 
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used to train the classifier. Cross-validation produces an effectively unbiased error 

estimate, but the estimate can be highly variable. 

The final model was selected using 10 fold cross validation on 149 training images. 

The cross validation error was estimated based on 20 runs and results are shown 

in Table 6.3.  

Table 6.3 Misclassification error estimated using 10 fold cross validation 

Run number Misclassification CV error on the 15 test samples  

1 0.0667 

2 0 

3 0 

4 0.0667 

5 0.0667 

6 0.0667 

7 0.1333 

8 0.0667 

9 0.0667 

10 0.0667 

11 0 

12 0 

13 0 

14 0.2000 

15 0.0667 

16 0.0667 

17 0.0667 

18 0.1333 

19 0 

20 0.0667 
 

The variation in cross validation error reflects the fact that there was between 0 

and 3 images misclassified for all runs and this varied as the training set was 

changed. The average of the misclassification errors was taken to estimate the 

cross validation error resulting in a final cross validation error of 0.060 which 

means a classifier trained using these features will be 94% accurate.  The 
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resubstitution error on the 149 training set was calculated to be 0.046, suggesting 

a 95% accuracy. 

6.3 Final Model Validation 

The final performance of the classification model was then validated by using the 

model to classify 20 observations removed from the data set prior to feature 

selection and thus not involved in any of the model training. In this final test, 3 of 

the 20 images were misclassified which equates to misclassification error of 0.15. 

The final model therefore had 85% accuracy on the validation set. 

 

6.3.1 Investigation into Misclassified Images 

To investigate the performance in greater detail, all 10 images that were 

misclassified in the 169 image data set were examined to determine whether there 

were any common factors. Table 6.4 summarises the results of this analysis. It 

shows that there were two false positive predictions and eight false negative 

predictions. Eight of the misclassifications occurred at the boundary of grade I and 

II damage, the most difficult but critical boundary. In four of these cases the 

experts had expressed uncertainty about the correct classification as positive or 

negative, and on discussion deciding on a positive grading. 

 

 

 

 

To summarise the performance of the classifier: 

 Accuracy of classifier on 149 training set = 94.1% 

 Accuracy of classifier on 20 unseen validation images = 85.0% 

 Accuracy of classifier on 169 image set = 94.1% 
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Table 6.4 Data on manual grading of the 10 misclassified images in the 169 image dataset 

Image 

ID 

Predicted by 

Classifier 

Manual 

Grading 

(Binary) 

Manual 

Grading 

(Multiclass) 

Notes on manual grading 

5 Positive Negative 1  

6 Positive Negative 1  

40 Negative Positive 2 Experts initially disagreed on 

whether it was Grade I or II 

90 Negative Positive 4  

114 Negative Positive 2  

123 Negative Positive 2 Experts initially disagreed on 

whether it was Grade I or II 

141 Negative Positive 2 Experts initially disagreed on 

whether it was Grade I or II 

167 Negative Positive 2 Experts initially disagreed on 

whether it was Grade I or II 

172 Negative Positive 2 Presence of necrotic tissue, 

would usually re-test 

175 Negative Positive 3 Experts initially disagreed on 

whether it was Grade II or III 
 

As this research concerns an assay to be used to predict potential immunogenicity 

reactions, it was important to minimise false negatives. A false negative could 

allow an unsafe compound to progress to clinical trials. In an attempt to reduce the 

number of false negative results while maintaining the best sensitivity (true 

positive rate) and specificity (true negative rate) an experiment was performed to 

investigate the effect of changing the prior probabilities in the classifier. Previously 

the priors had been automatically set based on the distribution of positive and 

negatives samples in the data set.  When estimated based on the 169 images 

dataset, these priors would be 0.36 for the negative prior and 0.64 for the positive 

prior. 
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6.3.2 Investigation into Effect of Prior Probabilities on Classifier Performance 

The final training procedure described in section 6.2 was repeated, this time 

selecting the model with the lowest 10 fold cross validation error over 20 runs and 

calculating the true positive (TP), true negative (TN), false positive (FP) and false 

negative (FN) rates. The 20 runs were repeated with a range of prior probabilities 

for positive and negative classes. As can be seen in Figure 6.7, altering the prior 

probabilities changes the performance of the final classifier. The red vertical line in 

the figure shows the performance when the priors are based on the actual 

distribution of negative and positive images. 

 

Figure 6.7  The effect of changing the prior probabilities the performance of the final classifier. 
 

The negative predictive value is the percentage of all negative results which are 

classified correctly and the positive predictive values is the percentage of all 

positive results which are classified correctly. The prior probabilities offer an 

opportunity to tune the performance of the classifier and alter the probability of 

false negatives or positives.   To minimise the number of false negatives, the 

negative predictive value must be maximised. The figure shows that if the prior for 

a negative result is increased from 0.36 to 0.90 the negative predictive value can be 

increased from ~85% to 90.5% while the overall accuracy is maintained at 94%. 

Using the new priors of 0.1 (positive) and 0.9 (negative), the performance of the 

classifier for the whole 169 image dataset is shown below.  
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6.3.3 Final Industrial Application of Image Processing, Feature Selection and 

Classification Algorithm  

A Matlab script was written to upload a new image, perform image processing and 

segmentation of epidermis, dermis, clefts and vacuoles, extract 17 numerical image 

features, train a model using a 149 image training set and classify the new image. A 

Graphical User Interface was also developed to facilitate the user interaction step 

during the segmentation stage. The speed of the final algorithm is dependent on 

the computer on which it is run, but when run on an Intel quad-core 3.4GHz 

processor with 8GB RAM an image could be classified in ~40 seconds. The training 

To summarise the final performance of the classifier once the prior 

probabilities had been optimised for this specific application: 

False Positive 4 

False Negative 6 

True Positive 102 

True Negative 57 

Accuracy (%) 94.1 

Sensitivity (%) 94.4 

Specificity (%) 93.4 

Positive Predictive Value (%) 96.2 

Negative Predictive Value (%) 90.5 

 

This performance is on the whole 169 image dataset, the accuracy on the 149 

image training set and 20 image validation set are 94.1% and 85.0% 

respectively, as quoted previously. 

Changing the priors did not alter the overall accuracy; ten of the 169 images 

were still misclassified. However instead of there being two false positives 

and eight false negatives, there were four false positive and six false 

negatives. This is an improvement for the application this classifier is being 

developed for. 

 

 



Chapter 6 Feature Extraction, Selection and Classification:  

Discussion of Feature Extraction, Selection and Classification 

228 

of the model was included as it would be preferable to continue updating the 

model as the training set of images of known grade is built up. 

6.4 Discussion of Feature Extraction, Selection and Classification 

The traditional skin explant classification relies on differences in the severity of 

vacuolisation, the presence or absence of dyskeratotic bodies, and the extent of 

cleft formation at the DEJ. Human operators have an ability to interpret qualitative 

descriptions like this, but they also tend to find additional criteria that support 

their decisions through years of experience and learning. Obtaining a full 

explanation of all the information that an experienced operator uses to make 

decisions is challenging, and consequently as many potential measures as possible 

were generated in the hope that a subset of these features would incorporate the 

information that a human expert uses. 

The set of 140 features generated included features likely to be highly correlated. 

For example, measurement sets extracted from the two vacuole sets were likely to 

be correlated due to the sets containing many of the same objects. No attempt was 

made to select between these different measures during design of the feature set 

as this would have introduced subjectivity and one of the aims of the research was 

to reduce subjectivity in the grading process. Instead, the feature set was reduced 

using an objective, mathematical approach to remove uninformative, correlated 

and redundant features and identify those features which, in combination, provide 

the greatest level of information to differentiate between grades of damage. While 

it would have been possible to analyse each feature individually, this approach 

ignores the interaction and interdependence of the features. Additionally, the 

number and similarity of the features in the full feature set would make this 

approach highly subjective and time consuming. Consequently, automated feature 

selection was chosen to utilise the strengths of the computer (objectivity, 

quantitation and processing power) over the human operator and allow multiple 

features to be examined simultaneously.  

The final set of features included 8 features relating to the amount of vacuolisation 

in the image, 5 features relating to the clefts, and 4 related to texture of the 
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epidermis tissue. The objective feature selection method resulted in a spread of 

different feature types being retained in the final feature type. 

 The vacuole descriptive features focus on the distribution of vacuole area, extent 

and eccentricity. The inclusion of those relating to area was unsurprising given 

that the main criteria in the manual grading between a positive and negative result 

is the amount of vacuolisation. The extent is an interesting addition to this. Extent 

is a measurement of the region area divided by the area of the bounding box, it 

therefore changes as the vacuoles become more circular and compact rather than 

the eclipse or crescent shapes that they tend to be when the vacuolisation is very 

mild. This shape property is not present in the original grading criteria; however it 

is something that is visible when examining the images. The eccentricity 

measurements included in the final feature set are probably capturing the same 

change as the extent, as they measure circularity. 

The percentage area and number of clefts and one of the proposed surrogate 

measurements for cleft coverage of the DEJ were also present in the final feature 

set. The combined length and length distribution of the clefts, their total area and 

their shape is captured in these features.  

The final 4 features are texture features which are calculated only on image 

regions showing the epidermis tissue. The luminance contrast measurement may 

capture information about clefts and vacuoles in the epidermis, while the three 

different measurements of texture in the red-green colour channel may reflect 

changes in the tissue uniformity as the tissue begins to break down. The selection 

of the texture features confirms the validity of including both morphometric and 

texture based features. While the texture of the epidermis very obviously changes 

as it breaks down, it is difficult to capture the visual appearance in a written set of 

criteria. The inclusion of texture based features was one way of capturing this 

knowledge. The use of graph based features would be an interesting extension to 

this work, as they offer an alternative way of capturing this structural information. 

For example, mapping the spatial distribution or connectivity of the cleft or 

vacuole centre points could capture information in a useful form.  
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The final evaluation of the image processing, feature extraction and selection was 

performed by testing the set of features in a well-known classifier structure, 

namely the Naïve Bayes classifier. With minimal model optimisation, the error rate 

of a Naïve Bayes classifier using the defined feature set selected was 0.06 when 

tested on the whole data set. A higher error rate of 0.15 was seen when classifying 

a 20 image validation set not used in any of the training or feature selection 

procedures. This could be a result of the small size of the validation set or it could 

indicate that the design of the image analysis and feature selection was biased by 

the feature set, resulting in poor generalisation ability. It is the author’s opinion 

that a much larger training set of images is required to develop an accurate and 

robust classifier for such a complex classification task, however this minimal 

dataset has enabled a classifier of high accuracy to be created. The performance of 

the final classifier is good when the challenges of the classification task are 

considered. The manual grading analysis (section 4.7) showed that there was 

disagreement in the grading of samples as either positive or negative in 12.8% of 

cases. A large study inter-observer variability for the original skin explant assay 

(Sviland et al., 2001), with 503 slides graded also showed disagreement in 8% of 

cases mainly attributed to difficulties grading at the grade I/ II borderline.  

There is no published data of which the author is aware of automated classification 

of graft versus host reactions to which the developed classification algorithm can 

be compared. However the performance of other histopathological classification 

algorithms, reviewed in chapter 3, section 3.2.8, can be used as a benchmark. 

Classification accuracies for binary classifications of brain, prostate, breast and 

colon tissue varied from 87.8% to 99.7%. It is difficult to compare performance as 

an independent test has not always been used to validate final performance. Often 

the cross-validation error on the whole set is quoted and by this comparison, the 

performance of 94% is fairly typical to that seen in the literature. The excellent 

classification accuracies (99.7% on the test set) reported by Rajpoot and Rajpoot 

(2004) reflect the exhaustive optimisation of the SVM kernel functions they have 

undertaken which improved the accuracy of their classification method from 87% 

to 99.7%. They were working with a training set of 11,000 samples and a test set of 

34,056 samples. This suggests that with a larger dataset and further optimisation 
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of the classification method, the tissue segmentation and feature extraction 

developed in this research could deliver significantly higher classification 

accuracies, particularly on an independent test set. 
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Chapter 7 Final Discussion and Conclusions 

The overall aim of this industrial research project was to develop an automated 

system to enable non-expert users to grade histological skin damage using 

Alcyomics’ Skimune assay with a comparable level of accuracy, repeatability and 

reproducibility to that achieved through expert manual grading. This final 

discussion explains the research approach taken and assesses how well the 

developed solution has fulfilled the original industrial research objectives and 

summarises the contributions of the work. Finally, future work to continue the 

research or improve the industrial solution is presented. 

7.1 Discussion of Research Approach  

The ultimate aim of the research was to develop an automated classifier of skin 

images; however the majority of effort and research was focussed on identifying 

the specific features that could be used in the classifier and minimising the impact 

of non-relevant variation in the images. During the initial assessment of the 

research problem it became clear that the system and method used to capture the 

images was important. The system and method selected ensured the whole sample 

could be used in the subsequent analysis and included various approaches to 

minimise image variation due to microscope focussing and illumination. While 

access to a commercial slide scanner would improve the robustness of this step 

further, this was not available during this research project. 

An early decision was made to focus the research on the segmentation of the 

epidermis. All the significant histological changes being assessed during the 

analysis were either in the epidermis tissue or directly adjacent to it and 

segmentation ensured that all other variation in the image background and the 

dermis tissue was excluded from the analysis. The particular image set used in the 

research was representative of a “real world” data set, with significant variation in 

the proportion of epidermis and dermis tissue and in the overall sample shape, 

structure and staining. These challenges needed to be overcome and this shaped 

the research approach taken. Multiple procedures to “normalise” the images were 

used, including background cropping, colour normalisation and contrast 

enhancement. An alternative colourspace (L*a*b*) proved to offer a more 
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consistent representation of colour than the standard RGB colourspace for the 

particular images and features being analysed in this research. 

The applicability of Mathematical Morphology (MM) and shape analysis to image 

analysis in histology was also demonstrated. Alongside colour and location, shape 

is one way in which humans recognise the central features being analysed in 

histology and MM and quantitative shape analysis provided an objective way of 

using this information. MM also proved a useful technique to remove non-relevant 

areas or features of the image. 

The quantitative information extracted during shape analysis formed the basis of 

the morphological features extracted from and used to represent the images. 

Morphological features were originally chosen because of their similarity to 

standard histological feature descriptions, however the strengths of computer 

based system were utilised to extract many more complex quantitative features 

and feature population descriptors than a human could analyse. The choice to 

include more abstract texture features, such as entropy or correlation of the grey 

level co-occurrence matrix, was an attempt to capture global changes seen across 

the tissue rather than at an individual feature level. Recognising the pattern of 

structural breakdown is something that a human can do, but it is challenge for 

them to analyse this consistently from image to image. 

In the final parts of the research, there was an even stronger emphasis on 

computational methods. The feature selection and classification approaches were 

designed to select feature and create models objectively based on their ability to 

classify the test images correctly. Standard methods employed in the literature 

were used at this stage. While it may be possible to improve the performance of 

the classifier by further optimising the feature selection and classification, it is the 

author’s opinion that extracting the subset of features identified as most relevant 

to the classification task in section 6.1 from a much larger and more representative 

feature set would be a priority for future work. 
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7.2 Assessment of Performance against Industrial Research Objectives 

The next section assesses how successfully the developed solution answers the 

original industrial research objectives.  

7.2.1 Automation 

In the current method used to grade samples on slides, the whole process is 

manual and there is no automation. The developed solution can be run in a fully 

automated manner once the images have been digitised and saved on a computer. 

A standard operating procedure has also been developed and provided to 

Alcyomics for image acquisition using a Zeiss AxioImager and is attached in 

Appendix A. This standard procedure uses automated procedures for background 

correction, focussing, white balance correction and image capture and stitching. It 

should therefore minimise variation from the image acquisition process. The main 

image processing, feature extraction and classification process can be fully 

automated, however introducing user interaction during the segmentation of 

epidermal and dermal tissue was found to improve the algorithm by reducing the 

level of variability. More specifically, the standard error of the mean sensitivity for 

the test set reduced from 14.2 to 8.4 when the user interaction step is added. While 

the introduction of this step means the process is not fully automated, the end user 

has a choice to include it. The risk of introducing subjectivity is fairly low as long as 

the user has a basic knowledge of skin tissue structure and appearance. 

7.2.2 Non-expert user 

The algorithm has been developed in Matlab and a basic Graphical User Interface 

created to show how a non-expert user could upload images and then run the 

algorithm with a single button click. This is in contrast to the current manual 

grading method which requires the operator to have had significant training in 

histopathology. If user interaction is involved, the user will need basic training to 

be able to differentiate between dermis, epidermis and stratum corneum tissue but 

this is a fairly simple task which does not require detailed knowledge of 

histopathology. This solution is suitable for internal use by the company, but 

further software development would be required to create a robust package which 

could be distributed or used by customers.  
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7.2.3 Accuracy 

The accuracy of the current manual grading process is difficult to estimate, 

however reported disagreements in grading vary between 8% and 13% in the skin 

explant assay. A large study inter-observer variability for the original skin explant 

assay (Sviland et al., 2001), with 503 slides graded also showed disagreement in 

8% of cases mainly attributed to difficulties grading at the grade I/ II borderline. 

The manual grading analysis (reported in section 4.3) showed that there was 

disagreement in the grading of samples as either positive or negative in 13% of 

cases.  

Converting the disagreement into a measurement of accuracy of manual grading is 

not straightforward. One could assume that when two operators disagree there is 

an equal chance of each of them being wrong, if this is the case then the manual 

classification (or grading) error rate of a single operator can be estimated as being 

6.5%. However, this assumption ignores the variation between operators. It is 

equally possible that one experienced operator makes no errors and another is 

making errors 13% of the time. It is a better assessment to state that manual 

grading of GVHRs has been demonstrated to have variable accuracy of between 

87% and 100%. The accuracy of the manual process is dependent on a number of 

factors including the operator experience and the number of samples at the grade 

I/II borderline. As all operators used in the manual grading studies described were 

experienced, we can assume that an inexperienced operator could have a grading 

accuracy of less than 87%. 

The automated classification algorithm developed in this research has an accuracy 

of 94% on an image set of 169 images. Using the more stringent criteria of 

classification accuracy for an unseen 20 image validation set, the classification 

accuracy was 85%. This performance compares favourably with the manual 

process. Access to a larger dataset in the future would be likely to improve the 

accuracy and generalisation ability of the classifier when using the defined feature 

set developed in this research project.  

Taking into account the known issues of inter-observer variability and the specific 

challenges of the qualitative Lerner grading scale, it would be preferable to use 
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alternative data as ground truth to train the classification model. The ideal 

situation for this research project would be to use a set of samples which had been 

exposed in the assay to a variety of compounds of known toxicities at a variety of 

doses. By knowing what the assay should be predicting, feature selection and 

training of the classification model would not be biased or affected by human 

grading error and variability. As Alcyomics is a relatively young company, this data 

was not available and so samples generated when the assay was used to predict 

GVHD in patient-donor pairs were used instead. Data on the clinical outcome was 

not available and so the expert manual grading was used to label the data. As the 

company generates more data on typical skin reactions exposed to a variety of 

compounds, this could be used to improve the developed solution and even 

develop a new set of grading criteria based on quantitative measures extracted 

from the images. 

7.2.4 Repeatability and Reproducibility 

The developed grading system, when run without user interaction, will produce 

the same grade when run repeatedly on the same image. Using a different 

computer will not alter the result, although the time taken to classify an image will 

be dependent on the processing power of the computer being used. As such the 

repeatability and reproducibility are improved when compared to the current 

manual grading system where an individual operator may grade a borderline case 

differently on different occasions, and different operators are known to have 

biases, evidenced by the manual grading study and in the multi-centre study by 

Sviland et al (2001). When the user interaction step is included a small element of 

bias is introduced, however the task for the user is simple and so the risk of 

introducing significant issues of repeatability and reproducibility is low.  

7.2.5 Robustness 

The system is able to grade images with differing morphology, staining intensity 

and background lighting. The image training set was purposely created to include 

“difficult” images rather than be an idealised image set. The classification system 

makes the most errors at the boundary between grade I and II. This is also known 

to be a difficult judgement to make for a human operator, which is unfortunate 



Chapter 7 Final Discussion and Conclusions:  

Discussion of Academic Research Contributions 

237 

considering it is the main discriminator used to identify a positive or negative 

reaction.  

7.3 Discussion of Academic Research Contributions 

The main research contributions described in this thesis are: 

 The development of a new methodology for epidermal segmentation able to 

identify epidermis tissue from H&E stained skin sections showing varying 

degrees of histopathological damage. Although many methods have been 

described for segmentation of histology images, most are for cell, gland or 

nuclear segmentation rather than tissue segmentation. The epidermis 

segmentation algorithm is a useful addition to this small but growing area of 

research and has already been reproduced by another research paper as a 

benchmark technique (Xu and Mandal, 2015). It provides a useful framework 

for segmentation of other epithelial tissues and (noting the requirement for 

appropriate parameter tuning and optimisation) it is a useful contribution in 

the areas of dermatology, tissue segmentation, and in vitro assay technology. 

The robustness is shown by the method’s high accuracy in segmentation of a 

challenging dataset of epidermis tissue from H&E images of human skin 

showing varying degrees of histological damage. The author is unaware of 

any segmentation methods that have been applied to images 

showing severe histological damage such as graft versus host type 

reactions. This part of the work has been published in the peer reviewed open 

access academic journal, BMC Medical Imaging, where it has been classified 

as highly accessed. The paper is available 

at http://www.biomedcentral.com/content/pdf/1471-2342-14-7.pdf.  

 A novel set of object and spatial level quantitative features have been defined 

and a method for their extraction created. The extracted feature measurements 

are relevant to the expert grading criteria for histological damage but add a 

quantitative dimension. While this has direct application to the grading of 

the Skimune assay, this set of feature measurements could also be applied in an 

automated version of the Lerner grading used in the diagnosis and prediction 

of graft versus host disease. 

http://www.biomedcentral.com/content/pdf/1471-2342-14-7.pdf
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 An approach to histopathological tissue classification, which combines expert 

domain knowledge in the design of potential features, with a fully objective 

feature selection and classification approach. In this research, the influence of 

domain knowledge and the bias that this may bring is not disputed, one of the 

main hypotheses of this research was that incorporating such knowledge into 

the early stages of the image processing and feature extraction would enable 

variation relevant to skin damage to be distinguished from non-relevant image 

variation. 

 A new image analysis and classification method for the automated classification 

of H&E images of human skin showing positive or negative graft versus host 

reaction. The author is not aware of any other automated image analysis and 

classification method for this application.  

7.4 Future Work 

The most important future work would be to use the developed image processing 

and feature extraction approaches on a more representative image set consisting 

of samples that have been exposed in the assay to a variety of compounds of 

known toxicities at a variety of doses. By knowing what the assay should be 

predicting, feature selection and training of the classification model is not biased 

or affected by human grading error and variability. 

Dyskeratotic bodies are a differentiating factor between the difficult grading 

boundary between a grade I and grade II result. They are difficult to identify and 

not always present and were disregarded from this research on the advice of 

experienced histopathologists. It would be an interesting extension of the research 

to investigate potential methods to extract these key features, potentially using a 

colour and texture based feature extraction methodology to identify these 

structures with bright pink cytoplasm and condensed nuclei.  

At the start of the research project, the focus was on choosing biologically relevant 

features, using the hypothesis that this would be the best way to capture damage-

related variation rather than that resulting from the staining, sample preparation, 

lighting and biological processes. As the project has progressed, it became clear 
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that the written criteria capture only a fraction of the knowledge used to grade the 

samples. While it was vital to ensure that the initial epidermal and dermal 

segmentation was correct to limit assessment and feature extraction to the 

relevant areas of tissue, it would seem sensible in any future work to include a 

wide variety of other mathematical features including other texture features, 

graph-based features and wavelet based features to attempt to capture more of the 

tacit knowledge used during manual grading. In a time limited project this was not 

possible; however this would offer a potential route to improvement. 

Due to the large and dense datasets typically generated in histopathology image 

classification tasks, the use of ensemble classification methods is becoming 

prominent in the field. Ensembles of classifiers have been reported to reduce the 

bias or variance associated with single classifiers and improve classification 

accuracy (Kuncheva and Whitaker, 2003). It has not been possible to include the 

development of such an ensemble method within the scope of this research 

project; however, it would be valuable to assess potential improvements in 

classification accuracy using such methods in the future. There is potential to 

develop and optimise the classification further using ensemble methods or 

extensions to the Naïve Bayes such as the hierarchical approach  proposed by 

Demichelis et al (2006) or the non-parametric version used by Soira et al (2011). 
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Zeiss AxioImager Standard Operating Procedure 

Set Up 

1. Turn on if not already set up: In the order, PC, Monitor, Power Supply, 

Microscope. Note only brightfield is needed, not fluorescence. 

2. Log on: user name, no password required – click OK. 

3. In Windows Explorer make a new folder for your images:  

E drive\UserData\month\YourName  

4. Open Axiovision Rel. 4.8 from desktop. 

5. Click Brightfield on top toolbar 

6. On right menu, click camera and select colour.  

7. Make sure objective lens is set to x10 in left menu. 

8. Make sure cap is off light source at bottom of microscope. 

Microscope Set Up (if not already done, or changing from a different objective lens) 

9. Illumination Iris:  Viewing through eyepiece and using button next to F (on 

right). Make iris smaller, then ensure it is sharp and centred. Then enlarge by 

opening iris until it clears field of view. 

10. Stage Iris: set until you can just see edges using button on front of microscope. 

11. Swing out condenser should be in (up position) for x10 objective lens. 

Load Slide 

12. On microscope display click load (top right corner of microscope display) to 

bring stage down to loading position, add slide then adjust stage to 

approximately correct position. 

13. Click          to bring stage back up once slide is on. 

14. Find sample either using eyepiece or viewing on monitor.  

a. To view image through eyepiece: click brightfield, eyes. (NB if you can’t 

see anything, try clicking ‘make it visible’ on microscope display). 

b. To get image on monitor: In standard workflow, select camera (colour) 

and click live. 

c. Click ‘make it visible’ on microscope display, which brings settings back 

to default. 

Optimise Image 

15. Get approximate focus manually, then click autofocus.  

16. To set colour, go into colour set up in left menu, and under white balance click 

interactive, then click on a region of white background. 
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17. If image looks too light/ dark try clicking exposure (bottom toolbar). 

18. To correct shading in background (usually only need to do this on 1st image of a 

session). Move field of view to a clear section of background. Go to properties 

(bottom toolbar), general, shading correction, make sure shading correction is 

ticked. Untick and then click shading correction to re-tick, this ensures it 

updates. 

Image Tiling – Mosaic 

19. Go to Acquisition menu, then click on Mosaic acquisition, set to autofocus every 

3 tiles. 

20. Click set up: Reset imaging field by clicking box with red cross on. Go to edges 

of sample and click 4 arrow icon to set bounding points using centre of 

crosshair, once the whole sample is enclosed click OK (bottom right corner), 

then start button in in Mosaic acquisition menu. 

NB: Include all of main sample except very small tissue debris. If 4-arrow is 

greyed out, that area is already included in field of view. 

21. Once image acquisition is finished, close live view to look at tiled image. Check 

if the image tiles look OK (cover whole sample, no shading issues) 

a. If shading isn’t right, you may need to re-do shading correction step.  

b. If colour balance looks wring (very bright or very dark), try clicking 

histogram icon in 2D view toolbar at bottom of screen (gamma 

correction and max range) – the aim is good contrast between epidermis 

and dermis. 

22. To and do this go to tileview and click stitch (green square icon). 

To Export file 

23. Go to File, export, navigate to your new folder in E Drive. Change filename if 

required (e.g. Date_01, Date_02) 

a. Make sure it is set to only save merged files. 

b. Set to save as a TIFF file. 

c. Make sure convert to 8bit is clicked and compression is set to 0%. 

24. Click start to save. 

Repeat from step 10 (no need to re-do shading correction and export setting 

should now stay as you have set them). 

Once all images are complete, save all files to USB drive. At end of session, close 

Axiovision software and log off computer. 
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Table A.Factor values and responses (mean sensitivity and specificity) for fractional factorial 
screening test 

Run Lower 

P 

point, 

G’ (A) 

Upper 

P 

point, 

G’ (B) 

Lower 

P 

point, 

b’ (C) 

Upper 

P 

point, 

b’ (D) 

Mean 

Filter 

Kernel 

Size 

(E) 

Radius 

of SE 

(F) 

Mean 

Sensitivity 

(%) 

Mean 

Specificity 

(%) 

1 0.2 0.875 0.225 0.95 30 12.5 61.51 96.43 

*   2 0.3 1 0.3 0.9 40 5 76.88 97.09 

3 0.1 1 0.15 0.9 40 20 58.49 97.56 

4 0.3 0.75 0.15 0.9 40 5 61.45 93.77 

5 0.1 0.75 0.15 1 20 20 20.56 98.29 

6 0.3 1 0.15 0.9 20 20 62.59 97.57 

7 0.3 0.75 0.15 1 40 20 54.42 94.91 

8 0.1 0.75 0.15 0.9 20 5 43.82 95.20 

9 0.3 0.75 0.3 1 20 5 62.84 93.68 

10 0.1 0.75 0.3 0.9 40 20 35.70 96.59 

*   

11 

0.1 1 0.15 1 40 5 72.43 97.03 

12 0.3 0.75 0.3 0.9 20 20 41.01 94.48 

13 0.1 0.75 0.3 1 40 5 46.89 94.76 

14 0.1 1 0.3 0.9 20 5 70.36 96.90 

*   

15 

0.3 1 0.15 1 20 5 74.25 97.77 

*   

16 

0.3 1 0.3 1 40 20 73.85 97.59 

17 0.1 1 0.3 1 20 20 52.65 96.07 

 

P point  = Penetration point 
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Table B Description of features extracted and the sets of objects used to calculate the features. 

Feature Description Object sets or colour channels from 

which the measurement is taken 

Percentage area of epidermis covered by 

object 

Vacuole sets a and b, cleft sets a and b 

Mean area of objects in the image Vacuole sets a and b, cleft sets a and b 

Max area of objects in the image Vacuole sets a and b, cleft sets a and b 

Median area of objects in the image Vacuole sets a and b, cleft sets a and b 

Standard deviation of object areas in image Vacuole sets a and b, cleft sets a and b 

Inter-quartile range of object areas in image Vacuole sets a and b, cleft sets a and b 

Skewness of object  areas in image Vacuole sets a and b, cleft sets a and b 

Kurtosis of object areas in image Vacuole sets a and b, cleft sets a and b 

Number of objects in image Vacuole sets a and b, cleft sets a and b 

Mean eccentricity of objects areas in image Vacuole sets a and b, cleft sets a and b 

Max eccentricity of objects areas in image Vacuole sets a and b, cleft sets a and b 

Median eccentricity of objects areas in image Vacuole sets a and b, cleft sets a and b 

Standard deviation of object eccentricities in 

image 

Vacuole sets a and b, cleft sets a and b 

Inter-quartile range of object eccentricities in 

image 

Vacuole sets a and b, cleft sets a and b 

Skewness of object eccentricities in image Vacuole sets a and b, cleft sets a and b 

Kurtosis of object eccentricities in image Vacuole sets a and b, cleft sets a and b 

Mean extent of objects in the image Vacuole sets a and b, cleft sets a and b 

Max extent of objects in the image Vacuole sets a and b, cleft sets a and b 

Median extent of objects in the image Vacuole sets a and b, cleft sets a and b 

Standard deviation of object extent in image Vacuole sets a and b, cleft sets a and b 

Inter-quartile range of object extent in image Vacuole sets a and b, cleft sets a and b 

Skewness of object  extent in image Vacuole sets a and b, cleft sets a and b 

Kurtosis of object extent in image Vacuole sets a and b, cleft sets a and b 

Sum of all cleft  perimeters, divided by 

epidermis perimeter  (all epidermis objects) 

Cleft sets a and b 

Sum of all cleft  perimeters, divided by sum of 

all epidermis object major axis lengths 

Cleft sets a and b 

Mean major axis length of clefts in image Cleft sets a and b 

Max major axis length of clefts in image Cleft sets a and b 
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Median major axis length of clefts in image Cleft sets a and b 

Standard deviation of cleft major axis lengths 

in image 

Cleft sets a and b 

Inter-quartile range of cleft major axis 

lengths in image 

Cleft sets a and b 

Skewness of cleft major axis lengths in image Cleft sets a and b 

Kurtosis of cleft major axis lengths in image Cleft sets a and b 

Sum of all cleft  major axis lengths, divided by 

epidermis perimeter  ( all epidermis objects) 

Cleft sets a and b 

Sum of all cleft  major axis lengths, divided by 

sum of all epidermis object major axis 

lengths 

Cleft sets a and b 

Median cleft dimension in image (dimension 

= major/minor axis length)  

Cleft sets a and b 

Contrast (epidermis pixels only) Each colour channel of L*a*b* and RGB 

images 

Correlation (epidermis pixels only) Each colour channel of L*a*b* and RGB 

images 

Energy (epidermis pixels only) Each colour channel of L*a*b* and RGB 

images 

Homogeneity (epidermis pixels only) Each colour channel of L*a*b* and RGB 

images 
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Hard Coded Parameters Dependent on Image Spatial Resolution 

These parameters are dependent on image spatial resolution. These parameters 

should be scaled appropriately if using an image with a different resolution.  

 Mean filter used in preparation of the sampleMask: 29 x29 

 Threshold for removal of small objects in sampleMask: 25,000 

 Mean filter used in preparation of the epiMask: 40 x 40 

 Structuring element used for morphological operations of the epiMask: 6 

 Threshold for removal of small objects in epiMask: 4000 

 Threshold for filling of small holes in epiMask: 7000 

 Object area, ZArea, used during final object classification in epiMask: 20,000 

 The size of the structuring element used to smooth the dermMask prior to 

creation of the perimeter mask, pMask: 20 

 The size of the structuring element used to thicken the perimeter mask used to 

exclude the stratum corneum in the preparation of the dermMask: 60 

 The size of the structuring element used to thicken the perimeter mask used to 

exclude the stratum corneum during the vacuole identification: 45 

 Object area, ZArea, used during final object classification in dermMask: 42,500 

 The pixel distance used to identify potential cleft objects as being at the dermal 

epidermal junction: 5 pixels 

 Object area, ZArea, used during final object classification of faults into vac_a: 

1000 

 Object area, ZArea, used during final object classification of faults into sets vac_b 

and cleft_b : 150 

 Pixel pair spacing used to calculate texture features in the GLCM: 5 pixels 

Hard Coded Parameters Dependent on Image Staining, Lighting and Imaging 

The choice of optimal colourspace (grayscale and b*), the linear combination 

parameters (0.5 + 0.5) and the appropriate upper and lower thresholds used for 

contrast enhancement during epidermal segmenation would need to be re-
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optimised if using images with very different staining properties or colour profiles 

to the training images used in this research.  

The luminance threshold used during identification of clefts and vacuoles (mode – 

20 and mode – 100 respectively) would need to be re-optimised if the image 

lighting conditions or the tissue thickness was very different from the training set 

used in this research.  
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