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Abstract: Deep learning for the analysis of H&E stains requires a large annotated training set.
This may form a labor-intensive task involving highly skilled pathologists. We aimed to optimize
and evaluate computer-assisted annotation based on digital dual stains of the same tissue section.
H&E stains of primary and metastatic melanoma (N = 77) were digitized, re-stained with SOX10,
and re-scanned. Because images were aligned, annotations of SOX10 image analysis were directly
transferred to H&E stains of the training set. Based on 1,221,367 annotated nuclei, a convolutional
neural network for calculating tumor burden (CNNTB) was developed. For primary melanomas,
precision of annotation was 100% (95%CI, 99% to 100%) for tumor cells and 99% (95%CI, 98% to
100%) for normal cells. Due to low or missing tumor-cell SOX10 positivity, precision for normal cells
was markedly reduced in lymph-node and organ metastases compared with primary melanomas
(p < 0.001). Compared with stereological counts within skin lesions, mean difference in tumor
burden was 6% (95%CI, −1% to 13%, p = 0.10) for CNNTB and 16% (95%CI, 4% to 28%, p = 0.02) for
pathologists. Conclusively, the technique produced a large annotated H&E training set with high
quality within a reasonable timeframe for primary melanomas and subcutaneous metastases. For
these lesion types, the training set generated a high-performing CNNTB, which was superior to the
routine assessments of pathologists.

Keywords: deep learning; artificial intelligence; digital pathology; melanoma; immunohistochemistry;
H&E; SOX10; IHC-supervised annotation; digital multiple stains; tumor burden

1. Introduction

The recent introduction of deep learning for the image analysis of histopathological
stains has revolutionized the field of digital pathology. This machine learning technique
enables the extraction of high-level information from whole slide images (WSI) through
artificial neural networks, which are multi-layered mathematical models inspired by the
human brain [1]. A shift towards computer-assisted diagnosis is thus starting to emerge,
which has been considered of key importance to facilitate accurate, objective, and time-
efficient diagnostic procedures in pathology [2].

Within recent decades, numerous automated procedures with handcrafted algorithms
have been proposed. They have mostly been aimed at immunohistochemistry (IHC) that

Int. J. Environ. Res. Public Health 2022, 19, 14327. https://doi.org/10.3390/ijerph192114327 https://www.mdpi.com/journal/ijerph

https://doi.org/10.3390/ijerph192114327
https://doi.org/10.3390/ijerph192114327
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0002-7859-6321
https://orcid.org/0000-0002-9452-2920
https://orcid.org/0000-0002-0149-583X
https://doi.org/10.3390/ijerph192114327
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph192114327?type=check_update&version=2


Int. J. Environ. Res. Public Health 2022, 19, 14327 2 of 19

highlights specific biomarkers of interest—for instance, Ki67 or hormone receptors in breast
cancer [3,4]. In contrast to IHC, the traditional H&E stain only depicts a general overview
of the tissue sample with very similar colorations of most cell types, which complicates
image analysis substantially. Accordingly, only handcrafted procedures based on IHC have
been approved for diagnosis by the Food and Drug Administration (FDA) or accredited
with the European Conformité Européenne (CE) mark so far [5].

Yet, H&E is the most widely used stain in medical diagnosis and highly preferred
by most pathologists as the initial routine stain because of its unique ability to recapitu-
late tissue morphology. Furthermore, the stain is easy, fast, and cheap to perform, and
thus available at all pathology departments; opposite, for instance, IHC. Consequently,
implementation of automated procedures for H&E stains holds great promise for clinical
pathology in order to improve efficiency of routine diagnosis, while maintaining the same
or even a better diagnostic quality.

To date, many areas of pathology have been associated with high intra and inter-
observer variability [6–9], which reduces the pathologists’ diagnostic performance. One
example is the calculation of tumor burden, commonly a prerequisite for many molecular
tests [10,11], e.g., BRAF (v-raf murine sarcoma viral oncogene homolog B1) mutational
assays in cancer patients.

In patients with advanced melanoma, approximately one-half harbor a mutation in
the BRAF gene, and they experience significant long-term treatment benefit from targeted
therapy with BRAF or MEK (mitogen-activated protein kinase) inhibitors. Molecular testing
for BRAF mutations are thus of high priority to determine the course of therapy in these
patients [12]. Yet, to ensure sensitivity, molecular testing, e.g., with PCR or next-generation
sequencing (NGS), requires a predefined tumor-cell content of the included formalin-fixed,
paraffin-embedded (FFPE) tissue [10]. Pathologists thus make a semi-quantitative measure
(termed eyeballing) of the percentage level of tumor-cell nuclei relative to all nuclei on
H&E stains prior to analysis. If the pathologist’s percentage level is low, it is advisable to
macrodissect the FFPE section to increase tumor-cell content. Samples with a low tumor-cell
content may still be analyzed, but the result is associated with a known reduced sensitivity.
Accordingly, an accurate tumor burden is important for an accurate interpretation of the
molecular result.

Most importantly, if the pathologist overestimates the tumor burden (Figure 1A–C)
and macrodissection is consequently left undone, the risk of false-negative results increases,
which may leave a melanoma patient without the potential advantages of BRAF or MEK
inhibitors. Alternatively, a diagnostic adjunct based on a neural network may guide the
pathologist to a more accurate measure of the tumor burden (Figure 1D,E) [13].

In addition to melanoma, tumor burden is also eyeballed by pathologists in other
cancer types, e.g., colon cancer [14] and lung cancer prior to treatment decisions [10].
Furthermore, the possibilities of targeted therapy and personalized medicine are steadily
increasing, and molecular pathology is thus becoming more and more important. In
many cases, the growing number of tests that detect specific gene mutations or genetic
abnormalities will possibly need to be accompanied by a tumor burden calculation [10].

To date, countless neural networks have been developed or are under development
for diagnostic or prognostic purposes in pathology. Often, the performance of the neu-
ral network is equal or superior to the evaluation of pathologists [15,16]. Accordingly,
applications aimed at H&E stains have already been FDA- or CE-approved for cancer
detection in prostate cancer and metastasis detection in lymph nodes of colorectal and
breast adenocarcinoma [5]. Sufficient performance of the artificial neural network, however,
often depends on a large training set annotated at either image or pixel level. Especially for
semantic segmentation of H&E stains because differences between objects of interest may
be subtle. In a setup using fully supervised learning, this annotation process forms a very
labor-intensive and cumbersome task that frequently involves highly skilled pathologists.
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Figure 1. H&E-stained lymph-node melanoma metastasis. The pathologist’s eyeballed tumor bur-
den was 70%; yet, the mutant-allele frequency of next-generation sequencing was 10%. The large 
difference in nuclei size between normal and tumor cells may have caused the difference, in addition 
to inaccuracies related to the technician’s manual macrodissection of the tumor. (A) Tumor outline 
(yellow) used for tumor burden calculation and macrodissection, including 0.05 mm2 squares 
(green) of systematic-random sampling, which were used to compare and evaluate study proce-
dures; scalebar 1000 µm. (B,C) Large melanoma cells and small normal cells; mostly lymphocytes. 
(D,E) Automated nuclei detection and calculation of tumor burden by convolutional neural net-
work; scalebars 125 µm and 50 µm, respectively. 
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slides often needs to be included, and especially many negative or clean slides (without 
the object of interest) are essential [17]. For the semantic image segmentation of nuclei on 
H&E stains, weakly supervised learning with initial annotation with partial-points has 
very recently showed encouraging results, but many manual annotations were still per-
formed [18]. In cases of advanced semantic segmentation, e.g., differentiation of normal-
cell and tumor-cell nuclei for the calculation of tumor burden in melanoma, the need for 
a vast amount of pixel-level annotations still seems evident because their difference in 
appearance may be subtle [19]. 

Another approach to reduce or eliminate manual annotations is IHC-supervised 
learning, which a few studies have utilized [20–23], after the recent introduction of digital 

Figure 1. H&E-stained lymph-node melanoma metastasis. The pathologist’s eyeballed tumor burden
was 70%; yet, the mutant-allele frequency of next-generation sequencing was 10%. The large differ-
ence in nuclei size between normal and tumor cells may have caused the difference, in addition to
inaccuracies related to the technician’s manual macrodissection of the tumor. (A) Tumor outline (yel-
low) used for tumor burden calculation and macrodissection, including 0.05 mm2 squares (green) of
systematic-random sampling, which were used to compare and evaluate study procedures; scalebar
1000 µm. (B,C) Large melanoma cells and small normal cells; mostly lymphocytes. (D,E) Automated
nuclei detection and calculation of tumor burden by convolutional neural network; scalebars 125 µm
and 50 µm, respectively.

In recent times, the concept of weakly supervised learning has, however, been intro-
duced. However, even though this technique holds great promise, a very large number of
slides often needs to be included, and especially many negative or clean slides (without
the object of interest) are essential [17]. For the semantic image segmentation of nuclei on
H&E stains, weakly supervised learning with initial annotation with partial-points has
very recently showed encouraging results, but many manual annotations were still per-
formed [18]. In cases of advanced semantic segmentation, e.g., differentiation of normal-cell
and tumor-cell nuclei for the calculation of tumor burden in melanoma, the need for a vast
amount of pixel-level annotations still seems evident because their difference in appearance
may be subtle [19].

Another approach to reduce or eliminate manual annotations is IHC-supervised
learning, which a few studies have utilized [20–23], after the recent introduction of digital
dual stains (superimposed WSI) of the same tissue section (Figure 2) [24]. In this technique,
pixel-level annotations of IHC image analysis are readily assigned to the corresponding
H&E stain.

Using the melanocytic marker SOX10, Jackson et al. automatically annotated H&E
stains of various lesion types (n = 12), though mostly primary and metastatic cutaneous
melanomas, in order to discriminate nuclei of SOX10-positive and SOX10-negative cells.
They state that their lesion and tissue diversity may have improved generalizability of
their final CNN, but perhaps at the cost of accuracy. Additionally, a poor nuclear overlap
was reported in 34% of their superimposed subimages, which they attribute to warping
caused by the washout of H&E. Furthermore, the brown chromogen 3,3′-Diaminobenzidine
(DAB) was utilized, which is less useful for melanomas because they often include various
amounts of pigmentation and many melanophages; hence, many false-positive annotations
will occur in an automatically annotated training set with DAB, unless slides are manually
reviewed and edited; a time-consuming and cumbersome task. In an independent test set
(n = 7), the CNN was evaluated manually, in which most melanocytic cells were correctly
classified but false-positive results occurred in lymphocytes and keratinocytes. Rarely,



Int. J. Environ. Res. Public Health 2022, 19, 14327 4 of 19

melanoma cells were classified as normal cells [21]. Their study of this method was,
however, unaimed at the specific calculation of tumor burden in cutaneous melanoma, and
a neural network based solely on such lesion types remains to be developed and explored
in a clinical setting.
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Figure 2. Digital H&E/IHC dual staining of the same tissue section. Initially, the H&E stain is
digitized. Then, the glass coverslip is removed. This may be conducted chemically or by heat.
Afterwards, chromogenic immunohistochemistry is performed directly on the H&E glass slide and
re-scanned. Finally, the two digital images of H&E and immunohistochemistry are superimposed to
form a digital dual stain.

This study aimed to optimize and evaluate automated, IHC-supervised annotation of
tumor-cell and normal-cell nuclei in primary and metastatic cutaneous melanoma based
on digital H&E/SOX10 dual stains of the same tissue section, but without H&E washout
prior to IHC. Specifically, the performance of IHC-supervised annotation procedures was
compared for (1) the use of a brown and a red chromogen, (2) procedures based on
either conventional handcrafted algorithms or CNNs, and (3) primary versus metastatic
lesions. Finally, in a clinical setting, the CNN for calculating tumor burden (CNNTB) based
on the best-performing annotation technique was compared with manual annotations,
stereological counts, and the performance of routine pathologists.

2. Materials and Methods
2.1. Specimens

FFEP blocks were included from patients diagnosed with cutaneous melanoma or
cutaneous metastatic melanoma, that is, 30 excised primary melanomas and 47 melanoma
metastases, including 32 surgical resections and 15 core needle biopsies.

Lesions were randomly collected from two previous research studies (n = 51) that included
patients diagnosed between 2001 and 2014 at various pathology departments in Denmark [25,26].
Furthermore, all melanoma patients with a BRAF mutation detected by NGS between 2018 and
2021 at the Department of Pathology, Aarhus University Hospital, (n = 26) were included [13].
Accordingly, their tumor burden of routine diagnosis estimated by a pathologist and the mutant-
allele frequency of NGS were available from their pathology reports.

2.2. Digital H&E/IHC Dual Staining of the Same Tissue Section

The patients’ routine H&E stain used for the tumor burden evaluation was digitized
(Figure 2). Then, the glass coverslip was removed by heat (heat plate, 180 ◦C, seconds to
minutes) and slides were placed in xylene (5 min). After re-hydration, H&E glass slides
were re-stained with chromogenic IHC, and slides were digitized. Whole slide images of
H&E and IHC were subsequently superimposed to form digital dual stains in Visiopharm
Integrator System 2020.08 (VIS; Visiopharm A/S, Hørsholm, Denmark).

2.3. Histochemical Staining

From each tissue block, one paraffin section of 3 µm was cut and mounted on a
Superfrost Plus slide (Thermo Fisher Scientific, Waltham, MA, USA). They were dried at
60 ◦C for 1 h. H&E stains were performed by Ventana HE 600 (Roche Diagnostics, Tucson,
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AZ, USA) and IHC by Ventana Benchmark Ultra (Roche Diagnostics). SOX10 IHC positivity
was visualized with the SOX-10 Rabbit Monoclonal Primary Antibody (SP267; ready-to-use;
32 min; Roche Diagnostics) in combination with either the OptiView DAB IHC Detection Kit
(Roche Diagnostics; brown chromogen) or the ultraView Universal Alkaline Phosphatase
Red Detection Kit (Roche Diagnostics; red chromogen). Standard settings and regent kits
of Ventana Benchmark Ultra (Roche Diagnostics) were used for antigen retrieval (Cc1,
32 min) and endogenous peroxidase blocking (only DAB stains). Immunohistochemical
slides were counterstained with Mayer’s hematoxylin and bluing reagent. Internal controls
were present in primary melanomas (SOX10 positivity in epidermis).

2.4. Scanning

Nanozoomer 2.0HT (Hamamatsu Phototonics KK, Hamamatsu City, Japan) generated
WSI of H&E and SOX10 stains at a magnification of 20X (2.04 pixels per µm2).

2.5. Regions of Interest

For development purposes, global tumor areas were manually outlined on all digital
dual stains in VIS. In the CNNTB test set that included melanoma patients with a BRAF
mutation, the same regions initially outlined by a pathologist on routine H&E stains for
calculating tumor burden were manually recreated on the associated digital dual stains. In
all cases, epidermal regions, skin appendages, and tissue processing artifacts were omitted.
To compare procedures, a minimum of three 0.05 mm2 squares (512 × 512 pixels at 20X)
were automatically identified and outlined by systematic-random sampling (mean area for
each analyzed lesion, 0.15 mm2; range, 0.06 mm2 to 0.24 mm2); Figure 1A.

2.6. Image Analysis

In primary melanomas, the value of the red versus the brown chromogen of SOX10
stains was explored by conventional handcrafted algorithms including thresholding. Then,
the utility of using a CNN for annotation (CNNAnn) instead of thresholding was explored.
This included a CNN that was trained with RGB input of IHC stains (CNNAnn-IHC; 3 input
bands) and a CNN trained with RGB input from both IHC and H&E (CNNAnn-H&E/IHC;
6 input bands). The annotation capabilities of the best-performing application were subse-
quently examined in metastatic lesions and used for training of the final CNNTB; Figure 3.

2.6.1. Subdivision of Lesions for Comparisons and CNN Training, Validation, and Test

To compare the utility of thresholding using either the red (THRRed) or the brown
chromogen (THRBrown), 22 primary melanomas were included (Table 1).

The two CNNAnn were trained on 30 lesions, including eight primary melanomas
(Table 1) and two locoregional dermal metastases, in addition to ten resections and ten core
needle biopsies of melanoma metastases, that is, seven regional lymph-node metastases
and 13 distant metastases to either lymph nodes (n = 1), subcutis (n = 4), lung (n = 2), liver
(n = 4), or brain (n = 2). Its independent test set consisted of 11 primary melanomas (also
used for evaluation of THRRed; Table 1) and 20 melanoma metastases, that is, five regional
and five distant lymph-node metastases in addition to five subcutaneous and five distant
organ metastases (lung, n = 4, and brain, n = 1).

The CNNTB was trained on 13 primary melanomas (Table 1) and six subcutaneous
metastases. Its independent test set included six melanomas (Table 1), two locoregional
dermal metastases, and three subcutaneous metastases.

Before any CNN was tested, visual inspection of their performance (validation) was
examined on 11 independent primary melanomas (H&E of DAB-stained melanomas)
and five independent melanoma metastases, that is, three subcutaneous and two distant
lymph-node metastases.
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Figure 3. Development of annotation procedures and convolutional neural network for calculating
tumor burden (CNNTB), and methods compared. Initially, annotation by thresholding using either the
red or the brown chromogen of IHC were compared. Thresholding of Fast-Red stains then assisted
annotation of digital H&E/IHC dual stains, which was used to train two CNNs for annotation;
one with RGB input from IHC (CNNAnn-IHC) and one with RGB input from both H&E and IHC
(CNNAnn-H&E-IHC). The best-performing algorithm annotated the training set of CNNTB. Both CNNTB

and routine eyeballing of pathologists were compared with stereological counts.

Table 1. Histopathological Characteristics of Included Melanomas.

Feature

Annotation CNNTB

THRbrown,
n = 11

CNNAnn Training,
n = 8

THRred and CNNAnn
Test, n = 11

Training,
n = 13

Test,
n = 6

Mean Breslow Thickness (mm) 3.79 3.67 3.27 2.97 4.46
Ulcerated Lesions, n (%) 7 (64) 2 (25) 4 (36) 4 (31) 2 (33)
Histopathological Subtype, n (%)
Superficial Spreading 6 (55) 5 (63) 8 (73) 9 (69) 4 (67)
Nodular 4 (36) 2 (25) 2 (18) 2 (15) 2 (33)
Lentigo Maligna Melanoma 1 (9) 0 1 (9) 1 (8) 0
Unclassified 0 1 (13) 0 1 (8) 0

Abbreviations: THRbrown, thresholding of DAB stains; THRred, thresholding of Fast-Red stains; CNNAnn-IHC,
convolutional neural network for annotation trained with only immunohistochemistry; CNNAnn-H&E/IHC, con-
volutional neural network for annotation trained with both H&E stains and immunohistochemistry; CNNTB,
convolutional neural net for calculating tumor burden.

2.6.2. Segmentation by Handcrafted Algorithms

Thresholding applications were based on preprocessing of the red and blue color
bands (chromaticity and contrast), which pin-pointed nuclei of normal cells, remainder
tissue, and unstained background, in addition to color deconvolution, which enhanced
either the brown or the red staining color of tumor cells.
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2.6.3. Segmentation by Neural Network

Using input images of 512 × 512 pixels, U-nets as presented by Ronneberger et al. [27]
were trained in VIS’s Author AI (Visiopharm A/S). This type of net is particular suitable
for semantic segmentation of biomedical images [27]. Learning rates, which are based on
Adam Optimization [28] in VIS, were set at 1 × 10−7 or 1 × 10−6, and data augmentation
was utilized. Specifics related to U-nets of Visiopharm A/S and training parameters of
CNNAnn-IHC, CNNAnn-H&E/IHC, and CNNTB are displayed in Supplementary Table S1.

The labeled training data for CNNAnn was mainly made with THRRed; however, an-
notations were carefully checked and manually edited if necessary. Additional manual
annotations were included to add additional variation to the labeled data. Ultimately,
9174 nuclei of tumor cells (area, 0.80 mm2) and 10,698 nuclei of normal cells (area, 0.4 mm2)
were annotated, in addition to 7711 discrete annotations of the remainder tissue (area,
1.1 mm2) and 304 of the unstained background (area, 0.2 mm2). Approximately, 1100 subim-
ages/training pairs were included.

By means of this labelled data set, deep learning was initially performed using only
RGB input from IHC stains (CNNAnn-IHC), but subsequently additional RGB input from
H&E stains was included (CNNAnn-H&E/IHC). The number of iterations in training was
30,000 for CNNAnn-IHC (28 epochs) and 170,000 for CNNAnn-H&E/IHC (158 epochs).

For CNNTB, the labeled training data was made by CNNAnn-H&E/IHC within the entire
global tumor outline, which resulted in approximately 25,000 subimages/training pairs.
Ultimately, 799,992 nuclei of tumor cells (48 mm2) and 421,375 nuclei of normal cells
(16 mm2) were annotated; yet, nuclei of normal cells were also dilated to form cellular
clusters and included again to further adjust CNNTB. This resulted in an additional
112,291 normal-cell annotations (area, 7 mm2). Moreover, 37,265 discrete annotations for
remainder tissue (6 mm2) and 7937 for unstained background (32 mm2) were included.
The CNNTB was trained for 613 iterations, but because no evident progress was observed,
the CNNTB at 398,000 iterations was selected (16 epochs). To fine-adjust CNNTB, a few
manual edits and annotations were made within the labeled training set (<0.015% of
all annotations).

All feature maps of neural networks with added mean filters were subsequently
classified by thresholding and postprocessing algorithms further enhanced results.

2.6.4. Postprocessing

Primarily, morphological operations and changes by area or surrounding were utilized.
Furthermore, watershed algorithms and polynomial blob filters were applied to separate
cellular clusters into individual cells. Similarity of postprocessing algorithms between
applications were sought; however, the most optimal composition for each application was
the main priority. All final applications were fixed and applied to all related lesions.

2.6.5. Output

Tumor burden of CNNTB was calculated as a number-based percentage level, that is,
the number of tumor-cell nuclei divided by the number of all nuclei within the outlined
tumor area. The intensity of the red chromogen was defined as the chromaticity of the red
color level.

2.7. Ground-Truth for Procedures of Annotation

Only annotated pixels of an image are visible for the CNN in VIS (Visiopharm A/S);
accordingly, all missing or false-negative annotations are irrelevant for the subsequent
training of the final CNN. Thus, only the applications’ number of false-positive and true-
positive nuclei for both tumor and normal cells were manually annotated and counted in
the 0.05 mm2-squares of the DAB-stained (n = 11) and red-colored melanomas (n = 11) and
melanoma metastases (n = 20).
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2.8. Ground-Truth Mask for CNNTB

Manual annotations were made for all tumor-cell nuclei, normal-cell nuclei, and the
remainder tissue in the 0.05 mm2-squares of the CNNTB test set (n = 11). Accordingly,
results of CNNTB were compared with ground-truth masks within 33 pairs of subimages.

2.9. Stereology

In lesions of the CNNTB test set, the same regions initially outlined by a pathologist
was recreated on SOX10 stains in VIS. For each tumor, approximately 200 fields of view
were identified by systematic-random sampling in which normal cells and tumor cells were
manually counted in an unbiased counting frame (30 µm2 × 25 µm2) at a magnification of
40X. In mean, 243 (range, 97 to 494) tumor cells and 423 (range, 153 to 882) normal cells
were counted per lesion.

2.10. Mutant-Allele Frequency by Next-Generation Sequencing

Mutant-allele frequencies were established as part of routine diagnostics by in-house
BRAF-targeted NGS using 10-µm unstained FFPE sections. If the pathologist’s initial
eyeballed tumor burden was ≤50%, the unstained section was manually macrodissected
(n = 6; Table S2) according to the pathologist’s tumor outline on the corresponding H&E
slide. Each sample was then subjected to automated genomic DNA extraction using
QIAsymphony (QIAGEN, Venlo, The Netherlands). The DNA concentration in each sample
was quantified by Qubit (Thermo Fisher Scientific), and the target concentration to perform
NGS was 30 ng of DNA. NGS was performed using Ion GeneStudio S5 Prime System with
Torrent Suite version 5.12 (Thermo Fisher Scientific) with an average sequencing depth of
at least 2000 reads.

2.11. Statistics

Precision, which measures how accurate positive predictions are [29], were calculated
for all annotation techniques for both tumor-cell nuclei and normal-cell nuclei. Calculations
were based on cellular numbers.

Sensitivity, specificity, accuracy, precision, and the weighted-average F1-score were
calculated for CNNTB for each individual class and the sum of classes by means of a
confusion matrix [29,30]. Calculations were based on the classification of each pixel because
cellular numbers are unable to truly quantify the number of true-negative annotations,
which also includes the background in image analysis (three classes).

The 95% confidence intervals (CI) for all proportions were calculated by the Wilson
score model [31]. When calculating the 95%CI of CNNTB, the number of subimages were
used instead of the number of pixels.

Two-sample tests of proportions were utilized to compare precision of annotation
techniques, and unpaired t-tests investigated the difference between the mean red chro-
maticity level of primary and melanoma metastases. Both paired t-tests and Bland–Altman
plots compared stereological counts with the tumor burden of either CNNTB or routine
eyeballing. Two-sided p-values less than 0.050 were considered statistically significant.

Statistics and data analysis were made in Stata 12.0 (StataCorp, College Station, TX,
USA), RStudio 1.4.1106 (RStudio, PBC, Boston, MA, USA), and MATLAB R2020b (Math-
Works, Natick, MA, USA).

3. Results
3.1. Comparison of Applications for Computer-Assisted Annotation in Primary Melanomas

The performance of applications using thresholding or deep learning are presented in
Table 2, and the specific reasons for false-positive annotations are displayed in Table 3 for
tumor cells and Table 4 for normal cells.
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Table 2. Performance of Annotation Procedures in Primary Melanomas.

Label Type APP Type Precision
(95%CI), % No. of FP No. of TP Annotation Rate

(labels/mm2)

Tumor-Cell Annotation

THRbrown 89.9 (88.2 to 91.3) 146 1298 962
THRred 99.5 (99.1 to 99.7) 15 2843 1739
CNNAnn-IHC 97.5 (97.0 to 98.0) 92 3597 2245
CNNAnn-H&E/IHC 99.7 (99.4 to 99.9) 7 2468 1506

Normal-Cell Annotation
THRred 98.1 (96.7 to 98.9) 12 626 388
CNNAnn-IHC 88.8 (84.0 to 92.3) 25 199 136
CNNAnn-H&E/IHC 99.2 (97.7 to 99.7) 3 373 229

Abbreviations: APP, application; CI, confidence interval; FP, false positive; TP, true positive; THRbrown, thresh-
olding of DAB stains; THRred thresholding of Fast-Red stains; CNNAnn-IHC, convolutional neural network for
annotation trained with only immunohistochemistry; CNNAnn-H&E/IHC, convolutional neural network for annota-
tion trained with both H&E stains and immunohistochemistry.

Table 3. Reasons for False-Positive Tumor-Cell Annotations in Primary Melanomas.

APP Type

No. of False-Positive Labels (%)

Pigmentation Skewed
Alignment

Cytoplasmatic
SOX10 Reaction

Unspecific Red
Dot

Only Part of Nucleus
Edge Detected

THRbrown 146 (100) 0 0 0 0
THRred 0 0 4 (27) 11 (73) 0
CNNAnn-IHC 0 14 (15) 34 (37) 36 (39) 8 (9)
CNNAnn-H&E/IHC 0 1 (14) 3 (43) 3 (43) 0

Abbreviations: APP, application; THRbrown, thresholding of DAB stains; THRred, thresholding of Fast-
Red stains; CNNAnn-IHC, convolutional neural network for annotation trained with only immunohisto-
chemistry; CNNAnn-H&E/IHC, convolutional neural network for annotation trained with both H&E stains
and immunohistochemistry.

Table 4. Reasons for False-Positive Normal-Cell Annotations in Primary Melanomas.

APP Type

No. of False-Positive Labels (%)

Skewed
Alignment

SOX10-Negative
Tumor Cell

Pale SOX10-Positive
Cell

Dark Blue
Cytoplasm

Mitotic Figure within
Tumor Nest

THRred 1 (8) 11 (92) 0 0 0
CNNAnn-IHC 6 (24) 0 2 (8) 16 (64) 1 (4)
CNNAnn-H&E/IHC 0 3 (100) 0 0 0

Abbreviations: APP, application; THRred, thresholding of Fast-Red stains; CNNAnn-IHC, convolutional neural
network for annotation trained with only immunohistochemistry; CNNAnn-H&E/IHC, convolutional neural network
for annotation trained with both H&E stains and immunohistochemistry.

For thresholding based on either the brown or the red chromogen, the difference in
precision was −9.6% (95%CI, −11.2% to −8.0%); p < 0.001. A difference predominantly
linked to pigmentation falsely annotated as tumor cells (Table 3).

To avoid errors caused by pigmentation and to further decrease the number of
false-positive events, applications based on deep learning and a red chromogen were
established. Initially, deep learning was conducted with IHC stains as the only training
input (CNNAnn-IHC), but because overfitting quickly occurred and the performance of
the neural network was modest (Table 2), information from H&E stains was included
(CNNAnn-H&E/IHC; Figure 3). The inclusion of H&E to the input of the CNN clearly in-
creased its ability to discriminate IHC colors of nuclei from unspecific staining and the
remainder tissue (Figure 4).
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Figure 4. Automated annotation of digital H&E/SOX10 dual-stained melanoma. (A) SOX10-
stained melanoma cells (red nuclei) and hematoxylin-stained normal cells (blue nuclei). Abundant
melanophages are present (blue nucleus and brown melanin in cytoplasm). (B) Automated annota-
tion of melanoma cells (red), normal cells (green), and remainder tissue (yellow) by CNNAnn-H&E-IHC.
(C) H&E display of the same tissue area. (D) Annotations are directly transferred to H&E.
(E–H) Errors of annotation using either thresholding of DAB stains (E) or CNNAnn-IHC on Fast-
Red stains (F–H). By adding RGB input from both SOX10 and H&E in the CNN training, errors
(F–H) were almost eliminated. (E) Melanin granules falsely annotated as a tumor-cell nuclei.
(F) Unspecific red dot falsely annotated as a tumor-cell nucleus and erythrocyte falsely annotated as
a normal-cell nucleus. (G) False annotation of an unspecific cytoplasmatic reaction and a somewhat
dissolved nucleus (left). (H) Cytoplasm falsely annotated as tumor-cell nucleus. Scalebars, 25 µm.

The difference in precision between CNNAnn-H&E/IHC and THRRed, the two best
performing applications, was −0.20% (95%CI, −0.54% to 0.14%; p = 0.3) for tumor cells
and −1.1% (95%CI, % −2.5% to 0.29%; p = 0.2) for normal cells. The difference was not
statistically significant, but the number of false-positive annotations were considerably
lower for CNNAnn-H&E/IHC than THRRed (Tables 3 and 4).

Characteristics of labelled objects annotated with CNNAnn-H&E/IHC and THRRed are
outlined in Supplementary Table S3 for tumor cells and Supplementary Table S4 for nor-
mal cells.

3.2. Computer-Assisted Annotation of Metastases

The CNNAnn-H&E/IHC application was applied to melanoma metastases. Its perfor-
mance for each metastasis subgroup is displayed in Table 5.

The difference in precision for primary melanoma versus metastatic melanoma was
extremely similar for tumor nuclei (p = 1), but markedly reduced for normal-cell nuclei
with a mean difference of 8.1% (95%CI, 6.3% to 9.9%); p < 0.001. The associated tumor
nuclei falsely annotated as normal-cell nuclei (N = 109) were almost exclusively caused
by absent (n = 96) or pale (n = 12) SOX10 staining. In addition, one mitotic figure of
a tumor cell (blue) was falsely annotated as a nucleus of a normal cell. False-positive
tumor-cell annotations were caused by unspecific red dots (n = 2; Figure 4F) or unspecific
red staining of tumor-cell cytoplasm (n = 5; Figure 4G). Only subcutaneous metastases
exhibited very few false-positive annotations along with an acceptable annotations rate for
normal cells (Table 5).
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Table 5. Performance of Convolutional Neural Network for Annotation (CNNAnn-H&E/IHC)
in Metastases.

Label Type Site of Metastasis Precision
(%, 95%CI) No. of FP No. of TP Annotation Rate

(Labels/mm2)

Tumor-Cell
Annotation

All (N = 20) 99.7 (99.3 to 99.8) 7 2177 614
Regional lymph node (n = 5) 99.8 (98.6 to 100) 1 405 312
Distant lymph node (n = 5) 99.1 (96.8 to 99.8) 2 219 340
Subcutis (n = 5) 99.6 (99.1 to 99.9) 4 1127 1392
Lung (n = 4) 100 (99.1 to 100) 0 421 666
Brain (n = 1) 100 (56.6 to 100) 0 5 31

Normal-Cell
Annotation

All (N = 20) 91.1 (89.6 to 92.8) 109 1113 343
Regional lymph node (n = 5) 95.9 (93.5 to 97.4) 17 393 315
Distant lymph node (n = 5) 92.1 (89.5 to 94.1) 43 499 833
Subcutis (n = 5) 100 (97.9 to 100) 0 178 219
Lung (n = 4) 62.5 (30.6 to 86.3) 3 5 13
Brain (n = 1) 61.3 (52.4 to 69.6) 46 73 733

Abbreviations: CI, confidence interval; FP, false positive; TP, true positive; CNNAnn-H&E/IHC, convolutional neural
network trained with both H&E stains and immunohistochemistry.

3.3. SOX10 Intensity in Primary Melanomas and Melanoma Metastases

The high number of pale or SOX10-negative tumor cells in lymph-node and distant
organ metastases, led to an analysis of the red-color level (red chromaticity) in primary
melanomas and melanoma metastases (Figure 5).
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Figure 5. Mean red chromaticity level of annotated tumor cells with 95% confidence intervals for
(A) each individual tumor type (primary melanomas and metastases of regional and distant lymph
nodes (LN), subcutis, and organs) and (B) tumors of the skin (primary melanomas and subcutaneous
metastases) versus metastatic tumors of LN and organs. (ns, not significant; ** very significant).

By combining primary melanomas and subcutaneous metastases (n = 15), the mean red-
chromaticity level was 0.37 (95%CI, 0.35 to 0.39) while the mean of organ and lymph-node
metastases (n = 15) was 0.32 (0.30 to 0.34); p = 0.002 (Figure 5B). When analyzed separately,
the intensity level of SOX10 was also significantly higher for primary melanomas (n = 10;
p = 0.02) and for subcutaneous metastases (n = 5, p = 0.002) when compared with both
organ and lymph-node metastases (n = 15).
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3.4. Performance of Neural Network for Calculating Tumor Burden

Because our procedure for IHC-verified annotation only seemed feasible for primary
melanomas and subcutaneous metastases, only these lesion types were included in the
development and test of CNNTB.

For all three classes, the weighted-average F1-score of CNNTB, in addition to precision
and sensitivity, was 88.8% (95%CI, 79.0% to 94.4%). The associated accuracy was 92.6%
(95%CI, 83.6% to 96.8%) and its specificity 94.4% (95%CI, 86.0% to 97.9%). The segmen-
tation performance for each individual class (tumor-cell nuclei, normal-cell nuclei, and
background) are displayed in Table 6.

Table 6. Segmentation Performance of Neural Network (CNNTB) for Each Individual Class.

Metric with 95%CI, % Tumor Nuclei Normal Nuclei Background

Sensitivity/recall 84.0 (73.3 to 90.9) 54.4 (42.5 to 65.8) 95.5 (87.5 to 98.5)
Specificity 94.3 (85.8 to 97.8) 98.7 (92.2 to 99.8) 79.6 (68.4 to 87.6)
Accuracy 93.1 (85.9 to 97.8) 93.0 (84.2 to 97.1) 91.5 (82.3 to 96.1)
Precision 66.6 (54.5 to 76.8) 86.4 (76.1 to 92.7) 93.4 (84.7 to 97.3)
F1 score 74.3 (62.6 to 83.3) 66.8 (54.8 to 77.0) 94.4 (86.0 to 97.7)

Abbreviations: CNNTB, convolutional neural net for calculating tumor burden; CI, confidence interval.

The tumor burden of both routine diagnosis and CNNTB are compared with stereolog-
ical counts in Figure 6A,B, respectively. For each case included in the test set, the tumor
burden of stereology, mutant-allele frequency, eyeballing, and CNNTB are displayed in
Supplementary Table S2.
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Figure 6. Bland–Altman plots that compare the tumor burden of stereological counts with either the
pathologist’s eyeballing of routine diagnosis (A) or the automated calculation of the convolutional
neural network CNNTB (B). The 95% limits of agreement (thin grey lines) and the mean difference
(thick grey line) with associated 95% confidence intervals (hatched grey lines) are shown. Enlarged
dot in (A) resembles two samples with the same percentage levels.

Because tumor cells of regional lymph-node resections and skin lesions shared a
similar appearance, CNNTB was subsequently tested on lymph-node metastases with
a BRAF mutational status (n = 5). The tumor burden of lymph nodes for both routine
diagnosis and CNNTB are compared with stereological counts in Supplementary Figure S1.
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4. Discussion

An automated, IHC-supervised annotation technique with high precision was devel-
oped for melanoma and subcutaneous metastases by means of digital H&E/SOX10 dual
stains with a red chromogen. For these lesion types, the associated annotated training set
with only a few manual annotations for fine-tuning (<0.015%) generated a high-performing
CNN for calculating tumor burden, which was superior to the pathologists’ routine practice.
To our knowledge, this is the first study to present a CNN for calculating tumor burden
with lesions relevant for a clinical setting.

In previous studies of IHC-supervised learning, only the brown chromogen DAB for
annotation of digital H&E/IHC stains has been utilized [20,21]; however, the brown color is
less suitable for melanocytic lesions because they often include various amounts of melanin;
especially within melanophages (Figure 4A,E). In accordance, our study demonstrated a
highly significant (p < 0.001) increase in the technique’s performance by using a red instead
of a brown chromogen in primary melanomas. Moreover, the annotation rate for THRRed
was approximately twice as high compared with THRBrown, which indicates that procedures
of image analysis were simplified, i.e., less indecisive annotations were excluded by final
postprocessing algorithms. All false-positive annotations in DAB stains were related to
melanin falsely annotated as tumor cells (Table 3). Because the study included slides from
three previous studies [13,25,26], the lesions compared were unmatched; however, both
subgroups included similar amounts of pigmentation.

When developing THRRed, repetitive errors were also observed; that is, unspecific
SOX10 reactions unrelated to tumor nuclei (Table 3 and Figure 4F–H). Especially, unspe-
cific red dots were falsely annotated as tumor cells. In some cases, these dots may have
represented somewhat dissolved nuclei or lost caps, but often their appearance was very
indistinct on H&E stains (Figure 4G). They were thus considered false-positive and un-
desirable for CNNTB training. To avoid these errors, utility of a CNN for annotation was
explored with RGB input from only IHC and from both IHC and H&E.

Even though they shared an identical labelled training set, the performance of
CNNAnn-H&E/IHC was highly superior to CNNAnn-IHC (Table 2). CNNAnn-IHC was, in addi-
tion, prone to overfitting, and more annotations were of questionable quality. Conceivably,
CNNAnn-IHC could have been improved by additional training, but a considerable number
of new annotations seemed necessary. Importantly, CNNAnn-H&E/IHC almost eliminated
all mistakes related to unspecific SOX10 reactions and skewed alignments (Tables 3 and 4).
The additional information from H&E stains thus seems very valuable to include in a CNN
for SOX10 detection and possibly for detection of many other IHC markers as well.

When comparing CNNAnn-H&E/IHC and THRRed, the difference in precision was not
statistically significant, but the number of false-positive annotations were considerably
lower for CNNAnn-H&E/IHC (Tables 3 and 4) than THRRed, although their annotation rates
were somewhat the same (Table 2). When manually examined, errors also seemed less
apparent for CNNAnn-H&E/IHC compared with THRRed.

In a test set of new and independent lesions, our precision of CNNAnn-H&E/IHC was close
to 100% for annotation of both tumor cells and normal cells. In the study of Jackson et al., the
specificity of their SOX10 annotation was 86% in subimages (10% of master set) of the same
lesions that also were included in the training set (90% of master set) [21].

Initially, a working hypothesis was that CNNAnn would facilitate a larger variation
in the appearance of the annotated cells compared with thresholding, but this seemed
unjustified from study data (Tables S3 and S4). On the contrary, the appearance of annotated
cells seemed somewhat similar for both procedures (Tables S3 and S4); yet, differences in
area and form factor were statistically significant for tumor cells (Table S3). As opposed
to chromaticity, these features could, however, have been influenced by postprocessing
algorithms of the study. Correspondingly, because postprocessing subsequently alters the
result of segmentation based on various characteristics of the objects of interest (e.g., size,
shape, color), some manual annotations are possibly always necessary to include additional
variation in the labelled training set.
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Given a slightly better performance and because applications based on CNN, gen-
erally, are less reliant on stain quality and IHC standardization compared with simple
thresholding, CNNAnn-H&E/IHC was subsequently applied to metastases and the training
set of CNNTB.

In metastases, a high number of SOX10-negative tumor cells was observed in lymph-
node and organ metastases. Furthermore, the appearance of tumor cells was very dif-
ferent in core needle biopsies compared with resections. Accordingly, the performance
of CNNAnn-H&E/IHC was low for these lesion types. In addition, very few annotations
were often created, especially in organ metastases (Table 5). The annotation technique
thus seemed less useful for such lesion types, unless time-consuming manual corrections
were to be performed. Other studies have also demonstrated that the percentage level
of SOX10-positive tumor cells may vary considerably in both primary and metastatic
melanoma [32–35]. Although our study mostly detected SOX10-negative cells in metastatic
melanoma, presence of negative tumor cells is an unavoidable limitation of the proposed
SOX10 annotation technique. Consequently, the general SOX10 positivity of the tumor
should be checked before inclusion in the training set. In addition, some normal cells may
also display SOX10 positivity, e.g., Schwann cells [36], cells of eccrine sweat glands [37], and
mast cells that may be very abundant in the periphery of some melanomas [36,38]. Eccrine
sweat glands are, however, easily recognized during the initial tumor outline, in which
they may be manually omitted or an automated procedure for exclusion may possibly
be developed.

This is one of the first studies to compare the intensity level of SOX10-positive cells
in primary melanomas and various types of metastatic melanoma by image analysis
(chromaticity red). A highly statistically significant difference was demonstrated for lesions
of the skin compared with lymph-node and organ metastases (Figure 5B), even though our
sample size was small. These results are in line with a large study by Agnarsdóttir et al.,
in which an automated intensity level of SOX10 was compared for melanomas (n = 106)
and their related metastases (n = 45). In addition, the study demonstrated an inverse
relationship between Ki67 and SOX10; that is, low SOX10 intensity was associated with
high proliferation [35]. Because metastases, in general, display a higher proliferative
potential than primary melanomas [39,40], a low SOX10 expression of metastases seems
justified. In the study of Agnarsdóttir et al., 81% of the primary tumors displayed SOX10
positivity in more than 75% of tumor cells, and 3% displayed cellular positivity in less
than 25% of tumor cells. Numbers for metastases were unreported [35]. In the study of
Bakos et al., the intensity level of SOX10-positive cells was scored in primary melanomas
and cutaneous and subcutaneous metastases by conventional microscopy. Though more
of their SOX10-positive metastases were weakly stained (10 of 10; 100%) compared with
primary melanomas (15 of 21; 71%), approximately half of both lesion types were SOX10-
negative [33]. In the study of Mohamed et al., all primary melanomas (n = 109) and
melanoma metastases to the brain (n = 11) were SOX10 positive (with >50% of cells being
positive), and all lesions achieved a high SOX10 intensity score by microscopy [32]. In the
study of Shakhova et al., 100% of all primary melanomas were marked by SOX10, and in
85% of all samples (n = 48), more than 90% of cells were SOX10 positive. In their metastatic
samples from various anatomic sites (n = 130) except subcutis, 13% exhibited either very
restricted or no nuclear SOX10 staining [34]. The overall differences between studies may
reflect the use of different SOX10 IHC protocols. Moreover, high intra and interobserver
variability is often associated with manual IHC intensity scores [8], which may be reduced
by image analysis [41].

Overall, the training set of CNNAnn-H&E/IHC yielded a CNNTB with high performance
in lesions of the skin, i.e., the sensitivity and specificity were 88% and 94%, respectively, for
the classification of tumor-cell nuclei, normal-cell nuclei, and the remainder background.
Yet, when looking at the classes individually, the sensitivity for detecting normal-cell nuclei
and the precision for detecting tumor-cell nuclei was rather low for CNNTB, alongside
the F1 score (Table 6). This was consistent with manual inspections of the results, that is,
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many normal-cell nuclei were falsely annotated as tumor cells, which increases both the
number of false-negative entities when calculating the sensitivity for normal cells and the
number of false-positive entities when calculating the precision for tumor cells. For tumor
cells, the most frequent error was large nucleoli or small hyperchromatic cells annotated
as normal-cell nuclei. Furthermore, elongated stromal-cell nuclei with large nucleoli and
nuclei of macrophages caused inaccuracies in our study. In the only lesion that differed
markedly from stereology (ID 7; Table S2), high resemblance between normal and tumor
cells was observed. Furthermore, many neutrophile and eosinophile granulocytes were
present, and the granulocytes with many lobes were often falsely classified as tumor cells.
This could possibly have been corrected with further training of CNNTB. By coincidence,
the number of granulocytes was fairly limited in the training set of CNNTB. Difficulties in
separating clusters of normal cells were also observed for CNNTB (Figure 1E), even though
many postprocessing algorithms were employed to obtain a correct cellular count.

To optimize CNNTB, resources of open source, including other network types and
designs, could be explored, and possibly a combination of IHC-verified and weakly super-
vised learning may prove beneficial. Furthermore, to fully evaluate the performance of
IHC-verified annotation, it should be compared with weakly supervised models, both in
terms of hands-on-time and performance of the final neural net.

Yet, melanomas are characterized by their ability to present a diverse array of cyto-
morphologic features, in which size, shape, and color of their nuclei may vary considerably
both within and between tumors. For instance, melanomas may be composed of large
pleomorphic cells, small cells, spindle cells, and nuclei may show bi- or multi-nucleation,
lobation, inclusions, grooving, and angulation [19]. Accordingly, they may in some cases
share similar features of normal-cell nuclei, which also was evident in our study. Immuno-
histochemistry thus seems necessary to accurately differentiate nuclei in network training.
Consequently, a flawless differentiation of normal-cell and tumor-cell nuclei seems an
unrealistic task, even though it is possible to continuously train a CNNTB to increase its
performance. In addition, when presented with only the nucleus, the task becomes even
more complex for a CNN; hence, information from the remainder tissue, e.g., associated
cytoplasm and cellular architecture, is often indispensable for the pathologist to render a
correct diagnosis. Accordingly, it seems better to annotate clusters of cells instead of single
cells, but consequently, it becomes difficult to separate each nucleus afterwards, which is
necessary when calculating the tumor burden. Jackson et al. also states that their results
were imperfect, that is, several foci of lymphocytes as well as occasional keratinocytes were
falsely annotated as tumor cells [21]. In our study, epidermis was deliberately excluded
from all analyses given the resemblance between keratinocytes and some tumor cells, and
because epidermis may include normal SOX10-positive melanocytes.

We manually outlined the dermal tumor compartment excluding adnexae and tissue
artifacts in this study, but an automated stratification of the regions of interest is possibly
feasible to create a fully automated procedure for calculating tumor burden on H&E
stains. Epidermis of IHC has previously been automatically identified by handcrafted
algorithms [42], but neural nets certainly hold the potential to identify the different layers
of the skin based on H&E stains, which may be useful in many research projects and in
future diagnostic settings where the location of a biomarkers often is important.

Although errors were apparent from the CNNTB test set, its calculation of tumor
burden was highly superior to the pathologist’s estimate (Figure 6 and Table S2). In
contrast to CNNTB, the difference between the pathologists and stereology was statistically
significant (Figure 6A). Typically, the estimates of the pathologists were higher than the
counts of stereology. In some cases, this may be explained by the enlarged nuclei of tumor
cells, which may produce a large tumor area but not necessarily a high tumor burden
(Figure 1), which is based on cellular numbers. Our low accuracy of the pathologists is in
line with previous reports of low reproducibility and low accuracy among pathologists
eyeballing tumor burden [10,11]. Lhermitte et al. states that 38% of their study samples
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with a low tumor content (<20%) were overestimated by pathologists and thus associated
with a higher risk of a false-negative BRAF result [11].

While the performance of CNNTB was satisfactory in this study, our results need to
be validated in a larger, independent test set in order to use CNNTB in a routine setting.
CNNTB was, however, only developed for primary melanomas and metastases of the
skin; yet, results for lymph-node resections were promising (Figure S1). The clinical
practice guidelines, however, recommend using the metastasis if available and suitable for
molecular analysis; otherwise, the primary tumor may be analyzed [43]. Some advocate for
the use of the primary tumor, but intertumoral heterogeneity of BRAF between a patient’s
primary and subsequent metastatic lesion is still discussed [44,45], and a metanalysis has
proposed a possible discrepancy rate of approximately 10% [46]. Thus, our CNNTB is,
currently, only useful in a subset of lesions in a clinical setting. To include other types of
metastases, additional neural networks may be developed, possibly for each individual
organ site by manual annotations. This is, however, a very time-consuming and difficult
task when tumor cells frequently are SOX10 negative.

An advantage of our study was that the count of stereology (the gold standard)
could be compared with the mutant-allele frequency of NGS. Though it remains discussed
whether a BRAF mutation is homozygous or heterozygous [47,48], the two numbers seemed
in range (Table S2). The regions of interest analyzed in each method may, however, have
varied slightly. Of particular importance, some pathologists may have been unaware of
the general limitations associated with macrodissection. Consequently, their tumor burden
may have been based on a very detailed tumor outline, which often is very difficult to
recapitulate for the technician in the subsequent dissection of the tumor area. Additional
and redundant areas with normal cells may thus have been included in the molecular
analysis, which especially affects the allele frequency of lymph-node metastases that often
include many lymphocytes (Figure 1).

In our study, the evaluations of image analysis were based on a minimum of three
fairly small subfields (Figure 1A). This was done to create a very accurate ground truth
within a reasonable time-frame. Although these fields only represented a small fraction
of the entire tumor, they included approximately 3000 cells and 25,000,000 pixels in the
CNNTB test set.

One general disadvantage of our digital H&E/SOX10 procedure was that the coverslip
was quite difficult and time-consuming to remove for the technician. Yet, fairly novel
whole slide scanners that are able to scan without coverslips may solve this issue, and they
possibly hold great promise for the future development and application of digital multiple
stains in pathology.

5. Conclusions

By means of digital H&E/SOX10 dual stains with a red chromogen, a large annotated
H&E training set with high quality was created within a reasonable timeframe for primary
melanomas and metastases of the skin. For these lesion types, the training set generated a
high-performing CNN for calculating tumor burden, which was superior to the pathologists’
routine eyeballing. Yet, due to low or missing tumor-cell SOX10 positivity, advantages of
the annotation technique were limited in lymph-node and organ metastases.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijerph192114327/s1, Table S1: Input, network details, and training
parameters of the study’s U-nets; Table S2: Tumor Burden of Test Set for Stereology, Mutant Alleles,
Eyeballing, and Neural Net; Table S3: Characteristics of Tumor Labels Detected by Thresholding
or Neural Net; Table S4: Characteristics of Normal Labels Detected by Thresholding or Neural
Net; Figure S1: Bland–Altman for plots lymph-node metastases. Reference [49] is cited in the
supplementary materials.
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