6,340 research outputs found

    Applications and efficiencies of the first cat 63K DNA array

    Get PDF

    Selection Mapping Identifies Loci Underpinning Autumn Dormancy in Alfalfa (Medicago sativa).

    Get PDF
    Autumn dormancy in alfalfa (Medicago sativa) is associated with agronomically important traits including regrowth rate, maturity, and winter survival. Historical recurrent selection experiments have been able to manipulate the dormancy response. We hypothesized that artificial selection for dormancy phenotypes in these experiments had altered allele frequencies of dormancy-related genes. Here, we follow this hypothesis and analyze allele frequency changes using genome-wide polymorphisms in the pre- and postselection populations from one historical selection experiment. We screened the nondormant cultivar CUF 101 and populations developed by three cycles of recurrent phenotypic selection for taller and shorter plants in autumn with markers derived from genotyping-by-sequencing (GBS). We validated the robustness of our GBS-derived allele frequency estimates using an empirical approach. Our results suggest that selection mapping is a powerful means of identifying genomic regions associated with traits, and that it can be exploited to provide regions on which to focus further mapping and cloning projects

    Use of easy measurable phenotypic traits as a complementary approach to evaluate the population structure and diversity in a high heterozygous panel of tetraploid clones and cultivars

    Get PDF
    Diversity in crops is fundamental for plant breeding efforts. An accurate assessment of genetic diversity, using molecular markers, such as single nucleotide polymorphism (SNP), must be able to reveal the structure of the population under study. A characterization of population structure using easy measurable phenotypic traits could be a preliminary and low-cost approach to elucidate the genetic structure of a population. A potato population of 183 genotypes was evaluated using 4859 high-quality SNPs and 19 phenotypic traits commonly recorded in potato breeding programs. A Bayesian approach, Minimum Spanning Tree (MST) and diversity estimator, as well as multivariate analysis based on phenotypic traits, were adopted to assess the population structure. Results: Analysis based on molecular markers showed groups linked to the phylogenetic relationship among the germplasm as well as the link with the breeding program that provided the material. Diversity estimators consistently structured the population according to a priori group estimation. The phenotypic traits only discriminated main groups with contrasting characteristics, as different subspecies, ploidy level or membership in a breeding program, but were not able to discriminate within groups. A joint molecular and phenotypic characterization analysis discriminated groups based on phenotypic classification, taxonomic category, provenance source of genotypes and genetic background. Conclusions: This paper shows the significant level of diversity existing in a parental population of potato as well as the putative phylogenetic relationships among the genotypes. The use of easily measurable phenotypic traits among highly contrasting genotypes could be a reasonable approach to estimate population structure in the initial phases of a potato breeding program.Fil: Tagliotti, Martin Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce; ArgentinaFil: Deperi, Sofía Irene. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; ArgentinaFil: Bedogni, María Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce; ArgentinaFil: Zhang, Ruofang. Inner Mongolia University; ChileFil: Manrique Carpintero, Norma C.. Michigan State University; Estados UnidosFil: Coombs, Joseph. Michigan State University; Estados UnidosFil: Douches, David. Michigan State University; Estados UnidosFil: Huarte, Marcelo Atilio. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce; Argentin

    Low-density genotype panel for both parentage verification and discovery in a multi-breed sheep population

    Get PDF
    peer-reviewedThe generally low usage of artificial insemination and single-sire mating in sheep, compounded by mob lambing (and lambing outdoors), implies that parentage assignment in sheep is challenging. The objective here was to develop a low-density panel of single nucleotide polymorphisms (SNPs) for accurate parentage verification and discovery in sheep. Of particular interest was where SNP selection was limited to only a subset of chromosomes, thereby eliminating the ability to accurately impute genome-wide denser marker panels. Data used consisted of 10,933 candidate SNPs on 9,390 purebred sheep. These data consisted of 1,876 validated genotyped sire–offspring pairs and 2,784 validated genotyped dam–offspring pairs. The SNP panels developed consisted of 87 SNPs to 500 SNPs. Parentage verification and discovery were undertaken using 1) exclusion, based on the sharing of at least one allele between candidate parent–offspring pairs, and 2) a likelihood-based approach. Based on exclusion, allowing for one discordant offspring–parent genotype, a minimum of 350 SNPs was required when the goal was to unambiguously identify the true sire or dam from all possible candidates. Results suggest that, if selecting SNPs across the entire genome, a minimum of 250 carefully selected SNPs are required to ensure that the most likely selected parent (based on the likelihood approach) was, in fact, the true parent. If restricting the SNPs to just a subset of chromosomes, the recommendation is to use at least a 300-SNP panel from at least six chromosomes, with approximately an equal number of SNPs per chromosome

    Validation of a Cost-Efficient Multi-Purpose SNP Panel for Disease Based Research

    Get PDF
    BACKGROUND: Here we present convergent methodologies using theoretical calculations, empirical assessment on in-house and publicly available datasets as well as in silico simulations, that validate a panel of SNPs for a variety of necessary tasks in human genetics disease research before resources are committed to larger-scale genotyping studies on those samples. While large-scale well-funded human genetic studies routinely have up to a million SNP genotypes, samples in a human genetics laboratory that are not yet part of such studies may be productively utilized in pilot projects or as part of targeted follow-up work though such smaller scale applications require at least some genome-wide genotype data for quality control purposes such as DNA "barcoding" to detect swaps or contamination issues, determining familial relationships between samples and correcting biases due to population effects such as population stratification in pilot studies. PRINCIPAL FINDINGS: Empirical performance in classification of relative types for any two given DNA samples (e.g., full siblings, parental, etc) indicated that for outbred populations the panel performs sufficiently to classify relationship in extended families and therefore also for smaller structures such as trios and for twin zygosity testing. Additionally, familial relationships do not significantly diminish the (mean match) probability of sharing SNP genotypes in pedigrees, further indicating the uniqueness of the "barcode." Simulation using these SNPs for an African American case-control disease association study demonstrated that population stratification, even in complex admixed samples, can be adequately corrected under a range of disease models using the SNP panel. CONCLUSION: The panel has been validated for use in a variety of human disease genetics research tasks including sample barcoding, relationship verification, population substructure detection and statistical correction. Given the ease of genotyping our specific assay contained herein, this panel represents a useful and economical panel for human geneticists

    A highly efficient multi-core algorithm for clustering extremely large datasets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years, the demand for computational power in computational biology has increased due to rapidly growing data sets from microarray and other high-throughput technologies. This demand is likely to increase. Standard algorithms for analyzing data, such as cluster algorithms, need to be parallelized for fast processing. Unfortunately, most approaches for parallelizing algorithms largely rely on network communication protocols connecting and requiring multiple computers. One answer to this problem is to utilize the intrinsic capabilities in current multi-core hardware to distribute the tasks among the different cores of one computer.</p> <p>Results</p> <p>We introduce a multi-core parallelization of the k-means and k-modes cluster algorithms based on the design principles of transactional memory for clustering gene expression microarray type data and categorial SNP data. Our new shared memory parallel algorithms show to be highly efficient. We demonstrate their computational power and show their utility in cluster stability and sensitivity analysis employing repeated runs with slightly changed parameters. Computation speed of our Java based algorithm was increased by a factor of 10 for large data sets while preserving computational accuracy compared to single-core implementations and a recently published network based parallelization.</p> <p>Conclusions</p> <p>Most desktop computers and even notebooks provide at least dual-core processors. Our multi-core algorithms show that using modern algorithmic concepts, parallelization makes it possible to perform even such laborious tasks as cluster sensitivity and cluster number estimation on the laboratory computer.</p

    SNP discovery using next generation transcriptomic sequencing in Atlantic herring (Clupea harengus)

    Get PDF
    The introduction of Next Generation Sequencing (NGS) has revolutionised population genetics, providing studies of non-model species with unprecedented genomic coverage, allowing evolutionary biologists to address questions previously far beyond the reach of available resources. Furthermore, the simple mutation model of Single Nucleotide Polymorphisms (SNPs) permits cost-effective high-throughput genotyping in thousands of individuals simultaneously. Genomic resources are scarce for the Atlantic herring (Clupea harengus), a small pelagic species that sustains high revenue fisheries. This paper details the development of 578 SNPs using a combined NGS and high-throughput genotyping approach. Eight individuals covering the species distribution in the eastern Atlantic were bar-coded and multiplexed into a single cDNA library and sequenced using the 454 GS FLX platform. SNP discovery was performed by de novo sequence clustering and contig assembly, followed by the mapping of reads against consensus contig sequences. Selection of candidate SNPs for genotyping was conducted using an in silico approach. SNP validation and genotyping were performed simultaneously using an Illumina 1,536 GoldenGate assay. Although the conversion rate of candidate SNPs in the genotyping assay cannot be predicted in advance, this approach has the potential to maximise cost and time efficiencies by avoiding expensive and time-consuming laboratory stages of SNP validation. Additionally, the in silico approach leads to lower ascertainment bias in the resulting SNP panel as marker selection is based only on the ability to design primers and the predicted presence of intron-exon boundaries. Consequently SNPs with a wider spectrum of minor allele frequencies (MAFs) will be genotyped in the final panel. The genomic resources presented here represent a valuable multi-purpose resource for developing informative marker panels for population discrimination, microarray development and for population genomic studies in the wild

    Comparative evaluation of the MAPlex, Precision ID Ancestry Panel, and VISAGE Basic Tool for biogeographical ancestry inference

    Full text link
    Biogeographical ancestry (BGA) inference from ancestry-informative markers (AIMs) has strong potential to support forensic investigations. Over the past two decades, several forensic panels composed of AIMs have been developed to predict ancestry at a continental scale. These panels typically comprise fewer than 200 AIMs and have been designed and tested with a limited set of populations. How well these panels recover patterns of genetic diversity relative to larger sets of markers, and how accurately they infer ancestry of individuals and populations not included in their design remains poorly understood. The lack of comparative studies addressing these aspects makes the selection of appropriate panels for forensic laboratories difficult. In this study, the model-based genetic clustering tool STRUCTURE was used to compare three popular forensic BGA panels: MAPlex, Precision ID Ancestry Panel (PIDAP), and VISAGE Basic Tool (VISAGE BT) relative to a genome-wide reference set of 10k SNPs. The genotypes for all these markers were obtained for a comprehensive set of 3957 individuals from 228 worldwide human populations. Our results indicate that at the broad continental scale (K = 6) typically examined in forensic studies, all forensic panels produced similar genetic structure patterns compared to the reference set (G′ ≈ 90%) and had high classification performance across all regions (average AUC-PR > 97%). However, at K = 7 and K = 8, the forensic panels displayed some region-specific clustering deviations from the reference set, particularly in Europe and the region of East and South-East Asia, which may be attributed to differences in the design of the respective panels. Overall, the panel with the most consistent performance in all regions was VISAGE BT with an average weighted AUC̅W score of 96.26% across the three scales of geographical resolution investigated

    CoAIMs: A Cost-Effective Panel of Ancestry Informative Markers for Determining Continental Origins

    Get PDF
    Genetic ancestry is known to impact outcomes of genotype-phenotype studies that are designed to identify risk for common diseases in human populations. Failure to control for population stratification due to genetic ancestry can significantly confound results of disease association studies. Moreover, ancestry is a critical factor in assessing lifetime risk of disease, and can play an important role in optimizing treatment. As modern medicine moves towards using personal genetic information for clinical applications, it is important to determine genetic ancestry in an accurate, cost-effective and efficient manner. Self-identified race is a common method used to track and control for population stratification; however, social constructs of race are not necessarily informative for genetic applications. The use of ancestry informative markers (AIMs) is a more accurate method for determining genetic ancestry for the purposes of population stratification.Here we introduce a novel panel of 36 microsatellite (MSAT) AIMs that determines continental admixture proportions. This panel, which we have named Continental Ancestry Informative Markers or CoAIMs, consists of MSAT AIMs that were chosen based upon their measure of genetic variance (F(st)), allele frequencies and their suitability for efficient genotyping. Genotype analysis using CoAIMs along with a Bayesian clustering method (STRUCTURE) is able to discern continental origins including Europe/Middle East (Caucasians), East Asia, Africa, Native America, and Oceania. In addition to determining continental ancestry for individuals without significant admixture, we applied CoAIMs to ascertain admixture proportions of individuals of self declared race.CoAIMs can be used to efficiently and effectively determine continental admixture proportions in a sample set. The CoAIMs panel is a valuable resource for genetic researchers performing case-control genetic association studies, as it can control for the confounding effects of population stratification. The MSAT-based approach used here has potential for broad applicability as a cost effective tool toward determining admixture proportions

    Short tandem repeat sequences in the Mycoplasma genitalium genome and their use in a multilocus genotyping system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several methods have been reported for strain typing of <it>Mycoplasma genitalium</it>. The value of these methods has never been comparatively assessed. The aims of this study were: 1) to identify new potential genetic markers based on an analysis of short tandem repeat (STR) sequences in the published <it>M. genitalium </it>genome sequence; 2) to apply previously and newly identified markers to a panel of clinical strains in order to determine the optimal combination for an efficient multi-locus genotyping system; 3) to further confirm sexual transmission of <it>M. genitalium </it>using the newly developed system.</p> <p>Results</p> <p>We performed a comprehensive analysis of STRs in the genome of the <it>M. genitalium </it>type strain G37 and identified 18 loci containing STRs. In addition to one previously studied locus, MG309, we chose two others, MG307 and MG338, for further study. Based on an analysis of 74 unrelated patient specimens from New Orleans and Scandinavia, the discriminatory indices (DIs) for these three markers were 0.9153, 0.7381 and 0.8730, respectively. Two other previously described markers, including single nucleotide polymorphisms (SNPs) in the rRNA genes (rRNA-SNPs) and SNPs in the MG191 gene (MG191-SNPs) were found to have DIs of 0.5820 and 0.9392, respectively. A combination of MG309-STRs and MG191-SNPs yielded almost perfect discrimination (DI = 0.9894). An additional finding was that the rRNA-SNPs distribution pattern differed significantly between Scandinavia and New Orleans. Finally we applied multi-locus typing to further confirm sexual transmission using specimens from 74 unrelated patients and 31 concurrently infected couples. Analysis of multi-locus genotype profiles using the five variable loci described above revealed 27 of the couples had concordant genotype profiles compared to only four examples of concordance among the 74 unrelated randomly selected patients.</p> <p>Conclusion</p> <p>We propose that a combination of the MG309-STRs and MG191-SNPs is efficient for general epidemiological studies and addition of MG307-STRs and MG338-STRs is potentially useful for sexual network studies of <it>M. genitalium </it>infection. The multi-locus typing analysis of 74 unrelated <it>M. genitalium</it>-infected individuals and 31 infected couples adds to the evidence that <it>M. genitalium </it>is sexually transmitted.</p
    corecore