338 research outputs found

    Efficient top K temporal spatial keyword search

    Get PDF
    Massive amount of data that are geo-tagged and associated with text information are being generated at an unprecedented scale in many emerging applications such as location based services and social networks. Due to their importance, a large body of work has focused on efficiently computing various spatial keyword queries. In this paper, we study the top-k temporal spatial keyword query which considers three important constraints during the search including time, spatial proximity and textual relevance. A novel index structure, namely SSG-tree, to efficiently insert/delete spatio-temporal web objects with high rates. Base on SSG-tree an efficient algorithm is developed to support top-k temporal spatial keyword query. We show via extensive experimentation with real spatial databases that our method has increased performance over alternate techniques

    Multi-scale data storage schemes for spatial information systems

    Get PDF
    This thesis documents a research project that has led to the design and prototype implementation of several data storage schemes suited to the efficient multi-scale representation of integrated spatial data. Spatial information systems will benefit from having data models which allow for data to be viewed and analysed at various levels of detail, while the integration of data from different sources will lead to a more accurate representation of reality. The work has addressed two specific problems. The first concerns the design of an integrated multi-scale data model suited for use within Geographical Information Systems. This has led to the development of two data models, each of which allow for the integration of terrain data and topographic data at multiple levels of detail. The models are based on a combination of adapted versions of three previous data structures, namely, the constrained Delaunay pyramid, the line generalisation tree and the fixed grid. The second specific problem addressed in this thesis has been the development of an integrated multi-scale 3-D geological data model, for use within a Geoscientific Information System. This has resulted in a data storage scheme which enables the integration of terrain data, geological outcrop data and borehole data at various levels of detail. The thesis also presents details of prototype database implementations of each of the new data storage schemes. These implementations have served to demonstrate the feasibility and benefits of an integrated multi-scale approach. The research has also brought to light some areas that will need further research before fully functional systems are produced. The final chapter contains, in addition to conclusions made as a result of the research to date, a summary of some of these areas that require future work

    A Data Structure for Spatio-Temporal Databases

    Get PDF
    The advantages and applications of spatial mechanisms are well documented; however, there are very few being designed. The principal hinderance to the design of spatial mechanisms is the great difficulty involved in specifying spatial problems and in interpreting spatial solutions. Similarly, the development of spatial codes to implement these techniques is held back by the lack of means to easily visualize and verify solutions, particularly in the realm of relational databases. If spatial mechanisms are to be successful, the designer must be able to synthesize, analyse and evaluate, as well as load and extract information, using a single code representing a spatial structure. This entails the implementation of spatial relationships involving spatial data structures. It is with this in mind that the Canadian Hydrographic Service database group embarked on the development of a new type of spatial database structure based on the quadtree concept

    KBGIS-2: A knowledge-based geographic information system

    Get PDF
    The architecture and working of a recently implemented knowledge-based geographic information system (KBGIS-2) that was designed to satisfy several general criteria for the geographic information system are described. The system has four major functions that include query-answering, learning, and editing. The main query finds constrained locations for spatial objects that are describable in a predicate-calculus based spatial objects language. The main search procedures include a family of constraint-satisfaction procedures that use a spatial object knowledge base to search efficiently for complex spatial objects in large, multilayered spatial data bases. These data bases are represented in quadtree form. The search strategy is designed to reduce the computational cost of search in the average case. The learning capabilities of the system include the addition of new locations of complex spatial objects to the knowledge base as queries are answered, and the ability to learn inductively definitions of new spatial objects from examples. The new definitions are added to the knowledge base by the system. The system is currently performing all its designated tasks successfully, although currently implemented on inadequate hardware. Future reports will detail the performance characteristics of the system, and various new extensions are planned in order to enhance the power of KBGIS-2

    A storage and access architecture for efficient query processing in spatial database systems

    Get PDF
    Due to the high complexity of objects and queries and also due to extremely large data volumes, geographic database systems impose stringent requirements on their storage and access architecture with respect to efficient query processing. Performance improving concepts such as spatial storage and access structures, approximations, object decompositions and multi-phase query processing have been suggested and analyzed as single building blocks. In this paper, we describe a storage and access architecture which is composed from the above building blocks in a modular fashion. Additionally, we incorporate into our architecture a new ingredient, the scene organization, for efficiently supporting set-oriented access of large-area region queries. An experimental performance comparison demonstrates that the concept of scene organization leads to considerable performance improvements for large-area region queries by a factor of up to 150

    Giving eyes to ICT!, or How does a computer recognize a cow?

    Get PDF
    Het door Schouten en andere onderzoekers op het CWI ontwikkelde systeem berust op het beschrijven van beelden met behulp van fractale meetkunde. De menselijke waarneming blijkt mede daardoor zo efficiënt omdat zij sterk werkt met gelijkenissen. Het ligt dus voor de hand het te zoeken in wiskundige methoden die dat ook doen. Schouten heeft daarom beeldcodering met behulp van 'fractals' onderzocht. Fractals zijn zelfgelijkende meetkundige figuren, opgebouwd door herhaalde transformatie (iteratie) van een eenvoudig basispatroon, dat zich daardoor op steeds kleinere schalen vertakt. Op elk niveau van detaillering lijkt een fractal op zichzelf (Droste-effect). Met fractals kan men vrij eenvoudig bedrieglijk echte natuurvoorstellingen maken. Fractale beeldcodering gaat ervan uit dat het omgekeerde ook geldt: een beeld effectief opslaan in de vorm van de basispatronen van een klein aantal fractals, samen met het voorschrift hoe het oorspronkelijke beeld daaruit te reconstrueren. Het op het CWI in samenwerking met onderzoekers uit Leuven ontwikkelde systeem is mede gebaseerd op deze methode. ISBN 906196502

    Efficient query processing on spatial and textual data: beyond individual queries

    Get PDF
    With the increasing popularity of GPS enabled mobile devices, queries with locational intent are quickly becoming the most common type of search task on the web. This development has driven several research work on efficient processing of spatial and spatial-textual queries in the past few decades. While most of the existing work focus on answering queries independently, e.g., one query at a time, many real-life applications require the processing of multiple queries in a short period of time, and can benefit from sharing computations. This thesis focuses on efficient processing of the queries on spatial and spatial-textual data for the applications where multiple queries are of interest. Specifically, the following queries are studied: (i) batch processing of top-k spatial-textual queries; (ii) optimal location and keyword selection queries; and (iii) top-m rank aggregation on streaming spatial queries. The batch processing of queries is motivated from different application scenarios that require computing the result of multiple queries efficiently, including (i) multiple-query optimization, where the overall efficiency and throughput can be improved by grouping or partitioning a large set of queries; and (ii) continuous processing of a query stream, where in each time slot, the queries that have arrived can be processed together. In this thesis, given a set of top-k spatial-textual queries, the problem of computing the results for all the queries concurrently and efficiently as a batch is addressed. Some applications require an aggregation over the results of multiple queries. An exam- ple application is to identify the optimal value of attributes (e.g., location, text) for a new facility/service, so that the facility will appear in the query result of the maximum number of potential customers. This problem is essentially an aggregation (maximization) over the results of queries issued by multiple potential customers, where each user can be treated as a top-k query. In this thesis, we address this problem for spatial and textual data where the computations for multiple users are shared to find the final result. Rank aggregation is the problem of combining multiple rank orderings to produce a single ordering of the objects. Thus, aggregating the ranks of spatial objects can provide key insights into the importance of the objects in many different scenarios. This translates into a natural extension of the problem that finds the top-m objects with the highest aggregate rank over multiple queries. As the users issue new queries, clearly the rank aggregations continuously change over time, and recency also play an important role when interpreting the final results. The top-m rank aggregation of spatial objects for streaming queries is studied in this thesis, where the problem is to report the updated top-m objects with the highest aggregate rank over a subset of the most recent queries from a stream
    corecore