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Abstract. Massive amount of data that are geo-tagged and associated with text information are
being generated at an unprecedented scale in many emerging applications such as location based ser-
vices and social networks. Due to their importance, a large body of work has focused on efficiently
computing various spatial keyword queries. In this paper,we study the top-k temporal spatial keyword
query which considers three important constraints during the search including time, spatial proxim-
ity and textual relevance. A novel index structure, namely SSG-tree, to efficiently insert/delete
spatio-temporal web objects with high rates. Base on SSG-tree an efficient algorithm is developed
to support top-k temporal spatial keyword query. We show via extensive experimentation with real
spatial databases that our method has increased performance over alternate techniques .
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1 Introduction

Due to the proliferation of user generated content and geo-equipped devices, massive amount of microblogs
(e.g., tweets, Facebook comments, and Foursquare check-ins) that contain both text information [13]
and geographical location information are being generated at an unprecedented scale on the Web. For
instance, in the GPS navigation system, a POI (point of interest) is a geographically anchored pushpin
that someone may find useful or interesting, which is usually annotated with textual information (e.g.,
descriptions and users reviews). In social media (e.g., Flickr, Facebook, FourSquare, and Twitter), a
large number of posts and photos are usually associated with a geo-position as well as a short text. In
the above applications, a large volume of spatio-textual objects may continuously arrive with high speed.
For instance, it is reported that there are about 30 million people sending geo-tagged data out into the
Twitterverse, and 2.2 percentage of the global tweets (about 4.4 million tweets a day) provide location
data together with the text of their posts1.

In this paper, we aim to take advantage of the combination of geo-tagged information within mi-
croblogs to support temporal spatial keyword search queries on microblogs, where users are interested in
getting a set of recent microblogs each of which contains all keywords and closet to user’s location. Due
to the large numbers of microblogs that can satisfy the given constraints, we limit the query answer to
k microblogs, deemed most relevant to the querying user based on a ranking function fst that combines
the time recency and the spatial proximity of each microblog to the querying user.

Example 1. In Fig. ??, suppose there are a set of tweets, each of which is described by the send’s interests,
the sender’s location and creation time of tweet. When a GPS-enabled smartphone user wants to find
the most recent tweet who has the same interests as him and closes his location, he may send the local
search server two keywords, swimming and gym. Based on the user’s current location derived from the
smartphone , the two query keywords, and the creation time, tweet o1 is returned by the server. Note
that although tweet o3 is closer to Q than o1, it doesn’t satisfy the keyword constraint. Tweet o4 satisfies
the keyword constraint and spatial closer to Q than o1, but the creation time of o4 is too early.

Challenges.There are three key challenges in efficiently processing temporal spatial keyword queries over
temporal spatial keyword microblogs streams. Firstly, a massive number of microblogs, typically in the
order of millions, are posted in many applications, and hence even a small increase in efficiency results
in significant savings. Secondly, the streaming temporal spatial keyword microblogs may continuously

1http://www.futurity.org/tweets-give-info-location
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2 Efficient Top K Temporal Spatial Keyword Search

arrive in a rapid rate which also calls for high throughput performance for better user satisfaction.
Thirdly, the above challenges call for relying on only in-memory data structures to index and query
incoming microblogs, where memory is a scarce resource.

Based on the above challenges, we first discuss what kinds of techniques should be adopted from
different angles. Then, we propose a novel index technique, namely the Segment Signature Grid trees
(SSG-Trees for short), to effectively organize continuous temporal spatial keyword microblogs. In a nut-
shell, SSG-Trees is essentially a set of Signature Grid-Trees, each node of which is enriched with the
reference to a frequency signature file for the objects contained in the sub-tree rooted at the node. Then,
an efficient temporal spatial keyword search algorithm is designed to facilitate the online top-k temporal
spatial keyword search. Extensive experiments show that our SSG-Trees based TSK algorithm achieves
very substantial improvements over the nature extensions of existing techniques due to strong filtering
power.

The rest of this paper is organized as follows. Section 2 formally defines the problem of top k temporal
spatial keyword search. We introduce the techniques should be adopted in Section 3. Section 4 presents
the framework of SSG-Trees and algorithm. Extensive experiments are reported in Section 5.

2 Preliminaires

In this section, we present problem definition and necessary preliminaries of top k temporal spatial
keyword Search. Table 1 below summarizes the mathematical notations used throughout this section.

Notation Definition

o(q) s geo-textual object (query)

o.ψ(q.ψ) a set of keywords (terms) used to describe o (query q)

o.loc(q.loc) location of the object o (query q)

o.t(q.t) timestamp of the object o (query q)

V vocabulary

w a keyword (term) in V

l the number of query keywords in q.ψ

w the number of results should be returned

m the number of independent uniformly random hash functions

α the preference parameter to balance the spatial proximity and temporal
recency

b size of a bit-block of GS

B the sparse vector size

c the leaf node capacity of SSG-Trees

fs(o.loc, q.loc) the spatial proximity between o.loc and q.loc

ft(o.t, q.t) the temporal recency between o.t and q.t

fst(o, q) the spatial-temporal ranking score between o and q

Table 1: Notations

In this section, O denotes a sequence of incoming stream geo-textual objects. A geo-textual object
is a textual message with geo-location and timestamp, such as geo-tagged and check-in tweets. Formally,
a geo-textual object o is modeled as o = < ψ, loc, t >, where o.ψ denotes a set of distinct keywords
(terms) from a vocabulary set V , o.loc represents a geo-location with latitude and longitude, and o.t

represented the timestamp of object.

Definition 1 (Top-k Temporal Spatial-Keyword (TSK) Query). A top-k temporal spatial keyword
query q is defined as q = < ψ, loc, t, k >, where q.ψ is a set of distinct user-specified keywords (terms),
q.loc is the query location, q.t is the user submitted timestamp, k is the number of the result user expected.

Definition 2 (Spatial Proximity fs(o.loc, q.loc)). Let δmax denote the maximal distance in the space,
the spatial relevance between the object o and the query q, denoted by fs(o.loc, q.loc), is defined as
δ(q.loc,o.loc)

δmax

.
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Definition 3 (Temporal Recency ft(o.t, q.t)). Let λmax denote the maximal time difference in the
timestamp, the temporal recency between the object o and the query q, denoted by ft(o.t, q.t), is defined

as λ(o.t,q.t)
λmax

.

Based on the spatial proximity and temporal recency between the query and the object, the Spatial-
temporal Ranking Score of an object o regarding the query q can be defined as follows.

Definition 4 (Spatial-temporal Ranking Score fst(o, q)). Let α (0 ≤ α ≤ 1)2 be the preference
parameter specifying the trade-off between the spatial proximity and temporal recency, we have

fst(o, q) = α ∗ fs(o.loc, q.loc) + (1− α)ft(o.t, q.t). (1)

Note that the objects with the small score values are preferred (i,e., ranked higher).

Definition 5 (Temporal Spatial Keyword Search). Given a set of geo-textual objects O and a
temporal spatial keyword query q, we aim to find the top k geo-textual objects with smallest spatial-
temporal score, and each of which contains all of the query keywords.

In the section hereafter, we abbreviate the geo-textual object and the geo-textual query as object and
query respectively, if there is no ambiguity. We assume there is a total order for keywords in V , and the
keywords in each query and object are sorted accordingly. For presentation simplicity, we assume wi < wj

if i < j.

3 Motivation

Due to massive amount of objects and queries are being generated at an unprecedented scale, it is
imperative to devise efficient indexing technique such that high arrival rates of incoming objects can
be inserted immediately, expired objects can be deleted from its contents with the approximative rate
as insertion, a large number of unpromising objects can be filtered at a cheap cost, and the memory
cost should linear to the object size increase. We show that a good indexing mechanism over continuous
geo-textual objects should satisfy following three criterion.

3.1 Efficient Textual Retrieval

Existing textual retrieval indexes , which can effectively combine with other spatial or temporal indexes,
are mainly falling into one of two categories: inverted index [12,15,21] and signature file [14,25,23,28].
Owing to only the indexes of related keywords have been extracted in inverted index, inverted index excels
in query processing efficiency while compared with signature. However, signature has faster insertion speed
and utilizes significantly less storage overhead. According to [2], inverted index requires much larger space
overhead than signature file (≈10 times), and demands expensive updates of the index when insert a new
document, due to many terms of inverted index needs to store more than once and frequently undergo
re-organization triggers under intensive information insertion/updating procedures. Furthermore, the
inverted index is also reported to perform poorly for multiple terms queries in [4]. Obviously, taking the
properties of fast update online system into consideration, signature file seems a better choice.

3.2 Efficient Spatial Partition

To support high arrival rates of incoming objects, space-partitioning index (e.g., Quadtree [6,17,18,26,27],
Pyramid [1,20,22], and Grid structure [10,12,16]) is more famous than object-partitioning index (e.g., R-
tree). As stressed in [9], space-partitioning index is more suitable to high update system because of its
disjoint space decomposition policy, while the shape of object-partitioning index is highly affected by
the rate and order of incoming data, which may trigger a large number of node splitting and merging.
Motivated by this, we should adopt space-partitioning index as our proposed spatial partition index.

2α=1 indicates that the user cares only about the spatial proximity of geo-textual objects, α=0 gives the k
most recent geo-textual objects in dataset
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3.3 Efficient Temporal Partition

Regarding the temporal partition techniques, which can combine with other textual or spatial index, are
mainly divided into two categories: Log Structure [11] and Sliding Window [8]. Log Structure partitions
the data into a sequence of indexes with exponentially increasing size, while Sliding Window partitions
the data into a sequence of indexes with equal size or with equal time range. Obviously, the performance
of Log Structure is better than Sliding Window if top-k results can be find in most recent data. However,
a sharp drop will be met if the top-k results can be find in most recent data, due to its exponent increase
size partition. Furthermore, the insertion cost of Log Structure will significant increase while combining
with other index. Finally, the deletion cost of Log Structure is always higher than that of Sliding Window,
due to the deletion operation can only occur at the oldest index. Motivated by the above reasons, our
proposed temporal partition strategy should fall into Sliding Window.

4 SSG-TREE FRAMEWORK

Based on the above motivations, in this section, we present a segment signature grid trees (SSG-Trees
for short) that supports update at high arrive rate and provides the following required functions for
geo-textual object search and ranking: I)textual filtering: all the textually irrelevant trees, nodes and
objects have to be discarded as early as possible to cut down the search cost; II)spatial filtering: all
the spatially irrelevant nodes have to be filtered out as early as possible to shrink the search space;
III)temporal filtering: all the spatially irrelevant trees, nodes and objects have to be accessed as late
as possible to follow the chronological order; and IV)relevance computation and ranking: since only
the top-k objects are returned and k is expected to be much smaller than the total number of match
objects, it is desirable to have an incremental search process that integrates the computation of the joint
relevance, and object ranking seamlessly so that the search process can stop as soon as the top-k objects
are identified.

Below, we first introduce frequency signature to support keyword filtering in section 4.1. Section 4.2
presents the gird tree for spatial partition. Detail data structure and search algorithm are depicted in
section ?? and section 4.3 respectively.

4.1 Frequency Signature

The traditional superimposed coding signature is widely used in many off-line indexes such as spatio-
textual [3], tow-level superimposed coding [7,19,24], IR2-tree [5] etc. It is well known that the frequency
of keyword occurrence in large texts follows Zipf’s law. However, the traditional superimposed coding
signature does not differentiate the frequencies of different keywords in the dataset. Hence, in this sub-
section, we study frequency superimposed coding signature based on the keywords’s frequency. In many
applications, keyword frequencies are estimated or collected with historical data. Statistics of such infor-
mation are maintained, especially for the high frequency keywords. Such data is useful in optimizing the
optimal configuration of superimposed coding signature. The performance improvement is remarkable
even with rough estimations of keyword frequencies.

Same as the traditional superimposed coding, the frequency superimposed coding signature also uses
k independent uniformly random hash functions map an n-terms set W={w1, · · · , wn} into a B-bit
array. But the major difference is that instead of hashing all terms in range [1,B], we divide the B-bit
array into a set of different size frequency blocks, and hash the terms into different blocks based on their
term frequency. More specifically, based on the distribution of term frequency, we partition the terms
into different frequency block by a series of frequency thresholds. Assume the aggregate frequency of the
entire historical data is ξ, the bit array is divided into u frequency blocks, and the aggregate frequency
of the i-th frequency block is ξi. Hence, the size of the i-th block can be calculated by ξi

ξ
× B. Then,

for each term in n-terms set, we can hash them into different frequency blocks. Due to the terms have
similar frequency are partitioned into the same blocks and the blocks allocated to high frequency terms
have been assign more bits and less terms, the frequency superimposed coding signature effectively avoid
the interference from low frequency terms.
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4.2 Grid-Tree

The existing space-partitioning techniques are mainly falling into two categories: Grid structure and
Quadtree. However, both of them have their own limitations while combined with signature file. The Grid
structure is insensitive to system update, but it is hard to decide its granularity. High granularity will
cause massive amount of node signature, which will lead to tremendous memory cost. Low granularity will
result in a great deal of fat leaf nodes that contain several thousand of objects, which will significantly
reduce query performance. Different as Grid structure, Quadtree can dynamically adjust granularity
according to object distribution to achieve balance allocation after sacrificing partial update efficiency.
Because each internal node of Quadtree has exactly four children, for the leaf node, it is easy to satisfy
the leaf node capacity constraint, trigger node split, and complicated object redistribution. Thus, instead
of splitting into four children nodes in Quadtree, we partition node into a set of grids. More specifically,
the Grid-Tree partitions the spatial node into n2 equal non-overlapping girds, where n ≥ 2, to delay the
time of redistribution and avoid continual node split. Evidently, the spatial queries algorithms that can
be applied on Quadtree can easily be applied on the Grid-Tree3.

In order to support efficient geo-textual object search, the SSG-Trees clusters a set of geo-textual
objects into a series of continual signature Grid-Tree, which cluster the objects into disjointed subsets
of nodes and abstracts them in various granularities. By doing so, it capacitates the pruning of those
(textually, spatially or temporally) irrelevant subsets or trees. The efficiency of SSG-Trees depends on its
pruning power is highly related to the effectiveness of object clustering and the search algorithms. Our
SSG-Trees clusters spatially and temporally close objects together and carries textual information in its
node signatures.

SSG-Trees is essentially a set of Signature Grid-Trees, each node of which is enriched with the reference
to a signature file for the objects contained in the sub-tree rooted at the node. In particular, each node
of an SSG-Trees contains all spatial, temporal, and keyword information; the first is in the form of a
rectangle, the second is in the form of timestamp, and the last is in the form of a signature.

More formally, the leaf node of SSG-Trees has the form (nSig, r, t, oSig). oSig refers to a set of
signatures created by the objects of current node, nSig is the OR-ing of all signature in gSig, r is the
area covered by current node, and t is the latest timestamp aggregated from the objects. An inner node
has the form (nSig, r, t, cp). cp are the address of the children nodes, nSig is the OR-ing of all the
signatures of its children, r is the area covered by current node, and t is the latest timestamp aggregated
from its children nodes. To simplify the following presentation we degrade the Grid-Tree to its special
case Quadtree in the example.

4.3 Processing of TSK queries

We proceed to present an important metric, the minimum spatial-temporal distance MINDst, which
will be used in the query processing. Given a query q and a node N in the SSG-Trees, the metricMINDst

offers a lower bound on the actual spatial-temporal distance between query q and the objects enclosed in
the rectangle of node N . This bound can be used to order and efficiently prune the paths of the search
space in the SSG-Trees.

Definition 6 (MINDst(q,N)). The distance of a query point q from a node N in the SSG-Trees, denoted
as MINDst(q,N), is defined as follows:

MINDst(q,N) = α ∗
MINDs(q.loc,N.r)

δmax

+

(1− α) ∗
MINDt(q.t, N.t)

λmax

(2)

where α, δmax, and λmax are the same as in Equation 1; MINDs(q.loc,N.r) is the minimum Euclidian
distance between q.loc and N.r, MINDt(q.t, N.t) is the minimum time difference between q.t and N.t.

A salient feature of the proposed SSG-Trees structure is that it inherits the nice properties of the
Quadtree for query processing.

3Obviously, if n equals two, the Grid-Tree degrades to Quadtree
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Algorithm 1 TSK Search(q, k, I)

Input: q : the spatial-keyword temporal query, k : the number of object return, I : current SSG-Trees index
Output: R : top-k query result results
1: R := ∅; H = ∅, λmax =∞
2: H ← new a min first heap
3: build frequency signature for query
4: H.Enqueue(I.root,MINDst(q, I.root))
5: while H 6= ∅ do

6: e← the node popped from H
7: if e is a leaf node then

8: for each object o in node e do

9: if o passed the signature test AND fst(q, o) ≤ λmax then

10: λmax ← fst(q, o)
11: update R by (o, fst(q, o))
12: end if

13: end for

14: else

15: for each child e′ in node e do

16: if e′ passed the signature test AND MINDst(q, e
′) ≤ λmax then

17: H.Enqueue(e′,MINDst(q, e
′))

18: end if

19: end for

20: end if

21: process the root node of next SSG-Trees
22: end while

23: return R

Theorem 1. Given a query point q, a node N , and a set of objects O in node N , for any o ∈ O, we
have fst(q,N) ≤ DISTst(q, o).

Proof. Since object o is enclosed in the rectangle of node N , the minimum Euclidian distance between
q.loc and N.r is no larger than the Euclidian distance between q.loc and o.loc:

MISDS(q.loc,N.r) ≤ fs(q.loc, o.loc)

For each timestamp t, N.t is the maximum value O.t of all the object in node N . Hence:

MISDt(q.loc,N.r) ≤ ft(q.loc, o.loc)

According to Equation 1 and Equation 2, we obtain:

MINDst(q,N) ≤ fst(q, o)

thus completing the proof.

When searching the SSG-Trees for the k objects nearest to a query q, one must decide at each visited
node of the SSG-Trees which entry to search first. MetricMINDST offers an approximation of the spatial-
temporal ranking score to every entry in the node and, therefore, can be used to direct the search. Note
that only node satisfied the constraint of query keywords need to be loaded into memory and compute
MINDST .

To process TSK queries with SSG-Trees framework, we exploit the best-first traversal algorithm for
retrieving the top-k objects. With the best-first traversal algorithm, a priority queue is used to keep track
of the nodes and objects that have yet to be visited. The values of fst and MINDst are used as the keys
of objects and nodes, respectively.

When deciding which node to visit next, the algorithm picks the nodeN with the smallestMINDst(q,N)
value in the set of all nodes that have yet to be visited. The algorithm terminates when k nearest objects
(ranked according to Equation 1) have been found.

Algorithm 1 illustrates the details of the SSG-Trees basedTSK query. A minimum heapH is employed
to keep the Grid-Tree’s nodes where the key of a node is its minimal spatial-temporal ranking score. For
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the input query, we calculate its frequency signature in Line 3. In Line 4, we find out the root node of
current time interval, calculate the minimal spatial-temporal ranking score for the root node, and then
pushed the root node into the H. The the algorithm executes the while loop (Line 5-21)until the top-k
results are ultimately reported in Line 23.

In each iteration, the top entry e with minimum spatial-temporal ranking score is popped from H.
When the popped node e is a leaf node(Line 7), for each signature in node e, we will iterator extract
the objects that satisfy query constraint and check whether its spatial-temporal ranking score is less
than λmax. If its score is not larger than λmax, we push o into result set and add update λmax. When
the popped node e is a non-leaf node(Line 15), a child node e

′

of e will be pushed to H if it can pass
the query signature test and the minimal spatial-temporal ranking score between e

′

and q, denoted by
MINDst(q, e

′

, is not larger than λmax (Line 15- 17). We process the root node of next interval in Line 21.
The algorithm terminates when H is empty and the results are kept in R.

5 Experiments

In this section, we present the results of a comprehensive performance study to evaluate the effectiveness
and efficiency of our techniques proposed in this section.

5.1 Baseline Algorithms

To the best of our knowledge, no existing work investigating top-k queries on spatial-keyword temporal
data. Hence, for comprehensive performance evaluation, we discuss how to exploit existing techniques
in [9] for processing TSK queries. And we develop two baselines by utilizing existing index structures,
namely IFQ and SIFQ.

I) Inverted File plus Quadtree (IFQ). IFQ first employs Quadtree to partition objects into leaf cells
according to their location information. Then, the objects inside each cell are stored in a reversed chrono-
logical order. Finally, for the objects in each leaf cell, we build inverted file for keyword filtering proposed
and recursively construct the inverted file for its ancestral cells.

II) Segment Based Inverted File plus Quadtree (SIFQ). SIFQ is an enhanced version of IFQ. Similarly,
it employs Quadtree to partition the objects into different cell, uses reversed chronological order to
organize the object list in leaf cell, and build the inverted file for all the cells which contain objects. The
major difference between them is that IFQ organizes all the objects in an single quadtrees, but SIFQ
partitions all the incoming objects into a set of quadtrees or segments by time unit.

5.2 Experiment Setup

In this section, we implement and evaluate following algorithms.

– IFQ. IFQ based TSK algorithm proposed in baseline algorithm.
– SIFQ. Enhanced IFQ by partitioning the objects into a set of time unit in baseline algorithm.
– SSG. SSG-Trees based TSK algorithm proposed in Section 4.

Dataset. All experiments are based on a real-life dataset TWEETS. TWEETS is a real-life dataset
collected from Twitter [5], containing 13 million geo-textual tweets from May 2012 to August 2012. The
statistics of TWEETS are summarized in Table 2.

Property # of objects vocabulary avg. # of term per obj.

TWEETS 13.3M 6.89M 10.05

Table 2: Dataset Details

Workload. The workload for the TSK query consists of 1000 queries, and the average query response
time are employed to evaluate the performance of the algorithms. The query locations are randomly
selected from the underlying dataset. On the other hand, the likelihood of a keyword t being chosen as

query keyword is freq(t)∑
ti∈V

freq(ti)
where freq(t) is the term frequency of t in the dataset. The number of
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query keywords (l) varies from 1 to 5, the number of results (k) grows from 10 to 50, and the preference
parameter α changes from 0.1 to 0.9. By default, l, k, and α are set to 3, 10, and 0.5 respectively. In
addition, unless mentioned otherwise, the default value of cell capacity c is 100, and geo-textual object
arrival rate τ is 4000. We random select 10% of the geo-textual objects from TWEETS as the historical
object workload when SSG are constructed. We always keep the most recent 5M objects in.

All experiments are implemented in C++. The experiments are conducted on a PC with 2.9GHz Intel
Xeon 2 cores CPU and 32GB memory running Red Hat Enterprise Linux. For a fair comparison, we tune
the important parameters of the competitor algorithms for their best performance. Particularly, the leaf
capacity of all algorithms is set to 100. The partition threshold of SIFQ is set to 400000. Our measures of
performance include insertion time, deletion time, storage overhead, and response time. The rest of this
section evaluates index maintenance (Section 5.3), and query processing (Section ??).

5.3 Index Maintenance

In this subsection, we evaluate the insertion time, deletion time, storage overhead of all the algorithms4.
Since all the objects are indexed in one single quadtree in IFQ, the insertion and deletion time are longer
than the other algorithms. What’s worse, the time to process 2000 objects for IFQ is large than one
second. Thus, we ignore IFQ’s insertion time and deletion time in comparison.

Evaluation on storage overhead. gives the performance when varying the number of objects from
5M to 13M. As the number of objects increase, the storage overhead is stable for all algorithms, owing
to we only keep the most recent 5M objects in memory. The performance of signature based algorithms
is always better than that of inverted index based algorithms. The storage overhead of signature based
algorithms is at most one half of that of inverted index based algorithms. gives the same experiment with
varying node capacity from 100 to 500. The storage overhead of algorithms meets a slight decrease, due
to more information has been shared by the textual index.

6 Conclusions

To the best of our knowledge, this is the first work to study the problem of top-k continuous temporal
spatial keyword queries over streaming temporal spatial keyword microblogs, which has a wide spectrum of
application. To tackle with this problem, we propose a novel temporal spatial keyword partition indexing
structure, namely SSG-Trees, efficiently organize a massive number of streaming temporal spatial keyword
microblogs such that each incoming query submitted by users can rapidly find out the top-k results.
Extensive experiments demonstrate that our technique achieves a high throughput performance over
streaming temporal spatial keyword data.
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China (61272150, 61379110, 61472450, 61402165, 61702560, S1651002, M1450004), the Key Research Pro-
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Plan of Hunan Province.
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