
International Hydrographic Review, Monaco, LXVII(l), January 1990

A DATA STRUCTURE FOR

SPATIO-TEMPORAL DATABASES

by H. P. VARMA, H. BOUDREAU (*) and W. PRIME (**)

Abstract

The advantages and applications of spatial mechanisms are well docu

mented; however, there are very few being designed. The principal hinderance to

the design of spatial mechanisms is the great difficulty involved in specifying

spatial problems and in interpreting spatial solutions. Similarly, the development of

spatial codes to implement these techniques is held back by the lack of means to

easily visualize and verify solutions, particularly in the realm of relational

databases.

If spatial mechanisms are to be successful, the designer must be able to

synthesize, analyse and evaluate, as well as load and extract information, using a

single code representing a spatial structure. This entails the implementation of

spatial relationships involving spatial data structures.

It is with this in mind that the Canadian Hydrographic Service database

group embarked on the development of a new type of spatial database structure

based on the quadtree concept.

INTRODUCTION

For the last five years the Canadian Hydrographic Service (CHS) has been

investigating the feasibility and practicality of implementing a National

Hydrographic Database. The research and studies, initiated by Ottawa, have

pointed out that this is not an easy task. This is primarily because Hydrographic

data is of a spatial nature, and does not fit properly into the niche provided by

the Database Technologies of today.

Current Database Management Systems have been designed to provide

easy, flexible access to a wide range of multifile databases involving numeric

(*) Canadian Hydrographic Service, Ottawa, Ontario, Canada.
(") Atlantic Geoscience Centre, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada.

records, particularly in the domain of commercial data. However, they have been

found wanting in the handling of spatial data. A database management system

[1-2] is supposed to combine and use data in a variety of ways. This is

conventionally done by assigning a data record to each object in the database,

along with its simple attributes. Some GISs (Geographic Information Systems)

have been built to manipulate spatial objects [3] in a limited two-dimensional

region. Since 1977, several GIS have been built for handling spatial data,

however current RDBMS (Relational Database Management Systems) cannot

adequately and cost-effectively handle spatial data. This is primarily because it

has been extremely difficult to establish relationships between spatial points

without the explicit use of spatial mechanisms, such as polygons.

Faced with these problems, the database development group at the Bedford

Institute of Oceanography realized that it would be necessary to invent a spatial

data structure that could encompass spatio-temporal relationships. This data

structure has been newly termed the Hyspat code (Hyperspatial code) and is

based on the quadtree/octree concept.

DIFFERENCES BETWEEN D.B.M.S. AND G.I.S.

Another problem faced by the information world has been the confusion

between a G IS (Geographical Information System) and a DBM S (Database

Management System). A geographic information system [4] is a system designed

to capture, store, manipulate, retrieve, display and locate data that are referenced

to geographic locations. It is a depiction system usually written in a third

generation language (eg. Fortran, C, Pascal, Ada etc.), with a graphics user

interface (interactive graphic capabilities) for small subsets of the database. A

DBMS, on the other hand, is an organized storage system for the entire database

and utilizes fourth generation languages — SQL (Structured Query Languages)

— for data manipulations and extraction. Each complements, but does not

replace the other. This has caused conflicts between application programmers

(3GL, GIS) and database programmers (4GL) and has resulted in disruption of

the normal process of database evolution.

CURRENT STATUS OF SPATIAL DATABASES

In February 1988, the International Computer Science Institute in Berkeley,

California, sponsored a two-day workshop at which 16 senior members of the

database research community discussed future research topics in the DBMS area.

One of the major points mentioned in the proceedings was the subject of spatial

databases. To quote [5]: ‘Several participants used spatial examples as hard

applications. These were typically geographical databases containing encoded

information currently found on maps. The problems varied from providing urban

services (e.g. how does one get from X to Y efficiently on public transportation)

to conducting a military operation to environmental information systems

integrating all kinds of data from under, on and over the earth’s surface. There

was widespread support for the importance of such applications, and the

participants generally thought that this was a very good application area for

extendible DBMSs. From this, it was determined that in order to utilize the true

power of a relational database, the SQL libraries would have to be extended to

incorporate spatial relations using the Hyspat code.

A REVIEW OF SPATIAL REPRESENTATIONS

QUADTREE

In recent years, the quadtree representation [6] has gained use as a data

structure for applications in image processing, computer graphics and

cartography. The quadtree is an approach to region representation that is based

on the successive subdivision of an image array into quadrant (Fig. 1). Each

node of the quadtree corresponds to a block in the original image [7]. A natural

by-product of the tree-like structure (Fig. 2) is that many basic properties can be

implemented as tree traversals. The differences in implementations lie in the

nature of the computation at the node. Often these computations involve the

examination of nodes whose corresponding blocks are adjacent to the block

whose node (Fig. 3) is being processed. These nodes are called neighbors, and

the process of locating them is called neighbor finding [8]. This is an important

and frequent operation that is performed on spatial data sets.

(a) (b)

NODE 7

1 2 3 4

(C)
(circles are node points, squares are leaves)

FlG. 2 .— (a) region; (b) block decomposition of the region in (a); (c) quadtree representation of the blocks

in (b).

OCTREES

Octrees are a natural extension of the quadtree concept [9]. In order to

describe any object which we wish to represent within a given space, the best

approach appears to be an initial rough approximation of the object’s location,

followed by successive refinements which increase the resolution of the object s

details (Fig. 4). Such combinations of global and detailed specifications produce a

hierarchical manifestation of the object space. For many years, this type of data

T
>

Fig . 3 .— Nearest neighbor cells in quadtrees

representation was limited to pattern recognition [10]. This representation is also

very useful for indexing space; that is, for specifying the location of any particular

cube (Fig. 5). Because of its logical simplicity, the method of hierarchically

representing three dimensional objects, called octree encoding, is exceptionally

convenient for indexing 3rd space.

The octree [11] is a regular cellular breakdown of the object space

(universe). The universe is subdivided into eight equal size cells. Normally, if any

one of the resulting cells is homogeneous, (meaning that it lies inside or outside

the object), the subdivision stops. On the other hand, if the cell is heterogenous

(meaning that it is intersected by one or more of the object s bounding surfaces)

the cell is divided further into eight subcells (Fig. 6). The subdivision process

stops when all the leaf cells are homogeneous to some degree of precision.

The octree representation has several advantages [12]. First, any arbitrarily

shaped objects (convex or concave with interior holes) can be represented to the

precision of the smallest cell. Second, centre of mass, interference and volumes

are easily calculated at different levels of precision. Third, because of spatial

sorting and uniformity of representation, operations on octrees are simple and

efficient.

VOXELS

Many approaches to data modelling are available. Most methods require

some preprocessing of the input, to reduce data and to provide object

representation better suited for the available display algorithms.

One representation, the voxel, corresponds closely to the format in which

spatial data is collected. A voxel [13] is a rectangular volume element obtained

by the division of three sets of mutually orthogonal parallel planes. The voxels

which compose an object are usually the same size; that is, all the planes are

equally spaced. On the other hand, the spacing of one set of planes need not be

the same as the spacing of another. This will be explored in detail later.

One approach which has been widely applied to mapping systems uses the

extraction of a set of 1-D primitives (contours) (Fig. 7, 8) describing the

boundaries of the object on a slice-by-slice basis. Surface representations can be

obtained from the contours directly, or indirectly, by tiling or spline techniques. A

newer approach [14] retains 3D voxels (cubes) as primitives but achieves data

compression through octree encoding, which provides an efficient object

representation.

Associated with each voxel are three numeric coordinates representing its

location in space, as well as attributes representing some object property at this

location. The voxels can be converted to cubes by suitable interpolation. Such a

dissection of object space into cubes is called a cuberille.

The general idea is that the voxels making an object are represented by a

hierarchical tree structure, which achieves data compression through spatial

coherence. An advantage of octree encoding is that simple operations such as

union, intersection, difference of objects, translation, rotation, scaling, interference

detection, binning and hidden surface removal can be accomplished by accessing

F ig . 5 .— Nearest neighbors in cubes.

each node of the three only once. Furthermore, these operations require only

simple arithmetic functions such as integer additions, shifts and comparisons, all

of which are valid operations in a relationally based system.

Fig. 6 .— The subdivision of a rectangular cube into eight smaller cubes. On the left is the cube showing

the locations of the cutting planes. On the right is an exploded view of the subdivided cubes showing the

levels of the eight smaller cubes.

FlG. 8 .— Contour lines.

TOPOLOGY

Boundary based, object based representations contain information about the

surfaces of individual objects. The surface of an object is broken into one or more

separate pieces, and each piece is fully described along with its own boundaries,

which take the form of curves and joints.

This type of solid model must have the ability to describe how each surface

piece fits together with each adjacent surface piece in the final model, so that a

single, fully enclosed volume is formed. The adjacencies of these components can

be derived by numerical techniques to analyze the geometric proximity of the

surface pieces, though this approach is often computed intensive. However, in an

evaluated representational form, such information is available explicitly.

This adjacency information is often informally referred to as the topology

[15] of the solid model. The actual geometric surface description, curve

descriptions and point locations are then referred to as the geometry of the solid

model. The topology information can serve as a framework into which the

geometric information is placed. The topology therefore serves as the ‘glue’

holding all the component information together.

LOGICAL SPATIAL DATABASE STRUCTURE

Two types of spatial representations are prevalent in computer technologies.

One is based on the decomposition of objects [16] into their constituent parts

(Fig. 9), and the other is based on the decomposition of object space (Fig. 10)

into regularly shaped subspaces (quadtree, octree).

The first representation dates back to the 1963 Sutherland’s Sketchpad

System. Since then, many vector and raster graphics systems have provided both

software and hardware support for structured spatial data. These hiferarchical

representations have been proven to be convenient for positioning objects and

their components in space, and for moving objects relative to one another. In

addition, they offer considerable memory savings when objects and object

components occur several times in a scene. Objects and object components need

to be defined only once, and can subsequently be found by the application of

linear transformations in the hierarchy.

The second kind of spatial representation, the decomposition of object

space, has been the focus of much recent research. In this case, the entire object

space is divided repeatedly into cells or cubes, resulting in a tree structure. The

leaf nodes do not contain primitives, such as edges and polygons, but

approximate the object components by the cells or cubes to some degree of

precision. This type of decomposition does not provide the memory savings

offered by object decomposition. However, the spatial decomposition provides a

robust representation applicable to a wide class of objects, and it allows fast

computation of geometrical properties.

The traditional spatial data structures have been broadly classified as either

topological or grid [17, 18]. Each has different advantages for representing

A

certain types of data and supporting spatial data processing operations.

Topological data structures (Fig. 11) are ordered point sets such as isolated

points, line segments (point pairs) and lists of points which outline geographical

features. Gridded structures [19] subdivide the area of interest by a fine

rectangular mesh (Fig. 12). For image computations, two-dimensional data

representation have been accuracy dependent on resolution and data structure

category.

Topological structures have traditionally provided better representation of

legally defined and smaller-than-resolution-level objects. Such objects include:

(a)

z
A

'<T
Y

(b)

FlC. 10.— (a) A parallelepiped and (b) its corresponding octree.

— counties

— real estate parcels

— shoreline

— straight line boundaries between surveyors’ landmarks

— cities/rivers (on small-scale maps) with measurements (area, width

deviation) smaller than computer representation resolution (so that they

appear as points or lines)

Gridded systems, on the other hand, were better in handling fuzzy

boundaries, such as contours. However, within the last ten years, image analysis

techniques have developed new data structures based on quadtree and octree

concepts. These new structures are radically changing the traditional concepts of

spatial datasets.

THE CHOICE OF DATA MODELS

Global mapping models (ie. mosaics of polygons) are universally accepted

as the key to efficiently organizing spatial data sets. Regular recursive elemental

polygons with implicit spatial relationships (eg. adjacencies) have been shown to

FlC. 11.— Cartographic polygons.

■
is » * » ! ■

FlC. 12.— Gridded polygons.

serve as effective data models, upon which conceptual and logical implemen

tations can be built.

Of the three practical mosaics of squares, triangles and hexagons, none

appear to enjoy a distinct advantage in terms of computational complexity or

storage efficiency [20]. The simplest is the square; that is, a contiguous non

overlapping mosaic of squares. It is also the most widely used and researched [21].

The specific programmable implementation of the data model is a data

structure. In this case, the implementation data structure is based on successive

subdivision of squares, which is conceptually defined as a quadtree.

THE HYDROGRAPHIC HYPERSPATIAL CODE

The Hydrographic Hyperspatial Code (Hyspat Code) that is being

introduced is a variant on the quadtree/octree structure. It is initialized as a single

square world coordinate system, based on (0,0) at the south pole to (360,180) at

the north pole (Fig. 13). It is an information driven system, in that a limit is

placed on the number of data points permitted to reside within one cell.

Whenever a cell overflows in terms of data volume, (for initial prototyping there

reside 100 000 points per cell) it is subdivided into four smaller quadrants

(Fig. 14) and the process is repeated as the database is loaded.

Each quadrant in database terminology is, in fact, a table. Each table,

when subdivided, becomes a node point, whose identity and implicit spatial

attributes are stored on a coded string (ie. the table’s name). Each node point on

the string signifies a division by two of the limits of the quadrant. With this

structure, one can see an orderly breakdown of space into smaller quadrants with

respect to cell size. In other words, one can continue subdivision until a single

point resides in a single cell.

The model differs from traditional models in that there is no attempt made

either to maintain equality of geographic areas among cells or to approximate the

spheroidal shape of the earth. It is simply a subdivision of geographic coordinates.

Fully functionality of this data structure can be achieved by computing each

latitude and longitude down to the 30th level (Fig. 15) on the nodal string, which

gives a final resolution of 1.8 X 1.8 centimetres on the spheroid. This nodal

string (Hyspat code) is stored in the database as an attribute attached to every

spatial data point. For the prototype implementation, this was chosen as 30

characters, coinciding with the Oracle limit on the table name length.

The Hyspat code is a character string which fully describes the subdivision

limits. The power of this structure can be realized as the implied spatial relation

ships are achieved through partitioning the data into manageable-sized cells, while

spatial operations are done by pattern matches on strings defining cellular

boundaries. The length of the string defines the size of the cell, while the nodal

points on the string define the location of the cell. The final nodal point, along

with a pattern match on the string, can also determine the nearest neighbor cells.

Thus, by using substrings and key attributes, one can dynamically establish

spatial relationships between areas or points without the use of polygons. With

this capability, one can generate topologies using 4th generation SQL queries.

CELL ID = 3

CELL ID = 1

CELL ID = 4

CELL ID = 2

LATITUDE

-180 = 90 N

- 90 = EQU ATOR

- 0 = 90 S

180 360

LON G IT U DE D E G R E E S

FlG. 13.— Cell initialization at startup.

ORIGINAL CELL BEFORE PARTITIONING

CELLS: 3131,3132,3133,3134 -CREATED FROM ORIGINAL 313

NB: ON PARTITION COMPLETION CELL 313 IS DROPPED (DESTROYED).

N UM BER OF C H A R A C T E R S IN CELL ID IS IM M E D IA T E COUNT OF THAT CELL 'S LEVEL OF

REPARTITIONING.

FlG. 14.— New references generated:

1 — Ref-lat 3131 = Ref-lat 313+0, Ref-lon 3131 = Ref-lon 313+0;

2 — Rel-lat 3132 = Ref-lat 313+0, Ref-lon 3132 = Ref-lon 313+ 1/2 (delta-lon)O;

3 — Ref-lat 3133 - Ref-lat 313+ 1/2 (delta-lat), Ref-lon 3133 - Ref-lon 313+0;

4 — Ref-lat 3134 = Ref-lat 313+ 1/2 (delta-lat), Ref-lon 3134 = Ref-lat 313+ 1/2 (delta-lon).

LOW
LONGITUDE

UNIQUE ID NUMBER (CHARACTER STRING)

HIGH
LONGITUDE

TOP LATITUDE
000

BOTTOM LATITUDE

REFERENCE
(BOT LAT, LOW LONG)

LATITUDE = REAL WORLD COORDINATES +90
RANGE (0-180)

LONGITUDE = REAL WORLD COORDINATES
RANGE (0-360)

ATTRIBUTES:

ID UNIQUE 30 CHARACTER STRING FROM WHICH REAL WORLD COORDINATES CAN
BE DERIVED

COUNT NUMBER OF DATA POINTS IN THE CELL

SMAX NUMBER OF DATA POINTS ALLOWABLE BEFORE DYNAMIC REPARTITIONING

TAKES PLACE

ONLINE FLAG INDICATING THE CELL IS ON OR OFF-LINE CURRENTLY

FlG. 15.— One cell (partition).

TEMPORAL APPLICATION

The explanation here has been two dimensional. If the third dimension is

applied to the structure, the logic does not change. Instead, the patterns become

like octrees and the cells become cubes that are subdivided according to the same

logic, until a single point resides in a cube. This puts a three dimensional

coordinate system into a single key. Another aspect is to make TIME the third

dimension, with the z values defined as functions of time (Fig. 16). This in effect

can put a four dimensional key into a single string, which represents the

translocation of a three dimensional object or voxel through time (t,x,y,z), This

time data elements is newly termed as a Toxel. This same key can be

represented as a binary string, which can facilitate searches by orders of

magnitude simply by doing Exclusive ORs or bit masking, thereby greatly

speeding up the overall search process of pattern matching. Such types of

structures and methodologies can greatly enhance the techniques of trend analysis

and temporal analysis. Hence the Hyspat code provides a new way to depict

spatio-temporal information, which has so far eluded conventional database

technologies.

TIME

rY

- ► X

FlG. 16.— Hypercubes moving through time.

FUNCTIONALITY

The quadtree representation was chosen for the detailed explanation of the

Hyspat code in order to facilitate the understanding of the structure by the reader.

This was done because the author recently gleaned the fact that people are three

dimensional entities who tend to think in two dimensions.

The temporal relationships can be implemented by going to octree encoding
of one to eight, rather than the quadtree encoding of one to four. The logic

applied is exactly the same.

The fundamental logic of the Hyspat code is that it is a dynamic stacked

image database structure. If one sorts the data using the Hyspat code as the key,

one finds that the data is effectively clustered in space/time. This permits:

— explicit relationships of entities over the same area

— efficient data retrieval

— efficient input and storage of large data sets

— user ease in adding two dimensional information

The dynamically stacked Hyspat code data structure consists of tables, with

the table name being the matched substring of the Hyspat code string attribute,

thereby providing the implicit spatial relationships. All Hyspat codes having the

same substring are grouped into these tables. When a table exceeds the user

dictated size level, (100,000 points), it subdivides into four subsections. The table

names increase by one level by storing the nodal point on the string.

example:

T able D41312113000000000000000000000 overflows

This table is subdivided into

D41312113100000000000000000000
D41312113200000000000000000000

D 41312113300000000000000000000

D41312113400000000000000000000

The information is poured from table

D41312113000000000000000000000

into the above tables and the originating table is dropped.

The digital data are ‘stacked’ by sorting on the Hyspat code. Then all

information values for each cell are stored in a single table. This type of data

structure allows a choice of data types related to space. It yields simple sequential

uniform format files that can be used by virtually any computer system. Thus,

data of any region, taken at different times, can be combined and added to

symbolic information about the same area at any time. This dynamic storage

allocation offers:

— simplified and efficient grouping of data due to string matches between

Hyspat codes

— effective geographic windowing of data where each table is named as a

substring of Hyspat code

— ease of access to offline storage, where entire tables are exported to

individual media, such as magnetic tapes or optical storage.

The quadtree data model, as opposed to a topological representation,

achieves:

— superior representation of the subtle variations in spatial data

— versatility in data manipulation

— storage efficiency

A significant point is that one can easily compute relative distances between

cells. For example, one can do an Hyspat code string match between two points,

and if they match up to the 30th level then the data points are approximately

1.8 cm apart. This resolution is achieved at the worst case on the equator. If the

string length is increased to 35 levels, the final resolution of the spatial cells of

the world is 5.7 X 5.7 mm. With the limits of the temporal hypercube set at 0 to

1024 years, and utilizing the same spatial limits of 0 to 360 and 0 to 180

degrees, a final resolution of the temporal cell is 5.7 X 5.7 mm X 1 second. If

one further extends the string to 70 characters the toxel resolution becomes .0008
seconds X 1.65*10 to the power -10 mm X 1.65*10 to the power -10 mm for

the entire world for a time period of 8,673, 820,672 years. These 70 characters

can be represented using octal binary string (Fig. 17) representation of 210 bits.

Each level on the string signifies a division by two of the cell’s boundaries.

In this manner, one can have a length associated with the latitude. This would

provide approximate distances without doing any major computation. The

significance is that this type of proximity determination among attributes, or

groups of attributes, or even different entities, can be combined with user defined

functions (e.g. statistics of groupings, binning, Krigging, depth contouring) without

compute intensive geographic calculations. The polygon structure cannot handle

such variations. If contours are available, the determination of minimum distance

between them would be exceedingly expensive, but with the Hyspat code, spatial

relationships can be dictated between points without the use of polygons.

Therefore, the generation of topologies from the data becomes a possibility [22].

Yet another interesting facet of this structure is that one can compute string

length with respect to positional error. In this manner, implicit error statistics for

TOXELS 35 CHARACTERS LONG REPRESENT

THE WORLD 0 - 180 LAT 0 -360 LONG FOR 1034 YEARS

RESOLUTION

5.7MM X 5.7MM X 1 SECOND

BINARY OCTAL REP 105 BITS

TOXELS 70 CHARACTERS LONG REPRESENT

THE WORLD 0-180 LAT 0 -360 LONG FOR 8,673,820,672 YEARS

RESOLUTION

1.65*10EXP-10MM X 1.65*10EXP-10MM X .0008 SECONDS

BINARY OCTAL REP 210 BITS

FlG. 17.— Toxel representations.

the data can become inherent in the data string by zeroing the least significant
nodal points.

example:

the total nodal string is

D41312113211342221332111142143

With a positional uncertainty of + 0.64 metre, the string becomes

D41312113211342221332111100000

This establishes confidence levels without adding additional error attributes
to the database.

CANADIAN HYDROGRAPHIC SERVICE DATABASE

A major problem with conventional processing packages is that they are

too rigid, not allowing new manifestations of the data without major overhauling

of the software packages. Simple flat file management is used at the cost of

storage wasted in unused blank fields. New attributes are required to conform in

name, type and length to the predefined fields. System expansion is limited by the

number of spare fields available for new data. However, in a DBMS, the attribute

structure is variable rather than fixed, permitting new fields to be added at any
time.

The CHS DBMS [23] differ from other conventional database systems

since it is largely a spatio-temporal database. It differs in that most queries or

operations require a large degree of spatial manipulation. This data manipulation

is done by data selection subject to scale, such as shallow-biased and deep-biased

overplot removal [24], and by superceding data (temporal data) by a more recent

dataset. The CHS data manipulation capabilities use basic algorithms that can be

varied to perform a variety of operations on the digital data. These algorithms

can be successfully implemented on the database because the stacked data

structure is highly effective in supporting these operations. The basic methodology

is to move a window over the stacked data. At each stop, all data from each cell

inside the window can be read and the data in any active cell can be modified.

The user then can specify the general type of action to be taken, such as:

— add, replace, delete, extract or supercede data

— localize the logical definition of the active cells (for which processing will

take place)

— define logical and arithmetic operations to be performed within each cell

— define the nature of any new data to be created

The primary keys to interrelate project numbers, charts, vessels,

establishments, collection platforms and surveys are space and time. These

elements will reside in catalog tables which point spatially, using Hyspat codes, to

the relevant cells within the data base. Each cell, in reality, is a geographic

window (containing data) which can interrelate spatially and temporally with
various sources. The source tables will have time stamps (which gives temporal

aspects to the data base), indicating which agencies were in a particular

geographic area during a finite period of time

example:

vehicle/start year/julian day/end year/julian day/Hyspat code

Baffin/1987/126/1987/220/H1121314211300000000000000000

CHARTS AND AREA DEPICTION USING JOIN TABLES

A previously stored image (graphic portrayal) is retrieved by accessing

image tables, which contain unique pointers using time elements and source id

(source identification). These pointers are join tables that extract image data from

the whole data set. The user obtains these image tables by specifying window

limits, using latitude, longitude, boundaries as well as scale. A conventional GIS

then is used to perform subjective decisions on the data, such as interactive

editing and overplot removal (data thinning). The time elements and source id are

then obtained from the GIS and loaded into image tables within the Database.

The time elements and source id serve as pointers to subsets of the database. In

this manner, severed image tables can access the same data points without adding

redundancy to the database. Thus, image overlaps and scale changes beceme
trivial to overcome.

The time elements and source id for each selected data element is always

unique, because no single collection platform can be in two places at the same

time. This is one of the reasons it is advocated that time element fields should be

filled, using system time at the moment of digitizing historical graphical documents,

such as linen backs or field sheets. The cursor, similar to a collection vehicle,

cannot be at two places at the same time. The source id, which is the name of the

collection vehicle or digitizer table, determines whether or not the time is valid, in

that the time represents actual collection or pseudo time obtained from the

computer system at the moment of digitization. From this, the time elements along

with source id can be seen to provide a unique key to perform joins.

TABLE ARCHIVAL

Very Large Databases are primarily in static mode, resting on secondary

storage media such as magnetic tapes or optical disks. Most of the operations

involved on the database are updates and extractions of secular partitions of the

database. This logical user access method will be supported by export/import

capabilities. The access method will also be chosen by the system on the basis of

available memory size and the quantity of data needed simultaneously to fulfill

the user request. This is based on the assumption that the total database cannot

reside simultaneously on the system, due to lack of disk storage or memory. This

fits in nicely with this type of schema, as only subsections of the database are

placed in dynamic mode on the system at user request.

Most large digital databases are stored on tape, a strictly sequential

medium. However, with the advent of read/write capabilities on optical disks, this

medium could rapidly go the same route as vinyl long playing records (with the

advent of compact disks). The CHS database schema can work on both

mediums. However, the spatial structure will be more efficient with random access

capability available on the optical disk. This could drastically improve access

time. If the user accesses more than one cell at a time, and if all the cells of the

required data cannot be stored on the system, the system can read the data from

secondary storage devices. This would give it the capability to perform operations

on the cells sequentially. Also, the updated records can be written out in parallel

with the input process. In this manner, a divide and conquer principle can be

adhered to without causing a system overflow.

CONCLUSION

The dynamically stacked Hydrographic Hyperspatial database structure,

and the accompanying data manipulation facilities, effectively cover the types of

data storage and operations required by a spatial database.

The database structure permits direct comparison of variables over the

same area. It can store and retrieve data efficiently, as well as combine

information without loss of data which occurs in other systems. This type of

capability allows the user much greater ease and flexibility in data manipulation

than is available in most other current GIS or database systems.

The data accessing approach in this system consists of the ability to

retrieve, add, replace, delete, supercede and perform operations on the multi-

variable data included in the window. The data manipulation operations can be

applied to data in each cell. Various methods of physical storage and searching

of the stacked data are possible.

This system illustrates the great flexibility and generality of the data

structure. Relational Spatial analysis can be done directly on the data, without the

implementation of polygonal windowing that is currently in use in other systems.

Finally, with the advent of spatio-temporal structures such as the Hyspat code,

the existing database technologies can blaze a new trail into the information

world.

References

[1] Gio WlEDERHOLD: Databases, IEEE Computer, October 1984, pp. 211-222.

[2] Richard SHEY, Gio WlEDERHOLD: Data Engineering and Information Systems, Stanford

University, IEEE Computer January 1986, pp. 18-30.

[3] H.P. VARMA: An Interactive Editor for Hydrography, Canadian Hydrographic Service

Lighthouse, March 1985.

[4] C.L. MacDONALD, I.K. CRAIN: Applied Computer Graphics in a Geographic Information

System: Problems and Successes, Canada Land Data Systems Environment Canada,

IEEE Computer Graphics and Design, October 1985, pp. 34-39.

[5] E. NEUHOLD, M. STONEBRAKER: Future Directions in DBMS Research, TR-88-001

Internationa) Computer Science Institute, May 1988, 947 Center St. suite 600 Berkeley,

California, 94704-1105.

[6] H. SAMET: A top-Down Quadtree Traversal Algorithm, University of Maryland IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-7 no.l, January

1985, pp. 94-97.

[7] H. SAMET, M. T a m m in e N: Computing Geometric Properties of Images Represented by

Linear Quadtrees, University of Maryland, IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. PAMI-7 no. 2, March 1985, pp. 717-720.

[8] H. SAMET, C.A. SHAFFER: A Model for the Analysis of Neighbor finding in Pointer

Based Quadtrees, University of Maryland, IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. PAMI-7 no. 1, November 1985, pp. 717-720

[9] H . NOBORIO, S. FUKUDA, S. ARIMOTO: Construction of the octree Approximating Three

Dimensional Objects by Using Multiple Views, University of Toyonaka, Osaka, Japan,

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 10 no. 6 ,

November 1988, pp. 769-781.

[10] B.B. C h a u d h u RI: Applications of Quadtree, Octree, and Binary Tree Decomposition

Techniques to Shape Analysis and Pattern Recognition, Indian Statistical Institute India,

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-7 no. 6,

November 1985, pp. 652-660.

[11] I. CARLBOM, I. CHAKRAVARTY: A Hierarchical Data Structure for Representing the

Spatial Decomposition of 3-D Objects, Schlumberger-Doll Research, Ridgefield,

Connecticut, IEEE Computer Graphics and Applications, April 1985.

[12] H. SAMET, R.E. WEBBER: Hierarchical Data Structures and Algorithms for Computer

Graphics, University of Maryland, IEEE Computer Graphics and Applications, July

1988.

[13] I. G a RGANTINI, T.R. W A L S H , O .L . W U : Viewing Transformations of Voxel-Based

Objects Via Linear Octrees, University of Western Ontario, London, Canada, IEEE

Computer Graphics and Applications, October 1986.

[14] A. KAUFMAN, R. BAKALASH: Memory and Processing Architecture for 3-D Voxel-Based

Imagery, State University of New York, Stony Brook, N.Y., IEEE Computer Graphics

and Application, November 1988.

[15] M. A gOSTON: Algebraic Topology, Marcel Dekker, New York, 1976.

[16] T.C. WOO: Interfacing Solid Modeling to CAD and CAM : Data Structures and

Algorithms for Decomposing a Solid, University of Michigan, IEEE Computer, December

1984, pp. 44-49.

[17] D.C. GOSSARD, R.P. ZUFFANTE, H. SAKURAI: Representing Dimensions, Tolerances and

Features in MCAE Systems, Massachusetts Institute of Technology, IEEE Computer

Graphics and Applications, March 1988, pp. 51-59.

[18] D. LAURENT, S. MOTET: Geomatic: A 3-D Graphic Relief Simulation System, University

of Paris VII, France, IEEE Computer, December 1984.

[19] H .P. V A R M A , H. BOU DREAU : Probability of Detecting Errors in Dense Digital

Bathymetric Data Sets by Using 3-D Graphics Combined with Statistical Techniques,

Canadian Hydrographic Service Proceedings, C1SM Conference, June 1989.

[20] N. A JU A : On Approaches to Polygonal Decomposition for Hierarchical Image

Decomposition, Computer Vision Graphics and Image Processing, 1983.

[21] W. T O B LER , Z. CHEN: A Quadtree for Global Information Storage, Geographical

Analysis, 1986.

[22] T.L. K U N II, T. SA T O H , K . Y a M AGUCHI: Generation of Topological B oundary

Representations from Octree Encoding, University of Tokyo, Japan, IEEE Computer
Graphics and Applications, March 1985.

[23] H.P. V A RM A , A.J. KERR: Hydrography and the Digital Era, Canadian Hydrographic

Service, International Hydrographic Review, 1987, Monaco.

[24] H.P. V A RM A , M. JA Y : Histerics in Hydrography, Canadian Hydrographic Service, In-

House Publication, 1987.

Dr. D. Wells

Dr. Y.C. Lee

Dr. D. Gregory

Mr. R. MacNab

Mr. A. Sherin

Dr. B. Loncaravic

Mr. P. Bellemare

Dr. J. Verhoef

Acknowledgements

University of New Brunswick
University of New Brunswick

Bedford Institute of Oceanography

Bedford Institute of Oceanography

Bedford Institute of Oceanography

Bedford Institute of Oceanography

Bedford Institute of Oceanography

Bedford Institute of Oceanography

