
David Abel BengChinOoi (Eds.) 

Advances in 
Spatial Databases 
Third International Symposium, SSD '93 
Singapore, June 23-25, 1993 
Proceedings 

Springer-Verlag 
Berlin Heidelberg New York 
London Paris Tokyo 
HongKong Barcelona 
Budapest 



Contents 

Keynote Paper 

Spatial data management in database systems: Research directions 
Won K i m (Keynote Speaker), Jorge Garza, A l i Keskin 1 

D a t a Modeling 

Realms: A foundation for spatial data types in database systems 
Ralf Η. Gueting, Markus Schneider 14 

A canonical model for a class of areal spatial objects 
Michael F. Worboys, Petros Bofakos 36 

Strong integration of spatial domains and operators in a relational 
database system 
Thierry Larue, Dominique Pastre, Yann Viemont 53 

Spatial Indexing 

The transformation technique for spatial objects revisited 
Bernd-Uwe Pagel, Hans-Werner Six, Henrich Toben 73 

A paging scheme for pointer-based quadtrees 
Clifford A. Shaffer, Patrick R. Brown 89 

Indexing Mechanisms 

A hierarchical spatial index for cell complexes 
Elisabetta Bruzzone, Leila De Floriani, Monica Pellegrinelli 105 

On optimal multiversion access structures 
Bruno Becker, Stephan Gschwind, Thomas Ohler, Bernhard Seeger, 
Peter Widmayer 123 

Concurrent accesses to R-trees 
Vincent Ng, Tiko Kameda 142 

Handling of Raster and Vector Data 

A spatial data model and a topological sweep algorithm for map overlay 
Ulrich Finke, Klaus Hinrichs 162 

An optimal quadtree translation algorithm 
Chuan-Heng Ang 178 

Database support for multidimensional discrete data 
Peter Baumann 191 



XII 

Keynote Paper 

From extensible databases to interoperability between multiple databases 
and GIS applications 
Hans-Jörg Schek (Keynote speaker), Andreas Wolf 207 

Spatial Database Systems 

Interoperability of spatial and attribute data managers: A case study 
Curtis P. Kolovson, Marie-Anne Neimat, Spyros Potamianos 239 

Ge02: Why objects in a geographical DBMS? 
Benoit David, Laurent Raynal, Guylaine Schorter, Veronique Mansart 264 

Topology 

A small set of formal topological relationships suitable for end-user 
interaction 
Eliseo Clementini, Paolino Di Felice, Peter van Oosterom 277 

Qualitative and topological relationships in spatial databases 
Z. Cui, A. G. Cohn, D. A. Randell 296 

Topological relations between regions in R2 and Z2 

Max J. Egenhofer, Jayant Sharma 316 

Storage Management 

Query-adaptive data space partitioning using variable-size storage clusters 
Gisbert Droege, Hans-Jörg Schek 337 

A storage and access architecture for efficient query processing in spatial 
database systems 
Thomas Brinkhoff, Holger Horn, Hans-Peter Kriegel, Ralf Schneider 357 

Query processing of spatial objects: Complexity versus redundancy 
Michael Schiwietz, Hans-Peter Kriegel 377 

Keynote Paper 

The SEQUOIA 2000 project 
Michael Stonebraker (Keynote speaker), James Frew, Jeff Dozier 397 

Query Retrieval 

Neighborhood query and analysis with GeoSAL, a spatial database 
language 
Zhexue Huang, Per Svensson 413 



XIII 

Application of a reciprocal confluence tree unit to similar-picture retrieval 
Daniel J. Buehrer, C. C. Chang 437 

Knowledge Engineering in S D S 

Deduction and deductive databases for geographic data handling 
A. I . Abdelmoty, Μ. H. Williams, N . W. Paton 443 

Representing je^ggectationsj in spatial information systems: A case study 
Graham J. Williams, Steven G. Woods 465 

3-Dimensional D a t a Handling 

Volumes from overlaying 3-D triangulations in parallel 
W m Randolph Franklin, Mohan Kankanhalli 477 

A declarative, object-oriented interface to a solid modeler 
Michael L. Hey tens, Cristiano Sacchi 490 

Indexing on spherical surfaces using semi-quadcodes 
Ekow J. Otoo, Hongwen Zhu 510 



A Storage and Access Architecture for 
Efficient Query Processing in Spatial Database Systems 

Thomas Brinkhoff, Holger Horn, Hans-Peter Kriegel, Ralf Schneider 

Institute for Computer Scieuce, University of Munich 
Leopoldstr. 11 B, W-8000 München 40, Germany 

e-mail: {brink,holger,kriegel,ralf} (&dbs.informatik.uni-mueuchen.de 

Abstract: Due to the high complexity of objects and queries and also due to extremely 
large data volumes, geographic database systems impose stringent requirements on their 
storage and access architecture with respect to efficient query processing. Performance 
improving concepts such as spatial storage and access structures, approximations, object 
decompositions and multi-phase query processing have been suggested and analyzed as 
single building blocks. In this paper, we describe a storage and access architecture which 
is composed from the above building blocks in a modular fashion. Additionally, we in
corporate into our architecture a new ingredient, the scene organization, for efficiently 
supporting set-oriented access of large-area region queries. An experimental performance 
comparison demonstrates that the concept of scene organization leads to considerable 
performance improvements for large-area region queries by a factor of up to 150. 

1 Introduction 
During the last decade, the management, representation and evaluation of spatial data 
in information systems gained increasing importance. Geographic information systems 
(GIS) are increasingly used in public administration, science and business. The nucleus 
of a GIS is the geographic database system. Contrary to business applications based on 
standard database systems, such systems are not suitable for geographic applications 
[Wid 91]. The insufficient expressive power e.g. of relational systems, leads to unnatu
ral data models and to poor efficiency in query processing. 

Therefore, various research groups have developed a large number of concepts and 
techniques for improving single aspects of a geographic database system. Examples are 
the design of spatial data models or efficient access methods for managing large sets of 
spatial objects. 

In this oaper, we wil l present our geo architecture, a new storage and access archi
tecture forspatial objects integrating several concepts and techniques. It is not our goal 
to present a new spatial database system or a kernel of a system such as D ASDBS 
[SW 86], EXODUS [CDRS 86], GRAL [Gut 89] and POSTGRES [SR 86]. Instead, we 
would like to assemble suitable concepts and techniques to a spatial query processing 
mechanisn. One of the most important building blocks of our architecture is the scene 
organization, a new technique for supporting large range queries. Its performance im
provement by up to two orders of magnitude is demonstrated. 

The paj>er is organized as follows. First, we take a closer look at the objects and op
erations conmonly used in geographic information systems. This leads to a set of basic 
queries which should be efficiently supported by our architecture. A model of spatial 
query processing using different phases is described in section three. In section four, we 
present diferent algorithms and methods for supporting these phases. The new scene 
organizatkn is described in section 4.4. The integration of the algorithms and methods 

http://informatik.uni-mueuchen.de


358 

leads to our geo architecture. The rest of the paper contains an investigation of the per
formance of this architecture, hi particular, we present a detailed performance evalua
tion of our new scene organization for real world data. The paper concludes with a brief 
statement of our findings and some suggestions for future work. 

2 Objects and operations of a spatial database system 
In this paper, we present a conceptional architecture for storing objects and processing 
queries in a geographic database system. To develop such an architecture, we first need 
an exact specification of the objects and queries. This is presented in the following sub
sections. 

2.1 Objects 

The objects stored in a geographic database are used for modeling specific parts of the 
surface of the earth with respect to one or several properties. Therefore, the objects are 
characterized by a spatial and a thematic component. The spatial component describes 
the spatial locality and the shape of the modeled part of reality whereas the thematic 
component contains the thematic information. 

The spatial component 
The spatial component of an object is represented by one of the basic topological ele
ments of the plane: point, line or area. Points are described by specifying their coordi
nates with respect to a given coordinate system. For modeling lines, both polylines as 
well as free-form curves are used. In this paper, we concentrate on representing areas. 
From the literature two main concepts for representing areas are known: the raster and 
the vector model. Because of its favorable scaling capabilities, its lower demand of stor
age and its "object orientation", the vector model has been preferred over the last few 
years for application in geographic database systems. The type of spatial objects we 
consider in this paper is the class of simple polygons with holes (SPH for short) (see 
figure 1). A polygon is called simple i f there is no pair of nonconsecutive edges sharing 
a point. A SPH is a simple polygon where simple polygonal holes may be cut out. The 
class of SPHs is well suited for geographic applications (see [Bur 86]). It allows repre
senting areas with arbitrary precision and explicitly takes holes into account. 

The thematic component 
The thematic component characterizes an object with respect to one or several thematic 
properties. We distinguish between qualitative properties such as land use and quanti
tative properties such as amount of precipitation. For representing thematic values, sim
ple data types such as strings or real numbers are used. 

The object model 
The geo architecture to be developed should be able to store sets of objects consisting 
of a spatial (SPH) and a thematic component (vector of simple data types). Figure 2 
gives a typical example of a map which is represented by a set of SPHs. 

Fig. 1. Simple polygon with holes 



359 

Fig. 2. Map of the European counties modeled by a set of SPH 

Both components require a completely different handling by the geo architecture. For 
managing vectors of simple data types, e.g. in a relational database system, a lot of well 
known data structures and algorithms are available. However, organizing the spatial 
component demands for new structures and algorithms. They should organize the ob
jects in such a way that spatial queries referring to location and shape of the objects are 
processed efficiently. 

Additional to these fundamental properties of the spatial objects, two more aspects 
are important for the design of the geo architecture. First, we need a characterization of 
the objects from real applications as accurate as possible. Second, we need a specifica
tion of the queries and operations to be performed on these objects. 

2.2 Characteristics of the objects 

In this paper, it is not our goal to present a general characterization of the object sets 
occurring in geographic applications. From our point of view this is impossible because 
of the very wide application spectrum geographical information systems are used in. In
stead, we outline some general properties of the data which influence the design of our 
geo architecture considerably. 

Complexity and variation of the data 
• Number of objects and data volume 

In real applications, the number of data objects may be as high as 109. The data vol
ume may occupy up to 1 TerraByte (see [Fra 91] and [Cra 90]). 

• Variation of objects and sets of objects 
Data from real world applications vary extremely with respect to single objects and 
whole object sets [Fra 91]. This particularly refers to the following aspects: 
• Object extensions 

It varies in a range of 1 : 106 [Fra 91], where the largest objects may occupy the 
whole data space. 

• Object shape 
• Amount of storage 

As an example, in the World Data Bank I I [GC 87] the amount of storage for one 
polygonal object varies between 0.5 KB and more than 1.1 GB. 



360 

• Distribution of the objects in the data space 
The number of objects per unit (density) varies in a range of 1 : 104 in real world 
applications [Fra 91]. 

In particular, we have to consider that there are no upper bounds neither for the exten
sion of objects, the complexity of object structure, the amount of storage, nor for the 
density of the objects. 
Persistent storage of the objects in a weak dynamic environment 
Recording the data of a geographic information system is an expensive task. Very often, 
data from paper maps as well as satellite pictures have to be integrated into a seamless 
database. This work is often a source of inaccuracy and inconsistency, which has to be 
revealed and removed by using time consuming consistency check mechanisms. Alto
gether recording the data and preserving consistency of the data account for approxi
mately 80% of the operating costs of a geographic database system [Aro 91]. 

After recording the database, it is persistently stored and used on a long term basis. 
However, the database is not static because correcting mistakes, removing inconsisten
cies and adapting to changes in the real world leads to updates of the data. Al l in all, the 
database is weakly dynamic. 

The properties of spatial objects mentioned above and the queries and operations de
scribed in the following section form a requirement definition for the geo architecture 
which is described in detail in section 4. 

2.3 Queries and operations 

Geographic database systems are used in very different application environments. 
Therefore, it is not possible to find a compact set of spatial queries and operations ful
filling all requirements of geographic applications [S V 89]. Instead, we present four ba
sic classes of operations each with a number of typical representatives which should be 
supported by our architecture. 

1) Modifications 
Analogously to standard database systems, there are operations for insertion, deletion 
and update of records in a geographic database system. 

2) Selections 
We can distinguish between two types of selections: those referring to the spatial and 
those referring to the thematic component of an object. 
a) Spatial selections: 

• Point Query 
Given a query point Ρ and a set of objects M. The point query yields all the ob
jects of Μ geometrically containing Ρ (see figure 3(a)). 

• Region Query 
Given a polygonal query region7? (of type SPH) and a set of objects M, the re
gion query yields all the objects of Μ sharing points with R. A special case of the 
region query is the window query. The query region of a window query is given 
by a rectilinear rectangle (see figure 3(b)). Both, the window query and the re
gion query are often called range queries. 



361 

Fig. 3. Examples for a point and a window query 

b) Thematic Selections: 
When performing a thematic (relational) selection the objects are selected with re
spect to properties of their thematic component. Within this section, we pay atten
tion only to the spatial component of the objects. In section 4.5 we wi l l describe how 
to support thematic selections. 

3) Combinations 
• Spatial Join 

For two given object sets A and Β the spatial join operation yields all pairs of objects 
(a,b),ae Ayb e Β whose spatial components intersect. More precisely, for each 

object α Ε A we have to look for all objects in Β intersecting with a. Note, that for 
efficient processing of the spatial join a selective spatial access to the objects is nec
essary. 

• Map Overlay 
The map overlay is one of the most important operations in a geographic informa
tion system [Bur 86]. It combines two or more sets of spatial objects. This combi
nation is controlled by the overlay function determining in which way intersecting 
objects have to be handled. The map overlay is completely based on variants of the 
spatial join operation. In addition to the spatial join, the intersection of a pair of 
overlapping objects has to be computed. Neighboring objects with identical values 
of their thematic component should be merged [KBS 91]. 

4) Analyzing sets of objects 
Selections or combinations of existing sets of objects are often followed by further 
processing steps in practical applications. The operations and algorithms used for these 
steps are very specific for a particular application and, therefore, are not supported by a 
general storage and access architecture. Without considering the details, we can distin
guish two classes of these operations and algorithms. 
• Automatic analysis 

Analyzing functions applied to the spatial and/or the thematic component of the ob
jects are part of this class. Typical representatives are: calculating the average of the 
area or perimeter of a set of objects, calculating the minimum and maximum of the
matic attributes etc. 

• Visualization 
In many cases the automatic analysis of a database is not possible and manual inter-



362 

mediate steps perfonned by a user are necessary to complete the analysis. For this 
purpose, a visualization of the data on a graphic device is necessary. 

The above mentioned facts clearly demonstrate that spatial selections are of great im
portance within the set of spatial queries and operations. They do not only represent an 
own query class, but also serve as a very important basis for the operations of the classes 
2 - 4. Therefore, an efficient implementation of spatial selections is an important re
quirement for good performance of the complete geographic information system. 

3 A phase model for geometric query processing 
After the description and specification of objects and queries, we wil l design an archi
tecture for storing spatial objects and efficiently processing queries. The main task of 
the architecture is the efficient processing of spatial queries and operations. Therefore, 
in this section, we take a closer look at this type of queries, distinguish different phases 
in their processing and specify algorithms and data structures for their processing. 

As mentioned in the last section, spatial selections are the most important basic op
eration in spatial query processing. Their execution can be described abstractly as a se
quence of steps: 

Step 1: Scaling down the data space 
Considering spatial selections in more detail, it turns out that only a local part of the 
complete data space has to be investigated. Only this area contains candidate objects 
that may fulfill a selective query. 

For an efficient scaling down of the data space, it is essential to use data structures 
organizing the objects with respect to their spatial locality and shape. Obviously, ob
jects jointly fulfilling a query condition lie close together in the data space. Therefore, 
a physical clustering of the objects with respect to their spatial locality and shape is es
sential for providing efficient spatial query processing. 

Due to the arbitrary complexity of real geographic objects, it is not possible to build 
up an index considering the complete information on the extension of the objects. Thus, 
the access method is not able to yield the exact result of a query. Instead, it excludes a 
large subset of objects from the result. A set of candidate objects that may fulfill the 
query condition remains and has to be passed on to step 2 of the query processing mech
anism. Orenstein established in [Ore 89] the terms filtering and refinement for this type 
of query processing. 

Step 2: Exact investigation of the objects 
Step 2 of the query processing tests whether a candidate object actually fulfills the query 
condition or not. For that purpose, a spatial predicate, e.g. "polygon contains point" or 
"rectangle intersects polygon", has to be checked. Similar to step 1, this test consists of 
different phases. First, the test has to be restricted to only that part of the object that is 
really relevant for the test. Figure 4 gives an example: To evaluate whether the query 
window R overlaps Lake Volta, only its northern west peak has to be examined. 

Due to the complexity of the objects on the one hand and the selectivity of spatial 
queries on the other hand, it is useful to structure the objects locally. The resulting struc
ture elements have to be organized in a data structure referring to their spatial locality 
and extension. Using this data structure, we can efficiently decide which parts of the ob
ject are actually relevant to the query. Only this small number of local parts is further 



363 

examined using computational geometry algorithms, which finally decide whether an 
object fulfills the query or not. 

R 

Fig. 4. Test of a query window against Lake Volta 

Step 3: Output of objects for further processing 
After identifying an object as part of the result, it is usually passed on to further process
ing e.g. analyzing steps, output operations etc. Therefore, a physically connected stor
age of all parts of the objects is necessary to support a fast access to the complete object. 

4 An architecture for query processing in spatial database systems 
After the abstract description of the phase model for spatial query processing, we 
present algorithmic techniques for supporting the individual phases. Later on in this 
section, these techniques are used as building blocks within our geo architecture. 

4.1 Spatial access methods 

Access methods as an essential part of the internal level of a database system are used 
to organize a dynamic set of objects on secondary storage. One-dimensional access 
methods like B-trees or linear hashing are not suitable for spatial database systems. For 
these systems, we have to look for data structures which organize the polygonal objects 
with respect to their location and extension in the data space. The arbitrary complexity 
of the spatial objects (simple polygon with holes) makes it very difficult to develop a 
structure considering the whole object description. Instead, we consider access methods 
for simpler two-dimensional objects. Surveys of spatial access methods can be found 
e.g. in [Sam 90] and [Wid 91]. 

directory level 1 

directory level 2 

data pages 

Fig. 5. Schematic presentation of an R*-tree 

The simplest class of two-dimensional objects are rectilinear rectangles. For this class 
of objects, a number of index structures already exists. A popular representative is the 
R-tree [Gut 84]. The R-tree stores as many spatially close objects (rectangles) on one 
data page as it accommodates and surrounds them by their minimum bounding box. A 



364 

set of such bounding boxes is stored on a (directory) page. Again, theirr minimum 
bounding box is computed and stored in a directory page one level above arad so on. In 
this way, the whole object set is stepwise spatially clustered and a tree-like (directory is 
created (see figure 5). 

A very efficient version of the R-tree is the R*-tree [BKSS 90]. Withiin this data 
structure sophisticated algorithms for page sphtting and local reorganizations are used. 
The overlap of page regions and the length of their margin are minimized as well as the 
dead space, i.e. the space occupied unnecessarily by page regions. 

This idea of organizing rectangles leads to an efficient processing of point queries 
and small window queries [BKSS 90]. Unfortunately, this is restricted to rectangles or 
other simple spatial objects, not larger than a data page. In real applications;, it is abso
lutely necessary to store more complex objects and to process large window queries ef-
ficienüy. Later on in this section, we wi l l present an access architecture for managing 
arbitrary simple polygons with holes and processing large window queries efficienüy. 

4.2 Approximations 

The set of results to a spatial query consists of all the objects fulfilling a geometric pred
icate e.g. containing a query point. As mentioned in the last section, spatial access meth
ods are used for excluding a large subset of the objects from the result as early as pos
sible. The remaining candidate objects have to be investigated by computational geom
etry algorithms. Considering complex objects (polygons with large numbers of 
vertices), this is a time consuming task. This leads to the idea of a geometric pretest. 
Such a test should be easy to process and should decide for a large number of objects 
whether they fulfill the query condition or not. 

For implementing the idea of a geometric pretest, the concept of object approxima
tions is an adequate approach. In [Kri 9 la] a detailed classification of different approx
imation techniques is given. The description of an approximation should be simple and 
its quality should be high, two obviously competing criteria. To make object approxi
mations useful for a geometric pretest, the object has to be contained completely in its 
approximation {conservative approximation) [Sch 92]. Examples for conservative ap
proximations are minimal bounding boxes, convex polygons, ellipses etc. (figure 6). 

minimal bounding box convex hull 5-corner ellipse 
Fig. 6. Various conservative approximations 

Let us have a closer look at the processing of a point query using object approximations. 
First, for all candidate objects it is tested, whether their approximation contains the 
query point or not. In case of a negative result, the object does not contain the query 
point either. The object is discarded and a time consuming point-in-polygon test could 
be saved. Only in case of a positive pretest, the object itself has to be tested. 

[BKS 93a] contains a detailed examination of object approximations used for spatial 
query processing in a real data environment. It turned out that the convex 5-corner is the 
best compromise between the approximation quality and storage amount. Using the 



365 

R*-tree, it is shown that other approximations than the minimal bounding box can effi
ciently be organized in a spatial access method originally designed for bounding boxes. 

4.3 Object decompositions 

Object approximations are applied to avoid complex geometric tests. Object decompo
sition techniques, however, are used to simplify and speed up their processing. 

Consider again a point-in-polygon test. For processing this test an algorithm with 
linear runtime complexity is necessary [PS 88]. This examination of complex polygons 
i.e. polygons with thousands of vertices consumes a considerable amount of CPU time. 
On the other hand, only a small local part of the object is actually relevant for the deci
sion whether an object contains a point or not. This leads to the idea of object decom
position. Applying this idea, the objects are divided into a number of simple and local 
components, e.g. triangles, convex polygons etc.. During spatial query processing, only 
one or a small number of these components has to be checked. In [KHS 91] and 
[Kri 91a] the decomposition approach for simple polygons with holes is presented and 
discussed in detail. 

convex polygons triangles trapezoids 

Fig. 7. Three decomposition techniques for simple polygons 

Using object decompositions geometric tests are applied only to components, e.g. trap
ezoids, which is much more efficient than testing the whole polygon. To decide which 
components are relevant for a particular test, we use again an R*-tree to organize the 
components of one object with respect to their location and shape. The resulting tree is 
called a TR*-tree. In [SK 91] we demonstrated that the TR*-tree efficiently supports 
various types of spatial queries and operations. 

4.4 Scene organization 

One important requirement for geographic database systems is the set orientation 
[Wid 91]. A spatial query processor has to perform small queries as well as large que
ries efficiently. When processing a large query, a large amount of data is transferred 
from seconday storage into main memory. The concepts presented up to now in this 
paper, merely support an efficient processing of small queries but do not speed up large 
queries considerably. Therefore, there is an obvious demand for a concept supporting 
set orientation. 

Considering the existing storage organization and the type of objects to be stored, 
we can obsene the following points: 
• The objeas are very large in comparison to the size of the pages they are stored in. 

Even in the case of large pages (e.g. 4 KByte), the number of objects per page is usu
ally smalland often we need several pages for storing just one single object 

• The pagei used for storing objects are distributed on the secondary storage device 
independently from spatial aspects, i.e. pages lying adjacent in space lose their 
neighborhood on the storage device. Large region queries transfer a large amount of 



366 

spatially adjacent pages into main memory. Therefore, an arbitrary distribution of 
these pages on the disk leads to very high access costs during query processing. 

The concepts presented in the sections before preserve only a local ordering within the 
pages [Wid 91]. To support the set orientation in an appropriate way, a global order 
preservation i.e. a physical clustering of larger storage units, is required. 

Different approaches are conceivable to handle larger storage units. In [Wei 89] us
ing larger pages, pages of variable length, various buffering strategies and physical 
clustering of pages combined with a set-oriented interface are discussed in detail to han
dle large complex objects. In this paper, physical clustering of pages is favored and nat
urally offers itself as an adequate approach to store scenes within our geo architecture. 
To translate this approach into action, we need a set-oriented interface between the da
tabase system and the secondary storage device [Wei 89]. Such an interface allows an 
efficient transfer of physically adjacent pages from secondary storage to main memory. 
The implementation of such an interface is not the subject of this paper. 

In [HSW 88] an idea based on dynamic z-hashing for implementing physical clus
tering of pages is presented. This idea is applied to rectangles in [HWZ 91]. However, 
the global order is preserved only for approximations of objects. Furthermore, this hash 
approach is not applicable to access methods with an arbitrary space partitioning 
scheme. Therefore, we have developed a concept based on the partitioning scheme of 
the R*-tree. 

Building up the scene organization 
As mentioned before, we use the R*-tree as a major component of our geo architecture, 
due to its good performance and its robustness. The R*-tree uses a very efficient scheme 
for space partitioning neither clipping nor transforming the spatial objects. These facts 
lead to the idea of using the partitions i.e. subtrees of the R*-tree as basic units for phys
ical clustering. In the following, a scene is defined as a subtree of the R*-tree physically 
clustered on secondary storage. One scene consists of a large set of physically adjacent 
pages containing all corresponding objects. Using this approach, no additional data 
structure for handling scenes is necessary. 

An object larger than one page is stored on several pages such that all of them are 
physically clustered within one scene. Thus, also the transfer of such a large object into 
main memory is supported by the scene organization (see step 3 of the phase model). 
Note that no order has to be preserved within each scene. 

In addition to a schematic structure of the scene organization, figure 8 presents the par
ticular scene organization for the counties of the European Community (see figure 1 

subtrees for the scenes 
physically clustered (a) approximations 

Fig. 8. Scene organization 

(b)scenes 



367 

also). The R*-tree contains the polygons representing the counties, their decomposition 
components and their approximations (figure 8 (a)). Figure 8 (b) depicts the partition
ing of the R*-tree on a higher directory level. The rectangles describe the scenes, the 
corresponding subtrees are physically clustered. 

Query processing 
Using our scene architecture, small queries as well as large queries are processed effi
ciently. Small queries are processed by single page accesses as described before. I f a 
range query specifies a larger query region, all scenes intersecting the query region, i.e. 
subtrees of the R*-tree, are transferred into the main memory. For each scene just one 
search operation on secondary storage is necessary. Without a scene organization, we 
need one search operation for each page which is much more expensive. Unfortunately, 
a scene may contain a number of objects not fulfilling the query condition (false hits). 
Nevertheless, the false hits are also transferred into main memory. A relatively small 
number of false hits does not affect performance considerably, since the time needed 
for searching a page drastically exceeds the time for transferring a page [PH 90]. In ad
dition, the degree of intersection between the scene and the query region may be used 
as a measure to decide whether the scene is transferred completely or whether the query 
is answered without using the scene organization. A detailed performance evaluation of 
the scene organization is presented in section 5.1. 

After transferring the scene into main memory, a query is processed as usual, i.e. us
ing approximations and decomposition techniques (see section 4.2 and section 4.3). A 
detailed algorithmic description of the dynamic organization of the scene architecture 
is presented in [Sch 92] and [BKS 93b]. Supplementing the presented query processing 
techniques by a scene organization allows an efficient query processing for queries of 
arbitrary size. 

4.5 Integration of thematic attributes 

The techniques presented up to now are completely dedicated to spatial queries. Que
ries referring to thematic attributes of the stored objects are also important in geographic 
information systems (see section 2.1). 

For an efficient support of thematic queries, an additional index, i.e. a secondary in
dex (e.g. a B-tree) is necessary for the relevant thematic attributes. The R*-tree in co
operation with the scene organization determines the location of physical storage of the 
objects. For connecting both, we need a link table. This table assigns to each spatial ob
ject, which is represented by a unique surrogate one data page of the R*-tree. I f the data 
page of the spatial object changes, only the entry of the link table has to be updated. An 
update of the secondary index is not necessary. To allow an access from the spatial in
dex to the link table, all entries of the spatial objects in the data pages have to be ex
tended by a surrogate. 

In figure 9, the integration of a secondary index and a link table into our complete 
geo architecture is presented (for more details see also [Kri 91b] and [Sch 92]). 

4.6 The geo architecture 

Up to now, we have presented basic concepts and techniques for an efficient query 
processing in geographic databases. The goal of this section is the integration of these 
concepts into our geo architecture. This architecture is presented in figure 9. 

The basic building block of our architecture is the R*-tree. It organizes the objects 
on secondary storage pagewise and allows an efficient spatial indexing. Starting with 



368 

the root, a spatial query passes through the R*-tree, thereby locating one or several 
scene descriptions. I f the intersection of the query region and the scene exceeds a given 
threshold, the scene is completely transferred into main memory where query process
ing proceeds. Otherwise, the required data regions are transferred page by page. 

The next ingredient of the architecture are approximations. They support a first 
preselection to determine whether an object fulfills the query or not. For that purpose, 
the approximations, e.g. minimal bounding 5-corners, of the objects are stored in the en
tries of the data pages. I f the approximation of a spatial object fulfills the query, the ob
ject itself has to be further investigated. Therefore, each object entry contains a pointer 
to its exact geometric representation managed by a TR*-tree. The TR*-tree organizes 
all decomposition components and helps exploiting spatial selectivity in query process
ing. Instead of applying time consuming computational geometry algorithms to com
plete spatial objects, the query condition is evaluated just considering simple compo
nents. 

The architecture is completed by secondary indices for thematic attributes. A the
matic query traverses the B-tree yielding one or more surrogates. These surrogates are 
used for accessing to the link table providing the number of the data page storing the 
object entry. 

spatial 
primary index 

secondary index 
for thematic attributes 

data pages 
with entries 

\ number of 
the data page 

entry 

t object repres. j 
Fig. 9. Integration of efficient building blocks into our geo architecture 

5 Evaluation 
The techniques integrated in our architecture for spatial databases have been investi
gated and tested extensively. The basic component of the architecture is the R*-tree. In 
[BKSS 90] a detailed performance evaluation is presented and it turns out that the 
R*-tree outperforms the other R-tree variants. A performance comparison of the 
R*-tree, the R+-tree and the PMR-Quadtree is presented in [HS 92]. Various approxi
mations are compared in [BKS 93a]. The minimum bounding 5-corner turns out to be 
best suited for spatial query processing. 

The decomposition approach is examined in [Kri 91a] and [KHS 91]. Especially 
small queries are processed much faster using the convex and the trapezoid decompo-



369 

sition instead of the undecomposed representation. The integrated representation of a 
polygon decomposed into trapezoids using a TR*-tree is considered in [SK 91]. 

The combination of spatial objects to scenes is introduced in this paper for the first 
time. As mentioned before, we expect a considerable performance improvement by us
ing this approach. This expectation is confirmed by a detailed performance evaluation 
of the scene architecture presented in the following subsection. 

5.1 Evaluation of the scene organization 

Basically, there are three different models for storing spatial objects: 
1. ) Storing the exact object representations outside of the data pages (model 1) 

In the data pages of the index structure, we store the approximations and the 
pointers to the exact representations of the objects. The exact representation is 
stored outside the index structure, e.g. in a sequential file. This approach is used 
in quadtrees for instance [HS 92]. In other words, the spatial index structure is a 
primary index for the approximations and a secondary index for the spatial ob
jects. This model is shown schematically in figure 10. The main advantage of 
this scheme is the large number of approximations stored together in one data 
page, i.e. a maximum degree of local ordering of the approximations is pre
served. Furthermore, there is no limit to the size of the exact object representa
tion. A fundamental drawback is the fact that the order preservation just refers 
to the object approximations and not to the objects themselves. Consequently, 
when processing range queries for each access to an exact object representation 
an additional page access is necessary. 

2. ) Storing the exact object representation inside the data pages (model 2) 
The exact representation of the objects is stored, in addition to the approxima
tions, inside the data pages. Therefore, spatial neighborhood is physically pre
served and objects are transferred into main memory just using one disk access 
[Wid 91]. In contrast to the first model, the index structure is a primary index for 
the spatial objects and determines their storage location. An essential drawback 
of this approach is the low number of objects fitting into one page. As a conse
quence, neighboring objects are often stored in different pages. In section 2.2 we 
have emphasized that objects larger than one data page often occur in geographic 
databases. Handling these objects with the second model is a difficult task be
cause a special page overflow mechanism has to be implemented. 

3. ) Storing objects in a scene organization (model 3) 
This model has already been presented in section 4.4. Larger parts of the data are 
physically clustered within so called scenes and organized in an R*-tree. 

In figure 10 the three models are depicted. 
The scene organization has been designed for supporting large region queries. Con

sidering such set-oriented queries, we have to take a closer look to two important prob
lems: 
• Which performance is gained by the three models ? Is the performance of the scene 

organization superior to the other two models ? 
• Which size of the scenes leads to the best query performance ? Does this size sig

nificantly depend on the size of the range queries ? 



370 

model 1 model 2 model 3 

Fig. 10. Models for storing spatial objects 

Test environment 
To find an answer to these questions, we have carried out a detailed empirical perform
ance comparison of the three models. We used real test data from the US Bureau of the 
Census [Bur 89] containing county borders, highways, railway connections and rivers 
of four Californian counties. This database consists of 119.151 lines, each consisting of 
2 to 349 points. Each co-ordinate is represented by a real number of 8 Bytes. Altogether 
the database has a size of 15.9 MByte. The lines were approximated by using minimal 
bounding boxes. For the representation of these boxes 16 Bytes are available. These 
boxes are depicted in figure 11 (a). 

(a) Test data (b) Query regions (1 % area) 
Fig. 11. Data and queries used for the tests 

Using this data set we built up three R*-trees referring to the three different models. The 
page capacity was 4 KByte. 

To investigate the performance of the models for large query regions, we carried out 
four test series with different sizes of the query regions. Each series consists of 464 
quadratic window queries uniformly distributed over the data space covered by the ob
jects. The area of the query regions varies between 0.25% and 16% of the data space. 
In figure 11 (b) the 1% queries are shown. Table 1 presents the query specification of 
the four test series. 



371 

test series 

size of 
the queries 
(per cent of 

the data space) 

per test series average per query 

test series 

size of 
the queries 
(per cent of 

the data space) 
number 

of records 
data volume 

(KByte) 
number 

of records 
data volume 

(KByte) 

I 0.25 % 189,229 29,392 408 63 

II 1 % 714,937 105,521 1,541 227 

III 4% 2,687,648 382,483 5,792 824 

IV 16% 9,462,455 1,315,236 20,393 2,835 

Tab. 1. Characteristics of the test series 

To evaluate the Performance of the three models, we need a measure for the access cost. 
The time necessary for reading one page into main memory consists of the search time, 
i.e. the time needed for locating the page on secondary storage, and the transfer time, 
i.e. the time needed to transfer the data from secondary into main memory. Normalize 
the cost for a transfer operation to 1. Then in real magnetic disk drives the cost for a 
search operation is approximately 10 [PH 90]. I f N s denotes the number of search op
erations and N j denotes the number of transfer operations then the complete access cost 
A is given by: 

A = \0Ns + NT 

Considering range queries, the access cost within the R*-tree is negligible in compari
son to the access cost of the exact object representation. Thus, in the following, we take 
into account only the access cost for reading the exact object representation. 

Test results: 
In table 2, we present the access cost when storing the lines outside the data pages 
(model 1). The number of search operations (N s ) , the number of transfers (N T ) and the 
access cost A are presented (in the following table, A is not directly calculated from N s 

and N T due to rounding). 

test series I (0,25 %) test series II (1 %) test series III (4 %) test series IV (16 %) 

N s 
N T A N s N T 

A N s 
N T A N S 

N T A 

189 189 2,082 715 715 7,864 2,688 2,689 29,585 9,462 9,463 104,088 

Tab. 2. Access cost for model 1 (in thousand, rounded) 

Storing the exact object representation outside the data page, requires at least one (ex
pensive) search operation for each answer, because of the missing spatial organization 
of the exact object representations. 

Table 3 contains the results for model 2, i.e. for storing the lines inside the data 
pages. 

test series I (0,25 %) test series II (1 %) test series III (4 %) test series IV (16 %) 

N s 
N T A N s 

N T A N s 
N T A N s 

N T A 

16 16 175 52 52 573 180 180 1,985 610 610 6,710 

Tab. 3. Access cost for model 2 (in thousand, rounded) 



372 

Compared to model 1, model 2 needs considerably less search operations. The reason 
for this behavior is the fact that many neighboring objects are stored in just one data 
page and read into main memory by one access. The improvement only marginally de
pends on the size of the query ranges. N T has basically the same size as N s , because in 
the test data only a few records are larger than one page. 

In the scene organization (model 3), the results considerably depend on the average 
size of the scenes. Using model 1, the exact object representation is only accessed i f it 
is necessary for query processing. Contrarily, in the second model exact object repre
sentations are read into the main memory i f they are close to the margin of the query 
region, but do not intersect the query region (false hits). Large scenes need only a small 
number of search operations but a high number of transfers from the secondary to the 
main memory due to the large number of false hits. On the other hand, the smaller the 
scenes, the higher the effort for searching and the lower the number of transfers. To ex
amine this effect in more detail and to determine the optimal scene size, we varied the 
scene size in our comparisons. The results are presented in table 4 where the best results 
are shaded. 

average 
scene size 

(Byte) 

test series I (0.25 %) test series II (1 %) test series III (4 %) test series IV (16 %) average 
scene size 

(Byte) N S 
N T A N s 

N T A N s 
N T A N s 

N T A 

1,852,750 1.1 698 709 1.2 781 794 1.6 943 959 2.1 1,666 1,188 

757,943 1.2 275 287 1.6 343 345 2.4 505 529 4.1 837 877 

273,357 1.5 128 144 2.3 185 208 4.2 324 365 8.6 638 725 

140,124 1.8 78 96 3.0 123 153 6.0 238 14.1 528 669 

91,619 2.2 62 84 3.9 103 142 8.5 214 m 20.8 503 m 

79,027 2.1 51 72 3.9 90 13Ö 8.8 191 m* 22.7 474 m 
63,402 2.3 46 70 4.5 85 ; J30 10.4 187 m 27.5 467 742 

33,283 3.2 36 m 6.7 70 137 17.3 167 340 48.8 447 936 

18,610 4.2 26 <& 10.0 57 158 27.8 151 429 82.8 432 1,260 

10,716 6.1 23 84 15.4 54 209 45.6 153 609 140 452 1,853 

8,367 6.8 21 87 18.2 52 235 55.6 152 708 175 460 2,210 

Tab. 4. Access cost for the scene organization (model 3) (in thousand, rounded) 

As expected, with increasing scene size N s decreases and N T increases. Scene sizes be
tween 25 and 100 KByte lead to minimum access cost, depending on the size of the que
ries. The larger the queries, the larger the optimal scene size. However, this dependency 
is not as strong as expected. There is a factor of 64 in the size of the queries between 
test series I and IV, but only a factor of 4 in the resulting optimal scene sizes. Addition
ally, the graphs for the cost functions are very flat close to their minimum. Thus, we 
chose 77 KByte as a nearly optimal scene size for all test series. 

Conclusion 
In table 5, the access cost for all three models is presented. The cost for model 1 is stand
ardized to " 1 " . For the other two models the numbers describe the speed up factor for 



373 

query processing using these models. The average scene size for model 3 is 79,027 
Bytes. 

model 
speed up factors for query processing 

model 
I (0.25 %) II (1 %) III (4 %) IV (16%) 

1: Geometry outside of the data pages 1.0 1.0 1.0 1.0 

2: Geometry inside the data pages 11.9 13.7 14.9 15.5 

3: Scene organization 28.9 60.5 105.7 148.5 

Tab. 5. Speed up factors for query processing using model 2 and 3 in comparison to model 1 

In conclusion, we would üke to point out the following statements: 
• Storing the exact object representation inside the data pages (model 2) speeds up 

query processing by a factor of 12 to 15 in comparison to model 1 (using separate 
pages). The size of the query regions has only a small influence on this factor. For 
the interpretation of the results one remark is important: The objects used for the 
tests are relatively small in comparison to the size of the data pages. Using larger 
objects, i.e. objects larger than one data page, requires storing the exact representa
tion outside of the data pages. As a consequence, query performance of model 2 
comes closer to the performance of model 1. 

• The new scene organization is the clear winner of the performance comparison. 
Even the processing of small queries is performed considerably faster by this stor
age model. For small queries, we have a speed up factor of about 30 (in comparison 
to model 1) which is increasing to the impressive value of 148 for large queries. 
Another important result is the fact that the optimal scene size is almost independent 
of the query sizes. Therefore, using the scene architecture with a fixed scene size is 
beneficial to queries of very different size. 
Furthermore, the flat form of the cost function guarantees a considerable speed up 
of the query processing, even i f the average size of the scene is varying caused by 
insertions and deletions of objects. 

6 Conclusion 
We proposed a storage and access architecture for geographic database systems. This 
architecture integrates a number of various concepts and techniques for efficient query 
processing. 

The R*-tree is the basic component of our geo architecture. It organizes the data on 
secondary storage with respect to their spatial location and shape. In this way, the search 
region of spatial queries can be quickly narrowed down. The next ingredient of our ar
chitecture are object approximations. They support an efficient preselection to decide 
whether an object fulfills the query or not. In comparison to the usually used minimum 
bounding box, the minimum 5-corner is a good compromise between the quality of the 
approximation and the amount of required storage. The exact geometric representation 
of an object is managed by a TR*-tree. The polygonal objects are decomposed into sim
pler components and organized with respect to their spatial location and shape. This al
lows a selective access to the components needed to process a spatial query. Due to the 
simplicity of the components, the application of time consuming computational 
geometry algorithms to complex objects is avoided. Thematic queries are supported by 



374 

secondary indices for thematic attributes. These secondary indices are connected to the 
primary index, i.e. the R*-tree, using a link table. 

The parts of our architecture mentioned above support efficient processing of que
ries with high spatial selectivity, i.e. point queries and small window queries. To speed 
up the set-oriented object access of large range queries, we added a new ingredient to 
our architecture: the scene organization. Using this new approach, large parts of the 
data are combined in scenes and spatially clustered on secondary storage. These scenes 
are organized within the primary R*-tree. We investigated the performance of this ap
proach in a detailed performance comparison. For large range queries, the scene organ
ization is superior in performance to ordinary storage models with a speed up factor up 
to two orders of magnitude. 

The use of our architecture is not restricted to geographic information systems. With 
only slight modifications it can also be used in systems for computer aided design 
(CAD) or computer integrated manufacturing (CIM). 

In our future work, we plan to incorporate our geo architecture into an existing ex
tensible database system for spatial applications. Promising candidates for this idea are 
DASDBS, GRAL and POSTGRES. Performance evaluations of our geo architecture af
ter incorporating it into such a system wil l be very interesting. 

Furthermore the design of a parallel geo architecture is an interesting challenge for 
future research activities. Parallelism should be exploited in two ways. First, we want 
to use a multi processor system to process queries in main memory in a massively par
allel way. Using object decomposition techniques in a parallel environment promises a 
considerable performance improvement. Second, we want to use multi disk systems to 
organize the large data volume of geographic applications more efficiently. The main 
problem to solve is, to determine an appropriate distribution of the data over the differ
ent disk drives. 

The application of the presented techniques to 3D~objects is another interesting field 
of research activities for the future. For example, bio-computing is an important field of 
application for 3D-spatial objects. The first step in this direction is the development and 
implementation of 3D-approximation and decomposition techniques. 

References 
[Arc- 91) Aronoff S.: 'Geographic information Systems', WDL Publications, 1991. 
[Bar 88] Barteime Ν.: Ό IS Technology: Geographic information systems, land information 

systems and their fundamentals' (in German), Springer, 1988. 
[BKS 93a] Brinkhoff Τ., Kriegel H.-P., Schneider R.: 'Comparison of Approximations of Com

plex Objects used for Approximation-based Query Processing in Spatial Database 
Systems', Proc. 9th Int. Conf. on Data Engineering, Vienna, Austria, 1993. 

[BKS 93b] Brinkhoff Τ., Kriegel H.-P., Schneider R.: 'Scene Organization: A Technique for 
Global Clustering in Spatial Database Systems', 1993, submitted for publication. 

[BKSS 90] Beckmann Ν., Kriegel H.-P., Schneider R., Seeger Β.: 'The R*-tree: An Efficient and 
Robust Access Method for Points and Rectangles', Proc. ACM SIGMOD Int. Conf. 
on Management of Data, Atlantic City, NJ., 1990, pp. 322-331. 

[Bur 86] Burrough P.A.: 'Principles of Geographical Information Systems for Land Re
sources Assessment', Oxford University Press, 1986. 

[Bur 89] Bureau of the Census: 'TIGER/Line Percensus Files, 1990 Technical Documenta
tion', Washington, D C , 1989. 



375 

[CDRS 86] Carey Μ. J., DeWitt D. J., Richardson J. E., Shekita E. J.: 'Object and File Manage
ment in the EXODUS Extensible Database System', Proc. 12th Int. Conf. on Very 
Large Data Bases, Kyoto, Japan, 1986, pp. 91-100. 

[Cra 90] Crain I.K.: 'Extremely Large Spatial Information Systems - A Quantitative Perspec
tive', Proc. 4th Int. Symp. on Spatial Data Handling, Zürich, Switzerland, 1990, 
pp. 632-641. 

[Fra 91] Frank, A.U.: 'Properties of Geographic Data\ Proc. 2nd Symp. on Large Spatial 
Databases, Zürich, Switzerland, 1991, in: Lecture Notes in Computer Science, Vol. 
525, Springer, 1991, pp. 225-234. 

[GC 87] Gorny A.J., Carter R.: 'World Data Bank II: General users guide ', Technical report, 
U.S. Central Intelligence Agency, Washington, 1987. 

[Gut 84] Guttman Α.: 'R-trees: A Dynamic Index Structure for Spatial Searching', Proc. 
ACM SIGMOD Int. Conf. on Management of Data, Boston, MA., 1984, pp. 47-57. 

[Gut 89] Güting R. H.: Oral: an extensible relational database system for geografic applica
tions', Proc. 15th Int. Conf. on Very Large Data Bases, Amsterdam, Netherland, 
1989, pp. 33-44. 

[HS 92] Hoel E.G., Samet Η.: Ά Qualitative Comparison Study of Data Structures for Large 
Line Segment Databases', Proc. SIGMOD Conf., San Diego, CA., 1992, 
pp 205-214. 

[HSW 88] Hutflesz Α., Six H.-W., Widmayer P.: 'Globally Order Preserving Multidimensional 
Linear Hashing', Proc. 4th Int. Conf. on Data Engineering, Los Angeles, CA., 1988, 
pp. 572-579. 

[HWZ 91] Hutflesz Α., Widmayer P., Zimmermann C : 'Global Order Makes Spatial Access 
Faster', Int. Workshop on Database Management Systems for Geographical Appli
cations, Capri, Italy, 1991, in: Geographic Database Management Systems, 
Springer, 1992, pp. 161-176. 

[KBS 91] Kriegel H.-P., Brinkhoff Τ., Schneider R.: An Efficient Map Overlay Algorithm 
based on Spatial Access Methods and Computational Geometry', Int. Workshop on 
Database Management Systems for Geographical Applications, Capri, Italy, 1991, 
in: Geographic Database Management Systems, Springer, 1992, pp. 194-211. 

[KHS 91] Kriegel H.-P., Horn H., Schiwietz M. : 'The Performance of Object Decomposition 
Techniques for Spatial Query Processing', Proc. 2nd Symp. on Large Spatial Data
bases, Zürich, Switzerland, 1991, in: Lecture Notes in Computer Science, Vol. 525, 
Springer, 1991, pp. 257-276. 

[Kri 91a] Kriegel H.-P., Heep P., Heep S., Schiwietz M . , Schneider R.: An Access Method 
Based Query Processor for Spatial Database Systems', Int. Workshop on Database 
Management Systems for Geographical Applications, Capri, Italy, 1991, in: Geo
graphic Database Management Systems, Springer, 1992, pp. 273-292. 

[Kri 91b] Kriegel H.-P., Heep P., Heep S., Schiwietz M . , Schneider R.: Ά Flexible and Exten
sible Index Manager for Spatial Database Systems', Proc. 2nd Int. Conf. on Data
base and Expert Systems Applications, Berlin, Germany, 1991, pp. 179-184. 

[Ore 89] Orenstein J. Α.: 'Redundancy in Spatial Databases', Proc. ACM SIGMOD Int. 
Conf. on Management of Data, Portland, USA, 1989, pp. 294-305. 

[PH 90] Paterson I) . , Hennessy J.: 'Computer Architecture: A Quantitative Approach', Mor
gan Kaufman, 1990. 

[PS 88] Preparata F.P., Shamos M. I . : 'Computational Geometry', Springer, 1988. 
[Sam 90] Samet H.: 'The Design and Analysis of Spatial Data Structures', Addison Wesley, 

1990. 
[Sch 92] Schneider R.: A Storage and Access Structure for Spatial Database Systems', 

Ph.D.-thesis (in German), Institute for Computer Science, University of Munich, 
1992. 



376 

[SK 9 1 Ϊ Schneider R., Kriegel H.-P.: 'The TR*-tree: Α New Representation of Polygonal Ob
jects Supporting Spatial Queries and Operations', Proc. 7th Workshop on Compu
tational Geometry, Bern, Switzerland, 1991, in: Lecture Notes in Computer Science, 
Vol. 553, Springer, 1991, pp. 249-264. 

[SR 86] Stonebraker M , Rowe L.: 'The Design ofPOSTGRES', Proc. ACM SIGMOD Conf. 
on Management of Data, Washinton D.C., 1986. 

[SV 89] Scholl Μ., Voisard Α.: 'Thematic Map Modelling', Proc. 1st Symp. on the Design 
and Implementation of Large Spatial Databases, Santa Barbara, CA., 1989, in: Lec
ture Notes in Computer Science, Vol. 409, Springer, 1990, pp. 167-190. 

[SW 86] Schek H.-J., Waterfeld W.: Ά Database Kernel System for Geoscientific Applica
tions', Proc. 2nd Int. Symp. on Spatial Data Handling, Seattle, Washington, 1986, 
pp. 273-288. 

[Wei 89] Weikum G.: 'Set-Oriented Disk Access to Large Complex Objects', Proc. 5th Int. 
Conf. on Data Engineering, Los Angeles, CA., 1989, pp. 426-433. 

[Wid 91] Widmayer P.: 'Data Structures for Spatial Databases' (in German) in: Vossen G., 
Witt K.-U. (eds.): 'Entwicklungstendenzen bei Datenbank-Systemen' (Future 
Trends in Database Systems), Oldenbourg, 1991, pp. 317-361. 


