LAUR 05-910

Lox Alsmos Wellonal Labaratory |5 operzded by the Univarsity of Califomia for #na United States Ceparment of Enangy undar coriract We7408-EMG36

TITLE: THE RDB - A PARATLEL SPATIAL DATABASE FOR THE
IES/BT] SYSTEM
AUTHOR{E)E K. Carlson, L. Winters
SUBMITTED TOx; The 4th International Symposiom on Lacpe Spatial Databases
88D ‘93
DISCLAIMER

This ceport was preparsd ac an ancoukt of work sponsoted by an agonay of the United States
Goveromenl. Meither the Unlied States Government ot any agency thereal, nor any of their
employess, makes any warcanty, capress or implicd, or assumes any legal Iakility or msponsi-
bility fr (b accuracy, completensss, or wselultest of =uy informalion, agpacaivs, product, ot
m@ﬂ,«nmﬁuhmmh wot iofrings privalely oumed rights. Refer.
ence heetin 4o 2oy specifie commercial product, process, or service by tadc name, trademark,
manufaclorer, or stberwice does not ascessarily constitute of iy ity sndomsement, recom-
menidation, or favering Yy the Usited States Gorernmant or any agency thereof. The views

and opinions of suthats sipresied beeein do oot pecessarily sinte or reflect thase of the
United Stales Governmenl of any apency 1hersof.

——— e e

By accaptunca of this aﬂir.;la. the publicher vecognizes that the U6, Gavermment rataing a nonexchsive royatty-free lcansa 1o publish or reproduce
the publlzhed form of this contribution ar te ellow cthars to do so, for 115, Govammant purposes.

The Las Atamoes Mallonal Lebomiony requasts tht the plkiisher (deatify This artice: s work padommed iodar te suepicss o 1he 15, Department of Enangt.

TSTRIBUTION DF THIS ROCUWMERT 38 UNLIMITEG DT
LOS Alamos iXAmeNaimes s
MASTER

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

The RDB - a Parallel, Spatial Database for
the IES/BT] System

Kristi Carlson, Larry Winter
Compuier Research and Applications Group
Los Alamosz National Laboratory
Lox Alamos, New Meaxzico

1.0 Introdunction

The manipulation and representation of spatial data on computers is an important issue in
many computer applications (computer graphics, computer vision, database management
systems, geographic information systems). Spatial data, which consists of points, lines,
and regions in 2-dimensions, can be difficult to manage efficienily becanse it is often quite
voluminons. For instance, the number of picture elements in even a small digital image is
on the order of a million, while the number of lacations stored in a temmatn daigbase can
easily include billions of points. Furthermore, the kinds of operations performed on spatial
data -- set opezations, insertion, deletion, searches such as “neat”— are computs intensive,
and hence slow unless the data is structred to reflect its onderlying topology. Hence a
conventional database which is organized on search keys is often not adequate for ban-
dling spatial data.

Tn order to provide efficieat manipulatioe of spatial data, both efficient daia structuras and
paralle] computing can be employed. The data structires may be organized to provide effi-
cient spatial operations, and parallel computing allows s to operate on large subsats of
data in parallel. '

The Image Exploitation System, which is an automated image analysis system, has 2 great
need for efficient storage and manipulatfon of spatial data. The Image Exploitation Sys-
tem is part of the Advanced Research Project Agency’s Balanced Technology Initiative
and is abbreviated IES/BTI, IES/BTI must process tens to hundrads of megabytes of
imagery in a few minutes, and is compus&d of many independent components which need
to access and share spatial data. The systein needed an efficient parallel spatial database,
hence the motiviation for our work on the Region Daiabase, or RDB. -~

The RDE is cur attampt to meet the needs of the IBS/BTI Cycle 2 system. The RDB pro-
vides for storage and retrieval of both raster and vector based spatial data as well as
attribute-baged retrievals. It also provides facilities for conversion between the two repre-
sentations of spatial data (raster and vector) and for efficient, parallel boolean operations
on vector data. In this paper we discuss the reserach and development performed to

design and implement the RDB. !

The RDE - a Faraltel, Spoafin] Database for the IES/BTI SysemBebraary I7, 1995 1

~

2.0 The IES/BTI System

The IES/BTI system attemnpts to speed up the analysis of images obtained from synthetic
aperture radar sensors by identifying where enemy forces are likely to be, It must process
many types of data in order to perfonmn its inference: tereain data, vehicle classifications,
force structure, and signal intelligence information, It is intended to be vsed by image
analysts (o heip them to quickly focus on the images most likely to contain information
about enemy forces. As mentioned, IES/BTI must process large amounts of datain a
shost amount of time; specifically it is required that IES/BTI must process 128 megabytes
of imagery every 5 minutes. This led to a system design which was bazed on high-speed
parallel processing. Specifically, the Cycle 2 version is implemented in the C* data paral-
lel programming language on a 32 node Connection Machine 5. [WS93]

The IES/BTI system architecture consists of a set of components and data flows through
thein, and the RDB is simply one more C¥ component in the system. However, valike the
other components in the system it is implemented as a library of data-parallel C* functions
and is never cailed as a stand-alone process. The RDB receives data both prior to an YES/
BTI run, mostly a priori terrain data (Interim Terrain Data and Digital Terrsin Elevation
Data from the Defense Mapping Agency} that will not change from rmn to mn. It also
receives data from many sources during an IES/BTI run which includes individual mili-
tary foroe datections (represented as points), and military forces which are clustered into
lasger forces such as battalions (represenked as regions). As an example of how IES com-
ponents may use the RDRB, coasider the following: in a typical IES/BTI run, it is possible
for the Detection component to process an image and identify possible military forces
which it stores in the RDB, the Hospitability component may retrieve both detections and
texrrain information from the RDB and weed ot detections that are impossible because of
the underlying terrain and store the results back to the RDE, the Cluster component
retrieves these pruned detections and clusters thern into possible higher level forces and so
on. Clearly, IES/BTI needs an efficient database to process this amount of information in a
timely manner.

3.0 Rdb Design

The most important RDB requirement is to provide for fast storage and spatial searches.
The need for efficient spatial queries drove the design of our data organization. It was
necessary to implement an efficient paralle] spatial index as well as provide fast access to
secondary storage. It was alse necessary that we support retrieval by search key (or
object aktribute), however it was of secondary imporiance. Other requirements included
providing translation betwesn raster and vector representations of spatial data as well as
providing efficient manipulation of vector-based pelygzonal data. This entailed implemen-
tation of dats paralle] raster-to-vector conversion functions as well as data parallel imple-
mentations of boolean operations on vector data (UNION, INTERSECTION, etc.).

1. This research and development was perforped o part using the resources Jocated at the Advanced Com-
puting Labaratory of Los Alamos Mational Laboratory.

The RDE - 2 Parallel, Spatial Datsbage for the TESRTE SystemPebmery 37, 1995 2

3.1 Data Organization and Representations

The IES system has two basic classes of data that are stored in the RDB: overlay data and
object data. Each type of data has a different internal representation and differsnt spatial
index in the RDB.

Overtay data, mostly a priori terrain data such as elevation, consises of two-dimensional
grids of nombers. This data type is used to calculate and store hospitability date and the
like. Given the structure of the data and how it is wsed in IES/BTI, using a raster repre-
sentation is 4 sound and straightforward approach, However, most terrain data is too large
to simply store as a single grid, hence some kind of indexing was needed to divide the ter-
rain data into sub-gridsthat could be loaded into memory at once. Also, the area of oper-
ation for an IES/BTI run is typically too large 10 represent as a single grid on the CM-3.

Ohbjects are intended for use in representing every kind of IES/BTI data other than overlay
data. Hence, a generic, flexible data type was needed. The data type designed for this vse,
the RAbObject, consists of 3 main fields: spatial data (sither a point, ine segment or poly-
gon which defines where an object is Jocated as well as what its spatial extent is), attribute
information (actoally search keys that can be nsed to query for objects) and object data
(se¢ figure 1).The only fields vsed in queries are the spatial data and the search keys; the
object data is 5imply a pointer £ data that the RDB stores and redrieve without examina-
tion or interpretation. This provided a flexible design which allows the RDB to remain
independent of the specific data that is stored by IES/BTI components, a5 well a5 provid-
ing flexibility to wsess of the RDB {who need not define their data types uetil run-time)
[CWo4b].

PFigure 1: Data Abstraction for RdbObject

spatial data object data

B o T TR Y

The RDEB - n Parafiel, Spalial Datsbage for the: [BS/HATI SystemPabmary 17, 1995 3

3.1.1 Representation of Spatial Data

RdbObjects can have the spatial type of point, line segment, palygon or none. For point
and line segment data, we bse the obvious representation of storing the single point or the
pair of points for the object. For polygonal data, we performed experiments on a 32-node
partition of the CM-3 to compare the relative efiiciencies of a raster or full-sesolution grid
representation and & vector or vertex-list representation[CWHK94). In these experiments,
efficiency was measured both in terms of the amount of space required to store polygonal
objecis and in the amount of time it took to perform typical operations on polygonal
objects and databases of objects. We used the same spatial index for both representations.

For a subset of space in our spatial index, each vertex list consisted of a segmented paral-
lel variable of vertices, each segment corresponding to an individual polygon (see figure
2). Thus, operations on the list of polygons could be dore in parallel, even operations on
indjvidual vestices could be done in parallel.

-

Figure 2: a collection of polygons In a segmented verdex list

Segments delineating separate polygons

The EDB - 2 Paraliei, Spatial Databaze for the IES/BTI SyetemFebruary 27, 1995

We tested operations such as szarching for all polygons within a window which operated
on 4 collection of polygons as well as lower level operations like intersection of two poly-
gons, As would be expected on a data-paralle]l machine such as the CM-5, the lower
level boolean operations were very efficient (they shonld take constant time for a parallel
raster repeesentation on a data-parallel machine). For all other operations, however, we
found that in both storage requirements and in average time §t took to perform various
operations, the vector representation wag superior. This was not unexpected since the

'vector format’s starage requirements are based on the complexity of the polygon border,
net the area of the polygon and that resolution does not effect the amount of storage
required. Becanse of the reduced size of the vector data, it was possible to operate on far
more polygons at once than was possible with the full-resclution grid representation.
Hence we chose to store polygonal objects in vector format and bad the pew task of devel-
oping effictent, paralle] boolean operation on vector-based polygons.

3.2 Spatial Indexing

3.2.1 The Parallel Index Grid

One possibility for spatial indexing in a data-parallel environment is to use a uniform
index grid. One advantage of this method is its sirplicity both conceputally and in
implementation. It is also potentiall more efficient than hierarchical indices for opera-
tions which must examine all items in the data set. We chose this method for mdexing
overlay data in the RDB, implementing a parallel, 2-I) index grid which sebdivided the
irage space into “tiles”, or sub-grids. Implicit in the location in the index grid parallel
variable (pvan) of each grid element is the location and area that cach grid-clement
indexes. When a spatial retricval such as a window operation is done, the query is first
mapped into the index prid to determine which pieces of overlay data need to be brought
into memory, then the operation is completed on those pieces of data {see figure 3). The
mapping into the grid is simply a rectangle intersection function pesformed in parallel on
#ll grid elements at once.

There are potential drawbacks to this method of indexing that arise when the database is
sparsely poputated or when the indexed area is large bui the data is clusiered in only a few
grid elements (hence many elements in the index grid do not have any data associated with
them). It also is not appropriate for vexy farge data sets that either may result in an index
grid that is too large for the avatlable memory or in “tiles” that are too large to operate on
efficiently. An alternative approach would be to implement a pyramidal index structore
such as a hierarchical index grid. However, for the purposes of the RDB this index grid is
sufficient. The overlay data is all a priori terrain data and we knew that it was casily
indexed by such 2 data structare. .For RdbObject data, however, we could not gnarantes
that the amount of data would be well-confined. Hence we chose a different spatial index
for that data eype.

The RDEB - » Paralled, Spatial Danbnoc for the JESRT SystemPeboury 27, 1905 5

|Figure 3: Parallel Index Grid and the Window Operation

corresponding tiles

Parafle] Index Grid divides search space:

S

I

Figurs 1

3.2.2 Hierarchical Spatial Indices

Tree-based data stroctures ars an efficient way to store spatial data because they naturally
support important topological relations like region inclusion. Also, their low space
requiraments and the Jog{A} height of these trees allows for fast searching of the data
stucture. A number of tree representations have besn proposed for structuring spatial
data. Among the most successfil have been variations on the quadiree data struc-
ture.Quadtrees are a class of hierarchical data structures that recursively decamposs two-
dimensional space into quadrants. Each node of a gnadiree spans a portion of space and its
child nodes divide up that portion into four (equal or veequal) parts. Quadtrees vary in the
type of data they are used o represent (point, Line or region), the decomposition ruls and
the resolution (variable or not). In this context, resolution indicates the number of times a
decomposition process is applied and may be fixed or may be governed by properties of
the input data [Sam90}].

Sequential Indices. Eardy in our RIDB design we performed experiments to determine
the best indices for a sequential version of our index. These experiments were done to
support development of an RDB for an earliex TES/BTI system which was to reside on an
Encore Multi-max, a shared-memory paratlel computer. 'We chose to look at quadtrees
because the data for TES/BTI would be sparse and cover a large avea, conditions the
quadtres is well-suited for. IES/BTI would also require fast spatial lookup.

Tie RDE - 2 Parnltel, $patial Database for the [ES/BTI SystemPebruary 27, 1995 6

The experiment compared different quadfree index structures for point and rectangular
data and measured their efficiency in performing various operations we thought would be
important to the IES system. Rectangular data was used rather than polygonal data
because it was anticipated that pelygonal data would be stored by its minimum bovnding
rectangle, Queries would first be performed on the minimum bounding rectangles, then
the operation would be performed on the actual polygons of any matching objects. Our
experiments measured the effect of data density and clustering on the performance of the
various quadtrees, and determined that for IES™ purposes the FR quadtres was the best
choice for point data and the MX-CIF quadtres was the best choics for rectangular
[CW94a].

For 2 PR Quadtree, quadranis are subdivided into equally sized sub-quadrants of size 2™ x
21, A point datum is added to a PR Quadiree by finding the current guadrant into which
the datum fits and inserting the datum if the quadrant is unoccupied. If the quadeant is
already occupied, the auadgant is split until and empty sub-quadrant is available See Fig-
ure 4.

In an MX_CIF tiee, each reciangle, R, is associated with the quadtree nede corresponding
to the smallest quadrant that contsins R entirely. Hence data is stored at all levels of the
teee, not just at the leaves, And since many rectangles cen be associated with an individual
node, an auxiliary data structore is needed to keep the list of rectangles associated with
each quadrant. See Figure 5. For a more detailed description of these data strusturss, see
[Sam90].

k?lgure 4: the PR-Quadiree

BA 1] c

The RDB - a Parallel, Sgatint Database for the [ES/ETT SystemFebeicy 27, 1993 2

Figrure 5: The MX-CIF Quadiree

{5, D}

L

b — — -

- e o] — -

Not gnly were these bwo quadtress the most efficient, but they also share the advantage
that both use a regular decomposition rule. In other words, each quadrant subdivision
divides the quadrant into four aqual sub-quadrants. Thus quadrants at the same level and
location ir two different quadirees that both vse regolar decornposition will be identical in
the space they span. This makes it possible to perform operations across very different
types of data (points and polygons} more efficiently. Also, of the trees tested the PR and
MX-CIF guadtrees provided the most compact representation (i.e. fewer ievels in the tree)
of the quadirees tested. This tumed out to be vseful for our parallel implementation.

Parallel Hierarchical Structures. Sequential hierarchical structures are not ideal for
data-paraliel architectures sach as the CM-5 because they do not take advantage of its par-
allelism. Yet, because our search space was potentially large and the daia potentiadly
sparse we wanted to use a hierarchical, spatial index vs. another approach such as a paral-
lel index grid. Furthermore, it was unlikely that IES/BTI would generate enough data so
that an actual parallel version of the tree as discussed in [Bes90) or [Kui95) was war-
ranted. [t was pecessary to imnplement a structurs that took advantage of parallelisim and
bad a small, efficient tree structuore, Idcally, we wanted a hierarchical, spatial index that
allowed for the maximum number of objects to be operated on in paratlel withoot over-

The RDE - 2 Paraflel, Spatisl Diatsbase for the [RS/RTE SysmmFebmary 27, 1905 g

loading the available resovrees (memory)m effectively resulting in a flatter index that the
sequential quatrees.

Parallel approaches are still a topie of research. Hoel and Samet used parallelism to build
R-trees quickly and to build the results of queries quickly. [HS93]. Kuijt proposes in his
thesis proposal to use a data-paralle] index compression methad that takes a hierarchical
tree structure and scales it based on the available number of processors. Kuijt calls this p-
ary tree (where p is the number of processors) the Par-tree. [Kni95). Knijt’s approach
could prove very useful for very large databases.

For the EDB, we choss to use bucket versions of our sequential quadtress. Bucket meth-
ods simply store acollection of objects at a node rather than a single object, s0 an insertion
would insert an object into an already occupied node if the bucket threshold had not yet
been reached. The resolt is 4 smaller tree with fewer “structire nodes™. We mapped this
into our data parallel domain by representing each bucket as a parallel variable forming a -
paraile] bucket quadiree. Ths bucket threshold is scaled 10 the maxinmm available mem-
ory so the maximum number of objects can be loaded into memory and operated on ata
time. When the amount of data is large, this also allows us to keep only the struciure nodes
of the index irs metnory at a tims, loading a bucket into memory as is needed to answer
queries.

In the case of a small number of objects (e.g. 1000), ideally we wonld like for all to be
loaded into a parallel variable at once so that operations can happen 1o all objects in paral-
lel. However, if there are more objects it may be necessary to divide them into two sepa-
rate buckets in order to operate on 2 collection of them at once, The bucket quadtrees
accomplizh all of this. If there are only 1000 objects in the database and the bucket
threshold is larger than 1000, the quadtree will only have one nods, its root, and all objects
will be stored in that node. In this case, our datastructure has degenerated into a parallel
array. Once the number of objects becomes greater than the bucket threshold, the root is
split into 4 sub-quadrants and the objects are divided between them based on their spatial
information (See figure &). This subdivision of objects can be done with parallel SCAN
primitives on the CM-3 guite efficiently.

The DB - & Farallz], Spatial Diatahase fo the TRSBTT SytemFPabnwary 27, 1995 2

———— o —— —_ —_———

|Figure 6: Parallel Bucket PR-Quadtree

Parallel Bucket PR iree - with mumber of objects less then bucket capaciey
(objects enclosed in shaded area)

Bucket A

After addition of objects to bring éotal number of objecis above bucket capacity:

The RDB - 5 Paraflel, Spaiia Database for the IESET] SysteuFebtunry 27, 1995

10

3.3 Secondary Storage

Due to the R8s need for fast response to queries, we needed to use the most efficient
means of secondary storage. Thus we chose to use the CM-5°s Scalable Disk Array,or
SDA, for files containing large amounts of parallel data. Paraliel iles are formatted to
take advantage of the CM-5'"s massive parallelism, each CM processor having its own data
giream to and from the SDA. The data rates for a 32 nods partition writing to the SDA is
about 17 megabyies per second based on benchmarks performed at the Advanced Com-
pating Laboratory of Los Alamos National Laboratory. Onr own benchmarks indicated
that we could read ir 20 megabytes of data (ten 512x312 images) in about 1 second. How-
ever, for small amounts of data (less than a megabyte per node) the performance of the
SDA may be even slower than for regular file }O. Hence, small files (initalization files,
elc.) are stored as non-parallel files.

3.4 Queries

34,1 Spatial Queries

As was noted in the Spatial Index section, spatial queries (storage and retrieval by leca=
tion} are first mapped onto the spatizl index to prune the search to a smaller amount of
data. For spatial operations on overlays (mostly window operations), this entails mapping
the query onto the index grid, then retrieving the tiles that correspond to the sslected index
grid elements and completing the query. For RdbObjects, the queries are first mapped onto
the parallel bucket quadtree, then the comesponding bircket or buckets are loaded into par-
alle] variables for completion of the operation.

34.2 Attribmte Queries

Retrieval of objects by attribute (e.g. retrieving all detactions that are of type fank) is pro-
vided. However, it is a brute-force operation entailing retrieval of each bucket in turn and
searching for objects that match the query. Each bucket can be searched in a data-parallel
fashion, and we keep a separate table that indexes all of the buckets so we need not visit
the spatial index to access them. However, buckets are organized by spatial information,
hence the data is not organized for optimal attribnte-based queries.

It is also worth noting that, though explicit iemparal information is not maintzined by the

RDB, time can be defined as an objectamjhutﬁﬂr search key so temporal queries can be
mapped into atiribute queries,

31.4.3 Raster to Vector Conversion Functions

As has been noted, the RDE was reguired to provide conversion between raster and vector
representations of spatial data. This was mainly to facilitate applying terrain data which is

The RDE - a Paralic], Spatial Databcx: for the: [ES/BTT SysicmPelwuary 27, 1935 11

T e T e —— - Py —— o —_— -

stored in raster format to object data which is stored in vector format {e.g. find all tanks
that are located in bodies of water).

We developed conversion algorithms for raster and vector images with block-like con-
nected components. We based these algorithms on [Blef{)] using scan primitives and
ponter jumping, no step of which took greater than Oflog n) time (where n is the image
size and the number of processors). See [ZCW94] for more details.

344 Boolean operstions

The RDB needs to be able to diermine questions such as “which polygons overlap 2 search
window” quickly for fast retrievals. Thus it was necessary to implement a data-parallel
version of polygon intersection functions that operated on vectoy data and returned a yes
or oo result, in parallel, for all objects being tested. The RDB was also required to per-
form lower level operations on spatial data, specifically boolean fonctions (intersection,
union, complement) on polygons that would retutn the actual resulting polygon(s) of the
operation. Fer instance, the RDB needed an intersection functicn that would take two
polygons and veturn the polygon or polygons which was the resoli of the intersection
opeeation.

We based our implementatior: of the hoolean function on work dene by David Kuijt at the
University of Maryland. Kuijt developed efficient sequential algorithms for boolean oper-
ations on vector format data.

For boolzan operations on two polygons, Kuijt's algorithms all begin by classifying the
vertices as inside or outside the other polygon, expanding the polygons to include the
intersection points between the two palygons’ edges, and classifying the edge fragments
as being inside or cutside the other polygon. Then these must be organized into new poly-
gons depending on the operation (intersection,vnion, etc) [Kui%5).

We attempied to implement a data-parallel verion of Kuijt’s algorithms with mixed suc-
cess, First, we took the two polygons and translated them into matrices that would allow
us fo perform intersect opérations in data-parallel (see figure 6). We copied the first poly-
pon’s edpes into the first colume of its corresponding mattix, then broadeast them along
the x-axis uging a parallel scan operation. The second polygon’s edges were copied into
the first row of its matrix, then broadcase along the y-axis. Edge intersection of all of the
edges of the first polygon with every edge in the other polygon was determined in paratle]
by operating ot these matrices. Bxpanding both polygons was accomplished with the
parallel send operation. However, calculating whether or not ¢ach edge of the polygon was
mside or outside the other polygon required one seqential step that traced the bovndary
of one of the polygons, though the remainder of the operation vsed the parallel scan oper-
akion.

Onrs was a fairly straighforward adaptation of Kuijt's sequential algorithm to the CM-5.
It is possible that the boolean operations can be done mnch more efficiently as proposed
by Kuijt in [Kui%®5].

The: REWS - a Parallel, Spatial Tmiatse for the IERETI SysiemBrbruary 27, 1995 12

Fgure 6: boolean operations on polygons - data struetures

matrices for pelygons
b i z ab ab ab Xy ¥z X
be be be Xy V2 Xz
a x< ed ed od Xy ¥z =X
da da da XY yZ zX
4 ¥
The edges of the first polygon are broadeast along

the x-axis of the matrix, the edges of the second
polyzon are broadceast along the y-axis. Now,
intersections can be calculated snong all segments

in parallel, and can be counted using scan operafions.

4.0 Futures

There are many enhancements possible for the next version of the RDE. We would like to
invesiigaie data-paraliel hicrarchical grid methods and pyramidal indexing structures
which may prove to be more efficient for indexing raster data (and possibly even object
data). This may also prove to be useful in integrating spatial and attribuie refrievals with-
out sacrificmg the performance of the attribute searches. Efficient indexing of attrivure
data is ancther area we need (o investigate. We would also like to perform experiements
on our data-parallel bucket quadtrees to determine their efficisncy in xelation to datz den-
sity, clustering and bucket size.

5.0 References.

[Bes92] T. Bestul. Parallel paradigms and practices for spatial data. Phi thesis,
Unijveristy of Maryland, College Park, MD, April 1992.

(Ble90) G.E.Clzlloch. Vector Models for Data-Parallel Computing. The MIT PRess,
Cambride, MAssachusetts, 1990.

[CW94a] K.M. Carlson and C.L. Winter. Experiements with Quadiree Data Structures,
Log Alamos Unclassified Report nomber LA-UR-94-035%, Los Alamos Nationa Labora-
tory, 1994,

[CWa4b] K. M. Carlson and C.L. Wintzr. Region Database Component Design Docir-
ment. Report prepared for US Army Topographic Engineering Center, Fort Belvoir, Vir-
ginia, Loa Alamos National Laboratory, 1994,

Ths RDE - a Paralicl, Spatial Database for the IESBTL SysiemPobomuy 17, 1995 13

[CWEK94) EM. Carlson, C.L. Winter and David Xnijt, Data Structores for the RDB:
Preliminary Experiments on Polygonal Data. 2 report prepared for the Topographic Engi-
neering Cetner, Los Alamost National Laboratyr, 1994,

{HS93] E.G. Hoel and H. Samet. Data-parallel R-tree altorithms. In S. Hariyir and P/B.
Berra, editors, Proceedings of the 1993 Intemational Conference on Paralle! Processing,
pages 47-30, 5t. Charles, I1., Angust 1993,

{Kui?5] D. Knijt. Dats-Parallel Polyzon Operations and Indsxing: A Thesis Proposal,
unpublished, University of Maryland, 1993,

[(Sam%{)] H. Samet. The Design and Anatysis of Spatial Data Structures. Addison-Wes-
ley, Reading, MA, 1990,

{WS951 C.L. Winter and M.C. Stein. IES/BTI System Overview. Los Alamos Tech-
nical Report, Rebruary 1995.

[ZCW94] D. Zhang, K.M. Carlson, CL Winter, Efficient Paralle] Raster/Vector Image
Coaversion Algorithms for Spatial Databases, unpublished, Technical Report. Los Alam-
ost National Eaboratory, 1984,

Tho RDB - a Parallel, Spoital Datxhaze for the TES/BTI SystemFebauey 27, 1995 14

