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The RDB - a Parallel, Spatial Database for 
the IES/BTI System 

Kristi Carlson, Larry Winter 
Computer Research and Applications Group 

Los Alamos National Laboratory 
Los Alamos, New Mexico 

1.0 Introduction 
The manipulation and representation of spatial data on computers is an important issue in 
many computer applications (computer graphics, computer vision, database management 
systems, geographic information systems). Spatial data, which consists of points, lines, 
and regions in 2-dimensions, can be difficult to manage efficiently because it is often quite 
voluminous. For instance, the number of picture elements in even a small digital image is 
on the order of a million, while the number of locations stored in a terrain database can 
easily include billions of points. Furthermore, the kinds of operations performed on spatial 
data — set operations, insertion, deletion, searches such as "near"— are compute intensive, 
and hence slow unless the data is structured to reflect its underlying topology. Hence a 
conventional database which is organized on search keys is often not adequate for han­
dling spatial data. 

In order to provide efficient manipulation of spatial data, both efficient data structures and 
parallel computing can be employed. The data structures may be organized to provide effi­
cient spatial operations, and parallel computing allows us to operate on large subsets of 
data in parallel. 

The Image Exploitation System, which is an automated image analysis system, has a great 
need for efficient storage and manipulation of spatial data. The linage Exploitation Sys­
tem is part of the Advanced Research Project Agency's Balanced Technology Initiative 
and is abbreviated IES/BTI. IES/BTI must process tens to hundreds of megabytes of 
imagery in a few minutes, and is composed of many independent components which need 
to access and share spatial data. The system needed an efficient parallel spatial database, 
hence the motiviation for our work on the Region Database, or RDB. 

The RDB is our attempt to meet the needs of the ffiS/BTI Cycle 2 system. The RDB pro­
vides for storage and retrieval of both raster and vector based spatial data as well as 
attribute-based retrievals. It also provides facilities for conversion between the two repre­
sentations of spatial data (raster and vector) and for efficient, parallel boolean operations 
on vector data. In this paper we discuss the reserach and development performed to 
design and implement the RDB. l 
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2.0 The IES/BTI System 
The IES/BTI system attempts to speed up the analysis of images obtained from synthetic 
aperture radar sensors by identifying where enemy forces are likely to be. It must process 
many types of data in order to perform its inference: terrain data, vehicle classifications, 
force structure, and signal intelligence information. It is intended to be used by image 
analysts to help them to quickly focus on the images most likely to contain information 
about enemy forces. As mentioned, IES/BTI must process large amounts of data in a 
short amount of time; specifically it is required that IES/BTI must process 128 megabytes 
of imagery every 5 minutes. This led to a system design which was based on high-speed 
parallel processing. Specifically, the Cycle 2 version is implemented in the C* data paral­
lel programming language on a 32 node Connection Machine 5. [WS95] 

The IES/BTI system architecture consists of a set of components and data flows through 
them, and the RDB is simply one more C* component in the system. However, unlike the 
other components in the system it is implemented as a library of data-parallel C* functions 
and is never called as a stand-alone process. The RDB receives data both prior to an T£S/ 
BTI run, mostly a priori terrain data (Interim Terrain Data and Digital Terrain Elevation 
Data from the Defense Mapping Agency) that will not change from run to run. It also 
receives data from many sources during an IES/BTI run which includes individual mili­
tary force detections (represented as points), and military forces which are clustered into 
larger forces such as battalions (represented as regions). As an example of how IES com­
ponents may use the RDB, consider the following: in a typical IES/BTI run, it is possible 
for the Detection component to process an image and identify possible military forces 
which it stores in the RDB, the Hospitability component may retrieve both detections and 
terrain information from the RDB and weed out detections that are impossible because of 
the underlying terrain and store the results back to the RDB, the Cluster component 
retrieves these pruned detections and clusters them into possible higher level forces and so 
on. Clearly, IES/BTI needs an efficient database to process this amount of information in a 
timely manner. 

3.0 Rdb Design 
The most important RDB requirement is to provide for fast storage and spatial searches. 
The need for efficient spatial queries drove the design of our data organization. It was 
necessary to implement an efficient parallel spatial index as well as provide fast access to 
secondary storage. It was also necessary that we support retrieval by search key (or 
object attribute), however it was of secondary importance. Other requirements included 
providing translation between raster and vector representations of spatial data as well as 
providing efficient manipulation of vector-based polygonal data. This entailed implemen­
tation of data parallel raster-to-vector conversion functions as well as data parallel imple­
mentations of boolean operations on vector data (UNION, INTERSECTION, etc.). 

1. This research and development was performed in part using the resources located at the Advanced Com­
puting Laboratory of Los Alamos National Laboratory. 
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3.1 Data Organization and Representations 
The IES system has two basic classes of data that are stored in the RDB: overlay data and 
object data. Each type of data has a different internal representation and different spatial 
index in the RDB. 

Overlay data, mostly a priori terrain data such as elevation, consists of two-dimensional 
grids of numbers. This data type is used to calculate and store hospitability data and the 
like. Given the structure of the data and how it is used in IES/BTI, using a raster repre­
sentation is a sound and straightforward approach. However, most terrain data is too large 
to simply store as a single grid, hence some kind of indexing was needed to divide the ter­
rain data into sub-gridsthat could be loaded into memory at once. Also, the area of oper­
ation for an IES/BTI run is typically too large to represent as a single grid on the CM-5. 

Objects are intended for use in representing every kind of IES/BTI data other than overlay 
data. Hence, a generic, flexible data type was needed. The data type designed for this use, 
the RdbObject, consists of 3 main fields: spatial data (either a point, line segment or poly­
gon which defines where an object is located as well as what its spatial extent is), attribute 
information (actually search keys that can be used to query for objects) and object data 
(see figure l).The only fields used in queries are the spatial data and the search keys; the 
object data is simply a pointer to data that the RDB stores and retrieve without examina­
tion or interpretation. This provided a flexible design which allows the RDB to remain 
independent of the specific data that is stored by IES/BTI components, as well as provid­
ing flexibility to users of the RDB (who need not define their data types until run-time) 
[CW94b]. 

Figure 1: Data Abstraction for RdbObject 
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3.1.1 Representation of Spatial Data 

RdbObjects can have the spatial type of point, line segment, polygon or none. For point 
and Hne segment data, we use the obvious representation of storing the single point or the 
pair of points for the object. For polygonal data, we performed experiments on a 32­node 
partition of the CM­5 to compare the relative efficiencies of a raster or full­resolution grid 
representation and a vector or vertex­list representation[CWK94]. In these experiments, 
efficiency was measured both in terms of the amount of space required to store polygonal 
objects and in the amount of time it took to perform typical operations on polygonal 
objects and databases of objects. We used the same spatial index for both representations. 

For a subset of space in our spatial index, each vertex list consisted of a segmented paral­
lel variable of vertices, each segment corresponding to an individual polygon (see figure 
2). Thus, operations on the list of polygons could be done in parallel, even operations on 
individual vertices could be done in parallel. 

Figure 2: a collection of polygons in a segmented vertex list 
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We tested operations such as searching for all polygons within a window which operated 
on a collection of polygons as well as lower level operations like intersection of two poly­
gons. As would be expected on a data-parallel machine such as the CM-5, the lower 
level boolean operations were very efficient (they should take constant time for a parallel 
raster representation on a data-parallel machine). For all other operations, however, we 
found that in both storage requirements and in average time it took to perform various 
operations, the vector representation was superior. This was not unexpected since the 
vector format's storage requirements are based on the complexity of the polygon border, 
not the area of the polygon and that resolution does not effect the amount of storage 
required. Because of the reduced size of the vector data, it was possible to operate on far 
more polygons at once than was possible with the full-resolution grid representation. 
Hence we chose to store polygonal objects in vector format and had the new task of devel­
oping efficient, parallel boolean operation on vector-based polygons. 

3.2 Spatial Indexing 

3.2.1 The Parallel Index Grid 

One possibility for spatial indexing in a data-parallel environment is to use a uniform 
index grid. One advantage of this method is its simplicity both conceputually and in 
implementation. It is also potentiall more efficient than hierarchical indices for opera­
tions which must examine all items in the data set. We chose this method for indexing 
overlay data in the RDB, implementing a parallel, 2-D index grid which subdivided the 
image space into "tiles", or sub-grids. Implicit in the location in the index grid parallel 
variable (pvar) of each grid element is the location and area that each grid-element 
indexes. When a spatial retrieval such as a window operation is done, the query is first 
mapped into the index grid to determine which pieces of overlay data need to be brought 
into memory, then the operation is completed on those pieces of data (see figure 3). The 
mapping into the grid is simply a rectangle intersection function performed in parallel on 
all grid elements at once. 

There are potential drawbacks to this method of indexing that arise when the database is 
sparsely populated or when the indexed area is large but flie data is clustered in only a few 
grid elements (hence many elements in the index grid do not have any data associated with 
them). It also is not appropriate for very large data sets that either may result in an index 
grid that is too large for the available memory or in "tiles" that are too large to operate on 
efficiently. An alternative approach would be to implement a pyramidal index structure 
such as a hierarchical index grid. However, for the purposes of the RDB this index grid is 
sufficient. The overlay data is all a priori terrain data and we knew that it was easily 
indexed by such a data structure. For RdbObject data, however, we could not guarantee 
that the amount of data would be well-confined. Hence we chose a different spatial index 
for that data type. 
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Figure 3 : Parallel Index Grid and the Window Operation 
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3.2.2 Hierarchical Spatial Indices 

Tree-based data structures are an efficient way to store spatial data because they naturally 
support important topological relations like region inclusion. Also, their low space 
requirements and the log(N) height of these trees allows for fast searching of the data 
structure. A number of tree representations have been proposed for structuring spatial 
data. Among the most successful have been variations on the quadtree data struc-
ture.Quadtrees are a class of hierarchical data structures that recursively decompose two-
dimensional space into quadrants. Each node of a quadtree spans a portion of space and its 
child nodes divide up that portion into four (equal or unequal) parts. Quadtrees vary in the 
type of data they are used to represent (point, line or region), the decomposition rule and 
the resolution (variable or not). In this context, resolution indicates the number of times a 
decomposition process is applied and may be fixed or may be governed by properties of 
the input data [Sam90]. 

Sequential Indices. Early in our RDB design we performed experiments to determine 
the best indices for a sequential version of our index. These experiments were done to 
support development of an RDB for an earlier IES/BTI system which was to reside on an 
Encore Multi-max, a shared-memory parallel computer. We chose to look at quadtrees 
because the data for IES/BTI would be sparse and cover a large area, conditions the 
quadtree is well-suited for. IES/BTI would also require fast spatial lookup. 
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The experiment compared different quadtree index structures for point and rectangular 
data and measured their efficiency in performing various operations we thought would be 
important to the PES system. Rectangular data was used rather than polygonal data 
because it was anticipated that polygonal data would be stored by its minimum bounding 
rectangle. Queries would first be performed on the minimum bounding rectangles, then 
the operation would be performed on the actual polygons of any matching objects. Our 
experiments measured the effect of data density and clustering on the performance of the 
various quadtrees, and determined that for IES' purposes the PR quadtree was the best 
choice for point data and the MX-CIF quadtree was the best choice for rectangular 
[CW94a], 

For a PR Quadtree, quadrants are subdivided into equally sized sub-quadrants of size 2m x 
2m. A point datum is added to a PR Quadtree by finding the current quadrant into which 
the datum fits and inserting the datum if the quadrant is unoccupied. If the quadrant is 
already occupied, the quadrant is split until and empty sub-quadrant is available See Fig­
ure 4. 

In an MX_CIF tree, each rectangle, R, is associated with the quadtree node corresponding 
to the smallest quadrant that contains R entirely. Hence data is stored at all levels of the 
tree, not just at the leaves. And since many rectangles can be associated with an individual 
node, an auxiliary data structure is needed to keep the list of rectangles associated with 
each quadrant. See Figure 5. For a more detailed description of these data structures, see 
[Sam90]. 

Figure 4: the PR-Quadtree 
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Figrure 5: The MX-CIF Quadtree 
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Not only were these two quadtrees the most efficient, but they also share the advantage 
that both use a regular decomposition rule. In other words, each quadrant subdivision 
divides the quadrant into four equal sub-quadrants. Thus quadrants at the same level and 
location in two different quadtrees that both use regular decomposition will be identical in 
the space they span. This makes it possible to perform operations across very different 
types of data (points and polygons) more efficiently. Also, of the trees tested the PR and 
MX-CIF quadtrees provided the most compact representation (i.e. fewer levels in the tree) 
of the quadtrees tested. This turned out to be useful for our parallel implementation. 

Parallel Hierarchical Structures. Sequential hierarchical structures are not ideal for 
data-parallel architectures such as the CM-5 because they do not take advantage of its par­
allelism. Yet, because our search space was potentially large and the data potentially 
sparse we wanted to use a hierarchical, spatial index vs. another approach such as a paral­
lel index grid. Furthermore, it was unlikely that IES/BTI would generate enough data so 
that an actual parallel version of the tree as discussed in [Bes90] or [Kui95] was war­
ranted. It was necessary to implement a structure that took advantage of parallelism and 
had a small, efficient tree structure. Ideally, we wanted a hierarchical, spatial index that 
allowed for the maximum number of objects to be operated on in parallel without over-
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loading the available resources (memory)m effectively resulting in a flatter index that the 
sequential quatrees. 

Parallel approaches are still a topic of research. Hoel and Samet used parallelism to build 
R-trees quickly and to build the results of queries quickly. [HS93]. Kuijt proposes in his 
thesis proposal to use a data-parallel index compression method that takes a hierarchical 
tree structure and scales it based on the available number of processors. Kuijt calls this p-
ary tree (where p is the number of processors) the Par-tree. [Kui95]. Kuijt's approach 
could prove very useful for very large databases. 

For the RDB, we chose to use bucket versions of our sequential quadtrees. Bucket meth­
ods simply store a collection of objects at a node rather than a single object, so an insertion 
would insert an object into an already occupied node if the bucket threshold had not yet 
been reached. The result is a smaller tree with fewer "structure nodes". We mapped this 
into our data parallel domain by representing each bucket as a parallel variable forming a 
parallel bucket quadtree. The bucket threshold is scaled to the maximum available mem­
ory so the maximum number of objects can be loaded into memory and operated on at a 
time. When the amount of data is large, this also allows us to keep only the structure nodes 
of the index in memory at a time, loading a bucket into memory as is needed to answer 
queries. 

In the case of a small number of objects (e.g. 1000), ideally we would like for all to be 
loaded into a parallel variable at once so that operations can happen to all objects in paral­
lel. However, if there are more objects it may be necessary to divide them into two sepa­
rate buckets in order to operate on a collection of them at once. The bucket quadtrees 
accomplish all of this. If there are only 1000 objects in the database and the bucket 
threshold is larger than 1000, the quadtree will only have one node, its root, and all objects 
will be stored in that node. In this case, our datastructure has degenerated into a parallel 
array. Once the number of objects becomes greater than the bucket threshold, the root is 
split into 4 sub-quadrants and the objects are divided between them based on their spatial 
information (See figure 6). This subdivision of objects can be done with parallel SCAN 
primitives on the CM-5 quite efficiently. 
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Figure 6: Parallel Bucket PR-Quadtree 
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3.3 Secondary Storage 
Due to the RDB's need for fast response to queries, we needed to use the most efficient 
means of secondary storage. Thus we chose to use the CM-5's Scalable Disk Array,or 
SDA, for files containing large amounts of parallel data. Parallel files are formatted to 
take advantage of the CM-5's massive parallelism, each CM processor having its own data 
stream to and from the SDA. The data rates for a 32 node partition writing to the SDA is 
about 17 megabytes per second based on benchmarks performed at the Advanced Com­
puting Laboratory of Los Alamos National Laboratory. Our own benchmarks indicated 
that we could read in 20 megabytes of data (ten 512x512 images) in about 1 second. How­
ever, for small amounts of data (less than a megabyte per node) the performance of the 
SDA may be even slower than for regular file 10. Hence, small files (initialization files, 
etc.) are stored as non-parallel files. 

3.4 Queries 

3.4.1 Spatial Queries 

As was noted in the Spatial Index section, spatial queries (storage and retrieval by loca­
tion) are first mapped onto the spatial index to prune the search to a smaller amount of 
data. For spatial operations on overlays (mostly window operations), this entails mapping 
the query onto the index grid, then retrieving the tiles that correspond to the selected index 
grid elements and completing the query. For RdbObjects, the queries are first mapped onto 
the parallel bucket quadtree, then the corresponding bucket or buckets are loaded into par­
allel variables for completion of the operation. 

3.4.2 Attribute Queries 

Retrieval of objects by attribute (e.g. retrieving all detections that are of type tank) is pro­
vided. However, it is a brute-force operation entailing retrieval of each bucket in turn and 
searching for objects that match the query. Each bucket can be searched in a data-parallel 
fashion, and we keep a separate table that indexes all of the buckets so we need not visit 
the spatial index to access them. However, buckets are organized by spatial information, 
hence the data is not organized for optimal attribute-based queries. 

It is also worth noting that, though explicit temporal information is not maintained by the 
RDB, time can be defined as an object attribute or search key so temporal queries can be 
mapped into attribute queries. 

3.4.3 Raster to Vector Conversion Functions 

As has been noted, the RDB was required to provide conversion between raster and vector 
representations of spatial data. This was mainly to facilitate applying terrain data which is 
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stored in raster format to object data which is stored in vector format (e.g. find all tanks 
that are located in bodies of water). 

We developed conversion algorithms for raster and vector images with block-like con­
nected components. We based these algorithms on [Ble90] using scan primitives and 
pointer jumping, no step of which took greater than 0(log n) time (where n is the image 
size and the number of processors). See [ZCW94] for more details. 

3.4.4 Boolean operations 

The RDB needs to be able to dtermine questions such as "which polygons overlap a search 
window" quickly for fast retrievals. Thus it was necessary to implement a data-parallel 
version of polygon intersection functions that operated on vector data and returned a yes 
or no result, in parallel, for all objects being tested. The RDB was also required to per­
form lower level operations on spatial data, specifically boolean functions (intersection, 
union, complement) on polygons that would return the actual resulting polygon(s) of the 
operation. For instance, the RDB needed an intersection function that would take two 
polygons and return the polygon or polygons which was the result of the intersection 
operation. 

We based our implementation of the boolean function on work done by David Kuijt at the 
University of Maryland. Kuijt developed efficient sequential algorithms for boolean oper­
ations on vector format data. 

For boolean operations on two polygons, Kuijt's algorithms all begin by classifying the 
vertices as inside or outside the other polygon, expanding the polygons to include the 
intersection points between the two polygons' edges, and classifying the edge fragments 
as being inside or outside the other polygon. Then these must be organized into new poly­
gons depending on the operation (intersection,union, etc) [Kui95]. 

We attempted to implement a data-parallel verion of Kuijt's algorithms with mixed suc­
cess. First, we took the two polygons and translated them into matrices that would allow 
us to perform intersect operations in data-parallel (see figure 6). We copied the first poly­
gon's edges into the first column of its corresponding matrix, then broadcast them along 
the x-axis using a parallel scan operation. The second polygon's edges were copied into 
the first row of its matrix, then broadcase along the y-axis. Edge intersection of all of the 
edges of the first polygon with every edge in the other polygon was determined in parallel 
by operating on these matrices. Expanding both polygons was accomplished with the 
parallel send operation. However, calculating whether or not each edge of the polygon was 
inside or outside the other polygon required one sequential step that traced the boundary 
of one of the polygons, though the remainder of the operation used the parallel scan oper­
ation. 

Ours was a fairly straightforward adaptation of Kuijt's sequential algorithm to the CM-5. 
It is possible that the boolean operations can be done much more efficiently as proposed 
by Kuijt in [Kui95]. 
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Figure 6: boolean operations on polygons - data structures 

matrices for polygons 
ab ab ab xy yz zx 
be be be xy yz xz 
cd cd cd xy yz zx 
da da da xy yz zx 

The edges of the first polygon are broadcast along 
the x-axis of the matrix, the edges of the second 
polygon are broadcast along the y-axis. Now, 
intersections can be calculated among all segments 
in parallel, and can be counted using scan operations. 

4.0 Futures 
There are many enhancements possible for the next version of the RDB. We would like to 
investigate data-parallel hierarchical grid methods and pyramidal indexing structures 
which may prove to be more efficient for indexing raster data (and possibly even object 
data). This may also prove to be useful in integrating spatial and attribute retrievals with­
out sacrificing the performance of the attribute searches. Efficient indexing of attrivure 
data is another area we need to investigate. We would also like to perform experiements 
on our data-parallel bucket quadtrees to determine their efficiency in relation to data den­
sity, clustering and bucket size. 
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