102 research outputs found

    Pathfinder: XQuery - The Relational Way

    Get PDF
    Relational query processors are probably the best understood (as well as the best engineered) query engines available today. Although carefully tuned to process instances of the relational model (tables of tuples), these processors can also provide a foundation for the evaluation of "alien" (non-relational) query languages: if a relational encoding of the alien data model and its associated query language is given, the RDBMS may act like a special-purpose processor for the new language

    Staircase Join: Teach a Relational DBMS to Watch its (Axis) Steps

    Get PDF
    Relational query processors derive much of their effectiveness from the awareness of specific table properties like sort order, size, or absence of duplicate tuples. This text applies (and adapts) this successful principle to database-supported XML and XPath processing: the relational system is made tree aware, i.e., tree properties like subtree size, intersection of paths, inclusion or disjointness of subtrees are made explicit. We propose a local change to the database kernel, the staircase join, which encapsulates the necessary tree knowledge needed to improve XPath performance. Staircase join operates on an XML encoding which makes this knowledge available at the cost of simple integer operations (e.g., +, <=). We finally report on quite promising experiments with a staircase join enhanced main-memory database kernel

    Survey over Existing Query and Transformation Languages

    Get PDF
    A widely acknowledged obstacle for realizing the vision of the Semantic Web is the inability of many current Semantic Web approaches to cope with data available in such diverging representation formalisms as XML, RDF, or Topic Maps. A common query language is the first step to allow transparent access to data in any of these formats. To further the understanding of the requirements and approaches proposed for query languages in the conventional as well as the Semantic Web, this report surveys a large number of query languages for accessing XML, RDF, or Topic Maps. This is the first systematic survey to consider query languages from all these areas. From the detailed survey of these query languages, a common classification scheme is derived that is useful for understanding and differentiating languages within and among all three areas

    SIQXC: Schema Independent Queryable XML Compression for Smartphones

    Get PDF
    The explosive growth of XML use over the last decade has led to a lot of research on how to best store and access it. This growth has resulted in XML being described as a de facto standard for storage and exchange of data over the web. However, XML has high redundancy because of its self-­‐ describing nature making it verbose. The verbose nature of XML poses a storage problem. This has led to much research devoted to XML compression. It has become of more interest since the use of resource constrained devices is also on the rise. These devices are limited in storage space, processing power and also have finite energy. Therefore, these devices cannot cope with storing and processing large XML documents. XML queryable compression methods could be a solution but none of them has a query processor that runs on such devices. Currently, wireless connections are used to alleviate the problem but they have adverse effects on the battery life. They are therefore not a sustainable solution. This thesis describes an attempt to address this problem by proposing a queryable compressor (SIQXC) with a query processor that runs in a resource constrained environment thereby lowering wireless connection dependency yet alleviating the storage problem. It applies a novel simple 2 tuple integer encoding system, clustering and gzip. SIQXC achieves an average compression ratio of 70% which is higher than most queryable XML compressors and also supports a wide range of XPATH operators making it competitive approach. It was tested through a practical implementation evaluated against the real data that is usually used for XML benchmarking. The evaluation covered the compression ratio, compression time and query evaluation accuracy and response time. SIQXC allows users to some extent locally store and manipulate the otherwise verbose XML on their Smartphones

    Extensible metadata repository for information systems

    Get PDF
    Thesis submitted to Faculdade de Ciências e Tecnologia of the Universidade Nova de Lisboa, in partial fulfillment of the requirements for the degree of Master in Computer ScienceInformation Systems are, usually, systems that have a strong integration component and some of those systems rely on integration solutions that are based on metadata (data that describes data). In that situation, there’s a need to deal with metadata as if it were “normal”information. For that matter, the existence of a metadata repository that deals with the integrity, storage, validity and eases the processes of information integration in the information system is a wise choice. There are several metadata repositories available in the market, but none of them is prepared to deal with the needs of information systems or is generic enough to deal with the multitude of situations/domains of information and with the necessary integration features. In the SESS project (an European Space Agency project), a generic metadata repository was developed, based on XML technologies. This repository provided the tools for information integration, validity, storage, share, import, as well as system and data integration, but it required the use of fix syntactic rules that were stored in the content of the XML files. This situation causes severe problems when trying to import documents from external data sources (sources unaware of these syntactic rules). In this thesis a metadata repository that provided the same mechanisms of storage, integrity, validity, etc, but is specially focused on easy integration of metadata from any type of external source (in XML format) and provides an environment that simplifies the reuse of already existing types of metadata to build new types of metadata, all this without having to modify the documents it stores was developed. The repository stores XML documents (known as Instances), which are instances of a Concept, that Concept defines a XML structure that validates its Instances. To deal with reuse, a special unit named Fragment, which allows defining a XML structure (which can be created by composing other Fragments) that can be reused by Concepts when defining their own structure. Elements of the repository (Instances,Concepts and Fragment) have an identifier based on (and compatible with) URIs, named Metadata Repository Identifier (MRI). Those identifiers, as well as management information(including relations) are managed by the repository, without the need to use fix syntactic rules, easing integration. A set of tests using documents from the SESS project and from software-house ITDS was used to successfully validate the repository against the thesis objectives of easy integration and promotion of reuse

    An object query language for multimedia federations

    Get PDF
    The Fischlar system provides a large centralised repository of multimedia files. As expansion is difficult in centralised systems and as different user groups have a requirement to define their own schemas, the EGTV (Efficient Global Transactions for Video) project was established to examine how the distribution of this database could be managed. The federated database approach is advocated where global schema is designed in a top-down approach, while all multimedia and textual data is stored in object-oriented (O-O) and object-relational (0-R) compliant databases. This thesis investigates queries and updates on large multimedia collections organised in the database federation. The goal of this research is to provide a generic query language capable of interrogating global and local multimedia database schemas. Therefore, a new query language EQL is defined to facilitate the querying of object-oriented and objectrelational database schemas in a database and platform independent manner, and acts as a canonical language for database federations. A new canonical language was required as the existing query language standards (SQL: 1999 and OQL) axe generally incompatible and translation between them is not trivial. EQL is supported with a formally defined object algebra and specified semantics for query evaluation. The ability to capture and store metadata of multiple database schemas is essential when constructing and querying a federated schema. Therefore we also present a new platform independent metamodel for specifying multimedia schemas stored in both object-oriented and object-relational databases. This metadata information is later used for the construction of a global schemas, and during the evaluation of local and global queries. Another important feature of any federated system is the ability to unambiguously define database schemas. The schema definition language for an EGTV database federation must be capable of specifying both object-oriented and object-relational schemas in the database independent format. As XML represents a standard for encoding and distributing data across various platforms, a language based upon XML has been developed as a part of our research. The ODLx (Object Definition Language XML) language specifies a set of XMLbased structures for defining complex database schemas capable of representing different multimedia types. The language is fully integrated with the EGTV metamodel through which ODLx schemas can be mapped to 0-0 and 0-R databases

    Distributed XML Query Processing

    Get PDF
    While centralized query processing over collections of XML data stored at a single site is a well understood problem, centralized query evaluation techniques are inherently limited in their scalability when presented with large collections (or a single, large document) and heavy query workloads. In the context of relational query processing, similar scalability challenges have been overcome by partitioning data collections, distributing them across the sites of a distributed system, and then evaluating queries in a distributed fashion, usually in a way that ensures locality between (sub-)queries and their relevant data. This thesis presents a suite of query evaluation techniques for XML data that follow a similar approach to address the scalability problems encountered by XML query evaluation. Due to the significant differences in data and query models between relational and XML query processing, it is not possible to directly apply distributed query evaluation techniques designed for relational data to the XML scenario. Instead, new distributed query evaluation techniques need to be developed. Thus, in this thesis, an end-to-end solution to the scalability problems encountered by XML query processing is proposed. Based on a data partitioning model that supports both horizontal and vertical fragmentation steps (or any combination of the two), XML collections are fragmented and distributed across the sites of a distributed system. Then, a suite of distributed query evaluation strategies is proposed. These query evaluation techniques ensure locality between each fragment of the collection and the parts of the query corresponding to the data in this fragment. Special attention is paid to scalability and query performance, which is achieved by ensuring a high degree of parallelism during distributed query evaluation and by avoiding access to irrelevant portions of the data. For maximum flexibility, the suite of distributed query evaluation techniques proposed in this thesis provides several alternative approaches for evaluating a given query over a given distributed collection. Thus, to achieve the best performance, it is necessary to predict and compare the expected performance of each of these alternatives. In this work, this is accomplished through a query optimization technique based on a distribution-aware cost model. The same cost model is also used to fine-tune the way a collection is fragmented to the demands of the query workload evaluated over this collection. To evaluate the performance impact of the distributed query evaluation techniques proposed in this thesis, the techniques were implemented within a production-quality XML database system. Based on this implementation, a thorough experimental evaluation was performed. The results of this evaluation confirm that the distributed query evaluation techniques introduced here lead to significant improvements in query performance and scalability both when compared to centralized techniques and when compared to existing distributed query evaluation techniques

    Augmenting applications with hyper media, functionality and meta-information

    Get PDF
    The Dynamic Hypermedia Engine (DHE) enhances analytical applications by adding relationships, semantics and other metadata to the application\u27s output and user interface. DHE also provides additional hypermedia navigational, structural and annotation functionality. These features allow application developers and users to add guided tours, personal links and sharable annotations, among other features, into applications. DHE runs as a middleware between the application user interface and its business logic and processes, in a n-tier architecture, supporting the extra functionalities without altering the original systems by means of application wrappers. DHE automatically generates links at run-time for each of those elements having relationships and metadata. Such elements are previously identified using a Relation Navigation Analysis. DHE also constructs more sophisticated navigation techniques not often found on the Web on top of these links. The metadata, links, navigation and annotation features supplement the application\u27s primary functionality. This research identifies element types, or classes , in the application displays. A mapping rule encodes each relationship found between two elements of interest at the class level . When the user selects a particular element, DHE instantiates the commands included in the rules with the actual instance selected and sends them to the appropriate destination system, which then dynamically generates the resulting virtual (i.e. not previously stored) page. DHE executes concurrently with these applications, providing automated link generation and other hypermedia functionality. DHE uses the extensible Markup Language (XMQ -and related World Wide Web Consortium (W3C) sets of XML recommendations, like Xlink, XML Schema, and RDF -to encode the semantic information required for the operation of the extra hypermedia features, and for the transmission of messages between the engine modules and applications. DHE is the only approach we know that provides automated linking and metadata services in a generic manner, based on the application semantics, without altering the applications. DHE will also work with non-Web systems. The results of this work could also be extended to other research areas, such as link ranking and filtering, automatic link generation as the result of a search query, metadata collection and support, virtual document management, hypermedia functionality on the Web, adaptive and collaborative hypermedia, web engineering, and the semantic Web
    corecore