
Distributed XML Query Processing

by

Patrick Kling

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Computer Science

Waterloo, Ontario, Canada, 2012

© Patrick Kling 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144145614?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

While centralized query processing over collections of XML data stored at a single site is

a well understood problem, centralized query evaluation techniques are inherently limited

in their scalability when presented with large collections (or a single, large document) and

heavy query workloads. In the context of relational query processing, similar scalability

challenges have been overcome by partitioning data collections, distributing them across

the sites of a distributed system, and then evaluating queries in a distributed fashion,

usually in a way that ensures locality between (sub-)queries and their relevant data. This

thesis presents a suite of query evaluation techniques for XML data that follow a similar

approach to address the scalability problems encountered by XML query evaluation.

Due to the significant differences in data and query models between relational and

XML query processing, it is not possible to directly apply distributed query evaluation

techniques designed for relational data to the XML scenario. Instead, new distributed

query evaluation techniques need to be developed. Thus, in this thesis, an end-to-end

solution to the scalability problems encountered by XML query processing is proposed.

Based on a data partitioning model that supports both horizontal and vertical frag-

mentation steps (or any combination of the two), XML collections are fragmented and

distributed across the sites of a distributed system. Then, a suite of distributed query

evaluation strategies is proposed. These query evaluation techniques ensure locality be-

tween each fragment of the collection and the parts of the query corresponding to the data

in this fragment. Special attention is paid to scalability and query performance, which is

achieved by ensuring a high degree of parallelism during distributed query evaluation and

by avoiding access to irrelevant portions of the data.

For maximum flexibility, the suite of distributed query evaluation techniques proposed

in this thesis provides several alternative approaches for evaluating a given query over

a given distributed collection. Thus, to achieve the best performance, it is necessary to

predict and compare the expected performance of each of these alternatives. In this work,

this is accomplished through a query optimization technique based on a distribution-aware

cost model. The same cost model is also used to fine-tune the way a collection is fragmented

to the demands of the query workload evaluated over this collection.

v

To evaluate the performance impact of the distributed query evaluation techniques

proposed in this thesis, the techniques were implemented within a production-quality XML

database system. Based on this implementation, a thorough experimental evaluation was

performed. The results of this evaluation confirm that the distributed query evaluation

techniques introduced here lead to significant improvements in query performance and

scalability both when compared to centralized techniques and when compared to existing

distributed query evaluation techniques.

vi

Acknowledgements

I would like to take the opportunity to acknowledge those who have made this work

possible. First and foremost, I would like to thank my advisor, M. Tamer Özsu, not only

for the expert advice he has given me throughout my studies, but also for his unwavering

support and relentless encouragement, which have guided me through the past few years.

I would also like to thank Khuzaima Daudjee for the many productive discussions we

have had throughout my studies. His input (both on technical details and on the big

picture of this field of research) has played an important part in shaping this work.

I am also grateful to Anisoara Nica for her support in developing the cost model for

this work. Her expertise and guidance have allowed me to develop this aspect of my work

into a significant component of my thesis.

Finally, I would like to thank my external examiner, Martin Kersten, and the remaining

members of my examining committee, Frank Wm. Tompa, Ashraf Aboulnaga, and Paul A.

S. Ward, for the valuable questions and comments the have given me, which have helped

me significantly improve the quality of this thesis.

vii

Table of Contents

List of Figures xvii

List of Tables xxv

List of Abbreviations xxvii

List of Symbols xxix

1 Introduction 1

1.1 Focus and Motivation . 2

1.1.1 Horizontal Fragmentation . 5

1.1.2 Vertical Fragmentation . 6

1.2 Contributions . 9

1.3 Organization . 10

2 XML Data and Query Model 13

2.1 Data Model . 13

2.2 Query Model . 16

2.2.1 XQ . 16

ix

2.2.2 Tree Patterns . 18

2.2.3 Tree Pattern Matches . 22

2.2.3.1 Order of Tree Pattern Matches 24

3 Related Work 25

3.1 Fragmenting Collections . 26

3.1.1 Fragmenting Relational Data . 26

3.1.2 Fragmenting XML Data . 28

3.1.2.1 Ad-hoc Fragmentation . 29

3.1.2.2 Structure-Based Fragmentation 31

3.1.2.3 Fragmentation Based on Query Workloads 34

3.2 XML Query Evaluation . 36

3.2.1 Tree Patterns as a Query Model . 36

3.2.2 Centralized Query Evaluation . 37

3.2.2.1 Navigational Query Evaluation 37

3.2.2.2 Structural Join-Based Query Evaluation 40

3.2.2.3 Exploiting Fragmentation in Centralized Query Evaluation 42

3.2.3 Distributed Query Evaluation . 44

3.2.3.1 Distributed Query Language Extensions 45

3.2.3.2 Query Decomposition . 46

3.2.3.3 Pruning Irrelevant Fragments 46

3.2.3.4 Index Structures . 48

3.2.3.5 Distributed Query Execution 49

3.2.3.6 Representing Partial Results 50

x

3.2.3.7 Distributed Query Evaluation Frameworks 50

3.2.3.8 Summary . 51

3.3 Cost-Based Optimization . 52

3.3.1 Centralized Cost Estimation . 52

3.3.1.1 Cost . 53

3.3.1.2 Cardinality . 54

3.3.1.3 Order Properties . 55

3.3.2 Distributed Cost Estimation . 56

3.3.2.1 Distributed Cost Estimation for Relational Collections . . 56

3.3.2.2 Distributed Cost Estimation for XML Collections 57

3.3.3 Plan Enumeration . 58

3.3.3.1 Optimizing Techniques . 58

3.3.3.2 Randomized Techniques 61

3.3.3.3 Heuristic Techniques . 62

3.3.3.4 Summary . 62

4 Fragmenting XML Collections 63

4.1 Horizontal Fragmentation . 64

4.2 Vertical Fragmentation . 67

4.3 Hybrid Fragmentation . 71

4.4 Summary . 72

5 Distributed Query Evaluation Over Fragmented Collections 75

5.1 Horizontal Fragmentation . 76

5.1.1 Data Shipping . 77

xi

5.1.2 Distributed Execution Plans . 77

5.2 Vertical Fragmentation . 79

5.2.1 Annotating QTPs . 80

5.2.2 Decomposing QTPs . 85

5.2.3 Converting Local QTPs to LQPs 88

5.2.4 Distributed Execution Plans . 90

5.2.5 Handling Disjunction . 92

5.2.6 Handling Negation . 97

5.2.6.1 Folding Negation Into Cross-Fragment Joins 98

5.2.6.2 Negation Rewrites . 104

5.3 Summary . 109

6 Techniques for Improving Distributed Execution Plans 111

6.1 Horizontal Fragmentation . 112

6.1.1 Pruning Fragments . 112

6.1.1.1 Transformation to Simplified Form 115

6.1.1.2 Unrolling Descendant Steps 120

6.1.1.3 Removing Wildcard Nodes 123

6.1.1.4 Removing Pattern Nodes With Matches Reached via MULT

Edges . 125

6.1.1.5 Removing Negation Logic Nodes 125

6.1.1.6 Traversal and Pruning . 126

6.1.1.7 Efficient Implementation 129

6.1.1.8 Analysis . 130

6.1.2 Avoiding Sorting . 131

xii

6.2 Vertical Fragmentation . 135

6.2.1 Pruning Fragments . 137

6.2.1.1 Encoding Ancestor-Descendant Relationships 138

6.2.1.2 Pruning Intermediate Fragments 141

6.2.1.3 Pruning Fragments With Structural Constraints 142

6.2.1.4 Pruning Structurally Ambiguous LQPs 144

6.2.1.5 Analysis . 147

6.2.2 Pipelining DEPs . 147

6.2.2.1 Pushing Cross-Fragment Joins 149

6.2.2.2 Supporting Cross-Fragment Join Pushing 151

6.2.2.3 Maintaining Parallelism 152

6.2.2.4 Node Type Path Filtering 153

6.2.2.5 Analysis . 155

6.2.3 Join Ordering . 156

6.2.4 Combining Local Sub-Queries . 157

6.2.5 Duplicate Elimination . 159

6.3 Summary . 162

7 Cost-Based Optimization of Distributed Execution Plans 165

7.1 Assumptions . 171

7.2 Plan Properties . 172

7.2.1 Logical Plan Properties . 173

7.2.2 Physical Plan Properties . 173

7.3 Optimizing LQPs and Obtaining LQP Properties 177

xiii

7.3.1 Logical LQP Properties . 178

7.3.2 Physical LQPs . 179

7.3.2.1 Physical LQP Properties 181

7.3.2.2 Inferring LQP Order Properties 182

7.3.2.3 Comparing Alternative Physical LQPs 192

7.4 Obtaining DEP Properties . 194

7.4.1 Merge Operator . 196

7.4.1.1 Physical Merge Operator With Full Interleaving 198

7.4.1.2 Physical Merge Operator With Document-Wise Interleaving 198

7.4.1.3 Physical Merge Operator Based on Concatenation 200

7.4.1.4 Physical Merge Operator Based on Stable Concatenation . 201

7.4.2 Cross-Fragment Join Operator . 201

7.4.2.1 Physical Merge Join Operator 205

7.4.2.2 Physical One-Sided Hash Join Operator 209

7.4.2.3 Physical Symmetric Hash Join Operator 210

7.4.2.4 Pushed Cross-Fragment Joins 212

7.4.2.5 Example . 214

7.4.3 Sort Operator . 221

7.4.4 Outer Join, Grouping and Selection Operators 223

7.5 Enumerating DEP Alternatives . 227

7.5.1 DEP Shapes . 228

7.5.2 Comparing Sub-Plans . 228

7.5.3 Execution Order Constraints . 230

7.6 Dynamic DEP Adaptation . 230

7.7 Summary . 231

xiv

8 Cost-Based Fragmentation of XML Collections 233

8.1 Initial Fragmentation Schema . 235

8.2 Improving the Fragmentation . 237

8.2.1 Merging Fragments . 240

8.2.2 Horizontal Fragmentation Based on Node Type Paths 243

8.2.3 Horizontal Fragmentation Based on Value or Structural Constraints 246

8.3 Losslessness of resulting fragmentation . 247

9 Performance Evaluation 251

9.1 Full Suite of Techniques . 253

9.1.1 Scalability and Performance Impact 256

9.1.2 Comparison With Existing Distributed Query Evaluation Techniques 259

9.2 Techniques for Horizontal Fragmentation 262

9.2.1 Balanced Fragmentation . 263

9.2.2 Skewed Fragmentation . 272

9.2.3 Pruning Efficacy . 275

9.3 Techniques for Vertical Fragmentation . 276

9.3.1 Fragmentation and Pruning . 277

9.3.2 Cross-Fragment Join Pushing and Node Type Path Filtering 282

9.3.2.1 Effects in Various Scenarios 282

9.3.2.2 Effects with XPathMark Queries 285

9.4 Cost Model . 291

9.5 Summary . 307

xv

10 Conclusion 309

10.1 Summary . 309

10.2 Comparison to Related Work . 311

10.3 Possible Directions for Future Work . 311

References 315

Index 333

xvi

List of Figures

1.1 A horizontally fragmented collection . 6

1.2 A vertically fragmented collection . 7

1.3 Distributed query processing overview . 11

2.1 A schema . 14

2.2 An XML schema graph . 15

2.3 Tree pattern examples . 21

2.4 QTP representation of queries q1, q2, q3, q4, q5, and q6 23

3.1 Original table . 26

3.2 Horizontally fragmented table . 27

3.3 Vertically fragmented table . 28

3.4 Active XML document . 29

3.5 Active XML document after activating getPubs() 30

3.6 Navigational plans for queries q1 and q2 . 39

3.7 Structural join plans for queries q1 and q2 41

3.8 Left-deep vs. bushy plans . 59

4.1 A horizontally fragmented collection . 66

xvii

4.2 An XML schema graph . 66

4.3 Set of fragmentation tree patterns (FTPs) 67

4.4 A vertical fragmentation schema . 68

4.5 A vertically fragmented collection . 70

4.6 FTPs used in hybrid fragmentation . 71

4.7 A hybrid fragmented collection . 73

5.1 A horizontally fragmented collection . 78

5.2 Annotated QTP representation of query q1 81

5.3 Partially annotated QTP representation of query q4 82

5.4 Vertical fragmentation schema with reachable nodes highlighted 82

5.5 Annotated QTP representation of query q4 84

5.6 Decomposed QTP representation of query q1 85

5.7 Local QTPs corresponding to query q1 . 86

5.8 Fragments on path between fV
1 and fV

4 . 87

5.9 LQPs for query q1 . 89

5.10 DEP for query q1 . 92

5.11 Annotated QTP representation of query q5 93

5.12 Local QTPs corresponding to query q5 . 93

5.13 DEP for query q5 . 94

5.14 Local QTPs corresponding to query q4, with invalid local QTP q04(f
V
1) . . . 95

5.15 Local QTPs resulting from splitting q04(f
V
1) 95

5.16 DEP for query q4 . 96

5.17 Annotated QTP corresponding to query q3 98

xviii

5.18 Local QTPs corresponding to query q3 . 99

5.19 Incorrect DEP for query q3 . 100

5.20 A vertically fragmented collection . 101

5.21 LQP results for query q3 . 102

5.22 DEP for query q3 . 103

5.23 Negation rewrite rules . 105

5.24 Annotated QTP corresponding to query q6 before and after rewriting . . . 107

5.25 Local QTPs corresponding to query q6 . 107

5.26 DEP for query q6 . 108

6.1 QTP representation of query q7 . 113

6.2 A horizontally fragmented collection . 113

6.3 An XML schema graph . 116

6.4 QTP and FTP that are not mutually exclusive 117

6.5 Node types reachable from author from which name is reachable 120

6.6 Node types reachable from book from which reference is reachable 122

6.7 QTP representation of query q8 after unrolling descendant steps 123

6.8 Unrolling wildcard node test in query q4 124

6.9 QTP representation of query q8 after removing pattern nodes with multiple

matches . 125

6.10 Simplified QTP and FTP that are not mutually exclusive 128

6.11 Simplified QTP and FTP that are mutually exclusive 129

6.12 Simplified QTP and abstract FTP . 130

6.13 DEP with sorting . 133

6.14 DEP without sorting . 134

xix

6.15 Local QTPs corresponding to query q1 . 138

6.16 A vertically fragmented collection with Dewey IDs 140

6.17 DEP for query q1 after pruning . 141

6.18 Local QTPs corresponding to query q9 . 142

6.19 A vertical fragmentation schema . 143

6.20 DEP for query q9 after pruning . 144

6.21 Local QTPs corresponding to query q9 . 145

6.22 Fragment fV
3 with node type path IDs . 146

6.23 DEP for query q7 after pruning using node type paths 147

6.24 DEP for query q1 after pruning . 148

6.25 Local QTPs corresponding to query q1 . 149

6.26 Cross-fragment join pushing rewrite . 150

6.27 DEP for query q1 with pushed joins . 151

6.28 Node type path rewrite . 154

6.29 DEP for query q7 with node type path filtering 155

6.30 Relational plan for which magic set optimization is possible 156

6.31 Local QTPs with shared portion . 158

6.32 Combined structural-join based LQPs for q111(f
V
2) and q

2
11(f

V
2) 158

6.33 Local QTPs corresponding to query q10 . 159

6.34 DEP for query q10 . 160

6.35 LQP results for query q10 . 160

6.36 R
(

p110(f
V
1) ✶prefix-or-same(id(arp3),id(ap2))

p310(f
V
4)
)

. 161

6.37 DEP for query q10 with semi-join . 161

6.38 Un-pruned DEP for query q10 with semi-join 162

xx

6.39 R
(

p110(f
V
1) ✶id(arp2)=id(ap2)

p210(f
V
3)
)

. 162

7.1 A logical DEP . 167

7.2 Two physical DEPs . 168

7.3 Distributed query processing overview . 170

7.4 Sequence of tuples R1, hierarchically ordered by [ae1, a
p
v] 175

7.5 Sequence of tuples R2, independently ordered by ae1 and apv 176

7.6 Local QTP q11(f
V
1) . 180

7.7 Local QTP q31(f
V
3) . 181

7.8 Sequence of tuples R3, aord ❀ aimp . 183

7.9 Sequence of tuples R4, aord 6❀ aimp . 184

7.10 Sequence of tuples R5, aord ❀ aimp . 187

7.11 Two local QTPs . 190

7.12 A vertical fragmentation schema . 191

7.13 DEPs for query q9 . 194

7.14 Tuples produced by sub-plans GPu
and GPv

. 207

7.15 Tuples produced by merge joins . 208

7.16 A logical DEP with a single cross-fragment join 215

7.17 Physical DEPs with a single cross-fragment join 215

7.18 Dynamic adaptation of DEP . 231

8.1 An XML schema graph . 235

8.2 Initial fragmentation schema . 236

8.3 QTP representation of query q11 . 240

8.4 Local QTPs corresponding to query q11 . 241

xxi

8.5 Fragmentation schema after merging f1 and f5 242

8.6 Local QTPs corresponding to query q11 after merging f1 and f5 243

8.7 Fragmentation schema after horizontally splitting f4 245

8.8 Set of FTPs for horizontally fragmenting f1 ∪ f5 246

8.9 Final fragmentation schema . 248

9.1 Hybrid fragmentation schema obtained using heuristics 255

9.2 Centralized vs. distributed query evaluation, 120 MB 257

9.3 Centralized vs. distributed query evaluation, 1.2 GB 258

9.4 Centralized vs. distributed query evaluation, 12 GB 259

9.5 Comparison to existing distributed techniques, 12 GB 261

9.6 Response time, balanced horizontal fragmentation 264

9.7 Response time, balanced horizontal fragmentation (cont’d) 265

9.8 Response time, balanced horizontal fragmentation (cont’d) 266

9.9 Throughput, balanced horizontal fragmentation 269

9.10 Throughput, balanced horizontal fragmentation (cont’d) 270

9.11 Throughput, balanced horizontal fragmentation (cont’d) 271

9.12 Throughput, balanced and skewed horizontal fragmentation 273

9.13 Throughput, balanced and skewed horizontal fragmentation (cont’d) 274

9.14 Pruning efficacy . 276

9.15 Fragmentation schema used to evaluate vertical fragmentation and pruning 278

9.16 Response time, vertical fragmentation . 280

9.17 Fragmentation schema used to evaluate join cross-fragment pushing and

node type path filtering . 283

9.18 Impact of cross-fragment join pushing and node type path filtering 284

xxii

9.19 Fragmentation schema used to evaluate cross-fragment join pushing with

XPathMark queries . 287

9.20 Impact of cross-fragment join pushing, 120 MB 288

9.21 Impact of cross-fragment join pushing, 1.2 GB 289

9.22 Impact of cross-fragment join pushing, 12 GB 290

9.23 Fragmentation schema used to validate cost model 292

9.24 Query C1, estimated cost vs. actual cost 295

9.25 Query C2, estimated cost vs. actual cost 296

9.26 Query C3, estimated cost vs. actual cost 297

9.27 Query C4, estimated cost vs. actual cost 298

9.28 Query C5, estimated cost vs. actual cost 299

xxiii

List of Tables

2.1 Example queries . 22

3.1 Comparison of structure-based XML fragmentation techniques 33

3.2 Example queries . 38

3.3 Comparison of distributed query evaluation techniques 51

6.1 Comparison of strategies for combining results from horizontal fragments . 135

7.1 LQP properties . 193

7.2 Properties of LQPs for query q9 . 195

7.3 Merge operator properties . 202

7.4 Properties of LQPs . 215

7.5 Cross-fragment join operator properties . 219

7.6 Cross-fragment join operator properties (cont’d) 220

7.7 Sort operator properties . 222

7.8 Outer join, grouping and selection operator properties 227

9.1 XPathMark queries . 254

9.2 Speed-up factor of distributed query evaluation over centralized query eval-

uation . 258

xxv

9.3 Queries used in horizontal experiments . 267

9.4 Queries used to evaluate vertical fragmentation and pruning 279

9.5 Number of fragments accessed, vertical fragmentation 279

9.6 Queries used to evaluate cross-fragment join pushing and node type path

filtering . 281

9.7 XPathMark queries and selective XPathMark queries 286

9.8 Queries used to validate cost model . 293

9.9 Plans considered for query C1 . 300

9.10 Plans considered for query C2 . 301

9.11 Plans considered for query C3 . 302

9.12 Plans considered for query C4 . 302

9.13 Plans considered for query C5 . 303

9.14 Pearson correlation coefficient between estimated cost and actual cost of the

candidate plans for a given query . 304

xxvi

List of Abbreviations

DEP distributed execution plan

FTP fragmentation tree pattern

LQP local query plan

QTP query tree pattern

XML Extensible Markup Language

xxvii

List of Symbols

Documents and Fragments

d document

D set of documents

fi fragment

fH
i horizontal fragment

fV
i vertical fragment

fρ root fragment

fmax fragment with highest cost

P i→j
b proxy node representing edge from fragment fV

i to

fragment fV
j

RP i→j
b root proxy node representing edge from fragment fV

i

to fragment fV
j

s sub-tree

o node in document

≤doc document order

<doc strict document order

subtset(fi) set of sub-trees in fragment fi

nsubt(fi) number of sub-trees in fragment fi

xxix

Schemas

S schema

〈Σ,Ψ, s,m, ρ〉 schema

σ node type

Σ set of node types

ψ schema edge

Ψ set of schema edges

s(ψ) cardinality of a schema edge

m(σ) domain of a node type

ρ root node type

XQ Queries

cstr string constant

cnum numeric constant

θstr string constant

θnum string constant

/ child step

// descendant step

∗ wildcard node test

Tree Patterns

〈N,L, r, E, ν, c, ε, λ, T 〉 tree pattern

n pattern node

N set of pattern nodes

l logic node

L set of logic nodes

x pattern or logic node

parent(x) parent node of x

xxx

r root node

e pattern edge

E set of pattern edges

ν(n) node test of n

c(n) value constraint of n

ε(e) axis of e

λ(l) logic operator of l (∧, ∨, or ¬)

t extraction point

T set of extraction points

µ pattern match

M set of pattern matches

qk QTP query

quk local QTP corresponding to query qk

Plans and Their Properties

θ comparison operation

puk LQP corresponding to query qk’s local QTP quk
p̄uk remainder plan of puk
p̄u,Ak modified remainder plan of puk
P set of LQPs

GP distributed execution plan consisting of local plans in

P

GP
P physical distributed execution plan corresponding to

GP

R(GP) sequence of tuples produced by GP

A (GP) set of attributes comprising tuples in R(GP)

O
(

GP
P

)

set of attributes that are in document order in R(GP)

arpu attribute in R(GP) containing root proxy nodes

matched by puk

xxxi

apu attribute in R(GP) containing proxy nodes corre-

sponding to root proxy nodes matched by puk
aei attribute in R(GP) containing extraction point nodes

in the global QTP

A set of attributes

id(apu), id(a
rp
u) ID of proxy/root proxy node

ntpath(arpu) node type path of root proxy node

card(GPu
) cardinality of GPu

cost(GPu
) response time of GPu

cost-first(GPu
) time to first tuple of GPu

nsubt(puk) number of sub-trees accessed by LQP puk
subtcost(apuk) cost of evaluating the physical LQP apuk over a single

sub-tree

docdelay(GPu
) time until GPu

returns all tuples derived from an entire

document

tupfirst(GPu
, GPu

✶ GPv
) number of tuples needed from GPu

to produce one join

tuple

tupdelay(GPu
, GPu

✶ GPv
) time taken by GPu

to produce tupfirst(GPu
, GPu

✶

GPv
) tuples

nullprob(GPv
) probability that there is no match in GPv

for a given

proxy node

samegroup(GPu
, apv) average number of tuples returned by GPu

that differ

only in their value of apv
groupdelay(GPu

, apv) time to obtain samegroup(GPu
, apv) tuples from GPu

probecost cost of probing a hash table

xxxii

Logical Operators

✄ anti-join

G A grouping with aggregation

✶ join

⊙ merge

outer join

π projection

scan scan

σ selection

✷ singleton scan

S sorting

Υ unnest map

Physical Operators

✶
H hash join

✶
SH hash join

✶
I index join

✶
M merge join

⊙C concatenation-based merge

⊙DI merge with document-based interleaving

⊙FI merge with full interleaving

⊙SC stable concatenation-based merge

xxxiii

Chapter 1

Introduction

Over the past decade, XML [99] has become a commonly used format for storing and

exchanging data in a wide variety of systems. Due to this widespread use, the problem

of effectively and efficiently managing large XML collections has attracted significant at-

tention in both the research community and in commercial products. One can claim that

techniques for the management of XML data residing on a single system and for the cen-

tralized evaluation of queries over these data are now well understood. However, because

these techniques are inherently based on centralized execution on a single machine, their

scalability is limited when presented with large collections (or single, large documents) and

heavy query workloads.

In relational database systems, these scalability challenges have been successfully ad-

dressed by partitioning data collections and distributing the resulting fragments across a

distributed system. This makes it possible to distribute and parallelize query processing

[115]. This work is focused on similarly exploiting distribution in the context of an XML

database system. While there are some similarities between the way relational database

systems can be distributed and the opportunities for distributing XML database systems,

the significant differences in both data and query models make it impossible to directly

apply relational techniques to XML. Therefore, new solutions need to be developed to

distribute XML database systems.

While there has been research interest in distributed XML query processing for some

1

time, much of the existing work has focused on the problem of integrating multiple reposito-

ries into a single XML view (e.g., [2, 6, 43, 101]). While some of the work in this area deals

with the problem of optimizing queries over distributed collections of XML data, the goals

and constraints faced in the data integration scenario are decidedly different from those

seen in a scenario where distribution is used to improve scalability. For instance, whereas

data integration requires a fragmentation model that can express the complex ways in

which individual and possibly redundant data sources might need to be integrated, the

fragmentation model used in this work does not need to meet this requirement and can

therefore be optimized entirely for the purpose of improving query performance.

A few publications have focused on distribution as a means to improve scalability. These

either rely heavily on replicated index structures that complicate the handling of updates

[31] or they focus primarily on minimizing network communication cost [33, 39, 40, 124]. In

contrast to this, the work presented here is concerned with finding an end-to-end solution

that takes into account the overall cost of distributed query evaluation.

The primary focus of this work is on a scenario in which a collection of XML data is

distributed across multiple machines within a single data centre (ensuring high-throughput,

low-latency communication). Experimental results show that the techniques presented

here, which are specifically designed for improving the overall cost of query evaluation,

outperform techniques that focus on communication cost alone.

1.1 Focus and Motivation

This thesis focuses on the following aspects of the problem of improving the scalability of

XML query evaluation through distribution:

• First, a distribution model for XML is developed. This model is based on a fragment-

ation approach that partitions the collection based on characteristics of its content

and structure. A key advantage of this model is that it is simple and yet sufficiently

powerful to significantly improve the scalability of distributed query evaluation. This

simplicity makes it easier to identify a suitable fragmentation for a given query work-

load.

2

The distribution model supports horizontal fragmentation (based on selection op-

erators and predicates) and vertical fragmentation (based on a partitioning of the

set of element types in a schema). Both types of fragmentation are designed to be

orthogonal, which means that they can be used together to achieve hybrid fragment-

ation. While the semantics of this model are inspired by relational fragmentation

techniques, it is important to point out that the characteristics of XML, such as

its nested data model and structure-based queries, lead to a set of challenges and

optimization opportunities that differ significantly from what is encountered in the

relational context.

• Next, the focus is on techniques for evaluating queries over a collection that has been

distributed according to the proposed distribution model. These techniques begin

by localizing the query, i.e., by transforming the overall query into sub-queries that

can be evaluated independently and in parallel at the sites that hold the fragments

that are relevant to the query. Each sub-query is then transformed into a local query

plan, with each site choosing the most appropriate local query evaluation strategy

independently. Next, a distributed execution plan is specified, which describes how

and in which order these local query plans are to be executed and how their results

are combined to form the overall query result.

• Then, methods for improving the performance of distributed execution plans are

discussed. Several different techniques for this are introduced. One such technique

focuses on pruning the set of fragments that need to be visited to answer a given

query. A novel technique is introduced that can be used to detect fragments that can

be omitted from a distributed execution plan without compromising the correctness

of the query result. Experiments show that pruning leads to a significant performance

improvement in many realistic use cases.

• Further techniques for improving the performance of distributed query evaluation are

discussed next. For instance, a suite of rewrites are presented that make it possible to

improve query performance by pushing join operators from the distributed execution

plan into the local query plans. This increases parallelism (an important contributor

to good query performance in the distributed scenario considered in this work) and

3

makes it possible to skip large portions of the data stored within a fragment in many

cases. Experiments validate that these techniques further improve query performance

beyond the level achieved by pruning alone.

• Based on the distributed query evaluation techniques proposed in this thesis, there

are usually many different distributed plans that can be used to evaluate a given

query over a given distributed collection. While all of these plans yield the correct

query result, they may vary widely in their performance. This makes it important

to choose the best plan for a given query and distributed collection. This problem is

addressed by a cost-based optimization technique, which enumerates all possible plans

and compares them based on their estimated performance. Since communication

costs are usually low within the context of a data centre, the cost of distributed

query evaluation is dominated by the cost of evaluating sub-queries over individual

fragments. The cost model used in this work exploits this and estimates the overall

cost of a distributed plan by composing the costs of its constituent local plans.

• Based on the query evaluation techniques and the cost model, a workload-aware

fragmentation technique is then proposed. This technique is designed to fragment

a given collection in a way that will result in good performance for a given set of

queries.

When combined, these techniques represent a complete solution to the problem of

increasing the scalability of XML query evaluation. To validate this, an extensive set of

experiments are performed. These confirm that a combination of the techniques presented

in this thesis leads to a significant improvement in query performance and scalability, both

when compared to centralized techniques and to existing distributed approaches. The

contribution of each individual technique to this performance improvement is analyzed

thoroughly, both to validate the cost model and to gain a further understanding of the

performance characteristics of this work.

It is important to point out that all of the distributed query evaluation techniques

described in this work are designed to work without relying on a globally replicated index

structure, because using such a structure could limit the scalability of a distributed system

4

and negatively affect the performance of updates. In addition, all of these techniques work

independently of the local query evaluation strategies used for evaluating sub-queries at

the individual sites in the system, allowing for maximum flexibility.

To illustrate the challenges and optimization opportunities of distributed XML query

evaluation, consider two sample collections, which will be used as examples throughout this

thesis: a collection that is horizontally fragmented and one that is vertically fragmented.

For both collections, a brief summary is given of how the techniques presented in this thesis

improve query performance.

1.1.1 Horizontal Fragmentation

Figure 1.1 shows a horizontally fragmented data collection consisting of four documents

representing information about authors and their publications. The horizontal fragment-

ation is defined based on the first character of the authors’ last names, placing ‘John

Adams’ in fragment fH
1 , ‘Jane Dean’ in fragment fH

2 and ‘John Smith’ as well as ‘William

Shakespeare’ in fragment fH
3 .

Consider evaluating the following XPath query (q1):

/author[name[first[.= ’William’] and last[.=’Shakespeare’]]]//reference

A simple approach to answering this query might evaluate the original query over each

fragment independently and then gather the results. However, in the example shown here,

it is easy to see that the fragments fH
1 and fH

2 cannot possibly contribute to the result

of this query since they correspond to authors whose last names start with the letters

‘A’ and ‘D’, respectively, whereas the query is searching for authors whose last name is

‘Shakespeare’. Pruning these fragments makes it possible to answer the query without

contacting the sites at which they are stored. One of the contributions of this thesis is a

technique that detects irrelevant fragments and avoids accessing them during distributed

query evaluation.

Once the irrelevant fragments have been eliminated, the original query is evaluated over

each remaining fragment. Each fragment will yield a sequence of results, which are then

5

combined to the overall sequence of results, while paying attention to the overall ordering

of the query results (which may require sorting).

1.1.2 Vertical Fragmentation

Figure 1.2 shows a collection that has been fragmented vertically. Ignoring the nodes

labeled as P i→j
b and RP i→j

b for now, it can be seen see that author and agent nodes are

stored in fragment fV
1 , the nodes related to the author’s name are stored in fragment fV

2 ,

pubs and book nodes are stored in fragment fV
3 and chapter and reference nodes are

stored in fragment fV
4 .

author1

name1

first1

John

last1

Adams

pubs1

book1

chapter1

reference1

(a) fH
1

author2

name2

first2

Jane

last2

Dean

pubs2

book2

chapter2

reference2

(b) fH
2

author3

name3

first3

John

last3

Smith

pubs3

book3

chapter3

reference3

author4

name4

first4

William

last4

Shakespeare

pubs4

book4

chapter4

reference4

book5

chapter5

(c) fH
3

Figure 1.1: A horizontally fragmented collection

6

author1

P 1→2
11 P 1→3

12

author2

P 1→2
13 P 1→3

14

author3

P 1→2
15 P 1→3

16
agent1

P 1→2
17

(a) fV
1

RP 1→2
11

name1

first1

John

last1

Adams

RP 1→2
13

name2

first2

Jane

last2

Dean

RP 1→2
15

name3

first3

William

last3

Shakespeare

RP 1→2
17

name4

first4

John

last4

Shakespeare

(b) fV
2

RP 1→3
12

pubs1

book1

P 3→4
18

RP 1→3
14

pubs2

RP 1→3
16

pubs3

book2

P 3→4
20 P 3→4

21

(c) fV
3

RP 3→4
18

chapter1

RP 3→4
20

chapter2

reference2

RP 3→4
21

chapter3

(d) fV
4

Figure 1.2: A vertically fragmented collection

7

When evaluating q1 over the vertically fragmented collection, in the general case, all

four fragments need to be accessed. Fragment fV
2 is needed to evaluate the value con-

straint predicates, fragment fV
4 is needed to obtain result nodes and fragments fV

1 and

fV
3 are needed to evaluate structural constraints. One of the contributions of this thesis

is a technique that avoids accessing certain fragments that are only needed for evaluat-

ing structural constraints. In the example shown here, it is possible to avoid accessing

fV
3 . Conceptually, this is possible because it can be inferred that the sub-trees in fV

3 are

only needed to establish an ancestor-descendant relationship between sub-trees in fV
1 and

sub-trees in fV
4 .

Once the fragments that are irrelevant for a given query have been eliminated, the

sub-queries that need to be evaluated over each remaining fragment are determined. With

vertical fragmentation, this step is complicated by the fact that each fragment covers a

different portion of the overall schema. Therefore, a technique is proposed that decomposes

the query into a set of sub-queries corresponding to the portions of the schema covered by

the individual fragments.

After a sub-query for each relevant fragment has been obtained, it is necessary to

determine how to best execute these sub-queries and how to combine their results to the

overall query result. How this is done is specified in a distributed execution plan. Whereas

with horizontal fragmentation the sequences of results corresponding to each fragment can

simply be concatenated, with vertical fragmentation joins need to be performed to combine

the results derived from individual fragments. For a given fragmentation and query, there

are usually a large number of distributed execution plans that all lead to the correct result

but that differ in factors such as join order and join strategy. As will be shown, different

distributed execution plans lead to vastly different levels of query performance. Therefore, a

major focus of this thesis is on the generation of good execution plans. Particular attention

is paid to achieving a high level of parallelism, reducing the sizes of intermediate results,

and decreasing the cost of evaluating sub-queries.

8

1.2 Contributions

The specific contributions of this work are the following:

1. A formal definition of a fragmentation model for XML is provided. This model

makes it possible to fragment and distribute a collection in order to improve query

performance. Along with this model, a succinct method for specifying the horizontal

or vertical fragmentation of a collection of XML documents is proposed. This can

then be used as the basis for distributed query optimization.

2. Using this specification, a technique is introduced that decomposes a query into sub-

queries, each of which corresponds to a single fragment. A distributed execution

plan describes how the results of sub-queries are combined to form the overall query

result.

3. Based on the fragmentation model, a complete suite of techniques for identifying

irrelevant fragments and pruning them from a distributed execution plan is proposed.

4. The benefits and drawbacks of different types of execution plans are analyzed thor-

oughly. A novel query evaluation technique is proposed that makes it possible to

skip irrelevant sub-trees within a fragment by pushing cross-fragment joins into local

query plans. By pipelining aggressively, a negative impact on parallelism is avoided.

5. A cost model for distributed execution plans is proposed based on the end-to-end

response time of query evaluation. The focus of this model is on composing the costs

of local query plans (which dominate the cost of distributed query execution in a

data centre environment) while taking into account parallelism and the query evalu-

ation techniques presented in this thesis. Using this cost model, the best distributed

execution plan for a given query and collection can be determined.

6. Building on the cost model, a technique is proposed that can fragment an XML

collection such that the performance of a given query workload (when evaluated

using the techniques presented in this thesis) is improved.

9

7. All of the distributed query evaluation techniques presented in this thesis have been

implemented within the XML database system Natix and deployed within a virtual-

ized data centre. This has made it possible to verify that they significantly improve

the performance and scalability of query evaluation, both compared to centralized

query evaluation and to existing distributed techniques.

Figure 1.3 shows how these individual contributions, when taken together, yield an end-

to-end solution to the problem of distributed query evaluation over fragmented collections

of XML data. First, the query dispatcher decomposes an incoming query into sub-queries

that can be evaluated over individual fragments. Then, irrelevant fragments (and the sub-

queries corresponding to them) are pruned. Next, each of the remaining sub-queries is

sent to the site that holds the corresponding fragment. At this site, a local query plan for

this sub-query is determined and cost estimates for this local query plan are sent back to

the dispatcher. The dispatcher then uses these cost estimates to determine the distributed

execution plan with the lowest overall cost. Finally, this distributed execution plan (along

with the local query plans contained in it) is evaluated over the sites of the distributed

system. This yields the overall query result, which is shipped to the query dispatcher and

returned.

1.3 Organization

The remainder of this thesis is structured as follows. Chapter 2 describes a data model

and query model for XML. Chapter 3 discusses related work, both in the context of XML

data processing and distributed databases in general. Chapter 4 discusses in detail how the

fragmentation and distribution of XML collections is modeled. Chapter 5 describes how

queries can be evaluated over a distributed collection in a way that maximizes scalability.

The main focus of this chapter is on the localization of data that are relevant to the query

and the generation of a distributed execution plan. Together, these techniques represent

the foundation for Chapter 6, which focuses on techniques for improving the performance

of distributed execution plans. In Chapter 7, all of this is then tied together by a cost

model that helps to identify the best distributed plan for a given query and fragmented

10

query

decomposition

local sub-queries

pruning

sub-queries on relevant fragments

determine local plan for each sub-query

local plan properties

determine best distributed execution plan

distributed execution plan

run physical distributed execution plan

query result

query dispatcher individual sites in system

Figure 1.3: Distributed query processing overview

collection. Chapter 8 introduces a technique that can determine the best fragmentation for

a given query workload. To validate the effectiveness of this work, a thorough experimental

evaluation is presented in Chapter 9. Chapter 10 then presents a summary of the thesis,

conclusions, and areas of interest for future work.

11

Chapter 2

XML Data and Query Model

This chapter describes the XML data model used in this work. It also introduces XQ, the

class of queries supported.

2.1 Data Model

An XML collection can be described as a set of labeled, ordered trees. While XML is

a self-describing format that can be used without a schema, in practice, the structure of

document trees is usually constrained by a schema that specifies how elements may be

nested and what the domain of their textual content is. This work exploits the schema

definition (which is assumed to be the same for all documents in the collection) in order

to improve the performance of distributed query evaluation.

A schema is usually defined in a language such as DTD [99] or XML Schema [133,

132, 100]. For simplicity, here, a simple directed graph representation is used that covers

only those aspects of the schema that are important for the purpose of distributed query

evaluation. For example, the distinction between XML elements and attributes is ignored

and both are treated uniformly as nodes. To avoid ambiguity, these nodes will sometimes

be referred to as collection nodes to better distinguish them from nodes in other tree or

13

author(name, pubs, agent?)

pubs(book*, article*)

book(chapter*)

article(chapter*)

chapter(reference?)

reference(chapter)

agent(name)

name(initial?, first, last, title?)

initial(#text)

first(#text)

last(#text)

title(#text)

Figure 2.1: A schema

graph structures. In analogy with the treatment of nodes, both element types and attribute

names are referred to as node types.

Assuming that the original schema definition does not contain unspecified portions

(such as those defined using the DTD keyword ANY, which would lead to an incomplete

schema graph), it is straightforward to extract the information needed for this graph rep-

resentation from a DTD1 or an XML Schema. It is important to realize that the schema

graph may be less restrictive than the original DTD or XML Schema. However, since the

schema graph is never used to validate documents, this does not pose a problem (cf. [122]).

Definition 2.1. An XML schema graph is defined as a 5-tuple 〈Σ,Ψ, s,m, ρ〉 where Σ is

an alphabet of node types, ρ ∈ Σ is the root node type, Ψ ⊆ Σ×Σ is a set of directed edges

between node types, for each ψ ∈ Ψ, s(ψ) ∈ {ONCE, OPT,MULT} denotes the cardinality

of ψ, and for each σ ∈ Σ, m(σ) ∈ {{string}} denotes the domain of σ’s content.

1Note that a DTD does not explicitly specify the root element type of a document. Instead, the root

element type is specified in the DOCTYPE declarations of documents conforming to a DTD.

14

author

name

ONCE

initial

OPT

text

first

ONCE

text

last

ONCE

text

title

OPT

text

agent

OPT

pubs

ONCE

book

MULT

chapter

MULT

reference

OPT

article

MULT

ONCE

ONCE

MULT

Figure 2.2: An XML schema graph

The semantics of this definition are as follows: An edge ψ = 〈σ1, σ2〉 ∈ Ψ denotes

that a node of type σ1 may contain a node of type σ2. s(ψ) denotes the cardinality of

the containment represented by this edge: If s(ψ) = ONCE, then a node of type σ1 must

contain exactly one node of type σ2. If s(ψ) = OPT, then a node of type σ1 may optionally

contain a node of type σ2. If s(ψ) = MULT, then a node of type σ1 may contain zero or

more nodes of type σ2. m(σ) denotes the domain of the text content of a node of type σ,

represented as the set of all strings that may occur inside such a node.

Figure 2.1 shows an example of a schema represented as a simplified DTD; Figure 2.2

shows the same schema represented as a schema graph. Note how the node types initial,

first, last and title each contain an edge to a node with a dashed outline, which is

referred to as a domain node. The domain nodes represent the domain of the text content

of their parent nodes. As can be seen, all four nodes may contain arbitrary text as their

content (denoted as “text”). The other node types in the schema may not contain any

text content and are therefore drawn without domain nodes.

When translating a DTD or an XML Schema into the graph representation, attributes

are always assigned a cardinality of either ONCE or OPT, corresponding to mandatory

and optional attributes, respectively. Elements, on the other hand, may occur with any

of the three cardinalities, since both DTD and XML Schema allow for the specification of

elements with exactly one, zero or one, or multiple occurrences. In addition to these three

cases, XML Schema allows a more fine-grained specification of the number of occurrences

15

of an element. This is handled by assigning a cardinality of MULT whenever the XML

Schema definition allows for an element to occur more than once.

2.2 Query Model

The query evaluation techniques proposed in this work support a query model that consists

of a subset of XPath [24], referred to as XQ. This section first describes the XPath primitives

that are supported in XQ. Then, a tree-pattern representation of XQ queries is defined.

This representation will be used throughout this thesis.

2.2.1 XQ

Definition 2.2. An XQ query is an expression that conforms to the following grammar

such that σ ∈ Σ is a node type, cstr is a string constant and cnum is a numeric constant.

XQ := /PATH

PATH := STEP | PATH/STEP | PATH//STEP | PATH/self::STEP

STEP := NTEST [PPRED]? [V C]?

NTEST := σ | ∗

PPRED := PATH | (PPRED andPPRED) | (PPRED orPPRED) | not(PPRED)

V C := TC | NC || (V C andV C) | (V C orV C) | not(V C)

TC := . θstr cstr | starts-with(., cstr) | contains(., cstr) | . . .

NC := . θnum cnum

θstr := = | !=

θnum := < | <= | = | >= | > | !=

16

As shown in the grammar, XQ queries are absolute location paths (PATH) consisting

of child (/), descendant (//) and self (/self::) steps. Each step consists of a node

test (NTEST), either for a node type σ ∈ Σ or the wildcard ∗. Additionally, each step

may optionally contain one or more predicates. The following two types of predicates are

supported:

path predicates (PPRED) are relative location paths with the same restrictions as the

absolute location paths.

value constraints (V C) are constraints on the content of a collection node. Two types

of value constraints are supported:

textual constraints (TC) compare the textual content of a node to a string con-

stant (cstr). This is done using a comparison based on equality, inequality or

arbitrary string comparison functions such as starts-with() and contains().

numeric constraints (NC) treat the content of a node as a number and perform

a comparison to a numeric constant (cnum) based on the operators <, ≤, =, ≥,

>, and 6=.

For both types of predicates, arbitrarily nested conjunction, disjunction and negation

are supported. To keep the query model simple, conjunction and disjunction involving two

predicates of different types (i.e., a path predicate and a value constraint) is not directly

supported, although this can easily be emulated by inserting additional self steps.

The semantic of each of the primitives present in XQ is defined to be identical to its

XPath counterpart. In particular, this means that if a step contains two predicates (a path

predicate and a value constraint), then the implied semantics are a conjunction of these

predicates. Also, as in XPath, XQ steps return nodes in document order.

The primitives supported in XQ have been chosen based on two goals:

• The first goal is to include the most commonly used features of XPath in order

to maximize the practical applicability of the proposed techniques. These features

include nested path queries with predicates, conjunction, disjunction and negation,

all of which are supported in XQ.

17

• The second goal is to focus on features of XPath that can be supported efficiently

in a distributed fashion. Since some of the more advanced features of XPath – such

as the far-reaching following or preceding axes – would have severely limited the

opportunity for distributing and parallelizing query evaluation, these features have

been excluded from XQ.

XQ represents a reasonable trade-off between these two goals. It supports a rich and

useful class of queries. This is is supported by a wealth of related work based on query

models that are largely equivalent to XQ (e.g., [39]) or even more restrictive (e.g., [31]).

As previously pointed out by Zhang et al. [142, 141], restricting the query model to

self, child, and descendant axes is reasonable, as the path expressions in the XQuery use

cases [35] consist predominantly of these axes. Furthermore, there exists some work on

rewriting certain XPath axes to other axes that are easier to support [113, 114]. These

techniques might be useful for supporting a larger class of queries by rewriting axes that are

not directly supported in XQ, corroborating the usefulness of XQ as a model for expressing

realistic queries.

XQ queries are not only commonly used on their own, but they also represent an

important building block of more complex XQuery [26] queries and can be extracted from

these queries in many cases [107, 74, 106]. This makes it possible to leverage the techniques

presented in this thesis in the context of XQuery evaluation.

In addition to its expressiveness, XQ can be supported efficiently in a distributed system

using the techniques proposed in this thesis. This has made it possible to propose a

coherent, end-to-end strategy for evaluating XQ queries in a distributed fashion.

2.2.2 Tree Patterns

Rather than relying on the textual representation of XQ presented above, for query pro-

cessing and optimization, it is more convenient to use a structured representation. For this

work, a tree representation was chosen that is inspired by existing work on tree pattern

queries [32, 141, 70].

18

Whereas traditional tree pattern queries support location paths with path predicates

and conjunction, this work expands this model by adding support for value constraints,

disjunction and negation. This makes it possible to express all of XQ in a convenient tree

pattern representation, which will form the foundation of the query evaluation techniques

presented in this thesis.

Traditionally, tree patterns are defined as an un-ordered tree consisting of pattern nodes

with node tests and edges associated with XPath axes. To accommodate predicates with

arbitrary combinations of conjunction, disjunction and negation, nodes of a second type

are introduced, referred to as logic nodes. This leads to the following definition of tree

patterns.

Definition 2.3. A tree pattern is defined as the 9-tuple 〈N,L, r, E, ν, c, ε, λ, T 〉 where N

is a set of pattern nodes, L is a set of logic nodes, and E ⊆ (N ∪ L) × (N ∪ L) is a set

of edges. 〈(N ∪ L), r, E〉 is required to be an un-ordered tree rooted at r ∈ N (the root

node). T ⊆ N denotes the set of extraction points.

For each logic node l ∈ L, λ(l) ∈ {∧,∨,¬} determines whether this node represents a

conjunction, disjunction, or negation.

If Σ is a set of node types, then for each pattern node n ∈ N , ν(n) ∈ Σ ∪ {∗} denotes

the node test and c(n) determines the value constraint. For each edge e = 〈x, n〉 ∈ E with

n ∈ N , ε(e) ∈ {/, //, /self::} determines the axis.

Each pattern node in a tree pattern may have at most one child node. Thus, for each

pattern node n ∈ N exactly one of the following must hold:

• ∀x ∈ (N ∪ L) : ∄〈n, x〉 ∈ E (n is a leaf node with no children),

• ∃ unique n′ ∈ N : 〈n, n′〉 ∈ E (n has a single pattern node child n′ ∈ N), or

• ∃ unique l′ ∈ L : 〈n, l′〉 ∈ E (n has a single logic node child l′ ∈ L).

A logic node l with λ(l) = ¬ must have exactly one child node, which may be a pattern

node or a logic node: ∃ unique x ∈ (N ∪L) : 〈l, x〉 ∈ E. Similarly, if λ(l) = ∧ or λ(l) = ∨,

19

l must have at least two child nodes, which may be any combination of pattern and logic

nodes: ∃x1, x2 ∈ (N ∪ L), x1 6= x2 : 〈l, x1〉, 〈l, x2〉 ∈ E.

All logic nodes l on the path from the root of the tree pattern r to an extraction point

t ∈ T must have λ(l) = ∧ (i.e., there must not be any ∨ or ¬ logic nodes on the path from

the root to an extraction point). This ensures that a pattern match will assign a node from

the collection to each pattern node that is designated as an extraction point.

For notational convenience, for each node x ∈ (N ∪ L), parent(x) denotes the node

x′ ∈ (N ∪ L) such that 〈x′, x〉 ∈ E. Similarly, for each pattern node n ∈ N , child(n)

denotes the node x′ ∈ (N ∪ L) such that 〈n, x′〉 ∈ E. For each node x ∈ (N ∪ L),

children(x) denotes the set of nodes {x′ ∈ (N ∪ L)} such that 〈x, x′〉 ∈ E.

Since the intricacies of evaluating textual and numeric value constraints on a candidate

node from the collection are beyond the scope of this thesis, the structure of c(n) is not dis-

cussed further. It is important to note, however, that it consists of arbitrary conjunctions,

disjunctions, or negations of textual and numeric value constraints.

It is interesting to note that, in addition to XQ queries, tree patterns can also be used

to express queries with multiple extraction points. While this feature could be useful for

supporting a larger class of queries, the focus of this work is on queries with a single

extraction point. However, as will be shown in Chapter 5, tree patterns representing sub-

queries resulting from vertical fragmentation frequently contain multiple extraction points.

In this thesis, the tree pattern representation of a query is referred to as a query tree

pattern (QTP). Figure 2.3 contains a few simple examples, which are used to illustrate the

semantics of tree patterns.

• Figure 2.3(a) shows the QTP representation of a simple, linear path expression with-

out predicates. As can be seen, each pattern node contains a node test (shown above

the dividing line) and the edges are annotated with the axis of each step (/ and //).

The extraction point of the query (the pattern node with the node test d) is denoted

by a double outline.

• Figure 2.3(b) introduces a path predicate. Note the implicit conjunction involving

the path predicate (c) and the last step in the outermost path (d).

20

a

b

/

c

/

d

//

(a) /a/b/c//d

a

b

/

∧

c

/

d

/

(b) /a/b[c]/d

a

b
. = 5 ∨ . = 6

/

∨

c

/

d

/

e

//

(c) /a/b[c or d//e][.= 5 or .= 6]

a

∧

b

/

∨

c
. = 9

/

¬

d

/

e

/

(d) /a[b[c[.= 9] or not(d)]]/e

Figure 2.3: Tree pattern examples

• Figure 2.3(c) shows a query that contains disjunction both in a value constraint

(shown below the dividing line in pattern node b) and in a path predicate (represented

as a logic node labeled ∨).

• Figure 2.3(d) shows a more complex example with nested conjunction, disjunction,

and negation.

The queries shown in Table 2.1 will be used as running examples throughout the re-

mainder of this thesis. All of these queries correspond to the schema shown in Figure 2.2.

21

For the purpose of illustration, Figure 2.4 shows the QTP representations of queries q1

through q6.

2.2.3 Tree Pattern Matches

Tree pattern evaluation generally begins at the root of the pattern and assigns a node from

the XML collection to each pattern node such that all node tests, value constraints, and

structural constraints (expressed as axis relationships) are satisfied.

While this matching is straightforward for pattern nodes, logic nodes require special

attention. When encountering a logic node labeled ∧, all branches have to be matched.

This is the same behaviour seen in traditional tree pattern matching techniques. For logic

nodes labeled ∨, only one branch has to be matched and a pattern matching technique

might use short-circuit evaluation to avoid processing the other branches. For ¬ nodes, the

(single) branch is evaluated and the Boolean result is inverted, i.e., the branch is treated

as satisfied if there is no match and not satisfied if there is a match.

Once a complete match for a tree pattern has been found, a result tuple is generated

that consists of only those collection nodes that are associated with a pattern node that is

q1 /author[name[first[.= ’William’] and last[.=’Shakespeare’]]]//reference

q2 /author[name[first[.= ’William’] or title[.=’PhD’]][not(initial[.= ’A’])]]//book//reference

q3 /author[.//book[not(.//reference)]]

q4 /author[name[first[.= ’William’] and last[.=’Shakespeare’]]]/*

q5 /author[name[first[.= ’William’] or last[.=’Shakespeare’]]]//book//reference

q6 /author[pubs[not(book//reference)]]

q7 /author[name[first[.= ’William’] and last[.=’Shakespeare’]]]//book//reference

q8 /author[.//name[first[.= ’William’] and last[.=’Shakespeare’]]]//book//reference

q9 /author[name[first[.= ’William’] and last[.=’Shakespeare’]]]//pubs//reference

q10 /author[.//chapter]

q11 /author[name[last[.=’Shakespeare’]]]//reference

Table 2.1: Example queries

22

author

∧

name

/

∧

first
.=’William’

/

last
.=’Shakespeare’

/

reference

//

(a) q1

author

∧

name

/

∧

¬

initial
.=’A’

/

∨

first
.=’William’

/

title
.=’PhD’

/

book

//

reference

//

(b) q2

author

book

//

¬

reference

//

(c) q3

author

∧

name

/

first
.=’William’

/

last
.=’Shakespeare’

/

∗

/

(d) q4

author

∧

name

/

∨

first
.=’William’

/

last
.=’Shakespeare’

/

book

//

reference

//

(e) q5

author

pubs

/

¬

book

/

reference

//

(f) q6

Figure 2.4: QTP representation of queries q1, q2, q3, q4, q5, and q6

designated as an extraction point. Since ∨ and ¬ logic nodes are disallowed on the path

from the root of the pattern to an extraction point, for any pattern match, there will be

collection nodes assigned to all extraction points in the pattern.

When returning the collection nodes assigned to extraction points in the pattern, there

are two general approaches one can take. First, it is possible to return references to these

23

nodes, which can then be retrieved from the sites holding the corresponding fragments.

This is a good approach when large sub-trees are selected, which are then processed further

(for example, when using the techniques presented here to evaluate XPath expressions

occurring within the context of a more complex XQuery FLWOR expression). The second

option is to materialize the nodes along with their text content and then ship the result.

This has the advantage that no additional accesses to the fragments are necessary. The

distributed query evaluation techniques presented in this thesis are designed to work with

either of these approaches. The primary focus, however, will be on the second approach.

2.2.3.1 Order of Tree Pattern Matches

Evaluating a tree pattern over a collection yields a sequence of tree pattern matches. To

conform to the XPath semantics [24], tree pattern matches must be returned in document

order. For QTPs with a single extraction point this means that the nodes matched to the

extraction point will be returned in document order. For a QTP with multiple extraction

points, however, it is not generally possible to return query results such that the collection

nodes matched to all extraction points are returned in document order. In this case, one

extraction point is designated as the ordering extraction point and result tuples are returned

such that the collection nodes matched to the ordering extraction point are returned in

document order.

24

Chapter 3

Related Work

This chapter presents a discussion of related work. The main focus of this discussion is

on distributed query evaluation techniques for XML data. There is a significant amount

of existing work on centralized XML query evaluation. For brevity, only a short overview

of these techniques is given here, concerned primarily with techniques that are directly

related to the distributed approach presented in this thesis, and with techniques that are

employed by this distributed approach for the evaluation of sub-queries over individual

fragments. For a more detailed discussion of centralized XML query processing, the reader

is referred to Gou and Chirkova’s survey [58].

In the area of distributed query evaluation over relational data, there exists a vast body

of existing work. The discussion given here focuses on techniques that are directly related

to the techniques for XML data presented in this thesis. See Kossmann’s survey [86] and

Özsu and Valduriez’s book [115] for a more detailed discussion of this area of work.

The remainder of this chapter is structured as follows: In Section 3.1, techniques for

fragmenting collections are discussed. Section 3.2 then describes query evaluation tech-

niques that can be applied to fragmented and distributed collections. Finally, Section 3.3

discusses cost-based query optimization techniques and methods for cost estimation.

25

3.1 Fragmenting Collections

The key contribution of this thesis is a distributed query evaluation strategy that can be

applied to collections that have been distributed across a cluster of machines. Before a

collection can be distributed in this fashion, it is first necessary to fragment it. This section

first gives a brief overview of relational fragmentation techniques (Section 3.1.1), by whose

semantics the fragmentation approaches used in this work are inspired. Then, the various

techniques for fragmenting XML data are discussed and compared to the fragmentation

technique used in this work in Section 3.1.2.

3.1.1 Fragmenting Relational Data

While there exists a large body of work on fragmenting relational data (see [115] for an

overview), the most common approach is based on two types of fragmentation: horizontal

fragmentation based on selections that determine how rows are mapped to fragments, and

vertical fragmentation where projection is used to determine how columns are mapped to

fragments. These approaches are orthogonal and can be used together, yielding a hybrid

fragmentation.

To illustrate how horizontal and vertical fragmentation work in the context of relational

data, consider the table shown in Figure 3.1, which contains information about students.

To horizontally fragment this table, rows are selected for each fragment. This can be done

by specifying a selection predicate for each fragment. Figure 3.2 shows a possible horizontal

Student

ID Name Phone Email

1001 John Doe 519-555-1234 jdoe@example.com

1002 Jane Doe 519-555-1010 j2doe@example.com

1003 John Smith 416-555-0101 jsmith@example.org

1004 Jane Smith 905-555-0987 jsmith@example.com

Figure 3.1: Original table

26

σID≤1002(Student)

ID Name Phone Email

1001 John Doe 519-555-1234 jdoe@example.com

1002 Jane Doe 519-555-1010 j2doe@example.com

σID>1002(Student)

ID Name Phone Email

1003 John Smith 416-555-0101 jsmith@example.org

1004 Jane Smith 905-555-0987 jsmith@example.com

Figure 3.2: Horizontally fragmented table

fragmentation of this table. As can be seen, the first fragment contains students whose ID

is less than or equal to 1002, whereas the second fragment contains students whose ID is

greater than 1002. It is important to note that with horizontal fragmentation, the schema

of each fragment (as expressed by the set of attributes) is identical to the schema of the

unfragmented table.

When vertically fragmenting the same table (as shown in Figure 3.3), a set of columns

is chosen for each fragment. Thus, a vertical fragmentation can be specified by a set of

projection operations (one for each fragment). Note that this causes each fragment to

hold only a subset of the attributes of the unfragmented table. The rows of the original

table, however, are spread across all of the individual fragments. To ensure that the

unfragmented table can be reconstructed and to ensure that no information is lost, it is

necessary to replicate the key (corresponding to column ID in the example given here) in

each fragment. Without replicating the key it would not be possible to infer how the rows

in the individual fragments correspond to each other and, therefore, the decomposition

would not be lossless.

While the significant differences in data models make it impossible to directly apply

these fragmentation techniques to XML data, they inspire the techniques developed in

this thesis. As will be discussed in more detail in Chapter 4, horizontal fragmentation of

XML collections, similar to its relational counterpart, uses selection operations to define

27

πID,Name(Student)

ID Name

1001 John Doe

1002 Jane Doe

1003 John Smith

1004 Jane Smith

πID,Phone,Email(Student)

ID Phone Email

1001 519-555-1234 jdoe@example.com

1002 519-555-1010 j2doe@example.com

1003 416-555-0101 jsmith@example.org

1004 905-555-0987 jsmith@example.com

Figure 3.3: Vertically fragmented table

individual fragments, each of which correspond to the same schema. Similarly, vertical

fragmentation for XML partitions the schema, resulting in fragments that correspond to

different portions of the overall schema.

3.1.2 Fragmenting XML Data

Due to the more flexible, tree-structured nature of XML data, there are many different

possibilities for fragmenting XML data. These approaches can be classified into two main

categories: ad-hoc fragmentation, which allows arbitrary cuts to be made in the XML

document trees, and structure-based fragmentation, in which fragments are defined based

on characteristics of the schema or the data. While the work presented in this thesis follows

the latter approach, in this section, both approaches are discussed: Ad-hoc fragmentation

is described in Section 3.1.2.1, and structure-based fragmentation is described in Section

3.1.2.2.

After discussing both approaches to fragmentation, Section 3.1.2.3 describes techniques

28

that take query workload characteristics into account to find a suitable fragmentation.

While most of the existing work on fragmenting XML collections focuses on static ap-

proaches, in which the fragmentation, once determined, never changes, there are several

techniques that dynamically refragment a collection to adapt to changing query workloads.

3.1.2.1 Ad-hoc Fragmentation

Ad-hoc fragmentation is a flexible fragmentation model that does not rely on an explicit

fragmentation specification. Instead, it allows an XML collection to be fragmented by

arbitrarily cutting edges in the individual documents.

One approach that follows the ad-hoc fragmentation model is Active XML [2, 3, 4, 5],

which represents cross-fragment edges as calls to remote functions. Figure 3.4 shows an

example of an Active XML fragment that has a call to the remote function getPubs()

embedded.

When the remote function call is activated, the data corresponding to the remote

fragment is retrieved and is then available for local query processing. Figure 3.5 illustrates

this. As can be seen, the function call has been replaced with a fragment containing

information about this author’s publications. Using this model, Active XML provides a

flexible mechanism for describing fragmented collections of XML data. As with ad-hoc

fragmentation approaches in general, Active XML is particularly well suited for describing

how multiple sources of data can be integrated into a single XML view. This is in contrast

<author>

<name>

<first>John</first>

<last>Doe</last>

</name>

<call fun="getPubs(’J.\ Doe’)"/>

</author>

Figure 3.4: Active XML document

29

<author>

<name>

<first>John</first>

<last>Doe</last>

</name>

<pubs>

<book>...</book>

<article>...</article>

<book>...</book>

</pubs>

</author>

Figure 3.5: Active XML document after activating getPubs()

to the work presented in this thesis, which uses fragmentation as a means to spread query

processing throughout a distributed system.

Based on this work, Abiteboul et al. [6] present a technique for ensuring that an Active

XML document conforms to a specified type. This is achieved by reasoning about how

the types of individual document fragments affect the overall type of a document, thereby

combining Active XML with a more structure-based fragmentation approach.

Cong et al.’s [39, 33, 40] work on partial query evaluation is also based on ad-hoc

fragmentation although their single-document data model allows the authors to infer cer-

tain structural relationships between fragments, which can then be used for distributed

query optimization. Therefore, this work can be considered a hybrid case that has certain

structure-based characteristics.

Deutsch and Tannen [43] describe a technique for publishing an XML view over existing

relational and XML data. Their model uses XQuery expressions to map between the

published view and the (possibly redundant) data sources. While the authors do not

describe their work in a distributed context, they present a query rewriting technique

that could be used to answer queries in a data integration scenario. When distributing

to improve scalability, their technique seems less useful since the rewriting procedure is

30

relatively complex and the complete freedom given by an XQuery-based fragmentation

model with overlapping fragments would further increase the already large search space

encountered when fragmenting for a given workload.

The representation of cross-fragment edges as pairs of proxy nodes is a technique that

has been used successfully to fragment XML document trees onto pages in native XML

database system such as Natix [30, 49, 78] and Timber [75, 116], albeit at a much smaller

level of granularity than in the work presented here.

In summary, it can be observed that ad-hoc fragmentation offers great flexibility in

how a collection can be distributed, which makes it a good candidate for a data inte-

gration system. This flexibility, however, comes at the cost of decreased opportunity for

distributed query optimization, making this choice unsuitable for this work. Nevertheless,

some of the techniques that have been proposed for ad-hoc fragmentation (such as a proxy-

based representation of cross-fragment edges) are equally applicable to the structure-based

scenario.

3.1.2.2 Structure-Based Fragmentation

Structure-based fragmentation is based on the concept of fragmenting a collection based

on some property of the schema or the data themselves. As in the relational context,

it is possible to distinguish between horizontal fragmentation, which defines fragments

by selecting subsets of the collection, and vertical fragmentation, in which fragments are

defined by projecting to different parts of the schema. In addition to these options, it is

possible to define a hybrid fragmentation by concatenating selection and projection steps.

A key advantage of structure-based fragmentation is that it yields a succinct specification

of how a collection has been fragmented. As will be shown in this thesis, this specification

is highly valuable for the efficient evaluation of queries over the fragmented collection.

Because of this, structure-based fragmentation is particularly well suited when fragmenting

for the purpose of improving query performance, which is why the work presented in this

thesis follows a structure-based approach.

One of the first attempts to transfer the relational concepts of horizontal and vertical

fragmentation to the realm of XML was made by Ma and Schewe [93]. However, their

31

definition of vertical fragmentation is limited to elements whose content is a sequence of

other elements. Under these constraints, it is straightforward to extend the relational

definition of vertical fragmentation by treating the containing element type as a relation

that contains attributes corresponding to the contained element types. Analogously to the

relational case, it is then possible to simply project to subsets of the contained elements.

The authors also assume a single-document collection, which means that a horizontal

fragmentation step always has to be preceded by an implicit vertical fragmentation step.

In addition, their approach is based on modifying the schema by renaming elements and

rearranging their nesting. Therefore, unlike later techniques, it is not transparent, and it

requires queries to be formulated explicitly for a particular fragmentation specification.

Bremer and Gertz [31, 57] present another mechanism for specifying a vertical fragment-

ation of XML data. They call such a specification a Repository Guide. In a Repository

Guide, a fragment is defined by a selection path expression identifying the root nodes of the

sub-trees contained (referred to as inclusion paths), as well as a set of exclusion paths rep-

resenting nodes whose descendants are excluded from the fragment. The set of fragments

is required to be both disjoint and complete. The authors argue that this approach can be

expanded to horizontal fragmentation by allowing branching and value constraints in the

defining path expressions. However, this would make it difficult to enforce completeness

and disjointness.

Andrade et al. [12] expand Bremer’s method for specifying vertical fragmentation by

adding explicit support for horizontal and hybrid fragmentation. They define each horizon-

tal fragment by giving a selection predicate in the form of a Boolean path expression with

value constraints, in a way that is similar to how horizontal fragmentation is defined in this

thesis. These predicates are then used to determine whether a given document is part of

a given fragment. The predicates are required to cover all documents (completeness) and

be mutually exclusive (disjointness). The authors also make the observation that by nest-

ing horizontal and vertical fragmentation, both single-document and multiple-document

scenarios can be accommodated.

In addition to predicate-based horizontal fragmentation, Kido et al. [79] introduce a

novel definition of vertical fragmentation that is based on partitioning the schema graph,

rather than on inclusion and exclusion paths. This definition closely resembles the way

32

Technique Collection type Fragmentation type

Single doc Mult. doc Vertical Horizontal

Ma and Schewe X × renaming/renesting nodes after vert. frag. only

Bremer and Gertz X X incl./excl. paths constraints in excl. paths

Andrade et al. X X incl./excl. paths predicates

Kido et al. X X partitioning of schema predicates

This thesis X X partitioning of schema predicates

Table 3.1: Comparison of structure-based XML fragmentation techniques

vertical fragmentation is defined in this thesis.

Rusu et al. [119] extend structure-based fragmentation approaches for XML data by

adding explicit support for storing multiple versions of the same document. As the authors

point out, this is particularly useful in a data warehouse, where historic versions of data

need to be preserved.

While not directly related to fragmentation, Marian et al. [102] propose a technique that

improves query performance by projecting away irrelevant portions of an XML collection.

The goal of this technique is to reduce the size of the relevant portion of the collection

and thus be able to process the query in main memory. Unlike the other fragmentation

techniques discussed here (and unlike fragmentation as specified in this thesis), there is

no attempt to preserve the entire collection. Thus, Marian et al.’s approach somewhat

resembles techniques that generate materialized views of an XML collection and then

answer queries based on these views (e.g., [17, 129]).

Table 3.1 shows an overview of the structure-based fragmentation techniques presented

in this section. As can be seen, most techniques support both single-document and

multiple-document collections, with the exception being the early technique by Ma and

Schewe [93], which supports single-document collections only. Due to this limitation, this

technique offers only limited support for horizontal fragmentation, requiring a prior, im-

plicit vertical fragmentation step. At the same time, since this technique changes the names

and nesting of elements during fragmentation, queries need to be reformulated before they

can be evaluated over a fragmented collection. Later techniques offer full support for ver-

tical fragmentation based on inclusion and exclusion paths (Bremer and Gertz [31, 57] and

33

Andrade et al. [12]) or based on a partitioning of the schema (Kido et al. [79]). Support

for horizontal fragmentation is also present, either based on value constraints in exclusion

paths (Bremer and Gertz [31, 57]) or based on a set of predicates (Andrade et al. [12] and

Kido et al. [79]).

3.1.2.3 Fragmentation Based on Query Workloads

While structure-based fragmentation yields a fragmentation specification that can be ex-

ploited to improve the performance of query evaluation over fragmented collections, to

obtain the best performance, it is helpful to tailor the fragmentation to the query work-

load. This section presents an overview of techniques for doing this. While in theory it

is possible to determine the best possible fragmentation by exhaustively enumerating all

possibilities, due to the large size of the search space, heuristics are usually favoured.

Based on their model of horizontal fragmentation, Ma and Schewe [94] propose an

outline of a cost-based heuristic for determining the best horizontal fragmentation for a

given query workload. Unlike the work presented in this thesis, which aims to consider all

components of the cost of query evaluation, the cost model presented in Ma and Schewe’s

paper focuses on communication cost.

Based on their definition of horizontal and vertical fragmentation, Kido et al. [79] de-

scribe how a suitable fragmentation for a given workload can be obtained. Their strategy

is based on first fragmenting the collection into a large number of small fragments, one

corresponding to each simple path expression that can be extracted from the query work-

load. To obtain the desired number of fragments, some of these initial fragments are then

combined. While the authors do not go into any detail on the cost model used to com-

pare various ways of combining initial fragments, the authors point out that a complete

enumeration of all possible fragmentations is not feasible. Instead, a greedy strategy and

a strategy based on genetic algorithms are outlined.

Yu et al. [138, 128] describe two heuristic data allocation techniques that are designed

to increase parallelism in query execution. The first technique, Path Schema based Path

Instance Balancing (PSPIB), is based on the idea of a path schema, which represents

label paths from the root of the document to one of its leaves. The nodes corresponding

34

to a particular path schema are evenly distributed among all fragments in the system,

with nodes occurring in more than one path schema being replicated in all fragments.

The second technique, referred to as Node Schema based Node Round-Robin Balancing

(NSNRR), on the other hand, places all nodes with the same node name in one fragment

and allocates node names to fragments in a round-robin fashion. There is no replication

with this technique.

Focusing on a specific query evaluation strategy using holistic twig joins (first proposed

by Bruno et al. [32]), Machdi et al. [95, 96] describe a technique that can be used to cluster

both documents and queries to enable parallel query evaluation. Unlike the fragmentation

model used in this work, their model replicates data as necessary. Based on their fragment-

ation technique, the authors then discuss how this clustering can be refined dynamically

to adapt to workload imbalances.

Kurita et al. [88] take this idea of dynamically adapting the fragmentation further. Ini-

tially, they create a vertical fragmentation consisting of fragments that are approximately

equal in size by recursively inspecting the size of document sub-trees and splitting if nec-

essary. During query processing, the processing load placed on each fragment is measured.

Based on this information, fragments with high loads are then split and fragments with

small loads are merged. This allows them to balance the loads placed on each site, which

leads to improved query throughput. While this technique is based on a simple idea, its

ability to cope with varying workloads is a considerable advantage. However, frequently

rearranging large portions of the collection is likely to be expensive. In addition, the dy-

namic nature of the resulting fragments can have a negative impact on the locality of

updates. Also, as with all ad-hoc fragmentation techniques, query optimization is more

difficult since it is not generally possible to determine which part of the query corresponds

to which of the fragments.

As can be seen, several approaches have been proposed to fragment and distribute XML

collections based on a query workload. When fragmenting based on workload characteris-

tics, it is particularly important that the characteristics of the query evaluation strategy

are taken into account. Because of this, it is not possible to simply adapt an existing frag-

mentation strategy for this work. Instead, a technique needs to be tailored for the query

evaluation strategy proposed in this thesis, which is presented in Chapter 8.

35

3.2 XML Query Evaluation

The problem of XML query evaluation has attracted a significant amount of attention in

the research community and a large body of existing work exists in this area. This section

focuses on the aspects of the existing work that are related to the problem addressed in this

thesis. First, existing work related to the tree pattern query model used in this thesis is

summarized (Section 3.2.1). Then, centralized query evaluation techniques are described

(Section 3.2.2). Since the amount of work in this area is vast, only a brief overview of

the most popular techniques is given and special focus is placed on techniques that share

some commonality with the distributed techniques presented in this thesis (e.g., techniques

that explicitly take fragmentation into account). Finally, the related work in the area of

distributed XML query processing is discussed in detail (Section 3.2.3).

3.2.1 Tree Patterns as a Query Model

As discussed in Section 2.2, the query model used in this work (referred to as XQ) supports

tree pattern queries with child and descendant axes, node tests and value constraints.

Additionally, negation, conjunction, and disjunction are supported and pattern nodes may

be designated as extraction points to allow for data selection.

Expressing queries as tree patterns is a well established technique, and much of the

existing work in the areas of centralized (e.g., [32, 141]) and distributed XML query pro-

cessing (e.g., [33, 39, 31]) employs this approach. While it is straightforward to transform

simple, nested XPath queries into such tree patterns, the usefulness of this query model

goes further than that. This is illustrated by Michiels et al. [106], who describe a formal

procedure for extracting tree patterns from more complex XQuery expressions. Using this

technique, it is possible to apply tree pattern-based query evaluation techniques to a wider

range of queries.

36

3.2.2 Centralized Query Evaluation

The distributed query evaluation technique presented in this thesis works by decomposing

a tree pattern query into multiple local sub-patterns, each of which is then evaluated

independently over its corresponding fragment. Therefore, this work is independent of

the centralized query evaluation techniques used at each site. The problem of evaluating

tree pattern queries over centralized XML collections has been studied in great detail and

many different solutions exist. While a complete discussion of all such techniques is beyond

the scope of this thesis, for understanding the distributed techniques presented here, it is

helpful to be familiar with the main approaches used in centralized query evaluation. This

section presents an overview of these approaches, paying special attention to how logic

nodes in a tree pattern can be accommodated.

Existing research on centralized tree pattern evaluation has yielded a large variety of

techniques. Most of this work can be categorized into two main classes: navigational

approaches (discussed in Section 3.2.2.1) and structural join-based approaches (discussed

in Section 3.2.2.2). For a detailed discussion of the performance implications of choosing

between these approaches, the reader to is referred to [103].

In addition to simple navigational and structural-join based query evaluation tech-

niques, some techniques have been developed that take into account the storage layout of

native XML database systems. In these systems, large documents are frequently stored

in multiple portions (e.g., corresponding to disk pages). Thus documents stored in these

systems are effectively fragmented. Section 3.2.2.3 describes these fragmentation-aware

techniques and discusses the commonalities they share with the distributed query evalua-

tion techniques proposed in this thesis.

3.2.2.1 Navigational Query Evaluation

Navigational approaches for tree pattern evaluation operate directly on the tree structure of

the collection [20, 76, 84, 30, 66]. This is usually done using algebraic operators that, given

a starting node in the collection and an XPath step, yield the nodes that are reachable via

this step.

37

q1 /author[name[first[.= ’William’] and last[.=’Shakespeare’]]]//reference

q2 /author[name[first[.= ’William’] or title[.=’PhD’]][not(initial[.= ’A’])]]//book//reference

Table 3.2: Example queries

To illustrate this, consider Figure 3.6, which shows navigational query plans for queries

q1 and q2 (given in Table 3.2). Both plans are based on the algebra presented in [30, 66].

The plan for q1 starts by scanning the root nodes of the documents in the collection

(scana0:root). This scan yields a sequence of tuples, each of which contains one document

root in attribute a0. This sequence then reaches the operator Υa1:a0/author (unnest map),

which computes the first step of the query. For each tuple received, this operator yields

one tuple for each author node reachable via a child step from the node in attribute a0.

In the resulting tuple, the node that was reached through this step is returned in attribute

a1. The other steps in the query are similarly handled by Υ operators.

Predicates are handled by a selection operator (σ). Note that the selection predicate is

expressed as a sub-plan, connected via a dotted line. The semantics of this are as follows.

For each tuple t received from the left-hand side producer of the selection, the sub-plan

on the right-hand side is evaluated. A sub-plan begins with a singleton scan operator (✷),

which yields a single tuple identical to t. Following this are the Υ and σ operators that

evaluate the predicate. Finally the aggregate operator Aexists is reached, which yields true

if its producer yields at least one tuple and false otherwise. Therefore, the result of Aexists

is true if and only if the predicate is satisfied. This result is then used as the selection

predicate for tuple t. This approach also works for nested predicates. As shown in Figure

3.6(a), this makes it possible to support conjunction.

To handle queries with negation and disjunction, additional logic operators can be

inserted. These operate on Boolean values rather than tuples, which is indicated by dotted

lines in Figure 3.6(b). As before, sub-plans for each predicate are evaluated. Their result

tuples are then aggregated (Aexists), which yields a Boolean result for each sub-plan. The

Boolean results of multiple sub-plans are then combined by logic operators (∨ and ¬) and

finally used as the predicate for a selection (σ).

38

π{a2}

Υa2:a1//reference

σ

Υa1:a0/author

scana0:root

Aexists

σa5=’Shakespeare’

Υa5:a3/last

σ

Υa3:a1/name

✷

Aexists

σa4=’William’

Υa4:a3/first

✷
(a) q1

π{a3}

Υa3:a2//reference

Υa2:a1//book

σ

Υa1:a0/author

scana0:root

Aexists

σ

Υa4:a1/name

✷

∧

∨

Aexists

σa5=’William’

Υa5:a4/first

✷

Aexists

σa6=’PhD’

Υa6:a4/title

✷

¬

Aexists

σa7=’A’

Υa7:a4:/initial

✷
(b) q2

Figure 3.6: Navigational plans for queries q1 and q2

At the root of the plan, the tuples are projected to contain only those attributes that

correspond to extraction points in the query pattern. In both examples shown in Figure 3.6,

only the attribute corresponding to reference nodes that match the pattern are returned

(a2 for query q1 and a3 for query q2).

39

3.2.2.2 Structural Join-Based Query Evaluation

Structural join-based query evaluation techniques follow a markedly different approach

[137, 139, 11, 62, 41, 32]. Instead of navigating the document tree, they perform linear

scans of all nodes in a document (possibly filtered for a single node type) and then combine

the results of such scans using joins that determine whether two nodes are in a particular

structural relationship to each other. Usually, these joins rely on some kind of encoding

of the document structure in the ID of each node or in a separate index. In addition,

structural joins frequently exploit the order in which nodes are processed, thus reducing

the number of comparisons that need to be made.

Figure 3.7 contains two examples for this approach, corresponding to queries q1 and

q2, respectively. Both plans consist of scans and joins. scana0:author, for example, scans all

nodes of the type author and emits one tuple for each of them, with the author node in

attribute a0. The join operator ✶a0//a1 proceeds as follows. Given a tuple t1 = [. . . , a0, . . .]

from the left-hand side producer and a tuple t2 = [. . . , a1, . . .] from the right-hand side

producer, the join emits a tuple t = t1 ∪ t2 if and only if the node in a1 is a descendant

(denoted by //) of the node in a0.

To evaluate predicates, semi-joins can be used instead of full joins. ⋉a0/a3 in the plan

for q1, for example, works as follows. Each tuple t1 = [. . . , a0, . . .] from the left-hand side

is passed on unchanged if and only if there is a tuple t2 = [. . . , a3, . . .] on the right-hand

side such that the node in a3 is a child (denoted by /) of the node in a0.

As with navigational approaches, supporting nested predicates connected by conjunc-

tion is straightforward. One can simply insert multiple semi-joins into the plan.

To accommodate disjunction, it is possible to use the merge operator (denoted as ⊙),

which emits tuples received from either side unchanged. The plan for query q2 in Figure

3.7(b) shows an instance of this. Note how the producer sub-plans of ⊙ are set up so that

they emit tuples that contain nodes in the same attribute a4. After merging both streams

of tuples, this attribute is then used in a semi-join predicate.

To support negated predicates, an anti-join (✄) can be used in place of the semi-join.

The operator ✄a3/a5 , for example, proceeds as follows: Each tuple t1 = [. . . , a3, . . .] received

40

π{a1}

✶a0//a1

⋉a0/a2

scana0:author ⋉a2/a4

⋉a2/a3

scana2:name σa3=’William’

scana3:first

σa4=’Shakespeare’

scana4:last

scana1:reference

(a) q1

π{a2}

✶a1//a2

✶a0//a1

⋉a0/a3

scana0:author ✄a3/a5

⋉a3/a4

scana3:name ⊙

σa4=’William’

scana4:first

σa4=’PhD’

scana4:title

σa5=’A’

scana5:initial

scana1:book

scana2:reference

(b) q2

Figure 3.7: Structural join plans for queries q1 and q2

41

from the left-hand side is returned if and only if there is no tuple t2 = [. . . , a5, . . .] from

the right-hand side such that the node in a5 is a child of the node in a3.

3.2.2.3 Exploiting Fragmentation in Centralized Query Evaluation

Initially, research on XML database systems did not pay much attention to page boundaries

during query evaluation. Instead, these systems operated entirely on logical document

trees, without considering how these trees are stored. Assuming that document trees are

stored on disk pages, as is commonly the case in the context of a native XML database

system, this approach has the disadvantage that pages may be accessed out of order or

even multiple times, leading to increased disk seek cost.

Several techniques have been proposed that take into account how documents are frag-

mented across multiple pages. While the fragments encountered by these techniques are

generally much smaller than those seen when an XML collection is fragmented for the

purpose of distribution across multiple nodes in a distributed system, it is nevertheless

interesting to compare these query evaluation techniques to the techniques that can be

applied in a distributed system.

Kanne et al. [77] present a navigational query evaluation technique that can process

location path queries while avoiding the random I/O penalty associated with approaches

that operate purely on the logical document tree. This is achieved by delegating all page

accesses to a single scan operator. All other operators are only allowed to navigate within

the current page. Since this does not, in general, yield enough information to compute

matches for the entire path, partial matches are generated for each page. To obtain the

overall query result, partial matches are then stitched together.

Kanne et al.’s work supports a variety of disk access policies. One option is to use

a scheduler to access pages when they are needed, guaranteeing that each page is only

accessed once. This ensures that no page is retrieved unnecessarily, but it makes no

guarantees about access order. Alternatively, all pages can be accessed in a sequential

scan, completely eliminating random I/O.

The process of combining partial matches somewhat resembles the way sub-query re-

sults derived from multiple vertical fragments are combined in this thesis. However, since

42

Kanne et al.’s technique does not have the benefit of a fragmentation schema (i.e., a succinct

specification of how different portions of the schema are mapped to individual fragments)

it cannot benefit from decomposing the query into multiple sub-queries and instead has

to evaluate the full query over each page. This complicates the way partial matches are

combined since it is not possible to use a join with two well-defined inputs. Instead, a

self-join has to be used since any partial match might need to be combined with any other

partial match.

Chan and Ni [36] use a similar fragmentation-aware approach to implement a pub-

lish/subscribe systems that models subscriptions using Boolean XPath queries. Queries

are decomposed into sub-queries using a synopsis of how the data are fragmented. Special

attention is paid to the order in which fragments are accessed and to eliminating partial

results from consideration as early as possible.

Zhang et al. [141] present a technique that is based on dividing a query pattern

into multiple next-of-kin sub-patterns, which consist only of parent/child and following-

sibling/preceding-sibling relationships. Using a novel, page-based storage scheme, indi-

vidual next-of-kin sub-patterns can be evaluated using a single, linear scan of the data.

The resulting sub-pattern matches can then be assembled using structural join techniques

to evaluate the axes connecting the corresponding sub-patterns. This approach combines

some of the advantages of navigational query answering with those of index-based tech-

niques.

Cong et al. [40] start with a distributed query evaluation strategy and describe how it

can be used to evaluate queries over large collections in a centralized environment. Random

disk I/O is avoided by partitioning the collection into fragments that fit into memory and

then evaluating the query over one such fragment at a time. Finally, the partial results

obtained from each of these fragments are combined to the overall query result.

The problem of centralized query processing on fragmented collections of XML data

has also been studied within the context of streamed XML data on devices with limited

resources [29]. In this work, the data are assumed to be fragmented based on a partitioning

of the schema, resembling vertical fragmentation as defined in this thesis. Fragments are

assumed to be streamed through a centralized query evaluation plan consisting of multiple

43

operators, each of which is responsible for a single fragment. Document sub-trees are

buffered at their corresponding operators until it can be decided whether they form part

of the query result. To evaluate predicates across fragment boundaries, information is

exchanged between operators using a table that encodes how sub-trees are related to each

other.

Most of the fragmentation-aware query processing techniques that have been proposed

for centralized XML query evaluation assume a single-threaded model with no parallelism.

Bordawekar et al. [28] go beyond this and focus on how XPath queries can be evaluated

efficiently in a shared memory system with multiple processor cores. To take advantage

of the processing power of these cores, two approaches are used to partition the query

processing work: With data partitioning, the node set resulting form a previous query step

(which is assumed to be evaluated on a single core) is partitioned and the remainder of the

query is then evaluated in parallel over each resulting partition. With query partitioning,

in contrast, the query is rewritten into multiple sub-queries (for example by devising a

set of mutually exclusive range predicates and inserting one of these predicates into each

sub-query). Each sub-query is then evaluated independently at a separate core. Both

partitioning strategies can be combined, resulting in a hybrid partitioning. By ensuring

that all cores are utilized, the performance of CPU-bound single query workloads can be

improved significantly.

3.2.3 Distributed Query Evaluation

In this section, existing work on distributed XML query evaluation is examined and com-

pared to the technique presented in this thesis. Some of the techniques proposed in this

area consist of extensions to XML query languages that allow for the explicit querying of

remote documents. These techniques are described in Section 3.2.3.1. Other techniques

aim to be transparent, i.e., they accept a fragmentation-unaware query and automatically

determine how to distribute execution of this query over a fragmented collection. With

this approach, it is usually necessary to decompose the query into sub-queries that can be

evaluated over individual fragments. Techniques for performing this decomposition are dis-

cussed in Section 3.2.3.2. Next, Section 3.2.3.3 describes techniques that aim to eliminate

44

irrelevant sub-queries and thereby avoid accessing some of the fragments of a collection.

Section 3.2.3.4 describes index structure that can be used in distributed query evaluation.

Section 3.2.3.5 then discusses techniques for the distributed execution of queries, with spe-

cial focus on how sub-query results are assembled to the overall query result. There are

several approaches for representing the partial results obtained from individual sub-queries.

Section 3.2.3.6 discusses some of the alternatives proposed in the literature. Finally, Sec-

tion 3.2.3.7 describes a set of implementation frameworks that have been proposed for

building distributed XML query evaluation systems.

3.2.3.1 Distributed Query Language Extensions

A simple way to query distributed collections is to make the distribution explicit in the

query language. Zhang and Boncz have developed the query language XRPC [144, 145],

which is a superset of XQuery that has been enriched with facilities for shipping queries

to remote sites. When XRPC queries are evaluated, these requests are forwarded and the

results are used during local query processing. If a remote site does not support XRPC

but supports plain XQuery, an adapter can be used to translate. This allows queries to

make use of remote data sources without requiring any changes to those sources, which is

desirable since a user might not have administrative control over them in a data integration

scenario. While Zhang and Boncz do not describe any optimizations that go beyond what

is explicitly specified in the query, XRPC may be well suited to serve as a target language

for a distributed optimizer.

A similar approach is taken by Ré et al. [118]. They present the distributed query

language XQueryD, which makes it possible to query multiple XML repositories within

a single query. As with XRPC, a query shipping paradigm is followed. Additionally,

the authors describe a suite of rewrites that can be used to improve distributed query

performance.

Fernández et al. [47] present another language extension for XQuery named DXQ.

Rather than focusing primarily on query evaluation, this technique is concerned with build-

ing distributed applications.

While these language-based approaches allow for the easy integration of multiple data

45

sources, they require queries to be formulated to explicitly access individual fragments. In

a scenario where fragmentation is used to improve performance and the schema is fixed,

this is a significant disadvantage when compared to techniques that automatically infer

how to distribute query processing.

3.2.3.2 Query Decomposition

Many existing distributed query evaluation techniques work by evaluating the entire query

over each fragment (e.g., [33, 39]). If information about the way a collection is fragmented

is available, it is possible to obtain better performance by decomposing the query into

multiple sub-queries and only evaluating the relevant sub-queries over each fragment.

Le et al. [91] present a schema-based technique for decomposing a global query into

local queries within the context of a data integration system. They identify which of the

local schemas contain information that can be mapped to the global schema types used

in the query. While their technique is not directly applicable to the distributed database

scenario, one might employ a similar method to identify which fragments in a vertically

fragmented collection are relevant for a given query.

Based on the XRPC extension of XQuery, Zhang et al. [146] describe a technique that

transforms a centralized, data shipping-oriented query into a distributed, query shipping

equivalent. This is achieved by decomposing the query and pushing part of the query

execution to remote sites. This work supports all of XQuery, although certain query

primitives make it impossible to perform effective query decomposition while maintaining

result correctness. In these cases, the technique falls back to a data shipping approach.

Andrade et al. [12, 13] also mention that a query can be decomposed into sub-queries

corresponding to individual fragments, however their papers do not describe how exactly

this could be done.

3.2.3.3 Pruning Irrelevant Fragments

Pruning is an important step in distributed query optimization. The idea behind pruning

is to identify which fragments are irrelevant for a given query and to refrain from accessing

46

these fragments altogether. This can help improve the query throughput of a distributed

system and can also reduce latency by eliminating the need to wait for processing of

irrelevant fragments to finish.

Based on their partial evaluation strategy, Cong et al. [39] present a simple technique

for pruning fragments. They identify fragments that can be pruned by examining the

structural relationship between fragments. Unlike the pruning technique presented in this

thesis, only structural constraints are taken into account. This results in a technique that

can prune vertical fragments if it can be shown that they are not reached by the query.

Within the context of Active XML, Abiteboul et al. [2] present a technique that avoids

calling certain remote functions and thereby limits the number of fragments that have to be

retrieved in order to answer a given query. Due to the ad-hoc fragmentation of Active XML

documents, it is not possible to identify in advance the set of irrelevant fragments. Instead,

a lazy approach to retrieving fragments is employed, and fragments are only shipped to

the central query processing site when the corresponding function call is reached during

query evaluation. This is consistent with Active XML’s focus on querying over integrated

XML data services.

Within the context of structure-based fragmentation, Andrade et al. [12, 13] mention

that it is possible to eliminate fragments from consideration in certain cases. While they

provide a sketch of how this works in the case of horizontal fragmentation (by extract-

ing predicates from the query workload and comparing them to the predicates used in

the definition of the horizontal fragmentation), they do not address pruning of vertically

partitioned data.

Hammerschmidt et al. [64] have developed a technique that uses automata to determine

whether two XPath expressions intersect. This technique could be used to prune horizontal

fragments by detecting whether a query and a fragmentation predicate are compatible.

However, unlike the pruning technique presented in this thesis, only queries with a single

extraction point are supported. Queries with multiple extraction points, as are frequently

encountered in sub-queries within a hybrid fragmentation consisting of both vertical and

horizontal fragmentation steps are, not supported, which limits the applicability of this

technique in the context of hybrid fragmentation. Furthermore, the automaton-based

47

technique is likely to deliver worse performance than the pruning technique presented in

this thesis. This is because (potentially large) product automata have to be constructed,

whereas the pruning technique given in this thesis aggressively prunes branches that are

not shared between the query and the fragmentation predicate.

3.2.3.4 Index Structures

One option for enabling distributed query processing is the use of index structures, which

can provide a compact summary of the data stored in other fragments and thereby enable

some amount of local query processing over remote data.

Bremer and Gertz [31, 57] employ this approach to evaluate queries over a collection

that is fragmented based on structure. One of their indexes stores label path information

for all the nodes in the collection. The query evaluation technique presented in this thesis,

on the other hand, only stores this information for proxy nodes and doesn’t require this

information to be part of a centralized index. By replicating the indexes across the system,

the bulk of the query processing work can be performed efficiently and at a single site.

Remote fragments only need to be accessed in order to evaluate value constraints in the

query. While replicated indexes allow the authors to achieve good query performance,

this comes at the potential cost of decreased scalability and more complicated update

management (since replicated indexes have to be updated when changes are made to the

collection). The centralized nature of index-based query processing might also lead to

reduced intra-query parallelism and can potentially cause bottlenecks in the system when

queries are not evenly distributed across all sites.

Koloniari and Pitoura [85] present a Bloom filter-based index structure that can be

used to derive top-k results for an approximate structural query on a distributed XML

collection. This index is used to prune fragments that will not yield top-k results. It can

also serve to determine the order in which fragments are accessed, with the most promising

fragments being accessed first.

Index structures are also widely used for the centralized querying of XML collections.

For an overview of these techniques, refer to [89]. One technique of particular interest is

Dewey IDs [44]. These IDs, which have been used in centralized XML query evaluation

48

[65], are employed in this thesis to express structural relationships between proxy nodes

(i.e., the nodes that are inserted into the fragmented collection to represent edges that

cross fragment boundaries).

3.2.3.5 Distributed Query Execution

An important consideration when evaluating queries in a distributed system is the trade-

off between shipping data and shipping queries. On the one hand, it is possible to ship

all relevant data to a central location where all query processing is performed. On the

other hand, it is possible to ship the query or parts of the query to the sites storing

the individual fragments and perform as much as possible of the query processing work

distributed throughout the system, thereby taking advantage of parallelism and reducing

communication cost; finally, only the (partial) results derived from each fragment are

shipped back to the originating site. While not specific to XML, Franklin et al. [54]

present an overview of the trade-offs between data shipping and query shipping.

While most of the literature on Active XML employs a data shipping approach [2,

3] there has been some work on distributing query processing [5]. Distributing query

processing is complicated by the ad-hoc fragmentation of Active XML, which makes it

difficult to determine which part of the query has to be executed over which fragments.

Thus, query shipping is only applied in certain circumstances, while falling back to data

shipping in other cases.

Based on a hybrid of ad-hoc and structure-based fragmentation, Cong et al. [39, 33]

present a distributed query evaluation strategy that computes partial matches at each

fragment and then combines them at a central location. The authors start with a technique

that is designed to answer Boolean queries and then expand the scope of their work to

include data-selecting queries with a single extraction point while maintaining impressive

performance guarantees. This approach is developed further and implemented within a

map-reduce framework [40]. Additionally, it is shown how this technique can be applied in

the context of centralized query evaluation over large collections.

The main goal of Cong et al.’s strategy is to limit the number of times that each

fragment has to be accessed and to provide a bound on the amount of network traffic

49

incurred. The technique presented in this thesis, in contrast, considers the overall cost

of evaluating a query, including the computation cost at each site. As the performance

evaluation in Chapter 9 shows, optimizing for overall cost leads to lower overall query

response time (cf. Section 9.1.2). Cong et al.’s partial evaluation approach requires that

a specific technique be used for local sub-query evaluation at each fragment, limiting the

potential for local query optimization.

Suciu presents a technique for evaluating queries over an ad-hoc distributed collection

of semistructured data [124]. As in Cong et al.’s work, the main focus is on bounding

the number of communication steps and the amount of data transferred, rather than on

overall query performance, which explains why the technique presented in this thesis leads

to better performance when considering overall query cost (as shown experimentally in

Section 9.1.2).

3.2.3.6 Representing Partial Results

A common problem encountered when using a query shipping approach to distributed query

evaluation is how to represent the partial results that need to be shipped from one site to

another. If more than one of these results contain the same node, it may be advantageous

not to send multiple copies of this redundant node.

Tajima and Fukui [127] present a technique that can be used to solve this problem by

sending a minimal view that contains all results rather than sending each result separately.

While their work is primarily intended for querying a single XML database instance over

a network, it could also be used to ship partial results within a distributed system.

3.2.3.7 Distributed Query Evaluation Frameworks

Andrade et al. [12, 13] present the PartiX framework, which facilitates the distributed

evaluation of XQuery over data sources that are fragmented horizontally, vertically, or

in a hybrid fashion. They outline the different phases of localizing the distributed data,

transforming global query plans to local plans for the suitable fragments, performing local

optimization and reconstructing the final result.

50

Figueiredo et al. [50, 51] further develop the ideas presented in the PartiX paper and

present a software architecture that implements the phases of query processing in dis-

tributed database systems. The authors present a clean architecture with well-defined

hooks for optimization techniques although they describe no optimizations of their own.

3.2.3.8 Summary

While much of the existing work in the area of distributed XML query processing focuses

on data integration, some of the existing work follows a performance motivation, as does

the work presented in this thesis. These techniques include Cong et al.’s work on partial

query evaluation [39, 33, 40], Bremer and Gertz’s index-based technique [31, 57], and

Suciu’s work on querying semistructured data [124]. Table 3.3 shows an overview of these

techniques and compares them to the techniques presented in this thesis.

As can be seen, both Bremer and Gertz’s technique and the technique presented here

follow a structure-based fragmentation approach. Suciu’s technique on the other hand

allows for ad-hoc fragmentation and Cong et al.’s work is based on a hybrid of both

fragmentation approaches.

Comparing the features of the individual techniques, it can be seen that both Suciu’s

technique and the technique presented here offer some kind of query decomposition. How-

ever, in the case of Suciu’s technique support is only partial: in general the same query

is evaluated over each fragment, however this query can be optimized using local schema

information resulting in a different plan for each fragment.

Both Cong et al.’s technique and the technique proposed here aim to prune irrelevant

Technique Fragmentation Feature Needs index Perf. focus

Query decomp. Pruning

Cong et al. hybrid × vert. only no communication

Bremer and Gertz struc.-based × × yes communication

Suciu ad hoc partial × no communication

This thesis struc.-based X X no overall cost

Table 3.3: Comparison of distributed query evaluation techniques

51

fragments from distributed query execution. However, in the case of Cong’s technique

pruning is somewhat more limited and only applicable to a vertically fragmented scenario.

As can be seen, most techniques operate without the help of a replicated index structure

and thereby avoid the potential complications for update management. The exception to

this is Bremer and Gertz’s technique, which relies on a fully replicated index structure.

When comparing the primary performance motivation, it can be seen that all three

existing techniques primarily focus on communication cost. Cong et al. also evaluate the

impact on query response time in their experimental sections, whereas the other two papers

give no performance figures. This thesis, in contrast, focuses on the end-to-end cost of query

evaluation.

3.3 Cost-Based Optimization

In addition to individual query evaluation techniques, a main contribution of this thesis

is a cost-based optimization procedure that can determine the best distributed execution

plan for a given query and distributed collection. This technique leverages centralized cost

estimation techniques to estimate the cost of individual sub-queries. Based on these local

cost estimates, the cost of various candidate plans is estimated and the candidate plan

with the lowest estimated cost is chosen.

This section presents related work in the area of cost-based optimization. First, tech-

niques for estimating the cost of centralized query evaluation techniques are presented

(Section 3.3.1). Then, the focus is on distributed cost estimation techniques (Section

3.3.2), including techniques for XML and related techniques from a relational context.

Finally, the approaches for enumerating plan alternatives are summarized (Section 3.3.3).

3.3.1 Centralized Cost Estimation

In the literature, several techniques have been developed to estimate the properties of

centralized XML query evaluation. This section presents an overview of these techniques.

52

In addition to techniques that estimate the cost of evaluating a given query over a given

collection, which are discussed in Section 3.3.1.1, some techniques focus on estimating car-

dinality (Section 3.3.1.2) or order properties (Section 3.3.1.3). Together, these techniques

can be used to determine the local sub-query properties necessary for distributed query

optimization.

3.3.1.1 Cost

Zhang et al. [140] point out that due to the more complex operators employed for the

evaluation of queries over XML collections (e.g., holistic twig joins [32]), cost estimation

is more complicated than in relational systems, where most operators have performance

characteristics that can more easily be captured in a simple model. Thus, the authors

propose a model for inferring cost properties through a statistical learning approach. In-

stead of aiming to model each aspect of the operators used in a query plan, features are

extracted from query plans and these features are then used to predict the cost of these

plans, leading to accurate cost estimates.

Hidaka et al. [68, 67] follow a relative approach and define formulas for estimating the

cost of various XQuery language constructs based on the costs of the atoms used in these

constructs. For example, the cost of a for expression that applies a function to each node

in a set is estimated as the cost of obtaining the set plus the cost of applying the function

to each element in the set (which depends on the size of the set). Using this approach,

cost estimates for a wide range of XQuery features can be obtained.

Based on the tree algebra used in the database system Timber, Jagadish et al. [75]

propose a cost estimation technique that focuses on estimating the cardinality of each

intermediate result. Based on these cardinalities, the cost of each operator can be estimated

and the overall cost of a query plan can be determined.

Systems such as MonetDB/XQuery [27] that process XML queries using a relational en-

gine can obtain cost estimates using existing, relational cost estimation techniques. These

can then be fed into an existing cost-based optimizer to determine the best relational plan

for a query.

53

3.3.1.2 Cardinality

There is a substantial body of work on cardinality estimation for XML query processing. As

pointed out by Jagadish et al. [75], cardinality estimation not only yields a useful property

that can be used during distributed query optimization, by estimating the cardinality of

intermediate results during query evaluation it is also possible to obtain cost estimates.

The Timber algebra [75] uses this approach. As described by Wu et al. [135, 136],

cardinality estimates are obtained based on a specialized class of histograms that takes into

account the position where elements matching certain predicates occur in the collection.

Additionally, schema information is considered to detect cases in which the number of

occurrences of a type of node can be inferred from cardinality constraints in the schema.

Aboulnaga et al. [7, 8] present a technique that estimates the selectivity of individual

steps within a path expression based on a compact structural synopsis of the data. While

this technique is primarily aimed at finding the best centralized query plan for evaluating

a given query (making it useful for optimizing the sub-queries encountered by distributed

query evaluation), it can also be used to obtain cardinality estimates for the overall query

result.

Zhang et al. [143] follow a similar approach and use a synopsis of the collection to

determine cardinality estimates. A key aspect of this technique is its adaptability to

varying memory budgets, which is achieved by an incremental construction procedure.

This not only makes it feasible to support changes to the underlying collection without

having to fully recompute the synopsis, it also makes it possible to focus the synopsis on

the portion of the collection that has the highest impact on query performance.

Freire et al. [55] present another technique for obtaining a histogram-based summary of

a collection that can be used for cardinality estimation. The focus is on the information that

can be extracted from the schema. Their algorithm for constructing the collection summary

is designed to be run while documents are validated for compliance with a given schema,

which allows the authors to reduce the performance overhead of histogram construction.

Chen et al. [38] focus on twig queries and propose a technique for determining the

number of matches for a given twig query in a given document. This is done by storing

54

cardinality information for small portions of twig queries, referred to as twiglets. While

the space of possible twiglets is very large, this problem is addressed by the authors by

storing twiglet properties efficiently in a compact tree structure.

Teubner et al. [131] present a technique that can be used to obtain cardinality estimates

for wider range of XQuery expressions. This technique is based on query evaluation within a

relational system and leverages both cardinality estimation techniques for XPath expression

and relational cardinality estimation approaches.

Balmin et al. [16, 18] describe how cardinality estimation has been implemented within

a production system consisting of a relational database combined with a native XML store.

These cardinality estimation techniques are specialized for the operators used within the

system’s algebra to evaluate queries over XML collections.

3.3.1.3 Order Properties

Other important inputs to distributed query optimization are the order properties of local

query plans. The idea to take order properties into account during query optimization was

first proposed by Selinger et al. [121] in a relational context. In this paper, the concept

of interesting orders was defined, which corresponds to orders that may enable the use of

efficient evaluation strategies (e.g., operators that require their input tuples to be ordered

in a particular way) or that can avoid the use of explicit sorting steps (e.g., if the result

of a query is required to be ordered). The use of order properties in this thesis differs

significantly from the way these properties are used in the relational context, most notably

by not considering a hierarchy of order properties and instead dealing with sets of attributes

such that a sequence of tuples is ordered independently by each attribute in the set.

In general, centralized XML query evaluation strategies ensure that their result is re-

turned in document order, as is required by the XPath standard [24]. For queries with

multiple extraction points, it is usually necessary to choose a single extraction point by

which the result will be ordered (the ordering extraction point). Using the technique pre-

sented in Section 7.3.2.2, it may be possible to infer additional order properties, and all

of these order properties can then be exploited to obtain an efficient distributed execution

plan.

55

Within the context of the centralized evaluation of path expressions, Fernández et al.

[69, 46] use a similar approach to avoid explicit sorting and duplicate elimination steps that

would otherwise be required. Unlike the work presented in this thesis, which infers order

properties based on Dewey IDs [44], Fernández et al. follow an automaton-based approach.

Using this approach, the authors obtain a significant improvement in (centralized) query

performance by avoiding unnecessary sort and duplicate elimination operators.

May et al. [104] describe how cost-based query optimization works within the centralized

XML database system Natix. While the main focus of this paper is on finding the best join

order, order properties are taken into account and aid in the selection of an appropriate

physical join implementation.

3.3.2 Distributed Cost Estimation

Based on the properties of local sub-queries and their corresponding query plans, the

distributed optimizer, as proposed in this thesis, aims to construct the most efficient dis-

tributed execution plan. To do this, multiple candidate plans are enumerated and the

performance of each of these plans is estimated. This section describes related work in

the area of cost estimation for distributed plans. While there is little work in the con-

text of XML, there is a significant body of relational cost estimation techniques, many of

which share characteristics with the technique presented in this thesis and thus warrant

comparison.

3.3.2.1 Distributed Cost Estimation for Relational Collections

There is a sizable body of work in the area of distributed cost estimation for relational data

and only the technique that are related to the approach taken in this thesis are presented

here. For a more detailed discussion of this area of research, the reader is referred to

Kossmann’s survey [86] and Özsu and Valduriez’s book [115].

Traditionally, distributed cost estimation has focused primarily on communication cost.

In the work presented in this thesis, instead, the focus is on the end-to-end response time

cost of query evaluation (taking into account parallelism).

56

In relational systems, a similar cost model was first considered by Ganguly et al. [56].

For a simple query model consisting of selection, projection, and join, the authors describe

how response time estimates can be obtained in the presence of parallel execution, both in

the shape of multiple independent inputs to a single operator and in the shape of pipelining

(where parallelism is more limited).

Hong and Stonebraker [71] similarly use response time-based cost estimation within

the context of a parallel database system in which the individual nodes share a common

pool of memory. In addition to response time, this technique also takes resource usage into

account and can be tuned to trade off between the two performance factors.

Ziane et al. [147, 148, 90] give response time-based cost estimation formulas for hash

joins in a parallel database. However, unlike this work, the main focus of the authors is on

the plan shapes considered, rather than on cost estimation itself.

In more recent work, Florescu and Kossmann [52] propose a multi-dimensional dis-

tributed cost model that takes both response time and resource usage into account. How-

ever, both of these dimensions are treated as constraints for which a minimum level has to

be achieved but that do not represent the main goal of optimization. Instead, the focus is

placed on the monetary cost of query evaluation. Response time and performance targets

should be met as cheaply as possible, for example by minimizing the number of machines

used to achieve a given level of performance.

3.3.2.2 Distributed Cost Estimation for XML Collections

Work on cost estimation for distributed XML processing is much more limited than the

corresponding work in relational systems.

One of the few works in this area that explicitly mentions the use of a cost model is that

of Gertz and Bremer [57, 31]. Unlike the cost model used in this thesis, Gertz and Bremer

use a cost model that focuses on communication cost. In addition, they state that given

the query evaluation method used in their work, full cost-based optimization is infeasible.

Instead, their technique relies on a heuristic that aims to reduce the size of intermediate

results.

57

3.3.3 Plan Enumeration

To determine the best distributed execution plan for a given query and distributed collec-

tion, plan alternatives are enumerated and compared based on their cost. There exists a

significant body of work on the problem of efficiently enumerating plans, and while much

of this work does not explicitly take distribution into account, many of these techniques

can nevertheless be used to solve the problem of enumerating distributed plan alternatives.

In the following, a few notable plan enumeration techniques are discussed, particu-

larly focusing on the applicability to distributed query optimization. For a more in-depth

overview of plan enumeration, the reader is referred to Steinbrunn et al.’s survey of plan

enumeration techniques in general [123], Kossmann and Stocker’s overview of plan enumer-

ation techniques that can be applied in a distributed system [87], and Özsu and Valduriez’s

book [115].

In general, plan enumeration techniques can be categorized into three groups. First are

the techniques that are guaranteed to find the plan with the lowest estimated cost (either

by exhaustively enumerating the entire search space or by using dynamic programming to

enumerate plans consisting of optimal sub-plans). While these work well when the search

space is relatively small, for more complex search spaces (in particular when bushy plans

are considered), they might not be feasible. In this case, it is possible to use a randomized

technique that samples the search space and is not guaranteed to find the global optimum.

As the third alternative, it is possible to use heuristics rather than attempting to find the

optimal plan. This has the advantage of significantly reducing the cost of plan enumeration.

However, this advantage may come at the cost of reduced performance of the resulting plan.

3.3.3.1 Optimizing Techniques

In one of the earliest works in this area, Selinger et al. [121] propose a bottom-up plan

enumeration strategy based on dynamic programming. Starting with individual relations,

optimal sub-plans are constructed for increasingly large subsets of the relations referenced

in the query. Sub-optimal sub-plans are discarded immediately and not considered further.

The remaining sub-plans then serve as the building blocks of larger sub-plans until a

58

✶

✶

✶

✶

✶

✶

✶

A B

C

E

F

G

H

(a) left-deep plan

✶

✶

✶

A B

✶

C D

✶

✶

E F

✶

G H
(b) bushy plan

Figure 3.8: Left-deep vs. bushy plans

complete plan has been obtained. Special attention is paid to order properties, which are

exploited to find the most efficient implementation for each join. To limit the search space,

only left-deep plans are considered. Thus, for each join, the inner operand consists of a

single relation whereas the outer operand may consist of a plan containing further joins.

See Figure 3.8(a) for an example of a left-deep plan. While in principle this technique

could be applied to the distributed query optimization problem addressed in this work, the

focus on left-deep plans may lead to decreased levels of parallelism in a distributed system.

Thus, in general, it is preferable to use plan enumeration techniques that consider bushy

plans (an example is shown in Figure 3.8(b)). However, in this case, the search space is

significantly larger, and it may not be feasible to fully enumerate this space.

Ganguly et al. [56] extend the dynamic programming approach to bushy query plans as

are encountered in a system with parallelism. A notable aspect of this work is its focus on

a multi-dimensional cost model. To handle the large size of the search space encountered

in this case, pruning techniques are proposed, which eliminate sub-optimal sub-plans from

59

consideration in the later stages of optimization.

In a case study of DB2 Parallel Edition, Baru et al. [21, 22] describe how the optimizer

of this system takes parallelism into account by considering bushy plans. The authors

point out that considering these plans significantly increases the size of the search space.

However, rather than resorting to heuristics to cope with this large space, they present a

suite of techniques for pruning the search space. For example, they consider the placement

of relations on the sites in the system and only consider plans in which there is some

locality between operators and their inputs.

Haas et al. [63] present the distributed optimizer Garlic, which applies dynamic pro-

gramming to the problem of plan enumeration in a data integration system. The optimizer

assumes that the individual systems that are part of the integrated system may have vary-

ing query capabilities. This is then considered during plan enumeration.

Kossmann and Stocker [87] also extend the dynamic programming approach for use in a

distributed database system and propose a novel plan enumeration technique called itera-

tive dynamic programming. This technique combines dynamic programming with a greedy

heuristic. Using this approach, optimal plans can be obtained when enough resources are

available for plan enumeration. In cases where the search space gets too large, the tech-

nique automatically adapts and still produces plans that outperform those obtained using

randomized strategies.

In more recent work, Moerkotte and Neumann [108, 109] present additional dynamic

programming techniques for plan enumeration with join queries. In addition to a detailed

study of the performance characteristics of several such approaches under different circum-

stances, this line of works expands the applicability of dynamic programming to queries

that contain non-inner joins.

DeHaan and Tompa [42] follow a different approach. Rather than performing plan

enumeration in a bottom-up fashion, as is usually done by dynamic programming ap-

proaches, their work follows a top-down approach that uses memoization. In this scenario,

branch-and-bound pruning can be applied to significantly reduce the size of the search

space, whereas this optimization is unavailable with bottom-up approaches. Additionally,

DeHaan and Tompa’s technique is flexible with regard to the available memory; in cases

60

where memory is scarce additional computation can be substituted by reducing memo-

ization. Fender and Moerkotte [45] expand on this work on top-down enumeration and

present a technique that is easier to implement (by avoiding the use of specialized data

structures) as well as being more efficient for certain classes of queries.

3.3.3.2 Randomized Techniques

An early approach to solve the problem of optimizing bushy query plans is proposed by

Ioannidis andWong [73] for a class of recursive queries. They present a randomized strategy

based on simulated annealing to optimize a bushy query plan. This method works by

choosing a näıve initial plan and then attempting to improve it. A key feature of simulated

annealing is the fact that rather than greedily focusing on improving the performance of the

plan at each step, with a certain probability (which decreases over time), slight decreases

in plan performance are accepted. Using this strategy, the technique avoids getting stuck

in a local optimum.

Swami and Gupta [126] follow a similar approach based on iteratively improving an ini-

tial query plan. Unlike Ioannidis and Wong’s work, here, the focus is on queries with many

joins, which more closely corresponds to the scenario encountered during distributed query

optimization as described in this thesis. In later work [125], this technique is then combined

with heuristics, and it is shown that good results can be obtained using a combination of

these two approaches.

Ioannidis and Kang [72] present a further randomized plan enumeration technique, re-

ferred to as two phase optimization (commonly abbreviated as 2PO). This technique com-

bines the iterative improvement strategy proposed by Swami and Gupta with a simulated

annealing strategy and obtains better results than each technique alone.

Grošelj and Malluhi [61] point out that in the context of distributed query processing

exhaustive enumeration techniques are generally not feasible. To address this problem,

the authors propose a technique that is based on sampling the search space and then

comparing the costs of the plans contained in this sample. To obtain a good sample of the

plan options, a randomized plan generation procedure is used that yields plans that are

uniformly distributed throughout the search space.

61

3.3.3.3 Heuristic Techniques

Lu et al. [92] present a greedy plan enumeration technique that considers bushy query

plans and takes parallelism into account. In addition to considering the parallelism be-

tween multiple join operators (which is applicable to distributed query optimization as

considered in this thesis), intra-operator parallelism is considered, where a single operator

is simultaneously assigned to multiple processors.

Chen et al. [37] develop this idea further and propose additional heuristics for plan

enumeration in the presence of parallelism. A particular focus of this work is on allocating

operators to the various processors in a parallel system.

Transformation-based optimizers (such as the Exodus optimizer [60]) also fall into the

category of heuristic optimizers. With these optimizers, a set of legal transformation rules

for query plans are defined and a heuristic measure of the expected performance benefit of

each rule is used when choosing which rules to apply and in which order to apply them.

3.3.3.4 Summary

As can be seen, there is a large variety of techniques that have been designed to enumerate

plan alternatives. Traditionally, optimizing techniques have been considered unsuitable for

application in a distributed system. This is because, in this scenario, search spaces tend

to be large: not only do join order and physical join implementations (of which there are

more alternatives in a distributed system) need to be determined, it is also necessary to

determine where (i.e., at which site) each operator is to be evaluated.

In the distributed optimization problem considered in this thesis, the size of the search

space is comparatively limited. This is because distributed query plans merely combine the

results of local query plans (each of which is optimized independently at the site holding

the corresponding fragment). Thus, distributed query plans consist of relatively few, large

atoms that are combined by a limited number of operators. Pruning irrelevant sub-queries

further reduces the size of the search space, making optimizing plan enumeration techniques

a feasible alternative in many cases.

62

Chapter 4

Fragmenting XML Collections

The focus of this thesis is on improving the scalability of XML query execution by paral-

lelizing the process across the sites of a distributed system. As a first step, the collection

is decomposed into multiple fragments, each of which can then be placed at a different site

in the distributed system. This chapter describes a suite of techniques for decomposing

XML data.

The fragmentation model described in this chapter partitions an XML collection based

on characteristics of the content and the structure of the data. Two methods of fragment-

ation are supported, whose semantics are inspired by relational distribution techniques but

whose mechanisms are notably different (see Section 3.1 for a discussion of this).

The two methods are

• horizontal fragmentation, which is based on predicates and results in a collection that

is partitioned into fragments that all follow the same schema, and

• vertical fragmentation, which is based on partitioning the schema, with each fragment

covering a different portion of the schema.

While each of these mechanisms can be used on their own, it is also possible to combine

multiple fragmentation steps of either type to form a hybrid fragmentation. Together, these

63

techniques make it possible to fragment a collection in a wide variety of ways. As the later

chapters will show, this is important for tailoring a fragmentation such that it maximizes

the performance of a given query workload. At the same time, the fragmentation model

remains simple, which makes it tractable for distributed query evaluation techniques to

take advantage of the characteristics of a particular fragmentation.

One of the key design goals for the fragmentation model presented here is the ability

to obtain a succinct specification of any fragmentation within this model. In the case of

horizontal fragmentation, this specification comes in the shape of a set of fragmentation

predicates. For vertical fragmentation, the specification is represented by a fragmentation

schema, in which each node type in the schema is assigned to exactly one fragment. In

either case, as will be shown in the later chapters of this thesis, the fragmentation specifi-

cation is an invaluable asset for optimizing distributed query evaluation.

Fragmentation, as defined here, focuses on partitioning a collection into non-overlapping

fragments. Other approaches, which replicate all or part of the collection, can be used in

conjunction with the techniques presented in this thesis for further performance improve-

ment. However, these approaches are outside the scope of this thesis, as are the ad-hoc

fragmentation approaches described in Section 3.1.2.1.

The remainder of this chapter gives a formal definition of horizontal and vertical frag-

mentation and describes how a fragmentation of either type can be specified. The chapter

also discusses how fragmentation steps of both types can be combined to form a hybrid

fragmentation.

4.1 Horizontal Fragmentation

Horizontal fragmentation as modeled here assumes a collection that consists of multiple

document trees. These document trees can either be entire XML documents or they can

be the result of a previous vertical fragmentation step. In either case, all document trees

are required to correspond to the same schema. Multiple-document collections where all

documents follow the same schema are a common use case for XML. Popular examples

include collections of MathML [34] and CML [112] documents.

64

A horizontal fragmentation of an XML collection is defined by a set of fragmentation

predicates. In distributed relational systems, fragmentation predicates are commonly ex-

pressed as algebraic expressions. In the case of XML data, tree patterns represent a con-

venient abstraction for expressing fragmentation predicates. Therefore, in this work, the

fragmentation predicates that specify a horizontal fragmentation are expressed as tree pat-

terns without an extraction point, which are referred to in the following as fragmentation

tree patterns (FTPs).

Definition 4.1. A tree pattern fp = 〈N,E, r, ν, ǫ, T, c〉 is a fragmentation tree pattern if

T = ∅. A document tree d matches the fragmentation tree pattern fp if evaluating fp over

d yields at least one result tuple.

For notational convenience, fp(d) denotes that document d matches FTP fp.

Definition 4.2. Let D = {d1, d2, . . . , dn} be a collection of document trees such that each

di ∈ D corresponds to the same schema. Further, let FP = {fp1, fp2, . . . fpm} be a set of

FTPs. Then F = {{di ∈ D | fpj(di)} | fpj ∈ FP} is the set of horizontal fragments of D

corresponding to the FTPs in FP .

Each fragment consists of the document trees that match the FTP corresponding to

that fragment. To ensure that the fragmentation is lossless and that the fragments are

disjoint, for each document that conforms to the schema of the collection, there must be

exactly one matching FTP.

Definition 4.3. Let F = {f1, f2, . . . fm} be a set of horizontal fragments of the docu-

ments D corresponding to the FTPs in FP = {fp1, fp2, . . . fpm}. Then F is a horizontal

fragmentation of D if ∀di ∈ D : ∃ unique fpj ∈ FP where fpj(di) (i.e., if FP induces a

partitioning of D).

The losslessness of a horizontal fragmentation can be enforced by carefully crafting the

value constraints in the FTPs so that they cover the entire domain of the values to which

they refer. Since this is generally difficult to verify, in this thesis, the algorithms that are

used to produce a horizontal fragmentation are required to ensure that the losslessness

requirement holds.

65

author1

name1

first1

John

last1

Adams

pubs1

book1

chapter1

reference1

(a) fH
1

author2

name2

first2

Jane

last2

Dean

pubs2

book2

chapter2

reference2

(b) fH
2

author3

name3

first3

John

last3

Smith

pubs3

book3

chapter3

reference3

author4

name4

first4

William

last4

Shakespeare

pubs4

book4

chapter4

reference4

book5

chapter5

(c) fH
3

Figure 4.1: A horizontally fragmented collection

author

name

ONCE

initial

OPT

text

first

ONCE

text

last

ONCE

text

title

OPT

text

agent

OPT

pubs

ONCE

book

MULT

chapter

MULT

reference

OPT

article

MULT

ONCE

ONCE

MULT

Figure 4.2: An XML schema graph

66

author

name

/

last
starts-with(., ’A’)

/

. . . author

name

/

last
starts-with(., ’S’)

/

. . . author

name

/

last
starts-with(., ’Z’)

/

Figure 4.3: Set of fragmentation tree patterns (FTPs)

Assuming that the document trees in the fragmented collection shown in Figure 4.1

conform to the schema in Figure 4.2 and that m(last) (i.e., the domain of the text content

of last nodes in the collection) is the set of strings that start with upper-case letters of

the English alphabet, then the fragmentation of this collection can be described by the set

of FTPs shown in Figure 4.3.

In general, horizontal fragments consist of multiple document trees. In the following,

the set of document trees in a horizontal fragment fH
i is denoted as subtset(fH

i) and the

number of such document trees is denoted as nsubt(fH
i) = |subtset(fH

i)|.

4.2 Vertical Fragmentation

Unlike horizontal fragmentation, which defines fragments based on the content of the col-

lection, vertical fragmentation defines them based on its structure. As will be shown later,

this distinction has a large impact on how efficiently certain types of queries can be an-

swered. In addition, vertical fragmentation enables a set of optimization techniques that

complement the techniques that can be applied with horizontal fragmentation.

A vertical fragmentation is defined by partitioning the schema graph into connected

subgraphs. This yields a vertical fragmentation schema.

Definition 4.4. Let 〈Σ,Ψ, s,m, ρ〉 be a schema graph. A vertical fragmentation schema

is defined by a partitioning FΣ = {f0, f1, . . .} of the set of node types Σ such that for each

node type σ ∈ Σ there exists a unique fragment f ∈ FΣ, such that σ ∈ f . For each f ∈ FΣ

67

〈f, (Ψ ∩ (f × f))〉 is required to be weakly connected. That is, for any two node types σ1

and σ2 ∈ f , there must be a path from σ1 to σ2 or from σ2 to σ1 and this path must only

traverse node types in f .

As can be seen in the definition, each type σ ∈ Σ is assigned to exactly one fragment

f ∈ FΣ. For notational convenience, the fragment corresponding to σ will be referred to

as fΣ(σ) in the following.

This model of vertical fragmentation can handle collections that consist of a single or

of multiple document trees. As in the horizontal case, it is possible that these document

trees are the result of a previous fragmentation step, which makes it possible to combine

horizontal and vertical fragmentation.

For an example of a vertical fragmentation schema consider Figure 4.4. The dashed

outlines show how the node types in this schema have been fragmented into six disjoint,

author

agent

OPT

(a) fV
1

name

first

ONCE

text

last

ONCE

text

(b) fV
2

pubs

book

MULT

article

MULT

(c) fV
3

initial

text

(d) fV
5

title

text

(e) fV
6

chapter

reference

OPT ONCE

(f) fV
4

ONCE

ONCE

ONCE

MULT MULT

OPT OPT

Figure 4.4: A vertical fragmentation schema

68

connected subgraphs. Fragment fV
1 consists of the node types author and agent; fragment

fV
2 consists of the node types name, first and last along with their text content; fragment

fV
3 consists of pubs, book and article; fragment fV

4 includes the node types chapter and

reference; fragments fV
5 and fV

6 contain the node types initial and title, respectively.

Since the schema graph is required to be connected, after fragmentation, there will be

graph edges that cross fragment boundaries. Whenever the schema contains an edge from

a fragment fV
i to another fragment fV

j , f
V
j is referred to as a child fragment of fV

i and

fV
i is referred to as a parent fragment of fV

j . There is exactly one fragment fV
ρ ∈ FΣ that

contains the root node type ρ. This fragment is referred to as as the root fragment. While

the schema graph may contain cycles, for performance reasons, the fragmentation schema

is required to be a DAG (i.e., cycles must be contained within a single fragment).

When fragmenting a collection according to a vertical fragmentation schema, there

are generally some document edges that cross fragment boundaries. Since the individual

fragments are to be stored at different sites in a distributed system, these edges cannot

simply be left in place, as it would be unclear which fragment they belong to and how they

can be represented. To solve this, the concept of a pair of proxy nodes is introduced. These

special nodes are inserted into the collection on either side of a cross-fragment edge.

More precisely, a document edge from fragment fV
i (the originating fragment) to frag-

ment fV
j (the target fragment) is represented by inserting a pair of proxy nodes P i→j

b and

RP i→j
b into fragments fV

i and fV
j , respectively. P i→j

b in the originating fragment fV
i is

referred to as a proxy node and RP i→j
b in the target fragment fV

j is referred to as a root

proxy node. The latter is called a root proxy node because it forms the root of a sub-tree in

the target fragment. Since P i→j
b and RP i→j

b share the same ID (denoted by the subscript

b) and reference the same originating and target fragment (i→ j), they correspond to each

other and together represent a cross-fragment edge in the collection.

For an example of a vertically fragmented collection, consider Figure 4.5. This collection

has been fragmented according to the vertical fragmentation schema shown in Figure 4.4.

The fragments fV
5 and fV

6 are empty and therefore not shown. The proxy pair consisting

of P 1→2
11 in fragment fV

1 and RP 1→2
11 in fragment fV

2 , for example, represents an edge from

an author node in fV
1 to a name node in fV

2 . For greater clarity, corresponding proxy and

69

author1

P 1→2
11 P 1→3

12

author2

P 1→2
13 P 1→3

14

author3

P 1→2
15 P 1→3

16
agent1

P 1→2
17

(a) fV
1

RP 1→2
11

name1

first1

John

last1

Adams

RP 1→2
13

name2

first2

Jane

last2

Dean

RP 1→2
15

name3

first3

William

last3

Shakespeare

RP 1→2
17

name4

first4

John

last4

Shakespeare

(b) fV
2

RP 1→3
12

pubs1

book1

P 3→4
18

RP 1→3
14

pubs2

RP 1→3
16

pubs3

book2

P 3→4
20 P 3→4

21

(c) fV
3

RP 3→4
18

chapter1

RP 3→4
20

chapter2

reference2

RP 3→4
21

chapter3

(d) fV
4

Figure 4.5: A vertically fragmented collection

70

root proxy nodes are connected by a dotted line.

As can be seen in Figure 4.5, vertical fragments generally consist of multiple uncon-

nected pieces of XML data, referred to as document sub-trees. Fragment fV
1 , for example,

contains three sub-trees, each of which consists of the author and agent nodes of one

of the documents in the collection. In the following, the set of sub-trees in a vertical

fragment fV
i is denoted as subtset(fV

i) and the number of such sub-trees is denoted as

nsubt(fV
i) = |subtset(fV

i)|.

4.3 Hybrid Fragmentation

Horizontal and vertical fragmentation (as defined above) are completely orthogonal. This

makes it possible to compose multiple fragmentation steps of both types, resulting in a

hybrid fragmentation.

For example, consider the collection shown in Figure 4.7. This collection has first been

fragmented vertically according to the fragmentation schema shown in Figure 4.4. After

that, fragment fV
2 has been further fragmented horizontally according to fragmentation

predicates shown in Figure 4.6, yielding the fragments fV H2a and fV H2b .

The ability to concatenate multiple fragmentation steps significantly increases the flex-

ibility of the fragmentation model. As will be shown later, this can help to significantly

improve the performance of distributed query evaluation by increasing the number of op-

tions for finding a fragmentation that is suitable for a given query workload. In addition,

RP

name

/

first
starts-with(., ’A’)

/

. . . RP

name

/

first
starts-with(., ’S’)

/

. . . RP

name

/

first
starts0with(., ’Z’)

/

Figure 4.6: FTPs used in hybrid fragmentation

71

hybrid fragmentation also makes it possible to apply horizontal fragmentation (which by

itself requires a multiple-document collection) to a single-document collection by first frag-

menting vertically.

4.4 Summary

This chapter has described a model for fragmenting XML collections. Based on character-

istics of the data and the schema, a collection is partitioned into multiple fragments and

a fragmentation specification is obtained. While the fragmentation model described here

provides an inventory of possible fragmentation steps, it does not specify how a collection

should be fragmented to optimize performance for a given query workload. To define such a

workload-aware fragmentation strategy, the characteristics of the distributed query evalua-

tion techniques need to be taken into account. Thus, the presentation of a workload-aware

fragmentation algorithm is deferred to Chapter 8, after the query evaluation techniques

proposed in this thesis have been described.

72

author

P 1→2
11 P 1→3

12

author

P 1→2
13 P 1→3

14

author

P 1→2
15 P 1→3

16

(a) fV
1

RP 1→2
11

name

first

John

last

Adams

RP 1→2
13

name

first

Jane

last

Dean

(c) fV H
2a

RP 1→2
16

name

first

William

last

Shakespeare

(d) fV H
2b

(d) fV
2

RP 1→3
12

pubs

book

P 3→4
18

RP 1→3
14

pubs

book

P 3→4
19

RP 1→3
15

pubs

book

P 3→4
20

(e) fV
3

RP 3→4
18

chapter

reference

RP 3→4
19

chapter

reference

RP 3→4
20

chapter

reference

(f) fV
4

Figure 4.7: A hybrid fragmented collection

73

Chapter 5

Distributed Query Evaluation Over

Fragmented Collections

A simple approach to evaluating a query over a fragmented and distributed collection is

based on shipping the data relevant to the query to a central location and then applying a

centralized query evaluation strategy. While this data shipping approach works, it has the

drawback of having to transfer potentially large volumes of data over the network. More

importantly, due to the fact that queries are evaluated centrally, parallelism is severely

limited, which makes this strategy unsuitable for improving the scalability of query evalu-

ation. Therefore, the techniques in this thesis are based on the query shipping paradigm,

in which the query (or parts of the query) are shipped to the sites holding the individual

fragments and then evaluated locally at these sites. The results from each site are then

shipped back to the query dispatcher and combined to the overall query result. The query

shipping approach has the advantage that the query can be evaluated in parallel over each

fragment, thus distributing the processing cost across the sites in the system, leading to

increased scalability. For further discussion of the trade-off between data shipping and

query shipping, see Section 3.2.3.5.

Distributed query evaluation based on query shipping consists of three main steps:

Query localization Localization is the process of determining which fragments are rel-

75

evant to a given query and decomposing the query into sub-queries that can be

evaluated over individual fragments.

Local query execution Using existing, centralized query evaluation techniques, such as

those presented in Section 3.2.2, the sub-queries resulting from localization can then

be evaluated at the sites holding the individual fragments. Each site is free to choose

the most appropriate centralized execution technique for a given fragment and sub-

query.

Distributed execution plans Localization alone is not sufficient to answer a query over

a fragmented and distributed collection. While evaluating the sub-queries resulting

from localization yields partial results corresponding to individual fragments, these

partial results still need to be assembled to the overall query result. How this is done

is specified in a distributed execution plan (DEP).

The focus of this chapter is mainly on the distribution aspects. First, a localization tech-

nique is proposed for horizontally fragmented collections, and, based on this, a technique

for defining distributed execution plans is described. Then, localization and execution

plan generation in the vertically fragmented scenario are discussed. For both cases, this

chapter presents initial, unoptimized techniques, which will form the foundation for the

performance improvements presented in Chapter 6.

5.1 Horizontal Fragmentation

This section discusses how a query can be evaluated over a horizontally fragmented and dis-

tributed collection. First, a simple data-shipping strategy is introduced to give context and

to motivate the need for a query-shipping approach. Then, the query-shipping approach

is explained and distributed execution plans for horizontal fragmentation are introduced.

76

5.1.1 Data Shipping

A horizontal fragmentation is defined as a partitioning of the set of document trees in the

collection (cf. Definition 4.3 on page 65). Based on this definition, query q can be evaluated

over collection D, which has been horizontally fragmented into a set of fragments F , by

evaluating a centralized query plan for query q (denoted as p) over the union of all fragments

in F (after gathering them at a central location):

p(D) = p

(

⋃

f∈F

f

)

It is easy to see that this always leads to the correct result, since
⋃

f∈F

f is identical to D.

However, as mentioned before, this data shipping technique is inefficient because the entire

collection has to be transmitted for each query. While caching might alleviate this problem

to some degree, it introduces additional overhead when processing updates. Furthermore,

with a data shipping approach, query processing is performed at a centralized location,

which limits parallelism and makes this technique unsuitable for the scalability goals of

this thesis.

5.1.2 Distributed Execution Plans

Tree patterns (as defined in Definition 2.3 on page 19) can express structural constraints

only between nodes in the same document. Therefore, a match for a tree pattern is always

derived from exactly one document tree in the collection. This insight can be exploited to

define a distributed execution plan that parallelizes query execution by pushing pattern

matching to the sites holding the individual fragments.

As shown in Figure 5.1, horizontal fragmentation never splits a single document tree

across multiple fragments. Instead, each fragment consists of a subset of the set of docu-

ment trees that make up the collection. In addition, horizontal fragmentation guarantees

that all fragments correspond to the same schema as the overall collection. Therefore,

it is possible to evaluate a query over a horizontally fragmented collection by evaluating

77

author1

name1

first1

John

last1

Adams

pubs1

book1

chapter1

reference1

(a) fH
1

author2

name2

first2

Jane

last2

Dean

pubs2

book2

chapter2

reference2

(b) fH
2

author3

name3

first3

John

last3

Smith

pubs3

book3

chapter3

reference3

author4

name4

first4

William

last4

Shakespeare

pubs4

book4

chapter4

reference4

book5

chapter5

(c) fH
3

Figure 5.1: A horizontally fragmented collection

the same query over each fragment. This yields a sequence of pattern matches for each

fragment, which can then be merged to obtain the overall query result.

Definition 5.1. If p is a plan that evaluates query q over an un-fragmented collection of

document trees D and F is a horizontal fragmentation of D, then

pf (F) := Sae1

(

⊙

f∈F

p(f)

)

is a distributed execution plan(DEP) that evaluates the same query on F , where ⊙ denotes

merging the result sequences, and pf (F) = p(D).

78

As shown in the definition, it may be necessary to sort (S) the results received from

the individual fragments in order to return them in a stable global order as required by

the XQuery data model [48]. Section 6.1.2 further discusses this and presents a set of

techniques that make it possible to avoid the overhead associated with sorting.

It is easy to observe that the distributed query execution technique presented in this

section accesses all fragments of a horizontally fragmented collection. Depending on the

query, this may not always be necessary. Based on this insight, Section 6.1.1 introduces

a technique for pruning certain horizontal fragments from a DEP if it can be shown that

these fragments do not contribute to the query result.

5.2 Vertical Fragmentation

This section describes an initial strategy for the distributed evaluation of a query over a

vertically fragmented XML collection. This strategy works by decomposing the query into

sub-queries corresponding to individual vertical fragments. QTPs provide a convenient

abstraction for performing this decomposition. Decomposing the QTP yields a set of local

QTPs corresponding to individual fragments. These are then converted to local query

plans and each local query plan (abbreviated as LQP) is evaluated at the site holding the

corresponding fragment. Finally, the results of all LQPs are combined to the overall query

result.

Before decomposing a QTP, it is necessary to determine how the pattern nodes in

the QTP relate to the vertical fragments of the collection. Section 5.2.1 describes how

this is done by traversing the QTP and annotating each node with its corresponding

fragment. After the QTP is fully annotated, it is decomposed into multiple local QTPs,

each corresponding to a single fragment. Next, each local QTP is converted to an LQP

and evaluated at the site holding the corresponding fragment. Each site is free to choose

the most suitable local query evaluation strategy. Finally, the results derived from each

fragment are combined using joins. How this is done is specified in a distributed execution

plan. The remainder of this section explains each of these steps in detail.

79

Algorithm 1: annotate(x, fparent) annotates nodes in a QTP with fragments
input : QTP node x, vertical fragment of parent node fparent

1 if x ∈ N then

2 // x is a pattern node

3 if ν(x) ∈ Σ then

4 // x has explicit node test

5 a(x)← fΣ(ν(x))

6 if ∃ child y of x then

7 annotate(y, a(x))

8 else

9 // x has wildcard node test

10 X ← split-wildcard(x)

11 for 〈xsplit, fsplit〉 ∈ X do

12 a(xsplit) = fsplit
13 if ∃ child y of xsplit then

14 annotate(y, a(xsplit))

15 else

16 // x is a logic node

17 a(x)← fparent

18 for child y of x do

19 annotate(y, a(x))

5.2.1 Annotating QTPs

Conceptually, a QTP is decomposed by splitting it into multiple portions, each of which

consists of pattern nodes corresponding to a single vertical fragment. Therefore, before

decomposing a QTP, each node in the QTP is annotated with the fragment to which it

belongs.

Algorithm 1 describes how this is done. The function annotate() is first called with the

root node r and the root fragment fV
ρ passed as parameters. It then recursively traverses the

entire pattern in a depth-first manner (lines 7, 14, and 19). For each node x encountered,

a(x) is set to the fragment to which this node corresponds. For a pattern node with an

explicit node test for a type σ ∈ Σ, this is straightforward: the pattern node is assigned

to the fragment that contains nodes of type σ (line 5). Logic nodes are assigned to the

fragment corresponding to their nearest pattern node ancestor (line 17), this information

is passed as parameter fparent with each recursive call. To illustrate this, Figure 5.2 shows

80

author fV
1

∧ fV
1

name fV
2

/

∧ fV
2

first
.=’William’

fV
2

/

last
.=’Shakespeare’

fV
2

/

reference fV
4

//

Figure 5.2: Annotated QTP representation of query q1

an annotated version of query q1.

For pattern nodes with wildcard node tests, the situation is more complicated since the

algorithm needs to take into account the possibility that these pattern nodes may match

collection nodes from more than one vertical fragment. Consider, for example, the QTP

representation of query q4 shown in Figure 5.3. In this QTP, all nodes have been annotated,

except for the pattern node with a wildcard node test (∗). Inspecting the schema shows

that the child step leading to this pattern node could be satisfied by nodes of the types

name, agent, or pubs (highlighted in Figure 5.4), corresponding to fragments fV
2 , f

V
1 , and

fV
3 , respectively.

To resolve this ambiguity, pattern nodes with wildcard node tests (and the branches

below these pattern nodes) are duplicated for each fragment that they may match as shown

in Algorithm 2. Assuming that x is a pattern node with a wildcard node test and parent(x)

is assigned to fragment fi, then the candidate fragments for x can be determined as follows:

• If ε(〈parent(x), x〉) = /self:: then there is only a single candidate fragment fi

(Algorithm 2, line 9).

• If ε(〈parent(x), x〉) = /, then the algorithm determines all types σ ∈ Σ that are

directly reachable in the schema from the type corresponding to the node test in

parent(x) (i.e., the types σ to which there is an edge from ν(parent(x)) in the schema).

81

author fV
1

∧ fV
1

name fV
2

/

∧ fV
2

first
.=’William’

fV
2

/

last
.=’Shakespeare’

fV
2

/

∗

/

Figure 5.3: Partially annotated QTP representation of query q4

author

agent

OPT

(a) fV
1

name

first

ONCE

text

last

ONCE

text

(b) fV
2

pubs

book

MULT

article

MULT

(c) fV
3

initial

text

(d) fV
5

title

text

(e) fV
6

chapter

reference

OPT ONCE

(f) fV
4

ONCE

ONCE

ONCE

MULT MULT

OPT OPT

Figure 5.4: Vertical fragmentation schema with reachable nodes highlighted

82

Algorithm 2: split-wildcard(x) splits wildcard node in QTP
input : QTP node with wildcard node test x

output : Set X consisting of pairs of pattern nodes and fragments into which x was split

1 if x = r then

2 // x is the pattern root

3 return {x, fVρ }

4 else

5 // x is not the pattern root

6 xparent ← parent(x)

7 εin ← ε(〈xparent, x〉)

8 if εin = /self:: then

9 return {〈x, a(xparent)〉}

10 else

11 if ν(xparent) ∈ Σ then

12 // parent node is non-wildcard node

13 Σreachable ← set of types reachable from ν(xparent) via a εin step

14 Freachable ← set of fragments corresponding to types in Σreachable

15 else

16 // parent node is wildcard node

17 Freachable ← set of fragments reachable from a(xparent) in schema graph

18 E ← E \ {〈xparent, x〉}

19 v ← new logic node(∨)

20 E ← E ∪ {〈xparent, v〉}

21 X ← ∅

22 for freachable ∈ Freachable do

23 xσ ← copy sub-pattern(x)

24 E ← E ∪ {〈v, xσ〉}

25 ε(〈v, xσ〉)← εin

26 X ← X ∪ {〈xσ , freachable〉}

27 return X

This is the case encountered in the example in Figure 5.3. As can be seen, the

highlighted types in the schema in Figure 5.4 correspond to the types that are directly

reachable from author. Thus, the algorithm determines the set of fragments that

correspond to at least one reachable type and introduces a duplicate pattern node

for each such fragment (Algorithm 2, line 14).

• Similarly, if ε(〈parent(x), x〉) = //, then the algorithm determines all types σ ∈ Σ

that are directly or indirectly reachable in the schema from the type corresponding to

83

author fV
1

∧ fV
1

name fV
2

/

∧ fV
2

first
.=’William’

fV
2

/

last
.=’Shakespeare’

fV
2

/

∨ fV
1

∗ fV
1

/

∗ fV
2

/

∗ fV
3

/

Figure 5.5: Annotated QTP representation of query q4

the node test in parent(x) (i.e., the types σ to which there is a path from ν(parent(x))

in the schema, Algorithm 2, lines 13). As in the previous case, it then determines

the set of fragments corresponding to these types (Algorithm 2, line 14).

• If parent(x) also has wildcard node test, then the algorithm falls back to returning

all fragments reachable in the schema graph from the fragment assigned to parent(x)

(Algorithm 2, line 17).

The duplicated pattern nodes are connected by a disjunction and inserted into the

pattern (Algorithm 2, lines 18–25). Finally, each copy of the pattern node is assigned to

one candidate fragment (Algorithm 1, lines 11–12).

When evaluating query q4, the pattern node with the wildcard node test needs to be

matched to a node in fragment fV
1 , f

V
2 , or f

V
3 . Thus, after applying Algorithm 2, the QTP

(shown in Figure 5.5) contains three copies of this pattern node (one for each of the three

fragments) that are connected by a disjunction logic node. Since the pattern node with

the wildcard node test is designated as an extraction point in query q4, this violates the

constraint that the path from the pattern root to an extraction point node may consist of

only pattern nodes and ∧ logic nodes. To address this problem, special attention is needed

when decomposing this QTP, as is described in Section 5.2.5.

84

5.2.2 Decomposing QTPs

Once the QTP is fully annotated, it is divided into maximal contiguous sub-patterns con-

sisting of nodes assigned to a single fragment. As shown in Figure 5.6, for query q1, there

are three such sub-patterns, corresponding to fragments fV
1 , f

V
2 , and f

V
4 , respectively. To

enable distributed processing, each of these sub-patterns is converted into a separate local

QTP, which can then be evaluated over a single fragment.

In order for this decomposition not to alter the semantics of the query, it is necessary to

represent pattern edges that cross fragment boundaries (denoted by dotted lines in Figure

5.6 and referred to as cross-fragment steps). How this is done depends on the XPath axis

associated with the edge. Since self edges never cross fragment boundaries, it is necessary

to consider two cases, corresponding to child and descendant axes, respectively.

A child edge from a node in a sub-pattern corresponding to fragment fV
i to a node in

a sub-pattern corresponding to fragment fV
j is converted to a pattern node matching a

proxy in the local QTP corresponding to fragment fV
i (referred to as a proxy pattern node)

and a pattern node matching a root proxy in the local QTP corresponding to fragment

fV
j (referred to as a root proxy pattern node). These new pattern nodes are marked as

extraction points because they are needed to join the results of local QTPs to generate the

final result.

author fV
1

∧ fV
1

name fV
2

/

∧ fV
2

first
.=’William’

fV
2

/

last
.=’Shakespeare’

fV
2

/

reference fV
4

//

Figure 5.6: Decomposed QTP representation of query q1

85

author

∧

ap2
P 1→2
∗

/

ap3
P 1→3
∗

//

(a) q11(f
V
1)

arp2
RP 1→2
∗

name

/

∧

first
.=’William’

/

last
.=’Shakespeare’

/

(b) q21(f
V
2)

arp3
RP 1→3
∗

ap4
P 3→4
∗

//

(c) q31(f
V
3)

arp4
RP 3→4
∗

ae1
reference

//

(d) q41(f
V
4)

Figure 5.7: Local QTPs corresponding to query q1

Figure 5.7 shows the local QTPs for query q1. Each local QTP is labeled with the query

from which it is derived, a unique identifier for each QTP, and the fragment to which the

QTP corresponds. q21(f
V
2), for example, refers to local QTP number 2, derived from query

q1 and corresponding to fragment fV
2 .

As can be seen, the child edge from the logic node labeled ∧ to the pattern node with

the node test name is represented as follows:

• In the local QTP corresponding to fragment fV
1 (denoted as q11(f

V
1)), a proxy pattern

node is inserted (matching P 1→2
∗). Since the original cross-fragment edge is a child

edge, the edge leading to the proxy pattern node is also a child edge.

• In local QTP q21(f
V
2), a root proxy pattern node is inserted (matching RP 1→2

∗). Again,

since the cross-fragment edge is a child edge, the edge leading from the newly inserted

root proxy pattern node is also a child edge.

Descendant edges across fragment boundaries are similarly represented by pairs of proxy

pattern nodes and root proxy pattern nodes, except that the edges to and from these

86

author

agent

OPT

(a) fV
1

name

first

ONCE

text

last

ONCE

text

(b) fV
2

pubs

book

MULT

article

MULT

(c) fV
3

initial

text

(d) fV
5

title

text

(e) fV
6

chapter

reference

OPT ONCE

(f) fV
4

ONCE

ONCE

ONCE

MULT MULT

OPT OPT

Figure 5.8: Fragments on path between fV
1 and fV

4

pattern nodes are descendant edges. However, one complication arises from the far-reaching

nature of XPath descendant steps: it is possible that a descendant step may cross multiple

fragments. Therefore, it is necessary to identify all paths in the fragmentation schema

that satisfy the descendant edge. Consider, for example, the descendant edge from the

pattern node with the node test author in fragment fV
1 to the pattern node with the

node test reference in fragment fV
4 (shown in Figure 5.6). To determine the fragments

traversed by this edge, the fragmentation schema needs to be inspected for paths from fV
1

to fV
4 . As shown in Figure 5.8, there is exactly one path from fV

1 to fV
4 , which traverses

fragment fV
3 . Thus, an additional local QTP corresponding to fragment fV

3 is introduced

(q31(f
V
3) in Figure 5.7), despite the fact that there is no pattern node in the global QTP

that refers to node types in this fragment. In cases where there is more than one path in

the fragmentation schema, ∨ logic nodes are inserted and each path is decomposed into

local QTPs separately.

87

To avoid ambiguity between proxy pattern nodes, root proxy pattern nodes, and other

extraction points and to distinguish between multiple proxy pattern nodes that match

proxy nodes corresponding to document edges between the same pair of fragments, all

extraction points in the local QTPs corresponding to a query are given labels that are

unique within that query. The labels are assigned based on the following rules.

• A root proxy pattern node in local QTP quk (f
V
i) is labeled a

rp
u .

• Similarly, the proxy pattern node in local QTP qvk(f
V
j) that corresponds to the same

cross-fragment edge as the root proxy pattern node arpu in quk (f
V
i) is labeled a

p
u.

• The ith extraction point in the global QTP representation of the query is labeled aei .

Whenever a QTP is decomposed, all but one of the resulting local QTPs are rooted at

a root proxy pattern node. One local QTP, however, is always rooted at a non-root proxy

pattern node. In the following this unique local QTP is referred to as the root QTP. In the

example shown in Figure 5.7, q11(f1) is the root QTP. If local QTP qvk(f
V
j) contains a root

proxy pattern node matching RP i→j
∗ and local QTP quk (f

V
i) contains the corresponding

proxy pattern node matching P i→j
∗ , then quk (f

V
i) is referred to as a parent QTP of qvk(f

V
j)

and qvk(f
V
j) is referred to as a child QTP of quk (f

V
i).

If the query does not reach a certain fragment (because no pattern nodes are annotated

with this fragment) and if no intermediate QTP is generated for this fragment because

of cross-fragment descendant steps, then distributed query evaluation will not access this

fragment. Therefore, unlike in the horizontal case, even this initial strategy for querying

vertically fragmented collections avoids accessing some vertical fragments. The pruning

techniques presented in Section 6.2.1 expand upon this idea and identify additional cases

where it is possible to avoid accessing certain fragments.

5.2.3 Converting Local QTPs to LQPs

In the next step, each local QTP quk (f
V
i) is transformed into an LQP puk(f

V
i). This is done

at the site holding the corresponding fragment fV
i , using techniques for the centralized

88

π{ap2,a
p
3}

✶a0/a
p
3

✶a0/a
p
2

scana0:author scanap2:P 1→2
∗

scanap3:P 1→3
∗

(a) p11(f
V
1)

π{arp2 }

⋉a1/a3

⋉a1/a2

✶a
rp
2 /a1

scanarp2 :RP 1→2
∗ scana1:name

σa2=’William’

scana2:first

σa3=’Shakespeare’

scana3:last

(b) p21(f
V
2)

π{arp3 ,a
p
4}

✶a
rp
3 //a

p
4

scanarp3 :RP 1→3
∗

scanap3:P 3→4
∗

(c) p31(f
V
3)

π{arp4 ,ae1}

✶a
rp
4 //a

e
1

scanarp4 :RP 3→4
∗

scanae1:reference
(d) p41(f

V
4)

Figure 5.9: LQPs for query q1

evaluation of tree pattern queries such as those described in Section 3.2.2. If quk (f
V
i) is the

root QTP then puk(f
V
i) is the root LQP. Similarly, if qvk(f

V
j) is a child QTP of quk (f

V
i) then

pvk(f
V
j) is a child LQP of puk(f

V
i) and p

u
k(f

V
i) is a parent LQP of pvk(f

V
j).

For the purpose of illustration, Figure 5.9 shows a set of LQPs that correspond to the

local QTPs depicted in Figure 5.7. The plans shown are based on structural joins but, as

89

mentioned before, this is not a requirement.

For greater clarity, the tuple attributes in LQPs are unique within the context of a

query (i.e., an attribute from one LQP is not re-used in another LQP corresponding to the

same query). Attributes corresponding to extraction points in the local QTPs receive the

same labels as their corresponding pattern nodes, other attributes are assigned sequential

identifiers. This results in the following labeling system.

• aei refers to the attribute that holds the ith extraction point in the QTP representation

of the query (before decomposition). In Figure 5.9, there is one instance of this in

LQP p41(f
V
4).

• arpv refers to the attribute that holds the root proxy nodes matched to the root proxy

pattern node in LQP pvk(f
V
j).

• Similarly, apv refers to the attribute that holds the proxy nodes matched by LQP

puk(f
V
i) that correspond to the root proxy nodes matched by pvk(f

V
j).

• All other attributes (i.e, the attributes holding non-extraction point and non-proxy

nodes) are labeled an. As can be seen in Figure 5.9, these attributes are only used

internally within a single LQP and then projected away at the root of this plan.

5.2.4 Distributed Execution Plans

To obtain the overall query result, the results derived from each LQP need to be combined

to the overall query result. The results of two LQPs can be combined directly if one is the

parent LQP of the other. To combine the results of LQP puk(f
V
i) with that of its child LQP

pvk(f
V
j), a join is performed between the results of both LQPs (represented as sequences of

tuples). Since attribute apv in the result tuples of puk(f
V
i) contains the proxy nodes matching

P i→j
∗ and attribute arpv in the result tuples of pvk(f

V
j) contains the root proxy nodes matching

RP i→j
∗ , puk(f

V
i) and p

v
k(f

V
j) can be combined by the join puk(f

V
i) ✶id(apv)=id(arpv) p

v
k(f

V
j) where

id is a function that extracts the ID from a proxy or root proxy node. We refer to this join

as a cross-fragment join.

90

A distributed execution plan (DEP) specifies how this strategy is applied to all LQPs

corresponding to a query. Formally, a distributed execution plan is defined as follows.

Definition 5.2. Let P = {p1k(f
V
i), . . . , p

n
k(f

V
j)} be the set of LQPs corresponding to a

query qk. Further let P ′ ⊆ P . Then GP ′ is a distributed execution plan (abbreviated as

DEP) for P ′ iff

1. P ′ = {puk(f
V
i)} and GP ′ = puk(f

V
i) (i.e., GP ′ consists of a single LQP), or

2. P ′ = Pu ∪ Pv, Pu ∩ Pv = ∅; puk(f
V
i) ∈ Pu, p

v
k(f

V
j) ∈ Pv, p

u
k(f

V
i) = parent(pvk(f

V
j));

GPu
and GPv

are DEPs for Pu and Pv returning the sets of attributes A (GPu
) and

A (GPv
), respectively; and GP ′ = π(A(GPu)∪A(GPv))\{a

p
v ,a

rp
v }(GPu

✶id(apv)=id(arpv) GPv
) (i.e.,

GP ′ is composed of two distributed execution plans GPu
and GPv

connected by a join

between a parent LQP puk(f
V
i) in GPu

and a child LQP pvk(f
V
j) in GPv

, followed by a

projection that removes the proxy/root proxy nodes used in the join).

If GP ′ consists of a single LQP puk(f
V
i), then the set of attributes returned by GP ′

(denoted as A (GP ′)) is identical to the set of attributes returned by puk(f
V
i). If GP ′ =

π(A(GPu)∪A(GPv))\{a
p
v ,a

rp
v }(GPu

✶id(apn)=id(arpv) GPv
), then A (GP ′) = (A (GPu

) ∪ A (GPv
)) \

{apv, a
rp
v }.

If GP is a DEP for P (the entire set of LQPs), then Gqk = πD(GP) is a DEP for the

query qk.

A DEP must contain all the LQPs corresponding to the query. As shown in the recursive

definition above, a DEP for a single LQP is simply the LQP itself (condition 1). For a set

of multiple LQPs P ′, Pu and Pv are assumed to be two non-overlapping subsets of P ′ such

that Pu ∪ Pv = P ′. The definition requires that Pu contains the parent LQP puk(f
V
i) for

some LQP pvk(f
V
j) in Pv. A DEP for P ′ is then defined by combining DEPs for Pu and Pv

using a join whose predicate compares the IDs of root proxy nodes derived from pvk(f
V
j) to

the IDs of corresponding proxy nodes derived from puk(f
V
i) (condition 2).

After the results of all LQPs have been combined by joins, it may be necessary to

eliminate duplicates from the query result. While local query execution avoids the creation

91

of duplicates within the result derived from a single fragment, additional duplicates may

be inserted when these results are joined together. Thus, in general, DEPs require an

additional duplicate elimination operator (πD) at their root.

πD

π{ae1}

✶id(a
p
3)=id(a

rp
3)

π{ap3}

✶id(a
p
2)=id(a

rp
2)

p11(f
V
1) p21(f

V
2)

π{arp3 ,ae1}

✶id(a
p
4)=id(a

rp
4)

p31(f
V
3) p41(f

V
4)

Figure 5.10: DEP for query q1

Figure 5.10 shows an example of a DEP for query q1, which combines the results of the

LQPs shown in Figure 5.9. There are usually many different DEPs that all yield the correct

result but that may differ significantly in query performance. Methods for improving the

performance of DEPs are discussed in Chapter 6.

5.2.5 Handling Disjunction

The techniques for decomposing QTPs and generating DEPs mentioned above work well

for QTPs that consist solely of pattern nodes and ∧ logic nodes (i.e., conjunction). To

handle ∨ logic nodes (disjunction), extra steps are necessary.

To decompose a query with ∨ logic nodes, the QTP is first annotated as described in

Section 5.2.1. Note that this may introduce additional ∨ logic nodes if wildcard nodes are

split. After annotation, there are two scenarios to consider.

Case 1 If all descendants of a ∨ logic node are annotated with the same fragment as

the ∨ logic node itself, then the QTP is decomposed normally. This is the case for

92

author fV
1

∧ fV
1

name fV
2

/

∨ fV
2

first
.=’William’

fV
2

/

last
.=’Shakespeare’

fV
2

/

book fV
3

//

reference fV
4

//

Figure 5.11: Annotated QTP representation of query q5

author

∧

ap2
P 1→2
∗

/

ap3
P 1→3
∗

//

(a) q15(f
V
1)

arp2
RP 1→2
∗

name

/

∨

first
.=’William’

/

last
.=’Shakespeare’

/

(b) q25(f
V
2)

arp3
RP 1→3
∗

ap4
P 3→4
∗

//

(c) q35(f
V
3)

arp4
RP 3→4
∗

book

//

ae1
reference

//

(d) q45(f
V
4)

Figure 5.12: Local QTPs corresponding to query q5

93

πD

π{ae1}

✶id(a
p
3)=id(a

rp
3)

π{ap3}

✶id(a
p
2)=id(a

rp
2)

p15(f
V
1) p25(f

V
2)

π{arp3 ,ae1}

✶id(a
p
4)=id(a

rp
4)

p35(f
V
3) p45(f

V
4)

Figure 5.13: DEP for query q5

query q5, whose annotated QTP is shown in Figure 5.11. As can be seen the ∨ logic

node in this query is annotated with fragment fV
2 and all of its descendants are also

annotated with this fragment. Decomposing this QTP yields the local QTPs shown

in Figure 5.12. Note that, after decomposition and the insertion of pattern nodes

matching proxy nodes, all local QTPs are valid and there are no extraction point

nodes below the ∨ logic node. After converting each local QTP to an LQP, query q5

can be evaluated by the DEP shown in Figure 5.13.

Case 2 If a ∨ logic node has at least one descendant node annotated with a different

fragment, applying the decomposition strategy described above introduces additional

proxy pattern nodes. Since proxy pattern nodes are always designated as extraction

points, there are now extraction points below the ∨ logic node, violating the definition

of QTPs. Consider, for example, query q4, whose annotated QTP is shown in Figure

5.5 on page 84. Applying the decomposition strategy described above yields the local

QTPs shown in Figure 5.14. As can be seen, this results in three extraction point

nodes below the ∨ logic node in q04(f
V
1), thus rendering this local QTP invalid.

To solve the problem in the second scenario, the local QTP is split into one local QTP

for each branch of the offending disjunction. This results in a set of local QTPs that

are copies of the original (invalid) local QTP. However, in place of the disjunction, each

94

author

∧

ap4
P 1→2
∗

/

∨

ae1
∗

/

ap5
P 1→2
∗

/

ap6
P 1→3
∗

/

(a) q04(f
V
1)

arp4
RP 1→2
∗

name

/

∧

first
.=’William’

/

last
.=’Shakespeare’

/

(b) q44(f
V
2)

arp5
RP 1→2
∗

ae1
∗

/

(c) q54(f
V
2)

arp6
RP 1→3
∗

ae1
∗

/

(d) q64(f
V
3)

Figure 5.14: Local QTPs corresponding to query q4, with invalid local QTP q04(f
V
1)

author

∧

ap4
P 1→2
∗

/

ae1
∗

/

(a) q14(f
V
1)

author

∧

ap4
P 1→2
∗

/

ap5
P 1→2
∗

/

(b) q24(f
V
1)

author

∧

ap4
P 1→2
∗

/

ap6
P 1→3
∗

/

(c) q34(f
V
1)

Figure 5.15: Local QTPs resulting from splitting q04(f
V
1)

95

resulting local QTP instead contains just one of the branches of the disjunction. Applying

this to q04(f
V
1), yields the three local QTPs shown in Figure 5.15. Note that splitting local

QTPs also duplicates extraction points with the same label. Consider, for example, the

three extraction points labeled ae1, which all correspond to the single extraction point of

the original query.

To preserve the semantics of the query, the DEP combines the LQPs resulting from the

split by merging the sequences of tuples resulting from each of them. More formally, this

can be expressed as follows.

Definition 5.3. Let P ′ be a subset of the LQPs corresponding to a query qk such that

P ′ = Pu ∪ . . . ∪ Pv and Pu, . . . , Pv are pairwise disjoint. If ∃puk(f
V
i) ∈ Pu, . . . , p

v
k(f

V
j) ∈ Pv

that all result from the same QTP split and if GPu
, . . . , GPv

are DEPs for Pu, . . . , Pv,

respectively, such that A (GPu
) = . . . = A (GPv

) then GP ′ = GPu
⊙ . . .⊙GPv

is a DEP for

P ′ and A (GP ′) = A (GPu
) = . . . = A (GPv

).

Note that the definition requires that in order for a set of DEPs to be combined by a

merge operator, they all have to yield result tuples consisting of the same set of attributes.

πD

π{ae1}

✶id(a
p
2)=id(a

rp
2)

⊙

p14(f
V
1)

π{ap2,ae1}

✶id(a
p
5)=id(a

rp
5)

p24(f
V
1) p54(f

V
2)

π{ap2,ae1}

✶id(a
p
6)=id(a

rp
6)

p34(f
V
1) p64(f

V
3)

p44(f
V
2)

Figure 5.16: DEP for query q4

96

In the DEP for query q4 shown in Figure 5.16, this means that the joins between p24(f
V
1)

and p54(f
V
2) and between p34(f

V
1) and p

6
4(f

V
3) have to be performed before the merge.

While splitting fragments with disjunction makes it possible to distribute the processing

of queries even where the disjunction would otherwise prevent this, in some cases, the

duplication of local QTPs may increase the processing cost at the site corresponding to

the split local QTP. Section 6.2.4 presents an optimization technique that addresses this

by evaluating the shared portions of split local QTPs simultaneously.

5.2.6 Handling Negation

Negation also requires special attention during QTP decomposition and during the gener-

ation of DEPs. This is because, as in the case of disjunction, the insertion of proxy pattern

nodes potentially introduces extraction points below the negation, resulting in an invalid

local QTP. For negation, there are three cases to be considered, and for each case there is

a different solution.

Case 1 If all descendants of a ¬ logic node annotated with fragment fV
i are annotated

with the same fragment fV
i , then no special treatment is necessary since the negation

only affects pattern nodes within a single local QTP. Due to the fact that the overall

query is required to be a valid QTP, all of the pattern nodes in the branch below the

¬ logic node are guaranteed not to be extraction points and thus the resulting local

QTPs are also valid.

Case 2 If a ¬ logic node annotated with fragment fV
i has as its child a node annotated

with a different fragment fV
j , then it is possible to combine the negation with the

cross-fragment join between the fragments fV
i and fV

j . Section 5.2.6.1 describes how

this is done.

Case 3 If a ¬ logic node annotated with fragment fV
i has a child node that is also anno-

tated with fV
i and some descendant node that is annotated with a different fragment

fV
j , then rewrites are applied to the query until either case 1 or case 2 are satisfied.

The rewrite rules are described in Section 5.2.6.2.

97

author fV
1

book fV
3

//

¬ fV
3

reference fV
4

//

Figure 5.17: Annotated QTP corresponding to query q3

To show that these are the only three cases that may occur, consider a negation logic

node l assigned to fragment fV
i and let N be the set of nodes that occur as descendants of

l in the pattern. If all nodes in N are also assigned to fragment fV
i , then case 1 applies.

Otherwise, there must be at least one node n ∈ N such that n is assigned to some fragment

fV
j with fV

i 6= fV
j .

If there is a descendant node assigned to a different fragment, it is necessary to inspect

the child of l in the pattern. Since each negation logic node has exactly one child node

(as required by Definition 2.3 in Section 2.2), there is a unique child node n′ of l. If n′ is

assigned to some fragment fV
j with fV

i 6= fV
j , then case 2 applies.

If, however, n′ is assigned to fV
i (i.e., to the same fragment as l), then there must be

some other node n ∈ N that is assigned to fragment fV
j with fV

i 6= fV
j . This corresponds

directly to case 3.

5.2.6.1 Folding Negation Into Cross-Fragment Joins

If a ¬ logic node annotated with fragment fV
i has as its child a node annotated with a

different fragment fV
j , then the negation can be rolled into the cross fragment join between

the local QTPs quk (f
V
i) and q

v
k(f

V
j). To do this, let anv be the nearest pattern node ancestor

of the ¬ logic node. If it is not marked as an extraction point already, anv is marked as

an extraction point. Next, the ¬ logic node is removed from the QTP. Then, the QTP is

decomposed as described in Section 5.2.2.

98

ae1
author

ap2
P 1→3
∗

//

(a) q13(f
V
1)

arp2
RP 1→3
∗

an3
book

//

ap3
P 3→4
∗

//

(b) q23(f
V
3)

arp3
RP 3→4
∗

reference

//

(c) q33(f
V
4)

Figure 5.18: Local QTPs corresponding to query q3

Consider, for example, query q3. As can be seen in the annotated QTP shown in Figure

5.17, the ¬ logic node is annotated with fragment fV
3 , whereas its child node, the pattern

node with the node test reference is annotated with fragment fV
4 . Since the negation

immediately precedes the step across the fragment boundary, it can be folded into the

cross-fragment join. Thus, the ¬ logic node is removed from the QTP and the QTP is

then decomposed, yielding the local QTPs shown in Figure 5.18. Note how the pattern

node with the node test book in local QTP q23(f
V
3) is designated as an extraction point and

labeled an3 .

When generating the DEP for the query, the negation is integrated into the join between

the LQPs puk(f
V
i) and p

v
k(f

V
j). This is done as follows.

Definition 5.4. Let P ′ be a subset of the LQPs corresponding to query qk such that

P ′ = Pu∪Pv and Pu∩Pv = ∅. Further let puk(f
V
i) ∈ Pu and p

v
k ∈ Pv such that anv , a

p
v ∈ A (puk),

arpv ∈ A (pvk), and A (GPv
) = {arpv }. Then

GP ′ := πA(GPu)\{a
n
v ,a

p
v ,a

rp
v }

(

σarpv =0

(

GA(GPu)\{a
p
v}Acount(arpv)

(

GPu id(apv)=id(arpv)GPv

)))

is a DEP for P ′ and A (GP ′) = A (GPu
) \ {anv , a

p
v}.

Conceptually, the combination of the left outer join (), the grouping/aggregation

(G . . .A), and the selection (σ) act in a way that is similar to an anti-join (✄). Each tuple

from the left-hand side is passed on if there is no matching tuple from the right-hand side.

However, the DEP has to capture the scenario where a node matched to anv has more than

one proxy node as its descendant and a DEP based on anti-joins fails to do this.

99

πD

π{ae1}

✶id(a
p
2)=id(a

rp
2)

p13(f
V
1)

π{arp2 }

✄id(a
p
3)=id(a

rp
3)

p23(f
V
3) p33(f

V
4)

Figure 5.19: Incorrect DEP for query q3

100

author1

P 1→2
11 P 1→3

12

author2

P 1→2
13 P 1→3

14

author3

P 1→2
15 P 1→3

16
agent1

P 1→2
17

(a) fV
1

RP 1→2
11

name1

first1

John

last1

Adams

RP 1→2
13

name2

first2

Jane

last2

Dean

RP 1→2
15

name3

first3

William

last3

Shakespeare

RP 1→2
17

name4

first4

John

last4

Shakespeare

(b) fV
2

RP 1→3
12

pubs1

book1

P 3→4
18

RP 1→3
14

pubs2

RP 1→3
16

pubs3

book2

P 3→4
20 P 3→4

21

(c) fV
3

RP 3→4
18

chapter1

RP 3→4
20

chapter2

reference2

RP 3→4
21

chapter3

(d) fV
4

Figure 5.20: A vertically fragmented collection

101

[ae1 = author1, a
p
2 = P 1→3

12]

[ae1 = author2, a
p
2 = P 1→3

14]

[ae1 = author3, a
p
2 = P 1→3

16]
(a) R(p13(f

V
1))

[arp2 = RP 1→3
12 , an3 = book1, a

p
3 = P 3→4

18]

[arp2 = RP 1→3
16 , an3 = book2, a

p
3 = P 3→4

20]

[arp2 = RP 1→3
16 , an3 = book2, a

p
3 = P 3→4

21]
(b) R(p23(f

V
3))

[arp3 = RP 3→4
20]

(c) R(p33(f
V
4))

Figure 5.21: LQP results for query q3

To illustrate this point, consider query q3. It is easy to see that the correct result for this

query, when evaluated over the collection shown in Figure 5.20, consists only of author1,

since this is the only author node in the collection that has a book without references. In

contrast to this, consider what happens when evaluating this query using the DEP shown in

Figure 5.19, which contains a simple anti-join (✄) in place of the combination of operators

mentioned above. Evaluating the LQPs p13(f
V
1), p

2
3(f

V
3), and p

3
3(f

V
4) yields the tuples shown

in Figure 5.21 (denoted as R(p13(f
V
1)), R(p

2
3(f

V
3)), and R(p

3
3(f

V
4)), respectively). Performing

the anti-join between p23(f
V
3) and p

3
3(f

V
4) yields two tuples (shown after projection):

[arp2 = RP 1→3
12]

[arp2 = RP 1→3
16]

Finally, joining these tuples with the result of p13(f
V
1) yields two results:

[ae1 = author1]

[ae1 = author3]

Therefore, author3 is incorrectly reported as part of the query result. The reason why

this happens is that the anti-join matches all proxy nodes that lead to a chapter without a

reference. Thus, all authors are reported that have books with at least one chapter without

a reference (rather than authors with entire books without a reference, as specified in the

query).

A correct DEP, as specified in the definition above, addresses this problem by making

sure that the implicit quantifier is related to the pattern node that precedes the negation,

102

πD

π{ae1}

✶id(a
p
2)=id(a

rp
2)

p13(f
V
1)

π{arp2 }

σarp3 =0

G{arp2 ,a
n
3}
Acount(a

rp
3)

id(a
p
3)=id(a

rp
3)

p23(f
V
3) p33(f

V
4)

Figure 5.22: DEP for query q3

rather than to the pattern node that matches the proxy nodes corresponding to the cross-

fragment join. In the present example the relevant pattern node is the one with the node

test book, which is labeled an3 during decomposition.

To illustrate this, consider how the correct plan for query q3 (shown in Figure 5.22)

proceeds. First, a left outer join is performed between the results of p23(f
V
3) and p33(f

V
4).

This yields the following three tuples. Note that the tuples contain null values for the cases

where no join partner was found.

[arp2 = RP 1→3
12 , an3 = book1, a

p
3 = P 3→4

18 , arp3 = NULL]

[arp2 = RP 1→3
16 , an3 = book2, a

p
3 = P 3→4

20 , arp3 = NULL]

[arp2 = RP 1→3
16 , an3 = book2, a

p
3 = P 3→4

21 , arp3 = RP 3→4
21]

Next, this result is grouped by the attributes arp2 and an3 . At the same time the non-null

103

values of arp3 are counted for each group. This results in the following two tuples.

[arp2 = RP 1→3
12 , an3 = book1, a

rp
3 = 0]

[arp2 = RP 1→3
16 , an3 = book2, a

rp
3 = 1]

Finally, the selection returns only those tuples for which arp3 = 0, resulting in the tuple

[arp2 = RP 1→3
12] (after projection). This is then joined with the result of p13(f

V
1) leading to

the correct result consisting of the single tuple [ae1 = author1].

5.2.6.2 Negation Rewrites

If there is a cross-fragment edge in the pattern branch below a ¬ logic node but not directly

adjacent to the logic node, then it is not possible to directly fold this negation into the

cross-fragment join. In this case, the query is rewritten until either there are no cross-

fragment steps below the negation (in which case no special treatment is necessary) or

there is a cross-fragment step directly adjacent to the negation (in which case the negation

can be folded into the cross-fragment join as shown in the previous section).

Figure 5.23 shows the rewrite rules that make this possible. Rule N1 shows how a

negation can be pushed past a pattern node. When this rule is applied, the pattern node

with the node test a is known to be annotated with the same fragment fV
i as the ¬ logic

node (if it was annotated with a different fragment, the negation could have been folded

into the cross-fragment join without further rewrites, corresponding to case 2 above). N1

introduces a disjunction consisting of two branches. The branch shown on the left-hand

side consists of a negation followed by a copy of the pattern node with the node test a.

This branch consists solely of nodes annotated with fragments fV
i and therefore needs no

further rewriting (case 1 above). The right-hand side branch may need to be rewritten

further until either case 1 or case 2 is satisfied.

It is important to note that, unlike the other rewrite rules presented here, N1 is not an

equivalence. This is because in the right-hand branch of the rewritten pattern, the pat-

tern node over which the negation is quantified has changed. To illustrate this, consider

the XPath expression /author/pubs[not(book/chapter)], which corresponds to a query

104

. . .

¬

a

. . .

→

. . .

∨

¬

a

a

¬

. . .
(a) N1: Pushing negation past pattern nodes

. . .

¬

∧

.

→

. . .

∨

¬

. . .

¬

. . .
(b) N2: Pushing negation past conjunction

. . .

¬

∨

.

→

. . .

∧

¬

. . .

¬

. . .
(c) N3: Pushing negation past disjunction

. . .

¬

¬

. . .

→
. . .

. . .

(d) N4: Merging negations

Figure 5.23: Negation rewrite rules

105

for the pubs element of all authors that do not have any book with at least one chap-

ter. Applying rewrite N1 to this query yields a QTP that is equivalent to the expression

/author/pubs[not(book) or book[not(chapter)]], which yields the pubs element of

authors that either do not have a book at all or that have at least one book without a

chapter (but may have other books that do have chapters).

To address this problem, and to ensure that the correct query result is returned in these

cases, the grouping operator used in the DEP groups by the attribute that corresponds

to the pattern node that originally preceded the negation before the rewrite was applied.

Thus, in the example given in the previous paragraph, results would be grouped by the

attribute that matches pubs nodes, rather than the attribute that matches book nodes.

While N1 makes it possible to push a negation past a pattern node, it may also be

necessary to push a negation past another logic node. Rules N2 and N3 show how this

is done for conjunction and disjunction, respectively. Note that when pushing a negation

past a conjunction, the conjunction is transformed into a disjunction. Similarly, pushing

a negation past a disjunction turns the disjunction into a conjunction. Both N2 and N3

follow directly from De Morgan’s laws [110]. Two adjacent negations cancel each other out

and, as shown in rule N4, can be removed from the pattern.

Together, rules N1–N4 make it possible to push negations past any kind of pattern or

logic node. Therefore, it is always possible to rewrite a given QTP such that each negation

contained in this QTP is either local and thus requires no special treatment (case 1) or

can be folded into a cross-fragment join as described in Section 5.2.6.1 (case 2).

For example, consider query q6, whose annotated QTP is shown in Figure 5.24(a).

Before this query can be decomposed, the ¬ logic node has to be pushed past the pattern

node with the node test book. This is done by applying rewrite rule N1. The result of

rewriting the QTP is shown in Figure 5.24(b). Note that the rewritten QTP contains two

negations. The negation in the branch on the left-hand side now satisfies case 1 and can be

handled locally within a single QTP. The negation in the right-hand branch, in contrast,

can be folded into the cross-fragment join. The rewritten QTP can then be decomposed

into the local QTPs shown in Figure 5.25 (note that the disjunction requires that two local

QTPs be generated for fragment fV
3).

106

author fV
1

pubs
fV
3

/

¬ fV
3

book fV
3

/

reference fV
4

//

(a) before rewriting

author fV
1

pubs
fV
3

/

∨ fV
3

¬ fV
3

book fV
3

/

book fV
3

/

¬ fV
3

reference fV
4

//

(b) after rewriting

Figure 5.24: Annotated QTP corresponding to query q6 before and after rewriting

ae1
author

ap2
P 1→3
∗

/

(a) q16(f
V
1)

arp2
RP 1→3
∗

pubs

/

¬

book

/

(b) q26(f
V
3)

arp2
RP 1→3
∗

an4
pubs

/

book

/

ap4
P 3→4
∗

//

(c) q36(f
V
3)

arp4
RP 3→4
∗

reference

//

(d) q46(f
V
4)

Figure 5.25: Local QTPs corresponding to query q6

107

πD

π{ae1}

✶id(a
p
2)=id(a

rp
2)

p16(f
V
1) ⊙

p26(f
V
3)

π{arp2 }

σarp4 =0

G{arp2 ,a
n
4}
Acount(a

rp
4)

id(a
p
4)=id(a

rp
4)

p36(f
V
3) p46(f

V
4)

Figure 5.26: DEP for query q6

108

Note that when decomposing a rewritten QTP, anv is assigned to the pattern node that

originally preceded the negation (i.e., before the rewrites were applied). This ensures that

the correct query result is obtained in cases where rewrite N1 has been applied. For query

q6, this is the pattern node with the node test pubs in local QTP q36(f
V
3) (and not the

pattern node with the node test book, which precedes the negation after rewriting). As

shown in Figure 5.25, this pattern node is labeled an4 and designated as an extraction point.

This ensures that the negation is related to the correct pattern node by the grouping and

aggregation. Thus, the query result is correct and consists of authors whose publications

do not contain a book with a reference (rather than authors whose publications contain a

book without a reference).

After decomposition, query q6 is evaluated using the DEP shown in Figure 5.26, which

is generated as described in the previous section.

5.3 Summary

This chapter has described the fundamental techniques for evaluating XQ queries over

an XML collection that has been fragmented horizontally and/or vertically and then dis-

tributed across multiple sites in a system. While these techniques alone are sufficient to

answer queries correctly, there is room for improving the performance of distributed query

evaluation. The next chapter addresses this and introduces a suite of techniques that

can be used in combination with the fundamental techniques presented here to achieve

improved query performance and scalability.

109

Chapter 6

Techniques for Improving

Distributed Execution Plans

The focus of this chapter is on techniques for improving the performance of distributed

query evaluation over fragmented XML collections. Starting from the DEPs described

in the Chapter 5, a suite of techniques for both horizontal and vertical fragmentation is

introduced. As with all techniques presented in this thesis, a major focus is on improving

parallelism, which is a key consideration when optimizing for scalable query execution in

a data centre. Together, the techniques presented in this chapter help to further improve

the query performance achieved by DEPs.

In relational systems, distributed query optimization techniques usually work over an

algebraic representation of a distributed query [115]. For many of the techniques presented

here, however, the QTP represents a simpler abstraction that contains all the necessary

information.

The remainder of this chapter is organized as follows. Section 6.1 introduces the tech-

niques that can be applied to distributed query evaluation over horizontally fragmented

collections. Section 6.2 focuses on techniques for vertically fragmented collections. All the

techniques presented here are designed to be fully orthogonal. Therefore, when a collec-

tion is fragmented in a hybrid fashion, it is possible to combine the horizontal and vertical

techniques presented in this chapter in a single DEP.

111

6.1 Horizontal Fragmentation

In the case of horizontal fragmentation, the approach for improving query performance

relies on pruning the set of fragments that need to be accessed to answer a given query. This

can help reduce resource contention between multiple queries and thereby improve query

throughput. Techniques for pruning fragments from a DEP with horizontal fragmentation

are presented in Section 6.1.1.

Another improvement concerns the sorting step that is performed after results from

individual fragments are combined. Section 6.1.2 discusses how the need for sorting can be

eliminated by choosing the right implementation for the operator that merges local query

results.

6.1.1 Pruning Fragments

As discussed in Section 5.1.2, DEPs for horizontally fragmented collections generally need

to access all fragments to answer a query. However, there are some cases where this is

not necessary, because some horizontal fragments cannot possibly contribute to the query

result.

For example, consider query q7, whose QTP representation is shown in Figure 6.1. This

query retrieves all references in books written by an author whose first name is William

and whose last name is Shakespeare. When evaluating q7 over the horizontally fragmented

collection shown in Figure 6.2, it is easy to see that only the documents in fragment fH
3 ,

corresponding to authors whose last name starts with the letter ‘S’, need to be considered.

All the other fragments are irrelevant for the query.

This section introduces a procedure that detects irrelevant fragments and prunes them

from the DEP1. This procedure relies on the schema of the collection and the FTPs that

define the fragmentation. Both of these are static over time, do not depend on the size

of the collection, and can be encoded in a compact manner. This makes it feasible to

1The work presented in this section has been published as a formal paper [83], and as technical reports

[80, 81].

112

author

∧

name

/

∧

first
.=’William’

/

last
.=’Shakespeare’

/

book

//

reference

//

Figure 6.1: QTP representation of query q7

author1

name1

first1

John

last1

Adams

pubs1

book1

chapter1

reference1

(a) fH
1

author2

name2

first2

Jane

last2

Dean

pubs2

book2

chapter2

reference2

(b) fH
2

author3

name3

first3

John

last3

Smith

pubs3

book3

chapter3

reference3

author4

name4

first4

William

last4

Shakespeare

pubs4

book4

chapter4

reference4

book5

chapter5

(c) fH
3

Figure 6.2: A horizontally fragmented collection

113

replicate them at all sites as metadata. Thus, pruning can easily be performed locally

before contacting the sites holding the relevant fragments.

The pruning algorithm operates on the QTP representation of the query and is applied

before the QTP is converted to an algebraic query plan. This makes it possible to reduce

the problem of pruning horizontal fragments to that of determining, for each fragment,

whether its FTP can be satisfied at the same time as the QTP.

To eliminate a fragment from the distributed query plan, it is necessary to show that the

FTP corresponding to this fragment and the QTP representation of the query are mutually

exclusive. This is the case exactly when there cannot exist a document (corresponding to

the schema) that yields a match for both the QTP and the FTP.

Definition 6.1. Let S be the schema of the collection. Two tree patterns qi and qj are

mutually exclusive iff for any document d corresponding to S, qi(d) does not yield a match

or qj(d) does not yield a match.

While the problem of detecting mutually exclusive tree patterns could be solved by a

general-purpose query intersection algorithm, this section presents a schema-aware algo-

rithm that supports QTPs with multiple extraction points as are frequently encountered

in hybrid fragmentation. For a discussion of this, see Section 3.2.3.3.

To determine whether a QTP and an FTP are mutually exclusive, the algorithm per-

forms the following sequence of steps.

• First, both the QTP and the FTP are transformed into a simplified form. While this

form is less expressive than general tree patterns, it is sufficient to detect contradic-

tions.

• The simplified QTP and the simplified FTP are then traversed in parallel. For

each pair of corresponding pattern nodes, the value constraints associated with both

pattern nodes are checked for contradictions.

• If at least one contradiction is found, QTP and FTP are mutually exclusive, and

the fragment corresponding to the FTP is eliminated from the DEP. On all other

114

fragments, the original QTP (i.e., not the simplified QTP) is evaluated as in the case

without pruning.

6.1.1.1 Transformation to Simplified Form

In general, pattern nodes in a QTP may match more than one node in a given document

tree. Consider, for example, query q7 (shown in Figure 6.1). When evaluating this query

over the horizontally fragmented collection shown in Figure 6.2, the pattern node with the

node test book matches two nodes in the document rooted at author4: book4 and book5.

In the following, pattern nodes that match more than one node in the same document are

referred to as ambiguous pattern nodes.

Definition 6.2. Let q = 〈N,L, r, E, ν, c, ε, λ, T 〉 be a tree pattern and S be the schema

of the collection. A pattern node n ∈ N is an ambiguous pattern node iff there exists a

document d conforming to the schema such that there exist two matches µ1 and µ2 for q

in d, µ1 assigns node o1 ∈ d to pattern node n, µ2 assigns o2 ∈ d to pattern node n, and

o1 6= o2.

A value constraint associated with an ambiguous pattern node is satisfied if at least one

of the matching nodes in the document conforms to the constraint. Therefore, in the general

case, the presence of contradictory value constraints is not sufficient to determine that two

tree patterns are mutually exclusive. This is because, even if the constraints themselves

are contradictory, they may be satisfied by different nodes in the same document.

There are several features that, when present in a tree pattern, result in ambiguous

pattern nodes:

Node types reached via MULT edges Node types that are reachable from the root of

the schema via an edge with the cardinality MULT may occur multiple times in the

same context. The schema shown in Figure 6.3, for example, allows multiple book

nodes to occur as the child of a single pubs node. Thus, a pattern node with the

node test book is ambiguous.

115

author

name

ONCE

initial

OPT

text

first

ONCE

text

last

ONCE

text

title

OPT

text

agent

OPT

pubs

ONCE

book

MULT

chapter

MULT

reference

OPT

article

MULT

ONCE

ONCE

MULT

Figure 6.3: An XML schema graph

Descendant steps can also lead to ambiguous pattern nodes, since they may be satisfied

by multiple paths in the schema. The QTP q8, shown in Figure 6.4(a), for example,

contains a descendant edge between the pattern node with the node test author and

the pattern node with the node test name. As can be seen in the schema (shown

in Figure 6.3), the pattern node with the node test name can be matched to a name

node that is the direct child of an author node or to a name node that is the child

of an intermediate agent node. Therefore, the QTP shown in Figure 6.4(a) and the

FTP shown in Figure 6.4(b) are not mutually exclusive, despite the fact that the

value constraints on the pattern nodes with the node test last are contradictory

(since a last name cannot, at the same time, start with the letter ‘A’ and be equal to

‘Shakespeare’). The documents in the fragment corresponding to the FTP in Figure

6.4(b) contain information about authors whose last names start with the letter ‘A’.

The QTP, on the other hand, matches books that are either authored by ‘William

Shakespeare’ or by someone whose agent is ‘William Shakespeare’ and whose last

name might well start with the letter ‘A’. Thus, the fragment corresponding to this

FTP cannot be pruned from a query plan for query q8.

Wildcards are another source of ambiguous pattern nodes. This is because pattern nodes

with a wildcard node test may be matched to document nodes of different types, thus

creating ambiguity.

116

author

∧

name

//

∧

first
.=’William’

/

last
.=’Shakespeare’

/

book

//

reference

//

(a) QTP q8

author

name

/

last
starts-with(., ’A’)

/

(b) FTP

Figure 6.4: QTP and FTP that are not mutually exclusive

To address the problem of ambiguous pattern nodes, both tree patterns (i.e., the QTP

and the FTP) are transformed into a simplified form before they are inspected for con-

tradicting value constraints. The simplified form is guaranteed not to contain ambiguous

pattern nodes. Therefore, each pattern node in a simplified pattern matches at most one

node within a given document.

In addition to ambiguous pattern nodes, the detection of mutually exclusive tree pat-

terns is also complicated by negation. While negation that occurs within value constraints

can easily be handled when inspecting value constraints for contradictions, negation logic

nodes (denoted by ¬) result in pattern nodes that are not matched to any node from the

collection for a given pattern match. Thus, negation logic nodes are also excluded from

simplified tree patterns.

Formally, a simplified tree pattern can be defined as a tree pattern that does not contain

any of the problematic primitives.

Definition 6.3. Let S = 〈Σ,Ψ, s,m, ρ〉 be the schema of the collection. Then a tree

pattern 〈N,L, r, E, ν, c, ε, λ, T 〉 is a simplified tree pattern iff T = ∅ ∀n ∈ N , ν(n) ∈ Σ,

∀l ∈ L, λ(l) 6= ¬, and ∀(x, y) ∈ E, ε((x, y)) = child ∧ (ν(x), ν(y)) ∈ Ψ ∧ s((ν(x), ν(y)))

6= MULT.

For the detection of mutually exclusive tree patterns, it is irrelevant which pattern nodes

117

are designated as extraction points. Thus, for simplicity, the remainder of this section will

assume that in a simplified tree pattern no pattern nodes are designated as extraction

points (as denoted by T = ∅ in Definition 6.3).

To convert a tree pattern into a simplified tree pattern, all instances of the disallowed

primitives have to be either removed or converted into an equivalent simplified form. It

is important to note that simplified tree patterns are strictly less expressive than arbi-

trary tree patterns. Therefore, the transformation to a simplified tree pattern changes the

semantics of the tree pattern. However, this is not a problem for the pruning strategy

presented here because the transformation retains the pattern nodes that are necessary to

detect mutually exclusive patterns. It is important to point out that the transformation

does not compromise the correctness of the query result, since subsequent query process-

ing after pruning is performed based on the original QTP query rather than the simplified

form. Nevertheless, it is important that the transformation retains as much of the infor-

mation present in the original pattern as possible so that this information can be exploited

for pruning.

Algorithm 3 performs the transformation of a tree pattern into a simplified tree pattern

based on the following principles:

• Using schema information, descendant steps are unrolled into equivalent paths con-

sisting entirely of child steps (procedure shown as Algorithm 4). If there is more than

one path, logic nodes representing a disjunction (∨) are inserted and the branch below

the descendant step becomes reachable via more than one path.

• Wildcard node tests are converted to non-wildcard node tests wherever this is unam-

biguously possible. Otherwise, the corresponding pattern nodes are removed along

with their descendants.

• Pattern nodes matching node types reachable via MULT edges in the schema are

removed along with the branches below them.

• Pattern nodes designated as extraction points in the original tree pattern do not

receive this designation in the simplified tree pattern.

118

Algorithm 3: pattern transformation algorithm
input : tree pattern 〈N,L, r, E, ν, c, ε, λ, T 〉, schema 〈Σ,Ψ, s,m, ρ〉

output : simplified tree pattern 〈N ′, L′, r′, E′, ν′, c′, ε′, λ′, T ′〉

1 r′ ← new node

2 ν′(r′)← ν(r)

3 c′(r′)← c(r)

4 N ′ ← {r′}

5 E′ ← ∅

6 T ′ ← ∅

7 Q← {〈r, r′〉} // represents nodes whose children have yet to be checked

8 while Q 6= ∅ do

9 〈q, q′〉 ← some 〈q, q′〉 ∈ Q // while there are pattern or logic nodes to be processed, pick one

10 Q← Q \ {〈q, q′〉}

11 for y ∈ children(x) do

12 y′ ← new node

13 if y ∈ L, λ(y) 6= ¬ then

14 L′ ← L′ ∪ {y′}, E′ ← E′ ∪ {〈q′, y′〉}, λ′(y′)← λ(y)

15 Q← Q ∪ {〈y, y′〉}

16 else if y ∈ N then

17 if q′ ∈ L′ then

18 q′p ← nearest pattern node ancestor of q′

19 σ′ ← ν(q′p)

20 c′(y′)← c(y)

21 if ε(e) = / then

22 if ν(y) 6= ∗ then

23 ν′(y′) = ν(y)

24 else if ∃〈σ1, σ2〉 ∈ Ψ unique with σ1 = σ′ then

25 ν′(y′)← σ2

26 else

27 continue

28 if ψ = 〈ν(x), ν(y)〉 ∈ Ψ, s(ψ) 6= MULT then

29 N ′ ← N ′ ∪ {y′}, E′ ← E′ ∪ {〈q′, y′〉}

30 Q← Q ∪ {〈y, y′〉}

31 else if ν(y) 6= ∗ then

32 Σ′ ← {σ ∈ Σ | σ reachable from σ′, ν(y) reachable from σ in 〈Σ,Ψ〉}

33 Ψ′ ← {〈σ1, σ2〉 ∈ Ψ | σ1, σ2 ∈ Σ′}

34 if 〈Σ′,Ψ′〉 is acyclic and ∄ψ ∈ Ψ′ with s(ψ) = MULT then

35 ν′(y′)← ν(y)

36 〈N ′′, L′′, E′′〉 ← unrolldesc(q′, σ′, y′,Σ′,Ψ′)

37 N ′ ← N ′ ∪N ′′ ∪ {y′}, L′ ← L′ ∪ L′′, E′ ← E′ ∪ E′′

38 Q← Q ∪ {〈y, y′〉}

39 ∀〈x′, y′〉′ ∈ E′, y′ ∈ N ′ : ε′(〈x′, y′〉)← /

40 return〈N ′, L′, r′, E′, ν′, c′, ε′, λ′, T ′〉

119

author

name

ONCE

initial

OPT

text

first

ONCE

text

last

ONCE

text

title

OPT

text

agent

OPT

pubs

ONCE

book

MULT

chapter

MULT

reference

OPT

article

MULT

ONCE

ONCE

MULT

Figure 6.5: Node types reachable from author from which name is reachable

6.1.1.2 Unrolling Descendant Steps

The unrolling of descendant steps can be succinctly implemented as a manipulation of

the directed graph representation of the schema (Algorithm 3, lines 32–38). To unroll a

descendant step from a pattern node with the node test a to a pattern node with the node

test b, a subgraph of the schema graph is considered. This subgraph consists of all node

types that are both reachable from node type a and from which node type b is reachable.

Thus the subgraph contains all node types that are encountered on any downward path

from a to b. For an example, consider Figure 6.5, which shows the schema from Figure 6.3

with the subgraph used to unroll the descendant step author//name highlighted. As can

be seen, this subgraph consists of the node types author, agent, and name.

If the schema subgraph contains a cycle, it is not possible to unroll the descendant step

into a finite number of child steps. Therefore, the descendant step is discarded along with

all nodes that occur below it in the tree pattern (Algorithm 3, line 34). Conceptually, this

scenario corresponds to a pattern node that may match nodes that occur at different levels

in the document tree. This causes ambiguity, rendering the affected branch unusable for

detecting mutual exclusion.

For an example of this scenario, consider the step book//reference. As is highlighted

in Figure 6.6, there is a cycle involving the node types chapter and reference. Thus,

assuming that the pattern node with the node test book is matched to a given book node

120

Algorithm 4: unrolldesc(σo, σt,Σ
′,Ψ′) unrolls descendant step

input : origin node qo, origin node type σo, target node qt, reachable schema nodes Σ′, reachable schema edges Ψ′

output : pattern nodes N ′′, logic nodes L′′, pattern edges E′′

1 N ′′ ← ∅

2 L′′ ← ∅

3 E′′ ← ∅

4 S ← {qo} // pattern nodes to be processed

5 for s ∈ S do

6 if s = q0 then

7 σs ← σo

8 else

9 σs ← ν(s)

10 if ∃〈σ1, σ2〉, 〈σ3, σ4〉 ∈ Ψ′, σ2 6= σ4, σs = σ1 = σ3 then

11 // more than one outgoing edge from s, insert disjunction

12 l∨ ← new node

13 λ′(l∨)← ∨

14 L′′ ← L′′ ∪ {l∨}

15 E′′ ← E′′ ∪ {〈s, l∨〉}

16 s← l∨

17 // insert edges

18 for 〈σ1, σ2〉 ∈ Ψ′, σ1 = σs do

19 if σ2 = ν(qt) then

20 nσ2
← qt

21 else

22 nσ2
← new node

23 ν′(nσ2
)← σ2

24 c′(nσ2
)← ⊥

25 N ′′ ← N ′′ ∪ {nσ2
}

26 S ← S ∪ {nσ2
}

27 E′′ ← E′′ ∪ {〈nσ , nσ2
〉}

28 return〈N ′′, L′′, E′′〉

in the collection, the pattern node with the node test reference may be matched to a

reference node that is reachable from this book node via a single, intermediate chapter

node or to a reference node reachable via a chain of multiple chapter and reference

nodes.

If the subgraph is acyclic (as in the example shown in Figure 6.5), the unrolling algo-

rithm introduces a new pattern node for each of the intermediate schema nodes such that

the node test of the pattern node matches the name of the corresponding schema node

121

author

name

ONCE

initial

OPT

text

first

ONCE

text

last

ONCE

text

title

OPT

text

agent

OPT

pubs

ONCE

book

MULT

chapter

MULT

reference

OPT

article

MULT

ONCE

ONCE

MULT

Figure 6.6: Node types reachable from book from which reference is reachable

(Algorithm 4, lines 21–26). In cases where a schema node has more than one child, a logic

node representing a disjunction is inserted (Algorithm 4, lines 11–16). This signifies that

there are multiple paths through the schema that the descendant step could correspond

to. In order for the pattern to be satisfied for a given document, only one of these paths

needs to be matched to the document.

Figure 6.7 shows the QTP representation of query q8 after unrolling descendant steps.

For this QTP, all of the scenarios discussed above are encountered. The step author//book

is unrolled into a linear sequence of child steps by adding an intermediate pattern node with

the node test pubs. Unrolling author//name, on the other hand, requires the insertion of

a disjunction. This is because, as is shown in Figure 6.5, there are two paths from the

node type author to the node type name. Finally, the step book//reference is discarded

altogether due to the cycle in the schema involving these node types.

Unrolling descendant steps, as formally described in Algorithms 3 and 4 transforms

the pattern from a tree into a directed acyclic graph (DAG). This is because, rather than

duplicating pattern nodes reachable via more than one path in the schema, multiple pattern

edges leading to these pattern nodes are inserted. It is straightforward to convert these

DAGs back into a tree representation (as was done for the example shown in Figure 6.7).

However, for performance reasons it may be preferable to traverse the more compact DAG

representation directly when checking for mutually exclusive patterns, which leads to the

same result as traversing the tree representation.

122

author

∧

∨

name

/

∧

first
.=’William’

/

last
.=’Shakespeare’

/

agent

/

name

/

∧

first
.=’William’

/

last
.=’Shakespeare’

/

pubs

/

book

/

Figure 6.7: QTP representation of query q8 after unrolling descendant steps

6.1.1.3 Removing Wildcard Nodes

Algorithm 3 converts wildcard node tests in pattern nodes to explicit node tests whenever

this is unambiguously possible (lines 24 and 25). For a child step of the form a/*, this is the

case if the node type a only has a single outgoing edge in the schema. Based on the schema

shown in Figure 6.3, for example, the step agent/* can be converted to agent/name, since

the node type agent has a single outgoing edge leading to the node type name. Similarly,

a descendant step of the form a//* can be converted if there is only one node type in the

schema that is reachable from node type a.

In cases where this simple transformation cannot be applied (because the wildcard node

test may match nodes of more than one type), a disjunction node can be inserted into the

simplified pattern, with each branch of the disjunction consisting of a pattern node with a

node test that explicitly matches one of the node types to which the wildcard may refer.

This is done using a procedure that resembles the strategy for annotating wildcard nodes in

QTPs (as described in Section 5.2.1). In the case of a child step of the form a/*, unrolling

123

author

∧

name

/

∧

first
.=’William’

/

last
.=’Shakespeare’

/

∗

/

(a) Before

author

∧

name

/

∧

first
.=’William’

/

last
.=’Shakespeare’

/

∨

name

/

agent

/

pubs

/

(b) After

Figure 6.8: Unrolling wildcard node test in query q4

the wildcard results in one pattern node for each node type b such that there is a direct

edge from a to b in the schema. For a descendant step a//*, on the other hand, a pattern

node has to be inserted for each node type b that is reachable from a in the schema.

Figure 6.8 shows how the wildcard node in query q4 can be unrolled. As can be seen,

three pattern nodes are inserted, one for each node type that the wildcard node could

match.

124

author

∧

∨

name

/

∧

first
.=’William’

/

last
.=’Shakespeare’

/

agent

/

name

/

∧

first
.=’William’

/

last
.=’Shakespeare’

/

pubs

/

Figure 6.9: QTP representation of query q8 after removing pattern nodes with multiple

matches

6.1.1.4 Removing Pattern Nodes With Matches Reached via MULT Edges

In general, it is not possible to perform a meaningful conversion of pattern nodes that

match collection nodes with multiple occurrences in the same context (i.e., node reached

via MULT edges in the schema). Thus, these nodes are eliminated from the pattern when

the pattern is converted to the simplified form.

In the example from Figure 6.7, the book node needs to be removed since the schema in-

dicates that a pubs node may have multiple children of type book. The resulting simplified

pattern is shown in Figure 6.9.

6.1.1.5 Removing Negation Logic Nodes

While in certain cases it may be possible to fold the negation in a logic node into the value

constraint, in general there is no practical way of converting these nodes while retaining

125

the semantics of the query. Therefore, the solution presented here deals with negation

logic nodes in essentially the same way as with node tests that match nodes reachable via

MULT edges. The negation logic nodes are simply removed from the tree pattern along

with the pattern branch below them (Algorithm 3, line 13).

6.1.1.6 Traversal and Pruning

After both the QTP and the FTP have been transformed into the simplified form, both

patterns are traversed simultaneously as described in Algorithm 5. During this traversal,

a pattern node in one pattern is only visited if there is a corresponding pattern node in

the other pattern that occurs in the same position of the pattern and that has the same

node test. Note that when dealing with tree patterns, position refers solely to the path

from the root of the pattern through which a pattern node is reached. Since tree patterns

are un-ordered trees, the relative order of siblings as depicted in the examples shown here

is immaterial.

For each pair of corresponding pattern nodes, the value constraints in both patterns

are inspected to determine whether they are contradictory (Algorithm 5, line 30). After

simplification, each pattern node in a tree pattern corresponds to a unique collection node

within the context of a single document tree. Therefore, a contradiction between the

value constraints of a pair of corresponding pattern nodes immediately renders the tree

patterns mutually exclusive. Thus, as soon as a contradiction is found, the traversal can

be terminated and the fragment corresponding to the FTP can be excluded from the

distributed query plan.

Special care has to be taken when a logic node is encountered. In the case of a con-

junction, all branches have to be inspected and a contradiction even for a single branch

means that the patterns are mutually exclusive. In the case of a disjunction, on the other

hand, the patterns are mutually exclusive only if there is a contradiction for each branch

of the disjunction. If there is at least one branch without a contradiction, which may be

a branch that is not present in the other pattern, then it is not possible to conclude that

the tree patterns are mutually exclusive (Algorithm 5, lines 3–7, 15–19).

In the example shown in Figure 6.10, the traversal algorithm proceeds as follows. First,

126

Algorithm 5: traverse(q, q′) detects whether patterns are compatible
constant: FTP 〈N,L, r, E, ν, c, ε, λ, T 〉 , QTP 〈N ′, L′, r′, E′, ν′, c′, ε′, λ′, T ′〉′

input : root of FTP sub-pattern q, root of QTP sub-pattern q′

output : true if patterns are compatible, false otherwise

1 if q ∈ L then

2 // logic node in predicate pattern

3 if λ(q) = ∨ then

4 // check if at least one branch of disjunction is free of contradictions

5 result← false

6 for x ∈ children(q) do

7 result← result ∨ traverse(x, q′)

8 else

9 // check if all branches of conjunction are free of contradictions

10 result← true

11 for x ∈ children(q) do

12 result← result ∧ traverse(x, q′)

13 else if q′ ∈ L′ then

14 // logic node in query pattern

15 if λ′(q′) = ∨ then

16 // check if at least one branch of disjunction is free of contradictions

17 result← false

18 for x′ ∈ children(q′) do

19 result← result ∨ traverse(q, x′)

20 else

21 // check if all branches of conjunction are free of contradictions

22 result← true

23 for x′ ∈ children(q′) do

24 result← result ∧ traverse(q, x′)

25 else

26 // pattern node in both patterns

27 if ν(q) 6= ν′(q′) then

28 // pattern nodes do not correspond, no contradiction

29 result← true

30 else if c(q) ∧ c′(q′) is not satisfiable then

31 // contradiction in corresponding pattern nodes result← false

32 else if ∃child(q) ∈ (N ∪ L), child(q′) ∈ (N ′ ∪ L′) then

33 // no contradiction, need to check children result← traverse(child(q), child(q′))

34 else

35 // no more children on at least one side

36 result← true

37 return result

127

author

∧

∨

name

/

∧

first
.=’William’

/

last
.=’Shakespeare’

/

agent

/

name

/

∧

first
.=’William’

/

last
.=’Shakespeare’

/

pubs

/

(a) QTP q8

author

name

/

last
starts-with(., ’A’)

/

(b) FTP

Figure 6.10: Simplified QTP and FTP that are not mutually exclusive

the author nodes in the QTP and the FTP are visited. Since there is no value constraint

associated with this node in either pattern, there is no conflict, therefore the algorithm

moves on to the conjunction and its children. The pubs node is only present in the QTP

and is therefore not visited. As the other child of the conjunction node, the QTP contains

a disjunction. Now both branches have to be checked for contradictions. The left branch

leads to the name node, for which there is an equivalent node in the FTP. In both patterns

the name node has a child with node test last. When inspecting the value constraints

associated with the last nodes, the algorithm detects a contradiction because the content

of the corresponding document node cannot be equal to the string ‘Shakespeare’ and at

the same time start with the letter ‘A’. Therefore, the algorithm determines that there

is a contradiction for the left branch of the disjunction node. In order for there to be a

global contradiction, however, the patterns have to be contradictory for both branches of

the disjunction node. Therefore, the algorithm still has to inspect the right branch, for

which it encounters a node with the node test agent. For this node, there is no equivalent

in the FTP and therefore no contradiction. Since the algorithm only found a contradiction

128

author

∧

name

/

∧

first
.=’William’

/

last
.=’Shakespeare’

/

pubs

/

(a) QTP q7

author

name

/

last
starts-with(., ’A’)

/

(b) FTP

Figure 6.11: Simplified QTP and FTP that are mutually exclusive

for one branch of the disjunction node, there is no global contradiction and the fragment

corresponding to the FTP cannot be pruned.

For the example in Figure 6.11, on the other hand, the traversal algorithm does detect a

contradiction. After inspecting the author and name nodes in both patterns, the algorithm

reaches the last nodes and their contradicting value constraints. This time, the last node

does not occur as the descendant of a disjunction so this contradiction is sufficient to prune

the fragment corresponding to the FTP.

6.1.1.7 Efficient Implementation

Since horizontal fragmentation is defined as a partitioning of the data collection, FTPs

need to be disjoint and cover the entire collection. Because of this, it is reasonable to

expect that in many cases the FTPs will only differ in their value constraints but not in

their structure. It is therefore possible to simplify the traversal process by traversing the

QTP together with a single abstract FTP rather than with each FTP in the fragmentation.

In this abstract FTP, value constraints are replaced with variables. Traversal of QTP and

abstract FTP results in an expression that describes the conditions under which the QTP

and FTP are mutually exclusive. Figure 6.12(b) shows an abstract FTP, in which a value

constraint has been replaced with the variable x. Traversing this abstract FTP with the

129

author

∧

name

/

∧

first
.=’William’

/

last
.=’Shakespeare’

/

pubs

/

(a) QTP q7

author

name

/

last
x

/

(b) FTP

Figure 6.12: Simplified QTP and abstract FTP

QTP in Figure 6.12(a) shows that there is a contradiction if ¬(.=’Shakespeare’∧ x) holds.

The variable x can now be instantiated with the corresponding value constraint from

each of the original simplified FTPs, i.e., with the expressions

starts-with(., ’A’), . . . , starts-with(., ’S’), . . . , starts-with(., ’Z’)

Solving this formula yields a contradiction for all of these cases except x = startswith(’S’).

A similar optimization is possible for QTPs, assuming that the structure of a query is known

at compile time whereas the constants used in value constraints are only known at query

run time. With this optimization, the traversal can be performed at query compile time,

and at query run time, only the formula needs to be solved.

6.1.1.8 Analysis

While it may seem that the transformation and traversal of QTP and FTPs could pose a

significant overhead, there are several considerations that reduce this impact. The trans-

formation of the FTPs only has to be performed once when the fragmentation is set up.

Therefore, it does not pose a run-time overhead during query execution.

130

For the transformation of the QTP, the following can be observed: child steps are either

copied from the QTP to the simplified QTP or omitted. Both the size of the simplified QTP

and the time consumed by the transformation are therefore linear in |EQTP
child|, which is the

number of child steps in the QTP. For each descendant step, in the worst case, Algorithm 4

introduces one disjunction node and one pattern node for each σ in Σ. Therefore, the size

of the simplified QTP is linear in |EQTP
desc | |Σ|. In order to analyze the time complexity, one

has to take into account the time consumed to compute the reachable schema subgraph

and to inspect it for cycles. The subgraph consisting of nodes that are reachable from node

a and from which b is reachable can be computed by first marking all nodes reachable from

a, then marking all nodes from which b is reachable and finally choosing all nodes that were

marked both times. Assuming a suitable representation of the graph, this can be done in

O(|Σ| + |Ψ|) time. Using Tarjan’s algorithm [130], cycles can be detected in O(|Σ| + |Ψ|)

time. Therefore, the transformation of a QTP takes O(|EQTP
child|+ |EQTP

desc | (|Σ|+ |Ψ|)) time

and yields a result containing O(|EQTP
child| + |EQTP

desc | |Σ|) nodes. Since the result is also a

directed graph, in which nodes may be shared among multiple branches, the equivalent

tree pattern is of size O(|EQTP
desc | |Σ| |E

QTP
child| + |EQTP

desc |
2 |Σ|2). This is important, because

the time consumed by the subsequent traversal step depends on the size of the equivalent

tree.

The time required to traverse the QTP and the FTPs is linear in the size of the tree

representations of the simplified QTP and the FTPs. Because the traversal has to be

performed for each fragment, it is also linear in the number of fragments. This leads to

an overall time complexity of O((|EQTP
desc | |Σ| |E

QTP
child| + |EQTP

desc |
2 |Σ|2) (|EFTP

desc | |Σ||E
FTP
child|+

|EFTP
desc |

2 |Σ|2) |F |). Note that the run time of the pruning algorithm depends solely on the

size of the patterns, the number of fragments and the size of the schema. It is independent

of the size of the collection.

6.1.2 Avoiding Sorting

As discussed in Section 5.1.2, DEPs for horizontal fragmentation evaluate the original query

over each relevant fragment. Each fragment yields a sequence of pattern matches, which

are then combined to obtain the overall query result. This can be done by concatenating

131

the sequences of results or by interleaving the pattern matches received from the individual

sites and returning them as soon as they come in.

In general, it is necessary to sort the results after they have been combined and before

they can be returned. This is because, following the semantics of XPath, XQ query results

must be returned in document order. Within the context of a single document, docu-

ment order corresponds to a pre-order traversal of the document tree. When dealing with

multiple-document collections, the relative ordering of documents is not specified, however,

the XQuery data model requires that this order be stable [48]. Thus, when answering a

query over a collection consisting of two documents, d1 and d2, the following requirements

must be satisfied.

1. Results returned in document order If a query q yields two matches µ1 and

µ2 for document d1 and the extraction point node in µ1 occurs before the extraction

point node in µ2 in a pre-order traversal of d1, then µ1 must be returned before

µ2. Note that this assumes a single extraction point as specified in XQ rather than

the multiple extraction points encountered in local QTPs in the context of vertical

fragmentation.

2. No interleaving of results from multiple documents If a query q yields a set

of matchesM1 for document d1 and another set of matchesM2 for document d2, then

all of the matches in M1 have to be returned before any of the matches in M2 can be

returned (or vice versa).

3. Stable document order If for a query q1, results derived from document d1 are

returned before results derived from d2, then the results for another query q2 must

also be returned in this order.

The local query evaluation strategies discussed in Section 3.2.2 ensure that these re-

quirements are met for the results derived from a single fragment. However, care needs to

be taken when the results from multiple fragments are combined. In the DEP shown in

Figure 6.13, the sorting operator ensures that all three requirements are met regardless of

how the sequences of results derived from the individual fragments are merged by the ⊙

132

Sae1

⊙

pi(f
H
1) pi(f

H
2) pi(f

H
3) pi(f

H
4)

Figure 6.13: DEP with sorting

operator. However, sorting not only presents a significant overhead at the site where the

results are combined, it also makes it necessary to buffer the query result until all local

results have been received; only then can the results be sorted and returned.

To address this problem, this section discusses four possible implementations for the

merge operator (⊙) and their impact on the requirements listed above, when used in a

DEP without sorting (such as the one shown in Figure 6.14).

Full interleaving (⊙FI) This is a simple implementation of the ⊙ operator that yields

high performance. With full interleaving, a pattern match received from one of the

fragments is returned immediately. This results in an overall query result in which

the pattern matches from multiple fragments are interleaved.

When considering the impact of this interleaving on the requirements listed above,

the following observations can be made. Requirement 1 is concerned with the relative

ordering of matches derived from a single document. Horizontal fragmentation, as

defined in Section 4.1, places each document, in its entirety, into exactly one frag-

ment. Therefore, since the strategy of full interleaving does not re-order the results

received from a single fragment, matches from a single document are not reordered

and requirement 1 is met. Requirement 2, on the other hand, is violated since the

matches derived from two documents in two different fragments may be interleaved.

For the same reason, requirement 3 is also violated.

Document-wise interleaving (⊙DI) This is an improvement of the full interleaving

strategy. Instead of returning each match as soon as it is received, matches are

accumulated within the ⊙ operator until all matches for a given document have been

133

⊙

pi(f
H
1) pi(f

H
2) pi(f

H
3) pi(f

H
4)

Figure 6.14: DEP without sorting

received. Once the last match for a document has been received, all matches for that

document are returned.

With this strategy, all matches for a given document are returned contiguously.

Therefore, requirement 2 is met. Other than that, the results received from the

fragments can still be interleaved arbitrarily. Therefore, there is no stable order

among documents in different fragments, and requirement 3 is not met. At the same

time, this interleaving limits the amount of buffering that needs to be done. At most,

the ⊙ operator needs to buffer all the matches for one document in each fragment.

Concatenation (⊙C) With this strategy, the matches received from a given fragment are

buffered until all of the matches from that fragment have been received, at which

point they are returned contiguously. While this increases the amount of buffering

that needs to be done, it ensures that the matches received from a given fragment

are returned contiguously and therefore the matches for a given document are also

returned contiguously (since, within a horizontal fragmentation, each document is

stored in exactly one fragment). However, the order of fragments is not guaranteed

to be stable across multiple queries. Thus, requirement 3 is not met.

Stable concatenation (⊙SC) This strategy adds another requirement to the strategy of

concatenation. As before, matches from a fragment are buffered until all matches

from that fragment have been received. However, in contrast to the previous strategy,

stable concatenation enforces a stable order among fragments. Thus, the matches

received from fragment fH
j are only returned once the matches for all fragments fH

i ,

i < j have been returned. This ensures that the order among all documents in the

collection is stable. Therefore, stable concatenation meets all three requirements set

out above. However, this comes at the price of more buffering in the ⊙ operator.

In the worst case, all results will have to be buffered, in which case stable concate-

134

nation has the same buffering behaviour as a solution with sorting. Even in this

case, however, using stable concatenation has the advantage that it eliminates the

computational overhead of sorting when applied within the context of a horizontal

fragmentation.

Table 6.1 shows an overview of the strategies presented here. In general, for full con-

formance to the requirements set out above, stable concatenation is the best choice. For

many use cases, foregoing a stable order among documents may be a reasonable trade-off.

In these cases, it is possible to relax requirement 3, and use document-wise interleaving as

a higher-performance alternative to stable concatenation. For unordered queries, or if one

is willing to relax the ordering constraint further, buffering can be avoided altogether by

using full interleaving.

Technique Requirements Buffering

1 2 3

Full interleaving X × × none

Document-wise interleaving X X × low

Concatenation X X × moderate

Stable concatenation X X X high

Any + sorting X X X full

Table 6.1: Comparison of strategies for combining results from horizontal fragments

It is important to point out that, when a horizontal fragmentation step occurs nested

within a vertical fragmentation, the assumption that all nodes of a document are stored

within a single horizontal fragment no longer holds. Thus, in this case, sorting of merged

matches may be necessary regardless of which merge operator is chosen.

6.2 Vertical Fragmentation

This section introduces a set of techniques for improving the performance of distributed

query evaluation over vertically fragmented collections. Since DEPs for vertical fragment-

135

ation differ significantly from DEPs seen with horizontal fragmentation, the vertical tech-

niques are fundamentally different from the techniques seen in the horizontal scenario.

First, a pruning technique is presented. The goal of this technique is similar to that of

pruning in the horizontal case: to eliminate irrelevant fragments from a DEP. Even without

further optimization, DEPs for vertical fragmentation avoid accessing fragments that are

not reached by the query. Section 6.2.1 presents two pruning techniques that go beyond

this and prune certain fragments that are only needed to answer structural constraints.

Pruning the LQPs corresponding to these fragments is complicated by the joins in the

DEP. Thus, when an LQP is eliminated from the DEP, these joins have to be adjusted in

order to preserve the correctness of the result. For the pruning techniques presented here,

this is achieved by annotating the proxy and root proxy nodes with additional information

and exploiting this information when joining local query results.

After pruning, the performance of query evaluation over vertically fragmented collec-

tions can be improved further by pushing the cross-fragment joins from the DEP into

the individual LQPs and thereby skipping a portion of the sub-trees contained within a

fragment. A similar optimization can be performed by applying a selection that filters

the sub-trees in a fragment based on their structural relationship with nodes in other

fragments. Both of these optimization techniques are presented in Section 6.2.2. Special

attention is paid to maximizing pipelining in distributed query execution, since this allows

for maximum parallelism.

DEPs for vertical fragmentation consist of complex join trees. Therefore, another im-

portant aspect of optimizing their performance is the order in which these joins are per-

formed. This problem is discussed in Section 6.2.3.

As described in Section 5.2.5, before queries with disjunction can be evaluated over

a vertically fragmented collection, certain sub-queries may have to be split in order to

eliminate the disjunction. In some cases, this can result in local sub-queries that share

large, common portions. Evaluating these common portions repeatedly is inefficient, in

particular since all sub-queries with a shared portion are evaluated at the same site. To

address this, Section 6.2.4 presents a technique that makes it possible to evaluate the

common portions of these sub-queries once and then share the results obtained from these

136

portions for all sub-queries.

Finally, Section 6.2.5 presents a technique that avoids duplicate elimination in a DEP

wherever this is possible. For the remaining cases, duplicate elimination is pushed into the

DEP to reduce the size of intermediate results and thereby improve query performance.

6.2.1 Pruning Fragments

As in the horizontal scenario, the first technique for improving DEPs over vertically frag-

mented collections is based on pruning the set of fragments accessed to answer a given

query. The localization strategy for vertical fragmentation (as described in Section 5.2)

avoids accessing fragments whose node types are not reached by the global QTP. It does

not, however, address a scenario where node types in a fragment are reached by the global

QTP but no constraints are placed on nodes of these types. Consider, for example, the

local QTP q31 (shown in Figure 6.15(c)), which is evaluated over fragment fV
3 . The sole

purpose of this local QTP is to determine which proxy nodes in fV
1 lead to which root

proxy nodes in fragment fV
4 . No further constraints are placed on fV

3 .

The remainder of this section introduces a technique that makes it possible to avoid

accessing such intermediate fragments, and thereby prune the local QTPs corresponding

to these fragments from the DEP2. This is achieved by storing, in each root proxy node,

information that makes it possible to identify all of its ancestor proxy nodes. Using this

information, it is then possible to determine for any root proxy node in fV
4 which proxy

node in fV
1 is its ancestor. Exploiting this, query q1 can then be answered without accessing

fV
3 and without evaluating the local QTP q31. The benefit of this is twofold. First, the load

on the site holding fragment fV
3 is reduced, since this fragment is not accessed. This has the

potential to open up processing capacity for other queries and increases the overall query

throughput of the system. Second, the cost of computing the results of q31 and joining them

with the results of other LQPs is avoided altogether, thereby improving the performance

of query q1.

2The work presented in this section has been published as a paper [83], and as technical reports [80, 81].

137

author

∧

ap2
P 1→2
∗

/

ap3
P 1→3
∗

//

(a) q11(f
V
1)

arp2
RP 1→2
∗

name

/

∧

first
.=’William’

/

last
.=’Shakespeare’

/

(b) q21(f
V
2)

arp3
RP 1→3
∗

ap4
P 3→4
∗

//

(c) q31(f
V
3)

arp4
RP 3→4
∗

ae1
reference

//

(d) q41(f
V
4)

Figure 6.15: Local QTPs corresponding to query q1

6.2.1.1 Encoding Ancestor-Descendant Relationships

A straightforward way of making the ancestor-descendant relationships between all proxy

and root proxy nodes available to distributed query evaluation would be to store this

information in a monolithic index structure. However, if this index structure is stored

in a single, central location, it could easily become a bottleneck, severely limiting the

scalability of distributed query evaluation. If this problem is addressed by replicating the

index throughout the system, then a heavy performance penalty must be paid whenever

the collection is updated (since all copies of the index have to be updated accordingly).

This problem is addressed by encoding the ancestor-descendant relationships in the

numeric IDs assigned to each proxy/root proxy pair. By numbering proxy pairs according

a numbering scheme based on the Dewey decimal system [44], it is possible to store the

ancestor-descendant relationship in a distributed fashion, without relying on external index

structures.

Definition 6.4. The Dewey numbering scheme assigns IDs to proxy nodes as follows.

138

• All proxy nodes occurring in the sub-trees of the root fragment are assigned sequential

integer IDs.

• For a sub-tree s in non-root fragment fV
i , let id(root(s)) denote the ID of the root

proxy node in s. Then each proxy node in s is assigned an ID of the form id(root(s)).y,

where y is an integer that is assigned uniquely and sequentially within the context

of fV
i .

Each root proxy node is assigned the ID of its corresponding proxy node.

In the following, each number in a Dewey ID is referred to as an item and the number

of items in a Dewey ID is referred to as the ID’s length. The ID a = 1.23.4, for example,

consists of the items 1, 23, and 4; and length(a) = 3. For a more concise notation, a[r]

refers to the rth item of a, such that a[1] = 1, a[2] = 23, and a[3] = 4

When ordering Dewey IDs, their hierarchical nature is taken into account, with the

significance of items decreasing from first to last.

Definition 6.5. Let a and b be Dewey IDs. Then a < b if

• there exists an integer w ≤ min{length(a), length(b)} such that for r = 1, . . . , w− 1,

a[r] = b[r] and a[w] < b[w], or

• length(a) < length(b) and for r = 1, . . . , length(a), a[r] = b[r].

Similarly, the notion of a prefix of a Dewey ID is based on entire items, rather than the

string representation of the ID.

Definition 6.6. Let a and b be Dewey IDs. Then a is a prefix of b if length(a) < length(b)

and for r = 1, . . . , length(a), a[r] = b[r].

The proxy pairs in the vertically fragmented collection shown in Figure 6.16 have been

assigned IDs according to this numbering scheme. As can be seen, the proxy nodes in the

139

author1

P 1→2
11 P 1→3

12

author2

P 1→2
13 P 1→3

14

author3

P 1→2
15 P 1→3

16
agent1

P 1→2
17

(a) fV
1

RP 1→2
11

name1

first1

John

last1

Adams

RP 1→2
13

name2

first2

Jane

last2

Dean

RP 1→2
15

name3

first3

William

last3

Shakespeare

RP 1→2
17

name4

first4

John

last4

Shakespeare

(b) fV
2

RP 1→3
12

pubs1

book1

P 3→4
12.1

RP 1→3
14

pubs2

RP 1→3
16

pubs3

book2

P 3→4
16.2 P 3→4

16.3

(c) fV
3

RP 3→4
12.1

chapter1

RP 3→4
16.2

chapter2

reference2

RP 3→4
16.3

chapter3

(d) fV
4

Figure 6.16: A vertically fragmented collection with Dewey IDs

140

root fragment fV
i have sequential numerical IDs ranging from 11 to 17. Therefore, the root

proxies corresponding to these proxy nodes have the same IDs (as can be seen in fragments

fV
2 and fV

3). For the proxy nodes in fragment fV
3 , the second case of the definition applies.

Thus, the proxy node in the sub-tree rooted at the root proxy RP 1→3
12 is assigned the ID

12.1 and the proxy nodes in the sub-tree rooted at RP 1→3
16 are assigned the IDs 16.2 and

16.3. Finally, the root proxy nodes in fragment fV
4 are assigned the same IDs as their

corresponding proxy nodes in fV
3 .

6.2.1.2 Pruning Intermediate Fragments

Assuming that all proxy/root proxy pairs in the collection have been assigned IDs according

to the Dewey numbering scheme, it is possible to determine whether a given root proxy

node RP i→j
b is a descendant of a proxy node P k→l

a by inspecting their IDs. RP i→j
b is a

descendant of P k→l
a precisely when id(P k→l

a) is a prefix of id(RP i→j
b). If this is the case, then

P k→l
a occurs on a path from the root of one of the documents in the collection to RP i→j

b

and therefore RP i→j
b is a descendant of P k→l

a . If id(P k→l
a) is not a prefix of id(RP i→j

b), then

P k→l
a does not occur on such a path and therefore RP i→j

b cannot be one of its descendants.

During distributed query evaluation, this observation can be exploited to prune a local

QTP from the query plan if it contains no value or structural constraints and no extraction

πD

π{ae1}

✶prefix-or-same(id(a
rp
4),id(a

p
3))

π{ap3}

✶id(a
p
2)=id(a

rp
2)

p11(f
V
1) p21(f

V
2)

p41(f
V
4)

Figure 6.17: DEP for query q1 after pruning

141

point pattern nodes other than those matching proxies or root proxies. For query q1, this

means that sub-query q31 can be eliminated from the DEP. This is because sub-query q31 is

only needed to determine which root proxy node in fragment fV
4 is a descendant of which

proxy node in fragment fV
1 , and this information can now be inferred from the Dewey IDs.

Therefore, the DEP for query q1, can be rewritten as shown in Figure 6.17. Note that

this plan does not include p31 (the LQP representation of q31). Also note how the join

predicate prefix-or-same(id(arp4), id(ap3)) checks whether a root proxy node from fragment

fV
4 is a descendant of a proxy node from fragment fV

1 .

6.2.1.3 Pruning Fragments With Structural Constraints

The pruning technique presented in the previous section successfully prunes local QTPs

that place no constraints on the nodes stored in their corresponding fragments. It does not,

author

∧

ap2
P 1→2
∗

/

ap3
P 1→3
∗

//

(a) q19(f
V
1)

arp2
RP 1→2
∗

name

/

∧

first
.=’William’

/

last
.=’Shakespeare’

/

(b) q29(f
V
2)

arp3
RP 1→3
∗

pubs

//

ap4
P 3→4
∗

//

(c) q39(f
V
3)

arp4
RP 3→4
∗

ae1
reference

//

(d) q49(f
V
4)

Figure 6.18: Local QTPs corresponding to query q9

142

author

agent

OPT

(a) fV
1

name

first

ONCE

text

last

ONCE

text

(b) fV
2

pubs

book

MULT

article

MULT

(c) fV
3

initial

text

(d) fV
5

title

text

(e) fV
6

chapter

reference

OPT ONCE

(f) fV
4

ONCE

ONCE

ONCE

MULT MULT

OPT OPT

Figure 6.19: A vertical fragmentation schema

however, handle the scenario where a local QTP contains structural constraints. Consider,

for example, query q9, whose local QTPs are shown in Figure 6.18. For this query, the

local QTP corresponding to fragment fV
3 , q

3
9 contains an additional structural constraint

requiring a pubs node to occur on a path from a root proxy node to a proxy node. However,

inspecting the fragmentation schema (shown in Figure 6.19) reveals that this pubs node

is guaranteed to be present on any path through fV
3 . Formally, this can be expressed as

follows.

Definition 6.7. Let quk be a local QTP corresponding to fragment fV
i and let qvk be a

child QTP of quk corresponding to fragment fV
j . Then q

u
k is structurally unambiguous with

respect to qvk if it matches all paths from a root proxy node in fV
i to a proxy node P i→j

b

in fV
i that correspond to an edge from fragment fV

i to fragment fV
j . Otherwise, quk is

structurally ambiguous with respect to qvk.

143

πD

π{ae1}

✶prefix-or-same(id(a
rp
4),id(a

p
3))

π{ap3}

✶id(a
p
2)=id(a

rp
2)

p19(f
V
1) p29(f

V
2)

p49(f
V
4)

Figure 6.20: DEP for query q9 after pruning

Whenever a local QTP is structurally unambiguous with respect to all of its child QTPs,

then it does not pose any effective constraints on the nodes in its corresponding fragment.

Therefore, it can be pruned from the DEP if it is traversed by a descendant step without

additional constraints.

As can be seen in the fragmentation schema shown in Figure 6.19, local QTP q39 is

structurally unambiguous with respect to its child local QTP q49. Therefore, LQP p39 (the

LQP corresponding to local QTP q39) can be pruned from the DEP for query q9. This

results in the DEP shown in Figure 6.20.

6.2.1.4 Pruning Structurally Ambiguous LQPs

This section proposes a technique for pruning structurally ambiguous LQPs. Dewey IDs

alone are insufficient to eliminate these LQPs from the DEP. Consider, for example, query

q7, whose local QTPs are shown in Figure 6.21. When evaluating this query over a vertically

fragmented collection that conforms to the fragmentation schema shown in Figure 6.19, it

is not possible to prune q37. This is because fragment fV
3 contains two types of publications,

book and article. This makes q37 structurally ambiguous with respect to q47, since it is

needed to differentiate between references occurring in books (which are relevant for the

query) and references occurring in articles (which are not).

144

author

∧

ap2
P 1→2
∗

/

ap3
P 1→3
∗

//

(a) q17(f
V
1)

arp2
RP 1→2
∗

name

/

∧

first
.=’William’

/

last
.=’Shakespeare’

/

(b) q27(f
V
2)

arp3
RP 1→3
∗

book

//

ap4
P 3→4
∗

//

(c) q37(f
V
3)

arp4
RP 3→4
∗

ae1
reference

//

(d) q47(f
V
4)

Figure 6.21: Local QTPs corresponding to query q9

To enable pruning in this scenario, node type path information is added to the ID of

each proxy node P i→j
b in fragment fV

i to which a structurally ambiguous LQP corresponds.

This information consists of the node types encountered on a path from the root of a sub-

tree in fV
i to the proxy node P i→j

b in this sub-tree. This node type path information forms

part of the locally unique identifier of the Dewey numbering scheme. Therefore, it is also

part of the prefix of the IDs of all root proxy nodes that are descendants of P i→j
b . Formally,

the Dewey numbering scheme with node type paths is defined as follows.

Definition 6.8. The Dewey numbering scheme with node type paths assigns IDs to proxy

nodes as follows.

• All proxy nodes occurring in the sub-trees of the root fragment are assigned sequential

integer IDs.

• If sw is a sub-tree in non-root fragment fV
i and there is a local QTP quk , corresponding

145

RP 3→4
12

pubs

book

P 3→4
12.1[pubs/book]

RP 3→4
14

pubs

article

P 3→4
14.1[pubs/article]

Figure 6.22: Fragment fV
3 with node type path IDs

to fragment fV
i that is structurally ambiguous to qvk corresponding to fragment fV

j ,

then each proxy P i→j
b is assigned an ID of the form id(root(sw)).y[ntpath], where y

is an integer that is assigned uniquely and sequentially within the context of fV
i and

ntpath is the sequence of node types encountered on the path from the root of sw to

P i→j
b . This can be stored compactly by assigning numeric IDs to each node type in

the schema and by storing only the disambiguating node types (i.e., the node types

that do not occur on every path through the fragment).

• If there is no structurally ambiguous local QTP that corresponds to fragment fV
i ,

then each proxy node P i→j
b in a sub-tree sw in fragment fV

i is assigned an ID of the

form id(root(sw)).y, where y is an integer that is assigned uniquely and sequentially

within the context of fV
i .

Each root proxy node is assigned the ID of its corresponding proxy node.

Figure 6.22 shows a sample instance of fragment fV3 containing a book node and an

article node. The proxy nodes in this fragment have been assigned IDs according to the

Dewey numbering scheme with node type paths.

Node type paths contain enough information to evaluate structural constraints occur-

ring within a linear path query. Therefore, using node type paths, it is possible to prune

the sub-query q37 from the DEP for query q7.

Figure 6.23 shows the DEP for query q7 after sub-query q
3
7 has been pruned. In addition

to a join predicate that checks whether the ID of a root proxy node from fragment fV
4 has

the ID of a proxy node from fragment fV
2 as its prefix, a selection is inserted that filters

the result of q47 based on the node type paths encoded in the IDs of the root proxy nodes.

146

πD

π{ae1}

✶prefix-or-same(id(a
rp
4),id(a

p
3))

π{ap3}

✶id(a
p
2)=id(a

rp
2)

p17(f
V
1) p27(f

V
2)

σntpath(arp4)=pubs/book

p47(f
V
4)

Figure 6.23: DEP for query q7 after pruning using node type paths

6.2.1.5 Analysis

Proxy nodes are numbered according to the Dewey numbering scheme at fragmentation

time. When a sub-tree is inserted into or deleted from the collection, only the proxy IDs

in this sub-tree and in the siblings of the root of the inserted sub-tree are affected.

The vertical pruning techniques proposed here operate solely on the QTP representa-

tion of the query and on the fragmentation schema. Thus the performance of pruning is

independent of the size of the data and of the constants used in value constraints. This

makes it possible to perform pruning at query compile time, thereby minimizing its run-

time overhead.

Node type paths are not only useful for pruning but also for skipping irrelevant sub-trees

within a fragment. This use of node type paths is discussed in detail in Section 6.2.2.4.

6.2.2 Pipelining DEPs

As discussed in Section 5.2.4, DEPs for vertically fragmented collections combine the results

of LQPs using cross-fragment joins. LQPs occur only as leaves in the DEP. Therefore, each

LQP is evaluated independently without regard to how its result is joined with the results

147

πD

π{ae1}

✶prefix-or-same(id(a
rp
4),id(a

p
3))

π{ap3}

✶id(a
p
2)=id(a

rp
2)

p11(f
V
1) p21(f

V
2)

p41(f
V
4)

Figure 6.24: DEP for query q1 after pruning

of other LQPs. In many cases, this leads to a scenario where a large number of matches

are computed, only to be subsequently discarded by a cross-fragment join.

For an example of this situation, consider the DEP for query q1 shown in Figure 6.24,

whose local QTPs are shown in Figure 6.25. While this plan avoids accessing fragment

fV
3 due to the pruning technique described in the previous section, evaluating the local

sub-query q41 over fragment fV
4 potentially yields a large number of matches that are subse-

quently discarded. This is because matches are computed for all references in the collection.

Then, when the matches obtained from fV
4 are joined with the results obtained from the

other fragments, only those matches are retained that correspond to references in publica-

tions authored by William Shakespeare. All other matches, corresponding to references in

publications by other authors, are discarded.

This section introduces a technique that avoids computing these unnecessary matches3.

This is done by pipelining the matches generated by a parent LQP puk(f
V
i) into a child

LQP pvk(f
V
j) and then filtering out the sub-trees in the child fragment fV

j , for which p
u
k(f

V
i)

does not yield a matching proxy node. The benefit of this pipelining strategy is twofold.

First, it reduces the size of the result of pvk, which reduces the amount of data that needs

to be transmitted. Second, it also makes it possible to skip a portion of the sub-trees in

3The work presented in this section has been published in [82].

148

author

∧

ap2
P 1→2
∗

/

ap3
P 1→3
∗

//

(a) q11(f
V
1)

arp2
RP 1→2
∗

name

/

∧

first
.=’William’

/

last
.=’Shakespeare’

/

(b) q21(f
V
2)

arp4
RP 3→4
∗

ae1
reference

//

(c) q41(f
V
4)

Figure 6.25: Local QTPs corresponding to query q1

fV
j , thus reducing the I/O and processing cost of evaluating pvk. Together, these factors

can significantly improve the performance and scalability of distributed query evaluation

over vertically fragmented collections beyond the level achieved by the pruning technique

presented in the previous section alone.

6.2.2.1 Pushing Cross-Fragment Joins

As discussed in Section 3.2.2, each LQP contains a scan of the roots of the sub-trees in

the corresponding fragments. For non-root query plans this corresponds to a scan of the

root proxy nodes in the fragment. Therefore, the cross-fragment join between the parent

LQP puk(f
V
i) and the child LQP pvk(f

V
j) can be pushed into pvk so that the join is performed

between the result of puk(f
V
i) and the root proxy nodes in fV

j . This filters out all root proxy

nodes for which no join partner is found in the result of puk(f
V
i). p

v
k is then evaluated only

over the sub-trees rooted at the remaining root proxy nodes.

To express this formally, the remainder LQP of an LQP is defined as the LQP with the

scan of the root proxy nodes removed.

Definition 6.9. Let pvk be an LQP corresponding to fragment fV
j and let fragment fV

j

be a child fragment of fragment fV
i . Then p̄vk is the remainder LQP of pvk iff pvk =

p̄vk(scanarpv :RP i→j
∗

).

149

✶id(a
p
v)=id(a

rp
v)

GP ′ pvk(f
V
j)

≡

p̄
v,(A(GP ′)\{apv})
k

✶id(a
p
v)=id(a

rp
v)

GP ′ scan
a
rp
v :RP

i→j
∗

(fVj)

Figure 6.26: Cross-fragment join pushing rewrite

It is now possible to push a cross-fragment join into pvk by inserting it between the scan

of the root proxy nodes and the remainder LQP p̄vk. However, it may be necessary to pass

additional attributes (corresponding to extraction points in other fragments) through p̄vk
and the projections contained in p̄vk may prevent this. To address this issue, a modified

remainder LQP is defined where projections are changed to pass through the necessary

attributes.

Definition 6.10. Let p̄vk be the remainder LQP of an LQP pvk corresponding to fragment

fV
j and let fragment fV

j be a child fragment of fragment fV
i . Then p̄v,Ak is a modified

remainder LQP passing through the set of attributes A if p̄v,Ak is equivalent to p̄vk, except

that for each projection πA′ in p̄vk, p̄
v,A
k contains the projection π(A′∪A)\{arpv }.

Based on this definition, it is now possible to define a rewrite that pushes the cross-

fragment join between the scan of the root proxy nodes and the modified remainder LQP

p̄v,Ak .

Definition 6.11. The cross-fragment join GP ′ ✶id(apv)=id(arpv) p
v
k(f

V
j) in a DEP can be

rewritten to the pushed cross-fragment join

p̄
v,(A(GP ′)\{a

p
v})

k

(

GP ′ ✶id(apv)=id(arpv) scanarpv :RP i→j
∗

(fV
j)
)

where A (GP ′) denotes the set of attributes returned by GP ′ .

A graphical representation of this rewrite is shown in Figure 6.26. Note that a cross-

fragment join can only be pushed if its right-hand side is a single LQP (rather than another

cross-fragment join). This means that, while all the cross-fragment joins in a left-deep plan

can be rewritten, the same is not true for other plan shapes.

150

πD

π{ae1}

p̄4,∅1

✶prefix-or-same(id(a
rp
4),id(a

p
3))

π{ap3}

p̄
2,{ap3}
1

✶id(a
p
2)=id(a

rp
2)

p11(f
V
1) scanarp2 :RP 1→2

∗
(fV2)

scanarp4 :RP 3→4
∗

(fV4)

Figure 6.27: DEP for query q1 with pushed joins

Applying this rewrite to the cross-fragment joins in the DEP for query q1 yields the

DEP shown in Figure 6.27. Because the join between p11 and p21 is pushed, only those

document sub-trees in fragment fV
2 are accessed, for which p11(f

V
1) yields a matching proxy

node. Similarly, a cross-fragment join is pushed into p41 (note the modified join predicate

due to the use of pruning), filtering out irrelevant sub-trees in fragment fV
4 .

6.2.2.2 Supporting Cross-Fragment Join Pushing

For performance and autonomy reasons, each site is free to choose the local query evaluation

strategy that is most appropriate to the fragments stored at this site and to the sub-queries

evaluated over these fragments. Therefore, in general, DEPs are optimized without access

to the individual LQPs. Nevertheless, in order to be able to push cross-fragment joins into

LQPs, the sites holding the individual fragments are required to implement an API that

accepts the following parameters:

• a flag indicating whether a regular LQP or a modified remainder LQP should be

151

generated, and

• if a modified remainder LQP is specified,

– the set of attributes A that are to be passed through the modified remainder

LQP,

– the cross-fragment join that is to be inserted between the scan of the root proxy

nodes and the modified remainder LQP, and

– the site and fragment from which the left-hand side input of the cross-fragment

join will be pipelined.

Using this API, which can easily be implemented at each site, it is possible to per-

form cross-fragment join pushing as described in this section without having access to the

individual LQPs.

6.2.2.3 Maintaining Parallelism

Without cross-fragment join pushing, LQPs are evaluated completely independently of each

other. Therefore, in general, all LQPs can be evaluated in parallel. Cross-fragment join

pushing, however, introduces dependencies between the local plan evaluation at different

sites. This section describes how a high level of parallelism can be maintained in the

presence of these dependencies.

Whenever an LQP contains a pushed cross-fragment join, its execution has to be delayed

until results from the DEP sub-plan on the left-hand side of the pushed cross-fragment

join have arrived. Only then can the cross-fragment join be performed and the LQP

be evaluated over the relevant document sub-trees. Waiting for the entire result of the

left-hand side of the join, however, would effectively serialize the evaluation of LQPs and

eliminate parallelism in distributed query execution.

To address this problem, pipelined execution is used. With this approach, LQP evalu-

ation with a pushed cross-fragment join has to wait only for the first result tuple from the

left-hand side of the cross-fragment join before it can start identifying the first relevant

sub-tree. This significantly reduces the delay introduced by pushing cross-fragment joins.

152

To enable pipelined execution, a physical join operator has to be chosen that does not

materialize the result of its left-hand side input. Assuming that local query results are

returned ordered by their proxy IDs (which is easily achieved by the techniques mentioned

in Section 3.2.2), and that the sub-trees in a fragment are stored ordered by the IDs of

their root proxy nodes, a merge join operator with full pipelining on both inputs can be

used.

If these conditions are not met, a hash join can be used, which builds a hash table on its

right-hand side input (i.e., the root proxy nodes) and then probes this table for each tuple

from the left-hand side input. Using a hash join operator is not detrimental to pipelining

because the hash table on a fragment’s root proxy nodes is not query-dependent, and can

thus be built ahead of time. This yields an index on the root proxy nodes in a fragment

that makes it possible to efficiently retrieve the relevant sub-trees.

6.2.2.4 Node Type Path Filtering

While pushing cross-fragment joins can lead to significantly improved performance, it can

only be fully applied to left-deep plans. Furthermore, waiting for the first input tuple for

each cross-fragment join might result in a non-trivial reduction of parallelism in certain

cases. Consider, for example, a case where the parent LQP produces only a single tuple.

Evidently, the child LQP has to wait for this tuple, which effectively serializes the execution

of both LQPs.

In these cases, it may be better not to push certain cross-fragment joins in the DEP.

This section introduces a technique that can deliver part of the performance advantage of

pushing cross-fragment joins but places no constraints on the shape of a DEP and has no

impact on parallelism.

The idea behind this technique is based on node type paths as defined in Section 6.2.1.4.

If each root proxy node is annotated with the sequence of node types encountered on a

path from the root of a document to the root proxy node, then this information can be

exploited for filtering out sub-trees that cannot possibly contribute to the result of the

query.

153

pvk(f
V
j) ≡

p̄v,k

σntpath(arpv)∈Lv
k

scan
a
rp
v :RP

i→j
∗ (fVj)

Figure 6.28: Node type path rewrite

By unrolling descendant steps in the query into child steps and inserting disjunctions

for path alternatives as necessary (using Algorithm 4 from page 121), it is possible to

obtain, for each LQP pvk(f
V
j), the set of node type paths Lvk from the root of a document

to the root of a relevant sub-tree in fragment fV
j . The root proxy nodes in fragment fV

j

can then be filtered based on their node type paths and the remainder LQP p̄vk can be

evaluated over the sub-trees whose root proxy nodes match one of the node type paths in

Lvk. Formally, this can be expressed as follows.

Definition 6.12. Let pvk be a non-root LQP of query qk corresponding to fragment fV
j .

Let Lvk be the set of node type plans leading to sub-trees of fV
j that are relevant for pvk

within the context of qk. Then p
v
k can be rewritten to the node-type path filtered LQP

p̂vk(f
V
j) := p̄vk

(

σntpath(arpv)∈Lv
k

(

scanarpv :RP i→j
∗

(fV
j)
))

Applying this rewrite ensures that only those document sub-trees are considered during

LQP evaluation whose root proxy nodes have node type paths that are compatible with

the query. Figure 6.28 shows a graphical version of the node type path rewrite.

Applying this rewrite to LQP p47 for query q7 yields the DEP shown in Figure 6.29.

For p47, the set of node type paths that is compatible with the query consists of the single

path /author/pubs/book. Therefore, the root proxy nodes in fragment fV
4 are selected

based on this node type path. For the sub-trees corresponding to the root proxies that

pass through the selection, the remainder LQP p̄47 is evaluated. Note that with node-type

path filtering, no additional attributes are passed through the remainder LQP. Therefore,

it is not necessary modify the projections in the remainder LQP.

154

πD

π{ae1}

✶prefix-or-same(id(a
rp
4),id(a

p
3))

π{ap3}

✶id(a
p
2)=id(a

rp
2)

p17(f
V
1) p27(f

V
2)

p̄47

σntpath(arp4)∈{/author/pubs/book}

scanarp4 :RP 3→4
∗

(fV4)

Figure 6.29: DEP for query q7 with node type path filtering

6.2.2.5 Analysis

Pushing cross-fragment joins reduces the size of intermediate results that have to be shipped

and combined with results from other sites. In this respect, the effect of this technique is

similar to that of using a semi-join, as is frequently done in distributed relational systems

[115]. In relational systems, semi-joins are mainly used as a means to reduce the commu-

nication cost of distributed query evaluation. These approaches use a semi-join to reduce

the size of a partial result before it is shipped across the network, however, they generally

require an additional inner join to assemble the overall query result. Therefore, with these

techniques, the reduced communication cost achieved by semi-joins comes at the expense

of increased processing cost.

With cross-fragment join pushing, on the other hand, only a single join operator is

used. More importantly, in addition to reducing communication cost by achieving smaller

intermediate result sizes, cross-fragment join pushing also reduces the cost of local query

evaluation by skipping irrelevant sub-trees within a fragment.

The reason why pushing cross-fragment joins works well in XML database systems are

the complex (and therefore expensive) structural constraints in the XML query model. In

relational systems, it is usually preferable to push selections past join operations in order

to reduce the cost of the join. Interestingly, here, the opposite is true: it is potentially

155

✶

σname = ’Shakespeare’

scan(author)

scan(book)

Figure 6.30: Relational plan for which magic set optimization is possible

beneficial to push a join past the operators that evaluate the structural constraints of a

query (corresponding, conceptually, to a selection).

There are also some parallels between cross-fragment join pushing and a query opti-

mization technique using magic sets [19, 111]. In both cases, tuples are filtered if it can be

determined that they will be eliminated during a subsequent join. For magic sets, this can

be inferred from selection predicates on the other input of the join. For example, when

evaluating the simple relational query plan shown in Figure 6.30, it might be possible to

scan only those rows of the book table whose author is Shakespeare if an appropriate index

on the table book is available.

In contrast to this, no such inference is necessary in the case of cross-fragment join

pushing. Rather than predicting which sub-trees of a fragment might lead to results that

survive the subsequent cross-fragment join, the results of the other input to the join are

streamed into an LQP and only sub-trees for which such a result is received are accessed.

6.2.3 Join Ordering

Another important factor when optimizing a DEP is the problem of determining in which

order the results of LQPs should be joined together.

The problem of join ordering has been studied extensively within the context of rela-

tional database systems [115] and much of this work is applicable here. In broad terms,

join ordering focuses on reducing the size of intermediate results by performing the most

selective joins (i.e., the joins that return the smallest number of output tuples for a given

number of input tuples) first. This has the effect of reducing the cost of subsequent joins.

156

In the scenario considered in this work, this effect is particularly pronounced when

cross-fragment join pushing is used, since pipelining a large number of results through an

LQP increases the processing cost of evaluating the LQP. Performing a highly selective

join before pipelining its result through the same LQP, on the other hand, can significantly

reduce the cost of LQP evaluation.

At the same time, cross-fragment join pushing places restrictions on the join orders that

can be used in a DEP. To push all the cross-fragment joins in a DEP, it is necessary that the

DEP be left-deep. In some cases, this requires the optimizer to trade off the performance

benefit achieved by optimizing join order with the performance impact of cross-fragment

join pushing. Due to this complexity, the most advantageous join order for a given query

and distributed collection is best determined by a cost model, which is the topic of Chapter

7.

6.2.4 Combining Local Sub-Queries

When evaluating queries over vertically fragmented collections, in many cases, it is neces-

sary to split a local QTP that contains a disjunction logic node (cf. Section 5.2.5). This

can result in multiple local QTPs that correspond to the same fragment and that share a

large common portion. Evaluating these local QTPs separately from each other duplicates

the processing that corresponds to the shared portion of the local QTPs.

For example, consider the local QTPs q111(f
V
2) and q

2
11(f

V
2), shown in Figure 6.31. These

QTPs share the descendant step between the root proxy pattern node and the pattern node

with the node test pubs. Thus, evaluating this step twice is redundant and eliminating

this redundancy could help improve performance.

To avoid the overhead of evaluating shared portions of local QTPs repeatedly, it is

possible to evaluate these portions once and then share the result for each local QTP. As

long as the shared portion is contiguous and occurs at the root of the local QTP (as is the

case for shared portions resulting from splitting local QTPs with disjunction logic nodes),

this can be achieved for both navigational and structural-join based local query evaluation

techniques.

157

arp1
RP 1→3
∗

pubs

//

book

//

ap2
P 3→4
∗

//

(a) q111(f
V
2)

arp1
RP 1→3
∗

pubs

//

article

//

ap3
P 3→4
∗

//

(b) q211(f
V
2)

Figure 6.31: Local QTPs with shared portion

✶a5//a
p
2

✶a4//a5

✶a
rp
1 //a4

scanarp1 :RP 1→3
∗

scana4:pubs

scana5:book

scanap2:P 3→4
∗

(a) p111(f
V
2)

✶a5//a
p
3

✶a4//a5

scana5:article

scanap3:P 3→4
∗

(b) p211(f
V
2)

Figure 6.32: Combined structural-join based LQPs for q111(f
V
2) and q

2
11(f

V
2)

Structural-join based local query evaluation (as described in Section 3.2.2.2) is based

on scanning the nodes in a collection and then performing joins between them. To share

the result of evaluating a common portion of a QTP, it is therefore possible to duplicate

the sequence of tuples returned by one of these joins and use the same sequence as an

input to multiple structural joins in different LQPs. Figure 6.32 shows an example of a

combined LQP for q111(f
V
2) and q211(f

V
2). As can be seen, the output of the join ✶arp1 //a4

serves as the input for two operators, one in each LQP shown.

With navigational plans the same optimization is possible. In this case, the sequence

of tuples returned by an unnest map operator is duplicated and used in multiple LQPs.

Optimizing the evaluation of LQPs with shared portions can be implemented at the

individual sites. This is possible because this optimization is independent of how the results

158

of the LQPs are used in the DEP. A similar optimization strategy could also be used for

LQPs that belong to different queries. This would make it possible to share results if two

queries with overlapping local QTPs are running simultaneously.

6.2.5 Duplicate Elimination

Another opportunity for improving DEPs is the way duplicate results are handled. While

LQPs perform their own duplicate elimination, additional duplicates can be created when

the results of LQPs are joined together. DEPs handle this problem by performing a

duplicate elimination after the results of all LQPs have been combined (cf. Section 5.2.4).

However, by leaving duplicate elimination until the end of distributed query evaluation,

some intermediate results may be unnecessarily large, which increases the cost of evaluating

subsequent cross-fragment joins. This problem is particularly pronounced when duplicate

results are pipelined into an LQP through cross-fragment join pushing, since in this case,

the LQP may need to be evaluated multiple times for the same sub-tree, thus increasing

the cost of local query processing in addition to increasing the cost of performing the

cross-fragment joins.

A cross-fragment join may produce duplicate results whenever the sub-plan on its right-

hand side produces result tuples that consist only of the root proxy nodes on which the

join is performed. When joining with a single LQP, this corresponds to the scenario where

the QTP representation of the local plan does not contain any extraction points other than

the root proxy pattern node at its root.

For an example of this, consider query q10, whose local QTPs are shown in Figure

6.33. After pruning, this query can be evaluated using the DEP shown in Figure 6.34.

ae1
author

ap2
P 1→3
∗

//

(a) q110(f
V
1)

arp2
RP 1→3
∗

ap3
P 3→4
∗

//

(b) q210(f
V
3)

arp3
RP 3→4
∗

chapter

//

(c) q310(f
V
4)

Figure 6.33: Local QTPs corresponding to query q10

159

πD

π{ae1}

✶prefix-or-same(id(a
rp
3),id(a

p
2))

p110(f
V
1) p310(f

V
4)

Figure 6.34: DEP for query q10

Evaluating p110 and p
3
10 over their respective fragments (shown in Figure 6.16 on page 140),

yields the sequences of tuples shown in Figure 6.35 (denoted as R(p110(f
V
1)) and R(p

3
10(f

V
4)),

respectively).

Performing the cross-fragment join p110(f
V
1) ✶prefix-or-same(id(arp3),id(ap2))

p310(f
V
4) results in

three tuples, which are shown in Figure 6.36. As can be seen, the result containing the

node author3 is returned twice. This is because, within the document corresponding to

this author, there are two chapter nodes and therefore two sub-trees within fragment fV
4 .

Since p310(f
V
4) produces a match for each of these sub-trees, the cross-fragment join yields

two results for the node author3, introducing a duplicate.

To address this problem, it is possible to push the duplicate elimination into the DEP

such that it is performed immediately after the join that introduces the duplicates. This

eliminates duplicates as soon as they are introduced, thus avoiding any negative perfor-

mance impact on subsequent joins or LQPs with pushed cross-fragment joins.

Using semi-joins in place of full inner joins when combining the results of multiple

[ae1 = author1, a
p
2 = P 1→3

12]

[ae1 = author2, a
p
2 = P 1→3

14]

[ae1 = author3, a
p
2 = P 1→3

16]
(a) R(p110(f

V
1))

[arp2 = RP 1→3
12 , ap3 = P 3→4

12.1]

[arp2 = RP 1→3
16 , ap3 = P 3→4

16.2]

[arp2 = RP 1→3
16 , ap3 = P 3→4

16.3]
(b) R(p210(f

V
3))

[arp3 = RP 3→4
12.1]

[arp3 = RP 3→4
16.2]

[arp3 = RP 3→4
16.3]

(c) R(p310(f
V
4))

Figure 6.35: LQP results for query q10

160

[ae1 = author1]

[ae1 = author3]

[ae1 = author3]

Figure 6.36: R
(

p110(f
V
1) ✶prefix-or-same(id(arp3),id(ap2))

p310(f
V
4)
)

π{ae1}

⋉prefix-or-same(id(a
rp
3),id(a

p
2))

p110(f
V
1) p310(f

V
4)

Figure 6.37: DEP for query q10 with semi-join

LQPs can be helpful to reduce the number of duplicate results. In the case of query q10,

duplicates can be avoided entirely by replacing the cross-fragment join with a semi-join,

as is shown in the DEP in Figure 6.37. Since the schema requires that for each author

node in fragment fV
1 , there can be at most one proxy node P 1→3

∗ , a semi-join is sufficient

to avoid generating duplicates.

Unfortunately, this technique does not completely avoid duplicates in all cases. To

illustrate this, consider what happens when q10 is evaluated without pruning p210(f
V
3).

Figure 6.38 shows a DEP for this scenario. Joining p110(f
V
1) and p

2
10(f

V
3) yields the tuples

shown in Figure 6.39. Performing a semi-join between these tuples and the result of

p310(f
V
4) then yields the same result as shown in Figure 6.36, including the duplicate node

author3. Therefore, the duplicate elimination shown at the root of the DEP in Figure 6.38

is necessary to avoid returning duplicate results.

The reason why the semi-join fails to avoid duplicates in this case is because the left-

hand side input of the semi-join (shown in Figure 6.39) already contains multiple tuples

with the same node author3. This, in turn, is caused by the fact that the schema specifies

that for each root proxy node in fragment fV
3 , there can be multiple proxy nodes P 3→4

∗ .

In general, inserting a duplicate elimination as close as possible to the cross-fragment

161

πD

π{ae1}

⋉id(a
rp
3)=id(a

p
3)

π{ae1,a
p
3}

✶id(a
rp
2)=id(a

p
2)

p110(f
V
1) p210(f

V
3)

p310(f
V
4)

Figure 6.38: Un-pruned DEP for query q10 with semi-join

[ae1 = author1, a
p
3 = P 3→4

12.1]

[ae1 = author3, a
p
3 = P 3→4

16.2]

[ae1 = author3, a
p
3 = P 3→4

16.3]

Figure 6.39: R
(

p110(f
V
1) ✶id(arp2)=id(ap2)

p210(f
V
3)
)

join that introduces duplicates can help improve the performance of distributed query

evaluation. While semi-joins can be useful for avoiding duplicates in certain scenarios,

using them cannot replace a duplicate elimination in all cases.

6.3 Summary

This chapter has introduced a suite of techniques that can be used to improve the perfor-

mance and scalability of query evaluation over fragmented and distributed XML collections.

For both horizontal and vertical fragmentation, pruning techniques are proposed that avoid

accessing certain fragments altogether if it can be shown that they are not needed to an-

swer the query. In the case of vertical fragmentation, additional pruning is accomplished

by storing structural information in the IDs associated with each proxy and root proxy

node. Another technique for improving the performance of query evaluation over verti-

162

cally fragmented collections is based on pushing cross-fragment joins into the LQPs. This

effectively skips irrelevant sub-trees within a fragment and thereby improves the perfor-

mance of local query evaluation and reduces the size of intermediate results. Additional

improvement techniques presented in this chapter focus on avoiding sorting and duplicate

elimination steps.

163

Chapter 7

Cost-Based Optimization of

Distributed Execution Plans

Chapter 5 describes how an initial DEP can be generated that evaluates a query over a

distributed collection. Based on this, Chapter 6 introduces a suite of techniques that can

improve the performance of these initial DEPs. Some of these techniques, such as the hor-

izontal and vertical pruning techniques presented in Sections 6.1.1 and 6.2.1, respectively,

are always beneficial and can therefore be applied indiscriminately, regardless of the query

that is being evaluated. In the case of the pruning techniques, this is because removing

irrelevant LQPs (and their corresponding fragments) from a DEP can never have a nega-

tive impact on query performance and does not interfere with the applicability of further

techniques for improving distributed execution plans.

In contrast to this, most of the other techniques described in Chapter 6 may have

a negative or a positive impact on query performance, depending on the characteristics

of the query and the distributed collection. Cross-fragment join pushing, for example,

can improve query performance by skipping sub-trees that only yield results that would

subsequently be discarded. However, applying this technique indiscriminately might also

reduce performance in cases where few such sub-trees can be skipped and the decrease

in parallelism caused by this technique leads to significant delays. Thus, to obtain the

best query performance, it is necessary to choose the query evaluation techniques that are

165

appropriate for a given query and distributed collection when constructing a DEP.

An additional problem arises from the fact that the techniques described in Chapters

5 and 6 only specify the logical operators that are used in a DEP. For each of these logical

operators, there are frequently multiple physical operators that produce the same result

but that differ in their performance characteristics. For the best query performance, the

most advantageous physical implementation of each operator must be chosen based on the

characteristics of the query and the distributed collection.

As discussed in Section 6.2.3, there are frequently multiple possible ways to order the

cross-fragment joins in a DEP. Join order affects the size of intermediate results and the

applicability of cross-fragment join pushing. Thus, choosing the right join order is an

important consideration when constructing a DEP.

This chapter introduces a cost-based optimization strategy that addresses these prob-

lems. For a given query and distributed collection, the most advantageous DEP is con-

structed based on the techniques presented in Chapters 5 and 6. In addition, for each logical

operator specified by these techniques, a suitable physical implementation (or physical op-

erator) is chosen, resulting in an optimized physical DEP. The optimization strategy works

by enumerating the space of candidate DEPs representing the various techniques that can

be used to evaluate a given query over a given distributed collection. Then, the cost of

each candidate DEP is estimated and the DEP with the lowest estimated cost is chosen.

The notion of cost used here is based on the end-to-end response time of a DEP. By

defining cost in terms of response time, all components that contribute to the cost of

processing a query are taken into account. At the same time, modeling cost based on

response time naturally captures parallelism, which is one of the key objectives of the

distributed query evaluation techniques presented in this thesis.

In the data centre environment considered in this work, the most significant contributor

to the response time of a DEP is the time it takes to evaluate the LQPs contained in this

DEP. Thus, the cost estimation formulas presented in this chapter estimate the cost of a

DEP by composing the costs of its constituent LQPs, while taking into account the degree

to which these LQPs can be parallelized. This approach is well suited to the distributed

query evaluations presented in this thesis since these techniques vary in the amount of

166

parallelism they permit. For example, distributed execution plans without join pushing

allow for the completely independent (and therefore freely parallelizable) execution of all

LQPs. In the presence of join pushing, in contrast, the result of one LQP is pipelined

into another and, therefore, a producer-consumer relationship is induced which reduces

the amount of parallelism that is achievable.

To illustrate how the response time cost of a DEP can be estimated, consider Figure

7.1, which shows a DEP consisting of two LQPs (p11 and p
2
1) connected by a structural join

(✶id(ap2)=id(arp2)). Assuming that it takes 10 seconds to evaluate p11 and 8 seconds to evaluate

p21, the total computation time spent for both LQPs is 18 seconds. However, since p11 and

p21 can be evaluated in parallel, it is possible to evaluate both LQPs in 10 seconds (the

maximum of 10 seconds for p11 and 8 seconds for p21).

To obtain the overall response time of the DEP, it is necessary to take into account

the cost of joining the results of the two LQPs. It is important to note that the cost of

performing the join ✶id(ap2)=id(arp2) depends on which physical join operator is selected to

evaluate this join. Figure 7.2 shows two alternative physical DEPs that correspond to the

logical DEP shown in Figure 7.1. Assuming that the tuples obtained by evaluating p11 are

ordered by the attribute ap2 and that the tuples obtained from p21 are ordered by arp2 , it

is possible to use a merge join (denoted as ✶
M), which can be fully parallelized with the

evaluation of the LQPs. Using the merge join operator, join tuples are produced as soon

as the first input tuples have been received from p11 and p
2
1. Assuming that both LQPs are

fully pipelined internally and that the results of the LQPs are pipelined into the join, this

happens after a delay that is much shorter than the full response time of 8 or 10 seconds,

respectively. Thus, the overall response time for evaluating the physical DEP shown in

Figure 7.2(a) is 10 seconds (assuming that the overhead of generating the last join tuple

and transmitting tuples between sites is negligible). If the order requirements for a merge

join are not met, one option is to use a simple, one-sided hash join (denoted as ✶H), which

✶id(a
p
2)=id(a

rp
2)

p11(f
V
1) p21(f

V
2)

Figure 7.1: A logical DEP

167

✶
M
id(a

p
2)=id(a

rp
2)

p11(f
V
1) p21(f

V
2)

(a) Merge join

✶
H
id(a

p
2)=id(a

rp
2)

p11(f
V
1) p21(f

V
2)

(b) Hash join

Figure 7.2: Two physical DEPs

fully materializes one of its inputs in a hash table before join processing begins and then

probes this hash table for all tuples received from the other input. In this case (shown

in Figure 7.2(b)), the overall response time of the physical DEP additionally contains the

time spent probing the hash table and can thus be expected to be greater than 10 seconds.

The remainder of this chapter introduces a technique for determining the DEP with the

lowest estimated response time for a given query and distributed collection. After stating

the assumptions of this technique in Section 7.1, five main components are presented:

Plan properties Response time cost estimates for a DEP are calculated in a bottom-up

fashion based on a set of properties that are tracked for each part of the plan (i.e., for

the sub-plans of the DEP including the LQPs contained in it). Section 7.2 describes

these properties in detail.

Some properties depend only on the logical DEP. For example, the cardinality of the

output of a join is independent of which algorithm is used to execute this join. Other

properties, however, do depend on the physical operators chosen for a given physical

DEP. For instance, the response time cost of a DEP containing a join depends on

the join strategy chosen, as does the order in which result tuples are returned.

Optimizing LQPs and obtaining LQP properties Section 7.3 describes how the

LQPs contained in a DEP are optimized. Since each LQP is evaluated at a single site,

this is done using existing, centralized optimization and cost estimation techniques.

Many of the properties needed by the distributed optimizer are also inferred using

these models, however, to determine the order properties of LQP results, additional

steps are necessary. Once LQP optimization is complete, the properties of the best

LQPs are relayed back to the dispatcher, where they are used to optimize the DEP.

168

Obtaining DEP properties Section 7.4 describes how the plan properties of a DEP are

computed. Since DEPs consist of LQPs and operators that combine the results of

these LQPs to the overall query result (e.g., cross-fragment join or merge), this can

be done in a bottom-up fashion, one operator at a time. For many of the operators

discussed in Chapters 5 and 6, there exist multiple physical implementations with

varying requirements and performance characteristics. This is taken into account and

properties that are affected by this choice are computed separately for each physical

operator.

Special attention is paid to dependencies in the execution of the individual parts of

a DEP. If there are dependencies (such as in the case where the result of one LQP

is pipelined into another through cross-fragment join pushing), the time that various

parts of the DEP spend waiting for each other needs to be taken into account when

estimating the cost of the DEP.

Enumerating DEP alternatives Section 7.5 describes how the possible physical DEPs

for a query can be enumerated using existing plan enumeration techniques. This

makes it possible to estimate the overall response time cost for each of the candidate

DEPs for a given query and finally choose the DEP with the lowest estimated cost.

Execution and dynamic adaptation of DEPs Choosing the DEP with the lowest es-

timated cost performs well when cost estimates reasonably match actual query cost.

However, there are cases when the cost estimates would be inaccurate. This could

occur, for example, in the presence of heavily skewed data or outdated statistics (and

therefore inaccurate cost estimates for the LQPs in a DEP). To increase the robust-

ness of DEP performance in these situations, Section 7.6 outlines a technique that

can dynamically change DEPs during query execution to adapt to cost estimation

errors.

Figure 7.3 shows an overview of how these components work together during query

processing. As described in Chapters 5 and 6, the query is first decomposed into local

QTPs for each fragment and irrelevant local QTPs are pruned. Then the remaining local

QTPs are sent to the sites holding their corresponding fragments. For each local QTP

169

global QTP

decomposition

local QTPs

pruning

remaining local QTPs

optimize LQPs, obtain LQP properties

LQP properties

enumerate and cost DEPs

best physical DEP

dynamically adapt DEP run physical DEP and contained LQPs

query result

query dispatcher individual sites in system

Figure 7.3: Distributed query processing overview

received, the site holding the corresponding fragment determines the best physical LQPs.

Since physical LQPs for the same local QTP may differ in the order in which their results

are returned and since this order may have an impact on the performance of the DEP as

a whole, in general the cost estimates for multiple candidate physical LQPs are relayed

to the dispatcher. Using this information, the dispatcher then determines the best phys-

ical DEP by enumerating candidate DEPs and comparing their estimated cost. Finally,

the chosen physical DEP is evaluated across the sites of the system. Simultaneously, the

dispatcher monitors the performance of the individual components of the DEP and dy-

namically modifies the DEP if necessary. As the query result becomes available, it is sent

to the dispatcher. Query execution ends once the dispatcher has received the entire query

170

result.

7.1 Assumptions

To make it feasible to optimize a DEP and to derive accurate cost estimates, a few as-

sumptions are necessary. While these assumptions represent a simplification of the charac-

teristics of distributed query evaluation, they do not prevent cost-based optimization from

finding good plans.

Independent execution of LQPs All LQPs in a DEP are assumed to be executed with-

out interference from each other (other than the dependencies induced by the DEP,

such as the producer-consumer relationship between LQPs when join pushing is used).

This is a realistic assumption, since, within the context of a single query, the number

of LQPs over the same fragment tends to be small, and fragments are assumed to

be on independent machines. In fact, for many queries, only one LQP is generated

for each fragment, in which case this assumption is fully satisfied. Even in the case

where multiple LQPs are generated for the same fragment (and hence are executed

at the same site), assuming sufficient resources at the corresponding site (such as

multiple processor cores and sufficient I/O bandwidth, as are commonly encountered

in a data centre) interference caused by resource contention can be expected to be

small.

Independent execution of combining operators As with LQPs, the combining op-

erators (e.g., cross-fragment join or merge) in a DEP are assumed to be executed

independently of each other without affecting each other’s performance. This can

easily be achieved by limiting the number of such operators that are executed on the

same machine. While this may increase the amount of data that needs to be trans-

mitted over the network, in the pipelining model with high-throughput connections

considered here, this does not pose a significant problem.

Intermediate results returned at steady rate To simplify the cost model, for each

sub-plan of a DEP it is assumed that results are returned at a steady rate from the

171

time the first tuple is returned until the last tuple is returned. While, in practice,

there will be fluctuations in this rate, for most cases this represents a reasonable

approximation of reality. Note that this assumption does not imply that all sub-

plans are fully pipelined. As will be shown later, for sub-plans that materialize

results before returning them, the time span between first tuple and last tuple will

be short and thus the steady rate assumption covers only a short period of time.

No correlations between the results of LQPs When estimating the cardinality of a

cross-fragment join, it is necessary to make the usual independence assumption be-

tween the operands of the join. In the scenario seen here, this means that the results

of LQPs are assumed to be free of correlations and skew. In cases where this as-

sumption does not hold, the quality of cost estimates may be reduced. To address

this problem, it is possible to monitor distributed query execution and dynamically

change the DEP as necessary (cf. Section 7.6).

7.2 Plan Properties

The objective of the cost model presented here is to determine the overall response time

cost of a physical DEP. To estimate this response time cost accurately, several additional

properties are tracked for each portion of a physical DEP. Each of these portions, which are

referred to in the following as physical sub-plans, consists of a subset of the LQPs in the

DEP and the physical operators that combine the results of these LQPs. The properties

of the sub-plans are then combined in a bottom-up fashion to obtain the overall cost of

the physical DEP.

Certain tracked properties depend only on the logical operators used in a DEP. It is

therefore possible to compute these properties based on logical DEPs and their logical sub-

plans and then share them for all physical DEPs corresponding to the same logical DEP.

Thus, the plan properties considered by the cost model described here can be divided into

two categories:

Logical plan properties depend on the logical operators (e.g., join or merge) used in

172

a DEP. These can be computed based on the logical DEP and shared among all

physical DEPs corresponding to this logical DEP.

Physical plan properties depend on the physical operators chosen (e.g., merge join or

hash join) and thus have to be computed separately for each physical DEP. However,

this does not preclude the optimizer from re-using the physical properties of a sub-

plan if this sub-plan occurs in more than one physical DEP.

7.2.1 Logical Plan Properties

Logical plan properties are independent of the physical implementation chosen for a given

operator. Thus, two sub-plans that differ only in their physical operators but that use the

same logical operators in the same order will share the same logical properties. This makes

it possible to determine these properties once and use them for both sub-plans.

Definition 7.1. Let GP ′ be a logical sub-plan of a logical DEP GP . Then 〈card(GP ′),

A (GP ′)〉 is the logical plan property vector of GP ′ , and the logical plan properties of GP ′

are defined as follows:

• card(GP ′) = |R(GP ′)| is the estimated cardinality of GP ′ , i.e., the number of tuples

in R(GP ′) (the result of GP ′ when evaluated over the collection), and

• A (GP ′) is the set of attributes of which the tuples returned by GP ′ consist.

7.2.2 Physical Plan Properties

Unlike logical plan properties, physical plan properties depend on the physical operators

chosen in a sub-plan. For example, a sub-plan using a merge join will generally have

physical properties that are different from those of a sub-plan that uses a hash join. This

makes it necessary to compute physical properties separately for each physical sub-plan.

173

Definition 7.2. Let GP
P ′ be a physical sub-plan of a physical DEP GP

P . Then 〈cost(GP
P ′),

cost-first(GP
P ′), O

(

GP
P ′

)

〉 is the physical plan property vector of GP ′ , and the physical plan

properties of GP
P ′ are defined as follows:

• cost(GP
P ′) is the estimated cost of GP

P ′ , i.e., the total end-to-end response time of

evaluating GP
P ′ over the collection,

• cost-first(GP
P ′) is the estimated time to the first tuple returned by GP

P ′ , i.e., the portion

of cost(GP
P ′) that elapses up to the point when the first result tuple is returned, and

• O
(

GP
P ′

)

⊆ A
(

GP
P ′

)

is the set of order properties of GP
P , i.e., the subset of the at-

tributes in A (GP ′) that are in forward document order in R(GP
P ′) for any distributed

collection. For any attribute a ∈ O
(

GP
P ′

)

, the nodes bound to attribute a in R(GP
P ′)

are in forward document order.

While cost(GP
P ′) provides an estimate of the response time cost of the sub-plan GP

P ′ and

cost-first(GP
P ′) is useful for estimating to what extent the tuples resulting from GP

P ′ can

be pipelined into other parts of GP
P , O

P
GP ′

(the set of ordered attributes) is useful for two

reasons:

• First, since XQ follows the XPath and XQuery semantics, the overall result ofGP
P (i.e.,

the nodes matched to the extraction point ae1 in the global QTP representation of the

query) has to be returned in document order. While in some cases this may require

a sorting step before the query result can be returned, the overhead associated with

sorting can be avoided if the result is already ordered as required (i.e., if ae1 ∈ O
(

GP
P

)

).

• Second, the order of intermediate results affects the choice of physical operators

for combining these intermediate results to the overall query result. For example,

if both inputs to a cross-fragment join are ordered by the attribute on which the

join is performed (i.e., the IDs of the proxy/root proxy nodes involved), then a fully

pipelined merge join can be employed whereas otherwise this physical operator would

require the insertion of an additional sort operator.

174

[ae1 = name1, a
p
v = P i→j

8]

[ae1 = name1, a
p
v = P i→j

9]

[ae1 = name2, a
p
v = P i→j

4]

[ae1 = name3, a
p
v = P i→j

1]

[ae1 = name3, a
p
v = P i→j

3]

Figure 7.4: Sequence of tuples R1, hierarchically ordered by [ae1, a
p
v]

Keeping track of the order properties of sub-plans is a common feature of optimizers

used in a relational context. As was first described by Selinger et al. [121], relational

optimizers tend to consider only a restricted set of interesting orders that can be shown

to be potentially useful for query optimization. For a sub-plan GP
P ′ of the DEP GP

P ,

each attribute in A
(

GP
P ′

)

represents a potentially useful order property and therefore an

interesting order. Since cross-fragment joins are always combined with a projection that

removes attributes that are no longer needed (cf. Definition 5.2 on page 91), each attribute

a in A
(

GP
P ′

)

is either used in a join predicate somewhere further up in GP
P (in which case

having a in document order may allow the optimizer to use a merge join) or a is the overall

extraction point of the query ae1 and the overall query result must therefore be ordered by

this attribute (in which case it would be necessary to sort by a if the result is not already

ordered by this attribute).

It is important to point out what it means for O
(

GP
P

)

to contain multiple attributes.

Traditionally, order properties have usually been described as a hierarchy of attributes

expressed as tuples. For example, if R(GP
P) is ordered by the sequence of attributes [a1, a2],

then it is assumed that R(GP
P) is ordered by a1 (the most significant attribute in the order

property [a1, a2]), and tuples in R(GP
P) that assign the same node to a1 are then ordered

by a2. Figure 7.4 shows an example of this: the tuples in sequence R1 are first ordered

by ae1 and tuples with the same name node in ae1 are then ordered by apv. As can easily be

seen, the fact that R(GP
P) is ordered by [ae1, a

p
v] does not imply that it is ordered by apv on

its own.

This work follows a different approach. Instead of keeping track of hierarchies of at-

175

[ae1 = name1, a
p
v = P i→j

4]

[ae1 = name1, a
p
v = P i→j

4]

[ae1 = name2, a
p
v = P i→j

5]

[ae1 = name3, a
p
v = P i→j

6]

[ae1 = name3, a
p
v = P i→j

7]

Figure 7.5: Sequence of tuples R2, independently ordered by ae1 and apv

tributes by which a sequence of tuples is ordered, O
(

GP
P

)

is a set of individual attributes,

such that the sequence of tuples is fully ordered by each attribute in O
(

GP
P

)

, independently

of the other attributes in O
(

GP
P

)

. According to these semantics, sequence R1 is ordered

by attribute ae1 only. Since this sequence is not fully ordered by apv, this attribute is not

considered to be part of the order properties of this sequence.

For O
(

GP
P

)

to contain multiple attributes, the result sequence R
(

GP
P

)

must be fully

ordered by each of these attributes on its own. For an example of this, consider sequence

R2, shown in Figure 7.5. This sequence is the result of a physical DEP GP
P with O

(

GP
P

)

=

{ae1, a
p
v}. As can be seen the tuples in this sequence are independently ordered by both

attribute ae1 and attribute apv.

Another key factor that distinguishes the order properties considered here from order

properties in traditional relational optimization is related to the fact that in the query

execution model considered here, the attributes of each tuple have XML nodes as their

values, rather than simple numeric or textual values. While it is possible to order XML

nodes based on their values (for example, by comparing their node types or text content),

in this work, they are instead ordered by their document order. For proxy and root proxy

nodes, document order directly corresponds to the IDs of these nodes. Thus, the nodes

assigned to attribute apv in the example shown in Figure 7.5 are in document order since

their IDs are 4, 4, 5, 6, and 7, respectively1. For other nodes, a subscript indicating position

in document order is used for notational convenience, with namek denoting the kth node of

1Note that P i→j
4 is duplicated.

176

type name encountered in a pre-order traversal of the collection. Thus, the nodes assigned

to attribute ae1 in sequence R2 are in document order and their relative positions are 1, 1,

2, 3, and 3, respectively. In the following, document order is expressed as follows: If oi and

oj are nodes in a collection, then oi <doc oj denotes that oi occurs before oj in document

order. Similarly, oi ≤doc oj denotes that either oi occurs before oj in document order or

oi = oj.

7.3 Optimizing LQPs and Obtaining LQP Properties

LQPs form the building blocks of DEPs and their properties are used to estimate the

overall cost of a DEP in a bottom-up fashion. Therefore, to accurately estimate the cost

of a DEP, it is essential to obtain good estimates of the properties of the LQPs used

within this DEP. This section describes how the properties of the LQPs in a DEP can be

inferred using two main strategies. Many of the properties described in Section 7.2 (namely,

total cost, time to first tuple, and set of attributes), can be obtained using existing cost

estimation techniques. For other properties, such as the number of sub-trees accessed

(which is important for estimating the impact of cross-fragment join pushing) and the

order properties of the result, additional steps are necessary, which are described in this

section.

While distributed query optimization relies on accurate LQP properties, it is inde-

pendent of the exact LQPs used. Since LQPs are evaluated over a single fragment, the

evaluation of an LQP is performed at a single site (the site where the corresponding frag-

ment is stored). Therefore, LQPs can be optimized independently at the site holding their

corresponding fragment. This is done using existing, centralized cost estimation techniques

relying on locally available statistics. The properties of the best LQPs are then reported

to the query dispatcher, where they are used during distributed optimization.

While the goal of this optimization is to find the best LQP corresponding to a given

local QTP, due to the multidimensional nature of the properties it is not always possible

to identify a single best LQP. For example, one LQP might have a lower cost, but another

LQP might offer a more expansive set of order properties. In this case, it is impossible to

177

decide which of these LQPs will allow the query dispatcher to construct the better DEP.

Thus, a scenario might arise in which there are multiple LQPs for the same QTP, none

of which dominates the others. The local optimizer handles this scenario by reporting the

properties of each of the potentially optimal LQPs back to the query dispatcher. During

distributed optimization, the dispatcher then determines which of these LQPs results in

the best DEP.

The remainder of this section is organized as follows. First, Section 7.3.1 describes how

the logical properties of LQPs are obtained. Then, Section 7.3.2 describes how physical

LQPs are optimized and how their order properties can be inferred.

7.3.1 Logical LQP Properties

In this work, the logical properties of an LQP are the properties that are the same for any

LQP puk corresponding to a given local QTP quk . These properties include the properties

mentioned in Definition 7.1, i.e., the set of attributes of the tuples returned by puk (denoted

as A (puk)) and the cardinality of puk ’s result (denoted as card(puk)).

Obtaining A (puk) is straightforward. Since p
u
k is required to return exactly one attribute

for each extraction point in its corresponding local QTP quk , A (puk) consists of one attribute

for each such extraction point (including the extraction points added during decomposi-

tion).

To obtain card(puk), existing cardinality estimation techniques for the centralized eval-

uation of XML queries can be applied directly (e.g., [143, 38, 7, 135, 136, 8, 55, 131]). An

overview of these techniques is provided in Section 3.3.1.2.

In addition to the logical properties tracked for DEPs, for LQPs, it is also useful to

keep track of the number of sub-trees accessed. This is needed to predict the result sizes

of cross-fragment joins accurately.

Definition 7.3. Let puk be a logical LQP. Then nsubt(puk) denotes the number of sub-trees

accessed by puk .

To determine nsubt(puk), it is necessary to distinguish between three cases:

178

• If puk is evaluated over a horizontal fragment fH
i , then nsubt(puk) = nsubt(fH

i).

• Similarly, if puk is evaluated over the root fragment fV
ρ in a vertical fragmentation

then nsubt(puk) = nsubt(fV
ρ).

• If puk is evaluated over a non-root vertical fragment fV
j and puk ’s parent LQP is eval-

uated over the fragment fV
i , then nsubt(puk) only includes those sub-trees in fV

j that

are rooted at a root proxy node corresponding to an edge from fragment fV
i to frag-

ment fV
j . Therefore, nsubt(p

u
k) is the number of root proxy nodes RP i→j

b in fragment

fV
j .

While existing cost models for the centralized evaluation of queries over XML collections

do not generally provide estimates for the number of sub-trees accessed by an LQP, this

information can easily be obtained by tracking the number of root proxy nodes (i.e., the

number of sub-trees) stored in a fragment as part of the distribution meta-data. In the

case of non-root vertical fragments, the number of root proxy nodes in a fragment fV
j has

to be stored separately for each fragment from which there is an edge to fV
j .

7.3.2 Physical LQPs

As discussed in Section 2.2.3.1, when a tree pattern is evaluated over a collection, pattern

matches are returned such that the nodes that match the extraction point of the pattern

are in document order. The XQ query model focuses on queries with a single extraction

point. Therefore, the QTP representation of an entire query (referred to as the global

QTP), also has a single extraction point (denoted as ae1). Thus, any centralized query plan

evaluating this QTP has an order property consisting only of the attribute ae1 (since the

result of evaluating this plan is required to be ordered by ae1 and, as a
e
1 is the only extraction

point, there are no other extraction points by which the result could be ordered).

In contrast to the global QTP, the local QTPs evaluated over the fragments of a ver-

tically fragmented collection usually contain multiple extraction points. This is because

additional extraction points matching proxy and root proxy nodes are inserted when the

179

global QTP is decomposed (cf. Section 5.2). Figure 7.6 shows an example of a local QTP

with two extraction points, corresponding to proxy nodes leading to two fragments.

A physical LQP can generally only ensure that its result is ordered by one of the ex-

traction points in its corresponding local QTP. Thus, before generating a physical LQP,

a single attribute (corresponding to a single extraction point) is chosen and designated

as the ordering attribute (or the ordering extraction point when discussing the QTP rep-

resentation). Only the nodes assigned to this attribute are guaranteed to be returned in

document order. When evaluating the local QTP q11 (shown in Figure 7.6), the result can

either be ordered by extraction point ap2 or it can be ordered by extraction point ap3, but

generally not both.

Formally, physical LQPs can be defined as follows:

Definition 7.4. Let puk be a logical LQP such that A (puk) is the set of attributes of the

tuples returned by puk . Then for each attribute a ∈ A (puk),
apuk denotes a physical LQP

corresponding to puk with ordering attribute a.

As mentioned before, for local QTP q11, there are two possible choices for the ordering

attribute. Each of these choices leads to a different physical LQP: The first choice, a
p
2p11,

with ordering attribute ap2 guarantees that, in its result, the nodes that match ap2 are

returned in document order. Conversely, the physical LQP ap4p11, whose ordering attribute

is ap3 yields a result in which the nodes that match ap3 are in document order.

author

∧

ap2
P 1→2
∗

/

ap3
P 1→3
∗

//

Figure 7.6: Local QTP q11(f
V
1)

180

7.3.2.1 Physical LQP Properties

For each physical LQP apuk corresponding to the logical LQP puk , the physical properties

defined in Definition 7.2 are tracked. These include cost(apuk), the total response time cost

of apuk ; cost-first(
apuk), the time to the first tuple returned by apuk ; and O (apuk), the set of

order properties of apuk .

While cost(apuk) and cost-first(apuk) can easily be obtained using existing cost models

for centralized query evaluation over XML collections (e.g., [140, 68, 67, 75], cf. Section

3.3.1.1), to obtain O (apuk) additional reasoning is necessary.

Since a is the ordering attribute of apuk , the result of
apuk is guaranteed to be ordered by

a. From this follows that a ∈ O (apuk). However, it is possible that
apuk may also be ordered

by additional attributes in A (puk).

For example, consider the local QTP shown in Figure 7.7. Evaluating ap4p31 (the physical

LQP corresponding to q31 with a
p
4 chosen as the ordering attribute) yields result tuples such

that the proxy nodes matched to ap4 are returned in document order. However, note that

by ordering the result tuples by ap4, they are also ordered by arp3 . This is because for each

proxy node matched to ap4 there is exactly one root proxy node matched to arp3 . Section

7.3.2.2 formalizes this and describes how the additional order properties of a physical LQP

can be inferred.

When using pipelined execution with pushed cross-fragment joins (as described in Sec-

tion 6.2.2), LQPs are only evaluated over some of the sub-trees in their corresponding

fragment. To obtain accurate cost estimates for this scenario, it is necessary to estimate

the cost of evaluating a physical LQP apuk over a single sub-tree.

Definition 7.5. Let apuk be a physical LQP. Then subtcost(apuk) is the response time cost

arp3
RP 1→3
∗

ap4
P 3→4
∗

//

Figure 7.7: Local QTP q31(f
V
3)

181

of evaluating apuk over a single sub-tree in its corresponding fragment.

To estimate subtcost(apuk), it is possible to apply the centralized cost model chosen to

estimate cost(apuk) directly.

7.3.2.2 Inferring LQP Order Properties

While only one attribute can be chosen as the ordering attribute of a physical LQP, in

practice, ordering by one attribute frequently implies that the result of the LQP is also

ordered by some of the other attributes in A (puk). This is the case when the order of these

other attributes can be inferred from the ordering attribute.

To infer the order of additional attributes from the ordering attribute of a physical

LQP, it is first necessary to define what it means to infer the order of one attribute from

the order of another. Assume that the tuples returned by the physical LQP apuk contain

two attributes, aord and aimp. To infer the order of aimp from the order of aord, one needs

to show that the following statement holds:

If R(apuk) is ordered by aord, R(
apuk) must also be ordered by aimp.

To show this, it is necessary to verify that for each sequence of tuples R produced by

the LQP apuk over any conceivable instance, if R is ordered by aord, then it must also be

ordered by aimp.

If R is ordered by aord, then for each pair of tuples ti, tj ∈ R such that i < j (denoting

that ti occurs before tj in the sequence R), ti[aord] ≤doc tj[aord] (i.e., the node from the

collection assigned to attribute aord in tuple ti occurs before or at the same location in

document order as the node assigned to the same attribute in tuple tj.

To show that R is also ordered by aimp, one needs to show that this implies that

ti[aimp] ≤doc tj[aimp], i.e., that the node assigned to attribute aimp in tuple ti occurs before

or at the same location in document order as the node assigned to this attribute in tuple

tj.

Formally, this can be expressed as follows:

182

[aimp = RP 1→3
1.2 , aord = P 3→4

1.2.1]

[aimp = RP 1→3
1.3 , aord = P 3→4

1.3.1]

[aimp = RP 1→3
1.4 , aord = P 3→4

1.4.1]

[aimp = RP 1→3
1.5 , aord = P 3→4

1.5.1]

Figure 7.8: Sequence of tuples R3, aord ❀ aimp

Definition 7.6. Let apuk be a physical LQP and let aord, aimp ∈ A (puk) be attributes of

the tuples returned by apuk . Then, the order of aord implies the order of aimp (i.e., aord ∈

O (apuk) =⇒ aimp ∈ O (apuk)) if for any sequence of tuples R = [t1, t2, . . .] resulting from

evaluating apuk over some instance of its corresponding fragment, the following holds:

∀ti, tj ∈ R, i < j : ti[aord] ≤doc tj[aord] =⇒ ti[aimp] ≤doc tj[aimp]

As a shorthand, in the following, aord ❀ aimp denotes that the order of aord implies the

order of aimp.

By applying this reasoning repeatedly, it is possible to infer the order of additional

attributes from the order of the ordering attribute in many cases. To show that the order

of one attribute implies the order of another, it is helpful to consider how document order

can be expressed using the Dewey numbering scheme discussed in Section 6.4. Assuming

that all nodes in a fragment are assigned Dewey IDs2, then o1 ≤doc o2 if and only if

id(o1) ≤ id(o2).

Figure 7.8 shows an example of a sequence in which each node is annotated with its

Dewey ID. As can be seen, the Dewey ID of each root proxy node assigned to attribute

aimp is a fixed-length prefix of the Dewey ID assigned to attribute aord. Assuming this

sequence is known to be ordered by aord it is thus possible to infer that the sequence is also

2Note that when comparing Dewey IDs, their hierarchical nature must be taken into account. For

details, refer to Definition 6.5 on page 139.

183

[aimp = RP 1→3
1.2.3 , aord = P 3→4

1.2.3.5.9]

[aimp = RP 1→3
1.2 , aord = P 3→4

1.2.3.6]

Figure 7.9: Sequence of tuples R4, aord 6❀ aimp

ordered by aimp. The following lemma formalizes this notion and specifies the conditions

that need to be satisfied for this to hold.

Lemma 7.1. Let apuk be a physical LQP with aord, aimp ∈ A (puk). Then aord ❀ aimp if for

any sequence of tuples R resulting from evaluating apuk over its corresponding fragment f ,

one of the following two conditions holds:

1. (a) For any ti ∈ R, id(ti[aimp]) is a prefix of id(ti[aord]), and

(b) there exists an integer l > 0 such that for any ti ∈ R, length(id(ti[aimp])) = l, or

2. (a) for any ti ∈ R, id(ti[aord]) is a prefix of id(ti[aimp]), and

(b) there exists an integer l > 0 such that for any ti ∈ R, length(id(ti[aord])) = l,

and

(c) for any two tuples ti, tj ∈ R, id(ti[aord]) = id(tj[aord]) =⇒ id(ti[aimp]) =

id(tj[aimp]).

As can be seen, the lemma infers that the order of attribute aord implies the order of

attribute aimp. Condition 1 in Lemma 7.1 corresponds to the case where the Dewey ID of

each node assigned to attribute aimp is a prefix of the Dewey ID of the node assigned to

attribute aord in the same tuple. This is precisely the scenario encountered in the example

shown in Figure 7.8. As can be seen, the lemma additionally requires that the nodes that

match aimp occur at a fixed depth in their fragment (corresponding to Dewey IDs with a

fixed number of items l).

184

To illustrate that the implication between ordering on aord and ordering on aimp does

not hold if the depth of the collection nodes matched to aimp is not fixed, consider the

Dewey IDs of the nodes in sequence R4, shown in Figure 7.9. As can be seen, the sequence

is ordered by attribute aord since 1.2.3.5.9 < 1.2.3.6 because 1.2.3.5.9[4] (the 4th item of

this ID) is less than 1.2.3.6[4]. Also, it can be observed that for each tuple, the Dewey ID

of the node assigned to attribute aimp is a prefix of the Dewey ID of the node assigned to

attribute aord. Nevertheless, R4 is not ordered by aimp, since 1.2.3 is longer than 1.2 and

shares the same first two items.

Proof 7.1 formally shows why fixing the depth of the collection nodes matched to aimp

resolves this problem and why condition 1 in Lemma 7.1 is sufficient to determine that

aord ❀ aimp.

Proof 7.1 (Lemma 7.1, condition 1). Let aord, aimp ∈ A (puk) such that condition 1 holds.

Show that for any ti, tj ∈ R, id(ti[aord]) ≤ id(tj[aord]) =⇒ id(ti[aimp]) ≤ id(tj[aimp]).

Assume the antecedent.

Case 1 id(ti[aord]) = id(tj[aord]):

Since Dewey IDs are unique, ti[aord] = tj[aord]

By condition 1(b), ∃l > 0, ∀t′ ∈ R, length(id(t′[aimp])) = l.

Thus, length(id(ti[aimp])) = length(id(tj[aimp])) = l.

For c = 1, . . . , l, id(ti[aord])[c] = id(ti[aimp])[c] = id(tj[aord])[c] = id(tj[aimp])[c].

Therefore, id(ti[aimp]) = id(tj[aimp]).

Case 2 id(ti[aord]) < id(tj[aord]):

By condition 1(b), ∃l > 0, ∀t′ ∈ R, length(id(t′[aimp])) = l.

Thus, length(id(ti[aimp])) = length(id(tj[aimp])) = l.

By Definition 6.6, ∀t′ ∈ R, length(id(t′[aord])) > l.

Therefore, length(id(ti[aord])) > l and length(id(tj[aord])) > l.

185

Case 2.1 For c = 1, . . . , length(id(ti[aord])), id(ti[aord])[c] = id(tj[aord])[c] and

length(id(ti[aord])) < length(id(tj[aord])):

Since l < length(id(ti[aord])), for c = 1, . . . , l, id(ti[aord])[c] = id(tj[aord])[c].

Since, id(ti[aimp]) is a prefix of id(ti[aord]) and length(id(ti[aimp])) = l and since

id(tj[aimp]) is a prefix of id(tj[aord]) and length(id(tj[aimp])) = l, for c = 1, . . . , l,

id(ti[aimp])[c] = id(ti[aord])[c] and id(tj[aimp])[c] = id(tj[aord])[c].

Therefore, for c = 1, . . . , l id(ti[aimp])[c] = id(tj[aimp])[c].

Thus, id(ti[aimp]) = id(tj[aimp]).

Case 2.2 ∃w with 1 < w < min{length(id(ti[aord])), length(id(tj[aord]))} s.t. for c =

1, . . . , w − 1, id(ti[aord])[c] = id(tj[aord])[c] and id(ti[aord])[w] < id(tj[aord])[w]:

Case 2.2.1 w ≤ l:

Since id(ti[aimp]) is a prefix of id(ti[aord]) and id(tj[aimp]) is a prefix of

id(tj[aord]), for c = 1, . . . , l, id(ti[aord])[c] = id(ti[aimp])[c] and id(tj[aord])[c] =

id(tj[aimp])[c].

Thus, for c = 1, . . . , w−1, id(ti[aimp])[c] = id(tj[aimp])[c] and id(ti[aimp])[w] <

id(tj[aimp])[w].

Thus, id(ti[aimp]) < id(tj[aimp]).

Case 2.2.2 w > l:

Since id(ti[aimp]) is a prefix of id(ti[aord]) and id(tj[aimp]) is a prefix of

id(tj[aord]), for c = 1, . . . , l, id(ti[aord])[c] = id(ti[aimp])[c] = id(tj[aord])[c] =

id(tj[aimp])[c].

Thus, id(ti[aimp]) = id(tj[aimp]).

✷

Condition 2 in Lemma 7.1 handles the opposite scenario. Whereas condition 1 shows

that truncating each Dewey ID in a sequence to a fixed-length prefix preserves the order

of the sequence, condition 2 shows that, given a sequence of fixed length Dewey IDs,

appending a suffix to each of these IDs preserves the order. For this to work, the suffix

appended to each ID has to be uniquely determined by the ID in the original sequence.

Expressed in terms of nodes in the collection, there needs to be a unique mapping between

the collection nodes matched to aord (the attribute with known ordering) and the collection

186

[aimp = RP 1→3
1.2.9 , aord = P 3→4

1.2]

[aimp = RP 1→3
1.3.4 , aord = P 3→4

1.3]

[aimp = RP 1→3
1.3.4 , aord = P 3→4

1.3]

[aimp = RP 1→3
1.4.8 , aord = P 3→4

1.4]

Figure 7.10: Sequence of tuples R5, aord ❀ aimp

nodes matched to aimp (whose ordering is inferred). This requirement is related to the

notion of functional dependencies, which are discussed in detail by Arenas et al. [14, 15].

In the case of condition 1, this requirement is implicit, since for any Dewey ID of length

greater than l there is exactly one prefix with length l.

Figure 7.10 shows a sequence that illustrates this scenario. As in the previous examples,

the sequence is ordered by attribute aord. For each tuple, the Dewey ID of the node assigned

to attribute aimp consists of the Dewey ID of the node assigned to attribute aord plus an

additional suffix. As required, tuples that have the same Dewey ID for the node assigned

to attribute aord receive the same suffix in the Dewey ID of the node assigned to attribute

aimp. As can be seen, the sequence is also ordered by aimp.

Proof 7.2 shows that, in the general case, by adding the uniqueness requirement, order-

ing can be inferred for attributes matching nodes whose ID contains an additional suffix

(as is stated in Lemma 7.1, condition 2).

Proof 7.2 (Lemma 7.1, condition 2). Let aord, aimp ∈ E such that condition 2 holds. Show

that for any ti, tj ∈ R, id(ti[aord]) ≤ id(tj[aord]) =⇒ id(ti[aimp]) ≤ id(tj[aimp]). Assume

the antecedent.

Case 1 id(ti[aord]) = id(tj[aord]):

By condition 2(c), id(ti[aimp]) = id(tj[aimp]).

187

Case 2 id(ti[aord]) < id(tj[aord]):

By condition 2(b), length(id(ti[aord])) = length(id(tj[aord])) = l.

Therefore, ∃w with 0 < w ≤ l such that for c = 1, . . . , w − 1, id(ti[aord])[c] =

id(tj[aord])[c] and id(ti[aord])[w] < id(tj[aord])[w].

By conditions 2(a) and 2(b), for c = 1, . . . , l, id(ti[aimp])[c] = id(ti[aord])[c] and

id(tj[aimp])[c] = id(tj[aord])[c].

Thus, for c = 1, . . . , w − 1, id(ti[aimp])[c] = id(tj[aimp])[c] and id(ti[aimp])[w] <

id(tj[aimp])[w].

Therefore, id(ti[aimp]) < id(tj[aimp]).

✷

Building on Lemma 7.1, it is possible to specify how order implications can be detected

and, in turn, how the order properties of a physical LQP can be inferred. This is done

based on the local QTP corresponding to the physical LQP.

To reason about order implications in a local QTP, it is first necessary to define order

implications among pattern nodes. This directly follows the definition of order implications

among attributes of a physical LQP. As can be seen below, care has to be taken when

reasoning about pattern nodes that are not extraction points. For these pattern nodes

there is no corresponding attribute in the physical LQP. Thus, a modified pattern (denoted

as quk
′) is considered, in which the pattern nodes of interest are designated as extraction

points.

Definition 7.7. Let quk = 〈N,L, r, E, ν, c, ε, λ, T 〉 be a local QTP and let nord, nimp ∈ N

be pattern nodes in quk . Further let quk
′ = 〈N,L, r, E, ν, c, ε, λ, T ∪ {nord, nimp}〉. Then the

order of nord implies the order of nimp (denoted as nord ❀ nimp) if for any physical LQP apuk
′

corresponding to quk
′, aord ❀ aimp, where aord is the attribute corresponding to extraction

point nord and aimp is the attribute corresponding to extraction point nimp.

Based on Definition 7.7, it is possible to detect order implications by inspecting the

local QTP corresponding to an LQP. For example if pattern node nimp occurs as a child

188

of pattern node nord then for any tuple returned by the LQP, the Dewey ID of the node

assigned to attribute aord is a prefix of the Dewey ID of the node assigned to attribute aimp.

Additionally, by inspecting the schema, it is possible to infer that nodes matching a given

node test only occur at a certain depth in the collection and therefore have Dewey IDs

of fixed length. Lemma 7.2 exploits this and formalizes how order dependencies between

pattern nodes can be inferred from local QTP and schema.

Lemma 7.2. Let quk = 〈N,L, r, E, ν, c, ε, λ, T 〉 be a local QTP corresponding to fragment

f . Then nord ❀ nimp if ν(nord) 6= ∗, ν(nimp) 6= ∗, and one of the following conditions holds:

1. (a) nimp occurs as an ancestor of nord in quk , and

(b) any path in the schema of f from a root (i.e., the root node type ρ or a node

type reachable via an incoming edge from another fragment) to the node type

ν(nimp) has the same number of steps, or

2. (a) nimp occurs as a descendant of nord in quk ,

(b) any path in the schema of f from a root (i.e., the root node type ρ or a node

type reachable via an incoming edge from another fragment) to the node type

ν(nord) must have the same number of steps, and

(c) there is exactly one path in the schema from node type ν(nord) to node type

ν(nimp) and this path consists solely of edges with the cardinality ONCE or

OPT.

Proof 7.3 (Lemma 7.2). Condition 1 in Lemma 7.2 corresponds directly to condition 1

in Lemma 7.1. If nimp occurs as an ancestor of nord (condition 1(a)), then within the same

pattern match the ID of the collection node matched to nimp will be a prefix of the ID of

the collection node matched to nord. This is because the XQ query model only supports

downward axes. If any path from a root to a collection node matched to nimp has the same

length (condition 1(b)), then the depth at which collection nodes matched to nimp occur is

fixed.

189

Similarly, conditions 2(a) and 2(b) in Lemma 7.2 correspond to conditions 2(a) and

2(b) in Lemma 7.1, respectively. By requiring a unique path in the schema from ν(nord) to

ν(nimp) without any node types with multiple occurrences (condition 2(c)), it is ensured

that for each collection node matched to nord, there is at most one collection node matched

to nimp. ✷

Once an order implication nord ❀ nimp has been found for a local QTP quk , Definition 7.7

makes it possible to immediately conclude that for any physical LQP apuk corresponding to

this local QTP, aord ❀ aimp. By repeatedly applying this inference, this makes it possible

to infer the entire set of order properties for a given physical LQP. For a given physical LQP
apuk with ordering attribute a, the set of order properties encompasses all those attributes

in A (puk) whose order can be (directly or indirectly) inferred from a:

O (apuk) = {a} ∪ {a′ ∈ A (puk) | a❀ a′}

For example, consider the local QTP q18, shown in Figure 7.11(a). Assuming that the

physical LQP ap2p18 is chosen, the result is explicitly ordered by ap2. Inspecting the schema

(shown in Figure 7.12) reveals that the order of the author node is implied by the order of

ap2, since the author node occurs as an ancestor of ap2 in the pattern and at a fixed depth in

the schema of fragment fV
1 . The order of the author node then in turn implies the order

of ap3 since there is a unique path in the schema from the author node type to the edge to

fragment fV
3 . Thus, a

p
3 ∈ O

(

ap2p18
)

.

author

∧

ap2
P 1→2
∗

//

ap3
P 1→3
∗

//

(a) q18(f
V
1)

arp3
RP 1→3
∗

book

//

ap4
P 3→4
∗

//

(b) q38(f
V
3)

Figure 7.11: Two local QTPs

190

author

agent

OPT

(a) fV
1

name

first

ONCE

text

last

ONCE

text

(b) fV
2

pubs

book

MULT

article

MULT

(c) fV
3

initial

text

(d) fV
5

title

text

(e) fV
6

chapter

reference

OPT ONCE

(f) fV
4

ONCE

ONCE

ONCE

MULT MULT

OPT OPT

Figure 7.12: A vertical fragmentation schema

When starting with ap3p18, explicitly ordering by ap3, it can again be inferred that author

is also ordered. However, in this case, it is not possible to infer the ordering of ap2 since

there is no unique path from author to an edge to fragment fV
2 . Therefore, a

p
2 /∈ O

(

ap3p18
)

.

One interesting property of order implications as defined here is that the order of the

attribute corresponding to the root proxy extraction point in a local QTP is implied by any

other attribute. Thus, regardless of which attribute is chosen as the ordering attribute,

the attribute corresponding the root proxy extraction point is always part of the order

properties. This is because a root proxy extraction point always matches nodes at the root

of a sub-tree, which means that these matching nodes occur at a fixed depth. In addition,

the root proxy extraction point is an ancestor of any pattern node. Thus, for example, for

the local QTP q38, shown in Figure 7.11(b), arp3 ∈ O
(

ap4p38
)

.

Being able to infer the ordering of the root proxy extraction point is highly advanta-

191

geous. For DEPs containing only “linear” local QTPs (i.e., local QTPs with a single root

proxy extraction point and a single proxy extraction point), this makes it possible to use a

highly efficient merge join for all cross-fragment joins. Even in cases of more complex local

QTPs, it is common that the ordering of all extraction points can be inferred, allowing for

the use of a merge join even for these queries.

7.3.2.3 Comparing Alternative Physical LQPs

For a given logical LQP, it is not generally possible to identify a single, best physical LQP

corresponding to it. This is because, when comparing the physical LQPs corresponding

to a local QTP, multiple properties must be taken into account. For example, while one

physical LQP might lead to the lowest total cost, another physical LQP might have a lower

cost to first tuple, or a larger set of order properties. Only the distributed optimizer at the

query dispatcher can decide which of these physical LQPs leads to the best overall DEP.

This section describes how the local optimizer at a given fragment can compare the

possible physical LQPs for a given local QTP. Based on this, the local optimizer can

immediately discard all physical LQPs whose performance is dominated by that of another

physical LQP (by being worse in at least one of the properties and no better in any of

them). The remaining physical LQPs (the “best LQPs”) that are not dominated by another

LQP are then considered for inclusion in the physical DEP and, thus, their properties are

reported to the distributed optimizer at the query dispatcher.

To determine the best physical LQPs for a local QTP quk , each attribute in the result

of puk is considered as the ordering attribute. Thus for each a ∈ A (puk), the physical LQP
apuk with the lowest response time cost(apuk) is determined by the local query optimizer.

Additionally, the physical LQP with the lowest cost to first tuple cost-first(apuk
′) and the

physical LQP with the lowest cost per sub-tree (subtcost(apuk)) are determined. Together,

this results in a set of physical LQPs corresponding to local QTP quk . For each physical

LQP apuk in this set, the set of order properties (O (apuk)) is then determined using the

techniques presented in the previous section.

Next, the physical LQPs are compared based on their properties. Inferior physical

LQPs (i.e., physical LQPs whose performance is dominated by another, better physical

192

LQP) are discarded. The following definition formalizes how this is done.

Definition 7.8. Let a1puk and
a2puk be two physical LQPs corresponding to the same logical

LQP. Then a1puk is inferior to a2puk if all of the following hold:

• cost(a1puk) ≥ cost(a2puk), and

• cost-first(a1puk) ≥ cost-first(a2puk), and

• subtcost(a1puk) ≥ subtcost(a2puk), and

• O (a1puk) ⊆ O (a2puk).

and at least one of the following holds:

• cost(a1puk) > cost(a2puk), and

• cost-first(a1puk) > cost-first(a2puk), and

• subtcost(a1puk) > subtcost(a2puk), and

• O (a1puk) ⊂ O (a2puk).

Logical Properties

card(puk) estimated by centralized cardinality model

A (puk) set of extraction points in local QTP

nsubt(puk) fragment statistics

Physical Properties

cost(apuk) estimated by centralized cost model

cost-first(apuk) estimated by centralized cost model

O (apuk) inferred from a

subtcost(apuk) estimated by centralized cost model

Table 7.1: LQP properties

193

After all of the inferior physical LQPs have been eliminated, the properties of the

remaining physical LQPs are reported to the distributed optimizer at the query dispatcher.

The distributed optimizer then uses these properties to construct the best physical DEP.

Table 7.1 shows an overview of how the logical and physical properties of LQPs are

obtained.

7.4 Obtaining DEP Properties

After the properties of the physical LQPs have been received by the query dispatcher,

distributed query optimization can begin. During this phase, the candidate DEPs for a

given query are enumerated. The candidate DEPs differ in the order in which the results

of the individual LQPs are combined and in the logical and physical operators used to do

this.

To determine how the various DEP alternatives compare, the distributed optimizer

needs to be able to infer the properties defined in Section 7.2 for a given candidate DEP.

As described there, for logical DEPs, two logical properties are determined: the cardinality

of the result of the DEP and the set of attributes of the tuples contained in this result.

For physical DEPs, total response time cost, time to first tuple and order properties are

inferred.

To determine these properties, the candidate DEP is traversed in a bottom up fashion

such that each sub-plan visited is rooted at one of the operators in the DEP. This section

describes how the properties of each of these sub-plans can be inferred based on the operator

✶prefix-or-same(id(a
rp
4),id(a

p
3))

✶id(a
p
2)=id(a

rp
2)

p19(f
V
1) p29(f

V
2)

p49(f
V
4)

(a) logical

✶
M
prefix-or-same(id(a

rp
4),id(a

p
3))

✶
M
id(a

p
2)=id(a

rp
2)

a
p
2p19(f

V
1)

a
rp
2 p29(f

V
2)

a
rp
4 p49(f

V
4)

(b) physical

Figure 7.13: DEPs for query q9

194

Logical Physical

LQP A LQP cost

p19 {ap2, a
p
3}

ap2p19 10

p29 {arp2 } arp2 p29 30

p49 {arp4 , a
e
1}

arp4 p49 20

Table 7.2: Properties of LQPs for query q9

at the root of the sub-plan and the properties of the inputs to this operator. Once all sub-

plans of a DEP have been visited, the properties of the overall DEP have been determined,

including its estimated response time cost, which can be used to compare this DEP to

other candidate DEPs.

To illustrate how DEP properties are obtained, consider the logical DEP shown in

Figure 7.13(a). Table 7.2 shows the sets of attributes (A) returned by each of the three

logical LQPs contained in this logical DEP. To infer the set of attributes returned by the

overall logical DEP, the logical DEP is traversed bottom-up. First, the sub-plan rooted at

the join between p19 and p
2
9 is visited. To determine the attributes returned by this plan the

set of attributes returned by each of the inputs to the join operator is examined. Assuming

that the attributes used in the join predicate (ap2 and a
rp
2) are discarded through an implicit

projection, the set of attributes returned by this sub-plan can be determined as follows:

A
(

p19 ✶id(ap2)=id(arp2) p
2
9

)

=
(

A(p19) ∪ A(p
2
9)
)

\ {ap2, a
rp
2 } = {ap3}

Now, the next sub-plan is visited. In this case, this corresponds to the plan rooted at

the remaining join operator, and thus to the entire logical DEP. To determine the set of

attributes of the entire logical plan, the same strategy is employed:

A
((

p19 ✶id(ap2)=id(arp2) p
2
9

)

✶prefix-or-same(id(arp4),id(ap3))
p49
)

=
(

A
(

p19 ✶id(ap2)=id(arp2) p
2
9

)

∪ A(p49)
)

\ {ap3, a
rp
4 } = {ae1}

Figure 7.13(b) shows an example of a physical DEP corresponding to the logical DEP

195

in Figure 7.13(a). To determine the overall cost of this physical DEP, the same bottom-

up traversal can be employed. To determine the cost of the sub-plan rooted at the join

between the physical LQPs ap2p19 and arp2 p29, the costs of these physical LQPs (shown in

Table 7.2) are examined. Since the physical join operator used to join these LQPs is a

merge join (denoted as ✶M), the cost of this sub-plan is simply the maximum of the costs

of the inputs to the join:

cost
(

ap2p19 ✶
M
id(ap2)=id(arp2)

arp2 p29

)

= max
{

cost(a
p
2p19), cost(

arp2 p29)
}

= 30

This is then repeated for the next sub-plan (i.e., the entire physical DEP):

cost
((

ap2p19 ✶
M
id(ap2)=id(arp2)

arp2 p29

)

✶
M
prefix-or-same(id(arp4),id(ap3))

arp4 p49

)

=

max
{

cost
(

ap2p19 ✶
M
id(ap2)=id(arp2)

arp2 p29

)

, cost(a
rp
4 p49)

}

= 30

The reminder of this section describes how the properties of logical and physical sub-

plans can be determined, for each of the operators used in DEPs. For each logical operator,

formulas for the logical properties are given. Then the different physical implementations

of this logical operator are listed, and for each of these implementations, formulas for

inferring physical properties are proposed.

7.4.1 Merge Operator

Logical merge operators (denoted as ⊙) are encountered in DEPs for horizontally frag-

mented collections and in DEPs for vertical fragmentation if a QTP has been split due to

disjunction or negation.

The logical properties of a merge operator can easily be inferred from the logical prop-

erties of the operands of the merge. Since a merge operator returns exactly those tuples

that it receives from its operands and the partitions are disjoint, the cardinality of the

output of a merge is simply the sum of the cardinalities of its operands:

196

card





⊙

GPx∈{GPu ,GPv ,...}

(GPx
)



 =
∑

GPx∈{GPu ,GPv ,...}

(card (GPx
))

Merge operators, as used in this work, assume that all operands produce tuples with

the same attributes. The output of the merge, in turn, consists of the same attributes:

A





⊙

GPx∈{GPu ,GPv ,...}



 = A (GPu
) = A (GPv

) = . . .

As described in Section 6.1.2, there are four physical implementations of the logical

merge operator that differ in how their results are ordered: Merging with full interleaving

(⊙FI) returns tuples as soon as they are received. Merging with document-wise interleaving

(⊙DI) returns the tuples from a given document once all tuples from that document have

been received. Concatenation-based merging (⊙C) returns the tuples from a given operand

once all tuples from that operand have been received. Merging with stable concatenation

(⊙SC) also returns tuples one operand at a time but additionally enforces a stable order

across operands.

While response time cost is a physical property, for merge operators it is independent of

the specific implementation. Since none of the merge implementations described in Section

6.1.2 perform processing beyond buffering and passing on tuples received, the overall cost

of a merge operator is directly determined by the cost of its most expensive operand3. Thus

the cost of a merge operator can be determined using the following formula, regardless of

which physical implementation of this operator is used (note that ⊙∗ denotes any physical

merge operator):

3In cases where all operands have approximately the same cost, a merge operator might incur a small

overhead above the maximum operand cost. A similar case might happen with an ordered merge operator

(such as ⊙SC) when the sub-plan whose tuples need to be returned first is the slowest. This would make

it necessary to emit the tuples from all other sub-plans once the slowest sub-plan is finished. Since this

overhead is expected to be small, it is not considered in this cost model.

197

cost





⊙∗

GPx∈{GPu ,GPv ,...}

(GPx
)



 ≈ max
GPx∈{GPu ,GPv ,...}

(cost (GPx
))

While all physical merge operators yield the same overall cost, time to first tuple and

order properties vary depending on which physical operator is chosen. In the following,

formulas for determining these physical properties are provided for each of the four physical

merge operators.

7.4.1.1 Physical Merge Operator With Full Interleaving

The physical merge operator with full interleaving (denoted as ⊙FI) returns its first result

tuple as soon as one tuple has been received from any operand. Thus, the overall time

to the first tuple is the minimum of the first-tuple delays of the operands of the merge

operator:

cost-first





⊙FI

GPx∈{GPu ,GPv ,...}

(GPx
)



 ≈ min
GPx∈{GPu ,GPv ,...}

(cost-first (GPx
))

Since the merge operator with full interleaving arbitrarily interleaves the sequences

of tuples received from its operands, any order properties present in these sequences are

potentially destroyed. Thus, no order properties can be inferred for this operator (i.e., the

order properties are the empty set):

O





⊙FI

GPx∈{GPu ,GPv ,...}

(GPx
)



 = ∅

7.4.1.2 Physical Merge Operator With Document-Wise Interleaving

As described in Section 6.1.2, the physical merge operator with document-wise interleaving

(denoted as ⊙DI) is used in the context of a horizontal fragmentation, when relaxed order

198

semantics (i.e., ignoring the requirement that there be a stable order of the documents

in a collection) are traded off for potentially improved performance. When merging with

document-wise interleaving, the first tuple is returned once one of the operands of the

merge operator has produced all the tuples derived from one of the documents in the

collection.

Due to these semantics, the merge operator with document-wise interleaving is never

used when the horizontal fragmentation step corresponding to this operator is nested within

a vertical fragmentation. Thus, the horizontal fragmentation step is known to be the out-

ermost fragmentation step and for each operand GPu
, there are two scenarios to consider:

Either GPu
consists of a single LQP puk (i.e., there are no further fragmentation steps nested

within this horizontal fragmentation) or GPu
consists of multiple LQPs (corresponding to

a scenario where a vertical fragmentation step is nested within this horizontal fragment-

ation). In the latter case, there must be some LQP in puk ∈ Pu (where Pu denotes the set

of LQPs accessed by GPu
) that is the root LQP of GPu

. In both cases, the number of doc-

uments accessed by GPu
corresponds to the number of sub-trees accessed by puk , nsubt(p

u
k).

Since, overall, GPu
returns card(GPu

) tuples, the (average) number of tuples per document

accessed by GPu
can be estimated as

card(GPu)

nsubt(pu
k
)
.

Now, consider the time that elapses until GPu
produces

card(GPu)

nsubt(pu
k
)
tuples. To estimate

this, two components need to be considered. The first component is the time to the first

tuple returned by GPu
. This is estimated as cost-first (GPu

). The second component uses

the assumption that after the first tuple, tuples are returned at a steady rate (cf. Section

7.1). After the first tuple, an additional
card(GPu)

nsubt(pu
k
)
− 1 tuples are needed. The time to

produce these tuples can be estimated as
(

card(GPu)

nsubt(pu
k
)
− 1
)

cost(GPu)−cost-first(GPu)

card(GPu)−1
. However, it

is necessary to consider the case that
card(GPu)

nsubt(pu
k
)
≤ 1. In this case, it is only necessary to wait

for the first tuple produced by GPu
. Based on this, the time required until GPu

returns all

tuples for one document (denoted as docdelay(GPu
)) can be estimated as follows:

docdelay(GPu
) ≈ cost-first (GPu

)+max

{(

card(GPu
)

nsubt(puk)
− 1

)

cost (GPu
)− cost-first (GPu

)

card(GPu
)− 1

, 0

}

The merge operator with document-wise interleaving produces its first tuple once it has

199

received all tuples corresponding to one document, regardless of which operand has yielded

these tuples. Thus, the overall time to first tuple for this operator can be estimated as

follows:

cost-first





⊙DI

GPx∈{GPu ,GPv ,...}

(GPx
)



 ≈ min
GPx∈{GPu ,GPv ,...}

(docdelay(GPx
))

As with full interleaving, document-wise interleaving potentially destroys the ordering

of its inputs. It does, however preserve any ordering present in all inputs within the context

of a single document/sub-tree, which makes this strategy appealing when evaluating queries

over horizontally fragmented collections if one is willing to somewhat relax the semantics

of order between nodes in different documents. This trade-off is described in more detail

in Section 6.1.2. Assuming relaxed order semantics, the order properties of the operator

can be described as follows:

O





⊙DI

GPx∈{GPu ,GPv ,...}

(GPx
)



 =
⋂

GPx∈{GPu ,GPv ,...}

O (GPx
)

7.4.1.3 Physical Merge Operator Based on Concatenation

The concatenation-based physical merge operator (denoted as ⊙C) returns the first tuple

once all tuples have been received from at least one operand. Thus, the delay to the first

tuple corresponds to the total response time of the least expensive operand:

cost-first





⊙C

GPx∈{GPu ,GPv ,...}

(GPx
)



 ≈ min
GPx∈{GPu ,GPv ,...}

(cost (GPx
))

Since concatenation may change the relative order of tuples derived from different sub-

plans, none of the order properties present in the inputs are preserved. Thus, as in the

case of the merge operator with full interleaving, no order properties can be inferred for

this operator:

200

O





⊙C

GPx∈{GPu ,GPv ,...}

(GPx
)



 = ∅

7.4.1.4 Physical Merge Operator Based on Stable Concatenation

With the physical merge operator based on stable concatenation (denoted as ⊙SC), the

first tuple is returned once all tuples have been received from the leftmost operand. Thus,

the time to first tuple can be estimated as the cost of this operand:

cost-first





⊙SC

GPx∈{GPu ,GPv ,...}

(GPx
)



 ≈ cost (GPu
)

This is the only strategy that preserves order properties. However, this is only the case

for order properties present in all of the operands of the merge operator and only if the

horizontal fragmentation is not nested within a vertical fragmentation:

O





⊙SC

GPx∈{GPu ,GPv ,...}

(GPx
)



 =
⋂

GPx∈{GPu ,GPv ,...}

O (GPx
)

Table 7.3 shows an overview of the logical and physical properties of the merge operator.

7.4.2 Cross-Fragment Join Operator

Cross-fragment joins are used to combine the results of LQPs evaluated over vertical frag-

ments. Based on the independence assumption stated in Section 7.1, the cardinality of

a cross-fragment join can be estimated. How this is done depends on whether the cross-

fragment join has an equality predicate (e.g., GPu
✶id(apv)=id(arpv) GPv

, as seen in cases

without pipelining) or a prefix predicate (e.g., GPu
✶prefix-or-same(id(apu),id(a

rp
v)) GPv

, as seen in

cases where pipelining is used).

201

Logical Properties

card

(

⊙

GPx∈{GPu ,GPv ,...}

(GPx
)

)

=
∑

GPx∈{GPu ,GPv ,...}

(card (GPx
))

A

(

⊙

GPx∈{GPu ,GPv ,...}

)

= A (GPu
) = A (GPv

) = . . .

Physical Properties – All

cost

(

⊙∗

GPx∈{GPu ,GPv ,...}

(GPx
)

)

≈ max
GPx∈{GPu ,GPv ,...}

(cost (GPx
))

Physical Properties – Full Interleaving

cost-first

(

⊙FI

GPx∈{GPu ,GPv ,...}

(GPx
)

)

≈ min
GPx∈{GPu ,GPv ,...}

(cost-first (GPx
))

O

(

⊙FI

GPx∈{GPu ,GPv ,...}

(GPx
)

)

= ∅

Physical Properties – Document-Wise Interleaving

cost-first

(

⊙DI

GPx∈{GPu ,GPv ,...}

(GPx
)

)

≈ min
GPx∈{GPu ,GPv ,...}

(docdelay(GPx
))

O

(

⊙DI

GPx∈{GPu ,GPv ,...}

(GPx
)

)

=
⋂

GPx∈{GPu ,GPv ,...}

O (GPx
) (with relaxed semantics)

Physical Properties – Concatenation

cost-first

(

⊙C

GPx∈{GPu ,GPv ,...}

(GPx
)

)

≈ min
GPx∈{GPu ,GPv ,...}

(cost (GPx
))

O

(

⊙C

GPx∈{GPu ,GPv ,...}

(GPx
)

)

= ∅

Physical Properties – Stable Concatenation

cost-first

(

⊙SC

GPx∈{GPu ,GPv ,...}

(GPx
)

)

≈ cost (GPu
)

O

(

⊙SC

GPx∈{GPu ,GPv ,...}

(GPx
)

)

=
⋂

GPx∈{GPu ,GPv ,...}

O (GPx
) (for top-level horizontal fragmentation)

Table 7.3: Merge operator properties

202

Cardinality of cross-fragment join with equality predicate Let pvk ∈ Pv be the

LQP containing the root proxy pattern node used in the join predicate. Since pvk
accesses nsubt(pvk) sub-trees in its corresponding fragment, the average number of

tuples returned by GPv
for each such sub-tree can be estimated as

card(GPv)

nsubt(pv
k
)
. GPu

, on

the other hand, returns card(GPu
) tuples. Since the cross-fragment join has an equal-

ity predicate, no intermediate fragments have been skipped. Thus, each proxy node

P i→j
b matched to apv corresponds to exactly one sub-tree accessed by pvk. Therefore,

the overall cardinality of the cross-fragment join can be estimated as follows:

card
(

GPu
✶id(apv)=id(arpv) GPv

)

≈ card(GPu
)
card(GPv

)

nsubt(pvk)

Cardinality of cross-fragment join with prefix predicate When fragments have

been pruned from a DEP using the technique described in Section 6.2.1, prefix-

based join predicates are used, resulting in a slightly more complicated situation. In

this case, for each proxy node P g→i
a matched to apu by GPu

, there may be multiple

corresponding root proxy nodes RP i→j
b , each of which corresponds to a sub-tree that

is considered by pvk. Assume, for example, that the proxy node P g→i
a has the Dewey

ID 1.2. Then any root proxy node RP i→j
b with a Dewey ID with the prefix 1.2 (e.g.,

1.2.1.1, 1.2.1.2, etc.) is matched by the cross-fragment join.

To address this, it is necessary to insert an additional scaling factor into the car-

dinality estimation formula. This factor needs to capture how many sub-trees are

considered by pvk for each proxy node P i→j
a .

factor =
of P g→i

a in fV
g

of RP i→j
b in fV

j

Due to the one-to-one correspondence between proxy nodes and root proxy nodes,

the number of proxy nodes P g→i
a in fV

g is the same as the number of root proxy nodes

RP g→i
a in fV

i . This number corresponds to nsubt(puk) where p
u
k is the skipped LQP

corresponding to fragment fV
i . Similarly, the number of root proxy nodes RP i→j

b in

fV
j is nsubt(pvk). Thus, the factor can be determined as follows:

203

factor =
nsubt(pvk)

nsubt(puk)

Including this factor in the formula for estimating the cardinality of the cross-

fragment join yields the following estimate:

card
(

GPu
✶prefix-or-same(id(apu),id(a

rp
v)) GPv

)

≈ card(GPu
)
nsubt(pvk)

nsubt(puk)

card(GPv
)

nsubt(pvk)

= card(GPu
)
card(GPv

)

nsubt(puk)

Attribute set of cross-fragment join To determine the set of attributes, it is assumed

that the attributes used in the join predicate are projected away immediately after the

cross-fragment join. This leads to the following formula, where θ is the comparison

used in the join predicate (i.e., equality or prefix)4 :

A
(

GPu
✶id(apu) θ id(arpv) GPv

)

= (A (GPu
) ∪ A (GPv

)) \ {apu, a
rp
v }

Depending on the ordering of the operands of the cross-fragment join, several different

physical join operators are considered. If both operands are ordered by the attributes used

in the join predicate (either because of the order properties of the LQPs in the operand,

or because a separate sort operator was inserted), a merge join (denoted as ✶
M) can be

used. This physical operator supports full pipelining on both of its operands, allowing

for maximum parallelism. Alternatively, a one-sided hash join (denoted as ✶
H) can be

employed. In this case it is necessary to materialize one of the operands before the join

can be performed. A symmetric hash join (denoted as ✶SH) represents a third alternative.

Like the one-sided hash join, this physical operator does not require that its operands be

ordered by the attributes used in the join predicate. However, unlike the one-sided hash

join, the symmetric hash join produces join tuples as soon as tuples are received from

4For simplicity, in the following id(a1) prefix-or-same id(a2) is defined to be equivalent to

prefix-or-same(id(a1), id(a2)).

204

the operands. This is achieved by using two hash tables and obviates the need to fully

materialize one of the operands. Pushing the cross-fragment join into an LQP represents

a fourth option. In this case it is possible to use an index join (denoted as ✶I).

7.4.2.1 Physical Merge Join Operator

The merge join operator (denoted as ✶M) is a highly efficient physical join operator that

relies on both of its operands being ordered by the attributes referenced in the join predi-

cate. Therefore, to be able to use a merge join to evaluate the join GPu
✶id(apu) θ id(a

rp
v) GPv

,

the result of GPu
has to be ordered by apu and the result of GPv

has to be ordered by arpv .

Formally, these requirements can be expressed as apu ∈ O (GPu
) and arpv ∈ O (GPv

).

As described in [25, 105], a merge join works by synchronously iterating over the tuples

generated by both operands. This way, it is possible to process the join without mate-

rializing either operand, which allows for full pipelining on both operands. Due to this

characteristic, the response time of performing a merge join is dominated by the cost of

evaluating the operands of the join and the overall cost can be estimated as the maximum

operand cost:

cost
(

GPu
✶

M
id(apu) θ id(a

rp
v) GPv

)

≈ max {cost(GPu
), cost(GPv

)}

To estimate the time until the first join tuple is produced, consider the average num-

ber of tuples from each operand of the join that are needed to produce one join tuple.

tupfirst
(

GPu
, GPu

✶id(apu) θ id(a
rp
v) GPv

)

denotes the number of tuples needed from operand

GPu
so that GPu

✶id(apu) θ id(a
rp
v) GPv

can produce one join tuple. This quantity can be

estimated by dividing the cardinality of the operand by the cardinality of the join result:

tupfirst
(

GPu
, GPu

✶id(apu) θ id(a
rp
v) GPv

)

≈
card(GPu

)

card
(

GPu
✶id(apu) θ id(a

rp
v) GPv

)

Now consider the time it takes for GPu
to produce tupfirst

(

GPu
, GPu

✶id(apu) θ id(a
rp
v) GPv

)

tuples. This can be estimated similar to how docdelay(GPu
) is estimated in Section

205

7.4.1.2 by considering the time to the first tuple of GPu
and then assuming that the re-

maining tupfirst
(

GPu
, GPu

✶id(apu) θ id(a
rp
v) GPv

)

− 1 tuples are produced at a steady rate.

This yields the following estimate of the time elapsed before GPu
produces tupfirst(GPu

,

GPu
✶id(apu) θ id(a

rp
v) GPv

) tuples (denoted as tupdelay
(

GPu
, GPu

✶id(apu) θ id(a
rp
v) GPv

)

):

tupdelay
(

GPu
, GPu

✶id(apu) θ id(a
rp
v) GPv

)

≈ cost-first(GPu
)+

max

{

cost(GPu
)− cost-first(GPu

)

card(GPu
)− 1

(

tupfirst
(

GPu
, GPu

✶id(apu) θ id(a
rp
v) GPv

)

− 1
)

, 0

}

Based on this, the time until the fist join tuple is produced can be estimated as the

time until a sufficient number of input tuples have been received from both operands:

cost-first
(

GPu
✶

M
id(apu) θ id(a

rp
v) GPv

)

≈

max
{

tupdelay
(

GPu
, GPu

✶id(apu) θ id(a
rp
v) GPv

)

, tupdelay
(

GPv
, GPu

✶id(apu) θ id(a
rp
v) GPv

)}

To determine the order properties of the physical merge join operator, it is helpful to

take a closer look at how this operator proceeds. In particular, it is important to consider

what happens when there are duplicate values of the join attribute in one or both of the

operands. The merge join handles this by taking a tuple from the outer (left) operand of

the join and matching it to each tuple from the inner (right) operand of the join for which

the join predicate is satisfied. This results in the tuples from the inner operand being

iterated over multiple times if there are duplicate attribute values in the tuples from the

outer operand.

Consider, for example, the sub-plans GPu
and GPv

, which yield the tuples shown in

Figures 7.14(a) and 7.14(b), respectively. As can be seen, R(GPu
) is ordered by ae1 and a

p
v,

and R(GPv
) is ordered by arpv and apn.

When performing the join GPu
✶

M
id(apv)=id(arpv)

GPv
, GPu

is on the left and thereby the

outer side of the join. Thus, for each tuple in R(GPu
), the join iterates over the matching

tuples in R(GPv
). This yields the tuples shown in Figure 7.15(a). As can be seen, for tuple

206

ta,1 with id(apv) = 10, there are two matching tuples (tb,1 and tb,2) in R(GPv
). Therefore,

the tuples ta,1 · tb,1 and ta,1 · tb,2 are produced (denoting ta,1 concatenated with tb,1, and ta,1

concatenated with tb,2, respectively). Since ta,1 · tb,1 and ta,1 · tb,2 are produced in the same

order as the original tuples in R(GPv
) and R(GPv

), the join preserves the order properties

ae1 and apn in this case.

For id(apv) = id(arpv) = 11, there are two tuples in R(GPu
) (ta,2 and ta,3) and two tuples

in R(GPv
) (tb,3 and tb,4). Since GPu

is the outer input, ta,2 is processed first and matched

with tb,3 and tb,4, yielding ta,2 · tb,3 and ta,2 · tb,4. Then ta,3 is matched with tb,3 and tb,4,

yielding ta,3 · tb,3 and ta,3 · tb,4. As can be seen, while this preserves the ordering of the

attribute on the outer side of the join (ae1), it does not preserve the order of the attribute

on the inner side (apn).

For id(apv) = id(arpv) = 12, a third scenario is encountered. This time, there are two

tuples on the outer side (ta,4 and ta,5), but only one tuple on the inner side (tb,5). In this

case the order of all attributes is preserved, as is shown in the result tuples ta,4 · tb,5 and

ta,5 · tb,5.

Figure 7.15(b) shows the result of performing the join GPv
✶

M
id(apv)=id(arpv)

GPu
. This

time, GPv
is the outer input and GPu

is the inner input. As before, for values of id(apv) and

id(arpv) where at least one side is duplicate-free, the ordering of all attributes is preserved.

For id(apv) = id(arpv) = 11, however, where there are two tuples in R(GPv
) and two tuples

in R(GPu
), only the order of the attributes from the outer side (i.e., GPv

) is preserved.

ta,1 =[ae1 = name4, a
p
v = P i→j

10]

ta,2 =[ae1 = name5, a
p
v = P i→j

11]

ta,3 =[ae1 = name6, a
p
v = P i→j

11]

ta,4 =[ae1 = name7, a
p
v = P i→j

12]

ta,5 =[ae1 = name8, a
p
v = P i→j

12]
(a) R(GPu

)

tb,1 =[arpv = RP i→j
10 , apn = P j→k

21]

tb,2 =[arpv = RP i→j
10 , apn = P j→k

22]

tb,3 =[arpv = RP i→j
11 , apn = P j→k

23]

tb,4 =[arpv = RP i→j
11 , apn = P j→k

24]

tb,5 =[arpv = RP i→j
12 , apn = P j→k

25]
(b) R(GPv

)

Figure 7.14: Tuples produced by sub-plans GPu
and GPv

207

ta,1 · tb,1 =[ae1 = name4, a
p
n = P j→k

21]

ta,1 · tb,2 =[ae1 = name4, a
p
n = P j→k

22]

ta,2 · tb,3 =[ae1 = name5, a
p
n = P j→k

23]

ta,2 · tb,4 =[ae1 = name5, a
p
n = P j→k

24]

ta,3 · tb,3 =[ae1 = name6, a
p
n = P j→k

23]

ta,3 · tb,4 =[ae1 = name6, a
p
n = P j→k

24]

ta,4 · tb,5 =[ae1 = name7, a
p
n = P j→k

25]

ta,5 · tb,5 =[ae1 = name8, a
p
n = P j→k

25]
(a) GPu

✶
M
id(ap

v)=id(arp

v)
GPv

ta,1 · tb,1 =[ae1 = name4, a
p
n = P j→k

21]

ta,1 · tb,2 =[ae1 = name4, a
p
n = P j→k

22]

ta,2 · tb,3 =[ae1 = name5, a
p
n = P j→k

23]

ta,3 · tb,3 =[ae1 = name6, a
p
n = P j→k

23]

ta,2 · tb,4 =[ae1 = name5, a
p
n = P j→k

24]

ta,3 · tb,4 =[ae1 = name6, a
p
n = P j→k

24]

ta,4 · tb,5 =[ae1 = name7, a
p
n = P j→k

25]

ta,5 · tb,5 =[ae1 = name8, a
p
n = P j→k

25]
(b) GPv

✶
M
id(ap

v)=id(arp

v)
GPu

Figure 7.15: Tuples produced by merge joins

As is illustrated in this example, the set of attributes that are ordered in the result of a

merge join is the set of attributes that are ordered in the outer (i.e., left-hand side) input

of the join.

Additionally, the requirement that GPu
and GPv

be ordered by the join attributes

implies that the result of the join is ordered by arpv . Hence, the join result is additionally

ordered by all those attributes in A (GPv
) whose order is implied by arpv .

If it can be shown that either the result of GPu
or the result of GPv

is free of duplicate

values of the join attribute, then the ordering of all attributes is preserved. This is the

case, for example, when GPv
consists of a single LQP pvk and the QTP corresponding to

pvk, q
v
k has only a single extraction point.

In summary, the order properties of a merge join can be determined as follows:

O
(

GPu
✶

M
id(apu) θ id(a

rp
v) GPv

)

=






O (GPu
) ∪O (GPv

) if apu or arpv dupl. free

O (GPu
) ∪ {ai ∈ A (GPv

) , arpv ❀ ai} otherwise

208

If at least one of the operands of a cross-fragment join is not ordered by the join

predicate, it is not possible to use the merge join operator directly. To address this, it is

possible to insert a sort operator, which is discussed further in Section 7.4.3. Alternatively,

other physical join operators such as a one-sided or two-sided hash join can be considered.

7.4.2.2 Physical One-Sided Hash Join Operator

A one-sided hash join (denoted as ✶
H) is a physical join operator that does not require

its operands to be ordered in any specific way. There exist many different variants of this

physical operator in the literature, for an overview the reader is referred to Graefe’s survey

[59].

This hash join operator proceeds by populating a hash table with the tuples received

from the inner (right) operand. Once this hash table is in place, it is probed for each tuple

from the outer (left) operand and for each match found in the hash table an output tuple

is produced.

When estimating the cost of the hash join GPu
✶

H
id(apu) θ id(a

rp
v)
GPv

, two scenarios need to

be considered. If the response time cost of GPu
is sufficiently high, then this cost dominates

the overall response time cost of the join. If however, the cost of GPv
dominates, then

after all the tuples in the result of GPv
have been inserted into the hash table, the hash

table still has to be probed for each tuple in the result of GPu
. The cost of this probing

phase depends on the cost of an individual probe operation on the hash table (denoted

as probecost, which can easily be determined experimentally) and the number of times

this operation is performed (once for each tuple received from GPu
, i.e., card(GPu

) times).

Based on this, the overall cost of the hash join can be estimated as follows:

cost
(

GPu
✶

H
id(apu) θ id(a

rp
v) GPv

)

≈ max {cost(GPu
), cost(GPv

) + card(GPu
) probecost}

The hash join operator always materializes its inner operand before returning the

first tuple and this fact has to be taken into account when estimating the response

time elapsed until the first join tuple is produced. Once the hash table is built, it

209

has to be probed with (on average) tupfirst
(

GPu
, GPu

✶id(apu) θ id(a
rp
v) GPv

)

tuples from the

outer operand. Thus, there are again two cases to consider: If the response time cost

of producing the first tupfirst
(

GPu
, GPu

✶id(apu) θ id(a
rp
v) GPv

)

input tuples from GPu
domi-

nates, this cost (tupdelay
(

GPu
, GPu

✶id(apu) θ id(a
rp
v) GPv

)

) dominates the time until the first

join tuple is produced. Otherwise, the time to the first tuple corresponds to the time

until the hash table is built (cost(GPv
)) plus the cost of probing the hash table for

tupfirst
(

GPu
, GPu

✶id(apu) θ id(a
rp
v) GPv

)

tuples from GPu
. This yields the following estimate:

cost-first
(

GPu
✶

H
id(apu) θ id(a

rp
v) GPv

)

≈

max

{

tupdelay
(

GPu
, GPu

✶
H
id(apu) θ id(a

rp
v) GPv

)

,

cost(GPv
) + tupfirst

(

GPu
, GPu

✶
H
id(apu) θ id(a

rp
v) GPv

)

probecost

}

Since the hash join operator considers one tuple from the outer operand at a time, the

order of all attributes from the outer operand is preserved. For the attributes from the

inner operand, which are accessed randomly via the hash table, there is no such guarantee.

The sole exception to this occurs in the case where GPu
is ordered by the proxy attribute

apu. If the hash operator is implemented such that probing the hash table with a proxy ID

yields the matching root proxy nodes in document order, it is possible to infer that the join

result will be ordered by all those attributes in GPv
whose order is implied by arpv . Thus,

the order properties of a hash join can be determined as follows:

O
(

GPu
✶

H
id(apu) θ id(a

rp
v) GPv

)

=







O (GPu
) ∪ {ai ∈ A (GPv

) , arpv ❀ ai} if apu ∈ O (GPu
)

O (GPu
) otherwise

7.4.2.3 Physical Symmetric Hash Join Operator

Another alternative that combines some of the benefits of the merge join operator and the

one-sided hash join operator is the symmetric hash join operator (denoted as ✶SH). This

210

operator, first proposed by Wilschut and Apers [134], relies on two separate hash tables,

one for each operand. Whenever an input tuple is received from one of the operands, the

hash table of the other operand is probed and output tuples are generated as in the probing

phase of the one-sided hash join. Then, the received input tuple is inserted into the hash

table corresponding to its operand, where it is available for probing once further tuples

from the other operand are received. By using this strategy, the symmetric hash can begin

producing join tuples before either operand has been fully materialized, obviating the need

for a separate probing phase. Assuming that enough processing capacity is available for

the symmetric hash join to keep up with the rate at which input tuples are received, the

overall cost of this operator can thus be estimated as follows:

cost
(

GPu
✶

SH
id(apu) θ id(a

rp
v) GPv

)

≈ max {cost(GPu
), cost(GPv

)}

As can be seen, this is the same overall cost as in the case of the merge join operator.

When considering time to first tuple, the characteristics of the symmetric hash join

operator are similarly advantageous. Since neither operand needs to be materialized fully,

the first join tuple is produced once tupfirst
(

GPu
, GPu

✶id(apu) θ id(a
rp
v) GPv

)

tuples have been

received from GPu
and tupfirst

(

GPv
, GPu

✶id(apu) θ id(a
rp
v) GPv

)

have been received from GPv
.

In analogy to the formula used to estimate the cost the first tuple produced by the merge

join operator, the cost to first tuple is thus:

cost-first
(

GPu
✶

SH
id(apu) θ id(a

rp
v) GPv

)

≈

max
{

tupdelay
(

GPu
, GPu

✶id(apu) θ id(a
rp
v) GPv

)

, tupdelay
(

GPv
, GPu

✶id(apu) θ id(a
rp
v) GPv

)}

When comparing total cost and cost to first tuple of merge join, one-sided hash join,

and symmetric hash join, the latter comes out ahead, especially when considering that,

unlike the merge join operator, it does not require its operands to be ordered. However,

this flexibility of the symmetric hash join operator comes at a price. For each input tuple

received by this operator, some join tuples may be produced as soon as the input tuple is

received. Then, additional join tuples may be produced whenever further matching tuples

211

are received from the other operand. This has the effect of destroying any order properties

that may have been present in the join operands, which represents a key disadvantage of

this operator.

O
(

GPu
✶

SH
id(apu) θ id(a

rp
v) GPv

)

= ∅

7.4.2.4 Pushed Cross-Fragment Joins

As discussed in Section 6.2.2.3, for cross-fragment joins that have been pushed into an

LQP, it is possible to pre-compute an index over the root proxy nodes to enable efficient

retrieval of the relevant sub-trees. Using this index, it is possible to use an index join

operator (denoted as ✶I), i.e., a hash join for which the hash table is pre-computed. For

each proxy ID pipelined into an LQP, the index join looks up the relevant sub-tree in the

index, and the remainder LQP (denoted as p̄vk) is then evaluated over this sub-tree.

When evaluating a pushed cross-fragment join, the remainder LQP p̄vk is evaluated for

each pipelined tuple from GPu
. Thus, when estimating the cost of this join, there are two

scenarios to consider: If the outer (left) operand (GPu
) is the performance limiting factor,

then the overall cost of the join is simply the cost of GPu
plus the cost of evaluating p̄vk over

the last tuple (subtcost(pvk)). If the inner (right) operand is slower, the total cost consists

of the time spent waiting for GPu
’s first tuple (cost-first(GPu

)) plus the response time cost

of evaluating p̄vk over each tuple returned by GPu
(card(GPu

) subtcost(pvk)). This yields the

following cost estimation formula:

cost
(

p̄vk

(

GPu
✶

I
id(apv)=id(arpv) scanarpv :RP i→j

∗

))

≈

max {cost(GPu
) + subtcost(pvk), cost-first(GPu

) + card(GPu
) subtcost(pvk)}

When the cross-fragment join is used in combination with a skipped LQP, each tuple

pipelined into the LQP might result in the remainder plan being evaluated over multiple

sub-trees, all of which have a root proxy ID starting with the same prefix. In this case, it

212

is necessary to consider the additional sub-trees in the cost estimate. Assuming that puk is

the first LQP skipped, the number of sub-trees accessed by pvk for each sub-tree accessed by

puk is
nsubt(pv

k
)

nsubt(pu
k
)
(as explained in Section 7.4.2). Considering this factor in the cost estimate

yields the following formula:

cost
(

p̄vk

(

GPu
✶prefix-or-same(id(apu),id(a

rp
v)) scanarpv :RP i→j

∗

))

≈

max

{

cost(GPu
) +

nsubt(pvk)

nsubt(puk)
subtcost(pvk),

cost-first(GPu
) + card(GPu

)
nsubt(pvk)

nsubt(puk)
subtcost(pvk)

}

To produce the first join tuple, tupfirst(GPu
, GPu

✶id(apv)=id(arpv) p
v
k) tuples are needed

from GPu
. To estimate the time to the first join tuple, two cases need to be considered:

If the outer operand (GPu
) is the limiting factor, then the time to the first tuple can be

estimated as the time elapsed to get a sufficient number of tuples from GPu
plus the time

needed to evaluate the remainder LQP for the last of these tuples. If, on the other hand, the

remainder LQP is the limiting factor, then the time to the first join tuple consists of the time

spent waiting for the first tuple from GPu
, plus the cost of evaluating the remainder LQP

for each of the tupfirst
(

GPu
, GPu

✶id(apv)=id(arpv) p
v
k

)

tuples from GPu
necessary to produce

the first join tuple. Together, this yields the following formula:

cost-first
(

p̄vk

(

GPu
✶

I
id(apv)=id(arpv) scanarpv :RP i→j

∗

))

≈

max
{

tupdelay
(

GPu
, GPu

✶id(apv)=id(arpv) p
v
k

)

+ subtcost(pvk),

cost-first(GPu
) + tupfirst

(

GPu
, GPu

✶id(apv)=id(arpv) p
v
k

)

subtcost(pvk)
}

In the presence of skipped LQPs, it is necessary to consider that for each proxy node

contained in a tuple from GPu
, there may be multiple matching sub-trees, over which the

remainder LQP needs to be executed. On average, there are
nsubt(pv

k
)

nsubt(pu
k
)
sub-trees for each for

each proxy node from GPu
. Thus, the delay to the first join tuple can be estimated by the

following formula:

213

cost-first
(

p̄vk

(

GPu
✶prefix-or-same(id(apu),id(a

rp
v)) scanarpv :RP i→j

∗

))

≈

max

{

tupdelay
(

GPu
, GPu

✶prefix-or-same(id(apu),id(a
rp
v)) p

v
k

)

+
nsubt(pvk)

nsubt(puk)
subtcost(pvk),

cost-first(GPu
) + tupfirst

(

GPu
, GPu

✶prefix-or-same(id(apu),id(a
rp
v)) p

v
k

) nsubt(pvk)

nsubt(puk)
subtcost(pvk)

}

The index join operator processes tuples from the outer operand one at a time. There-

fore, the order properties of the outer operand are preserved. Since the sub-trees accessed

by the remainder LQP p̄vk are accessed randomly, in general no ordering can be inferred for

the attributes generated by p̄vk. As in the case of the one-sided hash join operator, there is

one exception to this rule. If R(GPu
) is ordered by the join attribute apu then the output

of the join is ordered by all attributes whose ordering can be inferred from arpv . This cor-

responds directly to O
(

arpv pvk
)

, i.e., the ordered attributes of a
rp
v pvk, the physical LQP with

arpv designated as the ordering extraction point. Assuming that multiple sub-trees whose

root proxy IDs start with the same prefix are accessed in order (which is easily achieved

by using an order-preserving index structure), the same holds in the scenario where LQPs

are skipped.

O
(

p̄vk

(

GPu
✶

I
id(apu) θ id(a

rp
v) scanarpv :RP i→j

∗

))

=







O (GPu
) ∪O

(

arpv pvk
)

if apu ∈ O (GPu
)

O (GPu
) otherwise

7.4.2.5 Example

To illustrate the properties of the various physical join operators, consider the simple,

logical DEP shown in Figure 7.16. Assuming that the LQPs used in this logical DEP

have the properties shown in Table 7.4, the cardinality of this DEP can be determined as

follows:

card
(

p11 ✶id(ap2)=id(arp2) p
2
1

)

≈ card(p11)
card(p21)

nsubt(p21)
= 8

10

5
= 16

214

✶id(a
p
2)=id(a

rp
2)

p11(f
V
1) p21(f

V
2)

Figure 7.16: A logical DEP with a single cross-fragment join

Logical Physical

LQP card subt A LQP cost cost-first O

p11 8 4 {ap2, a
e
1}

ap2p11 16 2 {ap2, a
e
1}

p21 10 5 {arp2 } arp2 p21 30 3 {arp2 }

Table 7.4: Properties of LQPs

Similarly, the set of attributes of the tuples returned by this DEP can be determined

based on the attributes returned by p11 and p21:

A
(

p19 ✶id(ap2)=id(arp2) p
2
9

)

=
(

A(p19) ∪ A(p
2
9)
)

\ {ap2, a
rp
2 } = ({ap2, a

e
1} ∪ {arp2 }) \ {ap2, a

rp
2 } = {ae1}

Figure 7.17 shows three physical DEPs corresponding to this logical DEP that differ

in the physical join operator they use. The physical DEP shown in Figure 7.17(a) uses a

merge join, the physical DEP in Figure 7.17(b) uses a one-sided hash join, and the physical

DEP in Figure 7.17(c) uses a symmetric hash join. Based on the properties of the physical

LQPs used in these physical DEPs (shown in Table 7.4), the physical properties of the

DEPs can be inferred.

Cost The cost of the DEP with the merge join and the cost of the DEP with the symmetric

hash join are both determined by the maximum LQP cost:

✶
M
id(a

p
2)=id(a

rp
2)

a
p
2p11(f

V
1)

q
rp
2 p21(f

V
2)

(a) merge join

✶
H
id(a

p
2)=id(a

rp
2)

a
p
2p11(f

V
1)

q
rp
2 p21(f

V
2)

(b) hash join

✶
SH
id(a

p
2)=id(a

rp
2)

a
p
2p11(f

V
1)

q
rp
2 p21(f

V
2)

(c) symmetric hash join

Figure 7.17: Physical DEPs with a single cross-fragment join

215

cost
(

ap2p11 ✶
M
id(ap2)=id(arp2)

arp2 p21

)

≈ cost
(

ap2p11 ✶
SH
id(ap2)=id(arp2)

arp2 p21

)

≈

max
{

cost(a
p
2p11), cost(

arp2 p21)
}

= max{16, 30} = 30

For the DEP with the one-sided hash join, the cost of the probing phase needs to be

taken into account. Assuming that the cost of a single probe operation is 0.2, the

cost of this DEP can be estimated as follows:

cost
(

ap2p11 ✶
H
id(ap2)=id(arp2)

arp2 p21

)

≈

max
{

cost(a
p
2p11), cost(

arp2 p21)
}

+ card(p11) probecost = max{16, 30 + 8 · 0.2} = 31.6

Cost to first tuple For both merge join and symmetric hash join, cost to first tuple can

be determined based on the time that elapses before a sufficient number of tuples

have been received by from each operand (denoted as tupdelay()):

cost-first
(

ap2p11 ✶
M
id(ap2)=id(arp2)

qrp2 p21

)

≈ cost-first
(

ap2p11 ✶
SH
id(ap2)=id(arp2)

qrp2 p21

)

≈

max

{

tupdelay
(

ap2p11,
ap2p11 ✶

M
id(ap2)=id(arp2)

qrp2 p21

)

,

tupdelay
(

arp2 p21,
ap2p11 ✶

M
id(ap2)=id(arp2)

qrp2 p21

)

}

=

216

max

{

cost-first(a
p
2p11)+

max
{cost(a

p
2p11)− cost-first(a

p
2p11)

card(a
p
2p11)− 1

(

tupfirst
(

ap2p11,
ap2p11 ✶

M
id(ap2)=id(arp2)

qrp2 p21

)

− 1
)

,

0
}

, cost-first(a
rp
2 p21)+

max
{cost(a

rp
2 p21)− cost-first(a

rp
2 p21)

card(a
rp
2 p21)− 1

(

tupfirst
(

arp2 p21,
ap2p11 ✶

M
id(ap2)=id(arp2)

qrp2 p21

)

− 1
)

,

0
}

}

=

max

{

cost-first(a
p
2p11)+

max

{

cost(a
p
2p11)− cost-first(a

p
2p11)

card(a
p
2p11)− 1

(

card(p11)

card
(

p11 ✶id(ap2)=id(arp2) p
2
1

) − 1

)

, 0

}

,

cost-first(a
rp
2 p21)+

max

{

cost(a
rp
2 p21)− cost-first(a

rp
2 p21)

card(a
rp
2 p21)− 1

(

card(p21)

card
(

p11 ✶id(ap2)=id(arp2) p
2
1

) − 1

)

, 0

}}

=

max

{

2 + max

{

16− 2

8− 1
(
8

16
− 1), 0

}

, 3 + max

{

30− 3

10− 1
(
10

16
− 1), 0

}}

= 3

For the DEP with a one-sided hash join, on the other hand, the first tuple cannot

be produced until the entire hash table has been initialized. Thus, cost to first tuple

can be estimated as follows:

cost-first
(

ap2p11 ✶
H
id(ap2)=id(arp2)

qrp2 p21

)

≈

max

{

tupdelay
(

ap2p11,
ap2p11 ✶

H
id(ap2)=id(arp2)

qrp2 p21

)

,

cost(q
rp
2 p21) + tupfirst

(

arp2 p21,
ap2p11 ✶

H
id(ap2)=id(arp2)

qrp2 p21

)

probecost

}

=

217

max

{

cost-first(a
p
2p11)+

max
{(cost(a

p
2p11)− cost-first(a

p
2p11)

card(a
p
2p11)− 1

(

tupfirst
(

ap2p11,
ap2p11 ✶

H
id(ap2)=id(arp2)

qrp2 p21

)

− 1
)

,

0
}

,

cost(q
rp
2 p21) + tupfirst

(

arp2 p21,
ap2p11 ✶

H
id(ap2)=id(arp2)

qrp2 p21

)

probecost

}

=

max

{

cost-first(a
p
2p11)+

max

{

cost(a
p
2p11)− cost-first(a

p
2p11)

card(a
p
2p11)− 1

(

card(p11)

card
(

p11 ✶id(ap2)=id(arp2) p
2
1

) − 1

)

, 0

}

,

cost(q
rp
2 p21) +

card(p21)

card
(

p11 ✶id(ap2)=id(arp2) p
2
1

) probecost

}

=

max

{

2 + max

{

16− 2

8− 1
(
8

16
− 1), 0

}

, 30 +
10

16
· 0.2

}

= 30.125

Order properties Now, the order properties of the physical DEPs can be determined.

Assuming that the join attributes aP2 and arp2 are not known to be duplicate free,

both the DEP with the merge join and the DEP with the one-sided hash join share

the same order properties:

O
(

ap2p11 ✶
M
id(ap2)=id(arp2)

qrp2 p21

)

= O
(

ap2p11 ✶
H
id(ap2)=id(arp2)

qrp2 p21

)

=

O(a
p
2p11) ∪ {ai ∈ A(p21), a

rp
2 ❀ ai} = {ae1}

The DEP with the symmetric hash join, in contrast, provides no order properties:

O
(

ap2p11 ✶
SH
id(ap2)=id(arp2)

qrp2 p21

)

= ∅

Tables 7.5 and 7.6 show an overview of the properties of the cross-fragment join oper-

ators.

218

Logical Properties

card
(

GPu
✶id(apv)=id(arpv) GPv

)

≈ card(GPu
)
card(GPv)

nsubt(pv
k
)

card
(

GPu
✶p-o-s(id(apu),id(a

rp
v)) GPv

)

≈ card(GPu
)
card(GPv)

nsubt(pu
k
)

A
(

GPu
✶id(apu) θ id(arpv) GPv

)

= A (GPu
) ∪ A (GPv

) \ {apu, a
rp
v }

Physical Properties – Merge Join

cost
(

GPu
✶

M
id(apu) θ id(a

rp
v)
GPv

)

≈ max {cost(GPu
), cost(GPv

)}

cost-first
(

GPu
✶

M
id(apu) θ id(a

rp
v)
GPv

)

≈ max
{

tupdelay
(

GPu
, GPu

✶id(apu) θ id(a
rp
v) GPv

)

,

tupdelay
(

GPv
, GPu

✶id(apu) θ id(a
rp
v) GPv

) }

O
(

GPu
✶

M
id(apu) θ id(a

rp
v)
GPv

)

=







O (GPu
) ∪O (GPv

) if apu or arpv dupl. free

O (GPu
) ∪ {ai ∈ A (GPv

) , arpv ❀ ai} otherwise

Physical Properties – Hash Join

cost
(

GPu
✶

H
id(apu) θ id(a

rp
v)
GPv

)

≈ max{cost(GPu
), cost(GPv

)+

card(GPu
) probecost}

cost-first
(

GPu
✶

H
id(apu) θ id(a

rp
v)
GPv

)

≈ max
{

tupdelay
(

GPu
, GPu

✶
H
id(apu) θ id(a

rp
v)
GPv

)

,

cost(GPv
)+

tupfirst
(

GPu
, GPu

✶
H
id(apu) θ id(a

rp
v)
GPv

)

probecost
}

O
(

GPu
✶

H
id(apu) θ id(a

rp
v)
GPv

)

=







O (GPu
) ∪ {ai ∈ A (GPv

) , arpv ❀ ai} if apu ∈ O (GPu
)

O (GPu
) otherwise

Physical Properties – Symmetric Hash Join

cost
(

GPu
✶

SH
id(apu) θ id(a

rp
v)
GPv

)

≈ max {cost(GPu
), cost(GPv

)}

cost-first
(

GPu
✶

SH
id(apu) θ id(a

rp
v)
GPv

)

≈ max
{

tupdelay
(

GPu
, GPu

✶id(apu) θ id(a
rp
v) GPv

)

,

tupdelay
(

GPv
, GPu

✶id(apu) θ id(a
rp
v) GPv

) }

O
(

GPu
✶

SH
id(apu) θ id(a

rp
v)
GPv

)

= ∅

Table 7.5: Cross-fragment join operator properties

219

Physical Properties – Pushed Index Join

cost
(

p̄vk

(

GPu
✶

I
id(apv)=id(arpv)

scanarpv :RP i→j
∗

))

≈ max {cost(GPu
) + subtcost(pvk),

cost-first(GPu
) + card(GPu

) subtcost(pvk)}

cost
(

p̄vk

(

GPu
✶p-o-s(id(apu),id(a

rp
v)) scanarpv :RP i→j

∗

))

≈ max {cost(GPu
)+

nsubt(pv
k
)

nsubt(pu
k
)
subtcost(pvk),

cost-first(GPu
)+

card(GPu
)
nsubt(pv

k
)

nsubt(pu
k
)
subtcost(pvk)

}

cost-first
(

p̄vk

(

GPu
✶

I
id(apv)=id(arpv)

scanarpv :RP i→j
∗

))

≈ max {tupdelay (GPu
,

GPu
✶id(apv)=id(arpv) p

v
k

)

+

subtcost(pvk),

cost-first(GPu
)+

tupfirst
(

GPu
, GPu

✶id(apv)=id(arpv) p
v
k

)

subtcost(pvk)}

cost-first
(

p̄vk

(

GPu
✶p-or-s(id(apu),id(a

rp
v)) scanarpv :RP i→j

∗

))

≈ max {tupdelay (GPu
,

GPu
✶p-or-s(id(apu),id(a

rp
v)) p

v
k

)

+
nsubt(pv

k
)

nsubt(pu
k
)
subtcost(pvk),

cost-first(GPu
)+

tupfirst
(

GPu
, GPu

✶p-or-s(id(apu),id(a
rp
v)) p

v
k

)

nsubt(pv
k
)

nsubt(pu
k
)
subtcost(pvk)

}

O
(

p̄vk

(

GPu
✶

I
id(apv) θ id(a

rp
v)

scanarpv :RP i→j
∗

))

=







O (GPu
) ∪O

(

arpv pvk
)

if apv ∈ O (GPu
)

O (GPu
) otherwise

Table 7.6: Cross-fragment join operator properties (cont’d)

220

7.4.3 Sort Operator

During plan enumeration, a sort operator (denoted as S) may be inserted into a DEP to

ensure that an intermediate result has a particular order property. This may be needed

to allow the use of certain physical operators (e.g., the merge join operator requires its

operands to be ordered by the attributes used in the join predicate) or to ensure that the

nodes matched to the extraction point of the overall query are returned in document order

as required by the XPath specification [24].

Since sorting does not introduce or remove any tuples, cardinality is unaffected by this

operator:

card(S[a1,a2,...](GPu
)) = card(GPu

)

Similarly, sorting does not change the attributes in the tuples it processes. Thus, the

attributes returned by the sort operator are the same attributes as those in the operand

of the sort operator:

A
(

S[a1,a2,...](GPu
)
)

= A (GPu
)

While there are many different physical implementations of sorting (see Graefe’s survey

[59] for an overview), ranging from in-memory approaches for shorter sequences to disk-

based merge approaches for larger volumes of data, in general, sorting requires that the

sequence of tuples that is being sorted is fully materialized. Thus, the cost of a sort

operator can be estimated as follows:

cost(S[a1,a2,...](GPu
)) ≈ cost(GPu

) + sortcost(card(GPu
))

In this formula, sortcost(n) refers to the time consumed by sorting a sequence of n

tuples. Since this cost depends solely on the implementation of the sort operator (the

intricacies of which are outside the scope of this thesis), it is assumed that estimates for

sortcost(n) are available (e.g., obtained experimentally).

221

Logical Properties

card(S[a1,a2,...](GPu
)) = card(GPu

)

A
(

S[a1,a2,...](GPu
)
)

= A (GPu
)

Physical Properties

cost(S[a1,a2,...](GPu
)) ≈ cost(GPu

) + sortcost(card(GPu
))

cost-first(S[a1,a2,...](GPu
)) ≈ cost(S[a1,a2,...](GPu

))

O
(

S[a1,a2,...](GPu
)
)

= {a1} ∪ {ai ∈ A (GPu
) , a1 ❀ ai}

Table 7.7: Sort operator properties

Since sorting requires all tuples to be fully materialized, in general, the first tuple is

only returned once all tuples have been sorted5. Therefore, the time that elapses before

the first tuple is returned can be estimated as follows:

cost-first(S[a1,a2,...](GPu
)) ≈ cost(S[a1,a2,...](GPu

))

The semantics of S[a1,a2,...](GPu
)) are as follows: the sequence is sorted by attribute

a1, tuples having the same value for a1 are then sorted by a2, and so forth. However, as

mentioned before, order properties as used in this work only include attributes by which a

result is fully ordered (and not secondary order properties in a hierarchy). Thus, overall,

the result of the sorting operation is ordered by a1 and by all attributes whose order is

implied by a1:

O
(

S[a1,a2,...](GPu
)
)

= {a1} ∪ {ai ∈ A (GPu
) , a1 ❀ ai}

Table 7.7 shows an overview of the properties of the sort operator.

5Note that with some sort algorithms (such as selection sort), the first tuple may be returned before the

full sequence of tuples has been sorted. Nevertheless, the sequence to be sorted has to be fully materialized

first.

222

7.4.4 Outer Join, Grouping and Selection Operators

As described in Section 5.2.6.1, when a negation is folded into a cross-fragment join, a com-

bination of three operators is used: a left outer join (), a grouping (G) with aggregation

(A) and finally a selection (σ):

σarpv =0

(

GA(GPu)\{a
p
v}Acount(arpv)

(

GPu id(apv)=id(arpv)GPv

))

Since, in a DEP, these operators are always used together, for the purposes of this cost

model they are treated as a single operator. This section describes how the properties of

this cluster of operators can be determined.

To allow for an efficient implementation of this cluster of operators, the operands of

the outer join are required to be ordered by the attributes referenced in the join predicate,

i.e., apv ∈ O (GPu
) and arpv ∈ O (GPv

). This can easily be assured by choosing sub-plans for

GPu
and GPv

that provide these order properties, or by inserting a sort operator.

Definition 5.4 on page 99 requires that GPv
has only a single extraction point arpv (i.e.,

A (GPv
) = {arpv }). Now, assume that the result of GPv

is free of duplicates. Since GPv
is

ordered by arpv , duplicates can be eliminated with negligible overhead if necessary. This

implies that the probability that there is a match for a given root proxy ID is approximately
card(GPv)

nsubt(pv
k
)
, where pvk is the LQP that yields attribute arpv . Conversely, the probability that

there is no match (denoted as nullprob(GPv
)) can be estimated as follows:

nullprob(GPv
) ≈ 1−

card(GPv
)

nsubt(pvk)

Since an outer join is used, nullprob(GPv
) corresponds to the probability that a null

value is supplied for a given proxy node matched to apv.

Let puk be the LQP in Pu that produces the attribute apv. Now consider a modified

LQP p̂uk , corresponding to a local QTP q̂uk that is identical to quk except that it does not

designate apv as an extraction point. Both p̂uk and puk , as LQPs, are required to produce

duplicate-free results. Thus, the average number of tuples in R(puk) that share the same

223

values for A (puk) \ {a
p
v} and differ only in their value of apv (denoted as samegroup(puk , a

p
v))

can be estimated as follows:

samegroup(puk , a
p
v) ≈

card(puk)

card(p̂uk)

For each tuple in R(puk) the number of corresponding tuples in R(GPu
) can be estimated

as
card(GPu)

card(pu
k
)
. Thus, the average number of tuples in R(GPu

) that share the same values for

the attributes in A (GPu
) \ {apv} (denoted as samegroup(GPu

, apv)) can be estimated by the

following formula:

samegroup(GPu
, apv) ≈

card(GPu
)

card(puk)

card(puk)

card(p̂uk)
=

card(GPu
)

card(p̂uk)

Since the result of the outer join has the same cardinality as GPu
, the number of groups

produced by the grouping operator can be estimated as
card(GPu)

samegroup(GPu ,a
p
v)
.

Since each group, on average, contains samegroup(puk , a
p
v) different values of apv and

since, in order to pass through the selection, none of these values of apv must result in a

matching arpv , the probability that a given group satisfies the selection can be estimated as

nullprob(GPv
)samegroup(pu

k
,apv).

This leads to the following estimate for the overall cardinality of this operator cluster:

card
(

σarpv =0

(

GA(GPu)\{a
p
v}Acount(arpv)

(

GPu id(apv)=id(arpv)GPv

)))

≈

card(GPu
)

samegroup(GPu
)
nullprob(GPv

)samegroup(pu
k
,apv)

To estimate the response time cost of the operator cluster, it is helpful to look at each

operator separately. Since GPu
is ordered by apv and GPv

is ordered by arpv , the outer join

can be evaluated using a merge join with outer join semantics (
M
). As described in

Section 7.4.2.1, the cost of this operator can be estimated as:

cost
(

GPu

M
id(apv)=id(arpv)GPv

)

≈ max{cost(GPu
), cost(GPv

)}

224

If R(GPu
) (and therefore the result of the outer join) is ordered by A (GPu

) \ {apv},

grouping can be done with minimal overhead on a pipelined basis. Otherwise, the join

result (which is of size card(GPu
)) needs to be materialized and sorted first. Thus, the cost

of grouping can be estimated as follows:

cost
(

GA(GPu)\{a
p
v}Acount(arpv)

(

GPu

M
id(apv)=id(arpv)GPv

))

≈






max{cost(GPu
), cost(GPv

)} if A (GPu
) \ {apv} ⊆ O (GPu

)

max{cost(GPu
), cost(GPv

)}+ sortcost (card(GPu
)) otherwise

The selection adds minimal overhead and therefore the overall cost estimate is as follows:

cost
(

σarpv =0

(

GA(GPu)\{a
p
v}Acount(arpv)

(

GPu

M
id(apv)=id(arpv)GPv

)))

≈






max{cost(GPu
), cost(GPv

)} if A (GPu
) \ {apv} ⊆ O (GPu

)

max{cost(GPu
), cost(GPv

)}+ sortcost (card(GPu
)) otherwise

To estimate time to first tuple, it is again necessary to distinguish between the case

where GPu
is ordered by all the attributes on which grouping is performed and the case

where it is not. If R(GPu
) is ordered by all required attributes, it is possible to fully pipeline

the operator cluster. Since each group consists of samegroup(GPu
, apv) tuples, on average

the same number of input tuples from GPu
are required before the first output tuple can

be produced. Using a formula that is analogous to the formula for tupdelay() in Section

7.4.2.1, the delay until a sufficient number of tuples have been produced by GPu
(denoted

as groupdelay(GPu
, apv)) can be estimated as follows:

groupdelay(GPu
, apv) ≈

cost-first(GPu
) + max

{

cost(GPu
)− cost-first(GPu

)

card(GPu
)− 1

(samegroup(GPu
, apv)− 1) , 0

}

225

To estimate the number of tuples required from GPv
, the formula from Section 7.4.2.1

can be applied directly. If R(GPu
) is not ordered by all required attributes, no pipelining

is possible, and the result of the outer join needs to be fully materialized. Together, this

leads to the following estimate:

cost-first
(

σarpv =0

(

GA(GPu)\{a
p
v}Acount(arpv)

(

GPu

M
id(apv)=id(arpv)GPv

)))

≈


























max
{

groupdelay(GPu
, apv), tupdelay(GPv

, GPV
✶id(apv)=id(arpv) GPu

)
}

if A (GPu
) \ {apv} ⊆ O (GPu

)

max
{

cost(GPu
), cost(GPv

)
}

+ sortcost (card(GPu
))

otherwise

Now, consider the order properties of the operator cluster. If A (GPu
)\{apv} ⊆ O (GPu

),

then pipelined execution can be used and the order on these attributes is preserved. Other-

wise, grouping implicitly sorts the result of the outer join by A(GPu
) \ {apv}, resulting in a

set of order properties consisting of some a1 ∈ A(GPu
)\{apv} and all attributes whose order

is implied by a1. Therefore, the order properties of the operator cluster can be described

as follows:

O
(

σarpv =0

(

GA(GPu)\{a
p
v}Acount(arpv)

(

GPu

M
id(apv)=id(arpv)GPv

)))

=






A (GPu
) \ {apv} if A (GPu

) \ {apv} ⊆ O (GPu
)

{a1} ∪ {ai ∈ (A (GPu
) \ {apv}) | a1 ❀ ai} otherwise

Table 7.8 shows an overview of the properties of the operator cluster consisting of outer

join, grouping with aggregation, and selection.

226

Logical Properties

card
(

σarpv =0

(

GA(GPu)\{a
p
v}Acount(arpv)

(

GPu id(apv)=id(arpv)GPv

)))

≈ card(GPu)

samegroup(GPu)
nullprob(GPv

)samegroup(pu
k
,apv)

A
(

σarpv =0

(

GA(GPu)\{a
p
v}Acount(arpv)

(

GPu id(apv)=id(arpv)GPv

)))

= A (GPu
) {anv , a

p
v}

Physical Properties

cost
(

σarpv =0

(

GA(GPu)\{a
p
v}Acount(arpv)

(

GPu

M
id(apv)=id(arpv)GPv

)))

≈



















max{cost(GPu
), cost(GPv

)} if A (GPu
) \ {apv} ⊆ O (GPu

)

max{cost(GPu
), cost(GPv

)}

+sortcost (card(GPu
)) otherwise

cost-first
(

σarpv =0

(

GA(GPu)\{a
p
v}Acount(arpv)

(

GPu

M
id(apv)=id(arpv)GPv

)))

≈







































max{groupdelay(GPu
, apv),

tupdelay(GPv
,

GPV
✶id(apv)=id(arpv) GPu

)} if A (GPu
) \ {apv} ⊆ O (GPu

)

max{cost(GPu
), cost(GPv

)}

+sortcost (card(GPu
)) otherwise

O
(

σarpv =0

(

GA(GPu)\{a
p
v}Acount(arpv)

(

GPu

M
id(apv)=id(arpv)GPv

)))

=



























A (GPu
) \ {apv} if A (GPu

) \ {apv} ⊆ O (GPu
)

{a1}

∪ {ai ∈ (A (GPu
) \ {apv})

| a1 ❀ ai} otherwise

Table 7.8: Outer join, grouping and selection operator properties

7.5 Enumerating DEP Alternatives

Techniques for enumerating plan alternatives have received significant attention in the

literature, and many different approaches exist to solve this problem (cf. Section 3.3.3).

These approaches can be broadly categorized into techniques that find the optimal plan by

fully enumerating the entire search space (while possibly pruning plans that can be shown

not to lead to the optimal result, e.g., [87, 121]) and techniques that rely on randomization

or heuristics to find a good, but not necessarily optimal plan more quickly (e.g., [61,

92]). The cost estimation techniques described in the previous sections can be used in

combination with either approach.

In traditional distributed query processing, where the number of plan alternatives is

very large due to many different options for placing operators, randomized strategies have

often been favoured because they tend to cope better with extremely large search spaces

[61]. When optimizing DEPs as described here, the search space is comparatively small.

This results from the fact that LQPs are treated as black boxes and only a small set of

227

physical LQPs are considered during distributed query optimization (those that are better

than their alternatives in total cost, time to first tuple, or order properties). Pruning

further reduces the number of LQPs considered. Therefore, DEPs consist of relatively

few large atoms, which keeps the size of the search space manageable, making exhaustive

enumeration (e.g., via dynamic programming) of the space of DEPs a feasible alternative

in many cases.

Since the enumeration of plan alternatives is a well understood problem, this section

does not provide a detailed description of any one technique. Instead, requirements are

laid out that need to be satisfied by any plan enumeration technique used in this context.

For an overview of existing enumeration techniques that meet these requirements refer to

Section 3.3.3.

7.5.1 DEP Shapes

To find the optimal DEP, it is necessary to consider bushy plans. Restricting plan enu-

meration to left-deep plans may yield sub-optimal results since they may limit parallelism.

Many of the plan enumeration techniques discussed in Section 3.3.3 satisfy this require-

ment.

7.5.2 Comparing Sub-Plans

Bottom-up approaches for plan enumeration operate by comparing sub-plans consisting of

a subset of the LQPs needed to answer a query. At this stage, candidate sub-plans are

usually discarded when their estimated cost is higher than that of other sub-plans covering

the same subset. Once a sub-plan is discarded, it is no longer considered as a building

block for the overall DEP.

While the best overall DEP is chosen based on response time, when comparing sub-

plans, it is also necessary to take into account time to first tuple and the set of order

properties. This is because, for example, a sub-plan G′Pu
with sub-optimal response time

cost may lead to a better DEP than a sub-plan GPu
with lower response time cost if G′Pu

228

has additional order properties that increase the efficiency of other operators in the DEP

(e.g., by allowing for the use of a more efficient physical join operator or by avoiding an

explicit sorting step).

Thus, a sub-plan G′Pu
can only be discarded as inferior to another sub-plan covering

the same LQPs GPu
if G′Pu

is no better than GPu
in any of the three metrics. The following

definition formalizes this in a way that is is analogous to Definition 7.8 for LQPs:

Definition 7.9. Let Pu ⊂ P be a subset of the LQPs P needed to answer query qk. Let

GPu
and G′Pu

be sub-plans consisting of the LQPs in Pu. Then G
′
Pu

is inferior to GPu
and,

when building a DEP for qk, G
′
Pu

can be discarded in favour of GPu
if all of the following

hold:

• cost(G′Pu
) ≥ cost(GPu

), and

• cost-first(G′Pu
) ≥ cost-first(GPu

), and

• O
(

G′Pu

)

⊆ O (GPu
).

and at least one of the following holds:

• cost(G′Pu
) > cost(GPu

), and

• cost-first(G′Pu
) > cost-first(GPu

), and

• O
(

G′Pu

)

⊂ O (GPu
).

If there are two sub-plans for the same set of LQPs Pu and none of them dominates

the other, then both must be considered during the enumeration of possible DEPs.

In contrast to this, the final DEP is chosen purely based on cost and the one required

order property (ensuring that the result is in document order). Thus, at this point, the

other properties no longer matter.

229

7.5.3 Execution Order Constraints

While cross-fragment joins can be re-ordered arbitrarily (as long as both operands of the

join contain the necessary join attributes), the same is not true for merge operators and

outer join/group/select clusters. For merge operators, this is because all sub-plans that are

merged are required to return tuples consisting of the same set of attributes (as specified in

Definition 5.3). For outer join/group/select clusters, the right-hand side input is required

to return tuples consisting of a single attribute, the join attribute (as specified in Definition

5.4). In both cases, these constraints limit the order in which operators can be executed

by a DEP. Therefore, plan enumeration needs to take these constraints into account.

7.6 Dynamic DEP Adaptation

So far, the focus in this chapter has been on determining the best DEP for a given query by

performing static optimization before query evaluation begins. While this works well when

cost estimates are close to actual costs, in practice, this may not always hold. Inaccurate

cost estimates may be caused by data skew (invalidating the independence assumption

made by this cost model) or resource contention resulting from the evaluation of multiple

queries at the same time. This section describes how this problem can be addressed by

dynamically adapting a DEP while it is being executed. This makes the performance of

distributed query execution more robust with regard to cost estimation errors.

One of the key decisions that is made when optimizing a DEP is whether a given cross-

fragment join GPu
✶id(apv)=id(arpv)) p

v
k should be pushed into the LQP pvk. Pushing the join

into the LQP has the advantage of potentially skipping large portions of the fragment

corresponding to pvk and thereby reducing the overall response time. On the negative side,

pushing the join into the LQP stalls execution of p̄vk (the remainder LQP corresponding to

pvk) until the first tuple has been received from GPu
. If this tuple arrives after a long delay,

this can mean that pushing the join into the LQP leads to an overall response time that is

significantly higher than the response time of a DEP in which the join is not pushed into

pvk. If the time to the first tuple of GPu
was underestimated, this can result in a sub-optimal

DEP.

230

. . .

p̄vk

✶id(a
p
u)=id(a

rp
v)

GPu

. . .

scan
a
rp
v :RP

i→j
∗

(a) with join pushing

. . .

✶id(a
p
u)=id(a

rp
v)

GPu

. . .

pvk

(b) without join push-

ing

Figure 7.18: Dynamic adaptation of DEP

To avoid this problem, it is possible to keep track of the delay with which the pushed

cross-fragment join (shown in Figure 7.18(a)) receives its first tuple from GPu
. If the delay

exceeds the estimate of cost-first(GPu
) to an extent that renders pushing the join into pvk

sub-optimal, the corresponding portion of the DEP can be modified by switching from the

DEP in Figure 7.18(a) to the DEP in Figure 7.18(b). Note that this is possible because,

as long as no tuples have been received from GPu
, p̄vk has not been evaluated over any

sub-trees in its corresponding fragment and thus no tuples have been returned from the

DEP fragment shown in Figure 7.18(a).

Since p̄vk is not executed until the first tuple is received from GPu
and assuming that the

site to which this LQP is assigned is otherwise idle, it is even possible to start evaluating

pvk as soon as query execution starts. If the first tuple is received from GPu
within the

estimated time, pvk is aborted and p̄vk is executed in its stead as shown in Figure 7.18(a). If

the first tuple from GPu
does not arrive in a timely manner, query execution can proceed

based on the DEP fragment shown in Figure 7.18(b), in which case execution of pvk will

already be well underway.

7.7 Summary

This chapter has introduced a cost model that makes it possible to accurately predict the

performance of DEPs constructed based on the query evaluation techniques from Chapters

231

5 and 6. This is achieved by traversing the DEP in a bottom-up fashion, starting with the

LQPs contained in the DEP. For each operator in the DEP, a set of properties is determined

using the formulas presented in this chapter until finally the cost of the entire DEP can be

inferred. By enumerating the set of candidate DEPs for a given query and comparing them

based on their estimated cost, the best DEP for a given query and distributed collection

can be chosen.

232

Chapter 8

Cost-Based Fragmentation of XML

Collections

The cost-based optimization technique presented in Chapter 7 makes it possible to deter-

mine the best plan for evaluating a query over a given distributed collection. While this is

useful for improving the performance and scalability of query evaluation over a collection

with a fixed fragmentation schema, additional performance gains can be obtained by tai-

loring the fragmentation schema for the query workload that is being evaluated. Assuming

that this query workload is known ahead of time (as is frequently the case), the charac-

teristics of the queries in this workload can be taken into account when determining how

the collection should be fragmented and distributed. This yields a fragmentation schema

that is specialized for the query workload. When evaluating the anticipated queries over

a collection fragmented according to this specialized fragmentation schema, performance

and scalability can be improved significantly in many cases.

A näıve strategy for determining the best fragmentation schema for a given query work-

load is to exhaustively enumerate all possible fragmentation schemas. For each of these

schemas, the cost of evaluating the query workload can then be determined using the cost

estimation techniques presented in Chapter 7. Finally, the fragmentation schema that

yields the lowest cost for the queries in the workload can be chosen. While this technique

is guaranteed to lead to the optimal fragmentation (i.e., the fragmentation schema that

233

minimizes the estimated cost of evaluating the query workload), the search space of pos-

sible fragmentation schemas that need to be enumerated is very large. Even when only

vertical fragmentation steps are considered, the number of ways in which a schema with

|Σ| node types can be partitioned is B|Σ|, the |Σ|th Bell number [23], which grows ex-

ponentially in |Σ|. Considering hybrid fragmentation schemas consisting of both vertical

and horizontal fragmentation steps further increases the size of the search space. Thus,

complete enumeration of all possible fragmentation schemas is generally infeasible for all

but the smallest schemas.

To obtain a feasible fragmentation technique, a heuristic strategy is proposed in this

chapter. Since the cost of a DEP is dominated by the cost of evaluating the individual

LQPs used in this DEP (cf. Chapter 7), the heuristics employed in this strategy are based

on repeatedly reducing the cost of the most expensive LQP and thereby reducing the cost

of the overall DEP.

While the fragmentation schema obtained using this strategy is not guaranteed to be

optimal, the heuristics ensure that it allows for the efficient evaluation of the queries in

the workload using the techniques presented in this work. As will be shown in Chapter 9,

this leads to good performance results in practice.

The heuristic fragmentation technique presented here can be characterized as a greedy

strategy. It begins with an initial, vertical fragmentation schema, consisting of a large num-

ber of small fragments. Then, the query workload is localized and LQPs corresponding

to the fragments in the initial fragmentation are obtained. To improve the fragmentation,

the greedy strategy attempts to decrease the cost of evaluating the LQP with the highest

estimated cost. This is done either by merging the fragment corresponding to the most

expensive LQP (if this reduces the cost of the most expensive LQP) or by horizontally

splitting this fragment. This is repeated until the cost of the most expensive LQP can no

longer be reduced. At this point, the fragmentation strategy terminates, and a fragment-

ation schema that is tailored to the query workload has been obtained. The collection is

then fragmented according to this fragmentation schema, and each fragment is placed at

a separate site in the system.

The rationale behind this approach is as follows: The cost-based optimization strategy

234

described in Chapter 7 aims to obtain a DEP in which the LQPs are evaluated in parallel.

Thus, query performance is limited by the most expensive LQP contained in a DEP and

focusing on reducing the cost of this LQP is a reasonable strategy to obtain a fragmentation

schema that improves query performance.

The remainder of this chapter is organized as follows: In Section 8.1, the initial frag-

mentation schema used by the greedy strategy is described. Then, Section 8.2 describes

how the initial fragmentation is refined by repeatedly modifying the fragment correspond-

ing to the most expensive LQP until no further improvement is possible.

8.1 Initial Fragmentation Schema

The starting point of the greedy fragmentation strategy described in this chapter is a

fragmentation schema consisting of many small vertical fragments. To obtain the initial

fragmentation schema, in general, each node type is placed in its own fragment. However,

there are two exceptions to this rule:

Since fragmentation schemas are required to be acyclic (cf. Section 4.2), special care

needs to be taken for schema graphs that contain cycles. In this case, node types that

are part of a cycle are placed together into the same fragment, resulting in one fragment

for each such cycle. For an example of this, consider the schema graph shown in Figure

author

name

ONCE

initial

OPT

text

first

ONCE

text

last

ONCE

text

title

OPT

text

agent

OPT

pubs

ONCE

book

MULT

chapter

MULT

reference

OPT

article

MULT

ONCE

ONCE

MULT

Figure 8.1: An XML schema graph

235

author

pubs

ONCE

agent

OPT

(a) f1

book

(b) f2

article

(c) f3

chapter

reference

OPT ONCE

(d) f4

name

initial

OPT

text

first

ONCE

text

last

ONCE

text

title

OPT

text

(e) f5

MULT MULT

MULTMULT

ONCE

ONCE

Figure 8.2: Initial fragmentation schema

8.1. Since this schema graph contains a cycle consisting of the node types chapter and

reference, both of these node types are placed into the same fragment (f4) in the initial

fragmentation schema.

The second exception is concerned with node types that only have a single incoming

edge in the schema, which must have a cardinality of ONCE or OPT. Conceptually, these

node types represent mandatory (in the case of ONCE) or optional (in the case of OPT)

attributes of the node type from which the incoming edge originates. Thus, in the initial

fragmentation schema, they are placed in the same fragment.

In the schema graph shown in Figure 8.1, there are several instances of this. The node

236

type pubs is only reachable via an edge from the node type author and this edge has

the cardinality ONCE. Thus, author and pubs are placed in the same fragment (f1) in

the initial fragmentation schema shown in Figure 8.2. The node type agent is similarly

reachable from the node type author via a unique incoming edge with cardinality OPT

and is thus included in the same fragment. The node types initial, first, last, and

title are all reachable via a unique edge from node type name and are thus included in

fragment f5. Note that, as in the schema graph, the dashed boxes in this fragment do not

refer to node types. Instead they denote the text content of nodes of the types initial,

first, last, and title, respectively.

8.2 Improving the Fragmentation

The initial fragmentation schema is then improved by repeatedly modifying the fragment

corresponding to the most expensive LQP (thereby reducing the cost of this LQP) until no

further improvement can be made. This is done by the recursive function fragalg(F,Q,Qtodo)

shown in Algorithm 6, which is initially called with the following arguments:

• the initial fragmentation schema, represented as a set of fragments F ,

• the set of queries in the workload Qall, and

• the set of queries for which the fragmentation schema has not yet been optimized

(Qtodo), which is initially equal to the set of all queries in the workload (Qall).

To improve the fragmentation schema F , the queries in Qtodo are localized based on

this fragmentation schema, and the LQP with the highest estimated cost (denoted as ptodomax)

is identified (line 2). Then, the fragment corresponding to this LQP (denoted as f todo
max) is

determined (line 4). The algorithm then attempts to improve the fragmentation schema

by modifying f todo
max in one of the following three ways:

• The first possible way of improving the fragmentation schema is to merge f todo
max with

one of its ancestor fragments (lines 7–17). By doing this, it may be possible to avoid

237

Algorithm 6: fragalg(F,Qall, Qtodo) improves fragmentation F for queries Qtodo

input : set of fragments F , query workload Qall, queries not yet optimized Qtodo (initial equal to Qall)

output : improved set of fragments

1 pallmax ← most expensive LQP when evaluating queries in Qall over fragments F

2 ptodomax ← most expensive LQP when evaluating queries in Qtodo over fragments F

3 qtodomax ← query corresponding to LQP ptodomax

4 f todomax ← fragment corresponding to LQP ptodomax

5 Fmodified ← F

6 pmodified
max ← ptodomax

7 for pancestor ∈ P such that pancestor is an ancestor of ptodomax do

8 fancestor ← fragment corresponding to LQP pancestor

9 Fintermediate ← {f ∈ F | f is reachable from fancestor and f todomax is reachable from f}

10 Faftermerge ←
(

F \
(

Fintermediate ∪ {f
todo
max , fancestor}

))

∪ {(
⋃

f∈Fintermediate

f) ∪ f todomax ∪ fancestor}

11 paftermerge, todo
max ← most expensive LQP when evaluating queries in Qtodo over fragments Faftermerge

12 paftermerge, all
max ← most expensive LQP when evaluating queries in Qall over fragments Faftermerge

13 if cost(paftermerge, todo
max) < cost(pmodified

max) ∧ ∀qi ∈ Qall, cost(p
aftermerge, all
i,max) ≤ cost(palli,max) then

14 Fmodified ← Faftermerge

15 pmodified
max ← paftermerge, todo

max

16 if Fmodified 6= F then

17 return fragalg(Fmodified, Qall, Qtodo)

18 if some sub-trees in f todomax have node type paths that are incompatible with query qtodomax then

19 fcompat
max ← {s ∈ f todomax | ntpath(s) compatible with qtodomax }

20 f incompat
max ← {s ∈ f todomax | ntpath(s) incompatible with qtodomax }

21 Faftersplit ← (F \ {f todomax }) ∪ {f
compat
max ∪ f incompat

max }

22 paftersplit, todo
max ← most expensive LQP when evaluating queries in Qtodo over fragments Faftersplit

23 paftersplit, all
max ← most expensive LQP when evaluating queries in Qall over fragments Faftersplit

24 if cost(paftersplit, todo
max) < cost(pmodified

max) ∧ ∀qi ∈ Qall, cost(p
aftersplit, all
i,max) ≤ cost(palli,max) then

25 return fragalg(Faftersplit, Qall, Qtodo)

26 for value constraint c in ptodomax do

27 Fpartition ← partitioning of f todomax based on value constraint c

28 Faftersplit ← (F \ {f todomax }) ∪ Fpartition

29 paftersplit, todo
max ← most expensive LQP when evaluating queries in Qtodo over fragments Faftersplit

30 paftersplit, all
max ← most expensive LQP when evaluating queries in Qall over fragments Faftersplit

31 if cost(paftersplit, todo
max) < cost(pmodified

max) ∧ ∀qi ∈ Qall, cost(p
aftersplit, all
i,max) ≤ cost(palli,max) then

32 Fmodified ← Faftersplit

33 pmodified
max ← paftersplit, todo

max

34 if Fmodified 6= F then

35 return fragalg(Fmodified, Qall, Qtodo)

36 if Qtodo \ {qmax} 6= ∅ then

37 return fragalg(F,Qall, Qtodo \ {qmax})

38 return F

238

accessing a portion of the data contained in this fragment, reducing the cost of the

most expensive LQP.

• Alternatively, it may be possible to split f todo
max horizontally based on the node type

paths associated with the root proxy nodes at which the sub-trees in this fragment

are rooted (lines 18–25). This is only possible if f todo
max is not at the root of the frag-

mentation schema (otherwise, sub-trees in this fragment would be rooted at ordinary

nodes from the collection rather than at root proxy nodes).

• As a third alternative, value or structural constraints in ptodomax can be exploited to

split f todo
max horizontally (lines 26–35).

If one of these possible improvements decreases the cost of the most expensive LQP,

the fragmentation is modified and fragalg() is called recursively with the modified frag-

mentation (lines 17, 25, and 35).

If none of the improvement steps reduces the cost of the most expensive LQP, the

algorithm assumes that no further optimization of the fragmentation schema is possible

for the query corresponding to LQP ptodomax (denoted as qtodomax). Thus, q
todo
max is removed from the

set of queries considered when determining the most expensive LQP (Qtodo) and fragalg()

is called recursively (line 37). During the next execution, fragalg() then no longer considers

LQPs corresponding to qtodomax when determining the most expensive LQP ptodomax . However,

when verifying whether a potential modification to the fragmentation schema is beneficial,

the algorithm still considers the LQPs corresponding to all queries to ensure that improving

the fragmentation for one query does not make it worse for another. This is verified by

checking that the cost of the most expensive LQP (denoted as palli,max) does not increase for

any query qi ∈ Qall (as seen in the second part of the if clauses in lines 13, 24, and 31).

Once all queries have been eliminated from consideration, the fragmentation algorithm

terminates, and the improved fragmentation is returned (line 38).

In the remainder of this section, each individual improvement considered by Algorithm

6 is discussed in detail.

239

8.2.1 Merging Fragments

To reduce the cost of LQP ptodomax , it is possible to merge the fragment corresponding to this

LQP (denoted as f todo
max) with one of its ancestor fragments. While merging two fragments

results in a fragment that is larger in size than each of the original fragments, it may

nevertheless reduce the cost of the most expensive LQP. This is the case, for example,

when constraints placed on nodes in one of the original fragments make it possible to skip

some of the data in the other fragment.

To merge fragments, the algorithm proceeds as follows: For each ancestor LQP of ptodomax

(denoted as pancestor), the corresponding fragment (denoted as fancestor) is determined (lines

7–8). Then, f todo
max is merged with fancestor, resulting in the modified fragmentation schema

Faftermerge (line 10). Next, the algorithm determines whether this decreases the cost of the

most expensive LQP corresponding to one of the queries in Qtodo without increasing the

cost of the most expensive LQP of any query in Qall (lines 11–14).

Special care has to be taken if the fragmentation schema contains intermediate frag-

ments between f todo
max and fancestor. In this case, when merging these fragments, the inter-

mediate fragments (determined in line 9 of Algorithm 6 and denoted as Fintermediate) have

to be included in the merged fragment (line 10).

This procedure is repeated for all ancestor LQPs of ptodomax , and the merge that results in

the largest reduction in the cost of the most expensive LQP corresponding to a query in

Qtodo without making the fragmentation worse for any query in Qall is chosen (lines 13-15).

author

∧

name

/

last
.=’Shakespeare’

/

book

//

reference

//

Figure 8.3: QTP representation of query q11

240

author

∧

ap2
P 1→5
∗

/

ap3
P

1→2/3
∗

//

(a) q111(f1)

arp3
RP

2/3→4
∗

ae1
reference

//

(b) q211(f4)

arp2
RP 1→5
∗

name

/

last
.=’Shakespeare’

/

(c) q311(f5)

Figure 8.4: Local QTPs corresponding to query q11

If there are no ancestor fragments of f todo
max for which merging decreases the cost of the most

expensive LQP, the algorithm attempts to improve the fragmentation by splitting f todo
max

horizontally, which is described in the next two sections.

To illustrate how the algorithm merges fragments and how this might decrease the cost

of the most expensive LQP, consider a query workload that consists of a single query, q11

(shown in Figure 8.3). Localizing this query based on the initial fragmentation schema

shown in Figure 8.2 and pruning irrelevant fragments yields the local QTPs q111, q
2
11, and

q311 (shown in Figure 8.4 and corresponding to fragments f1, f4, and f5, respectively).

Now assume that p111, p
2
11, and p

3
11 are the LQPs corresponding to local QTPs q111, q

2
11,

and q311, respectively. Further assume that the estimated costs of these LQPs are as follows:

cost(p111(f1)) = 50

cost(p211(f4)) = 60

cost(p311(f5)) = 70

As can be seen, p311 is the most expensive LQP. Therefore, for this example, the frag-

mentation strategy begins by attempting to merge fragment f5 (the fragment corresponding

to this LQP) with its ancestor fragments. Because p311 has only a single ancestor plan (p111),

which corresponds to fragment f1, the only merge considered is between fragments f1 and

f5. Since f1 and f5 are directly connected in the fragmentation schema, there are no

intermediate fragments to include.

241

author

pubs

ONCE

name

initial

OPT

text

first

ONCE

text

last

ONCE

text

title

OPT

text

agent

OPT

ONCE

(a) f1 ∪ f5

book

(b) f2

article

(c) f3

chapter

reference

OPT ONCE

(d) f4

MULT
MULT

MULTMULT

Figure 8.5: Fragmentation schema after merging f1 and f5

To see why it might be beneficial to merge these fragments, observe that fragment f5

consists of sub-trees corresponding to name nodes that occur as a direct child of an author

node and of name nodes that occur as the child of an agent node. If a navigational strategy

is used to evaluate the LQP from Figure 8.6 over the merged fragment, access to the latter

type of name nodes can be avoided. If a structural join-based strategy is used, the size of

intermediate results can be reduced. Thus, regardless of the centralized query evaluation

strategy used, merging fragments may result in a performance gain.

Merging fragments f1 and f5 results in the fragmentation schema shown in Figure 8.5.

242

arp3
RP

2/3→4
∗

ae1
reference

//

(a) q211(f4)

author

∧

name

/

last
.=’Shakespeare’

/

ap3
P 1→11
∗

//

(b) q411(f1 ∪ f5)

Figure 8.6: Local QTPs corresponding to query q11 after merging f1 and f5

Localizing query q11 results in two LQPs, q211 (corresponding to fragment f4 and unchanged)

and q411 (corresponding to the newly merged fragment f1 ∪ f5), both of which are shown in

Figure 8.6.

To decide whether it is beneficial to merge fragment f1 with fragment f5, the cost of

each of these LQPs has to be determined. For this example, assume that cost estimates

are as follows:

cost(p211(f4)) = 60

cost(p411(f1 ∪ f5)) = 55

As can be seen, the cost of the most expensive LQP (p211) is now 60, and thereby less

than the previous cost of 70. Thus, the merge between fragments f1 and f5 is beneficial.

8.2.2 Horizontal Fragmentation Based on Node Type Paths

When the cost of the LQP ptodomax cannot be reduced by merging f todo
max with one of its ancestor

fragments, Algorithm 6 instead attempts to split f todo
max horizontally based on the root proxy

nodes at which sub-trees in this fragment are rooted (lines 18–25). As is described in Section

6.2.2.4, these root proxy nodes can be annotated with node type paths that can be used to

243

filter out sub-trees that are known to be irrelevant for a given query. Algorithm 6 exploits

this and splits f todo
max into a portion that contains the sub-trees whose nodes type paths

are compatible with the query (f compat
max , line 19) and a portion that contains the sub-trees

whose node type paths are not compatible with the query (f incompat
max , line 20), resulting in a

new fragmentation schema (denoted as Faftersplit). As in the previous section, the algorithm

then verifies whether this split reduces the cost of the most expensive LQP corresponding

to one of the queries in Qtodo without making the fragmentation worse for any query in

Qall (lines 24–25).

In the example of query q11, after merging fragments f1 and f5, LQP p211 (corresponding

to fragment f4) is the most expensive LQP. As can be seen in the fragmentation schema

shown in Figure 8.5, this fragment consists of sub-trees that occur as the descendants of a

book node (and whose root proxies therefore contain book as part of their node type path)

and of sub-trees that occur as the descendants of an article node (containing article

as part of their node type path).

As can be determined using the technique proposed in Section 6.2.2.4, only the sub-

trees that contain the node type book in their node type path need to be accessed when

evaluating LQP p211. Thus, it is possible to split fragment f4 into f compat
4 (consisting of

the sub-trees in f4 that contain the node type book in their node type path) and f incompat
4

(consisting of the sub-trees that contain the node type article in their node type path).

This yields the fragmentation schema shown in Figure 8.71.

Of the new fragments, only fragment f compat
4 needs to be accessed to evaluate query

q11. Thus, there are still two LQPs. Assume that their costs are as follows:

cost(p211(f
compat
4)) = 30

cost(p411(f1 ∪ f5)) = 55

As can be seen, the cost of the most expensive LQP is now 55 and therefore less than

1Due to space constraints, the schema of fragments f
compat
4 and f

incompat
4 is only shown once even

though these fragments are entirely separate.

244

author

pubs

ONCE

name

initial

OPT

text

first

ONCE

text

last

ONCE

text

title

OPT

text

agent

OPT

ONCE

f1 ∪ f5

book

f2

article

f3

chapter

reference

OPT ONCE

f compat
4 ntpath(arp) = . . . /book/ . . .

f incompat
4 ntpath(arp) = . . . /article/ . . .

MULT
MULT

MULTMULT

Figure 8.7: Fragmentation schema after horizontally splitting f4

the previous cost of 60. Thus, horizontally splitting fragment f4 into f compat
4 and f incompat

4

is beneficial.

245

author

name

last
starts-with(., ’A’)

(a) (f1 ∪ f5)a

. . . author

name

last
starts-with(., ’S’)

(b) (f1 ∪ f5)s

. . . author

name

last
starts-with(., ’Z’)

(c) (f1 ∪ f5)z

Figure 8.8: Set of FTPs for horizontally fragmenting f1 ∪ f5

8.2.3 Horizontal Fragmentation Based on Value or Structural

Constraints

If neither merging f todo
max with one of its ancestor fragments nor horizontally splitting f todo

max

based on the node type paths associated with the root proxy nodes in this fragment reduces

the cost of the most expensive LQP, Algorithm 6 attempts to split f todo
max based on value or

structural constraints in LQP ptodomax (lines 26–35).

If ptodomax places a value constraint on a node of type σ in f todo
max , it is possible to split f todo

max

by partitioning the domain of the content of nodes of type σ (line 27)2. For structural

constraints that are based on the existence of a node of a particular type, it is similarly

possible to partition fragment f todo
max into sub-trees that do or do not contain nodes of this

type.

As in the case of the other two methods for improving a fragmentation schema, the

algorithm then verifies whether this partitioning is beneficial (i.e., whether it reduces the

cost of the most expensive LQP corresponding to a query in Qtodo without making the

fragmentation worse for any query in Qall, verified in lines 31–33).

For an example of this, consider the fragmentation schema that has resulted from the

improvement steps presented in the previous two sections. LQP p411, which corresponds to

2The details of how the domain of the content of nodes of a particular type should be partitioned

are beyond the scope of this work. This problem is encountered in essentially the same fashion when

horizontally fragmenting relational data. Possible solutions include, for example, partitioning based on

minterm predicates extracted from the query (cf. [115]).

246

fragment f1 ∪ f5, is the most expensive LQP. As can be seen in the QTP representation of

this LQP shown in Figure 8.6, p411 places a value constraint on nodes of the type last in

fragment f1 ∪ f5, checking whether the content of such nodes is equal to ‘Shakespeare’. It

is thus possible to partition fragment f1 ∪ f5 based on the content of nodes of this type.

A simple way of doing this divides the domain of the content of last nodes based on the

first character of this content (which is assumed to be a character in the English alphabet).

This can be expressed using the FTPs shown in Figure 8.8.

Partitioning fragment f1 ∪ f5 in this fashion yields the fragmentation schema shown

in Figure 8.9. Using the horizontal pruning strategy described in Section 6.1.1, it can be

determined that only one of the fragments resulting from splitting f1 ∪ f5 needs to be

accessed to answer query q11 (namely (f1 ∪ f5)s). Thus, there are still two LQPs. Assume

that their costs are estimated as follows:

cost(p211(f
compat
4)) = 30

cost(p411((f1 ∪ f5)s)) = 20

As can be seen, the cost of the most expensive LQP is now 30 (and therefore less than

the previous cost of 55). Thus, horizontally splitting f1 ∪ f5 is beneficial.

The most expensive LQP is now p211, which is evaluated over fragment f compat
4 . Assuming

that the cost of this LQP cannot be reduced further, Algorithm 6 terminates and the

fragmentation schema shown in Figure 8.9 is returned as the final fragmentation schema.

8.3 Losslessness of resulting fragmentation

An important consideration when decomposing a collection is that the resulting, frag-

mented collection must contain all the necessary information needed to reconstruct the

original collection. In other words, the fragmentation strategy must be lossless This sec-

tion shows why the fragmentation strategy described in this chapter has this property.

247

author

pubs

ONCE

name

initial

OPT

text

first

ONCE

text

last

ONCE

text

title

OPT

text

agent

OPT

ONCE

(f1 ∪ f5)a /author/name/last[starts-with(., ’A’)]

. . .

(f1 ∪ f5)s /author/name/last[starts-with(., ’S’)]

. . .

(f1 ∪ f5)z /author/name/last[starts-with(., ’Z’)]

book

f2

article

f3

chapter

reference

OPT ONCE

f compat
4 ntpath(arp) = . . . /book/ . . .

f incompat
4 ntpath(arp) = . . . /article/ . . .

MULT
MULT

MULTMULT

Figure 8.9: Final fragmentation schema

248

Fragmenting a collection based on the heuristic strategy described in this chapter results

in a vertically fragmented collection (cf. Section 8.2.1), in which some vertical fragments

may have been further fragmented horizontally based on node type paths (Section 8.2.2)

or based on value or structural constrains (Section 8.2.3).

As is described in Section 4.2, when a collection is fragmented vertically, each edge

that is bisected by a fragment boundary is replaced with a pair of special nodes: a proxy

node in the originating fragment, and a root proxy node in the target fragment. Both the

proxy and the root proxy node corresponding the same edge receive matching identifiers,

and these identifiers are required to be unique within the entire collection. In addition,

no nodes from the original collection are lost, since each node is required to correspond

to exactly one node type in the schema, and each node type in the schema is assigned to

exactly one vertical fragment.

To reconstruct the original, unfragmented collection, it is thus possible to find all pairs

of matching proxy and root proxy nodes and replace them with a document edge from the

parent of the proxy node to the child of the root proxy node (which, as discussed in Section

4.2, is required to be unique).

After vertically fragmenting the collection, the heuristic fragmentation strategy de-

scribed in this chapter may further fragment some of the resulting vertical fragments hori-

zontally. The first approach for doing this (described in Section 8.2.2), divides a fragment

f into two partitions f compat and f incompat, where f compat contains all those sub-trees in f

whose node type paths are compatible with some query, and f incompat contains the sub-trees

whose node type paths are incompatible with the query. Since each sub-tree in f falls into

exactly one of these categories (and is thus placed in exactly one of f compat or f incompat), it

is possible to reconstruct f by simply merging f compat and f incompat.

In addition to horizontal fragmentation based on node type paths, the fragmentation

strategy presented in this chapter also performs horizontal fragmentation based on struc-

tural or value constraints. While the specifics of how this is done are outside the scope of

this thesis, the fragmentation strategy requires that each horizontal fragmentation step per-

formed results in a partitioning of the set of sub-trees in a fragment. Relational fragment-

ation techniques, such as horizontal fragmentation based on minterm predicates, which can

249

be applied in this case, have the property of generating a partitioning [115]. This ensures

that the original fragment can always be reconstructed by merging the resulting partitions.

In summary, it can be observed that each of the fragmentation steps performed by

the fragmentation strategy presented in this chapter can be reversed. From this follows

that the original, unfragmented collection can be reconstructed and that, therefore, the

fragmentation is lossless.

250

Chapter 9

Performance Evaluation

The previous chapters have introduced a suite of techniques that are designed to improve

the scalability of XML query processing by distributing both the collection and the query

processing workload across multiple sites in a distributed system. This chapter presents a

thorough experimental evaluation that demonstrates that these techniques yield a signif-

icant improvement in scalability and performance. In addition, the various query evalua-

tion techniques presented in the earlier chapters are examined individually, which provides

valuable insight into each technique’s individual contribution to the overall performance

improvement and into the problem settings for which a given technique is best suited.

To allow extensive experimentation in a realistic scenario, the native XML database

system Natix [49] was extended with the features that are necessary to support distributed

query execution, including primitives for passing (sub-)queries between instances and op-

erators for sending and receiving tuples over the network. Then, the query evaluation

techniques presented in this thesis were implemented within this framework.

The distributed version of Natix was then deployed on virtualized Linux instances

within Amazon’s Elastic Compute Cloud (EC2) [1]. EC2 provides a variety of instance

types with different levels of CPU, memory, and I/O capacity. For all of the experiments

presented in this chapter, “small” instances were chosen, which provide 1.7 GB of memory,

a single-core CPU, and 160 GB of local instance storage. In addition to instance-local

251

storage, EC2 also provides network-attached storage that can be shared between instances.

This feature was not used for the experiments presented here.

To ensure that the conditions of the experiments represented here reflect the conditions

encountered in a data centre, all instances were allocated within the same availability zone.

This yields low-latency, high-throughput communication between instances.

All of the experiments presented here rely on a collection of on-line auction data gen-

erated by the XMark benchmark [120], which is a standard, widely used benchmark for

evaluating XML query performance. The XMark data generator can be configured to pro-

duce collections of any size, which has made it possible to study scalability across a range

of collection sizes.

To obtain a realistic query workload that can be evaluated over the XMark collections,

queries from the performance-oriented portion1 of the XPathMark benchmark2 [53] were

selected. These queries represent realistic use cases for XPath and, when evaluated over

the XMark data, make it possible to evaluate the distributed techniques presented in this

thesis in a realistic use case. To augment the results obtained with the XPathMark queries,

additional, synthetic queries were crafted that stress-test the behaviour of the various query

evaluation techniques introduced in this thesis.

A detailed discussion of the performance evaluation is presented in the remainder of

this chapter, organized as follows:

• The first set of experiments, presented in Section 9.1, focuses on examining the overall

performance and scalability effect of a combination of all query evaluation techniques

presented in this thesis. To this end, an XMark collection is fragmented based on

the heuristic fragmentation technique presented in Chapter 8, resulting in a hybrid

fragmentation that uses both vertical and horizontal fragmentation steps. Then, for

1In addition to queries that are designed to evaluate query performance, the XPathMark benchmark

provides a second set of queries (referred to as the functional benchmark) that can be used to verify that

a query processor supports a wide range of XPath features.
2Note that the XMark benchmark also provides a set of sample queries. However, unlike the queries in

the XPathMark benchmark, these queries are expressed as FLWOR expressions and make use of features

that cannot be expressed in the XQ query model.

252

each of the XPathMark queries, the best DEP is determined using the cost-based

optimization technique described in Chapter 7. The performance obtained by this

plan is then compared to the performance of centralized query execution for various

collection sizes. Additionally, the performance of several existing distributed query

evaluation techniques is examined for comparison.

• In Section 9.2, query evaluation over a horizontally distributed collection is examined

more closely. The definition of horizontal fragmentation allows a collection to be

partitioned into an arbitrary number of fragments. Thus, the experimental evaluation

of horizontal distribution focuses on scalability, both in terms of throughput and

query response time. The impact of data skew in the distribution is also examined.

For all experiments in this section, particular attention is paid to the impact of the

horizontal pruning techniques presented in Section 6.1.1.

• Section 9.3 similarly focuses on vertical distribution. In addition to pruning tech-

niques, whose performance characteristics are examined in detail in Section 9.3.1,

the impact of the various techniques for improving distributed execution plans (e.g.,

pushing of cross-fragment joins) is examined closely in Section 9.3.2.

• Finally, Section 9.4 presents an evaluation of the cost model introduced in Chapter

7. Here, attention is paid to how well the estimated cost of a DEP corresponds to the

actual response time cost of this DEP and how effectively cost-based optimization

identifies the plan with the lowest actual response time cost.

9.1 Full Suite of Techniques

This section examines the overall performance and scalability impact of applying the com-

plete suite of distributed query evaluation techniques presented in this thesis. Table 9.1

shows the 10 XPathMark queries that are supported by the XQ query model. Each of

these queries is evaluated over the collections generated by the XMark benchmark. These

collections consist of multiple documents, each of which is approximately 40 MB in size.

The total size of the collection (and thereby the number of documents contained in the

253

A1 /site/closed auctions/closed auction/annotation/description/text/keyword

A2 //closed auction//keyword

A3 /site/closed auctions/closed auction//keyword

A4 /site/closed auctions/closed auction[annotation/description/text/keyword]

/date

A5 /site/closed auctions/closed auction[descendant::keyword]/date

A6 /site/people/person[profile/gender and profile/age]/name

A7 /site/people/person[phone or homepage]/name

A8 /site/people/person[address and (phone or homepage) and

(creditcard or profile)]/name

B7 //person[profile/@income]/name

C1 /site/people/person[profile/age >= 18 and profile/@income < 10000 and

address/city != ’Dallas’]/name

Table 9.1: XPathMark queries

collection) is scaled to three sizes: 120 MB (corresponding to a scale factor of 1), 1.2 GB

(corresponding to scale factor 10), and 12 GB (corresponding to scale factor 100).

Before the distributed query evaluation techniques introduced in this thesis can be

applied, it is first necessary to fragment and distribute the XMark collections. This is done

by applying the heuristic fragmentation technique described in Chapter 8. This results in

the hybrid fragmentation schema shown in Figure 9.13.

As can be seen, the heuristic fragmentation strategy first divides the XMark data into

a set of vertical fragments. Three of the vertical fragments are then further fragmented

horizontally. Two different types of horizontal fragmentation are employed. Two of the

vertical fragments are horizontally fragmented based on structural constraints present in

the queries. In the case of the vertical fragment consisting of the node types annotation,

description, parlist, listitem, and text, three horizontal sub-fragments (labeled f11,

f12, and f13) are defined. These horizontal fragments correspond to the sub-trees that have

3To increase clarity, this representation is simplified slightly by omitting node types that are not relevant

for the XPathMark queries.

254

site

people mailbox

mail

categories

category

closed auctions

f1

closed auction

date

f2

person

profile

gender age

name

f3 /name

f4 /person[(phone or homepage) and profile and address]

f5 /person[(phone or homepage) and profile and not(address)]

f6 /person[(phone or homepage) and not(profile) and address]

f7 /person[(phone or homepage) and not(profile) and not(address)]

f8 /person[not(phone or homepage)]

keyword

bold emph

f9 ntpath(arp) = . . . /closed auction/ . . .

f10 ¬ntpath(arp) = . . . /closed auction/ . . .

annotation

description

parlist

listitem

text

f11 /annotation

f12 /description

f13 /text

Figure 9.1: Hybrid fragmentation schema obtained using heuristics

255

nodes of types annotation, description, or text as the immediate child of their root

proxy nodes, respectively. Fragments f9 and f10, in contrast, result from the horizontal

fragmentation of a vertical fragment based on the node type path associated with the root

proxy node of each sub-tree. Fragment f9 consists of sub-trees whose root proxy node

has a node type path that contains the node type closed auction, whereas fragment f10

contains the sub-trees whose root proxy node has a node type path that does not contain

this node type.

As with all experiments presented in this chapter, each fragment is then loaded onto

a separate EC2 instance, thus distributing the collection across the machines used in the

experiment.

9.1.1 Scalability and Performance Impact

To evaluate the scalability and performance impact of the distributed query evaluation

techniques presented in this thesis, the performance of centralized query evaluation collec-

tion is compared to the performance of distributed query evaluation. For this experiment,

the collection is scaled to three different sizes: 120 MB (corresponding to three 40 MB

documents, and an XMark scale factor of 1), 1.2 GB (corresponding to 30 such documents

and a scale factor of 10) and 12 GB (corresponding to 300 documents and a scale factor

of 100).

To measure the performance achieved by centralized query evaluation, the unfrag-

mented collection is loaded onto a single EC2 instance. For distributed query evalua-

tion, the collection is partitioned into 13 fragments according to the fragmentation schema

shown in Figure 9.1 and each fragment is loaded onto a separate machine. The cost-based

optimization technique from Chapter 7 is used to obtain a distributed execution plan for

each query, and the resulting plan is then evaluated over all of the instances.

The results of this experiment are shown in Figures 9.2, 9.3, and 9.4. For each query

and collection size, the end-to-end response time of centralized query evaluation over an

unfragmented collection (denoted as “central”) and the end-to-end response time of dis-

tributed query evaluation using the techniques presented in this thesis (denoted as “dist

256

optimized”) are shown. As with all results presented in this thesis, the response times

reported in Figures 9.2, 9.3, and 9.4 represent averages over at least five runs. As can

be seen, distributed query evaluation performs significantly better than centralized query

evaluation for all queries and collection sizes.

Table 9.2 shows the speed-up factor achieved by distributed query evaluation over

centralized query evaluation for each query and collection size. In addition, the average

speed-up of all queries is shown for each collection size.

It can be seen that the performance advantage of the distributed technique increases

with collection size for all queries. This can be explained by the fact that, at the smaller

collection sizes, some of the performance benefit obtained by parallelizing query execution

across multiple sites and evaluating LQPs over smaller portions of the overall collection is

compensated for by the overhead of distribution. At the largest collection size, however,

the positive impact of parallelism and limiting the scope of local query evaluation to a

 0

 1

 2

 3

 4

 5

 6

A1 A2 A3 A4 A5 A6 A7 A8 B7 C1

R
es

po
ns

e
tim

e
(s

ec
on

ds
)

Query

central
dist optimized

Figure 9.2: Centralized vs. distributed query evaluation, 120 MB

257

 0

 10

 20

 30

 40

 50

 60

A1 A2 A3 A4 A5 A6 A7 A8 B7 C1

R
es

po
ns

e
tim

e
(s

ec
on

ds
)

Query

central
dist optimized

Figure 9.3: Centralized vs. distributed query evaluation, 1.2 GB

subset of the collection (resulting in reduced memory pressure) clearly dominates. This

illustrates the superior scalability of distributed query evaluation.

For the largest collection, distributed query evaluation is more than 43 times faster in

the best case (query A6). Even for the query with the least pronounced benefit of dis-

tributed evaluation (query A5), a more than 11-fold performance improvement is achieved.

Together, these results corroborate the usefulness of the distributed query evaluation

Collection size Speed-up

A1 A2 A3 A4 A5 A6 A7 A8 B7 C1 Average

120 MB 2.62 6.24 2.32 1.44 1.30 3.61 2.61 2.53 12.61 2.35 3.76

1.2 GB 2.66 7.08 2.58 1.67 1.37 5.21 2.72 3.73 15.54 2.55 4.51

12 GB 24.18 21.954 17.33 15.27 11.45 43.42 16.17 19.18 29.85 12.50 21.09

Table 9.2: Speed-up factor of distributed query evaluation over centralized query evaluation

258

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100

A1 A2 A3 A4 A5 A6 A7 A8 B7 C1

R
es

po
ns

e
tim

e
(s

ec
on

ds
)

Query

central
dist optimized

Figure 9.4: Centralized vs. distributed query evaluation, 12 GB

techniques presented in this thesis for improving query performance and scalability. They

also show that the cost-based optimization technique presented in Chapter 7 is effective

in determining a plan that yields a significant performance benefit. The validity of the

heuristic fragmentation strategy from Chapter 8 is also supported by these results since

fragmenting the collection based on this strategy has made it possible to apply the dis-

tributed query evaluation techniques and to obtain the performance benefit shown.

9.1.2 Comparison With Existing Distributed Query Evaluation

Techniques

While much of the existing work in the area of distributed query evaluation over XML

collections either focuses primarily on data integration (e.g., [6, 43, 2]) or relies heavily on

a replicated index structure (e.g., [31]), there are two techniques that follow a performance

259

motivation that is similar to the one followed in this thesis: Cong et al.’s technique for

distributed query evaluation [39] and Suciu’s query evaluation technique for semistructured

data [124]. While both papers use a definition of performance that is somewhat different

from the one used in this work (focusing primarily on communication cost rather than

end-to-end response time), they are nevertheless the most appropriate candidates for a

direct comparison.

Cong et al. present two multi-phase algorithms for distributed query evaluation, named

PaX3 and PaX2. Both algorithms feature a phase during which all fragments are traversed

in parallel (phase 2 in PaX3 and phase 1 in PaX2). Since all fragments are traversed in

their entirety during this phase, it is reasonable to suspect that this phase dominates the

overall response time of their technique. Therefore, for this comparison, the traversal phase

has been implemented within Natix.

Figure 9.5 shows the response time of executing this traversal over those fragments of

the 12 GB collection that remain after applying their simple pruning strategy (denoted

as “PaX”). While this does not capture the total response time cost of evaluating PaX3

or PaX2, the traversal is a necessary step for either algorithm that cannot be avoided or

parallelized with other phases. Therefore, the time consumed by this parallel traversal

can serve as a lower bound on the overall response time of PaX3 and PaX2. Note that

due to the slightly more restrictive query model, query C1 cannot be supported by these

algorithms and, therefore, no response time is shown for this query.

For Suciu’s distributed evaluation algorithm, a similar insight is exploited: while the

paper does not give any experimental results, the response time cost of applying this

technique appears to be dominated by the generation of partial results using an automaton

that accepts the query. Unlike this work, Suciu’s technique does not take advantage of a

fragmentation specification. Therefore, the starting state of the automaton at a given

root proxy node cannot be determined and all states have to be examined, increasing the

processing cost of this phase.

The partial result generation phase of Suciu’s algorithm was implemented within Natix

and its response time is reported as “disteval” in Figure 9.5. As in the case of Cong et

al.’s work, this phase is not parallelized with other phases of the algorithm, and it cannot

260

 0

 200

 400

 600

 800

 1000

 1200

A1 A2 A3 A4 A5 A6 A7 A8 B7 C1

R
es

po
ns

e
tim

e
(s

ec
on

ds
)

Query

central
PaX

disteval
dist optimized

Figure 9.5: Comparison to existing distributed techniques, 12 GB

be avoided. Thus, its response time can serve as a lower bound on the total response time

of Suciu’s algorithm. The query model used in Suciu’s paper is somewhat different from

the XPath-based models seen in more recent work and appears to support only linear path

queries. Therefore it can be applied only to the linear queries A1, A2, and A3, and only

for these queries are response times shown in Figure 9.5.

Comparing the lower bounds on the cost of these existing techniques with the total cost

of centralized query evaluation (denoted as “central”) and distributed query evaluation

using the techniques introduced in this thesis (denoted as “dist optimized”) leads to the

following observations:

• Both Cong et al.’s and Suciu’s algorithms significantly improve response time com-

pared to centralized query evaluation. For the queries supported by both techniques,

the partial result generation phase of Suciu’s algorithm is faster than the traversal

261

phase of Cong et al.’s technique. This illustrates that even though these techniques

are primarily designed to minimize communication cost (rather than overall response

time), applying them may yield an overall performance benefit when compared to

centralized evaluation4.

• However, the results confirm that the techniques described in this thesis lead to

significantly lower response times for all queries considered.

Overall, the experiment confirms that the techniques presented in this work successfully

improve the scalability of distributed query evaluation. While both Cong’s and Suciu’s

technique offer impressive guarantees with regard to communication cost, the results of

the experiment show that when optimizing for end-to-end performance, the techniques

presented in this thesis, which are specifically designed for this purpose, yield significantly

better results.

9.2 Techniques for Horizontal Fragmentation

This section presents an in-depth evaluation of the query evaluation techniques that can be

applied to horizontally fragmented collections. The goal of this evaluation is twofold: First,

the usefulness of the horizontal fragmentation model for improving query performance is

examined. Then, the impact of the pruning techniques presented in Section 6.1.1 is studied.

Since the impact of pruning is primarily on query throughput (rather than on the response

time of an individual query), both response time and throughput rates are measured.

Since the definition of horizontal fragmentation assumes a multiple-document collection,

these experiments are conducted using an XMark collection that has been decomposed

into multiple small documents by placing each open auction node into its own document

along with its descendants and document sub-trees referenced via ID/IDREF. This results

4Since lower bounds on the performance of Cong et al.’s and Suciu’s algorithms are considered, a definite

comparison between the performance of these algorithms and that of centralized query evaluation is not

possible based on the results reported here (nor is such a comparison within the scope of this experimental

evaluation).

262

in documents of regular structure with an average size of approximately 30 KB. Three

collection sizes are used: 350 MB, 3.5 GB, and 35 GB. Since the decomposition of the

collection increases the size by a factor of about three (as some nodes are duplicated), the

collections used in this experiment correspond to the same data as the collections used in

the previous experiments.

9.2.1 Balanced Fragmentation

Each open auction element generated by XMark contains an auction end date and these

dates are uniformly distributed across the years 1998-2001. It is therefore possible to obtain

a balanced horizontal fragmentation schema (i.e., a fragmentation schema in which all

fragments are approximately the same size) by dividing this date range into non-overlapping

periods of equal length, with each such period corresponding to one horizontal fragment.

For this experiment, fragmentation schemas consisting of 1, 2, 4, 8, 16, 32, 64 and 99

horizontal fragments are used5.

After fragmenting the collection in this fashion, five classes of queries are evaluated.

These classes of queries have been chosen to illustrate the behaviour of the distributed

query evaluation techniques in different scenarios. Q1 consists of queries that contain a

point predicate on the auction end date, i.e., each query returns auctions that end on

exactly one date within the 4 year period. Q2–Q5 represent range queries that cover 25%,

50%, 75%, and 100% of the four-year date range, respectively. These queries correspond

to different scenarios for the horizontal pruning algorithm: whereas Q1 can be answered

using a single fragment, Q2-Q5 need to access an increasingly large fraction of all fragments.

Thus, Q1 is a good fit for this fragmentation and Q5 is an extremely poor fit. It is important

to note that each time a query in one of these classes is evaluated, a date (in the case of

class Q1) or a date range of the appropriate length within the 4-year range (in the case

of queries Q2-Q5) is chosen randomly. For the purpose of illustration, Table 9.3 shows an

example of a query in each class.

5The experimental set-up is limited to 100 EC2 instances running simultaneously. Since one such

instance is needed for the query dispatcher, this means that at most 99 instances can be used to store

fragments.

263

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 1 2 4 8 16 32 64 99

R
es

po
ns

e
tim

e
(s

ec
on

ds
)

Number of machines and fragments

w/ pruning
w/o pruning

(a) Q1, 350 MB

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 1 2 4 8 16 32 64 99

R
es

po
ns

e
tim

e
(s

ec
on

ds
)

Number of machines and fragments

w/ pruning
w/o pruning

(b) Q2, 350 MB

 0

 50

 100

 150

 200

 250

 300

 350

 1 2 4 8 16 32 64 99

R
es

po
ns

e
tim

e
(s

ec
on

ds
)

Number of machines and fragments

w/ pruning
w/o pruning

(c) Q1, 3.5 GB

 0

 50

 100

 150

 200

 250

 300

 350

 1 2 4 8 16 32 64 99

R
es

po
ns

e
tim

e
(s

ec
on

ds
)

Number of machines and fragments

w/ pruning
w/o pruning

(d) Q2, 3.5 GB

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 1 2 4 8 16 32 64 99

R
es

po
ns

e
tim

e
(s

ec
on

ds
)

Number of machines and fragments

w/ pruning
w/o pruning

(e) Q1, 35 GB

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 1 2 4 8 16 32 64 99

R
es

po
ns

e
tim

e
(s

ec
on

ds
)

Number of machines and fragments

w/ pruning
w/o pruning

(f) Q2, 35 GB

Figure 9.6: Response time, balanced horizontal fragmentation

264

 0

 1

 2

 3

 4

 5

 6

 1 2 4 8 16 32 64 99

R
es

po
ns

e
tim

e
(s

ec
on

ds
)

Number of machines and fragments

w/ pruning
w/o pruning

(a) Q3, 350 MB

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 4 8 16 32 64 99

R
es

po
ns

e
tim

e
(s

ec
on

ds
)

Number of machines and fragments

w/ pruning
w/o pruning

(b) Q4, 350 MB

 0

 50

 100

 150

 200

 250

 300

 350

 1 2 4 8 16 32 64 99

R
es

po
ns

e
tim

e
(s

ec
on

ds
)

Number of machines and fragments

w/ pruning
w/o pruning

(c) Q3, 3.5 GB

 0

 50

 100

 150

 200

 250

 300

 350

 1 2 4 8 16 32 64 99

R
es

po
ns

e
tim

e
(s

ec
on

ds
)

Number of machines and fragments

w/ pruning
w/o pruning

(d) Q4, 3.5 GB

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 1 2 4 8 16 32 64 99

R
es

po
ns

e
tim

e
(s

ec
on

ds
)

Number of machines and fragments

w/ pruning
w/o pruning

(e) Q3, 35 GB

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 1 2 4 8 16 32 64 99

R
es

po
ns

e
tim

e
(s

ec
on

ds
)

Number of machines and fragments

w/ pruning
w/o pruning

(f) Q4, 35 GB

Figure 9.7: Response time, balanced horizontal fragmentation (cont’d)

265

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 4 8 16 32 64 99

R
es

po
ns

e
tim

e
(s

ec
on

ds
)

Number of machines and fragments

w/ pruning
w/o pruning

(a) Q5, 350 MB

 0

 50

 100

 150

 200

 250

 300

 350

 1 2 4 8 16 32 64 99

R
es

po
ns

e
tim

e
(s

ec
on

ds
)

Number of machines and fragments

w/ pruning
w/o pruning

(b) Q5, 3.5 GB

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 1 2 4 8 16 32 64 99

R
es

po
ns

e
tim

e
(s

ec
on

ds
)

Number of machines and fragments

w/ pruning
w/o pruning

(c) Q5, 35 GB

Figure 9.8: Response time, balanced horizontal fragmentation (cont’d)

266

Q1 /open auction[./interval/end[. = xs:date(’12/28/2001’)]]

[initial > 120]//item/name

Q2 /open auction[./interval/end

[. >= xs:date(’01/01/1998’)][. < xs:date(’12/28/1998’)]]

[initial > 120]//item/name

Q3 /open auction[./interval/end

[. >= xs:date(’01/01/1998’)][. < xs:date(’12/28/1999’)]]

[initial > 120]//item/name

Q4 /open auction[./interval/end

[. >= xs:date(’01/01/1998’)][. < xs:date(’12/28/2000’)]]

[initial > 120]//item/name

Q5 /open auction[./interval/end

[. >= xs:date(’01/01/1998’)][. < xs:date(’12/28/2001’)]]

[initial > 120]//item/name

Table 9.3: Queries used in horizontal experiments

First, the response time of evaluating each query over the horizontally distributed

collection is measured. As in all measurements in this chapter, the results reported in

Figures 9.6, 9.7, and 9.8 include the cost of constructing sub-query results at the individual

sites, shipping them to the dispatcher and assembling them to the overall query result6.

In the case of the 35 GB collection, some data points are missing for centralized execution

and the fragmentation schemas with a lower number of fragments. In these cases, query

evaluation did not finish within the allotted maximum of two hours.

When interpreting the results, it can be seen that even without pruning, horizontal

distribution reduces query response time when compared with centralized execution (i.e.,

the scenario with a single fragment on a single machine). For all queries and collection sizes,

response time decreases as the collection is partitioned into an increasingly large number of

fragments (and thereby distributed across an increasingly large number of machines). This

can be explained by the fact that fragment sizes decrease when a collection of constant size

6Note that a logarithmic scale is used on the x-axis.

267

is partitioned into a larger number of fragments. At the same time, the query is decomposed

into a larger number of sub-queries, which are then evaluated in parallel. Each of these

sub-queries accesses a smaller amount of data (corresponding to the smaller fragment size),

thereby reducing the overall response time of the query.

Based on the same reasoning, increasing the number of machines makes it possible to

query a larger collection while maintaining the same level of response time. For example,

assume that a response time of less than 100 seconds is desired for each of the five classes

of queries. As can be seen, for the 3.5 GB collection, this can be achieved by partitioning

the collection into at least four fragments. To ensure the same response time for the 35

GB collection, this collection needs to be partitioned into at least 32 fragments.

When considering the impact of pruning, it can be observed that this technique does

not result in a major improvement of response time when compared to distributed exe-

cution without pruning. This is expected since pruning is primarily intended to improve

throughput. It is important, however, to point out that pruning has no negative impact

on response time.

Next, the impact of distribution and pruning on throughput is considered. To measure

query throughput, multiple dispatcher processes are used to keep the system saturated

with queries. In Figures 9.9, 9.10, and 9.11, the maximum throughput rates achieved for

each class of queries are reported. Even without pruning, distribution significantly increases

throughput and this increase is proportional to the number of fragments. Enabling pruning

further improves throughput by a significant margin. Naturally, the impact of pruning is

most pronounced for the class of point queries (Q1), where a single date is selected and

where the pruning technique can therefore avoid accessing all but one of the fragments for

each query. Pruning also helps for the queries that involve a range of dates, particularly

when this range is small (i.e., Q2 and Q3), though the effect is less pronounced. For Q4 and

Q5, where a large portion of the fragments or all fragments have to be inspected, pruning

offers no advantage over simple distribution but it also does not harm performance (apart

from some insignificant anomalies in the case of the 35 GB collection where throughput

rates are very low).

This illustrates the importance of a fragmentation schema that is well suited to the

268

 0

 5

 10

 15

 20

 25

 30

 1 2 4 8 16 32 64 99T
hr

ou
gh

pu
t (

qu
er

ie
s/

se
co

nd
)

Number of machines and fragments

w/ pruning
w/o pruning

(a) Q1, 350 MB

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 1 2 4 8 16 32 64 99T
hr

ou
gh

pu
t (

qu
er

ie
s/

se
co

nd
)

Number of machines and fragments

w/ pruning
w/o pruning

(b) Q2, 350 MB

 0

 5

 10

 15

 20

 25

 1 2 4 8 16 32 64 99T
hr

ou
gh

pu
t (

qu
er

ie
s/

se
co

nd
)

Number of machines and fragments

w/ pruning
w/o pruning

(c) Q1, 3.5 GB

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 1 2 4 8 16 32 64 99T
hr

ou
gh

pu
t (

qu
er

ie
s/

se
co

nd
)

Number of machines and fragments

w/ pruning
w/o pruning

(d) Q2, 3.5 GB

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 4 8 16 32 64 99T
hr

ou
gh

pu
t (

qu
er

ie
s/

se
co

nd
)

Number of machines and fragments

w/ pruning
w/o pruning

(e) Q1, 35 GB

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 4 8 16 32 64 99T
hr

ou
gh

pu
t (

qu
er

ie
s/

se
co

nd
)

Number of machines and fragments

w/ pruning
w/o pruning

(f) Q2, 35 GB

Figure 9.9: Throughput, balanced horizontal fragmentation

269

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 4 8 16 32 64 99T
hr

ou
gh

pu
t (

qu
er

ie
s/

se
co

nd
)

Number of machines and fragments

w/ pruning
w/o pruning

(a) Q3, 350 MB

 0

 2

 4

 6

 8

 10

 12

 1 2 4 8 16 32 64 99T
hr

ou
gh

pu
t (

qu
er

ie
s/

se
co

nd
)

Number of machines and fragments

w/ pruning
w/o pruning

(b) Q4, 350 MB

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1 2 4 8 16 32 64 99T
hr

ou
gh

pu
t (

qu
er

ie
s/

se
co

nd
)

Number of machines and fragments

w/ pruning
w/o pruning

(c) Q3, 3.5 GB

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 2 4 8 16 32 64 99T
hr

ou
gh

pu
t (

qu
er

ie
s/

se
co

nd
)

Number of machines and fragments

w/ pruning
w/o pruning

(d) Q4, 3.5 GB

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 1 2 4 8 16 32 64 99T
hr

ou
gh

pu
t (

qu
er

ie
s/

se
co

nd
)

Number of machines and fragments

w/ pruning
w/o pruning

(e) Q3, 35 GB

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 1 2 4 8 16 32 64 99T
hr

ou
gh

pu
t (

qu
er

ie
s/

se
co

nd
)

Number of machines and fragments

w/ pruning
w/o pruning

(f) Q4, 35 GB

Figure 9.10: Throughput, balanced horizontal fragmentation (cont’d)

270

 0

 2

 4

 6

 8

 10

 12

 1 2 4 8 16 32 64 99T
hr

ou
gh

pu
t (

qu
er

ie
s/

se
co

nd
)

Number of machines and fragments

w/ pruning
w/o pruning

(a) Q5, 350 MB

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 2 4 8 16 32 64 99T
hr

ou
gh

pu
t (

qu
er

ie
s/

se
co

nd
)

Number of machines and fragments

w/ pruning
w/o pruning

(b) Q5, 3.5 GB

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 1 2 4 8 16 32 64 99T
hr

ou
gh

pu
t (

qu
er

ie
s/

se
co

nd
)

Number of machines and fragments

w/ pruning
w/o pruning

(c) Q5, 35 GB

Figure 9.11: Throughput, balanced horizontal fragmentation (cont’d)

271

workload: fragmenting on attributes on which single-value selections are performed leads to

greater pruning opportunities than fragmenting on attributes that are used in wide range

predicates. However, even in the latter case, distributed evaluation by far outperforms

centralized querying.

The results also show that once a throughput of approximately 20 queries per second

is achieved, further increasing the number of machines does not lead to improved perfor-

mance. This is because, for simplicity, the experimental setup uses a single query dispatcher

instance, which becomes saturated at this point so that distributed query evaluation is no

longer the bottleneck. Thus, query performance reaches a plateau and in some cases even

decreases slightly (e.g., Q1, 350 MB, as seen in Figure 9.9(a)), which can be explained by

thrashing at the dispatcher. In practice, this problem can easily be avoided by dispatching

queries from multiple sites.

9.2.2 Skewed Fragmentation

While pruning performs well in the presence of a balanced fragmentation, in practice it

is not always possible to achieve this balance. Thus, this section presents an experiment

that measures the effect of pruning with a skewed fragmentation consisting of 8 fragments.

The skewed fragmentation is defined as follows: the first fragment contains half of the

entire collection (corresponding to the first 2 years of the 4-year period), the next fragment

contains half of the remaining collection (i.e., 25% of the data), and so forth, with the last

fragment containing the remainder of the collection data.

Since the experiments in the previous section have shown that the impact of the hori-

zontal pruning technique on response time is small, the experiments with skewed fragment-

ation focus on throughput. Figures 9.12 and 9.13 show the throughput rates achieved by

centralized query execution (which is vanishingly low in some of the cases shown), as well

as distributed query execution (with and without pruning) over a balanced fragmentation

consisting of 2, 4 and 8 fragments (denoted “bal-2”, “bal-4”, and “bal-8”, respectively) and

over the skewed fragmentation (denoted as “skew-8”). Only queries Q1 and Q2 are used,

since these are the queries for which pruning has been shown to be particularly effective.

Even in the presence of skew, distribution results in a significant boost in performance

272

 0

 2

 4

 6

 8

 10

 12

 14

cent-1 bal-2 bal-4 bal-8 skew-8

T
hr

ou
gh

pu
t (

qu
er

ie
s/

se
co

nd
)

Fragmentation

central
w/o pruning

w/ pruning

(a) Q1, 350 MB

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

cent-1 bal-2 bal-4 bal-8 skew-8

T
hr

ou
gh

pu
t (

qu
er

ie
s/

se
co

nd
)

Fragmentation

central
w/o pruning
w/ pruning

(b) Q1, 3.5 GB

Figure 9.12: Throughput, balanced and skewed horizontal fragmentation

273

 0

 0.5

 1

 1.5

 2

 2.5

 3

cent-1 bal-2 bal-4 bal-8 skew-8

T
hr

ou
gh

pu
t (

qu
er

ie
s/

se
co

nd
)

Fragmentation

central
w/o pruning
w/ pruning

(a) Q2, 350 MB

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

cent-1 bal-2 bal-4 bal-8 skew-8

T
hr

ou
gh

pu
t (

qu
er

ie
s/

se
co

nd
)

Fragmentation

central
w/o pruning
w/ pruning

(b) Q2, 3.5 GB

Figure 9.13: Throughput, balanced and skewed horizontal fragmentation (cont’d)

274

over centralized querying in all cases. As with a balanced fragmentation schema, pruning

further improves throughput.

The throughput rates obtained with the skewed fragmentation tend to fall between that

of a balanced fragmentation with 2 fragments and that of a balanced fragmentation with

4 fragments. This can be explained by the fact that the largest fragment in the skewed

fragmentation covers a period of 2 of the 4 years and is therefore the same size as a fragment

in the balanced fragmentation with 2 fragments, representing a throughput bottleneck.

To further improve query performance in the presence of a skewed distribution, it may

be beneficial to replicate the most heavily loaded fragments. However, this is beyond the

scope of this thesis.

9.2.3 Pruning Efficacy

In addition to evaluating the performance impact of pruning, it is interesting to examine

how effectively the pruning technique limits query execution to the fragments that actually

yield part of the result. To determine this, the fraction of those sites accessed by a pruned

query plan that yield part of the query result is measured. The results (based on a balanced

fragmentation consisting of 16 fragments) are shown in Figure 9.14. Query Q1 is omitted

from this experiment since it can be answered using a single fragment. The cut-off value for

the initial bid of the auction is varied from 300 to 800, which affects the selectivity of the

queries, with a lower value yielding a larger number of query results from each fragment

that is relevant for the query7. As can be seen, pruning is more effective for the queries that

select a large number of results from each relevant fragment (corresponding to lower bid

values). This is because a query that selects a larger portion of the collection is more likely

to find a match within a given fragment. The results reported here are derived from the

35 GB collection. With the smaller collections, efficacy tends to be slightly lower, which

can be attributed to the lower numbers of results derived from these collections.

Overall, the results of the experiments on horizontal fragmentation show that horizontal

7Since bid values are not used in the fragmentation predicates used to define the horizontal fragment-

ation, altering the bid value has no impact on which fragments can be pruned for a given query.

275

 0

 20

 40

 60

 80

 100

 300 400 500 600 700 800

P
ru

ni
ng

 e
ffi

ca
cy

 (
%

)

Bid value

Q2
Q3
Q4
Q5

Figure 9.14: Pruning efficacy

fragmentation is highly effective at improving query performance and scalability, in par-

ticular when fragmentation skew can be avoided. In addition, pruning is confirmed to be a

valuable tool for improving query throughput beyond the level achieved by fragmentation

alone, while having no significant impact on response time.

9.3 Techniques for Vertical Fragmentation

The experimental evaluation of the query evaluation techniques for vertically fragmented

collections focuses on query response time. In a vertically fragmented system, a single

type of query always accesses the same fragments resulting in a closed system in which

throughput can only be improved by reducing the response time8. This makes a separate

study of throughput unnecessary.

8In a scenario where multiple different queries are processed at the same time, each query may need to

access a different subset of the fragments and thus there might be a potential for optimizing throughput

independently of response time. Since multiple-query optimization is not considered in this thesis, this

case is not examined here.

276

To evaluate the performance of the query evaluation techniques for vertically frag-

mented collections, two sets of experiments are performed:

• First, the impact of vertical fragmentation on query performance is evaluated. For

this experiment, the performance of centralized query evaluation is compared to

that of distributed evaluation using the näıve query evaluation strategy presented in

Section 5.2. Additionally, the impact of the various pruning techniques presented in

Section 6.2.1 is considered.

• Next, the impact of cross-fragment join pushing (as described in Section 6.2.2.1) and

node type path filtering (as described in Section 6.2.2.4) is examined in detail.

9.3.1 Fragmentation and Pruning

To evaluate the performance impact of vertical fragmentation and the pruning techniques

that can be applied in this scenario, the same decomposed XMark collection used in the

horizontal experiments is employed. This collection is scaled to 350 MB and 3.5 GB9 and

then partitioned based on the vertical fragmentation schema shown in simplified form in

Figure 9.15. This fragmentation schema was chosen because it provides the opportunity

to examine cases where the number of fragments accessed by each query (before and after

pruning) varies widely. Fragmenting the collection in this fashion results in a skewed frag-

mentation because different node types in the collection occur with different frequencies.

Over this collection, queries that have been chosen based on their characteristics (shown

in Table 9.4) are evaluated. Q6 involves only a single fragment (fragment f1 in Figure 9.15).

Previous work has shown that this is the ideal case for vertical fragmentation [12]. The

remaining queries, however, reach all five of the fragments shown in Figure 9.15. While Q7

to Q10 reach the same number of fragments, the number of structural and value constraints

they contain increases from Q7 to Q10.

9As shown in Section 9.2.1, centralized query evaluation over the 35 GB collection and distributed

query evaluation over a 35 GB collection fragmented into fewer than eight fragments did not finish within

two hours for any of the queries. Thus, this collection size is omitted here.

277

open auction

annotation interval

end

(a) f1

author seller bidder

personref

(b) f2

person

creditcard

(c) f3

profile

education interest

(d) f4

category

id

(e) f5

Figure 9.15: Fragmentation schema used to evaluate vertical fragmentation and pruning

27
8

Q6 /open auction[initial > 200]/interval/end

Q7 /open auction//person//category[id=’category10’]

Q8 /open auction/bidder//person//category[id=’category10’]

Q9 /open auction/bidder//person[creditcard]//category[id=’category10’]

Q10 /open auction/bidder//person[creditcard]/profile[education]

//category[id=’category10’]

Table 9.4: Queries used to evaluate vertical fragmentation and pruning

Figure 9.16 shows, for each collection and query, the response time obtained by cen-

tralized query execution (denoted as “central”), näıve distributed execution without any

pruning (denoted as “dist”), distributed execution with pruning of fragments on which

no structural constraints are placed (denoted as “prune1”) and distributed execution with

additional pruning based on node type paths (denoted as “prune2”).

As can be seen, distributed execution outperforms centralized execution by a significant

margin in all cases. In most cases, both pruning techniques further improve performance

but their effectiveness varies depending on the query. To analyze the impact of the pruning

techniques, it is useful to consider the number of fragments that each technique accesses

for each query, which is shown in Table 9.5. For Q6, which can be answered by accessing

a single fragment, all distributed execution techniques yield approximately the same re-

sponse time. For Q7, näıve distributed execution needs to access five fragments, whereas

Query Fragments accessed

Dist Prune 1 Prune 2

Q6 1 1 1

Q7 5 1 1

Q8 5 2 1

Q9 5 3 2

Q10 5 4 3

Table 9.5: Number of fragments accessed, vertical fragmentation

279

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

Q6 Q7 Q8 Q9 Q10

R
es

po
ns

e
tim

e
(s

ec
on

ds
)

Query

central
dist

prune1
prune2

(a) 350 MB

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

Q6 Q7 Q8 Q9 Q10

R
es

po
ns

e
tim

e
(s

ec
on

ds
)

Query

central
dist

prune1
prune2

(b) 3.5 GB

Figure 9.16: Response time, vertical fragmentation

280

both pruning techniques access only a single fragment. This explains why both pruning

techniques yield comparable response times, which are approximately half of that of näıve

distributed execution. In the case of Q8, pruning of fragments without structural con-

straints performs better than näıve distributed execution. Additional pruning based on

node type paths in turn performs better than pruning only the fragments without struc-

tural constraints. Again, these results are reflected in the number of fragments accessed

by each of these techniques. For Q9 and Q10, even with pruning, multiple fragments need

to be accessed. Thus, response times for all distributed techniques are approximately on

par with each other.

Together, these results show the impact of pruning on query performance in a vertically

fragmented scenario. As can be seen, query performance is related both to the opportu-

nity for pruning provided by a given query and fragmentation schema, as well as to the

effectiveness of the pruning technique used. This corroborates the usefulness of pruning as

a technique for improving the performance of query evaluation over vertically fragmented

collections.

Q11 /open auction[initial > 200]//item//mail/from

Q12 /open auction[initial > 200][.//author/person

/name[starts-with(., ’Ry’)]]//item//mail/from

Q13 /open auction[initial > 200][.//author/person/

name[starts-with(., ’Ry’)]]//item//category/id

Q14 /open auction[initial > 200][.//author/person[profile/age > 30]

/name[starts-with(., ’Ry’)]]//item//category/id

Q15 /open auction[initial > 200]//author/person[starts-with(name, ’Ry’)]

/profile/interest/category/description

Table 9.6: Queries used to evaluate cross-fragment join pushing and node type path filtering

281

9.3.2 Cross-Fragment Join Pushing and Node Type Path Filter-

ing

Next, the performance impact of cross-fragment join pushing and node type path filtering

is examined. To do this, two sets of experiments are performed. First, a set of carefully

chosen queries is evaluated over the decomposed XMark collection consisting of many

small documents. These queries were chosen to represent different scenarios encountered

by distributed query evaluation with join pushing and node type path filtering. In a

second set of experiments, the impact of these query evaluation techniques is evaluated

when applied to the XPathMark queries in the context of an unmodified XMark collection.

9.3.2.1 Effects in Various Scenarios

The first experiment is based on a set of queries that is designed to test several different

cases that affect how cross-fragment join pushing and node type path filtering can be

applied (Q11-Q15 in Table 9.6). After scaling the decomposed XMark collection used in

the previous experiment to 350 MB and 3.5 GB, the collection is partitioned vertically

according to the vertical fragmentation schema shown in Figure 9.17. This fragmentation

schema was chosen because it yields fragments that differ widely in size, leading to an

interesting variety of opportunities for pushing cross-fragment joins.

The results of this experiment are shown in Figure 9.18. For each query and collection

size, the response time achieved by näıve distributed query evaluation (denoted as “dist”)

is compared to that of distributed query evaluation with node type path filtering (denoted

as “filter”) and of distributed query evaluation with cross-fragment join pushing (denoted

as “push”). As before, all measurements include the cost of constructing sub-query results,

shipping them between sites, and shipping the overall query result to the dispatcher.

As can be seen, cross-fragment join pushing improves the performance of distributed

query evaluation by a significant margin for all queries and collection sizes. The perfor-

mance benefit is particularly large for queries Q13, Q14, and Q15. This can be explained

by the fact that these queries access fragment f8, which is the largest fragment in the

collection. Since these queries contain highly selective value constraints on the content of

282

open auction

annotation initial

(a) f1

itemref

item

mail incategory

(b) f2

author

(c) f3

seller

(d) f4

bidder

personref

(e) f5

person

name

(f) f6

profile

age interest

(g) f7

category

id

(h) f8

Figure 9.17: Fragmentation schema used to evaluate join cross-fragment pushing and node type path filtering

283

 0

 10

 20

 30

 40

 50

 60

Q11 Q12 Q13 Q14 Q15

R
es

po
ns

e
tim

e
(s

ec
on

ds
)

Query

dist
filter

push

(a) 350 MB

 0

 100

 200

 300

 400

 500

 600

Q11 Q12 Q13 Q14 Q15

R
es

po
ns

e
tim

e
(s

ec
on

ds
)

Query

dist
filter

push

(b) 3.5 GB

Figure 9.18: Impact of cross-fragment join pushing and node type path filtering

284

node of types initial (in fragment f1) and name (in fragment f6), cross-fragment join

pushing successfully limits query execution to a relatively small fraction of the sub-trees

in fragment f8, thus improving query performance.

Node type path filtering, in contrast, can only be applied to queries Q14 and Q15 (with

the other queries, there is no opportunity for filtering based on node type paths). For Q14,

where one fragment (f7) contains sub-trees that can be filtered, this technique does not

lead to a significant improvement in query performance when compared to näıve distributed

query evaluation. For Q15, however, where node type path filtering can be applied to two

fragments (f7 and f8), a significant performance improvement can be observed. However,

the performance of query execution with node type path filtering is still inferior to that

of cross-fragment join pushing. This supports the intuition that join pushing should be

preferred unless other considerations make it impossible to use this technique (e.g., if a

non-left-deep plan is required).

9.3.2.2 Effects with XPathMark Queries

For the second experiment, queries from the XPathMark benchmark are used (A1-A6

and B7, shown in Table 9.7). Since these queries are primarily designed to evaluate the

performance of evaluating XPath axes, they contain few filtering predicates and each return

a large portion of the nodes in the collection as their result. While this is an important use

case, it is also important to capture the equally realistic scenario of queries that do have

such filtering predicates. Therefore, a value predicate was added to each query, resulting

in the selective XPathMark queries A1S-A6S and B7S. Both the original and the selective

XPathMark queries are evaluated over an unmodified XMark collection, scaled to 120 MB,

1.2 GB and 12 GB. This collection is fragmented into 10 vertical fragments according to

the fragmentation schema shown in Figure 9.19. This fragmentation schema was chosen

because it provides opportunity for cross-fragment join pushing. Note that no pruning was

performed during this experiment.

Figures 9.20, 9.21, and 9.22 show the results of this experiment. As can be seen,

for most of the unmodified XPathMark queries, cross-fragment join pushing leads to a

significant improvement in performance. The sole exception to this is query A6, where

285

A1 /site/closed auctions/closed auction/annotation/description/text/keyword

A2 //closed auction//keyword

A3 /site/closed auctions/closed auction//keyword

A4 /site/closed auctions/closed auction[annotation/description/text/keyword]

/date

A5 /site/closed auctions/closed auction[descendant::keyword]/date

A6 /site/people/person[profile/gender and profile/age]/name

B7 //person[profile/@income]/name

A1S /site/closed auctions/closed auction[price > 600]

/annotation/description/text/keyword

A2S //closed auction[price > 600]//keyword

A3S /site/closed auctions/closed auction[price > 600]//keyword

A4S /site/closed auctions/closed auction[price > 600]

[annotation/description/text/keyword]/date

A5S /site/closed auctions/closed auction[price > 600][descendant::keyword]

/date

A6S /site/people/person[starts-with(name, ’Ry’)]

[profile/gender and profile/age]/name

B7S //person[starts-with(name, ’Ry’)][profile/@income]/name

Table 9.7: XPathMark queries and selective XPathMark queries

join pushing leads to a slight decrease in performance. This can be explained by the fact

that for this query, even with cross-fragment join pushing, all sub-trees in fragment f9

need to be accessed. In practice, queries for which cross-fragment join pushing decreases

performance do not present a problem since cost-based optimization will not yield a plan

that uses this technique in these cases.

For the more selective queries, the benefit of cross-fragment join pushing is more pro-

nounced. As can be seen, this query evaluation technique is beneficial for all of the selective

queries. This result can be explained by the fact that cross-fragment join pushing exploits

selective constraints posed over the content of one fragment to reduce the number of sub-

trees that need to be accessed in another fragment. Since the selective queries contain

286

site

(a) f1

open auctions

open auction

(b) f2

closed auctions

close auction

price

(c) f3

categories

category

(d) f4

people

person

name

(e) f5

regions

(f) f6

catgraph

(g) f7

annotation

description

(h) f8

profile

age income

(i) f9

address

city

(j) f10

Figure 9.19: Fragmentation schema used to evaluate cross-fragment join pushing with XPathMark queries

287

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

A1 A2 A3 A4 A5 A6 B7

R
es

po
ns

e
tim

e
(s

ec
on

ds
)

Query

dist
push

(a) XPathMark queries

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

A1S A2S A3S A4S A5S A6S B7S

R
es

po
ns

e
tim

e
(s

ec
on

ds
)

Query

dist
push

(b) Selective XPathMark queries

Figure 9.20: Impact of cross-fragment join pushing, 120 MB

288

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

A1 A2 A3 A4 A5 A6 B7

R
es

po
ns

e
tim

e
(s

ec
on

ds
)

Query

dist
push

(a) XPathMark queries

 0

 10

 20

 30

 40

 50

 60

 70

 80

A1S A2S A3S A4S A5S A6S B7S

R
es

po
ns

e
tim

e
(s

ec
on

ds
)

Query

dist
push

(b) Selective XPathMark queries

Figure 9.21: Impact of cross-fragment join pushing, 1.2 GB

289

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

A1 A2 A3 A4 A5 A6 B7

R
es

po
ns

e
tim

e
(s

ec
on

ds
)

Query

dist
push

(a) XPathMark queries

 0

 100

 200

 300

 400

 500

 600

 700

 800

A1S A2S A3S A4S A5S A6S B7S

R
es

po
ns

e
tim

e
(s

ec
on

ds
)

Query

dist
push

(b) Selective XPathMark queries

Figure 9.22: Impact of cross-fragment join pushing, 12 GB

290

more of these constraints, the benefit of cross-fragment join pushing is greater for these

queries.

9.4 Cost Model

The cost-based query optimization technique presented in Chapter 7 works by enumerating

the candidate plans for a given query and distributed collection, estimating the cost of each

such candidate plan and then choosing the plan with the lowest estimated cost. This section

presents a thorough evaluation of this technique. The methods used in this evaluation are

partially inspired by Mackert and Lohman’s work on validating the R* optimizer [97, 98].

The goal of this evaluation is twofold: first it is shown that for each candidate plan,

estimated cost and actual cost are closely correlated. In particular, it is important that

the relative order of candidate plans for the same query is preserved, i.e., if candidate plan

G1
P has a significantly lower estimated cost than candidate plan G2

P then the actual cost

(in terms of response time) of G1
P should also be significantly lower than the actual cost of

G2
P . The second goal of this evaluation is to show that cost-based optimization successfully

determines a near-optimal plan for each query (i.e., a plan whose actual response time cost

is close to that of the plan with the lowest actual response time cost).

To estimate the cost of a DEP, the distributed cost estimation techniques presented

in this thesis rely on cost estimates for the LQPs contained in this DEP and compose

these estimates to a cost estimate for the entire DEP. Since the goal of this experiment is

to evaluate the accuracy of distributed cost estimation, rather than that of (centralized)

cost estimation for individual LQPs, actual, measured LQP costs are used as inputs to

distributed cost estimation.

For the experiments presented in this section, five queries were chosen that exemplify

the different scenarios encountered during cost estimation. These queries (C1, C2, C3, C4,

and C5) are shown in Table 9.8. The queries are then evaluated over an XMark collection

of size 1.2 GB that has been fragmented vertically according to the fragmentation schema

shown in Figure 9.2310. This fragmentation schema has been chosen such that each of the

10Since horizontal fragmentation yields fewer alternative distributed execution plans (differing only in

291

site

(a) f1

open auctions

open auction

(b) f2

closed auctions

close auction

price

(c) f3

categories

category

(d) f4

people

person

name

(e) f5

regions

(f) f6

catgraph

(g) f7

annotation

description

text

keyword

(h) f8

profile

age gender

(i) f9

address

city

(j) f10

Figure 9.23: Fragmentation schema used to validate cost model

29
2

queries requires access to multiple fragments during query evaluation even after pruning.

This results in a variety of possible execution plans for each query and makes it possible

to compare estimated cost and actual cost of each alternative.

Queries C1 and C2 share the same structure. When evaluating these queries over the

fragmented collection, fragments f1, f3, and f8 need to be accessed. However, C1 and

C2 differ in the constant used in the value constraint evaluated over nodes of type price.

This influences the cardinality of the LQP evaluated over fragment f3 and thereby the

effectiveness of pushing the cross-fragment join between this LQP and the LQP evaluated

over fragment f8 into the latter LQP.

Evaluating query C3 requires access to fragments f1, f5, and f9. Query C4 is evaluated

over the same fragments. However, it contains a negation. When evaluating query C4, the

negation is pushed into the cross-fragment join between the LQP evaluated over fragment

f5 and the LQP evaluated over fragment f9. This makes it possible to evaluate the accuracy

of cost estimation for cross-fragment joins into which a negation has been folded.

Query C5, which is also evaluated over fragments f1, f5, and f9, contains no selective

value constraints in the LQPs evaluated over fragments f1 and f5. Thus, for this query,

join pushing should not yield a significant benefit, making it possible to verify that this

scenario is handled correctly by cost estimation.

To validate the cost estimation techniques presented in Chapter 7, the candidate plans

considered by cost-based query optimization are enumerated for each of the five queries11.

the physical merge operator used), and since all of these plan alternatives can be expected to have similar

response time costs (differing primarily in whether a separate sorting step is necessary), the experiments

presented in this section focus on cost-based optimization for vertically fragmented collections.
11Note that since an implementation of the symmetric hash join operator is not available in Natix, plans

C1 /site/closed auctions/closed auction[price > 600]/annotation/description/text/keyword

C2 /site/closed auctions/closed auction[price > 100]/annotation/description/text/keyword

C3 /site/people/person[starts-with(name, ’Ry’)][profile/gender and profile/age]/name

C4 /site/people/person[starts-with(name, ’Ry’) and not(profile/age > 60)]/name

C5 //person[profile/@income]/name

Table 9.8: Queries used to validate cost model

293

For each candidate plan, estimated cost and actual cost are then compared.

Figures 9.24, 9.25, 9.26, 9.27, and 9.28 show the results of the experiments for queries

C1, C2, C3, C4, and C5, respectively. For each query, two diagrams are shown:

• a scatter plot, in which each data point corresponds to a candidate plan for the query,

with the estimated cost shown on the x-axis and the actual cost shown on the y-axis,

and

• a diagram in which candidate plans are ordered by their estimated cost. For each

candidate plan, estimated and actual cost are shown side by side.

Additionally, the candidate plans considered for queries C1, C2, C3, C4, and C5 are

shown in Tables 9.9, 9.10, 9.11, 9.12, and 9.13, respectively. For queries C1 and C2, the

LQPs p1k, p
2
k, and p

3
k (where k denotes the query) correspond to fragments f1, f3 and f8,

respectively. For queries C3, C4, and C5, the LQPs p1k, p
2
k, and p

3
k correspond to fragments

f1, f5, and f9, respectively.

As can be seen, in the case of query C3, the performance of the best plan in the search

space is more than eight times better than the performance of the worst plan. This confirms

the motivation for cost-based optimization and shows that choosing an appropriate plan

has a large impact on query performance.

To evaluate the relationship between estimated cost and actual cost, one can compare

the data points in the scatter plot with the dashed line, which represents a perfect corre-

spondence between estimated cost and actual cost. Analyzing these results for queries C1

through C5 shows that, while there is some error, cost estimates for all candidate plans are

close to the actual cost. Thus, for all candidate plans for each of the five queries, estimated

cost and actual cost are well correlated.

Analytically, this is confirmed by the Pearson correlation coefficients [117] shown in

Table 9.14. These coefficients are a standard measure of correlation. A Pearson coefficient

of 1 indicates perfect linear correlation, a coefficient of 0 indicates no linear correlation, and

a coefficient of -1 indicates perfect inverse correlation. For all queries for which Pearson

containing this operator are not considered in this experiment.

294

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50

A
ct

ua
l c

os
t (

se
co

nd
s)

Estimated cost (seconds)

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50

A
ct

ua
l c

os
t (

se
co

nd
s)

Estimated cost (seconds)

 0

 10

 20

 30

 40

 50

1 2 3 4 5 6 7 8 9 10 11 12 13 14

R
es

po
ns

e
tim

e
(s

ec
on

ds
)

Plan

estimated
actual

Figure 9.24: Query C1, estimated cost vs. actual cost

295

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

A
ct

ua
l c

os
t (

se
co

nd
s)

Estimated cost (seconds)

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

A
ct

ua
l c

os
t (

se
co

nd
s)

Estimated cost (seconds)

 0

 10

 20

 30

 40

 50

 60

1 2 3 4 5 6 7 8 9 10 11 12 13 14

R
es

po
ns

e
tim

e
(s

ec
on

ds
)

Plan

estimated
actual

Figure 9.25: Query C2, estimated cost vs. actual cost

296

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35 40

A
ct

ua
l c

os
t (

se
co

nd
s)

Estimated cost (seconds)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35 40

A
ct

ua
l c

os
t (

se
co

nd
s)

Estimated cost (seconds)

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 2 3 4 5 6 7 8 9 10 11 12 13 14

R
es

po
ns

e
tim

e
(s

ec
on

ds
)

Plan

estimated
actual

Figure 9.26: Query C3, estimated cost vs. actual cost

297

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

A
ct

ua
l c

os
t (

se
co

nd
s)

Estimated cost (seconds)

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

A
ct

ua
l c

os
t (

se
co

nd
s)

Estimated cost (seconds)

 0

 5

 10

 15

 20

 25

 30

1 2 3

R
es

po
ns

e
tim

e
(s

ec
on

ds
)

Plan

estimated
actual

Figure 9.27: Query C4, estimated cost vs. actual cost

298

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

A
ct

ua
l c

os
t (

se
co

nd
s)

Estimated cost (seconds)

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

A
ct

ua
l c

os
t (

se
co

nd
s)

Estimated cost (seconds)

 0

 10

 20

 30

 40

 50

 60

1 2 3 4 5 6 7 8 9 10 11 12 13 14

R
es

po
ns

e
tim

e
(s

ec
on

ds
)

Plan

estimated
actual

Figure 9.28: Query C5, estimated cost vs. actual cost

299

No. Plan Est. cost Act. cost

1 p̄31(scan(RP) ✶
I p̄21(scan(RP) ✶

I p11)) 5.86 5.93

2 p̄31(scan(RP) ✶
I (p11 ✶

M p21)) 5.86 5.98

3 p̄31(scan(RP) ✶
I (S(p11) ✶

M S(p21))) 5.90 6.30

4 p̄21(scan(RP) ✶
I p11) ✶

M p31 39.96 40.14

5 (p11 ✶
M p21) ✶

M p31 39.96 40.17

6 (S(p11) ✶
M p21) ✶

M p31 39.96 40.25

7 (S(p11) ✶
M S(p21)) ✶

M p31 39.96 41.51

8 (p11 ✶
M S(p21)) ✶

M p31 39.96 41.56

9 (p11 ✶
M p21) ✶

H p31) 40.02 40.04

10 (p11 ✶
M S(p21)) ✶

H p31) 40.02 41.42

11 (p11 ✶
M p21) ✶

M S(p31) 41.55 41.58

12 (S(p11) ✶
M p21) ✶

M S(p31) 41.55 41.68

13 (S(p11) ✶
M S(p21)) ✶

M S(p31) 41.55 42.96

14 (p11 ✶
M S(p21)) ✶

M S(p31) 41.55 42.99

Table 9.9: Plans considered for query C1

300

No. Plan Est. cost Act. cost

1 p̄32(scan(RP) ✶
I p̄22(scan(RP) ✶

I p12)) 7.59 9.40

2 p̄32(scan(RP) ✶
I (p12 ✶

M p22)) 7.59 10.00

3 p̄32(scan(RP) ✶
I (S(p12) ✶

M S(p22))) 14.15 20.13

4 p̄22(scan(RP) ✶
I p12) ✶

M p32 40.11 43.24

5 (S(p12) ✶
M p22) ✶

M p32 40.11 43.33

6 (p12 ✶
M p22) ✶

M p32 40.11 43.35

7 (S(p12) ✶
M S(p22)) ✶

M p32 40.11 45.19

8 (p12 ✶
M S(p22)) ✶

M p32 40.11 45.24

9 (p12 ✶
M p22) ✶

M S(p32) 41.60 44.78

10 (S(p12) ✶
M p22) ✶

M S(p32) 41.60 44.82

11 (p12 ✶
M S(p22)) ✶

M S(p32) 41.60 46.66

12 (S(p12) ✶
M S(p22)) ✶

M S(p32) 41.60 46.69

13 (p12 ✶
M p22) ✶

H p32) 49.46 49.29

14 (p12 ✶
M S(p22)) ✶

H p32) 49.46 50.15

Table 9.10: Plans considered for query C2

301

No. Plan Est. cost Act. cost

1 p̄33(scan(RP) ✶
I (p13 ✶

M p23)) 2.78 2.93

2 p̄33(scan(RP) ✶
I p̄23(scan(RP) ✶

I p13)) 2.78 3.09

3 p̄33(scan(RP) ✶
I (S(p13) ✶

M S(p23))) 2.79 2.98

4 (p13 ✶
M p23) ✶

H p33) 26.61 23.16

5 (p13 ✶
M p23) ✶

M p33 26.61 23.43

6 p̄23(scan(RP) ✶
I p13) ✶

M p33 26.61 23.52

7 (S(p13) ✶
M p23) ✶

M p33 26.61 23.76

8 (p13 ✶
M S(p23)) ✶

H p33) 26.61 23.78

9 (p13 ✶
M S(p23)) ✶

M p33 26.61 24.10

10 (S(p13) ✶
M S(p23)) ✶

M p33 26.61 24.41

11 (S(p13) ✶
M p23) ✶

M S(p33) 28.43 25.22

12 (p13 ✶
M p23) ✶

M S(p33) 28.43 25.32

13 (p13 ✶
M S(p23)) ✶

M S(p33) 28.43 25.69

14 (S(p13) ✶
M S(p23)) ✶

M S(p33) 28.43 25.73

Table 9.11: Plans considered for query C3

No. Plan Est. cost Act. cost

1 (p14 ✶
M S(p24))GA p34) 23.04 22.43

2 p̄24(scan(RP) ✶
I p14)GA p34) 23.04 22.51

3 (p14 ✶
M p24)GA p34) 23.04 22.65

Table 9.12: Plans considered for query C4

302

No. Plan Est. cost Act. cost

1 p̄35(scan(RP) ✶
I (p15 ✶

M p25)) 33.37 30.40

2 p̄35(scan(RP) ✶
I p̄25(scan(RP) ✶

I p15)) 33.37 32.19

3 (p15 ✶
M p25) ✶

M p35 33.37 33.52

4 p̄25(scan(RP) ✶
I p15) ✶

M p35 33.37 33.55

5 (S(p15) ✶
M p25) ✶

M p35 33.37 33.69

6 (p15 ✶
M S(p25)) ✶

M p35 33.37 35.08

7 (S(p15) ✶
M S(p25)) ✶

M p35 33.37 35.35

8 (p15 ✶
M p25) ✶

M S(p35) 37.57 37.72

9 (S(p15) ✶
M p25) ✶

M S(p35) 37.57 38.04

10 (p15 ✶
M S(p25)) ✶

M S(p35) 37.57 39.24

11 (S(p15) ✶
M S(p25)) ✶

M S(p35) 37.57 39.33

12 (p15 ✶
M p25) ✶

H p35) 50.85 44.42

13 (p15 ✶
M S(p25)) ✶

H p35) 50.85 45.90

14 p̄35(scan(RP) ✶
I (S(p15) ✶

M S(p25))) 52.14 48.76

Table 9.13: Plans considered for query C5

303

Query Correlation

C1 0.99914

C2 0.99210

C3 0.99938

C4 N/A

C5 0.94928

Table 9.14: Pearson correlation coefficient between estimated cost and actual cost of the

candidate plans for a given query

coefficients can be computed12, the coefficients between estimated cost and actual cost

are close to 1. This validates the cost model presented in Chapter 7 and shows that it

accurately predicts the actual cost of distributed execution plans.

As can be seen in the bar diagrams (Figures 9.24–9.28), the relative order of candidate

plans is also largely preserved by cost estimation. The few cases where the order is dis-

turbed occur with candidate plans that are close in both estimated cost and actual cost

(as seen with plans 8 and 9 for query C1 in Figure 9.24).

Most importantly, for each of the five queries, one of the DEPs with the lowest estimated

cost13 is also the DEP with the lowest actual cost. Conversely, no DEP with the lowest

estimated cost for any of the queries leads to an actual cost that diverges far from the

optimum. Together, these results confirm that cost-based optimization using the cost

estimation techniques defined in this work is highly successful in choosing distributed

execution plans that yield high query performance.

For a more detailed analysis of these results, it is useful to consider each of the five

queries individually:

For query C1, the candidate plans can be clustered into three groups based on their

12Since all candidate plans for query C4 have the same estimated cost, it is not possible to compute the

correlation coefficient for this query. However, as can be seen in Figure 9.27, all candidate plans for this

query also have very similar actual costs, corroborating the claim that estimated cost and actual cost are

closely correlated.
13There are frequently multiple DEPs that share the same cost estimate.

304

performance (cf. Figure 9.24). The first group consists of plans 1, 2, and 3 as shown in

Table 9.9, which have an average estimated cost of 5.87 seconds and an average actual cost

of 6.07 seconds. This group consists of exactly those candidate plans that push a cross-

fragment join into LQP p31. This pushing technique is particularly effective for this query

as all three candidate plans in this cluster have a cost that is much lower than that of the

other candidate plans considered. This can be explained by the fact that LQP p31 is the

most expensive LQP in each of these candidate plans and reducing the cost of this LQP by

restricting its execution to the sub-trees matched by the cross-fragment join significantly

improves overall query performance. Cost estimation successfully predicts this effect.

The next cluster consists of plans 4 through 10. These plans do not apply join pushing

to the LQP p31, instead either a hash join (✶H) is employed to evaluate the cross-fragment

join between p21 and p31 or a merge join (✶M) is used that exploits the order properties

present in the result of p31. While the actual costs of the plans in this cluster vary slightly

more than their estimated costs, the estimated cost of each plan nevertheless remains a

good predictor of the plan’s actual cost.

The last group of plans (consisting of plans 11 through 14) uses an explicit sorting step

applied to the result of LQP p31. These plans have the worst overall performance, as is

predicted by their cost estimates.

Query C2, whose results are shown in Figure 9.25 and whose plans are shown in Table

9.10, is similar to query C1, except that it has a lower price threshold in LQP p22. As a

result, both the cardinality and the cost of p22 are larger than that of p12. Thus, the overall

cost of the candidate plans for query C2 is no longer as strongly determined by the cost

of p32. This has the effect that pushing the cross-fragment join between p22 and p32 into p32
is somewhat less effective for this query and that the candidate plans that employ this

technique (plans 1 through 3 in Table 9.10) vary more widely in their performance. Plan 3

has the highest response time among these plans, which can be explained by the relatively

large intermediate result of p22 that needs to be sorted before evaluation of p32 can begin.

For the remaining candidate plans, while sorting the result of p32 still has a slight

negative impact on performance (seen in plans 9 through 12), the physical join operator

used to evaluate the cross-fragment join between p22 and p32 also has a large impact. Using

305

a hash join operator (✶H), as seen in plans 13 and 14 leads to the candidate plans with

the worst performance, which can be explained by the larger intermediate result sizes in

this scenario. Despite this, cost estimates are still closely correlated with actual cost and,

more importantly, ranking the candidate plans for query C2 by their estimated cost yields

roughly the same order as ranking them by their actual cost. The sole exception to this

are plans 7 and 8, whose actual costs are slightly higher than those of plans 9 and 10 but

whose estimated costs are slightly lower. Due to the minor difference in estimated cost

between these plans, this cannot be considered a significant alteration to the plan order

and therefore does not invalidate the cost estimation technique.

Query C3, whose results are shown in Figure 9.26, follows a different structure and

accesses a different subset of the fragments of the collection. The candidate plans that

offer the best performance for this query (plans 1, 2, and 3 in Table 9.11) are the plans

that push a cross-fragment join into the LQP p33. The remaining plans all yield similar

levels of performance, with the plans that sort the result of p33 (i.e., plans 11, 12, 13, and

14) being slightly worse than the rest. As can be seen in the diagrams shown in Figure

9.26, plan order is mostly preserved by cost estimation.

Query C4 contains a negation that in all candidate plans is pushed into the cross-

fragment join between LQPs p24 and p34. Since this work considers only one strategy for

evaluating cross-fragment joins with pushed negation, cost-based optimization considers

only a small number of plans for this query. For each of these plans, the cost is dominated

by the cost of LQP p34, which results in all candidate plans having the same estimated cost

(as is shown in Figure 9.27 and Table 9.12), making it impossible to compute a correlation

coefficient for this query. Nevertheless, since the estimated cost of each candidate plan

considered is close to the plan’s actual cost, cost estimation can be said to perform well

for this query.

As mentioned before, query C5 lacks selective value constraints in LQPs p15 and p25.

Thus, the expected result for this query is that pushing the cross-fragment join between

p25 and p35 into p35 should yield little benefit. As can be seen in Figure 9.28 and Table 9.13,

this is indeed the case and the plans that do push this join (plans 1 and 2) end up with

both estimated costs and actual costs that are comparable to those of plans 3 through 7,

which do not push this cross-fragment join. Plan 14, which pushes the join between p25

306

and p35 into p35 but sorts the result of p25 prior to doing this yields the worst performance

of all plans considered for this query. This is because the result of p25 is relatively large

and sorting it delays the evaluation of p35, leading to a large overhead for pushing this join

whereas the benefit (i.e., the number of sub-trees that p35 can skip) is minimal.

Among the plans that do not push a cross-fragment join into p35 (plans 3–13), sorting

the result of p35 (plans 8 through 11) and using a hash join to evaluate the cross-fragment

join between p25 and p
3
5 (plans 12 and 13) both yield worse performance than using a merge

join that exploits existing ordering (plans 3–7). As can be seen, cost estimation predicts

this effect and preserves the order of all candidate plans considered for this query.

While cost estimation preserves the order of plans, for plans 12–14, there is a larger

amount of estimation error than for the other plans compared in this experiment. The most

likely explanation for this estimation error is a violation of the independence assumption

made in Section 7.1.

Together, these results show that in all the cases considered, the error margin between

estimated cost and actual cost is low. Thus, the cost model proposed in Chapter 7 has

been shown to provide accurate cost estimates. The relative order of candidate plans is

also largely preserved by cost estimation, illustrating that the cost model is an effective

tool for comparing candidate plans based on their performance. Most importantly, in all

cases, cost-based optimization identifies the optimal or a nearly optimal plan in the search

space considered. This confirms that cost-based optimization is an effective method for

determining a suitable distributed execution plan for a given query and collection.

9.5 Summary

In summary, this chapter has presented a thorough evaluation of the various techniques

introduced in this thesis. After validating that a combination of all of these techniques leads

to a significant improvement in query performance, each technique is examined individually

and its contribution to this performance gain is analyzed. Together, the results presented

in this chapter validate the distributed query processing approach taken in this thesis and

307

verify that by using the cost-based optimization procedure, the techniques developed in

this thesis lead to significant performance and scalability gains.

308

Chapter 10

Conclusion

This thesis presents a suite of techniques that use distribution to improve the performance

and scalability of XML query evaluation. In the following, a brief summary of these

techniques is presented. Then, a final comparison with key contributions of related work

is given. Finally, possible directions for future research are outlined.

10.1 Summary

After introducing the necessary background material and discussing related work in this

field, a model for specifying a partitioning of an XML collection is introduced. This model

supports horizontal fragmentation (based on selection), vertical fragmentation (based on

projection), and hybrid fragmentation, based on a combination of both. While the seman-

tics of this fragmentation model are similar to models that are widely used to fragment

relational data, the tree structure of XML data leads to particular challenges, which are

addressed in this work.

Based on this fragmentation model, a strategy for the distributed evaluation of queries

over fragmented collections is then proposed. Distributed query evaluation proceeds by

first identifying the fragments that are relevant to a query and then producing a sub-query

for each of these fragments. These sub-queries can then be evaluated at the sites holding

309

the corresponding fragments. To obtain the overall query result, a distributed execution

plan is defined, which determines how the results of the sub-queries are combined.

A major focus of this thesis is on improving the performance of these distributed ex-

ecution plans. A suite of techniques are proposed to accomplish this. One of these tech-

niques focuses on pruning the set of fragments that need to be accessed, thus reducing the

overall amount of processing that needs to be performed to answer a query. Another tech-

nique improves query performance further by skipping irrelevant portions of the remaining

fragments. This is achieved by pushing the join operations that combine the results of

sub-queries into individual sub-queries.

Together, these techniques open up a large optimization space, in which there are

many plan alternatives for a given query and distributed collection. To cope with this,

and to obtain the best performance, a cost-based optimization technique is introduced.

This technique can be used to accurately predict the cost of evaluating a given distributed

execution plan. By enumerating the candidate plans for a query and comparing them

based on their estimated cost, the best plan can be chosen.

To fully benefit from the distributed query evaluation techniques presented in this

thesis, it is best to partition the collection in a way that allows for the efficient evaluation

of the expected query workload. Thus, a heuristic technique is proposed that accomplishes

this based on the cost model for distributed execution plans.

Based on an implementation of the techniques from thesis within the context of the

XML database system Natix, a comprehensive set of performance experiments is con-

ducted. These confirm that combining the techniques presented here leads to a signif-

icant improvement in query performance and scalability when compared to centralized

approaches. The techniques from this thesis also perform better than existing distributed

approaches for XML query evaluation, because unlike those techniques, this work focuses

on end-to-end performance (rather than on a single aspect of performance such as com-

munication cost). Additional experiments verify the individual performance contribution

of each of the query evaluation techniques proposed here. They also show that the cost

model used during distributed optimization is a good predictor of end-to-end performance.

310

10.2 Comparison to Related Work

A key difference between the techniques proposed in this thesis and much of related work

in the area of distributed XML query processing (e.g., [2, 3, 4, 5]) is this work’s focus on

distribution as a means to improving query performance and scalability, rather than as a

means for integrating multiple collections into a single XML view.

When comparing this work to related techniques that follow a performance motivation

(e.g., [31, 57, 39, 33, 40, 124]), a key distinguishing factor is this work’s focus on the

end-to-end cost of query processing, rather than on a single aspect of this cost such as

communication cost. As is shown experimentally in Chapter 9, by focusing on this notion

of cost, a performance advantage can be obtained, both compared to centralized query

evaluation and to existing distributed techniques.

Another advantage of the techniques presented here is their flexibility with regard to the

local query evaluation techniques used to evaluate sub-queries over individual fragments.

With this approach, the complexity of local query optimization is avoided and the dis-

tributed techniques presented here can benefit from the numerous centralized query evalu-

ation techniques proposed in the literature (e.g., [20, 76, 84, 30, 66, 137, 139, 11, 62, 41, 32]).

Finally, by using a cost-based optimization approach, the full performance benefit of

the distributed query evaluation techniques presented in this thesis can be obtained. This

is in contrast to much of the existing work, which either does not use a cost model at all

(e.g., [39, 33, 40, 124]) or uses a simple, heuristic cost-based approach (e.g., [57]).

10.3 Possible Directions for Future Work

While the system presented in this thesis is designed as an end-to-end solution that im-

proves the performance and scalability of XML query processing through distribution,

there are several extensions that could be made for further improvement.

• One such avenue would be a further extension of the query model. Even though the

class of queries supported in this work is equivalent to that of related approaches

311

(e.g., [39]) or constitutes a superset of the query models supported by those ap-

proaches (e.g., [31, 124]), and even though queries in the class supported by this

work form an important building block of queries encountered in many use cases, di-

rectly supporting a larger set of XQuery expressions might lead to increased potential

for optimization.

• A second area in which this work could be extended is the class of fragmentation

schemas that are supported. For this work, the conscious choice was made to focus on

fragmentations that constitute a partitioning of the collection. Using this approach,

it was shown that query performance can be improved significantly by leveraging

distribution. Combining the approaches shown here with techniques that replicate

the most heavily loaded fragments (e.g. the techniques described by Machdi et al. [95,

96]) might result in additional performance gains in certain circumstances. Further,

it might be possible to extend the definition of vertical fragmentation to take into

account the position of a node in the document in addition to the type of the node.

This could result in a more flexible definition of fragmentation, which might allow

better adaptation to query workloads.

• It might be possible to integrate alternative approaches to distributed query evalua-

tion (such as those based on index structures, e.g., [31]) with the techniques presented

in this thesis. By combining both approaches and using a single cost-based optimizer

to choose the most appropriate strategy for a given query and collection, further

performance gains might be realized.

• The optimizer presented in this thesis focuses on the execution of a single query.

By considering the impact of resource contention between multiple queries that are

executed simultaneously (such as in [9, 10]), better distributed execution plans might

be obtainable. Similarly, the fragmentation algorithm presented in Chapter 8 might

be improved by weighting the individual queries in a workload by their frequency.

• Another area that warrants further attention is the management of updates within a

distributed XML database as proposed in this thesis. While the techniques presented

here are designed not to interfere with update management (for example, by avoiding

312

the use of a replicated index structure), there might be cases where there is a trade-

off between the cost of managing updates and the cost of query processing. This is

true especially when the techniques from this thesis are combined with approaches

that replicate some of the fragments.

313

References

[1] Amazon Elastic Compute Cloud (EC2), 2006. http://aws.amazon.com/ec2/.

[2] Serge Abiteboul, Omar Benjelloun, Bogdan Cautis, Ioana Manolescu, Tova Milo, and

Nicoleta Preda. Lazy query evaluation for Active XML. In Proc. ACM SIGMOD

International Conference on Management of Data, pages 227–238, 2004.

[3] Serge Abiteboul, Omar Benjelloun, and Tova Milo. The Active XML project: an

overview. VLDB Journal, 17(5):1019–1040, 2008.

[4] Serge Abiteboul, Omar Benjellourn, Ioana Manolescu, Tova Milo, and Roger We-

ber. Active XML: Peer-to-peer data and web services integration. In Proc. 28th

International Conference on Very Large Data Bases, pages 1087–1090, 2002.

[5] Serge Abiteboul, Angela Bonifati, Grégory Cobéna, Ioana Manolescu, and Tova Milo.

Dynamic XML documents with distribution and replication. In Proc. ACM SIGMOD

International Conference on Management of Data, pages 527–538, 2003.

[6] Serge Abiteboul, Georg Gottlob, and Marco Manna. Distributed XML design. In

Proc. 28th ACM SIGACT-SIGMOD-SIGART Symp. Principles of Database Systems,

pages 247–257, 2009.

[7] Ashraf Aboulnaga, Alaa R. Alameldeen, and Jeffrey F. Naughton. Estimating the

selectivity of XML path expressions for internet scale applications. In Proc. 27th

International Conference on Very Large Data Bases, pages 591–600, 2001.

315

[8] Ashraf Aboulnaga and Jeffrey F. Naughton. Building XML statistics for the hidden

web. In Proc. ACM CIKM International Conference on Information and Knowledge

Management, pages 358–365, 2003.

[9] Mumtaz Ahmad, Ashraf Aboulnaga, and Shivnath Babu. Query interactions in data-

base workloads. In Proc. 2nd International Workshop on Testing Database Systems,

pages 11:1–11:6, 2009.

[10] Mumtaz Ahmad, Ashraf Aboulnaga, Shivnath Babu, and Kamesh Munagala. Mod-

eling and exploiting query interactions in database systems. In Proc. ACM CIKM

International Conference on Information and Knowledge Management, pages 183–

192, 2008.

[11] Shurug Al-Khalifa, H. V. Jagadish, Jignesh M. Patel, Yuqing Wu, Nick Koudas, and

Divesh Srivastava. Structural Joins: A Primitive for Efficient XML Query Pattern

Matching. In Proc. 18th International Conference on Data Engineering, pages 141–

152, 2002.

[12] Alexandre Andrade, Gabriela Ruberg, Fernanda Araujo Baião, Vanessa P. Bragan-

holo, and Marta Mattoso. Efficiently processing XML queries over fragmented repos-

itories with PartiX. In Current Trends in Database Technology – EDBT 2006 Work-

shops, pages 150–163, 2006.

[13] Alexandre Andrade, Gabriela Ruberga, Fernanda A. Baião, Vanessa P. Braganholo,

and Marta Mattoso. Partix: processing XQuery queries over fragmented XML repos-

itories. Technical Report ES-691/05, Universidade Federal do Rio de Janeiro, 2005.

[14] Marcelo Arenas and Leonid Libkin. A normal form for XML documents. In Proc.

21st ACM SIGACT-SIGMOD-SIGART Symp. Principles of Database Systems, pages

85–96, 2002.

[15] Marcelo Arenas and Leonid Libkin. A normal form for XML documents. ACM Trans.

Database Systems, 29(1):195–232, 2004.

316

[16] Andrey Balmin, Tom Eliaz, John Hornibrook, Lipyeow Lim, Guy M. Lohman, David

Simmen, Min Wang, and Chun Zhang. Cost-based optimization in DB2 XML. IBM

Systems Journal, 45(2):299–319, 2006.

[17] Andrey Balmin, Fatma Özcan, Kevin S. Beyer, Roberta J. Cochrane, and Hamid

Pirahesh. A framework for using materialized XPath views in XML query processing.

In Proc. 30th International Conference on Very Large Data Bases, pages 60–71, 2004.

[18] Andrey Balmin, Fatma Özcan, Ashutosh Singh, and Edison Ting. Grouping and

optimization of XPath expressions in DB2 pureXML. In Proc. ACM SIGMOD In-

ternational Conference on Management of Data, pages 1065–1074, 2008.

[19] Francois Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D Ullman. Magic sets

and other strange ways to implement logic programs (extended abstract). In Proc.

5th ACM SIGACT-SIGMOD Symp. on Principles of Database Systems, pages 1–15,

1986.

[20] Charles Barton, Philippe Charles, Deepak Goyal, Mukund Raghavachari, and Marcus

Fontoura. Streaming XPath processing with forward and backward axes. In Proc.

19th International Conference on Data Engineering, pages 455–466, 2003.

[21] Chaitanya K. Baru, Gilles Fecteau, Ambuj Goyal, Hui-I Hsiao, Anant Jhingran,

Sriram Padmanabhan, George P. Copeland, and Walter G. Wilson. DB2 parallel

edition. IBM Systems Journal, 34(2):292–322, 1995.

[22] Chaitanya K. Baru, Gilles Fecteau, Ambuj Goyal, Hui-I Hsiao, Anant Jhingran,

Sriram Padmanabhan, and Walter G. Wilson. An overview of DB2 parallel edition.

In Proc. ACM SIGMOD International Conference on Management of Data, pages

460–462, 1995.

[23] Eric Temple Bell. The iterated exponential numbers. The Annals of Mathematics,

39(3):539–557, 1938.

[24] Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Fernández,

Michael Kay, Jonathan Robie, and Jérôme Siméon. XML path language

317

(XPath) version 2.0 (second edition). W3C recommendation, W3C, 2010.

http://www.w3.org/TR/2010/REC-xpath20-20101214/.

[25] Mike W. Blasgen and Kapali P. Eswaran. Storage and access in relational data bases.

IBM Systems Journal, 16(4):362–377, 1977.

[26] Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu, Jonathan Ro-

bie, and Jérôme Siméon. XQuery 1.0: An XML query language (second edition).

W3C recommendation, W3C, 2010. http://www.w3.org/TR/2010/REC-xquery-

20101214/.

[27] Peter Boncz, Torsten Grust, Maurice van Keulen, Stefan Manegold, Jan Rittinger,

and Jens Teubner. MonetDB/XQuery: a fast XQuery processor powered by a rela-

tional engine. In Proc. ACM SIGMOD International Conference on Management of

Data, pages 479–490, 2006.

[28] Rajesh Bordawekar, Lipyeow Lim, Anastasios Kementsietsidis, and Bryant Wei-Lun

Kok. Statistics-based parallelization of XPath queries in shared memory systems. In

Advances in Database Technology — EDBT’10, Proc. 14th International Conference

on Extending Database Technology, pages 159–170, 2010.

[29] Sujoe Bose and Leonidas Fegaras. XFrag: A query processing framework for frag-

mented XML data. In Proc. 8th International Workshop on the World Wide Web

and Databases (WebDB), pages 97–102, 2005.

[30] Matthias Brantner, Sven Helmer, Carl-Christian Kanne, and Guido Moerkotte. Full-

fledged algebraic XPath processing in Natix. In Proc. 21st International Conference

on Data Engineering, pages 705–716, 2005.

[31] Jan-Marco Bremer and Michael Gertz. On distributing XML repositories. In Proc.

6th International Workshop on the World Wide Web and Databases (WebDB), pages

73–78, 2003.

[32] Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Holistic twig joins: optimal

XML pattern matching. In Proc. ACM SIGMOD International Conference on Man-

agement of Data, pages 310–321, 2002.

318

[33] Peter Buneman, Gao Cong, Wenfei Fan, and Anastasios Kementsietsidis. Using

partial evaluation in distributed query evaluation. In Proc. 32nd International Con-

ference on Very Large Data Bases, pages 211–222, 2006.

[34] Stephen Buswell, Stan Devitt, Angel Diaz, Patrick Ion, Robert Miner,

Nico Poppelier, Bruce Smith, Neil Soiffer, Robert Sutor, and Stephen

Watt. Mathematical Markup Language (MathML) 1.01 Specification, 1999.

http://www.w3.org/TR/REC-MathML/.

[35] Don Chamberlin, Peter Fankhauser, Daniela Florescu, Massimo Marchiori, and

Jonathan Robie. XQuery 1.0: An XML query language (second edition). W3C

working group note, W3C, 2007. http://www.w3.org/TR/xquery-use-cases/.

[36] Chee-Yong Chan and Yuan Ni. Content-based dissemination of fragmented XML

data. In Proc. 26th International Conference on Distributed Computing Systems,

page 44, 2006.

[37] Ming-Syan Chen, Philip S. Yu, and Kun-LungWu. Optimization of parallel execution

for multi-join queries. IEEE Trans. Knowledge and Data Engineering, 8(3):416–428,

1996.

[38] Zhiyuan Chen, H. V. Jagadish, Flip Korn, Nick Koudas, S. Muthukrishnan, Ray-

mond T. Ng, and Divesh Srivastava. Counting twig matches in a tree. In Proc. 17th

International Conference on Data Engineering, pages 595–604, 2001.

[39] Gao Cong, Wenfei Fan, and Anastasios Kementsietsidis. Distributed query evaluation

with performance guarantees. In Proc. ACM SIGMOD International Conference on

Management of Data, pages 509–520, 2007.

[40] Gao Cong, Wenfei Fan, Anastasios Kementsietsidis, Jianzhong Li, and Xianmin Liu.

Partial evaluation for distributed XPath query processing and beyond. ACM Trans.

Database Systems, 37(1), 2012. (to appear).

[41] David DeHaan, David Toman, Mariano P. Consens, and M. Tamer Özsu. A compre-

hensive XQuery to SQL translation using dynamic interval encoding. In Proc. ACM

SIGMOD International Conference on Management of Data, pages 623–634, 2003.

319

[42] David DeHaan and Frank Wm. Tompa. Optimal top-down join enumeration. In Proc.

ACM SIGMOD International Conference on Management of Data, pages 785–796,

2007.

[43] Alin Deutsch and Val Tannen. MaRS: A system for publishing XML from mixed

and redundant storage. In Proc. 29th International Conference on Very Large Data

Bases, pages 201–212, 2003.

[44] Melvil Dewey. A classification and subject index for cataloguing and arranging the

books and pamphlets of a library. 1876.

[45] Pit Fender and Guido Moerkotte. A new, highly efficient, and easy to implement

top-down join enumeration algorithm. In Proc. 27th International Conference on

Data Engineering, pages 864–875, 2011.

[46] Mary F. Fernández, Jan Hidders, Philippe Michiels, Jérôme Siméon, and Roel Ver-

cammen. Optimizing sorting and duplicate elimination in XQuery path expressions.

In Proc. 16th International Conference on Database and Expert Systems Applications

(DEXA), pages 554–563, 2005.

[47] Mary F. Fernández, Trevor Jim, Kristi Morton, Nicola Onose, and Jérôme Siméon.

Highly distributed XQuery with DXQ. In Proc. ACM SIGMOD International Con-

ference on Management of Data, pages 1159–1161, 2007.

[48] Mary F. Fernández, Ashok Malhotra, Jonathan Marsh, Marton Nagy, and

Norman Walsh. XQuery 1.0 and XPath 2.0 Data Model (XDM), 2007.

http://www.w3.org/TR/xpath-datamodel/.

[49] Thorsten Fiebig, Sven Helmer, Carl-Christian Kanne, Guido Moerkotte, Julia Neu-

mann, Robert Schiele, and Till Westmann. Anatomy of a native XML base manage-

ment system. VLDB Journal, 11(4):292–314, 2002.

[50] Guilherme Figueiredo, Vanessa P. Braganholo, and Marta Mattoso. A methodology

for query processing over distributed XML databases. Technical Report ES-710/07,

Universidade Federal do Rio de Janeiro, 2007.

320

[51] Guilherme Figueiredo, Vanessa P. Braganholo, and Marta Mattoso. Processing que-

ries over distributed XML databases. Journal of Information and Data Management,

1(3):455–470, 2010.

[52] Daniela Florescu and Donald Kossmann. Rethinking cost and performance of data-

base systems. ACM SIGMOD Record, 38(1):43–48, 2009.

[53] Massimo Franceschet. XPathMark: An XPath benchmark for XMark generated data.

In Database and XML Technologies, 3rd International XML Database Symposium

(XSym), pages 129–143, 2005.

[54] Michael J. Franklin, Björn Thór Jónsson, and Donald Kossmann. Performance trade-

offs for client-server query processing. In Proc. ACM SIGMOD International Con-

ference on Management of Data, pages 149–160, 1996.

[55] Juliana Freire, Jayant R. Haritsa, Maya Ramanath, Prasan Roy, and Jérôme Siméon.

StatiX: making XML count. In Proc. ACM SIGMOD International Conference on

Management of Data, pages 181–191, 2002.

[56] Sumit Ganguly, Waqar Hasan, and Ravi Krishnamurthy. Query optimization for par-

allel execution. In Proc. ACM SIGMOD International Conference on Management

of Data, pages 9–18, 1992.

[57] Michael Gertz and Jan-Marco Bremer. Distributed XML repositories: Top-down

design and transparent query processing. Technical Report TR-CSE-2003-20, Uni-

versity of California, Davis, 2003.

[58] Gang Gou and Rada Chirkova. Efficiently querying large XML data repositories: A

survey. IEEE Trans. Knowledge and Data Engineering, 19(10):1381–1403, 2007.

[59] Goetz Graefe. Query evaluation techniques for large databases. ACM Computing

Surveys, 25(2):73–170, 1993.

[60] Goetz Graefe and David J. DeWitt. The EXODUS optimizer generator. In Proc.

ACM SIGMOD International Conference on Management of Data, pages 160–172,

1987.

321

[61] Bojan Grošelj and Qutaibah M. Malluhi. Combinatorial optimization of distributed

queries. IEEE Trans. Knowledge and Data Engineering, 7(6):915–927, 1995.

[62] Torsten Grust, Maurice van Keulen, and Jens Teubner. Staircase join: teach a

relational DBMS to watch its (axis) steps. In Proc. 29th International Conference

on Very Large Data Bases, pages 524–535, 2003.

[63] Laura M. Haas, Donald Kossmann, Edward L. Wimmers, and Jun Yang. Optimizing

queries across diverse data sources. In Proc. 23rd International Conference on Very

Large Data Bases, pages 276–285, 1997.

[64] Beda Christoph Hammerschmidt, Martin Kempa, and Volker Linnemann. On the

intersection of XPath expressions. In Proc. 9th International Database Engineering

and Applications Symposium (IDEAS), pages 49–57, 2005.

[65] Michael P. Haustein, Theo Härder, Christian Mathis, and Markus Wagner. DeweyIDs

– the key to fine-grained management of XML documents. In Proc. 20th Brazilian

Symposium on Databases, pages 85–99, 2005.

[66] Sven Helmer and Carl-Christian Kanne. Optimized translation of XPath into al-

gebraic expressions parameterized by programs containing navigational primitives.

In Proc. 3rd International Conference on Web Information Systems Engineering

(WISE), pages 215–224, 2002.

[67] Soichiro Hidaka, Hiroyuki Kato, and Masatoshi Yoshikawa. An XQuery cost model

in relative form. Technical Report NII-2005-016E, National Institute of Informatics

Tokyo, 2005.

[68] Soichiro Hidaka, Hiroyuki Kato, and Masatoshi Yoshikawa. A relative cost model for

XQuery. In Proc. 2007 ACM Symp. on Applied Computing, pages 1332–1333, 2007.

[69] Jan Hidders, Philippe Michiels, and Roel Vercammen. Optimizing sorting and du-

plicate elimination in XQuery path expressions. Bulletin of the EATCS, 86:199–223,

2005.

322

[70] Christoph M. Hoffmann and Michael J. O’Donnell. Pattern Matching in Trees. Jour-

nal of the ACM, 29(1):68–95, 1982.

[71] Wei Hong and Michael Stonebraker. Optimization of parallel query execution plans

in XPRS. Distributed and Parallel Database Systems, 1(1):9–32, 1993.

[72] Yannis E. Ioannidis and Younkyung Kang. Randomized algorithms for optimizing

large join queries. ACM SIGMOD Record, 19(2):312–321, 1990.

[73] Yannis E. Ioannidis and Eugene Wong. Query optimization by simulated annealing.

In Proc. ACM SIGMOD International Conference on Management of Data, pages

9–22, 1987.

[74] Zachary G. Ives, Alon Y. Halevy, and Daniel S. Weld. An XML query engine for

network-bound data. VLDB Journal, 11(4):380–402, 2002.

[75] H. V. Jagadish, Shurug Al-Khalifa, Adriane Chapman, Laks V. S. Lakshmanan,

Andrew Nierman, Stelios Paparizos, Jignesh M. Patel, Divesh Srivastava, Nuwee

Wiwatwattana, Yuqing Wu, and Cong Yu. Timber: A native XML database. VLDB

Journal, 11(4):274–291, 2002.

[76] Vanja Josifovski, Marcus Fontoura, and Attila Barta. Querying XML streams. VLDB

Journal, 14(2):197–210, April 2005.

[77] Carl-Christian Kanne, Matthias Brantner, and Guido Moerkotte. Cost-sensitive re-

ordering of navigational primitives. In Proc. ACM SIGMOD International Confer-

ence on Management of Data, pages 742–753, 2005.

[78] Carl-Christian Kanne and Guido Moerkotte. Efficient Storage of XML Data. In

Proc. 16th International Conference on Data Engineering, page 198, 2000.

[79] Kentarou Kido, Toshiyuki Amagasa, and Hiroyuki Kitagawa. Processing XPath

queries in PC-clusters using XML data partitioning. In Proc. 22nd International

Conference on Data Engineering Workshops, page 114, 2006.

323

[80] Patrick Kling, M. Tamer Özsu, and Khuzaima Daudjee. Optimizing distributed XML

queries through localization and pruning. Technical Report CS-2009-13, University

of Waterloo, 2009.

[81] Patrick Kling, M. Tamer Özsu, and Khuzaima Daudjee. Distributed XML query

processing: Fragmentation, localization and pruning. Technical Report CS-2010-02,

University of Waterloo, 2010.

[82] Patrick Kling, M. Tamer Özsu, and Khuzaima Daudjee. Generating efficient exe-

cution plans for vertically partitioned XML databases. Proc. VLDB Endowment,

4(1):1–11, 2010.

[83] Patrick Kling, M. Tamer Özsu, and Khuzaima Daudjee. Scaling XML query pro-

cessing: Distribution, localization and pruning. Distributed and Parallel Database

Systems, 29(5):445–490, 2011.

[84] Christoph Koch. Efficient processing of expressive node-selecting queries on XML

data in secondary storage: a tree automata-based approach. In Proc. 29th Interna-

tional Conference on Very Large Data Bases, pages 249–260, 2003.

[85] Georgia Koloniari and Evaggelia Pitoura. Distributed structural relaxation of XPath

queries. In Proc. 25th International Conference on Data Engineering, pages 529–540,

2009.

[86] Donald Kossmann. The state of the art in distributed query processing. ACM

Computing Surveys, 32(4):422–469, 2000.

[87] Donald Kossmann and Konrad Stocker. Iterative dynamic programming: a new class

of query optimization algorithms. ACM Trans. Database Systems, 25(1):43–82, 2000.

[88] Hiroto Kurita, Kenji Hatano, Jun Miyazaki, and Shunsuke Uemura. Efficient query

processing for large XML data in distributed environments. In Proc. 21st Inter-

national Conference on Advanced Information Networking and Applications, pages

317–322, 2007.

324

[89] Mounia Lalmas. XML retrieval. Synthesis Lectures on Information Concepts, Re-

trieval, and Services, 1(1):1–111, 2009.

[90] Rosana S. G. Lanzelotte, Patrick Valduriez, and Mohamed Zäıt. On the effective-

ness of optimization search strategies for parallel execution spaces. In Proc. 19th

International Conference on Very Large Data Bases, pages 493–504, 1993.

[91] Thi Thu Thuy Le, Dai Duong Doan, Virendrakumar C. Bhavsar, and Harold Boley.

A bottom-up algorithm for query decomposition. International Journal of Innovative

Computing and Applications, 1(3):185–193, 2008.

[92] Hongjun Lu, Ming-Chien Shan, and Kian-Lee Tan. Optimization of multi-way join

queries for parallel execution. In Proc. 17th International Conference on Very Large

Data Bases, pages 549–560, 1991.

[93] Hui Ma and Klaus-Dieter Schewe. Fragmentation of XML documents. In Proc. 18th

Brazilian Symposium on Databases, pages 200–214, 2003.

[94] Hui Ma and Klaus-Dieter Schewe. Heuristic horizontal XML fragmentation. In Proc.

17th International Conference on Advanced Information Systems Engineering, pages

131–136, 2005.

[95] Imam Machdi, Toshiyuki Amagasa, and Hiroyuki Kitagawa. GMX: an XML data

partitioning scheme for holistic twig joins. In Proc. 10th International Conference

on Information Integration and Web-based Applications & Services, pages 137–146,

2008.

[96] Imam Machdi, Toshiyuki Amagasa, and Hiroyuki Kitagawa. XML data partitioning

strategies to improve parallelism in parallel holistic twig joins. In Proc. 5th Inter-

national Conference on Ubiquitous Information Management and Communication

(ICUIMC), pages 471–480, 2009.

[97] Lothar F. Mackert and Guy M. Lohman. R* optimizer validation and performance

evaluation for distributed queries. In Proc. 12th International Conference on Very

Large Data Bases, pages 149–159, 1986.

325

[98] Lothar F. Mackert and Guy M. Lohman. R* optimizer validation and performance

evaluation for local queries. In Proc. ACM SIGMOD International Conference on

Management of Data, pages 84–95, 1986.

[99] Eve Maler, Jean Paoli, C. M. Sperberg-McQueen, François Yergeau, and Tim Bray.

Extensible markup language (XML) 1.0 (fifth edition). W3C recommendation, W3C,

2008. http://www.w3.org/TR/2004/REC-xml.

[100] Ashok Malhotra and Paul V. Biron. XML schema part 2: Datatypes second edition.

W3C recommendation, W3C, 2004. http://www.w3.org/TR/2004/REC-xmlschema-

2-20041028/.

[101] Ioana Manolescu, Daniela Florescu, and Donald Kossmann. Answering XML queries

on heterogeneous data sources. In Proc. 27th International Conference on Very Large

Data Bases, pages 241–250, 2001.

[102] Amélie Marian and Jérôme Siméon. Projecting XML documents. In Proc. 29th

International Conference on Very Large Data Bases, pages 213–224, 2003.

[103] Norman May, Matthias Brantner, Alexander Böhm, Carl-Christian Kanne, and

Guido Moerkotte. Index vs. navigation in XPath evaluation. In Database and XML

Technologies, 4th International XML Database Symposium (XSym), pages 16–30,

2006.

[104] Norman May, Sven Helmer, Carl-Christian Kanne, and Guido Moerkotte. XQuery

processing in Natix with an emphasis on join ordering. In Proc. 1st Interna-

tional Workshop on XQuery Implementation, Experience and Perspectives (XIME-

P), pages 49–54, 2004.

[105] T. H. Merrett. Why sort-merge gives the best implementation of the natural join.

ACM SIGMOD Record, 13(2):39–51, 1983.

[106] Philippe Michiels, George Mihăilă, and Jérôme Siméon. Put a Tree Pattern in Your

Algebra. In Proc. 23rd International Conference on Data Engineering, pages 246–

255, 2007.

326

[107] Gerome Miklau and Dan Suciu. Containment and equivalence for a fragment of

XPath. Journal of the ACM, 51(1):2–45, 2004.

[108] Guido Moerkotte and Thomas Neumann. Analysis of two existing and one new dy-

namic programming algorithm for the generation of optimal bushy join trees without

cross products. In Proc. 32nd International Conference on Very Large Data Bases,

pages 930–941, 2006.

[109] Guido Moerkotte and Thomas Neumann. Dynamic programming strikes back. In

Proc. ACM SIGMOD International Conference on Management of Data, pages 539–

552, 2008.

[110] Augustus De Morgan. Formal logic: or, the calculus of inference, necessary and

probable. 1847.

[111] Inderpal Singh Mumick, Sheldon J. Finkelstein, Hamid Pirahesh, and Raghu Ra-

makrishnan. Magic is relevant. In Proc. ACM SIGMOD International Conference

on Management of Data, pages 247–258, 1990.

[112] Peter Murray-Rust. Chemical markup language. World Wide Web Journal, 2(4):135–

147, 1997.

[113] Dan Olteanu, Holger Meuss, Tim Furche, and Franois Bry. Symmetry in XPath.

Technical Report PMS-FB-2001-16, Ludwig-Maximilians-Universität München,

2001.

[114] Dan Olteanu, Holger Meuss, Tim Furche, and Franois Bry. XPath: Looking for-

ward. In XML-Based Data Management and Multimedia Engineering – EDBT 2002

Workshops, pages 892–896, 2002.

[115] M. Tamer Özsu and Patrick Valduriez. Principles of distributed database systems

(3rd ed.). Springer Verlag, 2011.

[116] Stelios Paparizos, Shurug Al-Khalifa, Adriane Chapman, H. V. Jagadish, Laks V. S.

Lakshmanan, Andrew Nierman, Jignesh M. Patel, Divesh Srivastava, Nuwee Wiwat-

wattana, Yuqing Wu, and Cong Yu. Timber: a native system for querying XML. In

327

Proc. ACM SIGMOD International Conference on Management of Data, page 672,

2003.

[117] Karl Pearson. Note on regression and inheritance in the case of two parents. Proc.

of the Royal Society of London, 58:240–242, 1895.

[118] Christopher Ré, James Brinkley, Kevin P. Hinshaw, and Dan Suciu. Distributed

XQuery. In Proc. VLDB Workshop on Information Integration on the Web, pages

116–121, 2004.

[119] Laura Rusu, Wenny Rahayu, and David Taniar. Partitioning methods for multi-

version XML data warehouses. Distributed and Parallel Database Systems, 25(1):47–

69, 2009.

[120] Albrecht Schmidt, FlorianWaas, Martin Kersten, Michael J. Carey, Ioana Manolescu,

and Ralph Busse. XMark: a benchmark for XML data management. In Proc. 28th

International Conference on Very Large Data Bases, pages 974–985, 2002.

[121] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A. Lo-

rie, and Thomas G. Price. Access path selection in a relational database management

system. In Proc. ACM SIGMOD International Conference on Management of Data,

pages 23–34, 1979.

[122] Jayavel Shanmugasundaram, Kristin Tufte, Chun Zhang, Gang He, David J. De-

Witt, and Jeffrey F. Naughton. Relational databases for querying XML documents:

Limitations and opportunities. In Proc. 15th International Conference on Data En-

gineering, pages 302–314, 1999.

[123] Michael Steinbrunn, Guido Moerkotte, and Alfons Kemper. Heuristic and random-

ized optimization for the join ordering problem. VLDB Journal, 6(3):191–208, 1997.

[124] Dan Suciu. Distributed query evaluation on semistructured data. ACM Trans. Data-

base Systems, 27(1):1–62, 2002.

328

[125] Arun Swami. Optimization of large join queries: combining heuristics and combina-

torial techniques. In Proc. ACM SIGMOD International Conference on Management

of Data, pages 367–376, 1989.

[126] Arun Swami and Anoop Gupta. Optimization of large join queries. In Proc. ACM

SIGMOD International Conference on Management of Data, pages 8–17, 1988.

[127] Keishi Tajima and Yoshiki Fukui. Answering XPath queries over networks by sending

minimal views. In Proc. 30th International Conference on Very Large Data Bases,

pages 48–59, 2004.

[128] Nan Tang, Guoren Wang, Jeffrey Xu Yu, Kam-Fai Wong, and Ge Yu. Win: An

efficient data placement strategy for parallel XML databases. In Proc. 11th Interna-

tional Conference on Parallel and Distributed Systems, pages 349–355, 2005.

[129] Nan Tang, Jeffrey Xu Yu, Hao Tang, M. Tamer Özsu, and Peter Boncz. Materialized

view selection in XML databases. In Proc. 14th International Conference on Database

Systems for Advanced Applications, pages 616–630, 2009.

[130] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on

Computing, 1:114–121, 1972.

[131] Jens Teubner, Torsten Grust, Sebastian Maneth, and Sherif Sakr. Dependable car-

dinality forecasts for XQuery. Proc. VLDB Endowment, 1(1):463–477, 2008.

[132] Henry S. Thompson, Murray Maloney, David Beech, and Noah Mendelsohn. XML

schema part 1: Structures second edition. W3C recommendation, W3C, 2004.

http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/.

[133] Priscilla Walmsley and David C. Fallside. XML schema part 0: Primer second edition.

W3C recommendation, W3C, 2004. http://www.w3.org/TR/2004/REC-xmlschema-

0-20041028/.

[134] Annita N. Wilschut and Peter M. G. Apers. Dataflow query execution in a parallel

main-memory environment. In Proc. 1st International Conference on Parallel and

Distributed Information Systems, pages 68–77, 1991.

329

[135] Yuqing Wu, Jignesh M. Patel, and H. V. Jagadish. Estimating answer sizes for XML

queries. In Advances in Database Technology — EDBT’02, Proc. 8th International

Conference on Extending Database Technology, pages 590–608, 2002.

[136] Yuqing Wu, Jignesh M .Patel, and H. V. Jagadish. Using histograms to estimate

answer sizes for XML queries. Information Systems, 28(1-2):33–59, 2003.

[137] Masatoshi Yoshikawa and Toshiyuki Amagasa. XRel: a path-based approach to

storage and retrieval of XML documents using relational databases. ACM Trans.

Internet Technology, 1:110–141, August 2001.

[138] Yaxin Yu, Guoren Wang, Ge Yu, Gang Wu, Junan Hu, and Nan Tang. Data place-

ment and query processing based on RPE parallelisms. In Proc. 27th International

Computer Software and Applications Conference, pages 151–156, 2003.

[139] Chun Zhang, Jeffrey Naughton, David DeWitt, Qiong Luo, and Guy Lohman. On

supporting containment queries in relational database management systems. In Proc.

ACM SIGMOD International Conference on Management of Data, pages 425–436,

2001.

[140] Ning Zhang, Peter J. Haas, Vanja Josifovski, Guy M. Lohman, and Chun Zhang.

Statistical learning techniques for costing XML queries. In Proc. 31st International

Conference on Very Large Data Bases, pages 289–300, 2005.

[141] Ning Zhang, Varun Kacholia, and M. Tamer Özsu. A succinct physical storage

scheme for efficient evaluation of path queries in XML. In Proc. 20th International

Conference on Data Engineering, pages 54–65, 2004.

[142] Ning Zhang and M. Tamer Özsu. Optimizing correlated path queries in XML lan-

guages. Technical Report CS-2002-36, University of Waterloo, 2002.

[143] Ning Zhang, M. Tamer Özsu, Ashraf Aboulnaga, and Ihab F. Ilyas. XSEED: Accu-

rate and fast cardinality estimation for XPath queries. In Proc. 22nd International

Conference on Data Engineering, pages 61–72, 2006.

330

[144] Ying Zhang and Peter Boncz. XRPC: interoperable and efficient distributed XQuery.

In Proc. 33rd International Conference on Very Large Data Bases, pages 99–110,

2007.

[145] Ying Zhang and Peter Boncz. XRPC: distributed XQuery and update processing with

heterogeneous XQuery engines. In Proc. ACM SIGMOD International Conference

on Management of Data, pages 1331–1336, 2008.

[146] Ying Zhang, Nan Tang, and Peter Boncz. Efficient distribution of full-fledged

XQuery. In Proc. 25th International Conference on Data Engineering, pages 565–576,

2009.

[147] Mikal Ziane, Mohamed Zäıt, and Pascale Borla-Salamet. Parallel query processing in

DBS3. In Proc. 2nd International Conference on Parallel and Distributed Information

Systems, pages 93–102, 1993.

[148] Mikal Ziane, Mohamed Zäıt, and Pascale Borla-Salamet. Parallel query processing

with zigzag trees. VLDB Journal, 2(3):277–301, 1993.

331

Index

attributes, 173

cardinality, 173

centralized query evaluation, 37

contributions, 9

cross-fragment join, 90

ordering, 156

pushing, 149

cross-fragment step, 85

data model, 13

data shipping, 49, 75, 77

DEP, 76, 77, 79, 90

definition, 91, 96, 99

disjunction, 96

duplicate elimination, 159

join ordering, 156

logical, 166, 172, 173

negation, 99

physical, 166, 172, 173

Dewey ID, 138

item, 139

length, 139

order, 139

prefix, 139

with node type paths, 145

Dewey numbering scheme, 138, 183

with node type paths, 145

disjunction, 92

distributed execution plan, see DEP

document order, 79, 131, 173, 176

domain node, 15

DTD, 13

duplicates, 91, 159

extraction point, 19, 22

multiple, 20

ordering, 24, 179, 180

fragmentation

horizontal, 63, 64

hybrid, 63, 71

vertical, 63, 67

fragmentation specification, 64

fragmentation tree pattern, 65, see FTP

FTP, 65

horizontal fragmentation, 63, 64, 76, 112

definition, 65

DEP, 78

localization, 77

pruning, 112

sorting, 131

333

hybrid fragmentation, 63, 71

interesting orders, 175

local query plan, see LQP

localization, 75

logic node, 19

logical plan property, 172

definition, 173

LQP

child, 88

combined execution, 157

evaluation, 37

order properties, 179

parent, 88

physical, 180

root, 88

navigation, 37

negation, 97, 117

node type path

definition, 145

filtering, 153

order properties, 55, 173

LQP, 179

ordering attribute, 180

ordering extraction point, 24, 180

organization, 10

path predicate, 17

pattern node, 19

physical plan property, 172

definition, 173

pipelining, 147

pruning

horizontal fragmentation, 112

vertical fragmentation, 137, 142

QTP, 20, 79, 85

annotation, 80

child, 88

conversion to plan, 37, 88

decomposition, 85

local, 79, 85

parent, 88

root, 88

query model, 16

query shipping, 49, 75

query tree pattern, 20, see QTP

response time cost, 173

schema graph, 13

definition, 14

sorting, 79, 131

structural ambiguity, 143

structural join, 40

sub-tree, 67, 71

tree pattern, 18

definition, 19

evaluation, 37

value constraint, 17

vertical fragmentation, 63, 67, 79, 135

definition, 67

DEP, 90

334

localization, 79

pruning, 137

wildcard, 81, 123

XML, 13

XML Schema, 13

XQ, 16

definition, 16

335

