
Universidade Nova de Lisboa 

Faculdade de Ciências e Tecnologia 

Department of Computer Science 

 

 

 

 

 

 

Extensible Metadata Repository for 

Information Systems 

by Pedro Honrado Rio Pereira 
 

 

Thesis submitted to Faculdade de Ciências e Tecnologia of the Universidade Nova de Lisboa, in 

partial fulfillment of the requirements for the degree of Master in Computer Science 

Supervisor:  PhD João Moura Pires 

 

 

 

 

 

 

Lisbon 

2009 





 

Resumo 

Sistemas de informação são, muitas vezes, sistemas com uma componente de integração de 

informação muito forte. Alguns desses sistemas recorrem a soluções de integração fazendo uso 

de metainformação (informação que descreve informação). É necessário lidar com essa 

metainformação e geri-la do mesmo modo que se faz com informação “normal”, para tal a 

existência de um repositório de metadados que garanta o armazenamento, integridade, 

validade e facilite os mecanismo de integração do sistema de informação é uma escolha lógica. 

Existem vários repositórios disponíveis no mercado, mas nenhum virado para as exigências 

dos sistemas de informação, genérico o suficiente e com as características de integração 

necessárias. No projecto SESS, da agência espacial europeia (ESA), foi desenvolvido um 

repositório de metadados genérico, baseado em tecnologias XML. Esse repositório 

proporcionava mecanismos de integridade, validade, armazenamento, partilha, publicação, 

importação, integração de sistemas e de dados, mas obrigava à utilização de regras sintácticas 

fixas, colocadas dentro dos documentos XML, o que dificultava a integração de documentos de 

fontes externas.  

Nesta tese desenvolveu-se um repositório de metadados, com base em tecnologias XML, 

que proporciona os mesmos mecanismos de armazenamento, integridade, validade, etc, mas 

que tem em atenção a capacidade de integrar, de forma fácil, metainformação estrangeira de 

qualquer tipo (em formato XML) e que é capaz de proporcionar um ambiente onde o 

reaproveitamento dos tipos de metadados para a construção de novos tipos de metadados é 

uma constante, sem ter necessidade de modificar os documentos que armazena.  

 

      O repositório armazena documentos XML, denominados de Instâncias, que são instâncias de 

um Conceito, esse Conceito define uma estrutura XML Schema que valida as Instâncias. Para 

lidar com o reaproveitamento, foram criadas unidades chamadas Fragmentos, que permitem 

definir uma estrutura XML Schema (que pode ser criada à custa da composição de outros 

Fragmentos) que pode ser reutilizada por Conceitos para definir a sua própria estrutura. Os 

elementos do repositório (Instâncias, Conceitos e Fragmentos) têm um identificador próprio 

baseado em (e compatível com) URIs, denominado MRI (Metadata Repository Identifier). Esses 

identificadores assim como informações de relacionamento e de gestão são geridas pelo 

repositório evitando assim a utilização de regras sintácticas fixas, facilitando a integração. 

Um conjunto de testes, utilizando documentos do projecto SESS e da software-house ITDS, 

serviram para a validação bem sucedida do repositório em relação aos objectivos da tese, em 

termos de integração e reaproveitamento. 





 

Abstract 

 

Information Systems are, usually, systems that have a strong integration component 

and some of those systems rely on integration solutions that are based on metadata (data that 

describes data). In that situation, there’s a need to deal with metadata as if it were “normal” 

information. For that matter, the existence of a metadata repository that deals with the 

integrity, storage, validity and eases the processes of information integration in the information 

system is a wise choice.  

There are several metadata repositories available in the market, but none of them is 

prepared to deal with the needs of information systems or is generic enough to deal with the 

multitude of situations/domains of information and with the necessary integration features. In 

the SESS project (an European Space Agency project), a generic metadata repository was 

developed, based on XML technologies. This repository provided the tools for information 

integration, validity, storage, share, import, as well as system and data integration, but it 

required the use of fix syntactic rules that were stored in the content of the XML files. This 

situation causes severe problems when trying to import documents from external data sources 

(sources unaware of these syntactic rules). 

In this thesis a metadata repository that provided the same mechanisms of storage, 

integrity, validity, etc, but is specially focused on easy integration of metadata from any type of 

external source (in XML format) and provides an environment that simplifies the reuse of 

already existing types of metadata to build new types of metadata, all this without having to 

modify the documents it stores was developed. The repository stores XML documents (known 

as Instances), which are instances of a Concept, that Concept defines a XML structure that 

validates its Instances. To deal with reuse, a special unit named Fragment, which allows 

defining a XML structure (which can be created by composing other Fragments) that can be 

reused by Concepts when defining their own structure. Elements of the repository (Instances, 

Concepts and Fragment) have an identifier based on (and compatible with) URIs, named 

Metadata Repository Identifier (MRI). Those identifiers, as well as management information 

(including relations) are managed by the repository, without the need to use fix syntactic rules, 

easing integration. 

A set of tests using documents from the SESS project and from software-house ITDS was 

used to successfully validate the repository against the thesis objectives of easy integration and 

promotion of reuse. 





Agradecimentos 
 

Quero agradecer a toda a minha família, em especial ao meu pai José, à minha mãe Isabel e 

ao meu irmão Tiago, pelo amor e respeito dado e ensinado ao longo da minha vida. Obrigado 

por sempre me terem apoiado e por me terem dado tudo para eu conseguir chegar onde 

cheguei hoje. Votos de saúde e felicidade para todos. 

 Obrigado ao orientador, supervisor e colega Professor João Moura Pires. A sua participação 

neste projecto foi vital, em primeiro lugar por me ter proposto o desafio e em segundo por ter 

trabalhado nele comigo. Aprendi imenso consigo e espero voltar a ter a oportunidade de 

trabalhar novamente consigo. 

Obrigado a todos os colegas que partilharam o gabinete 244 durante o tempo que estive lá 

enquanto fazia o mestrado, a vossa contagiante boa disposição foi uma grande ajuda. 

Obrigado a todos os colegas de faculdade que de um modo ou de outro me ajudaram a 

chegar onde cheguei, particularmente os auto-denominados “Culelos” e em particular o colega 

que me acompanhou durante todo o curso e parte do mestrado, o Pedro Andrez. 

Obrigado Teresa, pelo apoio e amor incondicional durante todo este processo, que em muito 

ajudou a ultrapassar os momentos mais difíceis. 

 

 

 

 

 





 

Index 

 
Chapter 1 Introduction .................................................................................................................. 1 

1.1. Motivation ............................................................................................................................................... 3 

1.2. Context ..................................................................................................................................................... 4 

1.3. Objective .................................................................................................................................................. 7 

1.4. Thesis Structure .................................................................................................................................... 7 

Chapter 2 State of the Art ............................................................................................................. 9 

2.1. Metadata in Organizations .............................................................................................................. 10 

2.1.1. The Use and Management of Metadata ........................................................................................ 11 

2.2. XML Technologies .............................................................................................................................. 12 

2.2.1. Definition of XML Vocabularies and Validation ........................................................................ 12 

2.2.2. XML Processing ...................................................................................................................................... 13 

2.2.3. Querying and Updating XML ............................................................................................................. 14 

2.3. Semantic Web ...................................................................................................................................... 15 

2.3.1. RDF .............................................................................................................................................................. 18 

2.3.2. OWL............................................................................................................................................................. 20 

2.3.3. Simple Knowledge Organization System ..................................................................................... 21 

2.3.4. State of the Semantic Web and its applicability to organizations ..................................... 21 

2.4. Metadata Repositories and Tools ................................................................................................. 24 

2.4.1. Repository In a Box .............................................................................................................................. 24 

2.4.2. DSpace ........................................................................................................................................................ 25 

2.4.3. Protégé ....................................................................................................................................................... 26 

2.4.4. Fedora ........................................................................................................................................................ 29 

2.4.5. Extensible Metadata Repository for Information Systems .................................................. 31 

2.5. Metadata Management Technologies and Repositories Appreciation ........................... 36 

Chapter 3 Architecture Design ................................................................................................. 39 

3.1. Requirements ...................................................................................................................................... 41 

3.2. Architecture ......................................................................................................................................... 42 

3.3. Information Model ............................................................................................................................. 43 

3.4. M0 Layer (External Entities) .......................................................................................................... 43 

3.5. M1 Layer (Instances) ......................................................................................................................... 44 

3.5.1. Instance Versions .................................................................................................................................. 45 

3.5.2. Instance Relations ................................................................................................................................. 46 

3.6. M2 Layer (Concepts).......................................................................................................................... 49 

3.6.1. Fragments ................................................................................................................................................. 49 

3.6.2. Concepts .................................................................................................................................................... 50 

3.7. M3 Layer – Meta-meta-model ........................................................................................................ 54 

3.7.1. Evaluation ................................................................................................................................................. 54 

Chapter 4 Functional Design ..................................................................................................... 55 



 
x

4.1. Metadata Repository Identifiers (MRI) ...................................................................................... 56 

4.1.1. Instance Identification ........................................................................................................................ 57 

4.2. Concept & Fragment Definition ..................................................................................................... 57 

4.2.1. Fragment Definition Language ........................................................................................................ 58 

4.2.2. Concept Definition Language ........................................................................................................... 65 

4.3. Metadata Validation and Integrity ............................................................................................... 76 

4.3.1. Fragment Validation & Integrity ..................................................................................................... 76 

4.3.2. Concept Validation & Integrity ........................................................................................................ 77 

4.3.3. Instance Validation & Integrity........................................................................................................ 78 

4.3.4. Instance Relations, Creation & Validation................................................................................... 78 

4.4. System Concepts and Instances ..................................................................................................... 80 

4.5. Metadata Querying and Transforming ....................................................................................... 80 

4.5.1. XQuery ....................................................................................................................................................... 81 

4.5.2. Transforms ............................................................................................................................................... 82 

4.5.3. Generic Transforms .............................................................................................................................. 83 

Chapter 5 Implementation ......................................................................................................... 87 

5.1. Technologies ........................................................................................................................................ 88 

5.2. Architecture Design Implementation ......................................................................................... 88 

5.2.1. High Level Architecture ...................................................................................................................... 89 

5.2.2. Low Level Architecture ....................................................................................................................... 89 

5.3. Choice for the Underlying Database of the Storage Model .................................................. 90 

5.3.1. eXist XML Database .............................................................................................................................. 91 

5.3.2. Sedna XML Database ............................................................................................................................ 91 

5.3.3. Berkeley DB XML ................................................................................................................................... 92 

5.3.4. Query Benchmarking ........................................................................................................................... 94 

5.3.5. Storage Benchmarking ........................................................................................................................ 98 

5.3.6. Final Evaluation ................................................................................................................................... 100 

5.4. Storage Model ................................................................................................................................... 101 

5.4.1. Concept Storage ................................................................................................................................... 101 

5.4.2. Fragment Storage Model .................................................................................................................. 102 

5.4.3. Instance Storage Model ..................................................................................................................... 103 

5.4.4. Additional System Management Information ......................................................................... 104 

5.4.5. Complete Storage Model .................................................................................................................. 106 

5.4.6. Access Permissions ............................................................................................................................. 106 

5.5. Information Model .......................................................................................................................... 107 

5.5.1. M2 Layer – Meta-model .................................................................................................................... 107 

5.5.2. M1 Layer - Model ................................................................................................................................. 109 

5.6. Querying and Transforming ........................................................................................................ 111 

5.6.1. Repository Built-in XQuery Functions ........................................................................................ 115 

5.7. Implementation Status .................................................................................................................. 115 

Chapter 6 Validation ................................................................................................................. 119 

6.1. Space Environment Support System - SESS ............................................................................ 120 

6.1.1. Standalone Test .................................................................................................................................... 123 



 

 
xi

6.1.2. Reusability Test .................................................................................................................................... 125 

6.2. ITDS - Xeo ........................................................................................................................................... 129 

6.2.1. Evaluation ............................................................................................................................................... 131 

Chapter 7 Conclusions and Future Work ........................................................................... 133 

7.1. Conclusions ........................................................................................................................................ 134 

7.2. Future Work ...................................................................................................................................... 136 

References .......................................................................................................................................... 137 

 

  



 
xii

 

Figure Index 

 
Figure 1.1 SESS project architecture, taken from [1] ..................................................................................................................................................... 5 

Figure 1.2 MOF model, taken from [1] .................................................................................................................................................................................. 6 

Figure 2.1 Semantic Web Layer Stack ................................................................................................................................................................................ 16 

Figure 2.2 RDF Example ........................................................................................................................................................................................................... 19 

Figure 2.3 RDF with multiple examples ............................................................................................................................................................................. 19 

Figure 2.4 RDF Graph ................................................................................................................................................................................................................ 20 

Figure 2.5 Semantic Web Layer Stack with Datalog Rules ....................................................................................................................................... 23 

Figure 2.6 Protégé-Frames editor ........................................................................................................................................................................................ 27 

Figure 2.7 Protégé-Frames Query Interface .................................................................................................................................................................... 28 

Figure 2.8 Protégé-OWL - Ontolgy Visualization Plugin ............................................................................................................................................ 29 

Figure 2.9 Fedora's online catalog ....................................................................................................................................................................................... 30 

Figure 2.10 Fedora's Object Model....................................................................................................................................................................................... 30 

Figure 2.11 MOF model in the context of the MDR, taken from [1] ....................................................................................................................... 31 

Figure 2.12 Instance processing and transforming capabilities, taken from [1]............................................................................................. 33 

Figure 2.13 Relationship syntax in a SESS Instance ..................................................................................................................................................... 34 

Figure 2.15 Instance with outlined rules required by the MDR ............................................................................................................................... 35 

Figure 2.14 Concept with outlined rules required by the MDR ................................................................................................................................ 35 

Figure 3.1 Architecture of the Metadata Repository.................................................................................................................................................... 42 

Figure 3.2 MOF layered architecture .................................................................................................................................................................................. 43 

Figure 3.3 M0 Layer - External Entities ............................................................................................................................................................................. 44 

Figure 3.4 M1 Layer: Instances .............................................................................................................................................................................................. 44 

Figure 3.5 Temporal evolution of Instance versions .................................................................................................................................................... 45 

Figure 3.6 Instance Version Control Fields and Modification Notation ............................................................................................................... 45 

Figure 3.7 Information Model with Instance Versions ................................................................................................................................................ 46 

Figure 3.8 Relation between two Instances ..................................................................................................................................................................... 47 

Figure 3.9 Instance Relation with a Locking Version .................................................................................................................................................. 47 

Figure 3.10 Instance Relation with "Last Version" ....................................................................................................................................................... 48 

Figure 3.11 M1 Layer, Instances with Relations and Versions................................................................................................................................. 49 

Figure 3.12 Fragment versions .............................................................................................................................................................................................. 50 

Figure 3.13 Automatic Relation based on identifiers .................................................................................................................................................. 52 

Figure 3.14 Content Relations ................................................................................................................................................................................................ 52 

Figure 3.15 M2 Layer, with Concept and Fragment Versions .................................................................................................................................. 53 

Figure 3.16 Full Information Model, with M3 Layer .................................................................................................................................................... 54 

Figure 4.1 Fragment main structure .................................................................................................................................................................................. 58 

Figure 4.2 Fragment definition ............................................................................................................................................................................................. 59 

Figure 4.3 Embedded XML Schema in a Fragment definition .................................................................................................................................. 59 

Figure 4.4 GlobalComposition element converted to XML Schema ....................................................................................................................... 60 

Figure 4.5 Global Composition with Attributes .............................................................................................................................................................. 60 

Figure 4.6 Structure of a Sequence element .................................................................................................................................................................... 61 

Figure 4.7 Structure of the Schema element .................................................................................................................................................................... 62 

Figure 4.8 Correspondence of a Fragment definition and XML Schema ............................................................................................................. 63 

Figure 4.9 Use of local embedded XML schema in a Fragment definition .......................................................................................................... 63 

Figure 4.10 Use of Constant Annotation in Fragment definition ............................................................................................................................ 64 

Figure 4.11 Structure of a XSL element ............................................................................................................................................................................. 64 

Figure 4.12 XSL code used in element XSL ........................................................................................................................................................................ 65 

Figure 4.13 Generic Structure of a Concept ..................................................................................................................................................................... 66 

Figure 4.14 XML syntax for Instance Identification ..................................................................................................................................................... 66 

Figure 4.15 Instance Identification element with Namespace binding ............................................................................................................... 67 



 

 
xiii

Figure 4.16 Concept structure definition referencing a Fragment ........................................................................................................................ 67 

Figure 4.17 Schematron list syntax ..................................................................................................................................................................................... 68 

Figure 4.18 Structure of the Schematron element ........................................................................................................................................................ 68 

Figure 4.19 Schematron element with embedded Schematron code .................................................................................................................... 69 

Figure 4.20 Schematron element with reference ........................................................................................................................................................... 69 

Figure 4.21 XSLList element syntax and usage ............................................................................................................................................................... 70 

Figure 4.22 Syntax of the Relations element ................................................................................................................................................................... 70 

Figure 4.23 List of valid target Concepts for a relation .............................................................................................................................................. 71 

Figure 4.24 Syntax of the Cardinality element................................................................................................................................................................ 71 

Figure 4.25 Automatic Relation based on content syntax ......................................................................................................................................... 72 

Figure 4.26 Definition of targets for the automatic relation based on content ............................................................................................... 72 

Figure 4.27 Usage of the LocalInstanceXPath element ............................................................................................................................................... 73 

Figure 4.28 RemoteInstanceXPath element syntax ...................................................................................................................................................... 73 

Figure 4.29 Syntax of the behavior of a relation ............................................................................................................................................................ 73 

Figure 4.30 Syntax for the behavior (update) of a relation ...................................................................................................................................... 74 

Figure 4.31 Syntax for the creation of automatic annotations of relations....................................................................................................... 74 

Figure 4.32 Structure of the AutoRelMRI element ........................................................................................................................................................ 75 

Figure 4.33 Structure of the AutoRelContent element ................................................................................................................................................ 75 

Figure 4.34 Syntax for constant annotations to the Concept ................................................................................................................................... 76 

Figure 4.35 Behaviors of a relation in case of an update/removal of a target Instance .............................................................................. 79 

Figure 4.36 Metadata querying output capabilities .................................................................................................................................................... 80 

Figure 4.37 Metadata repository transforming and output capabilities ............................................................................................................ 81 

Figure 4.38 XQuery functions to access relations in instances ................................................................................................................................ 81 

Figure 4.39 Example XSLT association to a Fragment ............................................................................................................................................... 82 

Figure 4.40 XSLT with reuse of Fragment templates ................................................................................................................................................... 83 

Figure 4.41 Regular transforming process in the repository ................................................................................................................................... 84 

Figure 4.42 Generic Transform processing in the repository (example for a HTML Generic Transform) ............................................ 84 

Figure 5.1 Metadata Repository's High-level architecture ....................................................................................................................................... 88 

Figure 5.2 Metadata Repository's low-level architecture .......................................................................................................................................... 89 

Figure 5.3 XMark XML structure [2] ................................................................................................................................................................................... 93 

Figure 5.4 Results for Query 2 of the XMark Benchmark ........................................................................................................................................... 96 

Figure 5.5 Results of Query 8 of the XMark Benchmark ............................................................................................................................................. 97 

Figure 5.6 Concept's Storage Model ................................................................................................................................................................................. 101 

Figure 5.7 Fragments Storage Model .............................................................................................................................................................................. 102 

Figure 5.8 Instances Storage Model ................................................................................................................................................................................. 103 

Figure 5.9 Additional System Management Information ........................................................................................................................................ 104 

Figure 5.10 Internal Structure of the IdentifierList.xml .......................................................................................................................................... 105 

Figure 5.11 FragmentList.xml structure ........................................................................................................................................................................ 105 

Figure 5.12 ConceptList.xml structure ............................................................................................................................................................................ 106 

Figure 5.13 Metadata Repository Complete Storage Model .................................................................................................................................. 106 

Figure 5.14 Storage Model's access permissions ........................................................................................................................................................ 107 

Figure 5.15 Sample Concept Management File ........................................................................................................................................................... 109 

Figure 5.16 Sample Instance Management File .......................................................................................................................................................... 111 

Figure 5.17 Club Concept XML Schema structure ...................................................................................................................................................... 111 

Figure 5.18 Instance Manchester United of Concept Club ...................................................................................................................................... 112 

Figure 5.19 Instance Arsenal of Concept Club.............................................................................................................................................................. 112 

Figure 5.20 XQuery example ................................................................................................................................................................................................ 113 

Figure 5.21 Instance of the Query System Concept .................................................................................................................................................... 113 

Figure 5.22 Result of XQuery execution .......................................................................................................................................................................... 114 

Figure 5.23 XSLT applied to the result of a query ...................................................................................................................................................... 114 

Figure 6.1 SESS domain concepts relationships, taken from [1] .......................................................................................................................... 122 

Figure 6.2 SESS Concepts used as an example in import ......................................................................................................................................... 122 

Figure 6.3 Definition of Concept Groundstation from SESS ................................................................................................................................... 124 



 
xiv

Figure 6.4 Graph of captured relations from Instances of SESS ........................................................................................................................... 125 

Figure 6.5 Relations between Concepts and included Schemas ........................................................................................................................... 126 

Figure 6.6 Fragment definition of the DIM Fragment .............................................................................................................................................. 127 

Figure 6.7 Groundstation Concept Definition............................................................................................................................................................... 128 

Figure 6.8 Result of converting a Concept definition in XML Schema ............................................................................................................... 129 

Figure 6.9 xeoModel Concept definition ......................................................................................................................................................................... 130 

Figure 6.10 xeoModel relation definition sample ....................................................................................................................................................... 131 

 

 

 

 

  



 

 
xv 

Table Index 

 
Table 5.1 Table of document size and number to benchmark ................................................................................................................................. 99 
Table 5.2 Sedna XML database storage results .............................................................................................................................................................. 99 
Table 5.3 Berkeley DBXML database storage results .................................................................................................................................................. 99 
Table 5.4 eXist XML Database storage results ............................................................................................................................................................. 100 
Table 5.5 Properties of a relation in an Instance management file ................................................................................................................... 110 
Table 5.6 List of XQuery functions provided by the repository ............................................................................................................................. 115 
Table 5.7 Implementation status of the features of the Repository .................................................................................................................... 116 
Table 6.1 List of Concepts from SESS project ............................................................................................................................................................... 120 

 

 

 

 

 

 





 

 

Chapter 1  
Introduction 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
 
 
 
 
 
 
 
 
 
 

 
 
 

1.1 Motivation……………….………….………….………….………….………….………….………….………….……………….. 3 
1.2 Context………….………….………….………….………….………….………….………….………….………….………….…… 4 
1.3 Objective………….………….………….………….………….………….………….………….………….………….……………. 7 
1.4 Thesis Structure………….………….………….………….………….………….………….………….………….………….…. 7 

This chapter presents the motivation, context and 

objective of this thesis, followed by the thesis 

structure 



 

 
2

  



 

 
3

This chapter presents the motivations for the elaboration of this thesis, the main one being the use of 

metadata repositories to support the life cycle of Information Systems (IS). The chapter also presents the 

goal of this thesis and the context in which it was created. 

1.1. Motivation 

Metadata, usually defined as “data about data” or “information about information”, can be 

described, in the context of IS, as “all physical data and knowledge-containing information about the 

business and technical processes, and data, used by a corporation” [1]. Metadata, as in any other 

kind of information, can be grouped in categories. The main categories found in common literature, 

are “technical metadata” and “domain metadata” [1] [3] [4]. 

Domain metadata is specified by domain experts and software analysts, while technical metadata 

is specified by technicians and developers. Both kinds of metadata can further be categorized as 

“documentation metadata” and “operational metadata”. The purpose of “documentation metadata” 

is, as the name implies, to document functionality (ex. data dictionaries, system diagrams or 

corporate policies). “Operational metadata” models the behavior of the system itself (or part of it), 

this means that the behavior of the system is directly tied to the content of the metadata. 

The tool that eases management, provides the means to validate, maintains integrity, stores and 

visualizes metadata within an organization, is designated as Metadata Repository (MDR). 

In the context of Information Systems, metadata can be seen as any information required to 

develop and maintain a system [5]. In this perspective, metadata is the fundamental component of 

an Information System, as it allows the supervision of all development phases, since initial 

requirement analysis, through the implementation and maintenance phases. 

The use of metadata in an Information System brings an additional startup cost to the 

development, due to the necessity of agreement among domains experts, analysts, technicians and 

development teams on what the domain metadata and technical metadata is, how it’s obtained, 

produced and processed. Later on, this cost is rewarded, since the existence of such metadata 

represents a source of reliable information that describes the behavior of the system and its 

capabilities, in a precise and explicit way. This promotes a better documentation where choices are 

thoroughly explained, providing an excellent source of knowledge for users and developers, easing, 

for example, the development of new features. Storing metadata in a computable format enables an 

Information System to use that metadata for its normal operation, knowing that the quality and 

integrity of the information is guaranteed [1]. Gains are most notable in the case of a metadata-

driven system, that is based on a declarative architecture and its behavior is specified with metadata. 

One example of a metadata-driven system is one using a SOA architecture [6], where an application is 

created by specifying a workflow between a composition of already existing services. This 



 

 
4

specification is stored as metadata and can be done using several standard Web Service (WS) 

composition formats, such as BPEL4WS [7], BPML [8], among others (BPSS, DAML-S, WSCI). 

The explicit use of metadata in Information Systems has several advantages, as pointed earlier, but 

its adoption has been slow and limited to some specific areas. There are specialized solutions of 

information management (which possess internal metadata repositories), although they are part of 

systems with a considerable dimension, which may have a very high cost for a small or medium 

enterprise (SME) and, even still, they don’t allow for another application to take advantage of that 

metadata (because it’s in an internal repository). The ideal solution would be a Metadata Repository 

that is capable of validating, storing, transforming, visualizing, importing and exporting metadata, as 

well as, above all, be extensible and versatile enough to centralize all metadata of a given system or 

systems [1]. 

As such, to summarize, the motivation for this thesis was the opportunity to work in an essential 

field (metadata repository) of information systems that base their integration strategy on a metadata 

solution. 

1.2. Context 

The Space Environment Support System (SESS) [9] was a project developed for the European Space 

Agency (ESA) with the objective of providing the tools and means to analyze and monitor Space 

Weather (S/W) occurrences. S/W is the combination of conditions in solar wind, magnetosphere, 

ionosphere and thermosphere that can influence the performance, integrity and reliability of space-

borne and ground-based technological systems [1]. Degradation of sensors, or unpredicted changes 

in the on-board memories are some of the consequences of S/W phenomenon.  

The scientific domain of the problem is complex and, to be able to monitor it properly, it was 

necessary to integrate data from several heterogeneous sources for analysis. The data consists of 

S/W parameters, Spacecraft (S/C) parameters, S/W events, S/C events, etc. These are domain data, 

not including all the technical data required for their monitoring. Thus, a considerable amount of 

metadata existed that needed to be stored, managed, validated, visualized and created. 

For the SESS project, an evolution of the SEIS project [10], a metadata repository was designed 

that attended the previously referred requirements, as well as other requirements necessary to 

metadata management [3, 11]. The repository was able to deal with such different kinds of 

information as the ones described in the previous paragraph.  

XML [12] technologies were a natural choice for storing metadata in the repository, given their 

flexibility in the creation of controlled vocabularies, validation of those vocabularies, transformation, 

visualization and update capabilities, as well as a strong maturity and wide acceptance in the open 



 

source community and the commercial

XML reflects that acceptance. 

The architecture of the SESS projec

(DPM), which is responsible for downlo

Providers (through HTTP/FTP) and, after the download, process the data 

Integration Module (DIM). The DIM stores, in a series of databases, values of S/W and S/C that will 

feed the Client Tools Module (CTM), which is a set 

necessary parameters, configure alarms for special situations, e

All the tools read and store metadata in the repository and their behavior is dependent on the 

content of metadata stored in the repository. This situation makes the repository the “glue” that 

connects all parts of the system. 

In this project, the metadata repository also stores the documentation, 

between technical metadata and domain metadata, 

metadata it stores. Metadata transforming and querying is also used by the components to ex

information from the repository.

The repository is built on top of XML technologies (with a Java 

information model, an OMG

Figure 1.2, is a layer-based model

base of the hierarchy, is the M0 layer 

layer (Model) describes the objec

of the M1 layer, which means it’s the definition of a language, notation or properties of a model. The 

M3 layer (Meta-meta-model) describes Meta

Figure 

commercial industry. The vast number of tools and libraries that process 

architecture of the SESS project is depicted in Figure 1.1. There’s a Data Processing Module 

responsible for downloading the necessary information available in external Da

and, after the download, process the data 

egration Module (DIM). The DIM stores, in a series of databases, values of S/W and S/C that will 

feed the Client Tools Module (CTM), which is a set of graphical tools for users to monitor the 

necessary parameters, configure alarms for special situations, etc. 

All the tools read and store metadata in the repository and their behavior is dependent on the 

content of metadata stored in the repository. This situation makes the repository the “glue” that 

 

adata repository also stores the documentation, 

between technical metadata and domain metadata, guarantees their integrity and

metadata it stores. Metadata transforming and querying is also used by the components to ex

information from the repository. 

The repository is built on top of XML technologies (with a Java [13] engine) and using the MOF 

information model, an OMG [15] 

based model where each layer describes the layer immediately bellow. 

he M0 layer that represents “real” objects of a given reality,

layer (Model) describes the objects in the M0 layer. The M2 layer (Meta-model) describes the models 

of the M1 layer, which means it’s the definition of a language, notation or properties of a model. The 

model) describes Meta-models, i.e., a set of rules and common stru

Figure 1.1 SESS project architecture, taken from [1] 

 

5

he vast number of tools and libraries that process 

a Data Processing Module 

available in external Data 

and, after the download, process the data passing it to the Data 

egration Module (DIM). The DIM stores, in a series of databases, values of S/W and S/C that will 

graphical tools for users to monitor the 

All the tools read and store metadata in the repository and their behavior is dependent on the 

content of metadata stored in the repository. This situation makes the repository the “glue” that 

adata repository also stores the documentation, maintains the relations 

guarantees their integrity and validates the 

metadata it stores. Metadata transforming and querying is also used by the components to extract 

engine) and using the MOF [14] 

standard. MOF,  

where each layer describes the layer immediately bellow. At the 

objects of a given reality, as such, the M1 

model) describes the models 

of the M1 layer, which means it’s the definition of a language, notation or properties of a model. The 

, a set of rules and common structures to all 

 



 

 
6

meta-models. In the context of the SESS 

“Instances” layer (represents metadata), which is described by “Concepts” (that define a controlled 

vocabulary and represent the M2 layer

An Instance is a XML file that is compliant with the vocabulary defined by a Concept. That 

vocabulary is specified using XML Schema and, optionally, Schematron

restrictions imposed by a set of r

(to ensure some restrictions not possible with the two previous technologies) and they

that a certain level of “order” is present, both in Instances and Concepts. Rules include, for 

that all Concepts must include a “base” XML Schema (supplied by the repository) or that Concepts 

must identify their root element

the relations between Instances and assure Concept and Instance 

Although successful and well accepted, the MDR has some issues that create difficulties in its 

adoption as a solution for external data integration in other environments. 

The use of fixed syntactic rules, such as the inclusion of a base XML Schema, that imposes certain 

restrictions to the structure of each Concept, the use of internally generated identifiers which 

only known after insertion of an Instance and management information about relations being stored 

inside the content of Instances, as well as those same relations being dependant on the previous 

identifiers, implies that every external XML document mus

repository. On another hand, the original motivation for the use of syntactic 

reutilization (of code that processes Instances). However, and because new Concepts in practice 

mean new XML Schemas, the reutilization rate proved to be very low, because people developing 

new Meta-models (new XML Schemas) rarely checked on the already existing ones. 

In a system that stores a considerable amount of metadata (possibly scattered through several 

machines or databases), if the cost of importing that metadata to a repository is high and requires 

non-trivial and non-automatic conversions, it's very likely an organization will not see the benefits in 

using such a repository (due to this startup cost).

models. In the context of the SESS metadata repository, the M1 layer is designated

metadata), which is described by “Concepts” (that define a controlled 

vocabulary and represent the M2 layer) that, in turn, are subject to “Rules” (the M3 layer).

 

An Instance is a XML file that is compliant with the vocabulary defined by a Concept. That 

vocabulary is specified using XML Schema and, optionally, Schematron [16]. Concepts are subject to 

rules. The rules are composed of XML Schema, Schematron and Java 

(to ensure some restrictions not possible with the two previous technologies) and they

that a certain level of “order” is present, both in Instances and Concepts. Rules include, for 

that all Concepts must include a “base” XML Schema (supplied by the repository) or that Concepts 

must identify their root element with a specific attribute. Java rules guarantee referential integrity in 

the relations between Instances and assure Concept and Instance uniqueness

and well accepted, the MDR has some issues that create difficulties in its 

ution for external data integration in other environments.  

es, such as the inclusion of a base XML Schema, that imposes certain 

restrictions to the structure of each Concept, the use of internally generated identifiers which 

only known after insertion of an Instance and management information about relations being stored 

, as well as those same relations being dependant on the previous 

that every external XML document must be modified to be accepted in the 

repository. On another hand, the original motivation for the use of syntactic 

reutilization (of code that processes Instances). However, and because new Concepts in practice 

reutilization rate proved to be very low, because people developing 

models (new XML Schemas) rarely checked on the already existing ones. 

In a system that stores a considerable amount of metadata (possibly scattered through several 

tabases), if the cost of importing that metadata to a repository is high and requires 

automatic conversions, it's very likely an organization will not see the benefits in 

using such a repository (due to this startup cost). 

 

Figure 1.2 MOF model, taken from [1] 

repository, the M1 layer is designated as the 

metadata), which is described by “Concepts” (that define a controlled 

turn, are subject to “Rules” (the M3 layer). 

An Instance is a XML file that is compliant with the vocabulary defined by a Concept. That 

. Concepts are subject to 

ules. The rules are composed of XML Schema, Schematron and Java 

(to ensure some restrictions not possible with the two previous technologies) and they exist to assure 

that a certain level of “order” is present, both in Instances and Concepts. Rules include, for example, 

that all Concepts must include a “base” XML Schema (supplied by the repository) or that Concepts 

. Java rules guarantee referential integrity in 

uniqueness. 

and well accepted, the MDR has some issues that create difficulties in its 

es, such as the inclusion of a base XML Schema, that imposes certain 

restrictions to the structure of each Concept, the use of internally generated identifiers which are 

only known after insertion of an Instance and management information about relations being stored 

, as well as those same relations being dependant on the previous 

t be modified to be accepted in the 

repository. On another hand, the original motivation for the use of syntactic rules was to enable 

reutilization (of code that processes Instances). However, and because new Concepts in practice 

reutilization rate proved to be very low, because people developing 

models (new XML Schemas) rarely checked on the already existing ones.  

In a system that stores a considerable amount of metadata (possibly scattered through several 

tabases), if the cost of importing that metadata to a repository is high and requires 

automatic conversions, it's very likely an organization will not see the benefits in 

 



 

 
7

 

Non-promotion of Concept reuse is a problem that affects an organization after the adoption of 

the metadata repository. When new definitions need to be created, if there's no mechanism to reuse 

already existing definitions it will require the creation of the new ones from scratch and code to 

process those definitions will also have to be created from scratch, making the use of a metadata 

repository less attractive. 

These two aspects: difficult external metadata integration and the non-promotion of Concept 

reuse (or parts of them), are serious obstacles in the adoption of the MDR as a solution of integration 

for the design and development of Information Systems. 

To address these issues a profound and nontrivial revision of the philosophy of the repository is 

required. The work on this thesis pretends to present a concrete solution to solve these problems. 

1.3. Objective 

The objective of this thesis is to propose and implement a Metadata Repository that is able to 

easily integrate metadata from heterogeneous sources, without having to modify the documents in 

order to integrate them, and supply a set of features that promote the reuse of previously created 

metadata fragments. 

1.4. Thesis Structure 

The content of this thesis is structured in seven chapters and one annex. Follows the listing and 

description of each chapter: 

Chapter one (Introduction) presents the motivation, context and objectives of this thesis, 

followed by the thesis structure. In chapter two (State of the Art) the state of the art in metadata 

management, XML technologies, Semantic Web and metadata repositories and tools is presented. 

Chapter three (Architecture design) describes the architecture of the metadata repository as well as 

the information model. In Chapter four (Functional design) the design of the features of the 

repository is presented. Chapter five (Implementation) presents implementation details of the 

architecture, information model and features of the repository and in chapter six (Validation) a set of 

validations tests, using real-world files from existing applications are presented. The thesis is 

concluded in chapter seven (Conclusion and Future Work) where future work is presented and 

conclusions are drawn on the design and implementation of the metadata repository. The annex 

chapter is only present in the digital copy of this thesis. 

 





 

Chapter 2  
State of the Art 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.1 Metadata in Organizations………………………………………………………………………………………………….. 10 
2.2 XML Technologies……………………………………………………………………………………………………………….. 12 
2.3 Semantic Web…………………………………………………………………………………………………………………….. 15 
2.4 Metadata Repositories………………………………………………………………………………………………………… 24 
2.5 Metadata Management Technologies and Repositories Appreciation………………………………… 

 
36 

 

 

This chapter presents the state of the art in metadata 

management, including technologies, tools and 

repositories to deal with metadata. 



 

 10 

In this chapter the state of metadata management in organizations is presented, featuring 

technologies and tools to deal with it. Among those technologies are the XML technologies and the 

Semantic Web, which will be presented and evaluated. Some metadata repositories and tools will 

also be presented and evaluated. In this chapter and this thesis, the focus is on metadata related to 

Information Systems and organizations and not on metadata in general. 

2.1. Metadata in Organizations 

For several years, information technologies have been focused on processes and data with the aim 

of building systems and manage their operation [17]. Information and its processing is a vital part of 

these systems, which, in turn, are the core of modern organizations. The amount of information 

produced by organizations is increasing and this information is increasingly important (this includes 

digital and non-digital information). The information produced includes, for example, documents 

with operative rules of the company, specifications of products, security policies, sales reports, etc. 

[18] 

Some organizations and enterprises have a Knowledge Management (KM) department. KM 

focuses on the acquisition, maintenance and access to information within an organization. It is a core 

activity within them, because organizations themselves see their internal information as a resource 

that can be used to improve productivity, create added value and enhance their competitiveness. It 

is, therefore, vital to know the answer to five questions within an organization [4]. 

• What information do we have? 

• What is the significance of that information? 

• Where is it? 

• How did it get there? 

• How can I access it? 

The second question is particularly important, because information without its associated context 

is worth little. To this “context” one could call “meta-information” (or metadata) and, therefore, it 

can be concluded that without metadata, data has no value [17]. A good example is in [17]: If 

someone in a crowd shouts "42", most people will simply stare. However, people who are fans of 

writer Douglas Adams and know his work in "The Hitch Hiker's Guide to the Galaxy" certainly know 

that "42" is the answer for the "meaning of life, the universe and everything else". This example 

shows that the context of any type of data is extremely important for any system and to any attempt 

of analysis of their content, although every one of the other four questions is equally important in 

knowledge management. 

Metadata helps people to find the information they need, to know what it means and to decide 

whether that information is useful or not. It allows the reuse of knowledge rather than "reinventing 

the wheel" each time some information (or procedure) is required. 



 

 11 

Metadata eases the search for information, promotes the reuse of already existing knowledge, 

facilitates access to correct data [17], aids in the integration of systems, increases the confidence of 

users in the information they are using and is a great tool when there’s staff replacement in the 

organization, which requires to make them aware of how the organization’s internal procedures and 

processes work [11]. Several standards of metadata can be used to enhance interoperability between 

internal systems, or with external systems [19]. 

There are several different types of metadata in Information Systems, but they can be grouped in 

two categories. Business Metadata and Technical Metadata [17]. Technical Metadata helps 

development teams, programmers and technical users in the tasks of maintaining and developing 

new features. Business metadata helps nontechnical users (administrators, consultants, etc.) to make 

better decisions for the organization based on available information or to find the information they 

need for their tasks. 

A classic example of technical metadata is a data dictionary that helps development teams to 

know, in detail, the structure of a database. In the case of business metadata, one can think of the 

example of a library catalog in which summaries and descriptions of books are stored, for users to 

consult in order to find a book that covers a topic in which they may be interested. 

2.1.1. The Use and Management of Metadata 

The use of metadata in an organization brings added value, but assumes that it’s available in an 

easy, safe and valid way. The problem is that, generally, there’s no centralized and controlled source 

of metadata in organizations [18] and the sources of metadata are spread over various parts of the 

organization, leading to the repetition of definitions and mismatched versions. Another issue is that, 

frequently, there is nobody responsible for the production of metadata [18] and much of the 

metadata remains in the minds its potential producers [17]. The problematic of capturing metadata 

in an automatic way is also a barrier to its adoption[18]. 

The solutions in current literature [1, 3, 10, 16, 18], propose the creation of a centralized 

repository of metadata (that can also be in a distributed environment) that allows the storage of 

different types of metadata, is designed to ensure the integrity and validity of metadata, enables 

metadata relationships, eases the search, import and export of metadata. 

The use of metadata of various kinds also raises the issue of how it’s encoded to be stored in the 

repository and what is the capacity of the metadata repository to accept that metadata. The next 

section presents two families of technologies that can be used for the representation of metadata 

and, after that, a small set of metadata repositories and their features will be analyzed. 



 

 12 

2.2. XML Technologies 

 XML (eXtensible Markup Language) is a meta-markup language that defines a syntax with which 

other markup languages can be created [20]. 

XML derives from SGML [21] and was defined by the World Wide Web Consortium (W3C) [22], 

an international consortium that sets standards for the Internet. XML enables the creation of 

languages in which the vocabulary (the set of tags) is defined by the designer and not fixed like, for 

example, in the HTML markup language [23]. XML format is easily readable by people, although 

restrictive rules regarding the opening and closing of tags and the definition of attributes exist. These 

features make XML an appropriate technology for the representation of all kinds of information, as 

along with being a simple textual format, they allow the representation of domain specific languages, 

make data self-descriptive and allow easy sharing of information between software from different 

manufacturers or technologies [20]. 

XML allows the coexistence of vocabularies with tags that have the same name, but are defined 

by different organizations, using namespaces [24]. Namespaces allow the use of a prefix in elements 

of a vocabulary, which maps to a URI [25]. This technique allows solving any ambiguities in the 

resolution and validation of vocabularies. 

The easy creation of a vocabulary in a format readable by people and the ability to model any 

existing domain, made XML a rather well adopted technology for the representation of metadata, as 

the number of different domain specific (or generic) metadata standards that are XML-based is a 

proof. Examples of these standards are the Dublin Core Metadata Initiative (DCMI or DC) [26] for any 

kind of metadata or METS [27] for metadata about objects in a digital library. 

In the following sections, some of the XML technologies and how those technologies are suited 

for representing, processing, validating and querying metadata, will be discussed. 

2.2.1. Definition of XML Vocabularies and Validation 

XML Schema [28] is a XML-based language to define vocabularies, this means it uses XML syntax to 

define the language and, therefore, is itself a XML document. XML Schema defines, accurately, the 

structure of a document, which elements are in it, the attributes of those elements, the order in 

which they are, they’re cardinality, inclusions of external schemas, among others. Elements can be 

designed in a modular way and be reused throughout the schema. XML Schema supports 

namespaces, which avoid ambiguities between vocabularies. It’s a technology that can be used for 

validation, documentation, query, data binding and guided editing [29]. By defining a language, XML 

Schema implicitly documents that language and has support for explicit documentation mechanisms, 

such as notes and comments; it also has mechanisms to provide documentation for applications that 

might process the document (through the "appinfo" tag). XML Schema is a technology that is well 



 

 13 

spread in the market, as there are multiple tools that can process it, both commercial [30] [31] and 

open source. There are also libraries such as libxml [32] (C) or Xerces [33](Java) and there is a quite 

extensive list of tools with support for XML Schema[34]. 

Relax NG [35] is another technology for the definition of XML vocabularies; it was defined by the 

Organization for the Advancement of Structured Information Standards (OASIS) and has several 

similarities with XML Schema, however, it has two ways of expressing the vocabulary. One is through 

a XML syntax and the other through a simple syntax that is convertible to XML, this possibility is 

similar to what was possible with DTD [36], one of the first technologies to define vocabularies. Relax 

NG also has extensive support in tools and libraries [37]. 

Schematron is a XML-based language to make assertions over the presence or absence of patterns 

in XML documents [16]. In Schematron, instead of defining the structure of a document, the name of 

the elements, their attributes or data-type (like in XML Schema), one can define properties that 

elements should have (or not have) as well as values they must match. Schematron is able to verify 

several conditions that are not possible with XML Schema, such as, for example, check if any given 

element has a certain attribute with a certain value. Schematron’s nature makes it better suited for 

validation than for documentation (it would be rather hard to infer the structure of a document from 

a set of Schematron rules), so the most frequent use is as a companion to other validation technology 

such as XML Schema or Relax NG. The set of tools that natively supports Schematron is small, but 

there’s a XSLT implementation of Schematron [38] that enables any recent XML processing library to 

use it. 

XML Schema is the ideal choice for Concept definition and Instance validation due to the fact that 

it’s a W3C standard that can be used to create controlled vocabularies, document (implicitly or 

explicitly) those vocabularies and is very well supported in both commercial and open source tools 

(also the XML community is of a considerable dimension). Schematron’s ability to verify conditions 

that are not possible with XML Schema and by being usable through the XSLT implementation, make 

it the best choice for extra-validations on Instances.  

2.2.2. XML Processing  

XML documents can be seen as a tree of elements beginning in a root node, with several child 

nodes. To navigate in such a structure the XML Path Language (XPath) [39] was defined by the W3C. 

XPath is a language used to describe and access parts of a XML document [40] and supplies a set of 

simple functions to navigate and return the meaningful document nodes (which can be the entire 

document, or an attribute of a node). It’s a standard technology, that can be found in the majority of 

tools/libraries and it’s used by several other technologies, by its ability to locate parts of a document, 

such as XML Schema, Schematron, XSLT, XQuery or XUpdate. 



 

 14 

eXtensible Style-sheet Language Transformation (XSLT) [41], is a declarative XML-based language, 

for transforming XML documents into other XML documents [42]. It’s a language based on patterns 

(or rules) that identify a part of a document (using XPath) and apply a transformation to that part, 

using a set of predefined functions to produce the desired result. XSLT can be used to transform XML 

in XML, but also to produce documents such as HTML, Rich Text Format (RTF), plain text, Javascript, 

SQL and XSL-Formating Object (XSL-FO) [42]. 

In the context of metadata, XSLT supplies the necessary mechanism to visualize metadata under 

various forms (HTML, RTF or other) as well as convert the metadata into different formats. The ability 

to transform metadata to other formats means that it’s possible to convert metadata from one 

standard to another standard or to be compatible with a given application/repository. 

Transformations with the purpose of visualizing, enable the explicit creation of documentation, which 

makes the life of any one trying to understand that information, a lot easier. 

2.2.3. Querying and Updating XML 

XQuery [43] is a query language designed by the W3C to deal with the issue of selecting from a 

XML document, or a collection of XML documents stored in a file system or database (relational, or 

native XML), elements of interest, reorganize them, eventually transform them and return the results 

in a structure of the interest of the user issuing the query [44]. 

XQuery is a typed, functional and declarative language that shares the same data model and type 

system with XML Schema, as do other technologies of the XML family, such as XPath 2.0 and XSLT 

2.0. It was designed to work with non-typed XML documents (without an associated schema), typed 

with a XML Schema or a combination of both [45]. XQuery is a modular language that supports 

functions and libraries. There are two kinds of functions, the built-in functions and the user defined 

functions; built-in functions and operators supply the means to deal with the several data types 

available. Presently XQuery does not provide support for data types found in other schema languages 

such as DTD, Relax NG or Schematron [44]. The XQuery language is well spread, being implemented 

in several native XML databases, as well as relational databases [44]. 

XUpdate [46] is an update language for XML files, developed by the XML:DB Group [47] to update 

instances (or collections) of XML document stored in native XML databases. It’s a declarative 

language that enables to creation, change or removal of XML fragments from a document, using 

XPath and specific constructions. Although initial adoption, the definition never really matured and 

the last known draft is from the year 2000.  

XQuery Update Facility (XQUF) is an extension to XQuery that provides expressions that can be 

used to make persistent changes to instances of the XQuery 1.0 and XPath 2.0 Data Model [48]. XQUF 



 

 15 

is, as of August 2008, a W3C candidate recommendation and provides the following set of operations 

over a XML instance: 

• Insertion of a node. 

• Deletion of a node. 

• Modification of a node by changing some of its properties while preserving its node identity. 

• Creation of a modified copy of a node with a new node identity. 

XQUF was created to address the problem of updating the content of XML documents in a simple 

way. Despite being a candidate recommendation, there are already some implementations that 

support it, such as XQilla [49] , a XQuery processor included in the Oracle Berkley DBXML native XML 

database, and the MonetDB [50] database system. 

In the context of Metadata, XQuery provides the means to query and transform XML documents, 

given its powerful mechanisms and the fact it’s widely supported in all major databases that store 

XML. On the other hand, XQuery Update Facility provides the mechanisms to update the content of 

documents. 

2.3. Semantic Web 

The Semantic Web [51] is a vision of Tim Berners-Lee, regarding the current World Wide Web, that 

can be defined as “a network of intelligent data that is machine processable”. Intelligent data can be 

described as data that is independent of an application, can be composed, is classified and is part of a 

bigger information ecosystem (an ontology) [52]. The concept of Semantic Web requires that the 

web is filled with metadata that catalogs, relates and identifies the documents present in it and, also, 

the existence of applications that can understand that information and process it. The W3C 

established an activity (composed by several groups) dedicated to the implementation of the vision 

of the Semantic Web. 

Another way of defining the Semantic Web is “a framework to create, maintain, publish and search 

semantically rich metadata about web resources; annotating web resources with precise information 

and meaning about conceptual aspects of its content that provides the bases to resolve the existing 

limitations with current search engines” [53]. 

The structure of the Semantic Web is defined as a “Layered Cake”. The decision is based on the 

fact that it’s simpler to reach consensus through small steps than trying to achieve all at once. The 

process of building one layer of the Semantic Web on top of another, should follow two basic 

principles [54]:  

• “Downward compatibility. Agents fully aware of a layer should also be able to interpret and 

use information written at lower levels. For example, agents aware of the semantics of OWL 

can take full advantage of information written in RDF and RDF Schema”.  



 

 16 

• “Upward partial understanding. On the other hand, agents fully aware of a layer should take 

at least partial advantage of information at higher levels. For example, an agent aware only of 

the RDF and RDF Schema semantics can inte

disregarding those elements that go beyond RDF and RDF Schema

In figure 2.1 the layer stack of the Semantic Web is depicted; bellow

At the bottom of the “cake” is XML that lets one write structured documents using a controlled 

vocabulary and is particularly suitable to send documents through the web. 

The second layer is the Resource Description Framework (RDF), which is the basic data mo

write statements about web objects (resources) that are identified by a URI. RDF does not depend on 

XML, but has a XML serialization, being that the reason it’s placed on top of the XML layer. 

The third layer, RDF Schema (RDFS), which is based on R

objects in hierarchies, with the major ones being relations of “class”, “property”, “subclass”, “sub

property”, domain restrictions and range of values. RDFS can be seen as a simple language to write 

ontologies.  

An ontology is “the set of terms used to des

to express more complex relations between resources, a more expressive language is required and, 

as such, on top of RDFS there are languages to write complex ontologies. 

In the “Logic” layer, lies the ability to extend an ontology and, also, where application

declarative knowledge can be declared. 

The “Proof” layer is where the deductive process occurs, as well as proof validation, including all the 

knowledge provided by lower layers.

Upward partial understanding. On the other hand, agents fully aware of a layer should take 

at least partial advantage of information at higher levels. For example, an agent aware only of 

the RDF and RDF Schema semantics can interpret knowledge written in OWL partly, by 

disregarding those elements that go beyond RDF and RDF Schema”.  

In figure 2.1 the layer stack of the Semantic Web is depicted; bellow a description according to 

the bottom of the “cake” is XML that lets one write structured documents using a controlled 

vocabulary and is particularly suitable to send documents through the web.  

The second layer is the Resource Description Framework (RDF), which is the basic data mo

write statements about web objects (resources) that are identified by a URI. RDF does not depend on 

XML, but has a XML serialization, being that the reason it’s placed on top of the XML layer. 

The third layer, RDF Schema (RDFS), which is based on RDF, supplies the primitives to organize 

objects in hierarchies, with the major ones being relations of “class”, “property”, “subclass”, “sub

property”, domain restrictions and range of values. RDFS can be seen as a simple language to write 

ontology is “the set of terms used to describe an area of knowledge” [55]

to express more complex relations between resources, a more expressive language is required and, 

as such, on top of RDFS there are languages to write complex ontologies.  

the “Logic” layer, lies the ability to extend an ontology and, also, where application

declarative knowledge can be declared.  

The “Proof” layer is where the deductive process occurs, as well as proof validation, including all the 

ed by lower layers. 

  

Figure 2.1 Semantic Web Layer Stack 

Upward partial understanding. On the other hand, agents fully aware of a layer should take 

at least partial advantage of information at higher levels. For example, an agent aware only of 

rpret knowledge written in OWL partly, by 

 

a description according to [54]. 

the bottom of the “cake” is XML that lets one write structured documents using a controlled 

 

The second layer is the Resource Description Framework (RDF), which is the basic data model to 

write statements about web objects (resources) that are identified by a URI. RDF does not depend on 

XML, but has a XML serialization, being that the reason it’s placed on top of the XML layer.  

DF, supplies the primitives to organize 

objects in hierarchies, with the major ones being relations of “class”, “property”, “subclass”, “sub-

property”, domain restrictions and range of values. RDFS can be seen as a simple language to write 

[55]. Since there’s the need 

to express more complex relations between resources, a more expressive language is required and, 

the “Logic” layer, lies the ability to extend an ontology and, also, where application-specific 

The “Proof” layer is where the deductive process occurs, as well as proof validation, including all the 

 



 

 17 

Finally, the “Trust” layer is used to evaluate if the knowledge deducted in the “Proof” layer can be 

trusted or not. Applications can have a “Trust” certification and use those certificates to prove to 

other applications that they’re a reliable source of information. 

The Semantic Web vision of transforming the current global web in a web full of machine-

processable information, has several applications, such as, intelligent agents that execute actions on 

behalf of users (for example search for a doctor’s appointment near home for the best price), 

Business-2-Consumer & Business-2-Business Electronic Commerce, or, in the area of Knowledge 

Management (KM) [54]. 

KM will be improved by the Semantic Web in the following fields [54]: 

• Knowledge will be organized by areas, according to its meaning. 

• Automatic tools would deal with information maintenance, checking for inconsistencies and extracting 
new knowledge. 

• Query based searches will replace the current keyword based ones. 

• Support for query answering over several documents. 

• Ability to define who may see certain parts of information (event parts of a document) will be possible. 

To make the Semantic Web possible, a set of technologies and practices are required. First, 

information must be annotated with metadata that enables it to be processed. On top of metadata, 

ontologies that define a vocabulary and its semantic (relations between words and their meaning). 

The logic layer enables that, starting from ontologies and metadata, new knowledge can be extracted 

and that that knowledge is valid. Above all these, there are still agents that can receive a set of 

requests (and knowledge) and will try to satisfy those requests with the knowledge they possess and 

the one they find throughout their execution [54]. 

Consider the contribution that the Semantic Web can bring by the value of the following query: “I 

want all articles about Intel’s competitors” and, given ontologies that define the notion of 

“competitor” and give semantic aid (that guarantees, for example, that “Palm” and “Palm, Inc.” are 

considered the same company) and the existence of metadata that relates articles with the 

companies they refer. The results would be very meaningful and, thus, there’s great added value in 

this kind of searches [56]. 

To give support to that vision, several specifications were created, among them, the Resource 

Description Framework (RDF) and the Web Ontology Language (OWL). Those specifications can be 

seen as means to represent and deal with metadata and, as such, will be presented in the next 

section. 



 

 18 

2.3.1. RDF 

The Resource Description Framework [57] (RDF) is a W3C standard to describe resources through 

statements. In RDF, a statement (or triple) is composed of three parts: A resource, a property and a 

property value. In the case where the statement is referred to as a triple, the component names are, 

respectively, subject, predicate and object.  

 A resource identifies an object through a URI (any object is identified with a URI). 

 A property describes an attribute of a resource identified by a URI. 

 A property value, is the value a given property has. This value can be another resource, if a URI is 
used. 

As an example, to describe the title of the movie based on the book by Dan Brown, “The Da Vinci 

Code”, identifying the movie with the URI http://www.sonypictures.com/…/index.html and the title 

property by the URI of the Dublin Core element title, http://purl.org/dc/elements/1.1/title, the 

following statement can be defined. 

Resource (Subject):  http://www.sonypictures.com/homevideo/thedavincicode/index.html 

Property (Predicate): http://purl.org/dc/elements/1.1/title 

Property Value (Object): The Da Vinci Code 

 

A RDF document contains a set of RDF statements. To define RDF documents, several syntaxes are 

available [58], one of them being the RDF/XML syntax [59]. This syntax defines the structure of a RDF 

document as the following: 

A root element “rdf” that must include the namespace declaration with the “rdf” prefix, mapped 

to the address “http://w3.org/TR/1999/PR-rdf-syntax-19990105#”. Children of this node can only be 

elements of type “Description”. 

As an example, the previous statement is depicted in Figure 2.2, in a RDF/XML serialization. 



 

In RDF, each predicate must be asso

between predicates with the same name, but defined by different entities and to know where to 

search for the meaning of any given predicate.

The next example (Figure 2.3)

with the predicate “DC Creator

defining them as references to other elements (using the attribute 

document. 

 

e associated to a namespace [60], to be possible to resolve ambiguities 

between predicates with the same name, but defined by different entities and to know where to 

search for the meaning of any given predicate. 

), adds more information to the movie, including the movie d

DC Creator” and a film contributor with the predicate “

defining them as references to other elements (using the attribute rdf:resource

Figure 2.2 RDF Example 

Figure 2.3 RDF with multiple examples 

 

19 

, to be possible to resolve ambiguities 

between predicates with the same name, but defined by different entities and to know where to 

, adds more information to the movie, including the movie director 

” and a film contributor with the predicate “DC Contributor” and 

rdf:resource) inside the same 

 

 



 

 20 

From the previous example, the

visualize each predicate, as can be seen in

RDF is a technology that enables the annotation of existing content with a well defined semantic, 

and is the base for the Semantic Web. In the RDF family there are still

that will be briefly presented in the following paragraphs.

RDF Schema [62] is a W3C recommendation for the construction of RDF based vocabularies. 

Essentially, it allows the definition of classes, subclasses and properties of those classes, in a

similar way to most Object Oriented (OO) programming languages, such as Java. As such, it allows the 

creation of hierarchies of classes for the description of “objects”.

SPARQL [63] is a RDF document

W3C Recommendation. SPARQL allows querying multiple sources of information, whether that 

information is natively in RDF or is supplied by some middleware. The results of a query can be a RDF 

graph or a set of statements. 

2.3.2. OWL 

The Web Ontology Language (OWL) 

create ontologies. It was designed for usage by applications that need to process the content of 

information, instead of just presenting it to people. OWL promotes a better interoperability of web 

content, between machines, than what is supported by formats 

supplying an extended vocabulary as well as a formal semantic, allowing to develop formal 

ontologies. 

OWL is composed by three sub

OWL Full [1, 55]. 

1− OWL Lite supports class hierarchies and simple restrictions. It also supports limited 

cardinality restrictions (0 or 1), equality restrictions between classes, all features for all 

From the previous example, the W3C RDF validation service [61] can be used to create a grap

visualize each predicate, as can be seen in Figure 2.4. 

RDF is a technology that enables the annotation of existing content with a well defined semantic, 

and is the base for the Semantic Web. In the RDF family there are still some relevant technologies 

that will be briefly presented in the following paragraphs. 

is a W3C recommendation for the construction of RDF based vocabularies. 

Essentially, it allows the definition of classes, subclasses and properties of those classes, in a

similar way to most Object Oriented (OO) programming languages, such as Java. As such, it allows the 

creation of hierarchies of classes for the description of “objects”. 

is a RDF document query language designed by the W3C, that since January 2008 is a 

SPARQL allows querying multiple sources of information, whether that 

information is natively in RDF or is supplied by some middleware. The results of a query can be a RDF 

Web Ontology Language (OWL) [64] is a family of knowledge-representation languages 

ontologies. It was designed for usage by applications that need to process the content of 

information, instead of just presenting it to people. OWL promotes a better interoperability of web 

content, between machines, than what is supported by formats such as XML, RDF and RDF Schema, 

supplying an extended vocabulary as well as a formal semantic, allowing to develop formal 

OWL is composed by three sub-languages, progressively more expressive: OWL Li

Lite supports class hierarchies and simple restrictions. It also supports limited 

cardinality restrictions (0 or 1), equality restrictions between classes, all features for all 

Figure 2.4 RDF Graph 

can be used to create a graph to 

RDF is a technology that enables the annotation of existing content with a well defined semantic, 

some relevant technologies 

is a W3C recommendation for the construction of RDF based vocabularies. 

Essentially, it allows the definition of classes, subclasses and properties of those classes, in a very 

similar way to most Object Oriented (OO) programming languages, such as Java. As such, it allows the 

query language designed by the W3C, that since January 2008 is a 

SPARQL allows querying multiple sources of information, whether that 

information is natively in RDF or is supplied by some middleware. The results of a query can be a RDF 

representation languages to 

ontologies. It was designed for usage by applications that need to process the content of 

information, instead of just presenting it to people. OWL promotes a better interoperability of web 

such as XML, RDF and RDF Schema, 

supplying an extended vocabulary as well as a formal semantic, allowing to develop formal 

languages, progressively more expressive: OWL Lite, OW DL and 

Lite supports class hierarchies and simple restrictions. It also supports limited 

cardinality restrictions (0 or 1), equality restrictions between classes, all features for all 

 



 

 21 

properties (transitivity, symmetry), restrictions to the property values (for example values from a 

list of values, or a subset of values from a list), class intersection, versions and annotations. 

2− OWL DL includes support for all functionalities, allowing full expressiveness, having some 

restrictions at the computability and decidability level (i.e. all conclusions are computable and 

are guaranteed to finish). 

3−  OWL Full allows for full expressiveness and syntactic freedom of RDF, but gives no 

guarantees about the end of the computation. 

2.3.3. Simple Knowledge Organization System 

The Simple Knowledge Organization System (SKOS) is a RDFS designed to represent and share 

controlled vocabularies, such as taxonomies, glossaries or thesauri in a simple way within the 

structure of the semantic web [65]. An ontology language such as OWL, adds a layer of greater 

expressiveness to RDF, which is used to create statements about resources. However, to develop a 

complete ontology, a precise modeling effort (a time consuming process) is required and that process 

demands qualified people. In several cases there’s no need of such a formal effort, thus, there was 

the need to develop a language to write vocabularies to use with semantically rich metadata, 

powerful enough to support semantic querying, but simple enough so that is doesn’t require a vast 

amount of resources in its production [53]. 

The core vocabulary of SKOS allows the definition of several types of controlled vocabularies 

normally used in IS, such as, for example a glossary, taxonomy, a thesaurus of a classification schema. 

SKOS can be combined with other vocabularies and the semantic of its relating properties, extended 

[53]. 

Currently, SKOS is a W3C working draft and a great amount of work still needs to be done, as such, 

it cannot be used as a standard, but the basis is solid enough to consider that in the future, with the 

availability of tools (that are being created) for the production, maintenance, management and 

sharing of these vocabularies, this system can be a viable choice for integrating metadata in 

information systems. 

2.3.4. State of the Semantic Web and its applicability to organizations 

The Semantic Web promises a set of technologies and features that will resolve some of today’s 

greatest issues at the information management level, as well as the search level. Since this vision 

includes annotating data with meta-information, having mechanisms to provide that data with 

semantic/context and above that level to have tools to process (and extract new knowledge from) 

that knowledge, this would make the Semantic Web technologies the best choice to deal with 



 

 22 

Knowledge Management within organizations. In spite of this situation there are several factors that 

don’t favor the Semantic Web (RDF/OWL) at its current development stage. 

RDF and OWL are standard technologies, although they are not so widely available and 

implemented as, for example, XML technologies. XML is found in nearly everywhere, and most 

people know XML (or, at least, have heard of it). Literature and support at the open source (and 

commercial) level is very high and web services (currently very popular) use XML for transmitting 

information. Also, XML is widely used since controlled vocabularies can be created with it and there 

are several standard XML vocabularies that model numerous domains of knowledge [66] and 

technologies to validate, transform and store XML are also very wide-spread [27, 34, 38, 39, 41, 44, 

60]. 

For some time now, most open source and commercial databases include support for XML in 

several ways while support for RDF was introduced as an add-on only to the latest version of Oracle 

11G Enterprise Edition [67] of the popular Oracle Relational database, but it’s not found in other 

popular databases such as MySQL, PostgreSQL or MS SQLServer, however, all of them include 

support for XML [68-70]. Also, several native XML databases exist, but the choice for RDF native 

storage is much smaller and less mature.  

As an example, a simple search for “XML” in one of the major online book store, returns more 

than 18.000 results. A search for “RDF” returns about 6.000 results and a “Semantic Web” search, 

about 4.000 results. It strengthens the idea that XML knowledge is more widespread and known; on 

the other hand Semantic Web technologies (and there several of them) would force technicians, 

users and development teams to a long learning curve, given the quantity of new content to master 

and its complexity (particularly at the inference level). 

The nature of the Semantic Web is such that users and organizations must build applications and 

add content to make use of the content. The problem is that users cannot wait for the vision of the 

Semantic Web to fully materialize, because that can take over ten years (taking into account the 

current vision) [54]. In that scenario, the adoption of XML for the representation of metadata and its 

management in an organization, presents a far lower cost. 

The Semantic Web does not have issues only with maturity, technological support and 

documentation support for its adoption at a large scale. It has its own problems to solve, even inside 

its community, namely the Open Word Assumption (OWA) versus the Closed World Assumption 

(CWA) issue and the problematic of ontology integration. 

The Semantic Web, in particular the OWL language, makes use of OWA [71]. In OWA, if a 

statement cannot be proven true with the current knowledge, then it cannot be proven false. The 

inverse model is CWA, where if something cannot be proven true, it’s considered false. 



 

OWA models well several normal inference situations, but can be inadequate for problems that 

need full knowledge about the “world” (the context of the problem). Consider the problem of a train 

schedule; if on the schedule there is no information about the train at 12.47, one would

that particular train does not exist. In OWA, that cannot be 

is, there are real-world problems that require CWA, or at least CWA applied to part of the problem. 

There’s some research regarding this topic 

non-monotonic constructors, although there are some who defend that the problem can b

recurring only to first order logic, a st

resolves the issue. OWL is also criticized for having a rich set of constructors for classes, but not as 

rich in dealing with properties. In particular, it’s not poss

composed property and another property (regardless of it being composed or not). The classic 

example is the relation between the composition of “father” and “brothe

[74]. 

Another issue with the Semantic Web is that its structure is not fully stable. Since the 

the Semantic Web the layer stack proposed by Tim Berners

stabilization of the lower layers, some work has been done in the logic layer and the problem of the 

exclusive OWA usage versus the usage of local CW

to some alternative propositions

depicts the proposed model. 

This structure has the obvious disadvantage of taking the Semantic Web in two separa

which the author of [75] considers harmful (because it promoted the division of the Semantic Web), 

and proposes another alternative in 

A real Semantic Web would allow 

at any given time to integrate a 

long as it’s related somehow. In an ideal situation, a program would be capable of integrating the 

Figure 

ormal inference situations, but can be inadequate for problems that 

need full knowledge about the “world” (the context of the problem). Consider the problem of a train 

f on the schedule there is no information about the train at 12.47, one would

that particular train does not exist. In OWA, that cannot be concluded, only in CWA 

world problems that require CWA, or at least CWA applied to part of the problem. 

There’s some research regarding this topic [72, 73], that propose the extension of OWL to include 

monotonic constructors, although there are some who defend that the problem can b

recurring only to first order logic, a statement that the authors of [72] argue that only partially 

criticized for having a rich set of constructors for classes, but not as 

rich in dealing with properties. In particular, it’s not possible to capture a relation between a 

composed property and another property (regardless of it being composed or not). The classic 

relation between the composition of “father” and “brother” and the property “uncle” 

Another issue with the Semantic Web is that its structure is not fully stable. Since the 

the Semantic Web the layer stack proposed by Tim Berners-Lee was accepted. Recently, with the 

stabilization of the lower layers, some work has been done in the logic layer and the problem of the 

exclusive OWA usage versus the usage of local CWA on some situations, has risen. This 

propositions of the well-known layer stack model, for example in

This structure has the obvious disadvantage of taking the Semantic Web in two separa

considers harmful (because it promoted the division of the Semantic Web), 

oses another alternative in [75]. 

would allow for applications that process information based on ontologies, 

integrate a new ontology about the same subject, or just part of the subject, as 

long as it’s related somehow. In an ideal situation, a program would be capable of integrating the 

Figure 2.5 Semantic Web Layer Stack with Datalog Rules 

 

23 

ormal inference situations, but can be inadequate for problems that 

need full knowledge about the “world” (the context of the problem). Consider the problem of a train 

f on the schedule there is no information about the train at 12.47, one would assume that 

concluded, only in CWA [72]. The problem 

world problems that require CWA, or at least CWA applied to part of the problem. 

, that propose the extension of OWL to include 

monotonic constructors, although there are some who defend that the problem can be solved 

argue that only partially 

criticized for having a rich set of constructors for classes, but not as 

ible to capture a relation between a 

composed property and another property (regardless of it being composed or not). The classic 

r” and the property “uncle” 

Another issue with the Semantic Web is that its structure is not fully stable. Since the beginning of 

Lee was accepted. Recently, with the 

stabilization of the lower layers, some work has been done in the logic layer and the problem of the 

A on some situations, has risen. This situation led 

example in [75]. Figure 2.5  

This structure has the obvious disadvantage of taking the Semantic Web in two separate ways, 

considers harmful (because it promoted the division of the Semantic Web), 

applications that process information based on ontologies, 

new ontology about the same subject, or just part of the subject, as 

long as it’s related somehow. In an ideal situation, a program would be capable of integrating the 

 



 

 24 

ontology, process the data taking into account the new knowledge it possesses and extract new 

knowledge. Reality, however, shows that ontology integration is a difficult process. There are several 

challenges in ontology integration and a large number of investigators assume this is one of the 

biggest challenges of the Semantic Web [76]. The existing challenges for ontology integration 

according to [77] are the following: 

• Discovery of similarities and differences between ontologies in an automatic or 
semiautomatic way; 

• Definition of mappings between ontologies; 

• Development of an architecture for the integration of ontologies; 

• Composition of mappings between different ontologies; 

• Representation of uncertainties and inaccuracies in mappings.  

The requirements derive from problems found, at various levels, when ontologies need to be 

combined. A list of these problems can be found in [78] and can be divided in problems related to the 

used language (in the cases where the language used to define the ontology was different), such as 

syntax problems, logical representation problems and semantic disparities with the operators of the 

language. The other class of problems is related with ontologies themselves. For ontologies that 

model overlapped domains (partially overlapped or fully overlapped) there are, potentially, scope 

problems when two classes that represent the same concept have different scope in each ontology 

or when ontologies model the domain with different levels of granularity or do not cover the same 

extension of the domain. Essentially the problem is: different people use different terms for the same 

things and, as such, there’s the need for mappings and translations between different ontologies 

[79]. Another fact is that ontology integration is a subject of great interest in the academic world, but 

not as much in the commercial one (with no tool support for this). 

2.4. Metadata Repositories and Tools 

This section presents a set of tools and repositories that provide the means to manage metadata 

for end users and systems. There are two kinds of metadata management tools, the specific tools 

(that only allow a certain type of metadata) and the generic tools that allow any kind of metadata. 

There are several software programs that are based on metadata; the most well known examples are 

Data Warehousing and ETL (Extraction, Transformation and Loading) tools. No commercial tool will 

be presented in this section, only open source tools that make use of the previously mentioned 

technologies. 

2.4.1. Repository In a Box 

 Repository in a Box (RIB) [80] is a software that enables the creation of metadata repositories for 

the web, developed by the Innovative Computing Laboratory at the University of Tennessee. 

Metadata, from RIB's perspective, is information that describes reusable objects, such as software 

[80]. The repository supports the Basic Interoperability Model (BIDM) [81] to store metadata about 



 

 25 

objects (resources) and can share the information with other repositories that support the same 

model (RIB repositories, or not). The Basic Interoperability Data Model (BIDM) is a standard to define 

the minimal set of information for assets (generic items of interest) in reusable libraries. BIDM results 

of a collaboration between the Reuse Library Interoperability Group (RIG) and the Software 

Engineering Standards Committee (SESC) of the IEEE Computer Society and was developed in 1995. 

It’s composed of five classes, each of them having a fix set of attributes and relations [81]. It’s 

possible to alter the BIDM model used by the repository, although it’s not advisable because it can 

limit its interoperability features with other BIDM repositories, despite that, a data model editor is 

supplied so that the model can be altered. 

 RIB can create an online HTML, customizable, catalog from its stored metadata and it’s possible to 

make simple searches in the catalog. Data input is done in a web-based interface (with web forms) so 

that users can add, update and maintain metadata about objects. The repository offers a web-based 

administration interface for each of the three kinds of existing users. The “general” user, which can 

add and edit metadata as well as browser the catalog. The “repository administrator”, which can 

alter the data model used by the repository and the “RIB administrators” that can create or delete 

repositories. At the security level, a password for browsing a given repository/catalog can be set.  

 RIB is built entirely with Java technology, with data persistency being assured by the open source 

relational database MySQL. Server side components are Java Servlets, while on the client side Java 

Applets are used. It’s possible to communicate with the repository thorough the RIBAPI, an API 

supplied by the authors, so that other applications can use RIB and access its data. The API usually 

returns the result as a XML document, with a well-defined structure (described in the manual of the 

API). 

Although it supports a standard for metadata, makes some use of XML technologies and has an 

interface for other applications to communicate with it, RIB is very specific and not adequate for a 

generic information system; also the last update to RIB was in October 2006. 

2.4.2. DSpace 

DSpace is an open source digital repository that “captures, stores, indexes, preserves and shares 

digital research material” [82]. It was developed by the Massachusetts Institute of Technology (MIT) 

in partnership with Hewlett-Packard laboratories. It’s a repository that answers the needs of teaching 

institutions (as well as other types of institution) that wish to have digital repositories of several kinds 

of files, to archive and preserve those files. It’s capable of indexing elements such as scientific 

articles, technical reports, thesis, images, audio and even video using the Dublin Core standard to add 

metadata to every file. It is, however, the only standard which DSpace is compatible with [82]. 

DSpace provides a customizable web interface so that users can search for the available items, 

authors can submit their documents (with the necessary metadata) and administrators can organize 



 

 26 

these documents in collections. DSpace is implemented in Java, runs in a web server such as Apache 

Tomcat and uses a relational database to store the data. The database that can be open source (such 

as PostgreSQL) or commercial (such as Oracle) or a database that is not part of a DBMS, such as 

McKoi [83]. DSpace specifically runs in UNIX systems, but it can run on Windows also [84] and has an 

API that allows for external applications to use the repository and have access to its content. 

DSpace has a fixed data model [85] that allows the definition of a hierarchy of “Communities” 

each them being a set of “Collections” that contain “Items” composed by “Resources” (Files) and 

“Metadata” (compatible with Dublin Core). DSpace is considerably versatile and there are several 

Institutions/Organizations and Universities that use it [86] and it’s considered a good solution for 

sharing digital assets, but the fact that it only supports the Dublin Core format, makes it an 

inadequate solution for a generic information system that does not require (or need) support for the 

format. 

2.4.3.  Protégé 

Protégé [87] is an open source tool for creating domain models and knowledge-oriented 

applications through ontologies, developed by the Stanford Center for Biomedical Informatics 

Research of the Stanford University School of Medicine. The core of Protégé, implements a rich set of 

knowledge representation structures and actions that allow creating, managing and visualizing 

ontologies in several formats. Although not a metadata repository, protégé was chosen as a 

representative tool of the Semantic Web world for illustration purposes and to illustrate some 

possibilities of the semantic web techonologies. 

It has a customizable interface, so that a simple graphic application can be produced for the 

creation of ontologies (and populating them with information). Protégé can be extended with plugins 

and a Java API exists so that applications on top of (or connected to) protégé can be built [88]. 

The protégé platform is available as two products. Protégé-Frames and Protégé-OWL, explained in 

the following sections. 

Protégé-Frames 

The Protégé-Frames editor provides the tools to easily create an ontology for any domain, as well 

as its maintenance and data input. Protégé implements a knowledge model that’s compatible with 

the Open Knowledge Base Connectivity protocol (OKBC) [89]. In this model, an ontology is seen as a 

set of classes that can be organized in a hierarchy (to represent domain concepts in a very similar 

way an object-oriented programming language does) and a number of “slots” can be associated to 

classes in order to describe its properties and relations. It’s possible, after that step, to create 



 

instances of the ontology that are individual examples of classes that 

property values. 

The ontology creation process is eased by a simple graphic interface, as depicted in Figure 2.6. 

After creating non-abstract classes in an ontology, it’s possible to create instances of those classes, an 

action Protégé eases by generating specific forms to create those instances (

customized to make it even easier for users to interact with them). During the creation phase of 

ontologies (or of class instances) all rules are verified, inc

restrictions to values of properties and the generated interfaces already have 

account [90]. 

instances of the ontology that are individual examples of classes that have specific (and distinct) 

The ontology creation process is eased by a simple graphic interface, as depicted in Figure 2.6. 

abstract classes in an ontology, it’s possible to create instances of those classes, an 

generating specific forms to create those instances (

customized to make it even easier for users to interact with them). During the creation phase of 

ontologies (or of class instances) all rules are verified, including cardinality rules, relationship rules or 

restrictions to values of properties and the generated interfaces already have 

Figure 2.6 Protégé-Frames editor 

 

27 

have specific (and distinct) 

The ontology creation process is eased by a simple graphic interface, as depicted in Figure 2.6. 

abstract classes in an ontology, it’s possible to create instances of those classes, an 

generating specific forms to create those instances (the forms can be further 

customized to make it even easier for users to interact with them). During the creation phase of 

luding cardinality rules, relationship rules or 

restrictions to values of properties and the generated interfaces already have those restrictions into 

 



 

 28 

Protégé-Frames supplies a graphical interface to query instances of the ontology, and allows 

making selections based on criteria over the values of the slots of a class. In figure 2.7 is depicted the 

interface for querying, using “salary

 

Protégé-OWL 

Protégé-OWL is an extension of Protégé that enables the creation of

Ontology Language [91]. Beyond the possibility of creating classes (and restrictions, instances, etc.) 

offered by Protégé-Frames, Protégé

RDF/OWL format, allows defining the 

engines to extract new knowledge not explicitly in instances, but achievable through the semantic 

rules of the ontology. It also supplies an equally simple inter

eases the graphical inspection of an ontology (among many other

2.8.  

Protégé-OWL is closely tied to the Jena framework 

supplies a standard environment for the creation of 

RDFS, OWL and SPARQL, featuring

ontologies. There’s a Java API to which applications can connect to take advantage of th

available in Protégé-OWL. Protégé

Web and, thus, are not of interest to this thesis, which will be using XML technologies, but both are 

generic tools to deal with metadata in an Info

Frames supplies a graphical interface to query instances of the ontology, and allows 

making selections based on criteria over the values of the slots of a class. In figure 2.7 is depicted the 

salary” as a criteria for the search. 

OWL is an extension of Protégé that enables the creation of ontologies based on the 

. Beyond the possibility of creating classes (and restrictions, instances, etc.) 

Frames, Protégé-OWL allows users to create, or load, their ontologies in the 

RDF/OWL format, allows defining the properties of classes (specific of OWL) as well as use inference 

engines to extract new knowledge not explicitly in instances, but achievable through the semantic 

rules of the ontology. It also supplies an equally simple interface (supported by several plu

eases the graphical inspection of an ontology (among many other actions) that is depicted in

tied to the Jena framework [92]. Jena is a Java based 

nment for the creation of Semantic Web applications that supports RDF, 

featuring an inference engine that can extract new knowledge from existing 

ontologies. There’s a Java API to which applications can connect to take advantage of th

Protégé-Frames and Protégé-OWL are tools in the domain of the Semantic 

Web and, thus, are not of interest to this thesis, which will be using XML technologies, but both are 

generic tools to deal with metadata in an Information System. 

Figure 2.7 Protégé-Frames Query Interface 

Frames supplies a graphical interface to query instances of the ontology, and allows 

making selections based on criteria over the values of the slots of a class. In figure 2.7 is depicted the 

ontologies based on the Web 

. Beyond the possibility of creating classes (and restrictions, instances, etc.) 

OWL allows users to create, or load, their ontologies in the 

properties of classes (specific of OWL) as well as use inference 

engines to extract new knowledge not explicitly in instances, but achievable through the semantic 

face (supported by several plugins) that 

) that is depicted in Figure 

. Jena is a Java based framework that 

applications that supports RDF, 

new knowledge from existing 

ontologies. There’s a Java API to which applications can connect to take advantage of the features 

OWL are tools in the domain of the Semantic 

Web and, thus, are not of interest to this thesis, which will be using XML technologies, but both are 

 



 

  

2.4.4. Fedora 

The Fedora project is an open source

flexible tools to manage their digital content 

Object Repository Architecture) features an object model that supports abstracti

always “seen” in the same way, regardless of its type). The content of the object can be located in a 

remote address or be managed locally by Fedora

object, several visualizers can be a

Objects, and all operations regarding them, are exposed through a Web Service API (SOAP and 

REST) and all the operations can be protected with an

environment with several repositories

there’s the possibility of several physical repositories being see

At the storage level, Fedora keeps its objects in a XML format and possesses versioning 

mechanisms for all of its content, as well as 

Relations between objects are done using RDF and that information is kept in a specialized database 

that can be queried using a language to query relations in

ontology, including the basic relationship ontolog

objects is available through a web interface depicted in the 

Figure 

open source software that supplies institutions and organizations with 

anage their digital content [93]. Fedora (acronym for Flexible Extensible Digital 

Object Repository Architecture) features an object model that supports abstracti

always “seen” in the same way, regardless of its type). The content of the object can be located in a 

remote address or be managed locally by Fedora and there’s support for object relations and, to each 

sualizers can be associated [94].  

Objects, and all operations regarding them, are exposed through a Web Service API (SOAP and 

REST) and all the operations can be protected with an Access Control List (ACL) 

environment with several repositories is supported to enable data separation, workload balance and 

there’s the possibility of several physical repositories being seen as one logical repository 

t the storage level, Fedora keeps its objects in a XML format and possesses versioning 

or all of its content, as well as keeping a history of all updates done to an object 

Relations between objects are done using RDF and that information is kept in a specialized database 

that can be queried using a language to query relations in graphs. Relations may be derived from any 

ontology, including the basic relationship ontology supplied by Fedora itself 

objects is available through a web interface depicted in the Figure 2.9. 

Figure 2.8 Protégé-OWL - Ontolgy Visualization Plugin 

 

29 

software that supplies institutions and organizations with 

Flexible Extensible Digital 

Object Repository Architecture) features an object model that supports abstraction (an object is 

always “seen” in the same way, regardless of its type). The content of the object can be located in a 

here’s support for object relations and, to each 

Objects, and all operations regarding them, are exposed through a Web Service API (SOAP and 

Access Control List (ACL) [95]. A distributed 

to enable data separation, workload balance and 

n as one logical repository [94]. 

t the storage level, Fedora keeps its objects in a XML format and possesses versioning 

l updates done to an object [94]. 

Relations between objects are done using RDF and that information is kept in a specialized database 

graphs. Relations may be derived from any 

y supplied by Fedora itself [96]. The collection of 

 



 

 30 

Each object is accessible through the API, using an identifier (a URL)

contents can be associated (an object is a collection of contents)

from the main identifier are used. Each object may also have 

is a service that receives as input a data stream (one of the contents of an object) and returns a visual 

representation of that content [96]

Internally, each object is represented with the model depicted in t

Each object has a PID (Persistent ID) that is used as an identifier inside the repository. There’s 

metadata to help managing the object, which is required to exist (Fedora Object XML data, or 

FOXML). “Object Properties” stores the values for the type of object, its state, update date, etc. 

Relations with other objects are stored in “Relationship Metadata”. The several sources of 

information of the object are stored as “Data streams”. The model also features the d

h object is accessible through the API, using an identifier (a URL) and t

contents can be associated (an object is a collection of contents); to access to them, URLs derived 

from the main identifier are used. Each object may also have several “disseminators”. A disseminator 

is a service that receives as input a data stream (one of the contents of an object) and returns a visual 

[96]. 

Internally, each object is represented with the model depicted in the Figure

Each object has a PID (Persistent ID) that is used as an identifier inside the repository. There’s 

metadata to help managing the object, which is required to exist (Fedora Object XML data, or 

perties” stores the values for the type of object, its state, update date, etc. 

Relations with other objects are stored in “Relationship Metadata”. The several sources of 

information of the object are stored as “Data streams”. The model also features the d

 

Figure 2.10 Fedora's Object Model 

 

Figure 2.9 Fedora's online catalog 

 

and to each object several 

to access to them, URLs derived 

several “disseminators”. A disseminator 

is a service that receives as input a data stream (one of the contents of an object) and returns a visual 

igure 2.10. 

 

Each object has a PID (Persistent ID) that is used as an identifier inside the repository. There’s 

metadata to help managing the object, which is required to exist (Fedora Object XML data, or 

perties” stores the values for the type of object, its state, update date, etc. 

Relations with other objects are stored in “Relationship Metadata”. The several sources of 

information of the object are stored as “Data streams”. The model also features the disseminators. 



 

Fedora is primarily a document repository and its 

Systems has its advantages, but the FOXML metadata in the object (which is required) is specific to 

the management of the repository, any other meta

but it’s still part of the object. Fedora has several features that make it very useful as a metadata 

repository, but does not promote

managing documents and not reusable knowledge and thus, objects cannot be reused to create new 

objects, although relations between objects are supported.

defined for this thesis. 

2.4.5. Extensible Metadata Repository for Information

The Extensible Metadata Repository f

context of the SESS project. The repository was built to manage all the metadata of the project 

(easing and promoting its use) and was available to every application in the system. The repository 

was built with the following requirements in mind.

• Extensibility 

• Usability 

• Integration 

• Security 

To assure extensibility, an information model based on XML tec

architecture was chosen. XML is used to store metadata

the option to use Schematron to verify additional restrictions). The information model is based on 

MOF and maps to the repository 

 

As stated in chapter one, metadata is stored in XML files and, in the context of the repository, 

these files are designed as “Instances”. The vocabularies to which these XML files abide a

Figure 2.11 

rily a document repository and its use as a metadata repository in Information 

Systems has its advantages, but the FOXML metadata in the object (which is required) is specific to 

the management of the repository, any other metadata of an object must be added as a datastream

Fedora has several features that make it very useful as a metadata 

does not promote (or allow) reusability, because it’s concerned in storing and 

ocuments and not reusable knowledge and thus, objects cannot be reused to create new 

objects, although relations between objects are supported. This fails to comply with the objectives 

Extensible Metadata Repository for Information 

The Extensible Metadata Repository for Information Systems (MDR) [1]

context of the SESS project. The repository was built to manage all the metadata of the project 

asing and promoting its use) and was available to every application in the system. The repository 

was built with the following requirements in mind. 

To assure extensibility, an information model based on XML technologies and the MOF meta

. XML is used to store metadata and XML Schema is used for validation (with 

the option to use Schematron to verify additional restrictions). The information model is based on 

MOF and maps to the repository like it’s depicted in the Figure 2.11. 

As stated in chapter one, metadata is stored in XML files and, in the context of the repository, 

these files are designed as “Instances”. The vocabularies to which these XML files abide a

 MOF model in the context of the MDR, taken from [1]

 

31 

as a metadata repository in Information 

Systems has its advantages, but the FOXML metadata in the object (which is required) is specific to 

data of an object must be added as a datastream, 

Fedora has several features that make it very useful as a metadata 

concerned in storing and 

ocuments and not reusable knowledge and thus, objects cannot be reused to create new 

This fails to comply with the objectives 

 Systems 

[1], was developed in the 

context of the SESS project. The repository was built to manage all the metadata of the project 

asing and promoting its use) and was available to every application in the system. The repository 

hnologies and the MOF meta-

and XML Schema is used for validation (with 

the option to use Schematron to verify additional restrictions). The information model is based on 

 

As stated in chapter one, metadata is stored in XML files and, in the context of the repository, 

these files are designed as “Instances”. The vocabularies to which these XML files abide are created 

 

[1] 



 

 32 

using XML Schema (with optional use of Schematron) and are named “Concepts”. The set of rules and 

restrictions that apply to all Concepts is also defined using XML Schema, Schematron and, 

additionally, Java code.  

A Concept in the repository is more than a XML Schema. In the Concept definition, one can define 

how Instances of that Concept can relate with Instances of other Concepts and what restrictions to 

apply to those relations (such as cardinality control). It’s also possible to define Schematron 

restrictions that Instances of that Concept must comply with. The definition of all these properties is 

done with a specific syntax that is available in the base schema that all Concepts must include. For a 

Concept to be stored in the repository, it must be valid against a set of rules: It must include (and use 

elements from) a base XML Schema and comply with a set of global schematron rules. Some rules are 

verified by Java code, because the proper functioning of the repository depends on that.  

Regarding integration, the repository features a very simple, but extensive, web service API that 

allows any application to communicate with the repository and request anything (validate an 

Instance, update an Instance, add a new Concept, etc.). It has a notification mechanism that allows 

the repository manager to select a set of Instances (according to several criteria) and create a trigger 

that invokes a remote web service (with any number of parameters) when there’s a change in any of 

those Instances. Metadata integration is assured through importing and exporting mechanisms (from 

and to repositories of the same type, respectively). There’s also a subscription feature from another 

repository to ensure that an updated local copy of a given set of Instances document, always exists. 

Specific importers (small applications that can transform external documents to valid Instances) can 

be connected to the repository. 

An ACID transaction system on top of the database is present, as well as a replication mechanism. 

Regarding user security, the repository features permissions and an authentication mechanism. 

Usability is assured by using open source and platform independent technologies, such as Java, 

the eXist native XML database, etc.). The repository’s management console and external metadata 

editors (connected to the repository) further extend the usability of the repository. 

The repository allows users to execute XQuery over Instances and transform them. The result of a 

XQuery can be passed to a single XSLT, or a XSLT pipeline, as depicted in Figure 2.12. 

The repository supports Instance relations assuring referential integrity between them and 

cardinality restrictions. It’s possible, for example, to define that an Instance of the Concept “Master 

of Science Thesis” is related with at least one Instance of the Concept “Author” and if there’s an 

attempt to remove an Instance that’s related to another, the repository blocks that attempt. It will 

only allow the removal when no relations exist.  



 

The repository has, however, some issues that are major drawbacks for its adoption in a generic 

information system. Those issues cause the following problems:

• Difficult integration of external documents

• Reduced extensibility and

The integration of external documents is a problem, mainly because of the following situations in 

the repository: 

• Instance Identification 

• Instance Relations 

• Schema Rules 

Instance identification in the MDR is done using an internal identifier, that is the concatenation of 

“Server identifier” with a “Database identifier” and a sequence number. As an example, the identifier 

“1.1.4” means Instance number four, located in database one of server one. These identifiers are 

generated by the repository on the moment of Instance i

content of each Instance. Instances may have a “Named” identifier, but an internal identifier is 

always required as the name may change over time.

previous identifiers and the declaration of a relation is done using a fix and rigid syntax

stored inside the content of an Instance, as is depicted 

Figure 2.13.  

Since relations are based on the previous identifiers, it is 

simultaneously, because Instances

be previously inserted and relations created afterward

overcome this situation, but it requires that someone 

Figure 2.12 Instance processing and transforming capabilities, taken fr

he repository has, however, some issues that are major drawbacks for its adoption in a generic 

information system. Those issues cause the following problems: 

ntegration of external documents 

and reusability 

of external documents is a problem, mainly because of the following situations in 

dentification in the MDR is done using an internal identifier, that is the concatenation of 

“Server identifier” with a “Database identifier” and a sequence number. As an example, the identifier 

Instance number four, located in database one of server one. These identifiers are 

generated by the repository on the moment of Instance insertion, and are stored inside the XML 

content of each Instance. Instances may have a “Named” identifier, but an internal identifier is 

always required as the name may change over time. Relations between Instances are based on the 

the declaration of a relation is done using a fix and rigid syntax

stored inside the content of an Instance, as is depicted in the DataServiceProviderRelation

the previous identifiers, it is impossible to add 

simultaneously, because Instances are only given an identifier after they are inserted, thus they must 

be previously inserted and relations created afterward. The use of named identifiers is possible to 

is situation, but it requires that someone has to create those named identifiers.

Instance processing and transforming capabilities, taken fr

 

33 

 

he repository has, however, some issues that are major drawbacks for its adoption in a generic 

of external documents is a problem, mainly because of the following situations in 

dentification in the MDR is done using an internal identifier, that is the concatenation of a 

“Server identifier” with a “Database identifier” and a sequence number. As an example, the identifier 

Instance number four, located in database one of server one. These identifiers are 

nsertion, and are stored inside the XML 

content of each Instance. Instances may have a “Named” identifier, but an internal identifier is 

Relations between Instances are based on the 

the declaration of a relation is done using a fix and rigid syntax, which is 

DataServiceProviderRelation element of 

impossible to add cross-related Instances 

are only given an identifier after they are inserted, thus they must 

. The use of named identifiers is possible to 

create those named identifiers.  

 

Instance processing and transforming capabilities, taken from [1] 



 

 34 

 

The set of schema rules that apply to all Concepts, forces that if a XML Schema was not created for 

the MDR it has to be updated to be compatib

file that was valid against the previous schema, has to be updated to conform to the new schema. At 

the schema level, the rules force that a base XML Schema, supplied by the repository must be 

imported and that the root element of the schema must be identified with an “id” attribute, which 

must have the value “root”, among other restrictions. Most of the rules are contained in a

The set of schema rules that apply to all Concepts, forces that if a XML Schema was not created for 

the MDR it has to be updated to be compatible with the rules. This situation imposes that every XML 

file that was valid against the previous schema, has to be updated to conform to the new schema. At 

the schema level, the rules force that a base XML Schema, supplied by the repository must be 

ed and that the root element of the schema must be identified with an “id” attribute, which 

must have the value “root”, among other restrictions. Most of the rules are contained in a

Figure 2.13 Relationship syntax in a SESS Instance 

 

The set of schema rules that apply to all Concepts, forces that if a XML Schema was not created for 

le with the rules. This situation imposes that every XML 

file that was valid against the previous schema, has to be updated to conform to the new schema. At 

the schema level, the rules force that a base XML Schema, supplied by the repository must be 

ed and that the root element of the schema must be identified with an “id” attribute, which 

must have the value “root”, among other restrictions. Most of the rules are contained in a 

 



 

Schematron file (and thus if the Schematron would be removed they would 

if they’re not enforced the repository

figures 2.14 and 2.15 are depicted the 

respectively. Outlined in red are the rules that the Java code expects to see checked, outlined in 

green are the rules that are part of the Schematron rule file, but could 

the repository. 

Figure 2.14

Figure 2

(and thus if the Schematron would be removed they would no longer be applied

repository engine will not work as expected). As a visual example in 

are depicted the rules imposed by the repository to an Instance and a Concept, 

e the rules that the Java code expects to see checked, outlined in 

green are the rules that are part of the Schematron rule file, but could be removed 

14 Instance with outlined rules required by the MDR

2.15 Concept with outlined rules required by the MDR

 

35 

no longer be applied, but 

. As a visual example in 

to an Instance and a Concept, 

e the rules that the Java code expects to see checked, outlined in 

removed without affecting 

 

ules required by the MDR 

 

Concept with outlined rules required by the MDR 



 

 36 

The MDR has some extensibility issues, linked to reusability issues. The major issue with reusability 

is that the basic unit in the repository is the XML Schema (as a Concept) and there are no tools or 

mechanisms to reuse a Concept (or part of it) to create a new Concept. This means that, in practice, 

people designing new Concepts will not try to reuse existing parts, because they will not gain 

anything from it and this leads to creating Concepts that have similar meaning but different structure 

because no one checked that a similar Concept already existed. In addition, the MDR does not 

feature Concept versions; only Instances can have versions, which means there is no explicit support 

for temporal evolution of Concepts. 

The MDR is a good solution for the management of metadata in the SESS project and provides 

several features identified as essential in metadata management earlier in this chapter and chapter 

one. However, for a generic information system that needs to integrate external metadata that may 

be in very different formats, it is not suitable to the task. The cost of transforming XML documents 

and XML Schemas into Instances and Concepts, respectively, is very high. The lack of support for the 

use of Concepts (or parts of) to create new Concepts does not promote reutilization and, as such, 

people may find themselves redefining Concepts that are very similar (or that should have part of the 

same structure) which leads to several conflicting definitions in the same repository. 

2.5. Metadata Management Technologies and Repositories 

Appreciation 

There are several technologies to deal with metadata and two of the most representative ones are 

XML and the Semantic Web. Semantic Web would be the most promising technology, but it has a 

greater learning curve and some issues are still unresolved and subject to research. XML, although 

not delivering some of the very interesting features of the Semantic Web is very stable and 

widespread and there is much knowledge available about it, thus, it suits a current metadata 

repository better than the Semantic Web. On another hand, current metadata repositories and tools 

are limited because they either don’t support different kinds of metadata or, as seen in the SESS 

repository, have issues with integration of foreign metadata.  

Commercial solutions were left out of the evaluation since the use of metadata is not widespread 

and many organizations don’t even grasp the benefits of using it; yet alone pay for a commercial 

solution to manage their metadata. In the case of a SME, even if there’s interest in adopting a 

solution for metadata management, the cost of a commercial one may simply be prohibitive. There 

are some commercial solutions [97, 98] for metadata management, but they are directed to 

enterprises of considerable dimension that can afford the high price of such a solution. These 

solutions are very complete and provide enterprise wide management of metadata but usually are 

deployed in level above the Information System (rather than supporting it) providing document 

management, but not having a special focus on technical metadata and its relations with other 

metadata. Computer-Aided Software Engineering (CASE) tools are, as the name implies, tools to 



 

 37 

assists in the several phases (analysis, design and programming) of software development. They 

provide assistance in modeling the problem and generating code based on the model and typically 

they use an internal metadata repository to store model definitions, user requirements and 

templates for code generation. CASE tools are very specific tools that have a closed model and don’t 

provide access to their metadata repository, thus, they are not a good solution for metadata 

management outside of their purpose. 

Although in this work there is no capacity to reproduce a project like SESS and all of its features, 

there is enough interest and value to invest in a new metadata repository that has some of the 

features of the SESS one and deals with the limitations described earlier, promoting the reuse of 

information and easily integrating external metadata. This is the work developed in this thesis. 

 





 

Chapter 3  
Architecture Design 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.1 Requirements…………….…….…….…….…….…….…….…….…….…….…….…….…….…….…….…………….. 41 
3.2 Architecture….…….…….…….…….…….…….…….…….…….…….…….…….…….…….………………………….. 42 
3.3 Information Model….…….…….…….…….…….…….…….…….…….…….…….…….…….…….……………….. 43 
3.4 M0 Layer (External Entities) ….…….…….…….…….…….…….…….…….…….…….…….…….…….……….. 43 
3.5 M1 Layer (Instances) ….…….…….…….…….…….…….…….…….…….…….…….…….…….…….……………. 44 
3.6 M2 Layer (Concepts) ….…….…….…….…….…….…….…….…….…….…….…….…….…….…….……………. 49 
3.7 M3 Layer – Meta-meta-model….…….…….…….…….…….…….…….…….…….…….…….…….…………… 54 
 
 

This chapter presents the architecture design of the 

metadata repository, identifying requirements, 

discussing the high-level architecture and information 

model 



 

 40 

  



 

 41 

This chapter introduces the design of the metadata repository starting with a list of general 

requirements for metadata repositories. With those requirements in mind, the high-level 

architecture of the repository is presented, followed by the information model that defines what 

types of information the repository must store. 

3.1. Requirements 

The list of requirements that guided the design of this repository (and were identified in the 

previous chapters) is present next. Most of the requirements are described in [3, 11]  and in the 

previous chapters, although not all of them were considered as priorities (given the time restrictions) 

and the following list reflects that. 

Ability to handle several types of metadata (1) – It is important to be flexible enough to support 

standard and non-standard types of metadata, due to much of the existing metadata in Information 

Systems not being compatible with any standard. 

Metadata Storage (2) – The repository must store metadata in efficient and flexible databases, 

enabling querying and transforming of metadata. The repository shall support several databases.  

Metadata Relationships (3) – To represent relations between objects that metadata describes or to 

make the connection between domain and technical metadata. In Information Systems this property 

is very important as it represents data dependency between different items. 

Metadata Integrity and Validity (4) – Data integrity is crucial in any system thus, the metadata 

repository must assure that the metadata it stores is always valid as well as relations between them. 

Metadata Change Management (5) – Metadata has a dynamic nature, because it describes objects 

that have themselves a dynamic nature. Therefore the repository must support temporal evolution of 

the metadata, in the form of a versioning system. 

Import (6) – The metadata repository must support the import of metadata from external sources, 

such as databases or other information systems regardless of the metadata being in a standard, or 

non-standard format. By importing and centralizing metadata in the repository, the repository 

becomes the central source of information in the system, helping to create new systems and 

ensuring consistency in all processes. 

Export (7) – To support reuse of metadata, the repository must supply the means to query, retrieve, 

transform and share metadata with other systems or tools. This promotes the reuse of already 

existing (and valid) definitions, a crucial factor in creating a coherent and consistent set of systems. 



 

 42 

Reusability (8) – The repository shall provide the means to easily reuse definitions and processing 

capabilities to promote the reuse of information. Users shall gain benefit from reusing and, 

therefore, make use of those features. This promotes consistency of information throughout the set 

of systems that use the metadata repository.  

Concurrency (9) – Multiple-user access for read and write purposes must be supported by the 

repository so that availability is high, but data is not damaged by concurrent access. 

3.2. Architecture 

The metadata repository design takes into account the previously mentioned requirements. The 

diagram of the architecture is depicted in Figure 3.1, which is detailed in the next paragraphs. 

In the center of the figure is the Metadata Repository Engine. This engine implements and 

provides all the features of the repository, storing the metadata in a database, or series of databases 

(to comply with the requirement of metadata storage). The engine is deployed in a web server and 

exposes its functionalities through a Web services interface. The Web services interface allows any 

application, developed in a modern language, to communicate with the repository. The popularity of 

Web services makes them available in most recent programming languages and the fact that is 

platform-independent, using XML as a vehicle to pass information, is the reason behind the choice of 

exposing the functionality of the repository as Restful Web Service Interface (REST) [99]. REST 

philosophy was chosen for its simplicity, it’s very light-weight as no extra XML markup is required in 

 

Figure 3.1 Architecture of the Metadata Repository 



 

communications, and is very easy to b

through the Web service interface

Using a Web Service interface the repository can be in a distributed environment, with several 

systems remotely communicating with the repositories, requesting metadata, executing queries and 

requesting transformations over the results of those queries

3.3. Information Model

The Metadata Information Model of the repository represents the organization of 

the repository must store and the kind of information it supports. 

is based on the Meta-Object Facility (MOF) depicted in 

requirements listed in 3.1. 

3.4. M0 Layer (External Entities

The M0 layer (Instance Object) represents objects in a given reality. Any entity, physical or not, can 

be considered for this layer. Examples of these objects can be data dictionaries, reports from an 

organization or persons. These objects are out of the scope of the metadata repository and are 

considered external entities, which are represented in the Information Model as 

3.3. 

communications, and is very easy to build and consume. The only point of entry in the repository is 

nterface and, as such, the security control (user login) is done here.

Using a Web Service interface the repository can be in a distributed environment, with several 

stems remotely communicating with the repositories, requesting metadata, executing queries and 

requesting transformations over the results of those queries. 

Information Model 

he Metadata Information Model of the repository represents the organization of 

and the kind of information it supports. The Meta

Facility (MOF) depicted in Figure 3.2. It’s designed to meet the 

External Entities) 

The M0 layer (Instance Object) represents objects in a given reality. Any entity, physical or not, can 

be considered for this layer. Examples of these objects can be data dictionaries, reports from an 

These objects are out of the scope of the metadata repository and are 

which are represented in the Information Model as 

 

Figure 3.2 MOF layered architecture 

 

43 

The only point of entry in the repository is 

and, as such, the security control (user login) is done here. 

Using a Web Service interface the repository can be in a distributed environment, with several 

stems remotely communicating with the repositories, requesting metadata, executing queries and 

he Metadata Information Model of the repository represents the organization of the information 

The Metadata Information Model 

. It’s designed to meet the 

The M0 layer (Instance Object) represents objects in a given reality. Any entity, physical or not, can 

be considered for this layer. Examples of these objects can be data dictionaries, reports from an 

These objects are out of the scope of the metadata repository and are 

which are represented in the Information Model as depicted in Figure 



 

 44 

3.5. M1 Layer (Instances

The M1 (Model) layer describes object

representation or description, designed to 

or concept. The model of a database can be its name, location, system

Models are “metadata” about the M0 objects and, as such, are stored and managed by the Metadata 

Repository. In the context of the Metadata Repository, Models are designed as “Instances” and are 

represented by XML documents, as depic

XML, as presented in chapter 2, is the most natural 

to represent any type of information

libraries and databases that support it,

validating, querying and transforming

handle the requirements for metadata management. The following subsections 

Instances to comply with the requirements of 

relationships. 

Instances) 

odel) layer describes objects or entities in the M0 layer. A model is a pattern, plan, 

designed to describe a main object or workings of an object, system, 

. The model of a database can be its name, location, system username and password. 

Models are “metadata” about the M0 objects and, as such, are stored and managed by the Metadata 

Repository. In the context of the Metadata Repository, Models are designed as “Instances” and are 

represented by XML documents, as depicted in Figure 3.4. 

XML, as presented in chapter 2, is the most natural choice to represent metadata, due to its ability 

to represent any type of information while being platform-independent. The extensive list of tools, 

databases that support it, combined with the rest of the technologies that allow 

ting, querying and transforming further confirm XML’s ability for representing metadata and 

handle the requirements for metadata management. The following subsections 

Instances to comply with the requirements of metadata change management

Figure 3.3 M0 Layer - External Entities 

Figure 3.4 M1 Layer: Instances 

 

A model is a pattern, plan, 

main object or workings of an object, system, 

username and password. 

Models are “metadata” about the M0 objects and, as such, are stored and managed by the Metadata 

Repository. In the context of the Metadata Repository, Models are designed as “Instances” and are 

to represent metadata, due to its ability 

independent. The extensive list of tools, 

ombined with the rest of the technologies that allow 

representing metadata and 

handle the requirements for metadata management. The following subsections detail the features of 

etadata change management and metadata 

 

 



 

3.5.1. Instance Versions

Instances feature a versioning system, to deal with the change management requirement. Each 

Instance has an associated version number

number is a positive integer that uniquely identifies that version from other existing version

“1” represents the first version of that Instance, up to the Nth version. Creation D

Date are, respectively, the dates where the Instance was created and the date where the Instance 

was last updated. 

Each time an Instance is to be inserted in the repository, i

can chose if the previous Instance is to be replaced (overwrite) or if a new version is to be created. 

This leads to the possibility of, after ten consecutive inserts in the repository, the result being ten 

different documents (ten versions) or only one document (one insert and n

following figures (Figure 3.6 and 

and the second shows a temporal evolution

Figure 3.6 Instance Version Control Fields and Modification Notation

Figure 

Instance Versions 

Instances feature a versioning system, to deal with the change management requirement. Each 

version number, a creation date and an update date

number is a positive integer that uniquely identifies that version from other existing version

“1” represents the first version of that Instance, up to the Nth version. Creation D

the dates where the Instance was created and the date where the Instance 

ach time an Instance is to be inserted in the repository, if a previous version already exists one 

s Instance is to be replaced (overwrite) or if a new version is to be created. 

This leads to the possibility of, after ten consecutive inserts in the repository, the result being ten 

different documents (ten versions) or only one document (one insert and n

and Figure 3.5) depict the possibilities. The first exemplifies the fields, 

and the second shows a temporal evolution. 

Instance Version Control Fields and Modification Notation

Figure 3.5 Temporal evolution of Instance versions 

 

45 

Instances feature a versioning system, to deal with the change management requirement. Each 

update date.  The version 

number is a positive integer that uniquely identifies that version from other existing versions. Version 

“1” represents the first version of that Instance, up to the Nth version. Creation Date and Update 

the dates where the Instance was created and the date where the Instance 

a previous version already exists one 

s Instance is to be replaced (overwrite) or if a new version is to be created. 

This leads to the possibility of, after ten consecutive inserts in the repository, the result being ten 

different documents (ten versions) or only one document (one insert and nine replacements). The 

The first exemplifies the fields, 

 

Instance Version Control Fields and Modification Notation 

 



 

 46 

Starting with time t0 (in Figure

update date, t0). In a future, t1, time a new Instance version is to be added and one can choose to 

overwrite the previous one, or create a new version. Overwriting only 

while creating a new version increases the version number and set the two dates, as depicted in 

figure 3.6. There’s the notion of “last” Instance version, as seen in the previous figure. It’s a notion 

that is used in the update of Instance relations; in a sit

B and a new version of Instance B is created, the relation can be migrated to the new version of B

Version number, create and update dates, among others, are metadata about Instances and are 

stored in a separate file, as such, 

Instance versions are considered a feature of Instance and the updated 

depicted in Figure 3.7. 

3.5.2. Instance Relations

Relationships in metadata represent dependencies between the objects they describe and, as 

such, are a crucial part of the Metadata Repository and its 

implementation is dependent on validation and integrity

relation exists between two Instanc

Relations are only established between Instances and are stored separately from Instances 

themselves, in internal management files

will be presented in the next chapter

can be described as an arc between two nodes of a graph, where each node repr

Figure 3.8 provides an illustration

  

 

Figure 

igure 3.6), a sample Instance is created (with version 1, create and 

. In a future, t1, time a new Instance version is to be added and one can choose to 

overwrite the previous one, or create a new version. Overwriting only changes

le creating a new version increases the version number and set the two dates, as depicted in 

There’s the notion of “last” Instance version, as seen in the previous figure. It’s a notion 

the update of Instance relations; in a situation where instance A is related to Instance 

B and a new version of Instance B is created, the relation can be migrated to the new version of B

Version number, create and update dates, among others, are metadata about Instances and are 

ate file, as such, external XML files can be imported “as

Instance versions are considered a feature of Instance and the updated 

Relations 

Relationships in metadata represent dependencies between the objects they describe and, as 

such, are a crucial part of the Metadata Repository and its Information Model. 

is dependent on validation and integrity constraints over Instances, because if a 

relation exists between two Instances, none of them can be removed before that relation is broken.

established between Instances and are stored separately from Instances 

anagement files. There are several mechanisms for creating relations, 

will be presented in the next chapter. A relation is as a binary association between two 

arc between two nodes of a graph, where each node repr

provides an illustration (Instance A1 is related to Instance B1).  

Figure 3.7 Information Model with Instance Versions 

sample Instance is created (with version 1, create and 

. In a future, t1, time a new Instance version is to be added and one can choose to 

changes the “update date”, 

le creating a new version increases the version number and set the two dates, as depicted in 

There’s the notion of “last” Instance version, as seen in the previous figure. It’s a notion 

uation where instance A is related to Instance 

B and a new version of Instance B is created, the relation can be migrated to the new version of B. 

Version number, create and update dates, among others, are metadata about Instances and are 

can be imported “as-is” to the repository. 

Instance versions are considered a feature of Instance and the updated Information Model is 

 

Relationships in metadata represent dependencies between the objects they describe and, as 

odel. Relation management 

over Instances, because if a 

before that relation is broken. 

established between Instances and are stored separately from Instances 

. There are several mechanisms for creating relations, which 

between two Instances and 

arc between two nodes of a graph, where each node represents an Instance. 

 

 



 

Relations can have associated metadata, in the form

documentation of relations as well as a method to distinguish between two relations with the same

target Instance. 

A relation between two Instances can be one of

as “locked version” and the second 

Instance versions are related and 

of the target Instance, the relation 

that, if there is a relation of Instance A with Instance B, when a new Instance of B is inserted in the 

repository, A will no longer be re

new Instance of B and so on every time a new 

Instance version number is provided, the relation is “locked version”, if no version number is 

supplied, the relation is “last version”.

In the previous figure a “locking relation” between Instance A, version one (A1), and Instance B, 

version one (B1), exists. At a given time, a new version (version two) of Instance B is 

relation is maintained between A1 and B1. The opposi

 

Figure 

Relations can have associated metadata, in the form of key-value pairs. This feature allows the 

ation of relations as well as a method to distinguish between two relations with the same

tion between two Instances can be one of two types of targets. The first 

“locked version” and the second as “last version”. “Locked version” is a kind of relation where two 

versions are related and that relation is locked, i.e. even if someone created a new version 

of the target Instance, the relation is maintained with the previous version. The “last version” mean

that, if there is a relation of Instance A with Instance B, when a new Instance of B is inserted in the 

repository, A will no longer be related to the first version of B and will “migrate” its relation 

new Instance of B and so on every time a new Instance of B is added. When creating a relation

Instance version number is provided, the relation is “locked version”, if no version number is 

supplied, the relation is “last version”. In Figure 3.9 the “lock mechanism” is dep

In the previous figure a “locking relation” between Instance A, version one (A1), and Instance B, 

version one (B1), exists. At a given time, a new version (version two) of Instance B is 

relation is maintained between A1 and B1. The opposite situation is depicted 

Figure 3.8 Relation between two Instances 

Figure 3.9 Instance Relation with a Locking Version 

 

47 

 

. This feature allows the 

ation of relations as well as a method to distinguish between two relations with the same 

two types of targets. The first type is designated 

kind of relation where two 

even if someone created a new version 

The “last version” means 

that, if there is a relation of Instance A with Instance B, when a new Instance of B is inserted in the 

and will “migrate” its relation to the 

hen creating a relation, if an 

Instance version number is provided, the relation is “locked version”, if no version number is 

is depicted. 

In the previous figure a “locking relation” between Instance A, version one (A1), and Instance B, 

version one (B1), exists. At a given time, a new version (version two) of Instance B is added; the 

te situation is depicted in Figure 3.10. 

 

 



 

 48 

In the previous figure, a “last

one, A1 and B1, respectively) exists. At a given time, a new vers

repository automatically updated the relations, removing the relation between A1 and B1 and 

creating a new relation between A1 and B2. 

also “migrated” to the new relation.

A relation between two Instances can also 

that identifies part of the content an Instance and, if that part exists, a relation is establish

that specific content. The behavior is equiv

only difference is that a certain part of the target Instance must match 

Cardinality restrictions can also be set

be set that “A” can only have a relation with one Instance

example that the maximum cardinality is one

making it possible to have relations like “one

cardinality can also be set. 

Relations are established between Instances, but the target of a relation is always an Instance of a 

Concept. As such, one can define acceptable “target Concepts” for a relation. For example, one may 

want that Instances of the Concept “Thesis” can only be related with Instances of the Concept “Thesis 

Author” and Instances of Concept “Thesis Supervisor”. In this situation, the Metadata Repository will 

deny the attempt to relate an Instance of “Thesis” with 

only allow for relations explicitly accepted in the Concept. 

will be introduced jointly with Concepts in the next section and in chapter four.

Relations are considered a sub

model in the Information Model is like the one depicted in

last version” relation between Instance A and Instance B (both version 

one, A1 and B1, respectively) exists. At a given time, a new version of Instance B is added, and the 

repository automatically updated the relations, removing the relation between A1 and B1 and 

creating a new relation between A1 and B2. Any associated metadata with the previous relation is 

tion. 

A relation between two Instances can also have a finer granularity. It’s possible to specify a XPath 

that identifies part of the content an Instance and, if that part exists, a relation is establish

The behavior is equivalent to that of a relation with a complete Instance, the 

only difference is that a certain part of the target Instance must match a XPath.

Cardinality restrictions can also be set, so if a certain Instance “A” of Concept “Book” exists, it can 

have a relation with one Instance of Concept “Author”

example that the maximum cardinality is one. The maximum cardinality can be any positive integer, 

making it possible to have relations like “one-to-one”, “one-to-many” or “many

Relations are established between Instances, but the target of a relation is always an Instance of a 

Concept. As such, one can define acceptable “target Concepts” for a relation. For example, one may 

that Instances of the Concept “Thesis” can only be related with Instances of the Concept “Thesis 

Author” and Instances of Concept “Thesis Supervisor”. In this situation, the Metadata Repository will 

deny the attempt to relate an Instance of “Thesis” with an Instance of “Book”.

only allow for relations explicitly accepted in the Concept. The definition of relations is 

will be introduced jointly with Concepts in the next section and in chapter four.

sub-feature of the Instances layer and, as such, the final M1 layer 

model in the Information Model is like the one depicted in Figure 3.11. 

Figure 3.10 Instance Relation with "Last Version" 
 

version” relation between Instance A and Instance B (both version 

ion of Instance B is added, and the 

repository automatically updated the relations, removing the relation between A1 and B1 and 

ssociated metadata with the previous relation is 

have a finer granularity. It’s possible to specify a XPath 

that identifies part of the content an Instance and, if that part exists, a relation is established with 

alent to that of a relation with a complete Instance, the 

XPath. 

f a certain Instance “A” of Concept “Book” exists, it can 

of Concept “Author”, meaning in this 

The maximum cardinality can be any positive integer, 

many-to-many”. Minimum 

Relations are established between Instances, but the target of a relation is always an Instance of a 

Concept. As such, one can define acceptable “target Concepts” for a relation. For example, one may 

that Instances of the Concept “Thesis” can only be related with Instances of the Concept “Thesis 

Author” and Instances of Concept “Thesis Supervisor”. In this situation, the Metadata Repository will 

an Instance of “Book”. The repository will 

The definition of relations is a subject that 

will be introduced jointly with Concepts in the next section and in chapter four. 

feature of the Instances layer and, as such, the final M1 layer 

 



 

3.6. M2 Layer (Concepts)

The M2 layer (meta-model) describes the mo

of a language, notation or properties of a model, as seen in chapter one and two. In the context of 

the Metadata Repository a meta

meta-models are represented as XML files, which include a XML Schema definition inside them. The 

reason for this is to separate the definition of the vocabulary, from the other features of Concepts

comply with the reusability requirement

section. 

3.6.1. Fragments 

A Fragment is, in the context of the Metadata Repository

processing. A Fragment represents a XML Schema structure 

can hold a list of XSLT that know how to process that structure

kinds of XSLT used in Fragments)

create a more complex structure and reused in Concepts. The best analogy

popular Lego ® pieces, were one can build a structure using a set of small pieces and, afterward, 

reuse those pieces to build something larger.

promote, the reuse of already existi

written, an “Address” Fragment can be used to define that structure and all Fragments or Concepts 

that require the use of addresses can reuse the definition in the “Address” Fragment. Furthe

an address has a pre-defined way of being presented in HTML, a XSL

of an address can be associated to the “Address” Fragment and be reused by Concepts

not related directly to an Instance; only a Conc

The repository supports versions of Fragments

allowed. However, and contrary to the Instances situation, there isn

when other Fragments and Concepts r

Figure 

(Concepts) 

model) describes the models in the M1 layer. A meta

of a language, notation or properties of a model, as seen in chapter one and two. In the context of 

the Metadata Repository a meta-model is defined as a Concept; since models are 

ls are represented as XML files, which include a XML Schema definition inside them. The 

reason for this is to separate the definition of the vocabulary, from the other features of Concepts

reusability requirement, the notion of Fragment will be presented 

A Fragment is, in the context of the Metadata Repository, a reusable pie

A Fragment represents a XML Schema structure and can have metadata about itself and 

w how to process that structure (although there are restrictions to the 

kinds of XSLT used in Fragments). The structure of a Fragment can be reused by other Fragments to 

create a more complex structure and reused in Concepts. The best analogy

popular Lego ® pieces, were one can build a structure using a set of small pieces and, afterward, 

reuse those pieces to build something larger. The purpose of this feature is to explicitly enable, and 

promote, the reuse of already existing information; if there’s a definition for how addresses must be 

written, an “Address” Fragment can be used to define that structure and all Fragments or Concepts 

that require the use of addresses can reuse the definition in the “Address” Fragment. Furthe

defined way of being presented in HTML, a XSLT that can process the structure 

of an address can be associated to the “Address” Fragment and be reused by Concepts

not related directly to an Instance; only a Concept can have Instances. 

The repository supports versions of Fragments, so that temporal evolution of the vocabularies is 

allowed. However, and contrary to the Instances situation, there isn’t the notion of “last” version

Fragments and Concepts reuse the structure of a Fragment. This is required, because the 

Figure 3.11 M1 Layer, Instances with Relations and Versions

 

49 

 

dels in the M1 layer. A meta-model is the definition 

of a language, notation or properties of a model, as seen in chapter one and two. In the context of 

; since models are XML files, the 

ls are represented as XML files, which include a XML Schema definition inside them. The 

reason for this is to separate the definition of the vocabulary, from the other features of Concepts. To 

will be presented in the next 

, a reusable piece of structure and 

can have metadata about itself and 

(although there are restrictions to the 

. The structure of a Fragment can be reused by other Fragments to 

create a more complex structure and reused in Concepts. The best analogy would be with the 

popular Lego ® pieces, were one can build a structure using a set of small pieces and, afterward, 

The purpose of this feature is to explicitly enable, and 

ng information; if there’s a definition for how addresses must be 

written, an “Address” Fragment can be used to define that structure and all Fragments or Concepts 

that require the use of addresses can reuse the definition in the “Address” Fragment. Furthermore, if 

that can process the structure 

of an address can be associated to the “Address” Fragment and be reused by Concepts. A Fragment is 

, so that temporal evolution of the vocabularies is 

’t the notion of “last” version 

. This is required, because the 

 

M1 Layer, Instances with Relations and Versions 



 

 50 

Fragments can be used by Concepts to define a vocabulary that Instances of that Concept must be 

valid against. If the structure of the Concept 

guarantee that Instances would always be valid.

Fragment it must explicitly choose 

will automatically search for the 

situation. 

In the previous figure at time “t0”, there are three Fragments (F1, F2 and F3), each of them only 

has one version (version one) and Fragment F3 reuses both Fragment F1 and F2. At time “t1” a new 

version (version two) of Fragment F1 is added, but Fragment F3 will not reuse the structure of F1 

version two, because it’s locked to version one, for the reasons previously explained. This behavior is 

also valid for Concepts reusing Fragments.

3.6.2. Concepts 

A Concept represents an item that has a series of properties. The most important property is the 

definition of a vocabulary in XML Schema that Instances of that Concept will be valid against. XML 

Schema was chosen because Instances are represented as XML documents an

schema is the most popular and widely available language to define and validate XML documents.

Concept can, additionally, make use of Schematron to enforce more restrictions to Instances, since 

Schematron is capable of verifying restric

an instance of only one Concept and a Concept can have zero or more Instances. 

A Concept is an item that can have the following properties (in bold, the required properties):

• Instance Identification method

• XML Schema vocabulary 

• Schematron validations 

Fragments can be used by Concepts to define a vocabulary that Instances of that Concept must be 

valid against. If the structure of the Concept were not static, then it would not be possible to

guarantee that Instances would always be valid. When a Fragment or Concept wishes to reuse a 

ose a version and if a version number is not supplied

will automatically search for the last version and always use that version. 

In the previous figure at time “t0”, there are three Fragments (F1, F2 and F3), each of them only 

one version (version one) and Fragment F3 reuses both Fragment F1 and F2. At time “t1” a new 

version two) of Fragment F1 is added, but Fragment F3 will not reuse the structure of F1 

version two, because it’s locked to version one, for the reasons previously explained. This behavior is 

also valid for Concepts reusing Fragments. 

an item that has a series of properties. The most important property is the 

y in XML Schema that Instances of that Concept will be valid against. XML 

Schema was chosen because Instances are represented as XML documents an

schema is the most popular and widely available language to define and validate XML documents.

Concept can, additionally, make use of Schematron to enforce more restrictions to Instances, since 

Schematron is capable of verifying restrictions that XML Schema isn’t able.  An Instance document is 

Concept and a Concept can have zero or more Instances. 

A Concept is an item that can have the following properties (in bold, the required properties):

on method 

 

Figure 3.12 Fragment versions  

Fragments can be used by Concepts to define a vocabulary that Instances of that Concept must be 

then it would not be possible to 

When a Fragment or Concept wishes to reuse a 

if a version number is not supplied, the repository 

that version. Figure 3.12 depicts this 

In the previous figure at time “t0”, there are three Fragments (F1, F2 and F3), each of them only 

one version (version one) and Fragment F3 reuses both Fragment F1 and F2. At time “t1” a new 

version two) of Fragment F1 is added, but Fragment F3 will not reuse the structure of F1 

version two, because it’s locked to version one, for the reasons previously explained. This behavior is 

an item that has a series of properties. The most important property is the 

y in XML Schema that Instances of that Concept will be valid against. XML 

Schema was chosen because Instances are represented as XML documents and, currently, XML 

schema is the most popular and widely available language to define and validate XML documents. A 

Concept can, additionally, make use of Schematron to enforce more restrictions to Instances, since 

tions that XML Schema isn’t able.  An Instance document is 

Concept and a Concept can have zero or more Instances.  

A Concept is an item that can have the following properties (in bold, the required properties): 



 

 51 

• XSLT 

• Relations 

• Metadata about the Concept 

• Rules to create Metadata about Instances 

All the properties of a Concept are defined using the language provided by the M3 layer, that 

ensures a level of “standardization” in the definition of a Concept and assures that some restrictions 

exist in the definition of Concepts. 

The Instance Identification method defines how Instances of this Concept are identified and will be 

explained in later. The XML Schema vocabulary is created by using a set of Fragments (using a 

method called “Composition” that will be detailed in later sections) or by using XML Schema code 

freely. Schematron validations can also be used in the Concept to assure additional validations. A list 

of XSLT can be associated to a Concept and these XSLT are to be used exclusively in Instances of the 

Concept to perform transformations. 

Instances can have relations with each other, as previously described. The set of valid targets for 

Instance relations, as well as the cardinality of those relations, is defined in their respective Concept. 

Relations can be manually created, or a set of rules can be used to create them automatically upon 

Instance insertion (the behavior of automatically created relations, can be defined, in case a target 

Instance is removed or updated). There are two kinds of automatic relations: Identifier Relations and 

Content Relations. 

Identifier Relations are based on the fact that Instances have a unique identifier within the 

Metadata Repository (identifiers will be explained in chapter four). That identifier has a particular 

syntax that allows distinguishing it from regular text, thus, if an identifier is found in the content of an 

Instance and that identifier represents an existing Instance in the repository, the repository will 

create the relation between those two Instances automatically. The situation is depicted in Figure 

3.13. 

In Figure 3.13, Concept A enables relations with Concept B, which has one Instance that is 

identified with the string “ID” (the identifier is not part of the content of the Instance). On insertion 

of the Instance of Concept A its content is parsed and the “ID” identifier is found, thus, since Concept 

A allows Identifier Relations with Concept B, the relation between those two Instances is 

automatically created. 

 

 



 

 52 

Content Relations are, as the name implies, based on the content of Instances. This mechanism 

assumes that there are valid target

Since relations are content-based, the target Instance has to be “searched”. The mechanism works as 

follows: At the Concept level, two rules to search for specific content 

in the origin Instance and other to search in candidate target Instances. When an Instance of that 

Concept is inserted, one rule is applied to the origin Instance and a specific content is retrieved; 

afterwards, all Instances of valid targets

content will also be retrieved. If the content matches with the 

relation is automatically created. The situation is depicted 

Figure 

are, as the name implies, based on the content of Instances. This mechanism 

assumes that there are valid targets defined in the Concept of the Instance that is being inserted. 

based, the target Instance has to be “searched”. The mechanism works as 

two rules to search for specific content are declared

in the origin Instance and other to search in candidate target Instances. When an Instance of that 

Concept is inserted, one rule is applied to the origin Instance and a specific content is retrieved; 

all Instances of valid targets for a relation will have the second rule applied to them and 

content will also be retrieved. If the content matches with the one from the 

relation is automatically created. The situation is depicted in Figure 3.14. 

Figure 3.14 Content Relations 

Figure 3.13 Automatic Relation based on identifiers 

 

are, as the name implies, based on the content of Instances. This mechanism 

s defined in the Concept of the Instance that is being inserted. 

based, the target Instance has to be “searched”. The mechanism works as 

are declared. One rule to search 

in the origin Instance and other to search in candidate target Instances. When an Instance of that 

Concept is inserted, one rule is applied to the origin Instance and a specific content is retrieved; 

relation will have the second rule applied to them and 

one from the origin Instance, then a 

 

 

 

 



 

In Figure 3.14, Concept A allows relations with Concept B, which has three Instances. The rule for 

the Content Relations, of Concept A has retrieved the string “IBM” from the document

will be compared with the result of the rule for target Instances, applied to those same Instances. If 

any of them matches, the relation is created. In figure

of Concept B (the one with the “IBM” string inside it)

inserted. Identifier Relations and 

Automatic Relations. Automatic Relations

and provide a mechanism to help users with metadata relationship.

A supported feature by the repository, to comply with the metadata update requirement, is 

versioning of Concepts. Each Concept has a version number (a positive integer), in a very similar way 

to Fragments; this means that each Instance version, is alw

Concept version. There isn’t the notion of “last” Concept version, regarding 

relation targets or to change the parent Concept of an 

repository and it does not explicitly state which version of what Concept it belongs to, the repository 

will automatically choose the last

locked to that Concept version. The same happens if the target Co

which version of each Concept they will relate to.

may be very different from the previous versions, as such, Instances of an o

valid with the newer version or the rules to create automatic relations may not apply if the structure 

of a Concept changes significantly.

The Information Model, including Concepts and Fragments is depicted in 
 

The Information Model, in Figure 3.15

Concepts. Concepts, on another hand are on top of Fragments (because they can use them to define 

their XML Schema vocabulary), but can also exist independently.

Figure 

, Concept A allows relations with Concept B, which has three Instances. The rule for 

, of Concept A has retrieved the string “IBM” from the document

be compared with the result of the rule for target Instances, applied to those same Instances. If 

any of them matches, the relation is created. In figure 3.14, a relation is found between

one with the “IBM” string inside it) and the original Instance of Concept A

and Content Relations are grouped in what the Repository considers 

Automatic Relations are useful to extract relations without human assistance 

mechanism to help users with metadata relationship. 

A supported feature by the repository, to comply with the metadata update requirement, is 

versioning of Concepts. Each Concept has a version number (a positive integer), in a very similar way 

s; this means that each Instance version, is always linked (and locked) with it

here isn’t the notion of “last” Concept version, regarding 

to change the parent Concept of an Instance. If an Instance is inserted in the 

repository and it does not explicitly state which version of what Concept it belongs to, the repository 

last version of that Concept and, if the Instance is valid, it becomes 

version. The same happens if the target Concepts for a relation do

which version of each Concept they will relate to. The reason for this choice is that Concept versions 

may be very different from the previous versions, as such, Instances of an o

valid with the newer version or the rules to create automatic relations may not apply if the structure 

of a Concept changes significantly. 

The Information Model, including Concepts and Fragments is depicted in Figure 

Figure 3.15, features “versions” as a sub-feature of both Fragments and 

Concepts. Concepts, on another hand are on top of Fragments (because they can use them to define 

ocabulary), but can also exist independently. 

Figure 3.15 M2 Layer, with Concept and Fragment Versions

 

53 

, Concept A allows relations with Concept B, which has three Instances. The rule for 

, of Concept A has retrieved the string “IBM” from the document, that string 

be compared with the result of the rule for target Instances, applied to those same Instances. If 

, a relation is found between one Instance 

and the original Instance of Concept A, being 

are grouped in what the Repository considers 

are useful to extract relations without human assistance 

A supported feature by the repository, to comply with the metadata update requirement, is 

versioning of Concepts. Each Concept has a version number (a positive integer), in a very similar way 

ays linked (and locked) with its parent 

here isn’t the notion of “last” Concept version, regarding the update of valid 

Instance is inserted in the 

repository and it does not explicitly state which version of what Concept it belongs to, the repository 

version of that Concept and, if the Instance is valid, it becomes 

ncepts for a relation do not state 

choice is that Concept versions 

may be very different from the previous versions, as such, Instances of an older version may not be 

valid with the newer version or the rules to create automatic relations may not apply if the structure 

Figure 3.15. 

 

feature of both Fragments and 

Concepts. Concepts, on another hand are on top of Fragments (because they can use them to define 

 

M2 Layer, with Concept and Fragment Versions 



 

 54 

 

3.7. M3 Layer – Meta-meta

The M3 layer defines a set of rules and properties 

supplies a XML language for the definition of Concepts and Fragments that will be verifie

Schema and Java code to assure several properties are valid

chapter four, with examples of usage.

definition of Concept/Fragment respects the vocabu

code is used to ensure that the values chosen for several of the properties (identifier of the Concepts, 

identification of Instances, targets for relations, rules for automatic creation of relations or for 

automatic creation of metadata) are valid.

the storage model, validation of Concepts, Fragments and Instances as will be described in chapter 

four. The full diagram of the Information Model is depict

3.7.1. Evaluation 

The Information Model based on MOF allows 

special attention is devoted to models and meta

denoted as Instances, metamodels are Concepts. For a metadata repository implementing this 

Information Model, these are the most important components as they are responsible for metadata 

itself and its validation, as well as being the ones th

technologies were chosen over Semantic Web technolog

user familiarity (including the author’s personal experience)

chapter two. 

Figure

meta-model 

The M3 layer defines a set of rules and properties that all Concepts must have

supplies a XML language for the definition of Concepts and Fragments that will be verifie

Schema and Java code to assure several properties are valid; the XML language will be de

, with examples of usage. The XML Schema is used, at this level, to ensure that the 

definition of Concept/Fragment respects the vocabulary defined to create them, whereas the Java 

code is used to ensure that the values chosen for several of the properties (identifier of the Concepts, 

identification of Instances, targets for relations, rules for automatic creation of relations or for 

matic creation of metadata) are valid. This layer is very important as it establishes the basis for 

the storage model, validation of Concepts, Fragments and Instances as will be described in chapter 

four. The full diagram of the Information Model is depicted in Figure 3.16. 

The Information Model based on MOF allows a clear distinction between abstraction levels and a 

special attention is devoted to models and meta-models. In this Information Mode

models are Concepts. For a metadata repository implementing this 

these are the most important components as they are responsible for metadata 

, as well as being the ones the repository will store an

over Semantic Web technologies, because of their stability

e author’s personal experience) as well as the other reasons stated in 

Figure 3.16 Full Information Model, with M3 Layer 

all Concepts must have. The M3 layer 

supplies a XML language for the definition of Concepts and Fragments that will be verified with XML 

he XML language will be described in 

The XML Schema is used, at this level, to ensure that the 

lary defined to create them, whereas the Java 

code is used to ensure that the values chosen for several of the properties (identifier of the Concepts, 

identification of Instances, targets for relations, rules for automatic creation of relations or for 

This layer is very important as it establishes the basis for 

the storage model, validation of Concepts, Fragments and Instances as will be described in chapter 

 

clear distinction between abstraction levels and a 

. In this Information Model, Models are 

models are Concepts. For a metadata repository implementing this 

these are the most important components as they are responsible for metadata 

e repository will store and manage. XML 

ies, because of their stability, availability and 

as well as the other reasons stated in 

 



 

Chapter 4  
Functional Design 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.1 Metadata Repository Identifiers (MRI)………………………………………………………………………………… 56 
4.2 Concept & Fragment Definition……………………….……………………….…………………………………………. 57 
4.3 Metadata Validation and Integrity……………………….……………………….……………………….……………. 76 
4.4 System Concepts and Instances……………………….……………………….…………………………………………. 80 
4.5 Metadata Querying and Transforming……………………….……………………….………………………………. 80 

 

  

This chapter presents and discusses the various 

metadata repository features and functionalities, 

such as validation, integrity, querying and 

transformation 



 

 56 

This chapter presents the design of several of the functionalities presented as requirements, in 

chapter three, as well as other functional properties of the repository. This includes the definition of 

a Metadata Repository Identifier (MRI), which is the base for several of the features of the repository. 

Validation of Fragments, Concepts and Instances is also detailed, as well as a comprehensive 

description (with usage examples) of the Concept & Fragment definition language. Metadata 

Querying and Transforming mechanisms are also explained. A subchapter is dedicated to meta-

metadata (metadata about the metadata in the repository) and searching.  

4.1. Metadata Repository Identifiers (MRI) 

Each item of the Information Model (except the M3 layer) has a public Identifier in the repository, 

which is defined as its Metadata Repository Identifier (MRI). This means that every Fragment, 

Concept and Instance has its own unique MRI. The MRI is a URI-compatible identifier, meaning that 

every MRI is a URI, but not every URI is a MRI. Being able to have a standard syntax enables for 

example the usage of standard libraries to process URIs and enables foreign applications that deal 

with URIs (namely, Semantic Web technologies, RDF, RDFS) to use the information of the Metadata 

Repository as input. The abstract syntax of a MRI is the following: 

mdr://namespace/Name[&Version]/InstanceName[&InstanceVersion][?Query] 

The first part of the MRI is the URI-equivalent of “scheme” and the mdr prefix is used. This was 

chosen in order to have the possibility to distinguish normal URIs from MRIs. That feature will allow 

the creation of relations based on identifiers found in the content of Instances, as described in 

chapter 3.6. 

The MRI namespace item is equivalent to the URI “authority”, but only using the host component, 

not including the “userinfo” or “port” parts of the URI “authority” item. 

The Name item, is a string that is equivalent to a “path-segment” in URIs (excluding the use of “.” 

and “..”). The concatenation of the prefix, with the namespace and the Name, creates an identifier of 

a Concept, or a Fragment. As an example, if for the namespace the string “www.di.fct.unl.pt” is 

chosen, and the Name for the Concept is “DataModel”, the MRI of this Concept would be:  

mdr://www.di.fct.unl.pt/DataModel 

A Concept and a Fragment cannot have an equal MRI identifier, although there’s no risk of 

collision due to the fact that Fragment and Concept MRIs are used in different contexts, but because 

the MRI is a unique identifier, it’s not possible for Fragments and Concepts to share the same MRI. A 

Concept/Fragment MRI may optionally have a Version item and, as the name implies, it’s a positive 

integer that explicitly specifies the version of the Concept/Fragment. 



 

 57 

 

Using the previous MRI example, version two of the “DataModel” Concept would have the following 

MRI. 

mdr://www.di.fct.unl.pt/DataModel&2 

4.1.1. Instance Identification 

The identifier of an Instance is a MRI based on the MRI of its parent Concept, requiring the use of 

another “path-segment” that identifies the Instance (this is the InstanceName item of the MRI 

syntax). As an example, using the previous Concept MRI, if the Instance would have the string 

“SRTA”1 as its name, the final MRI identifying that Instance would be: 

mdr://www.di.fct.unl.pt/DataModel&2/SRTA 

Instances have versions and when one needs to identify a particular Instance version, the 

InstanceVersion item of the MRI syntax is used (again, a positive integer), so the MRI of version one 

of the previous example is like the following: 

mdr://www.di.fct.unl.pt/DataModel&2/SRTA&1 

The last item in the MRI syntax is the Query. This element consists of a XPath that can locate a 

part of the content of an Instance; not every XPath can be used, because since we’re aiming to 

maintain URI syntax compatibility, only a XPath that does not break that compatibility can be used. 

This item enables to create relations with parts of Instances and if the Instance with the previous MRI 

would have a root element named “srta” and a child element with name “identifier”, a MRI could be 

built like this: 

mdr://www.di.fct.un.pt/DataModel&2/SRTA&1?srta/identifier/text() 

That MRI identifies the Instance and points to a specific part of its content. The use of both 

Version and InstanceVersion is required, but a “virtual” MRI of an Instance without these items can 

be supplied to the repository, which in turn will look for the last version of each of those items and 

assign their values to the MRI, completing it. This is the mechanism that allows referring to the last 

version of a given Instance, Concept or Fragment. 

4.2. Concept & Fragment Definition 

Concepts and Fragments are part of the M2 layer of the Information Model, as such they define 

the structure of Instances in the M1 layer and, since XML was chosen as the mechanism to represent 

                                                      
1 SRTA is an acronym for Sistema de Recepção de Trabalhos dos Alunos, a project developed by the author of this thesis. 



 

 58 

Instances, XML Schema was the choice to define a vocabulary. However, Concepts and Fragments 

have several properties besides defining the vocab

XML language was specially created that allows 

Concept/Fragment, as well other features such as Schematron validations, relations, etc.

will present the XML language and provide examples.

The XML language for defining Fragments 

Concepts and, as such, will be presented first

noted. 

4.2.1. Fragment Definit

A Fragment, as described in chapter three, in the Information Model, is a reusable item that 

defines a XML Schema structure, along with XSLT and metadata about itself. A Fragment definition 

also includes the values required to build 

in Figure 4.1. 

A Fragment is defined with a root element named 

Structure element (where the XML Schema vocabulary will be defined), a 

where XSLT templates can be added

Fragment can be stored. Of all these elements, only the 

definition is required to have two attributes, the 

two attributes will be used to build the Fragment’s MRI. The 

“namespace” element in the MRI syntax

attribute, which is equivalent to the “Name” 

the MRI of the Fragment is built as 

Fragment is depicted in Figure 4.

 

Instances, XML Schema was the choice to define a vocabulary. However, Concepts and Fragments 

have several properties besides defining the vocabulary for Instances. To deal with this situation a 

was specially created that allows making the specification of the vocabulary for a 

, as well other features such as Schematron validations, relations, etc.

esent the XML language and provide examples. 

language for defining Fragments includes a sub-set of the language used to define 

, as such, will be presented first; the parts of the language that are common will be 

Fragment Definition Language 

A Fragment, as described in chapter three, in the Information Model, is a reusable item that 

defines a XML Schema structure, along with XSLT and metadata about itself. A Fragment definition 

d to build its identifier. The main structure of a Fragment is depicted 

is defined with a root element named Fragment and has three child element

element (where the XML Schema vocabulary will be defined), a XSLList

where XSLT templates can be added, a ConstAnotations element where metadata about the 

Fragment can be stored. Of all these elements, only the Structure element is required. The Fragment 

definition is required to have two attributes, the namespace attribute and the 

two attributes will be used to build the Fragment’s MRI. The namespace attribute is equivalent to the 

in the MRI syntax, seen in the previous subchapter, as well as the 

hich is equivalent to the “Name” element in the MRI syntax. With those two attributes, 

the MRI of the Fragment is built as mdr://namespace/name.  An example XML definition of a 

.2. 

Figure 4.1 Fragment main structure 

Instances, XML Schema was the choice to define a vocabulary. However, Concepts and Fragments 

ulary for Instances. To deal with this situation a 

specification of the vocabulary for a 

, as well other features such as Schematron validations, relations, etc. This section 

set of the language used to define 

; the parts of the language that are common will be 

A Fragment, as described in chapter three, in the Information Model, is a reusable item that 

defines a XML Schema structure, along with XSLT and metadata about itself. A Fragment definition 

ifier. The main structure of a Fragment is depicted 

and has three child elements; a 

XSLList element, which is 

element where metadata about the 

element is required. The Fragment 

attribute and the name attribute. These 

attribute is equivalent to the 

previous subchapter, as well as the name 

the MRI syntax. With those two attributes, 

An example XML definition of a 

 



 

The structure of the XML vocabulary can be defined using one of two methods:

• Embedded XML Schema 

• Composition of existing Fragments

Embedding XML Schema code in the Fragment 

already existing XML Schema element 

other Fragments/Concepts can reuse it. There are no restrictions to the type of XML Schema used in 

Embedded Mode, so even includes and imports can 

embedded schema is placed inside the 

element). 

The second, and last, method for defining the XML Structure is the 

Composition Mode is a way of composing (hence, the name) a XML Schema using already existing 

parts. The result of a composition

name, which holds a sequence/choice of XML Schema elements

attributes, which may be references to already existing attributes)

element of the Structure element with the name 

Figure 4

The structure of the XML vocabulary can be defined using one of two methods:

Embedded XML Schema (Embedded Mode) 

Composition of existing Fragments (Composition Mode) 

Embedding XML Schema code in the Fragment definition is a simple way to reuse a 

element (for example, a file that is included by other schemas) so that 

other Fragments/Concepts can reuse it. There are no restrictions to the type of XML Schema used in 

Embedded Mode, so even includes and imports can be used, as is depicted in 

inside the GlobalEmbeddedSchema element, a

The second, and last, method for defining the XML Structure is the 

is a way of composing (hence, the name) a XML Schema using already existing 

composition is always a XML Schema element (complex type) with 

holds a sequence/choice of XML Schema elements (that el

attributes, which may be references to already existing attributes). A Composition is created as child 

element with the name GlobalComposition. It has an attribute 

Figure 4.2 Fragment definition 

4.3 Embedded XML Schema in a Fragment definition 

 

59 

 

The structure of the XML vocabulary can be defined using one of two methods: 

is a simple way to reuse a piece of 

(for example, a file that is included by other schemas) so that 

other Fragments/Concepts can reuse it. There are no restrictions to the type of XML Schema used in 

be used, as is depicted in Figure 4.3 (the 

, a child of the Structure 

The second, and last, method for defining the XML Structure is the Composition Mode. The 

is a way of composing (hence, the name) a XML Schema using already existing 

is always a XML Schema element (complex type) with a certain 

(that element can also have 

A Composition is created as child 

. It has an attribute rootElement, 

 

 

 



 

 60 

which is required, that it will wr

rootElement. If, for example, the 

value “Database” the resulting XML Schema, is depicted in 

A GlobalComposition element can optionally have two attributes, the 

targetNamespacePrefix attribute. These two attributes make it possible for the resulting XML schema 

of the composition, to be associated with a target namespace (as 

the use of these attributes will make the repository know that this Fragment has a target namespace 

and, as such, when other Fragment want

appropriate import (if these attributes are not used, then it’ll make an include) when converting that 

Fragment’s structure to XML Schema.

element, there’s the possibility to add XML Schema attributes to that element; an attribute for

GlobalComposition can be reused from other Fragments, or be created in the definition using actual 

XML Schema code, as seen in Figure 

Figure 4.4 GlobalComposition

Figure 

it will wrap its content inside a XML element with the name of

If, for example, the GlobalComposition element has the rootElement

value “Database” the resulting XML Schema, is depicted in Figure 4.4. 

element can optionally have two attributes, the targetNamespace

attribute. These two attributes make it possible for the resulting XML schema 

of the composition, to be associated with a target namespace (as every XML schema document can); 

the use of these attributes will make the repository know that this Fragment has a target namespace 

and, as such, when other Fragment wants to reuse this Fragment the repository will make the 

ributes are not used, then it’ll make an include) when converting that 

Fragment’s structure to XML Schema. Since a composition will be converted to a XML Schema 

element, there’s the possibility to add XML Schema attributes to that element; an attribute for

can be reused from other Fragments, or be created in the definition using actual 

Figure 4.5. 

GlobalComposition element converted to XML Schema

Figure 4.5 Global Composition with Attributes 

ap its content inside a XML element with the name of the value of 

rootElement attribute with 

targetNamespace and the 

attribute. These two attributes make it possible for the resulting XML schema 

every XML schema document can); 

the use of these attributes will make the repository know that this Fragment has a target namespace 

to reuse this Fragment the repository will make the 

ributes are not used, then it’ll make an include) when converting that 

Since a composition will be converted to a XML Schema 

element, there’s the possibility to add XML Schema attributes to that element; an attribute for a 

can be reused from other Fragments, or be created in the definition using actual 

 

element converted to XML Schema 

 



 

In the previous figure, there are three different ways of adding attributes to the 

GlobalComposition element; this is done creating a

attributes as children of that node. One way is to use XML Schema to define an attribute, as seen in 

Figure 4.5, situation “A”, this will be conver

generates its structure’s XML Schema representation. If there’s a Fragment that provides a set of 

reusable attributes, they can be referenced with an 

(referring to an individual attribute 

indicate the MRI of the Fragment, and the 

group) from that Fragment should be used (as seen in 

To build the content of the GlobalComposition

Sequence element and the Choice

Schema counterparts, the Sequence

a set of elements. Each of these elements can hold additional 

them (as do their XML Schema counterparts) or they can hold a 

element. The Composition element 

happens inside another Composition

element that enables the use of already existing Fra

Figure 4.6 is depicted the structure of a 

element). 

A Schema element can reference an already existing Fragment, or make a local inclusi

Schema code and use one XML schema element (or group) of that Fragment/code. The structure of 

the Schema element is depicted in the 

 

 

In the previous figure, there are three different ways of adding attributes to the 

; this is done creating an Attributes child element and defining the 

attributes as children of that node. One way is to use XML Schema to define an attribute, as seen in 

, situation “A”, this will be converted into a XML Schema attribute when the Fragment 

generates its structure’s XML Schema representation. If there’s a Fragment that provides a set of 

they can be referenced with an attributeFrag or attributeFragGroup

attribute or an attribute group, respectively) using the 

indicate the MRI of the Fragment, and the name attribute to select which attribute

group) from that Fragment should be used (as seen in Figure 4.5, situation “B” and “C”).

GlobalComposition element, there are two possible child elements, the 

Choice element. Each of them having the same meaning as their XML 

Sequence defines a sequence of elements and the 

Each of these elements can hold additional Sequence and 

them (as do their XML Schema counterparts) or they can hold a Composition

element behaves exactly the same as the GlobalComposition

happens inside another Composition (it also has the same structure). The 

element that enables the use of already existing Fragments, or to make local use of XML Schema. In 

is depicted the structure of a Sequence element (which is the same for the 

A Schema element can reference an already existing Fragment, or make a local inclusi

XML schema element (or group) of that Fragment/code. The structure of 

the Schema element is depicted in the Figure 4.7. 

 

Figure 4.6 Structure of a Sequence element 

 

61 

In the previous figure, there are three different ways of adding attributes to the 

child element and defining the 

attributes as children of that node. One way is to use XML Schema to define an attribute, as seen in 

ted into a XML Schema attribute when the Fragment 

generates its structure’s XML Schema representation. If there’s a Fragment that provides a set of 

attributeFragGroup element 

group, respectively) using the refFrag attribute to 

ibute to select which attribute (or attribute 

, situation “B” and “C”). 

element, there are two possible child elements, the 

. Each of them having the same meaning as their XML 

defines a sequence of elements and the Choice a choice between 

and Choice elements inside 

Composition element or a Schema 

GlobalComposition, but only 

. The Schema element is the 

gments, or to make local use of XML Schema. In 

element (which is the same for the Choice 

A Schema element can reference an already existing Fragment, or make a local inclusion of XML 

XML schema element (or group) of that Fragment/code. The structure of 



 

 62 

If the user defining the Fragment structure whish

then it must do the following: Create the 

content with a valid MRI of an existing Fragment, then it must use the 

its value with the name of an element that exists in the target Fragment and set the 

“element”; if the user wants to use a XML Schema group element, then it must set the name of the 

group and set the type attribute to “group”. The 

Schema, and encloses the minOccurs

element in a Sequence/Choice. Figure 

that makes references to other Fragments, using the previously described 

element and the final XML schema that is generated by the repository from the definition. In light 

blue, in the definition, the rootElement

Schema; since the definition uses the 

the target namespace declaration also. The use of the 

generates a XML Schema sequence element, and the 

group elements in a Fragment with MRI 

into group references in the XML schema. It can be concluded that the Fragment that is refer

has a target namespace because the repository automatically inserted the 

element with the corresponding namespace and the references to the group element have the 

“mdr:” prefix (which is the prefix that Fragment uses for its target 

 

If the user defining the Fragment structure whishes to use one element from an existing Fragment 

then it must do the following: Create the Reference element under the Schema

content with a valid MRI of an existing Fragment, then it must use the rootElement

e with the name of an element that exists in the target Fragment and set the 

“element”; if the user wants to use a XML Schema group element, then it must set the name of the 

attribute to “group”. The occurs attribute group is the same found in XML 

minOccurs and maxOccurs attribute, which control the cardinality of that 

Figure 4.8 depicts the correspondence between a Fragment definition 

at makes references to other Fragments, using the previously described 

element and the final XML schema that is generated by the repository from the definition. In light 

rootElement attribute value, will be the name of the element in the XML 

Schema; since the definition uses the targetNamespace (green) attribute, the final XML schema has 

the target namespace declaration also. The use of the Sequence element in the definition (purple)

ence element, and the Schema elements in the definition refer

group elements in a Fragment with MRI – mdr://lol.fct.unl.pt/baseMdr, which in turn are converted 

into group references in the XML schema. It can be concluded that the Fragment that is refer

has a target namespace because the repository automatically inserted the 

element with the corresponding namespace and the references to the group element have the 

“mdr:” prefix (which is the prefix that Fragment uses for its target namespace)

Figure 4.7 Structure of the Schema element 

 

es to use one element from an existing Fragment 

Schema element and fill the 

rootElement attribute and fill 

e with the name of an element that exists in the target Fragment and set the type attribute to 

“element”; if the user wants to use a XML Schema group element, then it must set the name of the 

e group is the same found in XML 

attribute, which control the cardinality of that 

depicts the correspondence between a Fragment definition 

at makes references to other Fragments, using the previously described GlobalComposition 

element and the final XML schema that is generated by the repository from the definition. In light 

e name of the element in the XML 

(green) attribute, the final XML schema has 

element in the definition (purple) 

elements in the definition refers to 

mdr://lol.fct.unl.pt/baseMdr, which in turn are converted 

into group references in the XML schema. It can be concluded that the Fragment that is referenced 

has a target namespace because the repository automatically inserted the import XML Schema 

element with the corresponding namespace and the references to the group element have the 

namespace) 

 



 

 

It’s possible to make local use of XML Schema, in the reference element, when there is no 

Fragment that has the needed structure. Instead of using the 

Schema element, a LocalEmbeddedSchema

XML Schema code can be used, although some restrictions apply, such as the impossibility to use 

import/includes or to use target namespaces. 

A Fragment can have metadata about it

pairs. If a description of a Fragment is desired, a pair of Key (with the content, “Description”) and 

Value (with the content of the description) may be created. In th

are created under the ConstAnnotations

of name Pair, which have two children: An element 

the use of these elements. 

Figure 4.9 Use of local embedded XML schema in a Fragment definition

Figure 4.8 Correspondence of a Fragment def

It’s possible to make local use of XML Schema, in the reference element, when there is no 

Fragment that has the needed structure. Instead of using the Reference element, as a child of the 

LocalEmbeddedSchema element can be used. As the content

XML Schema code can be used, although some restrictions apply, such as the impossibility to use 

use target namespaces. Figure 4.9 provides an example of this situation

ment can have metadata about itself embedded in its definition in the form of Key

pairs. If a description of a Fragment is desired, a pair of Key (with the content, “Description”) and 

Value (with the content of the description) may be created. In the Fragment definition, these pairs 

ConstAnnotations element (a child of the root Fragment

, which have two children: An element Key and an element Value

Use of local embedded XML schema in a Fragment definition

Correspondence of a Fragment definition and XML Schema

 

63 

It’s possible to make local use of XML Schema, in the reference element, when there is no 

element, as a child of the 

the content of that element, 

XML Schema code can be used, although some restrictions apply, such as the impossibility to use 

provides an example of this situation. 

definition in the form of Key-Value 

pairs. If a description of a Fragment is desired, a pair of Key (with the content, “Description”) and 

e Fragment definition, these pairs 

Fragment element) as elements 

Value. Figure 4.10 depicts 

 

Use of local embedded XML schema in a Fragment definition 

 

inition and XML Schema 



 

 64 

The last item in a Fragment definition

them (for Concepts to reuse, which will be described further in subchapter 

is done through this element. The 

them having the structure depicted in 

 

Each element must have a name

in chapter 4.5, but essentially has to do with reusability. The 

XSL inside the Fragment and the 

ConstAnnotations element is a reuse of the previously described element, and is used to add 

metadata about the specific template. Finally, the 

code must follow a set of rules. The design of 

mind they are designed to process elements of that Fragment

composition by other Fragments or Concepts

structure because in each of the Fragments/Concepts that reuse this Fragment may 

different locations, therefore no

(i.e the match attribute must always be relative)

use is depicted (featuring real XSLT code to generate HTML).

Figure 

The last item in a Fragment definition is XSLList. Fragment can have XSL templates associated to 

them (for Concepts to reuse, which will be described further in subchapter 

is done through this element. The XSLList element can have a sequence of XSL

them having the structure depicted in Figure 4.11. 

name attribute and a type attribute, the reason for this will be explained 

, but essentially has to do with reusability. The name attribute is an identifier for the 

XSL inside the Fragment and the type attribute defines a category for th

element is a reuse of the previously described element, and is used to add 

metadata about the specific template. Finally, the XSLCode element can hold XSLT

must follow a set of rules. The design of every xsl:template element must be made

mind they are designed to process elements of that Fragment and since Fragments can be reused in a 

composition by other Fragments or Concepts, the XSLT templates cannot be bound to a specific 

of the Fragments/Concepts that reuse this Fragment may 

no template can have a match attribute that starts 

attribute must always be relative). In Figure 4.12 an example of the 

use is depicted (featuring real XSLT code to generate HTML). 

Figure 4.10 Use of Constant Annotation in Fragment definitio

 

Figure 4.11 Structure of a XSL element 

 

Fragment can have XSL templates associated to 

them (for Concepts to reuse, which will be described further in subchapter 4.5) and that association 

XSL elements with each of 

the reason for this will be explained 

attribute is an identifier for the 

the XSLT templates. The 

element is a reuse of the previously described element, and is used to add 

element can hold XSLT code, but that 

element must be made bearing in 

since Fragments can be reused in a 

the XSLT templates cannot be bound to a specific 

of the Fragments/Concepts that reuse this Fragment may be reused in 

attribute that starts with ‘/’ or with ‘//’ 

an example of the XSLCode element 

 

Use of Constant Annotation in Fragment definition 



 

The use of XSLT templates in Fragment will be further explained in chapter 

Transforms are introduced.  

4.2.2. Concept Definition Language

A Concept is the item where the definition of the structure of XML files in the repository (known as 

Instances) is declared, as well 

repository. A Concept can define the following list of properties

• Instance Identification 

• Instance Structure  

• Schematron validations

• XSLT 

• Relations 

• Metadata about the Concept

• Metadata about the Concept’s Instances

The Concept’s definition language has a root element 

the name attribute and the namespace

definition; to identify the Concept and are used to build the MRI of the Concept. All of t

of the Concept are defined with child elements of the 

the structure of a Concept. 

 

 

The use of XSLT templates in Fragment will be further explained in chapter 

Concept Definition Language 

A Concept is the item where the definition of the structure of XML files in the repository (known as 

, as well as several other properties regarding features provided by the 

A Concept can define the following list of properties (bold items are required)

 

Schematron validations 

Metadata about the Concept 

Metadata about the Concept’s Instances 

language has a root element Concept that has two 

namespace attribute, which have the same meaning as in the Fragment 

to identify the Concept and are used to build the MRI of the Concept. All of t

of the Concept are defined with child elements of the Concept element. In 

Figure 4.12 XSL code used in element XSL 

 

65 

 

The use of XSLT templates in Fragment will be further explained in chapter 4.5, where Generic 

A Concept is the item where the definition of the structure of XML files in the repository (known as 

several other properties regarding features provided by the 

(bold items are required). 

that has two required attributes, 

attribute, which have the same meaning as in the Fragment 

to identify the Concept and are used to build the MRI of the Concept. All of the properties 

In Figure 4.13 it’s depicted 

 



 

 66 

Each of the elements in the previous figure allows defining t

described in the following paragraphs.

Instance Identification 

In chapter 4.1, the Metadata Repository Identifier syntax featured an item named 

“InstanceName”. That item is the identifie

Concept, i.e. every Instance of that Concept has a different “InstanceNam

There are two ways of retrieving that identifier: 

content of the Instance and uses it as the “InstanceName”, the other is letting the Concept generate 

a unique identifier for each Instance (using a sequential counter). For example, if a particular Instance 

described a certain automobile brand, the

are no two brands with the same name). The

XPath that will be applied to Instances to retrieve a name/expression

identifier. Absence of this element in a C

sequential counter, will generate identifiers for Instances automatically

in Figure 4.14. 

Figure 

Each of the elements in the previous figure allows defining the properties listed before, 

described in the following paragraphs. 

, the Metadata Repository Identifier syntax featured an item named 

“InstanceName”. That item is the identifier of that Instance, among the other Instances of the same 

Concept, i.e. every Instance of that Concept has a different “InstanceName” component 

There are two ways of retrieving that identifier: one is using a XPath that retrieves a small part

content of the Instance and uses it as the “InstanceName”, the other is letting the Concept generate 

a unique identifier for each Instance (using a sequential counter). For example, if a particular Instance 

brand, the name of the brand could be used as an identifier (as there 

are no two brands with the same name). The InstanceIdentification element

ath that will be applied to Instances to retrieve a name/expression, that will be used as an 

Absence of this element in a Concept definition means that the repository, using the 

sequential counter, will generate identifiers for Instances automatically. The XML syntax is 

Figure 4.13 Generic Structure of a Concept 

Figure 4.14 XML syntax for Instance Identification 

 

he properties listed before, and will be 

, the Metadata Repository Identifier syntax featured an item named 

r of that Instance, among the other Instances of the same 

e” component in their MRI. 

ne is using a XPath that retrieves a small part of the 

content of the Instance and uses it as the “InstanceName”, the other is letting the Concept generate 

a unique identifier for each Instance (using a sequential counter). For example, if a particular Instance 

name of the brand could be used as an identifier (as there 

element allows users to define a 

, that will be used as an 

the repository, using the 

. The XML syntax is depicted 

 

 



 

The XPath can contain namespace

on the Instance where this XPath will be evaluated, so that the XPath can be correctly executed and 

return the expected value. However, if the Instance document makes use of a default 

any XPath that needs to access elements in the default namespace will fail

that namespace, hence the InstanceIdentification

situations with the syntax depicted in 

The NamespaceBinding element has two attributes, a 

are the components of any namespace (a prefix and a URI to map that prefix) and, as such, will be 

used to declare a namespace for 

that value may not contain characters that a

part of the MRI of the Instance and, as described earlier, MRIs 

Instance Structure 

A Concept is the only entity that can have Instances and it dictates the XML structure of those 

Instances. The XML language to define the structure of Instances is a super

Fragments to define their structure. The onl

defining the structure (besides the Composition and the Embedded Schema ones) of Instances. The 

third method is called “Reference” and it allows choosing the structure of Instances reusing the 

structure already defined by a single

The Reference element content is a single MRI of an existing Fragment in the repository, if the 

Fragment version is not specified the repository wi

structure to that version. 

 

Figure 4.15

Figure 4.16

amespace prefixes and the namespace mapping o

on the Instance where this XPath will be evaluated, so that the XPath can be correctly executed and 

However, if the Instance document makes use of a default 

any XPath that needs to access elements in the default namespace will fail 

InstanceIdentification element supports a namespace binding for such 

situations with the syntax depicted in Figure 4.15. 

element has two attributes, a prefix attribute and a 

are the components of any namespace (a prefix and a URI to map that prefix) and, as such, will be 

used to declare a namespace for the XPath execution. The XPath must return a 

characters that are invalid in a URI, because the retrieved value will be 

part of the MRI of the Instance and, as described earlier, MRIs are URI-compatible

A Concept is the only entity that can have Instances and it dictates the XML structure of those 

he XML language to define the structure of Instances is a super

Fragments to define their structure. The only difference in the language is that there’s a third way of 

defining the structure (besides the Composition and the Embedded Schema ones) of Instances. The 

third method is called “Reference” and it allows choosing the structure of Instances reusing the 

single Fragment and the syntax is depicted in Figur

element content is a single MRI of an existing Fragment in the repository, if the 

Fragment version is not specified the repository will find the last version and lock the Concept’s 

15 Instance Identification element with Namespace binding

16 Concept structure definition referencing a Fragment

 

67 

prefixes and the namespace mapping only needs to be declared 

on the Instance where this XPath will be evaluated, so that the XPath can be correctly executed and 

However, if the Instance document makes use of a default namespace, 

 if there’s no mapping to 

element supports a namespace binding for such 

 

attribute and a uri attribute, which 

are the components of any namespace (a prefix and a URI to map that prefix) and, as such, will be 

the XPath execution. The XPath must return a single text value, and 

invalid in a URI, because the retrieved value will be 

compatible. 

A Concept is the only entity that can have Instances and it dictates the XML structure of those 

he XML language to define the structure of Instances is a super-set of the one used by 

y difference in the language is that there’s a third way of 

defining the structure (besides the Composition and the Embedded Schema ones) of Instances. The 

third method is called “Reference” and it allows choosing the structure of Instances reusing the 

Figure 4.16. 

element content is a single MRI of an existing Fragment in the repository, if the 

version and lock the Concept’s 

 

Instance Identification element with Namespace binding 

 

Concept structure definition referencing a Fragment 



 

 68 

Schematron Validations 

Schematron is a very useful technology to make validations over XML documents, because it 

allows verifying certain restrictions that XML Schema cannot guaran

Schematron applied to Instances to assure extra validations, 

named SchematronList. A SchematronList

Schematron, which in turn will contain the 

The structure of a Schematron element is depicted in

A Schematron element, may contain actual 

EmbeddedSchematron element or it can 

content of the Reference element. Each 

already described ConstAnnotations

for some kinds of “special” Instances that can be used for 

“System Instances” are Schematron documents, which can be reused by Concepts to assure certain 

restrictions without having to include in every Concept the embedded 

Instances will be described in 4.5

both Reference and elements EmbeddedSchematron

Figure 

Schematron is a very useful technology to make validations over XML documents, because it 

allows verifying certain restrictions that XML Schema cannot guarantee. A Concept can also have 

applied to Instances to assure extra validations, creating a child of the root element

SchematronList element can have a sequence of children named 

, which in turn will contain the Schematron code, as depicted in Figure 4.17.

The structure of a Schematron element is depicted in Figure 4.18. 

element, may contain actual schematron code in 

or it can contain the MRI of a Schematron “System Instance” as the 

element. Each Schematron may also have metadata about itself using the 

ConstAnnotations element. The repository supports a notion of “System Instance

some kinds of “special” Instances that can be used for specific purposes

“System Instances” are Schematron documents, which can be reused by Concepts to assure certain 

restrictions without having to include in every Concept the embedded schematron code.

4.5. As an example, in Figure 4.20 and Figure 4.

EmbeddedSchematron, respectively. 

 

Figure 4.17 Schematron list syntax 

Figure 4.18 Structure of the Schematron element 

Schematron is a very useful technology to make validations over XML documents, because it 

tee. A Concept can also have 

creating a child of the root element 

element can have a sequence of children named 

Figure 4.17. 

 

schematron code in the content of the 

chematron “System Instance” as the 

may also have metadata about itself using the 

The repository supports a notion of “System Instances” 

purposes. One kind of those 

“System Instances” are Schematron documents, which can be reused by Concepts to assure certain 

schematron code. System 

.19 is depicted the use of 

 



 

XSLT 

Instances in the repository are XML files that obey the structure defined by their Concept and XSLT 

is one of the most popular technologies to perform transformations over XML. As such, it makes 

sense to associate XSLTs that can 

XSLTs (in the form of “System Instances”) to make that processing. The 

means to associate XSLTs to Concepts. It has a similar 

having multiple XSL child elements where 

reference to an already existing XSLT

ConstAnnotations element. Since severa

name attribute, that is required and will be used to invoke the XSLT for processing.

depicts the use of the XSLList element.

Figure 

Figure 4.19 Schematron element with embedded Schematron code

Instances in the repository are XML files that obey the structure defined by their Concept and XSLT 

is one of the most popular technologies to perform transformations over XML. As such, it makes 

XSLTs that can process Instances of that Concept, or to reuse already existing 

XSLTs (in the form of “System Instances”) to make that processing. The XSLList

s to Concepts. It has a similar structure to the Schem

elements where the XSLT can be defined (using embedded XSLT code, 

an already existing XSLT), and define annotations for each XSLT, using the already known 

Since several XSLTs can be associated to a Concept

attribute, that is required and will be used to invoke the XSLT for processing.

element. 

Figure 4.20 Schematron element with reference 

Schematron element with embedded Schematron code

 

69 

 

Instances in the repository are XML files that obey the structure defined by their Concept and XSLT 

is one of the most popular technologies to perform transformations over XML. As such, it makes 

process Instances of that Concept, or to reuse already existing 

XSLList element provides the 

SchematronList element, 

mbedded XSLT code, or a 

, using the already known 

l XSLTs can be associated to a Concept, every XSLT has a 

attribute, that is required and will be used to invoke the XSLT for processing. Figure 4.21 

 

 

Schematron element with embedded Schematron code 



 

 70 

Relations 

Instances can have relations with other Instance

to another is done at the Concept level, using the XML definition language. Each Concept can define a 

set of allowed relations, choosing the valid targets, th

rules for automatic relations between Instances. This is done using the 

have a set of Relation child elements where each relation will actually be specified.

Each relation has the following properties (each property translates to a child element of 

• Targets (required) 

• Cardinality (optional) 

• Automatic Relations through Content

• Automatic Relations through MRI 

Fig

Figure 

nstances can have relations with other Instances and the definition of which Instances can relate 

to another is done at the Concept level, using the XML definition language. Each Concept can define a 

set of allowed relations, choosing the valid targets, the cardinality of the relations and can create 

rules for automatic relations between Instances. This is done using the Relations

child elements where each relation will actually be specified.

following properties (each property translates to a child element of 

Automatic Relations through Content (optional) 

Automatic Relations through MRI (optional) 

Figure 4.21 XSLList element syntax and usage 

 

Figure 4.22 Syntax of the Relations element 

 

and the definition of which Instances can relate 

to another is done at the Concept level, using the XML definition language. Each Concept can define a 

e cardinality of the relations and can create 

Relations element, which can 

child elements where each relation will actually be specified. 

following properties (each property translates to a child element of Relation) 

 



 

The general syntax of a Relations

The Targets element is where the valid Concept targets are defined, the presence of a Conce

the list of valid targets means that an Instance of the Concept where the relation is being defined, 

can relate to that Concept. Relations have a white

relate to a Concept that is explicitly declared as a valid target. For the definition of the valid targets a 

list of MRIs can be enumerated, like in 

The Targets element can also have a child element named 

Concepts based on the result of the XQuery

The Cardinality element allows controlling the cardinality of the relation

minimum and maximum number of relations with Instances of those Concepts declared in the 

Targets element. If the cardinality 

one relation with an Instance of each of the valid target Concepts. The syntax fo

element is depicted Figure 4.24. 

Both attributes are optional and their absence means that there is no maximum 

cardinality. If the max attribute is used, then the maximum cardi

same is true if the min attribute is used (for the minimum cardinality)

For each Relation defined, “automatic” relations ba

configured, as stated in chapter 3.3

the content in two Instances, that content will be compared and if it’s equal

Figure 

Relations element is depicted in Figure 4.22. 

element is where the valid Concept targets are defined, the presence of a Conce

means that an Instance of the Concept where the relation is being defined, 

to that Concept. Relations have a white-list approach; Instances of a Concept can only 

relate to a Concept that is explicitly declared as a valid target. For the definition of the valid targets a 

list of MRIs can be enumerated, like in Figure 4.23. 

element can also have a child element named XQuery, which selects a number of 

result of the XQuery. 

element allows controlling the cardinality of the relation

aximum number of relations with Instances of those Concepts declared in the 

ardinality is set with a maximum value of one, any Instance can only have 

one relation with an Instance of each of the valid target Concepts. The syntax fo

 

Both attributes are optional and their absence means that there is no maximum 

attribute is used, then the maximum cardinality restriction comes in effect, the 

attribute is used (for the minimum cardinality). 

For each Relation defined, “automatic” relations based on the content of Instances

3.3. These automatic relations based on content rely on XPath to find 

the content in two Instances, that content will be compared and if it’s equal

 

Figure 4.24 Syntax of the Cardinality element 

Figure 4.23 List of valid target Concepts for a relation 

 

71 

element is where the valid Concept targets are defined, the presence of a Concept in 

means that an Instance of the Concept where the relation is being defined, 

list approach; Instances of a Concept can only 

relate to a Concept that is explicitly declared as a valid target. For the definition of the valid targets a 

, which selects a number of 

element allows controlling the cardinality of the relation by establishing a 

aximum number of relations with Instances of those Concepts declared in the 

, any Instance can only have 

one relation with an Instance of each of the valid target Concepts. The syntax for the Cardinality 

 

Both attributes are optional and their absence means that there is no maximum or minimum 

nality restriction comes in effect, the 

sed on the content of Instances can be 

. These automatic relations based on content rely on XPath to find 

the content in two Instances, that content will be compared and if it’s equal, a relation is created 

 



 

 72 

without user intervention. There are also automatic relations based on MRIs f

of Instances, which is an approach useful in a context where the production of metadata in an 

organization knows the repository and can take advantage of this feature; for situations where 

external metadata must be imported from a c

content based relations are more appropriate. The first kind of automatic relation to be described is 

the content based one. This kind of relations, has five 

elements of the AutoRelContent 

• Target Match (required) 

• LocalInstanceXPath (required)

• RemoteInstanceXPath (required)

• Behavior (required) 

• Annotations (optional) 

The automatic content relation is declared using the 

declared for each relation) and each

element of that element, as depicted 

The TargetMatch element is an element that 

whom this Concept will have these automatic relations (the list of Concepts must be a sub

list of targets defined in the Target

enumeration, as depicted Figure 

Figure 

Figure 4.26 Definition of targets for the automatic relation based on content

There are also automatic relations based on MRIs f

of Instances, which is an approach useful in a context where the production of metadata in an 

organization knows the repository and can take advantage of this feature; for situations where 

external metadata must be imported from a context that does not contemplate the repository, the 

content based relations are more appropriate. The first kind of automatic relation to be described is 

This kind of relations, has five properties (that are converted to child 

 element) that can be specified: 

 

(required) 

(required) 

he automatic content relation is declared using the AutoRelContent e

declared for each relation) and each of the previously mentioned properties represent a child 

element of that element, as depicted Figure 4.25. 

ent is an element that allows choosing the list of target Concepts 

will have these automatic relations (the list of Concepts must be a sub

Targets element of the relation). The list constitu

Figure 4.26. 

 

Figure 4.25 Automatic Relation based on content syntax 

Definition of targets for the automatic relation based on content

There are also automatic relations based on MRIs found inside the content 

of Instances, which is an approach useful in a context where the production of metadata in an 

organization knows the repository and can take advantage of this feature; for situations where 

ontext that does not contemplate the repository, the 

content based relations are more appropriate. The first kind of automatic relation to be described is 

(that are converted to child 

element (several can be 

the previously mentioned properties represent a child 

t of target Concepts with 

will have these automatic relations (the list of Concepts must be a sub-set of the 

. The list constitution is made by 

 

Definition of targets for the automatic relation based on content 



 

 

The LocalInstanceXPath element is where the X

Concept being defined (hereafter referred to as “local Instance”)

other Concepts Instances. If the local Instance has a default namespace, the 

support for the definition of a namespace mapping, to enable the XPath to return results

of the LocalInstanceXPath element is depicted in 

The RemoteInstanceXPath element 

Instances of the Concepts in the list of targets for the automatic relations. All Instanc

target Concept will have this XPath executed over their content

Instance XPath result, the relation is created. The syntax is very similar to the 

element and is depicted in Figure 

The behavior of these automatically created relations

Instance of the relation, the relation can behave in a predefined way)

element, where one can choose if the relation is permanent

even if there’s some change in the target Instance. This is done using the syntax in 

Figure 

Figure 

element is where the XPath (XPath 2.0) to be applied to

(hereafter referred to as “local Instance”), in search for co

If the local Instance has a default namespace, the 

support for the definition of a namespace mapping, to enable the XPath to return results

element is depicted in Figure 4.27 (using the optional namespace binding)

element is used to define the XPath (XPath 2.0) to be applied to 

Instances of the Concepts in the list of targets for the automatic relations. All Instanc

ath executed over their content and if the result is equal to the local 

, the relation is created. The syntax is very similar to the 

Figure 4.28. 

automatically created relations (when there’s a change in the target 

, the relation can behave in a predefined way) is controlled in the 

, where one can choose if the relation is permanent, i.e. the relation is always maintained 

even if there’s some change in the target Instance. This is done using the syntax in 

Figure 4.29 Syntax of the behavior of a relation 

Figure 4.27 Usage of the LocalInstanceXPath element 

Figure 4.28 RemoteInstanceXPath element syntax 

 

73 

to be applied to an Instance of the 

, in search for content that is a key in 

If the local Instance has a default namespace, the LocalXPath element has 

support for the definition of a namespace mapping, to enable the XPath to return results. The usage 

(using the optional namespace binding). 

is used to define the XPath (XPath 2.0) to be applied to 

Instances of the Concepts in the list of targets for the automatic relations. All Instances of each valid 

and if the result is equal to the local 

, the relation is created. The syntax is very similar to the LocalInstanceXPath 

there’s a change in the target 

is controlled in the Behavior 

e relation is always maintained 

even if there’s some change in the target Instance. This is done using the syntax in Figure 4.29. 

 

 

 

 



 

 74 

In case the user wants a dynamic relation, then he can choose the 

choose if changes in the target Instance break the relation, or if changes in target Instance must be 

prevented (and that change blocked)

content of the original Instance can 

possible to find the content it represents. 

the elements position and update w

was initially the responsible for creating the relation. Any other 

impossible and the repository will not support the update of the local Instance. The choice of each 

behavior is done using the syntax in 

figure) 

Each automatic relation defined, can b

about the relation based on constant values and/or content found on Instances.

way annotations are defined for other elements, but since these can be based on content, now both 

Key and Value elements must have a 

meaning it’s a constant value (a strin

These values will be stored in the repositories management structures, so that they can be queried. 

To perform these actions the InstanceAnnotations

4.31. 

Figure 4.31 Syntax for the creation of automatic annotations of relations

Figure 

In case the user wants a dynamic relation, then he can choose the Update

choose if changes in the target Instance break the relation, or if changes in target Instance must be 

prevented (and that change blocked) or if the content on the original Instance, must be updated. The 

content of the original Instance can only be updated if the LocalInstanceXPath

possible to find the content it represents. With a XPath like “/root/child/text()

the elements position and update with the content that was changed in the target Instance a

the responsible for creating the relation. Any other kind of XPath makes this situation 

impossible and the repository will not support the update of the local Instance. The choice of each 

behavior is done using the syntax in Figure 4.30 (choosing from one of three possibilities in the 

Each automatic relation defined, can be configured to generate automatic annotations

based on constant values and/or content found on Instances.

nnotations are defined for other elements, but since these can be based on content, now both 

must have a type attribute, which can have the value “constant” or “xpath”, 

t’s a constant value (a string) or a XPath to be applied over the Instance and return a value

be stored in the repositories management structures, so that they can be queried. 

InstanceAnnotations element is used, with the syntax depicted

Syntax for the creation of automatic annotations of relations

 

Figure 4.30 Syntax for the behavior (update) of a relation 

Update element and then 

choose if changes in the target Instance break the relation, or if changes in target Instance must be 

inal Instance, must be updated. The 

LocalInstanceXPath is such that it’s 

/root/child/text()” it’s possible to find 

ith the content that was changed in the target Instance and that 

XPath makes this situation 

impossible and the repository will not support the update of the local Instance. The choice of each 

(choosing from one of three possibilities in the 

automatic annotations (metadata) 

based on constant values and/or content found on Instances. It’s similar to the 

nnotations are defined for other elements, but since these can be based on content, now both 

attribute, which can have the value “constant” or “xpath”, 

or a XPath to be applied over the Instance and return a value. 

be stored in the repositories management structures, so that they can be queried. 

element is used, with the syntax depicted in Figure 

 

 

Syntax for the creation of automatic annotations of relations 



 

Automatic relations based on MRIs have an equal syntax, but don’t require the use of the 

LocaIInstanceXPath and RemoteInstanceXPath

named AutoRelMRI and has the structure depicted 

The structure is equal to the AutoRelContent

as can be concluded by comparing with the structure of the 

Metadata About the Concept 

The Concept definition can contain metadata about the Concept itself, such as descriptions or any 

other kind of information. That metadata is declared with the previously described element 

ConstAnnotations, declared as child of the root element 

value pairs and both of them have a content that’s a static value. An example of the syntax is 

depicted in Figure 4.34, in which the ann

Concept. 

Figur

Figure 

utomatic relations based on MRIs have an equal syntax, but don’t require the use of the 

RemoteInstanceXPath element. The element to define these relations is 

e structure depicted Figure 4.32. 

AutoRelContent element, except in the elements dealing with XPath, 

as can be concluded by comparing with the structure of the AutoRelContent in 

Concept definition can contain metadata about the Concept itself, such as descriptions or any 

other kind of information. That metadata is declared with the previously described element 

declared as child of the root element Concept; the metadata is in the form of key

value pairs and both of them have a content that’s a static value. An example of the syntax is 

, in which the annotations are used to add a name and a description to the 

Figure 4.33 Structure of the AutoRelContent element 

Figure 4.32 Structure of the AutoRelMRI element 

 

75 

utomatic relations based on MRIs have an equal syntax, but don’t require the use of the 

element. The element to define these relations is 

element, except in the elements dealing with XPath, 

in Figure 4.33. 

 

Concept definition can contain metadata about the Concept itself, such as descriptions or any 

other kind of information. That metadata is declared with the previously described element 

; the metadata is in the form of key-

value pairs and both of them have a content that’s a static value. An example of the syntax is 

otations are used to add a name and a description to the 

 

 

 



 

 76 

Metadata about the Concept’s Instances

Whenever a new Instance of the Concept is inserted in the repository, metadata about that 

Instance can be created in an automatic way, using the 

was already described in the automatic relations paragraph an

where the content of each key/value can be a static value, or the result of a XPath, in this case the 

XPath is also applied over the content of the Instance. For an example of the syntax, please refer to 

Figure 4.31. 

For a full Fragment and Concept definition example, as well as the full XML Schema for the 

Fragment and Concept definition language, please check the annexes.

4.3. Metadata Validation and Integrity

Validation and Integrity are two of the major concerns in metadata management and, as such, 

they are present in both the metadata repository design and in most of its features. Validation is 

performed before insertion of any item and in case the validation fails, the insertion is aborted so 

that no invalid metadata is stored in the repository. Once the storage process is completed for any 

given item, the repository ensures that that item maintains its validity and integri

This chapter describes the validation and integrity checks made upon 

Instances. 

4.3.1. Fragment Validation & 

As discussed in the metadata 

to rules defined in the M3 layer and

a set of restrictions, such as the use of a 

identifier (MRI) of the Fragment. The first step in validating a 

definition, validating it against the XML Schema that defines the Fragment definition language. The 

next step is verifying if the value of the

repository’s list of valid names

namespace (unless a new version of the Fragment is being created, or if the current one is to be 

Figure 4

the Concept’s Instances 

Whenever a new Instance of the Concept is inserted in the repository, metadata about that 

Instance can be created in an automatic way, using the InstanceAnnotations

automatic relations paragraph and it basically create

where the content of each key/value can be a static value, or the result of a XPath, in this case the 

lied over the content of the Instance. For an example of the syntax, please refer to 

For a full Fragment and Concept definition example, as well as the full XML Schema for the 

Fragment and Concept definition language, please check the annexes.  

Metadata Validation and Integrity 

ity are two of the major concerns in metadata management and, as such, 

they are present in both the metadata repository design and in most of its features. Validation is 

any item and in case the validation fails, the insertion is aborted so 

that no invalid metadata is stored in the repository. Once the storage process is completed for any 

given item, the repository ensures that that item maintains its validity and integri

This chapter describes the validation and integrity checks made upon Concepts, Fragments and 

Fragment Validation & Integrity 

As discussed in the metadata Information Model, the M2 layer (Concepts & Fragments) is subject 

and a Fragment is defined using a special XML language that imposes 

a set of restrictions, such as the use of a namespace attribute and a name

identifier (MRI) of the Fragment. The first step in validating a Fragment is processing its XML 

definition, validating it against the XML Schema that defines the Fragment definition language. The 

value of the namespace attribute is a namespace present in the 

repository’s list of valid namespaces and if the name provided is a unique name within that 

namespace (unless a new version of the Fragment is being created, or if the current one is to be 

4.34 Syntax for constant annotations to the Concept 

Whenever a new Instance of the Concept is inserted in the repository, metadata about that 

nceAnnotations element. This element 

it basically creates key/value pairs 

where the content of each key/value can be a static value, or the result of a XPath, in this case the 

lied over the content of the Instance. For an example of the syntax, please refer to 

For a full Fragment and Concept definition example, as well as the full XML Schema for the 

ity are two of the major concerns in metadata management and, as such, 

they are present in both the metadata repository design and in most of its features. Validation is 

any item and in case the validation fails, the insertion is aborted so 

that no invalid metadata is stored in the repository. Once the storage process is completed for any 

given item, the repository ensures that that item maintains its validity and integrity through time. 

Concepts, Fragments and 

odel, the M2 layer (Concepts & Fragments) is subject 

a Fragment is defined using a special XML language that imposes 

name attribute to build the 

Fragment is processing its XML 

definition, validating it against the XML Schema that defines the Fragment definition language. The 

is a namespace present in the 

provided is a unique name within that 

namespace (unless a new version of the Fragment is being created, or if the current one is to be 

 

 



 

 77 

replaced). If the namespace exists and the name is different from other Fragments in that 

namespace, the repository will analyze the structure of the Fragment and check if all of the 

embedded XML Schema code is valid and if the referenced Fragments in the definition exist and the 

element inside them also exists. If there are included/imported schemas by the Fragment they are 

also checked to guarantee they are valid XML Schemas. If XSLT templates are declared in the 

definition of the Fragment, the repository will check if any template has a match attribute whose 

content has any of the forbidden values (as described in the Fragment definition language), if no 

problem is found the repository creates a management file with information about the Fragment and 

stores both of the files in their respective place (the storage model will be detailed in chapter five) 

and also updating the management file of every Fragment that is reused, this eases the process of 

removing/replacing a Fragment because if a Fragment is referenced by another, it cannot be 

removed/replaced until that relation is broken. This ensures integrity of Fragments, because if a 

Fragment A depends on Fragment B, B will never be removed. 

4.3.2. Concept Validation & Integrity 

Concepts are included in the M2 layer and, like Fragments, they are subject to the rules imposed 

by the definition language. Concepts must also declare a namespace and a name, that will be used to 

generate the Concept’s MRI, this means that the namespace must be present in the list of 

namespaces of the repository and the name must be unique within that namespace (unless a new 

version is being created or the Concept is being replaced). The next step is verifying if there’s a XPath 

declared to identify Instances and, if it is, the XPath is analyzed to see if it returns a single textual 

value as is required by the repository, in the case it does not conform with that requirement the 

insertion is aborted. Afterwards the structure of the Concept will be analyzed and if it only uses 

embedded XML schema, that schema will be checked against the XML Schema’s schema; if it uses a 

composition of Fragment’s structure and local embedded schema, the repository will check if the 

references to Fragments represent Fragments that are stored in the repository and will validate the 

embedded schema (if any of these steps fail, the insertion operation will be aborted). The Concept 

definition can include Schematron references (or embedded Schematron code) as well as XSLT 

references (or XLST code) and if any of these elements are present they will be validated against their 

respective XML Schemas. Validating the definition of relations includes verifying if all the chosen 

targets are Concepts stored in the repository, if the cardinality values are coherent (i.e. if the 

minimum value is smaller or equal than the maximum value) and if the XPaths declared in automatic 

relations are valid. All the rules for automatic creation of metadata about Instances that use XPath 

will also be validated. If all these steps are well succeeded, a management file is created and stored 

(along with the definition of the Concept) as well as a “compiled” XML Schema from the definition 

(i.e. a XML Schema is generated based on the structure declared in the definition language), to ease 

the validation of Instances. Every Fragment being used in the structure of the Concept will be 

updated to know this Concept is using it; this is used to ensure integrity, described in the next 

paragraph. 



 

 78 

To ensure Concept integrity each of the Fragments reused in its structure cannot be removed; to 

remove such a Fragment, every Concept and Fragment that reuses its structure would have to be 

removed first. The same is true for the Concepts that are targets of relations they to cannot be 

removed and to remove a Concept it’s required that it does not have any Instance (or that every 

Instance will be removed with the removal of the Concept, a situation only possible if the Concept’s 

Instances do not have Instances of other Concepts related with them).  

4.3.3. Instance Validation & Integrity 

An Instance, to be stored in the repository must be validated by its Concept’s XML Schema 

structure. The first step when storing an Instance is to check if its parent Concept exists (Instances 

must always provide the MRI of their parent Concept since there’s no possible way to extract that 

information from the XML document representing the Instance) and if it does, a compiled XML 

Schema of the Concept’s structure is generated (if it was never done before), featuring all the 

included/imported XML Schemas and every Fragment, and placed in a local directory to validate the 

Instance; if the parent Concept uses Schematron, the Instance is also validated against the 

Schematron file(s). Upon successful validation, a management file is created for the Instance and 

both of them are stored in the repository; if the parent Concept of the Instance declares automatic 

relations, the Instance’s content will be scanned and the relations may be created if matching values 

are found (either MRIs or content). If a MRI is found in the content of an Instance but it does not exist 

in the repository, the relation will not be created. To deal with cyclic references the “batch add” 

method must be used (batch add, deals with cyclic references by first adding all Instances in a first 

step and scanning for all relations in a second step when all Instances are already stored).  

4.3.4. Instance Relations, Creation & Validation 

Relations between Instances can be created in an automatic way, or by a manual procedure. A 

relation that is created by user intervention (from now on, referred to as a manual relation) is a 

persistent relation, i.e. the relation is maintained until it’s manually removed; even if the content of 

both the related Instances changes, or even their MRIs change, the relation is still valid. The other 

kind of relations is the automatic one, created in the act of Instance insertion (or if the definition of a 

Concept is updated with a new automatic relation and Instances are rescanned for relations). Every 

relation is kept in the management file of the Instance that relates to another, with several metadata 

about the relation, such as its behavior, the identifier of the target. On the other hand, every Instance 

that has an Instance that relates to it, has a reference on its management file as well, this enables to 

find out if any given Instance has Instances related to it and, as such, removal of an Instance can be 

prevented, preserving integrity of the relations. Automatic relations, however, may have distinct 

behaviors, as described earlier in chapter 4.2. There are four possible behaviors for automatically 

generated relations (in case the target Instance is updated/removed/replaced): 

• Generation of Arcs 



 

• Block Update 

• Break Relation 

• Update content 

The Generation of Arcs behavior basically means that the relation is created and can only be 

removed by manual intervention (or by removing the origin of the relation). If an Instance A is related 

to Instance B with a “Generation of Arcs” behavior, Instance B cannot be removed, until the relation 

is broken manually. If Instance A would be removed

behavior is essentially the same as creating a manual relation.

The Block Update behavior is a way to assure that 

Instance that’s the target of a relation, that attempt will be b

relation, the relation must first be removed and only then the target Instance can be 

updated/removed. 

The Break Relation behavior

relation is to be updated or removed, the update or remove operation can be executed and the 

relation will immediately be broken. If the user wants to recreate it, he will have to do it manually.

The Update Content behavior is a behavior that is not fully supported by the re

behavior would allow for an automatic update of the content of the Instance that is the origin of the 

relation. If a relation would be generated because the string “Scott” was present in Instance A and 

Instance B and at some point in time, I

with the “Tiger” string, the purpose of this behavior would be to replace the “Scott” in Instance A 

with “Tiger”. Since the way to find these values is with XPath, this behavior can only be assu

it’s not encouraged) if the XPaths used are extremely simple to analyze and from them a path can be 

determined, so that an update can be made on the Instance.

Figure 4.35 Behaviors of a relation in case of an update/removal of a target Instance

behavior basically means that the relation is created and can only be 

by manual intervention (or by removing the origin of the relation). If an Instance A is related 

to Instance B with a “Generation of Arcs” behavior, Instance B cannot be removed, until the relation 

is broken manually. If Instance A would be removed, the relation would 

behavior is essentially the same as creating a manual relation. 

behavior is a way to assure that if there’s an attempt to remove/replace an 

Instance that’s the target of a relation, that attempt will be blocked. To update the target of such a 

relation, the relation must first be removed and only then the target Instance can be 

behavior is a behavior that, in the situation where a target Instance of a 

pdated or removed, the update or remove operation can be executed and the 

relation will immediately be broken. If the user wants to recreate it, he will have to do it manually.

behavior is a behavior that is not fully supported by the re

would allow for an automatic update of the content of the Instance that is the origin of the 

If a relation would be generated because the string “Scott” was present in Instance A and 

Instance B and at some point in time, Instance B would be updated and the “Scott” string is replaced 

with the “Tiger” string, the purpose of this behavior would be to replace the “Scott” in Instance A 

with “Tiger”. Since the way to find these values is with XPath, this behavior can only be assu

it’s not encouraged) if the XPaths used are extremely simple to analyze and from them a path can be 

determined, so that an update can be made on the Instance. 

Behaviors of a relation in case of an update/removal of a target Instance

 

79 

behavior basically means that the relation is created and can only be 

by manual intervention (or by removing the origin of the relation). If an Instance A is related 

to Instance B with a “Generation of Arcs” behavior, Instance B cannot be removed, until the relation 

lation would also be removed. This 

if there’s an attempt to remove/replace an 

locked. To update the target of such a 

relation, the relation must first be removed and only then the target Instance can be 

is a behavior that, in the situation where a target Instance of a 

pdated or removed, the update or remove operation can be executed and the 

relation will immediately be broken. If the user wants to recreate it, he will have to do it manually. 

behavior is a behavior that is not fully supported by the repository. This 

would allow for an automatic update of the content of the Instance that is the origin of the 

If a relation would be generated because the string “Scott” was present in Instance A and 

nstance B would be updated and the “Scott” string is replaced 

with the “Tiger” string, the purpose of this behavior would be to replace the “Scott” in Instance A 

with “Tiger”. Since the way to find these values is with XPath, this behavior can only be assured (and 

it’s not encouraged) if the XPaths used are extremely simple to analyze and from them a path can be 

 

Behaviors of a relation in case of an update/removal of a target Instance 



 

 80 

Figure 4.35 summarizes the behaviors of a relation, in case there’

(update or remove). 

4.4. System Concepts and Instances

The Metadata Repository needs to deal with additional metadata information to control its 

operations and functionalities. Instead of using specific internal structures to dea

information for functionalities such as 

model is used. The flexibility provided by the Information Model, combined with the features 

provided by the metadata validation and in

metadata in the repository as 

repository and each MRI uses the “

Concepts and Instances from regular ones

 

4.5. Metadata Querying and 

Metadata querying allows the execution of XQuery expressions over the content of metadata 

stored in the database (Instances and Concepts), allowing to retrieve these resources, or part of 

them, using XPath and control structures to select the desired content and using the richness of 

XQuery to produce a result that can be a structured XML document or other formats 

text, HTML or SQL). The metadata querying output capabilities are d

Figure 

summarizes the behaviors of a relation, in case there’s a change in a target Instance 

System Concepts and Instances 

The Metadata Repository needs to deal with additional metadata information to control its 

Instead of using specific internal structures to dea

functionalities such as querying, transforming or validations the repository’s storage 

. The flexibility provided by the Information Model, combined with the features 

provided by the metadata validation and integration mechanisms allows saving this kind of technical 

metadata in the repository as System Concepts and System Instances 

repository and each MRI uses the “system.di.fct.unl.pt” namespace as a way of separating these 

Instances from regular ones. These are further presented in section 

Metadata Querying and Transforming 

Metadata querying allows the execution of XQuery expressions over the content of metadata 

ances and Concepts), allowing to retrieve these resources, or part of 

them, using XPath and control structures to select the desired content and using the richness of 

XQuery to produce a result that can be a structured XML document or other formats 

The metadata querying output capabilities are depicted in 

 

Figure 4.36 Metadata querying output capabilities 

s a change in a target Instance 

The Metadata Repository needs to deal with additional metadata information to control its 

Instead of using specific internal structures to deal with management 

or validations the repository’s storage 

. The flexibility provided by the Information Model, combined with the features 

saving this kind of technical 

 that are stored in the 

as a way of separating these 

These are further presented in section 4.5.  

Metadata querying allows the execution of XQuery expressions over the content of metadata 

ances and Concepts), allowing to retrieve these resources, or part of 

them, using XPath and control structures to select the desired content and using the richness of 

XQuery to produce a result that can be a structured XML document or other formats (such as plain 

epicted in Figure 4.36. 



 

Metadata Transforming allows the transformation of XML content, for example, the content of an 

Instance, or the result of a query

sheets. Since XSLT only allows XML content as

XML or to Instances stored in the repository. Transformations generally are used to output H

visualization or documentation, but can also be used to transform

another. There are two types of transformation

pipelines; every transformation can 

Fragments or a Generic XSLT that reuses templates from Fragments, each of them will be described 

in the following sections.  Figure 

 

4.5.1. XQuery 

Queries are executed in the context of the database environment and, to provide an abstraction 

of the storage model, several XQuery functions are provided in the form of a module that user

defined queries include to have access to some features, such

example, the headers of the functions that provide access to relations of Instances 

Figure 4.38. 

Figure 4.37 Me

Figure 4.

Metadata Transforming allows the transformation of XML content, for example, the content of an 

Instance, or the result of a query, into other formats such as XML, HTML or others

s XML content as input, they can only be applied to queries that return 

stored in the repository. Transformations generally are used to output H

, but can also be used to transform metadata from one standard to 

another. There are two types of transformations, single transformations and transformation 

pipelines; every transformation can be a single isolated XSLT, a XSLT that reuses templates from 

Fragments or a Generic XSLT that reuses templates from Fragments, each of them will be described 

Figure 4.37 depicts the repository’s transforming output capabilities

Queries are executed in the context of the database environment and, to provide an abstraction 

of the storage model, several XQuery functions are provided in the form of a module that user

defined queries include to have access to some features, such as the relations of an Instance. A

of the functions that provide access to relations of Instances 

Metadata repository transforming and output capabilities

.38 XQuery functions to access relations in instances

 

81 

Metadata Transforming allows the transformation of XML content, for example, the content of an 

to other formats such as XML, HTML or others, using XSLT style 

lied to queries that return 

stored in the repository. Transformations generally are used to output HTML as 

metadata from one standard to 

, single transformations and transformation 

a XSLT that reuses templates from 

Fragments or a Generic XSLT that reuses templates from Fragments, each of them will be described 

depicts the repository’s transforming output capabilities. 

Queries are executed in the context of the database environment and, to provide an abstraction 

of the storage model, several XQuery functions are provided in the form of a module that user-

as the relations of an Instance. As an 

of the functions that provide access to relations of Instances are depicted in 

 

tadata repository transforming and output capabilities 

 

XQuery functions to access relations in instances 



 

 82 

Using the repository’s web service interface any application can execute queries

specific method and using as a parameter a XQuery expression to execute. This, however, forces that 

every application must know how to build XQuery expressions; to allow for better separation of 

concerns and because the use of XQuery was a de

expressions to be later used by external applications. These XQuery ex

repository storage model, as Instances of a System Concept tha

invoking a specific method and using as a parameter the name of the query, instead of having to 

supply a XQuery expression. The result of a 

transformation pipeline, or be outputted as

can be grouped in categories; each category can have an unlimited number of queries and a category 

is saved in the repository as an Instance of a System Concept.

4.5.2. Transforms 

Transforms can be executed over the content of an Ins

described in the Concept definition language, Concepts can have XSLT style

definition that can be applied to the content 

Concept), these are stored along side 

be stored as Instances of a System Concept and be used by external applications using the web

service interface. Transforms can be associated to queries, so that the result of qu

passed to a transform (or a transform pipeline). Transform Pipelines are also stored as Instances of a 

System Concept and can also be associated to queries. The integrity and validation are assured by the 

Repository’s integrity and validation mechanisms (since it’s dealin

To promote reuse, Transforms can make use of templates associated to Fragments. These 

templates are meant to process only the structure of a Fragment (that may be reused by Concepts), 

but if a user is designing a XSLT to output a visualization in HTML of a given type of Instances, and all 

of them have a parent Concept that reuses a given Fragment, the user can include the templates 

associated to that Fragment to make an HTML visualization 

there’s a Fragment with MRI mdr://example.com/F1

depicted Figure 4.39. 

Figure 

Using the repository’s web service interface any application can execute queries

specific method and using as a parameter a XQuery expression to execute. This, however, forces that 

every application must know how to build XQuery expressions; to allow for better separation of 

concerns and because the use of XQuery was a design choice, the repository can store XQuery 

expressions to be later used by external applications. These XQuery expressions are stored using the 

repository storage model, as Instances of a System Concept that external applications can 

specific method and using as a parameter the name of the query, instead of having to 

XQuery expression. The result of a query can then be used to feed a transformation o

transformation pipeline, or be outputted as it is. To provide an extra degree of organization, queries 

can be grouped in categories; each category can have an unlimited number of queries and a category 

is saved in the repository as an Instance of a System Concept. 

Transforms can be executed over the content of an Instance or over the results of a query. As 

described in the Concept definition language, Concepts can have XSLT style-sheets embedded in their 

definition that can be applied to the content of their Instances (and only to Instances of that 

stored along side Concept management information. XSLT style

be stored as Instances of a System Concept and be used by external applications using the web

service interface. Transforms can be associated to queries, so that the result of qu

passed to a transform (or a transform pipeline). Transform Pipelines are also stored as Instances of a 

System Concept and can also be associated to queries. The integrity and validation are assured by the 

dation mechanisms (since it’s dealing with Concepts and Instances).

To promote reuse, Transforms can make use of templates associated to Fragments. These 

templates are meant to process only the structure of a Fragment (that may be reused by Concepts), 

if a user is designing a XSLT to output a visualization in HTML of a given type of Instances, and all 

of them have a parent Concept that reuses a given Fragment, the user can include the templates 

associated to that Fragment to make an HTML visualization of that structure. As an example,

mdr://example.com/F1, and it has a XSLT associated like 

Figure 4.39 Example XSLT association to a Fragment 

Using the repository’s web service interface any application can execute queries, by calling a 

specific method and using as a parameter a XQuery expression to execute. This, however, forces that 

every application must know how to build XQuery expressions; to allow for better separation of 

sign choice, the repository can store XQuery 

pressions are stored using the 

t external applications can access by 

specific method and using as a parameter the name of the query, instead of having to 

query can then be used to feed a transformation or a 

gree of organization, queries 

can be grouped in categories; each category can have an unlimited number of queries and a category 

tance or over the results of a query. As 

sheets embedded in their 

their Instances (and only to Instances of that 

Concept management information. XSLT style-sheets can also 

be stored as Instances of a System Concept and be used by external applications using the web 

service interface. Transforms can be associated to queries, so that the result of query can be directly 

passed to a transform (or a transform pipeline). Transform Pipelines are also stored as Instances of a 

System Concept and can also be associated to queries. The integrity and validation are assured by the 

g with Concepts and Instances). 

To promote reuse, Transforms can make use of templates associated to Fragments. These 

templates are meant to process only the structure of a Fragment (that may be reused by Concepts), 

if a user is designing a XSLT to output a visualization in HTML of a given type of Instances, and all 

of them have a parent Concept that reuses a given Fragment, the user can include the templates 

of that structure. As an example, consider 

, and it has a XSLT associated like the one 



 

A user defining a XSLT to process Instances that use this Fragments structure

Concepts reuses the Fragment structure) could include these templates in the XSLT, by using the 

following processing instruction in the XSLT code:

<?fragmentXSL mri=”mdr://example.com/F1” name=”Documentation”?>

When a Transform definition is processed, its content is scanned for processing instruction that 

follows this pattern. To be valid, the processing instruction must have the 

must be a valid Fragment MRI and the 

associated to a Fragment (it must match the 

definition, of the Fragment referenced in the processing instruction

XSLT look like the code in Figure 

It’s up to the user to build the XSLT in a way that the XSLT processor can reach the templates 

included with this method. If the templates are included by the XSLT and it does not have a set of 

templates that can make the processor reach the 

those templates. 

4.5.3. Generic Transforms

The Generic Transform is a notion in the repository to promote even further the reuse of existing 

code. If a user wants to build a generic visualization in HTML for 

generic XLST that matches any element and output a HTML representation of that element. However, 

if the Instance to which the Generic Transform would be applied has a parent Concept that reuses 

Fragments and those Fragments have associated to them a set of XSLT templates that know how to 

create a HTML visualization for the structure of their Fragment, it would be interesting to be able to 

“override” the Generic Transform generic templates with the specialized ones from the 

The problem with this, is that Fragments reused in Concepts can be included inside compositions

(described in the Concept & Fragment definition language) and those compositions create new 

elements that are not accounted for in the Fragment templ

Generic Transform to output the content without any processing

processor). Since the repository is aware of the structure of each Concept and can generate a set of 

Figure 

A user defining a XSLT to process Instances that use this Fragments structure

Concepts reuses the Fragment structure) could include these templates in the XSLT, by using the 

following processing instruction in the XSLT code: 

<?fragmentXSL mri=”mdr://example.com/F1” name=”Documentation”?>

ition is processed, its content is scanned for processing instruction that 

. To be valid, the processing instruction must have the mri

must be a valid Fragment MRI and the name attribute that must have as value, th

associated to a Fragment (it must match the name attribute of a XSL element in the Fragment 

referenced in the processing instruction). This would make an example 

Figure 4.40. 

It’s up to the user to build the XSLT in a way that the XSLT processor can reach the templates 

included with this method. If the templates are included by the XSLT and it does not have a set of 

templates that can make the processor reach the elements of the Fragment structure, it will not use 

Generic Transforms 

The Generic Transform is a notion in the repository to promote even further the reuse of existing 

If a user wants to build a generic visualization in HTML for all kinds of 

generic XLST that matches any element and output a HTML representation of that element. However, 

if the Instance to which the Generic Transform would be applied has a parent Concept that reuses 

s have associated to them a set of XSLT templates that know how to 

create a HTML visualization for the structure of their Fragment, it would be interesting to be able to 

“override” the Generic Transform generic templates with the specialized ones from the 

The problem with this, is that Fragments reused in Concepts can be included inside compositions

(described in the Concept & Fragment definition language) and those compositions create new 

elements that are not accounted for in the Fragment templates, causing the generic templates of the 

Generic Transform to output the content without any processing (the standard behavior of a XSLT 

repository is aware of the structure of each Concept and can generate a set of 

Figure 4.40 XSLT with reuse of Fragment templates 

 

83 

A user defining a XSLT to process Instances that use this Fragments structure (because their parent 

Concepts reuses the Fragment structure) could include these templates in the XSLT, by using the 

<?fragmentXSL mri=”mdr://example.com/F1” name=”Documentation”?> 

ition is processed, its content is scanned for processing instruction that 

mri attribute whose value 

attribute that must have as value, the name of a XSLT 

element in the Fragment 

This would make an example 

It’s up to the user to build the XSLT in a way that the XSLT processor can reach the templates 

included with this method. If the templates are included by the XSLT and it does not have a set of 

elements of the Fragment structure, it will not use 

The Generic Transform is a notion in the repository to promote even further the reuse of existing 

kinds of Instances he can make a 

generic XLST that matches any element and output a HTML representation of that element. However, 

if the Instance to which the Generic Transform would be applied has a parent Concept that reuses 

s have associated to them a set of XSLT templates that know how to 

create a HTML visualization for the structure of their Fragment, it would be interesting to be able to 

“override” the Generic Transform generic templates with the specialized ones from the Fragments. 

The problem with this, is that Fragments reused in Concepts can be included inside compositions 

(described in the Concept & Fragment definition language) and those compositions create new 

ates, causing the generic templates of the 

(the standard behavior of a XSLT 

repository is aware of the structure of each Concept and can generate a set of 

 



 

 84 

XSLT templates that can reach the composition elements and tell the processor to advance further in 

the XML tree to reach the parts of the document that are processable by the Fragment templates

possible to dynamically build a XSLT that’s based on the Generic Transf

Fragment templates and the templates generated based on the Concept’s structure

depicts the normal transforming process for a Transform operation (in this example a transformation 

to HTML is performed). 

In the case of a Generic Transform the process is depicted in 

 

Figure 4.42 Generic Transform processing in the repository (example for a HTML Generic Transform)

Figure 4

reach the composition elements and tell the processor to advance further in 

the XML tree to reach the parts of the document that are processable by the Fragment templates

possible to dynamically build a XSLT that’s based on the Generic Transform’s templates, including the 

Fragment templates and the templates generated based on the Concept’s structure

depicts the normal transforming process for a Transform operation (in this example a transformation 

In the case of a Generic Transform the process is depicted in Figure 4.42. 

Generic Transform processing in the repository (example for a HTML Generic Transform)

4.41 Regular transforming process in the repository 

reach the composition elements and tell the processor to advance further in 

the XML tree to reach the parts of the document that are processable by the Fragment templates, it’s 

orm’s templates, including the 

Fragment templates and the templates generated based on the Concept’s structure. Figure 4.41 

depicts the normal transforming process for a Transform operation (in this example a transformation 

 

 

Generic Transform processing in the repository (example for a HTML Generic Transform) 

 

 



 

 85 

The process of building the Generic Transform is done in two steps, first retrieving the Concepts 

structure as a set of XSLT templates and second retrieving the set of XSLT templates, from Fragments, 

that apply. In the Fragment definition language, each XSLT associated to a Fragment had an attribute 

named type; this attribute is what defines the category (or group) of that XSLT. When executing a 

Generic Transform, a type parameter must be passed so that the Repository can choose the correct 

templates from each Fragment, as such, the repository will choose the templates whose type 

attribute matches the type parameter of the Generic Transform operation. 

A Generic Transform is stored as an Instance of System Concept and it basically consists of XSLT 

code, but that code must be valid according to two restrictions: 

• It must provide a template that matches the root element (‘/’) and uses the apply-

templates primitive. 

• It must provide a template that matches any element (‘*’) and uses the apply- 

templates primitive. 

These two rules ensure that any element will be matched, starting by the root element, 

proceeding down the XML tree and applying the Generic Transform templates. Since the XSLT 

templates from the Fragments are included in the style-sheet, each time the processor reaches the 

elements that belong to a Fragment structure those templates will process them. If the Concept 

structure used compositions, the templates generated from the structure will make sure those 

elements are skipped, this is due to compositions generating wrapper elements around what it’s 

being composed and as such the Fragment XSLT templates don’t account for those elements.  

XSLT templates can have a priority attribute to ensure that a specific XSLT template is processed 

instead of another in a situation where both templates could be executed, as is the case with Generic 

Transforms where’s a template that matches any element and the templates from the Fragments. 

However, there’s no need to explicitly manipulate the priority attributes since the standard behavior 

of a XSLT processor is to apply the template that’s more specific (in terms of what it’s matching) and 

in the case of Generic Transforms the match any element template always has the lowest priority, so 

there’s no need to change priorities. 

 





 

Chapter 5  
Implementation 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.1 Technologies………………………………………………………………………………………………………………………. 88 
5.2 Architecture Design Implementation…………………………………………………………………………………. 88 
5.3 Choice for the Underlying Database of the Storage Model…………………………………………………. 90 
5.4 Storage Model……………………………………………………………………………………………………………………. 101 
5.5 Information Model…………………………………………………………………………………………………………….. 107 
5.6 Querying and Transforming……………………………………………………………………………………………….. 111 
5.7 Implementation Status………………………………………………………………………………………………………. 

 
115 

 

This chapter presents implementation details of the 

architecture, functionalities and information model of 

the repository 



 

 88 

This chapter describes the implementation of the metadata repository architecture and functional 

designs discussed in the previous chapters, starting by 

implementation, followed by 

implementations. 

5.1. Technologies 

To address the requirements of multi

developed using open source technologies. The metadata repository engine is developed using Java 2 

Enterprise Edition (J2EE) 6.0 [13]

The engine includes support for multiple databases of the 

be described in this chapter) each one supporting e Metadata Repository instance

are used extensively by the repository engine namely XML, XML Schema, Schematron, XSLT and 

XQuery. The repository features a single web service interface for any external applicatio

and request services. In this way it’s possible to deploy the repository in any java

(Windows and Mac OSX platforms were tested successfully)

5.2. Architecture Design Implementation

This section describes how the architecture of t

implemented. Starting with a high

architecture. The implementation details of the Information Model will be presented in section 

preceded by a presentation of the reasons that led to the choice of the underlying XML database and 

the repository’s storage model. 

Figure

This chapter describes the implementation of the metadata repository architecture and functional 

designs discussed in the previous chapters, starting by listing the technologies used for the 

implementation, followed by a description of the architecture a

To address the requirements of multi-platform and portability, the metadata repository is 

technologies. The metadata repository engine is developed using Java 2 

[13] running as a web application in the Java 6 embedded Web Server. 

The engine includes support for multiple databases of the open source native XML database (that will 

pter) each one supporting e Metadata Repository instance

are used extensively by the repository engine namely XML, XML Schema, Schematron, XSLT and 

XQuery. The repository features a single web service interface for any external applicatio

and request services. In this way it’s possible to deploy the repository in any java

(Windows and Mac OSX platforms were tested successfully) 

Design Implementation 

This section describes how the architecture of the Metadata Repository (chapter 3) is 

implemented. Starting with a high-level view of the architecture and finalizing with 

architecture. The implementation details of the Information Model will be presented in section 

preceded by a presentation of the reasons that led to the choice of the underlying XML database and 

 

Figure 5.1 Metadata Repository's High-level architecture 

This chapter describes the implementation of the metadata repository architecture and functional 

the technologies used for the 

description of the architecture and functional design 

platform and portability, the metadata repository is 

technologies. The metadata repository engine is developed using Java 2 

running as a web application in the Java 6 embedded Web Server. 

native XML database (that will 

pter) each one supporting e Metadata Repository instance. XML technologies 

are used extensively by the repository engine namely XML, XML Schema, Schematron, XSLT and 

XQuery. The repository features a single web service interface for any external application to connect 

and request services. In this way it’s possible to deploy the repository in any java-enabled platform 

he Metadata Repository (chapter 3) is 

level view of the architecture and finalizing with the low-level 

architecture. The implementation details of the Information Model will be presented in section 5.4, 

preceded by a presentation of the reasons that led to the choice of the underlying XML database and 

 

 



 

5.2.1. High Level Architecture

The repository’s high-level architecture proposed in chapter three and implemented using th

above technologies is depicted in 

5.2.2. Low Level Architecture

The repository is internally implemented by layers, this means that a top layer relies on the 

services provided by a lower layer. This architecture is depicted in

The Database Access layer is responsible for managing the connections to every data

providing access to its content to the upper layers. This layer provides an interface to manage 

resources and collections in the 

section), as well as executing queries. The Information Model layer implements the Metadata 

Repository’s Information Model (section 

This layer interacts with the Database Layer, to retrieve, query and store resources in the database 

and provides high-level functionalities such as adding an Instance version, a Fragment, a Concept or 

checking integrity constraints in Instance relations. The Querying and Transforming layer is 

responsible for all XQuery execution in the repository and for every Transformation (Singl

Template reuse, Generic or Pipeline) in the repository.

database and, as such, require the services of the Database Layer, but on the other hand, every 

Query and Transform is stored as an Instance of a System Concept and, 

the Information Model layer. Separating the various rep

advantage in terms of source code modularity, easing the maintenance and the development of new 

features. For example, if a different database were to be chosen to support the storage model, only 

the Database Layer would need to be modified, as long as the interface to the upper layers remains 

the same.  

Figure 

High Level Architecture 

level architecture proposed in chapter three and implemented using th

above technologies is depicted in Figure 5.1. 

Low Level Architecture 

is internally implemented by layers, this means that a top layer relies on the 

services provided by a lower layer. This architecture is depicted in Figure 5.2.

The Database Access layer is responsible for managing the connections to every data

s content to the upper layers. This layer provides an interface to manage 

and collections in the XML database (the database will be presented in the following 

section), as well as executing queries. The Information Model layer implements the Metadata 

Repository’s Information Model (section 3.3), including all metadata validation and integrity checks. 

This layer interacts with the Database Layer, to retrieve, query and store resources in the database 

level functionalities such as adding an Instance version, a Fragment, a Concept or 

ints in Instance relations. The Querying and Transforming layer is 

responsible for all XQuery execution in the repository and for every Transformation (Singl

or Pipeline) in the repository. Queries are executed directly over 

database and, as such, require the services of the Database Layer, but on the other hand, every 

Query and Transform is stored as an Instance of a System Concept and, thus

the Information Model layer. Separating the various repository functionalities in layers is an 

advantage in terms of source code modularity, easing the maintenance and the development of new 

features. For example, if a different database were to be chosen to support the storage model, only 

ould need to be modified, as long as the interface to the upper layers remains 

 

Figure 5.2 Metadata Repository's low-level architecture 

 

89 

level architecture proposed in chapter three and implemented using the 

is internally implemented by layers, this means that a top layer relies on the 

. 

The Database Access layer is responsible for managing the connections to every database and 

s content to the upper layers. This layer provides an interface to manage 

database will be presented in the following 

section), as well as executing queries. The Information Model layer implements the Metadata 

ation and integrity checks. 

This layer interacts with the Database Layer, to retrieve, query and store resources in the database 

level functionalities such as adding an Instance version, a Fragment, a Concept or 

ints in Instance relations. The Querying and Transforming layer is 

responsible for all XQuery execution in the repository and for every Transformation (Single, with 

Queries are executed directly over the 

database and, as such, require the services of the Database Layer, but on the other hand, every 

thus, requires the services of 

ository functionalities in layers is an 

advantage in terms of source code modularity, easing the maintenance and the development of new 

features. For example, if a different database were to be chosen to support the storage model, only 

ould need to be modified, as long as the interface to the upper layers remains 

 



 

 90 

5.3. Choice for the Underlying Database of the Storage Model 

To support the storage model, a database is required. In order to choose the database that 

best suits the MDR a comparison between several databases was made. 

The metadata repository (MDR) is a document repository, as such, it will have to store documents 

(in this case Instances, Fragments and Concepts) and will have to be able to retrieve/query/update 

them. 

There are several alternatives, which provide such core functionality. The various databases that 

are of interest to this project can be divided in two categories: the XML enabled-databases and XML 

native databases [100]. 

XML Enabled Databases (Relational Databases) 

XML enabled databases are databases that derive from relational databases where XML support 

was latter added. Relational databases are very popular for storing application data, and have proved 

their value over the years in terms of design, scalability, querying and update capabilities [56]. 

Relational databases have a record-centric data model, meaning that the fundamental unit of 

information are records stored inside tables (each record is a set of data-typed values). Several 

databases (both open source and commercial) have some/full support for XML. Examples are Oracle 

11g [101] and MSSQLServer [102] (commercial) or MySQL [103] and PostgreSQL [104] (open source). 

Native XML Databases 

Native XML databases were built specifically to deal with XML data and their data model uses the 

XML document, as its fundamental unit. These databases feature indexing mechanisms off all 

fragments of the XML documents, on optimized structures to provide fast querying and updating. 

These databases rely on XML technologies for providing most of the querying/validation/updating. 

Storage-wise, documents are usually grouped in collections and resources inside the database, 

similarly to directories and files in a conventional file system. 

The MDR extensively uses XML technologies and, as such, the use of a native XML database to 

support persistency and querying is a choice that brings advantages because these databases were 

specifically built to deal with situations like this. Some of the features required for the MDR are the 

following (they can be built-in in the database or be provided by some third party): 

• Support for multiple databases 

• XQuery [43] compliant  

• Open Source 

• Fault Tolerance 



 

 91 

• Multi-platform 

• Provide an Update Language 

• User definable Transactions 

• Indexing of documents 

• Efficient Storage and Querying 

• Java API with all the important primitives 

In the following sections the list of analyzed databases is introduced: 

5.3.1. eXist XML Database 

The eXist XML database [105] is a candidate, since it proved that it can be used as the basis for a 

metadata repository [1] (although with its limitations, for example, eXist does not provide user-

definable transactions, which had to be implemented on top of it, in that project). eXist provides, 

however, a great set of features with support for major XML standards (XML Schema, XSLT, XPath, 

XQuery, XQuery Update Facility) and enables users to write web applications entirely using XQuery 

extensions to present the content in (X)HTML with XSLT. 

eXist features collection-based storage of XML documents and it provides security mechanisms, 

such as users and permissions. The storage mechanism is based on b+-tree and pages [106]. It has an 

automatic index, based on a numeric index scheme, to quickly identify node relationship and features 

an optimized XQuery engine that uses this schema to provide efficient querying, as described in 

[107]. 

eXist provides backup and recovery functionalities and has basic document-level transaction, 

although (as stated before) they’re not visible to the user. eXist is developed in Java and is available 

in all major platforms (Windows, Linux, OSX). 

The deployment of eXist can be within a web server (Such as JBoss [108]/Tomcat [109]) it can be 

run as standalone application or embedded in a Java application and is able to control XQuery access 

with XACML [110]. eXist is one of the most widely used XML databases and has wide community 

support. 

5.3.2. Sedna XML Database 

The Sedna XML database [111], is an open source native XML database produced at the Institute 

for System Programming at the Russian Academy of Sciences, since 2006. It’s developed in Scheme 

and C/C++ (Scheme is used for static query analysis and optimization, C/C++ is used to implement the 

parser, executor, memory manager and transaction manager), from scratch. It was designed having 

two goals in mind: To be a full featured database system and to provide a run-time environment to 

XML-intensive applications [112]. 



 

 92 

Sedna’s storage of XML documents, uses a descriptive schema approach [112]. A descriptive 

schema is a concise and accurate structural summary of a XML document [113], generated from the 

XML document and maintained through the existence of that document in the database. Contrary to 

prescriptive schema which dictate the possible structure of the document (DTD, XML Schema), this 

approach enables multiple, efficient, optimizations for the storage and querying of documents and 

collections, as described in [113]. 

Sedna highly supports the XQuery standard for Querying documents (98.8% on the XQuery Test 

Suit [114]) and supports a declarative node-update language. The update language is based on the 

XQuery update proposal by Patrick Lehti [115]. Sedna was developed with the data model of XQuery 

in mind and offers a number of optimization techniques around that model [113]. 

Sedna is deployed as a standalone application (with a simple command line interface, there is no 

GUI administration provided, but third party ones, exist) and features a range of built-in API’s 

(featuring Java, C, Scheme) and a number of third-party produced API’s (.NET, Pyhton, PHP) are 

available. 

Sedna supports database users, permissions, roles and it provides recovery and backup 

mechanisms (including “hot-backup” done while the database is still running and performing 

requests). Concurrency-control mechanisms exist and user-definable transactions are supported. 

Sedna is in active development, although, since it’s a new database, the community  support is 

somewhat small. The developers provide extensive documentation and a mailing list is available to 

anyone. Even though Sedna does not support neither XQuery Update Facility nor, for example, 

XUpdate, it’s still an interesting choice, because it features everything else that is required and, in the 

MDR, direct updates over the database will not be possible, so it stands as a candidate. 

5.3.3. Berkeley DB XML 

Oracle Berkeley DB XML is an embeddable XML database engine that provides support for XQuery 

access [116]. Berkeley DBXML is developed on top of the well-known Berkeley DB and inherits its 

features, such as concurrency control, efficient storage and retrieval, transactions, backup, recovery 

and replication. Oracle Berkeley DB XML adds a document parser, XML indexer and XQuery engine on 

top of Oracle Berkeley DB to enable fast and efficient retrieval of data [116]. 

XML Documents are stored in “containers” (a collection of XML documents) and each container 

maintains the indexes created for each document. Being an embeddable database, means that it 

does not provide for features such as users, permissions or roles (the application using DBXML must 

deal with this) but enables operating the database with zero-administration and reduces hardware 

costs (the memory footprint is small). As such, there are no administration utilities, only a command 

line console to enable interactive sessions. 



 

Berkeley DBXML uses several optimization techniques, such as partial document re

intelligent cost-based query processing and 

processing [116]. 

It supports the major XML standards such as XML Schema (for validat

container and, contrary to most database systems, each container may validate XML documents 

associated with different XML schemas), XQuery, XPath and XQuery Update Facility. One feature of 

Berkeley DBXML is the possibility to associate i

metadata). 

Berkeley DBXML is a product of Oracle 

mail and several resources on the internet are available.

Evaluation 

All three databases presented

MDR, although, eXist would require implementing a transaction layer and Berkeley DBXML would 

require implementing a user/permission layer. The one factor that has not been considered is the 

performance of each database. 

Berkeley DBXML uses several optimization techniques, such as partial document re

based query processing and iterator-based processing instead o

It supports the major XML standards such as XML Schema (for validat

contrary to most database systems, each container may validate XML documents 

associated with different XML schemas), XQuery, XPath and XQuery Update Facility. One feature of 

Berkeley DBXML is the possibility to associate individual metadata to a document (and query that 

is a product of Oracle [101] and, as such, has extensive support via online forums, 

mail and several resources on the internet are available. 

presented, have the features that would make them a good choice for the 

MDR, although, eXist would require implementing a transaction layer and Berkeley DBXML would 

require implementing a user/permission layer. The one factor that has not been considered is the 

 

Figure 5.3 XMark XML structure [2] 

 

93 

Berkeley DBXML uses several optimization techniques, such as partial document re-indexing, 

based processing instead of tree-based 

It supports the major XML standards such as XML Schema (for validation of documents in a 

contrary to most database systems, each container may validate XML documents 

associated with different XML schemas), XQuery, XPath and XQuery Update Facility. One feature of 

ndividual metadata to a document (and query that 

and, as such, has extensive support via online forums, 

ures that would make them a good choice for the 

MDR, although, eXist would require implementing a transaction layer and Berkeley DBXML would 

require implementing a user/permission layer. The one factor that has not been considered is the 

 



 

 94 

Several studies around the performance of XML databases are available, however none of them 

include all three databases and some only measure storage performance [117, 118]. In order to have 

more reliable data, a benchmark on all three databases was performed. 

5.3.4. Query Benchmarking 

 For the benchmarking of the XML databases, the benchmark framework X-Mark [2] was chosen. X-

Mark is designed to test the performance of XML databases with a broad range of typical queries 

found in real world scenarios. This set of queries challenge the XQuery processor in several important 

primitives of the XQuery language. The structure of the data used by the X-Mark framework is based 

on an Internet auction site and is presented in Figure 5.3. 

There are relationships between elements. Some relationships are based on references (person, 

open_auction, closed_auction, item and category) and some using natural text (annotation and 

description). 

The X-Mark framework comes bundled with a data generator, which can generate documents in a 

scalable way, maintaining the structure presented before and populated with meaningful data. This 

means scalability can be tested, since documents as small as 36 kilobytes or as big as several 

gigabytes can be produced. 

There are 20 different queries in X-Mark. This set of queries, explores several of XQuery’s 

capabilities and can be grouped in these categories: 

• Exact Match (Query 1) 

• Ordered Access (Query 2,3,4) 

• Casting (Query 5) 

• Regular Path Expressions (Query 6,7) 

• Chasing References (Query 8,9) 

• Construction of Complex Results (Query 10) 

• Join on Values (Query 11,12) 

• Reconstruction (Query 13) 

• Full-Text (Query 14) 

• Path Traversals (Query 15,16) 

• Missing Elements (Query 17) 

• Function Application (Query 18) 

• Sorting (Query 19) 

• Aggregation (Query 20) 

For further information about X-Mark and its queries, see [2]. 

 



 

 95 

Evaluation 

The benchmark was run on a Pentium Dual Core (2.6 GHz per core) with 4GB of RAM and a Serial-

ATA disk with 500GB running Windows XP Professional (Service Pack 3). Every undesirable running 

process was terminated (including anti-virus software and such) so that the benchmark was as little 

disturbed as possible. 

The data generator was used to produce a set of six files, starting from 36KB, including a 100KB 

one, a 1MB one, a 11MB one, a 111MB one and a 1GB file. 

For each database, Windows XP binaries were downloaded and installed (no compilation from 

source code was made) and the databases were used “out-of-the-box”, i.e. no indexes were created 

or optimizations were made. The latest stable versions for each database were used, meaning: 

• eXist XML Database version 1.2.4 

• Sedna XML Database version 3.1 

• Oracle Berkeley DB XML version 2.4.13 

For each database system, six databases were created and one collection inside each of the six 

databases was created. Each collection was populated with one of the six files generated. Each of the 

twenty queries was run ten times in a row against each of the files stored in the collections, for every 

database. Three small Java applications were responsible for connecting to each database system, 

selecting the appropriate database (and collection) executing the queries and measuring the time 

taken by each one. The times obtained reflect the query execution only (excluding the result 

serialization). Time was measured issuing a (Java) call to System.getTimeMillis() before and after 

executing the query, and the difference was stored in an array for calculation of the average result. 

 This test provides a performance evaluation over one file, which is representative for queries made 

against a specific file, but does not cover a query over an entire collection. In order to assess the 

collection-querying capabilities of the XML databases, another test was run. The test consisted in 

loading several documents (with random content) to a collection of a database and one document 

from the X-Mark set (the 100KB document), creating a large collection to be queried. Two collections 

were created, the first collection was loaded with one hundred equal documents of random XML 

(each document’s total size was 100KB) and one 100KB document generated for the previous test; 

the total size of the database was 11 Megabytes (hereafter described as “Test1”). The second 

collection was loaded with 3700 equal documents of random XML (36 Kilobytes, each document) and 

one 100 Kilobytes generated from the previous test (hereafter described as “Test2”). The total size of 

the previous collection was 111 Megabytes.  



 

 96 

 For this test, the X-Mark queries were 

results. From the results of the twenty queries, two were chosen because they illustrate the general 

trend in the query results. The chosen queries were Query 2 an

the average of ten runs of a query and the worst results of the ten runs. This is to show that the 

databases apparently use some sort of caching mechanisms, although it does not seem to be always 

used. Some cases are very clear of caching being used, and

close to the average one. The results were the following (

are presented in milliseconds). 

Note: Figures with (LOG) in the their label, present the results in logarithmic scale for better 

understanding. Charts (A) and (C) in the figure represent the average and worst results, respectively, 

for “Test1” while charts (B) and (D) represent the average 

Query 2 - Analysis 

Query 2 is a query that “evaluates the cost of array lookups. Note that it may actually be harder to 

evaluate than it looks; especially relational back

Figure 

Mark queries were updated in order to query the collection and return the 

results. From the results of the twenty queries, two were chosen because they illustrate the general 

trend in the query results. The chosen queries were Query 2 and Query 8. Results presented include 

the average of ten runs of a query and the worst results of the ten runs. This is to show that the 

databases apparently use some sort of caching mechanisms, although it does not seem to be always 

ry clear of caching being used, and in some cases the worst result is very 

close to the average one. The results were the following (presented Figure 5

e: Figures with (LOG) in the their label, present the results in logarithmic scale for better 

Charts (A) and (C) in the figure represent the average and worst results, respectively, 

for “Test1” while charts (B) and (D) represent the average and worst results, respectively, for “Test2”

evaluates the cost of array lookups. Note that it may actually be harder to 

evaluate than it looks; especially relational back-ends may have to struggle with rather c

Figure 5.4 Results for Query 2 of the XMark Benchmark 

in order to query the collection and return the 

results. From the results of the twenty queries, two were chosen because they illustrate the general 

d Query 8. Results presented include 

the average of ten runs of a query and the worst results of the ten runs. This is to show that the 

databases apparently use some sort of caching mechanisms, although it does not seem to be always 

some cases the worst result is very 

5.4 and Figure 5.5, results 

e: Figures with (LOG) in the their label, present the results in logarithmic scale for better 

Charts (A) and (C) in the figure represent the average and worst results, respectively, 

and worst results, respectively, for “Test2”. 

evaluates the cost of array lookups. Note that it may actually be harder to 

ends may have to struggle with rather complex 

 



 

aggregations to select the bidder

apparent caching mechanisms present in the datab

Figure 5.4 and comparing the results from the worst (C) with the average (A), in Sedna’s case, the 

worst result is roughly 10 times slower than the average result. eXist and Berlekey DBXML also show 

some signs of caching in this query. The clear winner of this query is Sedna, as it can scale very well, 

while the other systems have difficulty with larger files. 

Querying a collection (even if bigger in size, than file to be queried), proved to easier for every 

system, and both eXist and Sedna, have a good performance in this query. Berkley DB XML does not 

scale so well with the size of the database.

 

Note: Figures with (LOG) in their label, present the results in logarithmic scale for better 

understanding. Charts (A) and (C) in the figure represent the average and worst results, respectively, 

for “Test1” while charts (B) and (D) represent the average and worst results, respectively, for “Test2”

Figure 

aggregations to select the bidder element with index 1.” [2]. This query was chosen to show the 

apparent caching mechanisms present in the database systems. Looking at chart

and comparing the results from the worst (C) with the average (A), in Sedna’s case, the 

worst result is roughly 10 times slower than the average result. eXist and Berlekey DBXML also show 

ing in this query. The clear winner of this query is Sedna, as it can scale very well, 

while the other systems have difficulty with larger files.  

Querying a collection (even if bigger in size, than file to be queried), proved to easier for every 

nd both eXist and Sedna, have a good performance in this query. Berkley DB XML does not 

scale so well with the size of the database. 

Note: Figures with (LOG) in their label, present the results in logarithmic scale for better 

Charts (A) and (C) in the figure represent the average and worst results, respectively, 

for “Test1” while charts (B) and (D) represent the average and worst results, respectively, for “Test2”

Figure 5.5 Results of Query 8 of the XMark Benchmark 

 

97 

. This query was chosen to show the 

ase systems. Looking at chart (A) and (C), from 

and comparing the results from the worst (C) with the average (A), in Sedna’s case, the 

worst result is roughly 10 times slower than the average result. eXist and Berlekey DBXML also show 

ing in this query. The clear winner of this query is Sedna, as it can scale very well, 

Querying a collection (even if bigger in size, than file to be queried), proved to easier for every 

nd both eXist and Sedna, have a good performance in this query. Berkley DB XML does not 

 

Note: Figures with (LOG) in their label, present the results in logarithmic scale for better 

Charts (A) and (C) in the figure represent the average and worst results, respectively, 

for “Test1” while charts (B) and (D) represent the average and worst results, respectively, for “Test2” 

 



 

 98 

Query 8 - Analysis 

Query 8 is a query that “List the names of persons and the number of items they bought. (joins 

person, closed auction). References are an integral part of XML as they allow richer relationships than 

just hierarchical element structures. These queries define horizontal traversals with increasing 

complexity. A good query optimizer should take advantage of the cardinalities of the operands to be 

joined.” [2]. Analyzing the results of all queries, queries 8 through 12 are the hardest to evaluate (i.e. 

those who take longer to provide the result) and, as such, query 8 was chosen to show the 

capabilities of the databases. In Query 8, there are no signs of caching mechanisms (depicted in a 

comparison between charts (A) and (C) and between (B) and (D) ) as the values are very close to one 

another. One conclusion that can be drawn is that eXist and Berkeley DBXML have great trouble with 

larger files, while Sedna provides good performance. In the collection-querying situation Sedna is still 

a clear winner, but the difference to the other two systems is not so big (although it is still ten times 

better than eXist and eighty times better than Berkeley for the 11 MB collection (B)). 

Querying Evaluation 

For small files (less than 1MB) every database produces fast results, all bellow 50 ms. However, 

when the size of the files starts growing (1MB/11MB) there’s a clear difference between Sedna and 

the other two, especially on queries that involve joins (Q8 through Q12). In Q8 of the 11MB test, 

Sedna average result outperforms eXist by approximately 3000 times, and Berkeley DBXML by 6900 

times. It’s also clear that Sedna uses some kind of caching mechanism, as the first result is, usually, 

slower than the average result (up to 10 times), but still faster (especially in the larger files) than the 

other two systems. Sedna is the only database able to deal efficiently with an 111MB and 1GB 

example (in all queries). Querying entire collections, is still an advantage for Sedna, but eXist and 

Berkeley perform fairly well also (although several times slower that Sedna in most queries). 

Querying a collection with a total size of several megabytes is more expectable to happen than 

querying a file of the same size. Collection benchmark is more interesting in terms of real-world 

benchmark and Sedna is the one that provides better results. 

Sedna consumes more resources than the other two systems. A freshly created database requires, 

by default, over 200 megabytes in the file system and each running instance of a database, by 

default, has a footprint of 100 megabytes of RAM memory, although it’s possible to configure these 

values. Berkeley DBXML has the smallest footprint in memory and the file system. 

5.3.5. Storage Benchmarking 

Query performance of a XML database is extremely important, but other factor is also important: 

The storage performance. Applications that use a XML database with intensive insert/update 

operations will require that these operations are quick and efficient. In order to assess the 

capabilities of the databases in this situation, a loading test was performed. 



 

 99 

The test consisted in loading a set of equal documents to each database; the sets are as follows: 

Table 5.1 Table of document size and number to benchmark 

Number of Documents Size of Documents 

10000 36 Kilobytes 

1000 100 Kilobytes 

100 1 Megabyte 

1 111 Megabytes 

Note: The files used, were the same ones used in the querying benchmark. 

For each set of documents, a collection in each database was created and a small Java application 

was developed to load the entire set into the collection. Times were measured in the same way as 

before, issuing a call to System.getTimeMillis(). Times presented here are a mean of five tests. 

Sedna XML results 

Table 5.2 Sedna XML database storage results 

Number of Documents Size of Documents Times (ms) 

10000 36 Kilobytes 101.606 

1000 100 Kilobytes 41.850 

100 1 Megabyte 68.081 

1 111 Megabytes 36.278 

 

Berkeley DBXML results 

Table 5.3 Berkeley DBXML database storage results 

Number of Documents Size of Documents Times (ms) 

10000 36 Kilobytes 765 

1000 100 Kilobytes 90 

100 1 Megabyte 68 

1 111 Megabytes 7.062 

 

Note: Berkeley DBXML is very quick for small documents, but, for example, for the 111 Megabytes 

document, the first run took 35.313 ms, and the following ones 0, so it means that file was probably 

in cache and insertion is a process that simply stores the file in the container. 

 

 



 

 100 

eXist results 

Table 5.4 eXist XML Database storage results 

 

 

 

 

Storage Evaluation 

Anayzing pure storage performance, Berkeley DBXML is the clear winner for small files. Even for 

the 111 MB file, it had a great performance, but as stated, the first result was equivalent of Sedna’s 

mean result, so it must mean that storage is a process of simply storing the documents in the 

containers, after the first run. eXist takes a huge amount of time, for big files and for a large number 

of file. After this test, eXist can’t be considered for the underlying database. Berkley DB XML storage 

performance is further confirmed by [118]. Sedna’s performance is quite acceptable, considering the 

number of documents (and size) tested. eXist is very slow for a large number of documents or for 

large documents, thus, it’s best suited for small collections of small documents. 

The metadata repository will hold metadata and, usually, metadata is smaller in size (and number) 

of documents compared to the data it describes by several orders of magnitude, but, still, having a 

database that can handle huge amounts of data efficiently, is a better choice. 

5.3.6. Final Evaluation 

Both eXist and Berkeley DBXML have a good performance querying small files, but as files grow 

larger and queries get more complex (especially queries that involve joins) their performance takes a 

big hit, while Sedna can scale very well. Querying over collections, the difference between Sedna and 

the other two, is still relevant, but not as much as querying a single file of the size of the collection. 

Storage performance is the clear advantage of Berkeley DBXML, especially over eXist that takes huge 

amount of time simply loading the documents to the database. Although loading a document to the 

MDR isn’t simply storing in the database (and can take some time, as there are some operations to 

be performed) the underlying database must provide efficient storage in all cases, and eXist only 

provides this for small documents and a relatively small number of documents. Sedna also has 

another advantage over the other two systems, as it provides transactions and users/permissions 

features. Considering all the information gathered through the benchmark, the Sedna XML database 

was considered the best choice for the underlying database of the MDR as it can support operations 

against small and large files, being few or many documents. 

Number of Documents Size of Documents Times (ms) 

10000 36 Kilobytes 2.615.059 

1000 100 Kilobytes 2.401.752 

100 1 Megabyte 2.866.520 

1 111 Megabytes 3.212.509 



 

 

5.4. Storage Model 

In order to support the Metadata Repository

must be created for its underlying database. This model defines where Concepts, Fragments and 

Instances are stored, including management information extracted from them (to support the 

repository operations) and additional resources (such as cached files, to improve performance). The 

logical structure of this model is described as a hierarchy of collections (resembling directories in file 

systems) since a Native XML Database is being used (although the chosen databas

natively support sub-collections, the Repository will “see” the storage model as a hierarchy of 

collections). All databases are initialized with this model, and the collection’s resources are accessible 

through the database API, by eithe

internal to the Metadata Repository in such a way that external applications are unaware of it, 

particularly when performing metadata querying and transforming operations, since these 

operations are executed in the database environment. Next sections incrementally present this 

model. 

 
5.4.1. Concept Storage

This section will present how Concepts are stored in the database. A Concept is defined 

file (which contains, as explained previousl

Schema, which may include other XML Schemas), how Instances are identified, additional validations, 

XSL associations, relations, etc).  

the following paragraphs. 

In order to support the Metadata Repository’ Information Model and features

must be created for its underlying database. This model defines where Concepts, Fragments and 

Instances are stored, including management information extracted from them (to support the 

itional resources (such as cached files, to improve performance). The 

logical structure of this model is described as a hierarchy of collections (resembling directories in file 

systems) since a Native XML Database is being used (although the chosen databas

collections, the Repository will “see” the storage model as a hierarchy of 

collections). All databases are initialized with this model, and the collection’s resources are accessible 

through the database API, by either direct retrieval or querying. The storage model is intended to be 

internal to the Metadata Repository in such a way that external applications are unaware of it, 

particularly when performing metadata querying and transforming operations, since these 

ations are executed in the database environment. Next sections incrementally present this 

Concept Storage 

This section will present how Concepts are stored in the database. A Concept is defined 

file (which contains, as explained previously, the definition of the Instances structure (using XML 

Schema, which may include other XML Schemas), how Instances are identified, additional validations, 

 Figure 5.6 depicts the Concepts storage model

Figure 5.6 Concept's Storage Model 

 

101 

tion Model and features, a storage model 

must be created for its underlying database. This model defines where Concepts, Fragments and 

Instances are stored, including management information extracted from them (to support the 

itional resources (such as cached files, to improve performance). The 

logical structure of this model is described as a hierarchy of collections (resembling directories in file 

systems) since a Native XML Database is being used (although the chosen database, Sedna, does not 

collections, the Repository will “see” the storage model as a hierarchy of 

collections). All databases are initialized with this model, and the collection’s resources are accessible 

r direct retrieval or querying. The storage model is intended to be 

internal to the Metadata Repository in such a way that external applications are unaware of it, 

particularly when performing metadata querying and transforming operations, since these 

ations are executed in the database environment. Next sections incrementally present this 

This section will present how Concepts are stored in the database. A Concept is defined as a XML 

y, the definition of the Instances structure (using XML 

Schema, which may include other XML Schemas), how Instances are identified, additional validations, 

model, which is presented in 

 



 

 102 

The Concept storage model features a high

each version of each Concept, there will be a sub

the Concept. In (1) we have an example of the “DataModel” Concept, that is associated with 

“di.fct.unl.pt” namespace and is the first version of the Concept (although, in the figure, the word 

“version” is used to depict where the version number is to be placed) b

examples (sess.uninova.pt/SCParameter#1 e #2

collections, the Concept’s included 

a “compiled” XML Schema (for cach

definition. A compiled XML Schema is the result of analyzing the Concept definition and producing a 

valid XML Schema from it (in order to validate Instances).

 A second high-level collection named “S

management information, will have a sub

collections. One named “Management” (2) and one named “Resources” (3

collection a XML file with management information (extracted initially from the definition of the 

Concept, and updated with subsequent repository operation) 

kept. In the Resources collection, a sub

resources associated with that Concept. If a Concept definition has embedded XSL

XSLT code will be extracted from the definition, and placed in the Resources collection of that 

Concept. In the same way, if there are XSL

templates from fragments) they will be placed in the same collection.

5.4.2. Fragment Storage

Fragments are stand-alone (or compos

produce Concepts. The Fragments storage model is depicted in 

The Concept storage model features a high-level collection named “Concepts” where, for 

each version of each Concept, there will be a sub-collection named with the identifier and version of 

. In (1) we have an example of the “DataModel” Concept, that is associated with 

“di.fct.unl.pt” namespace and is the first version of the Concept (although, in the figure, the word 

“version” is used to depict where the version number is to be placed) b

examples (sess.uninova.pt/SCParameter#1 e #2) the version number is present

collections, the Concept’s included schemas are placed, as are the XML definition of the Concept and 

XML Schema (for caching purposes) created from the structure 

A compiled XML Schema is the result of analyzing the Concept definition and producing a 

valid XML Schema from it (in order to validate Instances). 

level collection named “SystemManagement”, whose purpose is to store 

management information, will have a sub-collection named “Concepts” where

collections. One named “Management” (2) and one named “Resources” (3

management information (extracted initially from the definition of the 

Concept, and updated with subsequent repository operation) for each version of each Concept is 

. In the Resources collection, a sub-collection for each version of each Concept will 

that Concept. If a Concept definition has embedded XSL

code will be extracted from the definition, and placed in the Resources collection of that 

Concept. In the same way, if there are XSLTs “compiled” from the definition (i.e

fragments) they will be placed in the same collection. 

Fragment Storage Model 

(or compositions of) XML Schema fragments and are used 

nts storage model is depicted in Figure 5.7. 

Figure 5.7 Fragments Storage Model 

level collection named “Concepts” where, for 

collection named with the identifier and version of 

. In (1) we have an example of the “DataModel” Concept, that is associated with the 

“di.fct.unl.pt” namespace and is the first version of the Concept (although, in the figure, the word 

“version” is used to depict where the version number is to be placed) but in the following two 

) the version number is present. Inside each of these 

the XML definition of the Concept and 

ing purposes) created from the structure declared in the 

A compiled XML Schema is the result of analyzing the Concept definition and producing a 

ystemManagement”, whose purpose is to store 

llection named “Concepts” where there will be two sub-

collections. One named “Management” (2) and one named “Resources” (3). In the Management 

management information (extracted initially from the definition of the 

for each version of each Concept is 

collection for each version of each Concept will hold 

that Concept. If a Concept definition has embedded XSLT code, then, that 

code will be extracted from the definition, and placed in the Resources collection of that 

from the definition (i.e. that use XSLT 

and are used as a base to 

 



 

This storage model has, just like the Concepts storage model, a high

“Fragments” which has one sub

area marked by “1”) and version

fragment definition are stored, including a “compiled” schema, for caching purposes. In the 

SystemManagement collection, there’s a sub

each Fragment version, exists. This file holds several management information, such as Concepts that 

use this Fragments, XSLT templates

(descriptions, key-words, dates),

be used by Concepts to generate on

each Fragment version, a sub-collection in “Resources”, named after the identifier of the

present, and holds this kind of resource.

5.4.3. Instance Storage Model

Instances are XML documents, compliant with the structure of a certain XML Schema, defined by a 

single Concept. Instances will be the primary target for queries and updates, sin

metadata in the MDR. The Instances storage model is depicted in 

At a high-level there is an “Instances” collection (

Instances are stored. Instances are named

works as follows: When a Concept is added to the repository, it’s given a unique number

Concept’s Magic
2 number). When 

identified with the concatenation of that Concept’s number, with a sequence number given to that 

Instance. So, for example, if a Concept’s unique number is “1” and 

the repository, its internal identifier will be “1.1” and it will 

                                                      
2 The name “Magic Number” is inspired in http://en.wikipedia.org/wiki/Magic_number_(programming)

This storage model has, just like the Concepts storage model, a high

“Fragments” which has one sub-collection [named with the identifier of the Fragment

) and version] for each Fragment version, where the included schemas and 

fragment definition are stored, including a “compiled” schema, for caching purposes. In the 

SystemManagement collection, there’s a sub-collection named “Fragments” (

each Fragment version, exists. This file holds several management information, such as Concepts that 

templates associated with this Fragment and metadata about the Fragment 

words, dates), etc. Some Fragments, may have XSLT templates

be used by Concepts to generate on-the-fly complete XSLTs, to process Instances) and, as such, for 

collection in “Resources”, named after the identifier of the

present, and holds this kind of resource. 

Instance Storage Model 

Instances are XML documents, compliant with the structure of a certain XML Schema, defined by a 

single Concept. Instances will be the primary target for queries and updates, sin

metadata in the MDR. The Instances storage model is depicted in Figure 5.8. 

level there is an “Instances” collection (Figure 5.8, area marked by “

Instances are stored. Instances are named using an Internal Identifier (IID)

works as follows: When a Concept is added to the repository, it’s given a unique number

. When an Instance of that Concept is added to the repository it’s 

with the concatenation of that Concept’s number, with a sequence number given to that 

Instance. So, for example, if a Concept’s unique number is “1” and its first Instance is being put into 

internal identifier will be “1.1” and it will be the latest version of that Instance. 

The name “Magic Number” is inspired in http://en.wikipedia.org/wiki/Magic_number_(programming)

Figure 5.8 Instances Storage Model 

 

103 

This storage model has, just like the Concepts storage model, a high-level collection named 

named with the identifier of the Fragment (Figure 5.7, 

for each Fragment version, where the included schemas and 

fragment definition are stored, including a “compiled” schema, for caching purposes. In the 

ragments” (2), where a XML file for 

each Fragment version, exists. This file holds several management information, such as Concepts that 

this Fragment and metadata about the Fragment 

templates associated (that will 

, to process Instances) and, as such, for 

collection in “Resources”, named after the identifier of the Fragment is 

Instances are XML documents, compliant with the structure of a certain XML Schema, defined by a 

single Concept. Instances will be the primary target for queries and updates, since they represent the 

 

Figure 5.8, area marked by “1”), where all 

(IID). The internal identifier 

works as follows: When a Concept is added to the repository, it’s given a unique number (The 

Instance of that Concept is added to the repository it’s 

with the concatenation of that Concept’s number, with a sequence number given to that 

first Instance is being put into 

be the latest version of that Instance. 

The name “Magic Number” is inspired in http://en.wikipedia.org/wiki/Magic_number_(programming) 

 



 

 104 

When, after that, a second Instance 

“1.2”, and so on. The use of these identifiers enables that Instances can change their name over time

(if they are identified using the X

(so as their relations). 

As with Concepts, under the SystemManagement (2) collection, an “Instances” sub

present and, for each version of each Inst

XML file with management information for each Instance is stored (this file keeps information 

regarding relations, resources an

have some resources associated. For example, Instances of the System Concept Schematron, may 

have a XSLT resulting of transforming the Schematron file, so that in can be applied with the XSL 

processor. System Concepts are Concepts ass

responsible for managing the Schem

composed by Instances in all cases).

5.4.4. Additional System Management Information

Some additional information is required in order to ease the m

repository. Information such as the list of allowed namespaces used by 

Instances/Concepts/Fragments or

identifier. The list of Fragment versions (and respective MRI) as 

the respective MRI) must also be kept

collection, there will be a sub-

previously mentioned inform

FragmentList.xml and ConceptList.xml

The Namespaces.xml file stores a sequence of 

each namespace, under a root element 

mapping between an MRI and an internal identifier, as well as storing the sequence counter for 

Concept’s internal number (the previously described 

is depicted in Figure 5.10. 

 

Figure 

, after that, a second Instance (or a new version) of that Concept is added it will have identifier 

The use of these identifiers enables that Instances can change their name over time

re identified using the XPath method, described earlier), but their identifiers are maintained 

As with Concepts, under the SystemManagement (2) collection, an “Instances” sub

present and, for each version of each Instance (using the previous internal identifiers as names) a 

XML file with management information for each Instance is stored (this file keeps information 

regarding relations, resources and metadata about that instance). In some cases (3) Instances may 

ome resources associated. For example, Instances of the System Concept Schematron, may 

have a XSLT resulting of transforming the Schematron file, so that in can be applied with the XSL 

processor. System Concepts are Concepts associated with a system namesp

responsible for managing the Schematron library, the XSLT library and the XQuery library (

by Instances in all cases). 

Additional System Management Information 

Some additional information is required in order to ease the management functions of t

Information such as the list of allowed namespaces used by 

or the mapping between the MRI of an Instance and its internal 

. The list of Fragment versions (and respective MRI) as well as Concept version (again with 

the respective MRI) must also be kept. To finalize the storage model, under the SystemManagement 

-collection named “SystemControl”, storing 

previously mentioned information, respectively in Namespaces.xml

ConceptList.xml as seen in Figure 5.9. 

file stores a sequence of Namespace elements, whose content is the value of 

r a root element Namespaces. The IdentifierList.xml file is responsible for the 

mapping between an MRI and an internal identifier, as well as storing the sequence counter for 

Concept’s internal number (the previously described Magic number). The structure 

 

Figure 5.9 Additional System Management Information 

of that Concept is added it will have identifier 

The use of these identifiers enables that Instances can change their name over time 

, described earlier), but their identifiers are maintained 

As with Concepts, under the SystemManagement (2) collection, an “Instances” sub-collection is 

ance (using the previous internal identifiers as names) a 

XML file with management information for each Instance is stored (this file keeps information 

. In some cases (3) Instances may 

ome resources associated. For example, Instances of the System Concept Schematron, may 

have a XSLT resulting of transforming the Schematron file, so that in can be applied with the XSL 

ociated with a system namespace and will be 

the XQuery library (which is 

anagement functions of the 

Information such as the list of allowed namespaces used by 

of an Instance and its internal 

well as Concept version (again with 

. To finalize the storage model, under the SystemManagement 

collection named “SystemControl”, storing XML files holding the 

Namespaces.xml, IdentifierList.xml, 

elements, whose content is the value of 

file is responsible for the 

mapping between an MRI and an internal identifier, as well as storing the sequence counter for 

number). The structure of this document 



 

The document’s root node is the 

element and the Identifiers element. The 

the Magic Number of the next Concept to be inserted. When a Concept is inserted in the repository, 

the number stored in the UniqueID

by one. The Identifiers element holds a sequence of 

has a mapping between an Internal Identifier (attribute 

concept, conceptVersion, instance

MRI is that it’s easier to make XPath queries to find all Instances of a given Concept or in a given 

Namespace, etc. 

 

The FragmentList.xml file stores the list of each Fragment

root element, which holds s sequence of 

(namespace, name and version) to allow easier querying, as in the 

structure of the FragmentList.xml file is depicted 

 

 The ConceptList.xml file stores the list of each Concept in the repository, using the structure 

depicted in Figure 5.12 (which is the same as the structure of the FragmentList.xml, but with different 

syntax). 

Figure 

The document’s root node is the IdentifierList element, having two children: The 

element. The UniqueID element stores the current sequence number for 

the Magic Number of the next Concept to be inserted. When a Concept is inserted in the repository, 

UniqueID element is assigned to the Concept and the value is incremented 

element holds a sequence of Identifier elements and each of those elements 

has a mapping between an Internal Identifier (attribute IID) and a MRI (set of attributes 

instance, instanceVersion). The reason for separating the elements of the 

easier to make XPath queries to find all Instances of a given Concept or in a given 

file stores the list of each Fragment in the repository

root element, which holds s sequence of Fragment elements, each one of them with three attributes 

) to allow easier querying, as in the IdentifierList.xml

structure of the FragmentList.xml file is depicted in Figure 5.11. 

file stores the list of each Concept in the repository, using the structure 

(which is the same as the structure of the FragmentList.xml, but with different 

Figure 5.11 FragmentList.xml structure 

Figure 5.10 Internal Structure of the IdentifierList.xml 

 

105 

element, having two children: The UniqueID 

element stores the current sequence number for 

the Magic Number of the next Concept to be inserted. When a Concept is inserted in the repository, 

element is assigned to the Concept and the value is incremented 

elements and each of those elements 

) and a MRI (set of attributes namespace, 

). The reason for separating the elements of the 

easier to make XPath queries to find all Instances of a given Concept or in a given 

in the repository, having a FragmentList 

, each one of them with three attributes 

IdentifierList.xml file. A sample 

file stores the list of each Concept in the repository, using the structure 

(which is the same as the structure of the FragmentList.xml, but with different 

 

 



 

 106 

 

5.4.5. Complete Storage Model

Merging the previous storage models, under a common “MetadataRepository” collection, the full 

storage model for the repository is depicted in 

5.4.6. Access Permissions

Fragments, Concepts and Instances are to be updated/queried by external applica

services interface and by the metadata repository (the former, using the Web

later using it’s own internal methods), but the SystemManagement collection is to be 

queried/updated only by the repository’s management 

be imposed. XQuery has a limited scope, based on the collections that are supplied by the 

database, which means that external applications will be limited to Concept/Instance/Fragment 

querying, and will not be able to query internal resources. The 

application to retrieve information in the SystemManage

but preventing direct access to the management information

Figure 5.

Complete Storage Model 

s storage models, under a common “MetadataRepository” collection, the full 

storage model for the repository is depicted in Figure 5.13. 

Access Permissions 

Fragments, Concepts and Instances are to be updated/queried by external applica

the metadata repository (the former, using the Web

later using it’s own internal methods), but the SystemManagement collection is to be 

queried/updated only by the repository’s management methods, so access permissions will have to 

be imposed. XQuery has a limited scope, based on the collections that are supplied by the 

atabase, which means that external applications will be limited to Concept/Instance/Fragment 

l not be able to query internal resources. The web services API will enable external 

information in the SystemManagement collection such as Instance relations, 

but preventing direct access to the management information, as seen in Figure 

Figure 5.12 ConceptList.xml structure 

 

.13 Metadata Repository Complete Storage Model 

s storage models, under a common “MetadataRepository” collection, the full 

Fragments, Concepts and Instances are to be updated/queried by external applications using the web 

the metadata repository (the former, using the Web-Services API, and the 

later using it’s own internal methods), but the SystemManagement collection is to be 

methods, so access permissions will have to 

be imposed. XQuery has a limited scope, based on the collections that are supplied by the native XML 

atabase, which means that external applications will be limited to Concept/Instance/Fragment 

ervices API will enable external 

ment collection such as Instance relations, 

Figure 5.14. 

 



 

5.5. Information Model

The Information Model presented in section 

the next sections present implementation details of each of the layers of the I

starting with the M2 layer and finalizing with the M1 layer

presentation of implementation details as the layer is composed of a XML Schema that verifies the 

validity of a Fragment (or Concept) XML defin

the XML definition are, as previously described in section 

5.5.1. M2 Layer – Meta

This layer is where the basis for the Information Model 

section 3.3 and beyond. Each Fragment and Concept that is stored in the repository has an associated 

management file (as described in section 

includes the following information about each Fragment

• Target Namespace and Pr

• Included Files 

• Imported Files 

• List of Fragments it reuses

• List of Fragments that reuse this Fragment

• Metadata about the Fragment

• XSLT Templates 

• MRI of the Fragment 

• Version of the Fragment

Figure 

Information Model 

The Information Model presented in section 3.3 is fully implemented in the Metadata Repository; 

the next sections present implementation details of each of the layers of the I

2 layer and finalizing with the M1 layer. The M3 layer does not require the 

presentation of implementation details as the layer is composed of a XML Schema that verifies the 

validity of a Fragment (or Concept) XML definition and Java code that checks if the values present in 

the XML definition are, as previously described in section 4.3. 

Meta-model 

This layer is where the basis for the Information Model is implemented, as presented 

Each Fragment and Concept that is stored in the repository has an associated 

management file (as described in section 5.4). This management file stores its content a

includes the following information about each Fragment: 

Namespace and Prefix 

List of Fragments it reuses 

st of Fragments that reuse this Fragment 

Metadata about the Fragment 

 

Version of the Fragment 

Figure 5.14 Storage Model's access permissions 

 

107 

is fully implemented in the Metadata Repository; 

the next sections present implementation details of each of the layers of the Information Model, 

The M3 layer does not require the 

presentation of implementation details as the layer is composed of a XML Schema that verifies the 

ition and Java code that checks if the values present in 

implemented, as presented earlier in 

Each Fragment and Concept that is stored in the repository has an associated 

stores its content as XML and 

 



 

 108 

Each Fragment defines a XML structure that can have a target namespace and to ease the building 

of another Fragment (or Concept) structure, the target namespace URI and prefix are stored in the 

management file. The Fragment structure can use embedded XML Schema without any restrictions 

and, thus, can use the include and import elements, these included and imported files content is 

stored alongside the Fragment definition and the list is stored in the management file. To ease 

integrity checks on Fragment removal, the list of Fragments that a Fragment reuses and the list of 

Fragments that reuse the Fragment are also stored in the management file. Metadata about the 

Fragment and the list of XSLT templates are also stored in the management file, so that the Fragment 

definition is stored and does not need to be used as a source of metadata. The Fragment’s MRI and 

version number are also kept in the management file. 

Every Concept also has a XML management file that includes several information to help manage 

the Concept and to deal with the integrity requirements. The list of information includes: 

• Target Namespace and Prefix 

• Instance Identification 

• Create and Update dates 

• Concept’s Magic Number 

• Concept’s Sequence Counter 

• List of Instances 

• Included Files 

• Imported Files 

• Fragment References 

• Schematrons compiled 

• Embedded XSLT 

• Definition of Relations 

• Inverse Relations 

• Metadata about the Concept 

• Rules to create metadata about Instance  

A Concept structure can reuse a Fragment or use embedded XML Schema and, as such, they can 

define a target namespace, which is stored in the management file. The Instance identification 

method (via XPath or Sequence Numbers) is also stored as well as the creation and last update dates. 

The Concept’s Magic Number, a unique sequence number that identifies the Concept from all others 

(and is used to create the internal identifiers for Instances) that’s generated in the Concept insertion 

process, is stored in this file, as well as the Sequence counter to generate the other component of the 

internal identifier (as described in 5.4). A list of all the Concept’s Instances is also stored in the 

management file as well as the list of possible included/imported files (because the Concept, like the 

Fragment, can use embedded XML schema code and that code can make use of the include/import 

element). Since embedded Schematron (and XSLT) code can be declared in the Concept definition, if 

present, they will be extracted from the definition and stored as resources associated to the Concept, 

to speed the process of validation/transform, the name of the “compiled” (in case of the 



 

Schematron, that uses the XSLT implementation) files is kept in the management file. The definition 

of relations is also ported to the management file, to be separated from the Concept definition; the 

Concepts that declared this Concept as a target of a relation

checks. The metadata about the Concept and the rules to created metadata about Instances

declared in the Concept definition are also stored in the management file. As with Fragments,

management file also stores the MRI of the Concept, as well as the Concept version.

sample Concept Management file

the Concept, but one can see the internal identifier generation, as the Concept’s 

value “4” (element MagicNumber

“3”, meaning there are already two Instances of this Concept, which can be 

ListOfInstances element that has two Instance

 

5.5.2. M1 Layer - Model

Instances are XML documents that obey 

management of Instances, each Instance has a management file that stores information about the 

Instance, such as: 

• Instance Identification Information

• Relations with other Instances

• Relations that other Insta

• Namespaces 

Figure 

Schematron, that uses the XSLT implementation) files is kept in the management file. The definition 

e management file, to be separated from the Concept definition; the 

ncept as a target of a relation are also listed to ease the integrity 

. The metadata about the Concept and the rules to created metadata about Instances

declared in the Concept definition are also stored in the management file. As with Fragments,

the MRI of the Concept, as well as the Concept version.

file is depicted; the figure does not contain the full information about 

the Concept, but one can see the internal identifier generation, as the Concept’s 

MagicNumber) and the sequence counter (element SequenceNumber

“3”, meaning there are already two Instances of this Concept, which can be 

element that has two Instances with identifier 4.1 and 4.2, respectively.

Model 

Instances are XML documents that obey the vocabulary defined by a Concept. To ease the 

each Instance has a management file that stores information about the 

Instance Identification Information 

Relations with other Instances 

Relations that other Instances have with this one 

Figure 5.15 Sample Concept Management File 

 

109 

Schematron, that uses the XSLT implementation) files is kept in the management file. The definition 

e management file, to be separated from the Concept definition; the 

are also listed to ease the integrity 

. The metadata about the Concept and the rules to created metadata about Instances that are 

declared in the Concept definition are also stored in the management file. As with Fragments, the 

the MRI of the Concept, as well as the Concept version. In Figure 5.15 a 

the figure does not contain the full information about 

the Concept, but one can see the internal identifier generation, as the Concept’s Magic Number has 

SequenceNumber) has value 

“3”, meaning there are already two Instances of this Concept, which can be verified by checking the 

with identifier 4.1 and 4.2, respectively. 

the vocabulary defined by a Concept. To ease the 

each Instance has a management file that stores information about the 

 



 

 110 

Instance Identification Information is a set of values about identifiers. This includes the Instance’s 

identifier name (that string return by the XPath that the Concept uses to identify Instances, or the 

sequence number), the MRI of the parent Concept, the version number and the internal identifier (in 

the format described in section 5.4).  

Relations between Instances are managed with the help of the management files. Each 

management file stores information about each relation that an Instance has with other Instances as 

well the inverse situation. Each relation has the following set of properties: 

Table 5.5 Properties of a relation in an Instance management file 

Property Description 

Identifier An auto-generated identifier to this arc 

Target The Internal Identifier of the target Instance 

Type The type of the relation, can be a manual relation, a relation created automatically via MRI 
found in content or via content matching in Instances (as described in 3.5) 

Concept The MRI of the parent Concept of the target Instance 

Behavior The behavior of the relation in case a target is updated/removed. See section 4.2. 

Relate to Last Version Attribute that locks the relation with a given version of the target or if the relation should be 
with the latest version of the target 

The management file also includes the list of internal identifiers of every Instance that relates to 

this Instance, this eases the integrity management when trying to remove an Instance. A list of all 

namespaces declared in the Instance (and their respective prefix) is stored to ease querying, since 

XQuery is used and any namespace used in the query must be declared at the beginning of the 

XQuery expression. An example Instance management file is depicted in Figure 5.16. 



 

The previous figure depicts the management file for an Instance with internal identifier “7

it has a relation with Instance with internal identifier “7.2”. Instance 7.2 also has a relation with “7.1” 

as can be seen in the InverseRelations

these two Instances. 

5.6. Querying and Transformin

Metadata querying and transforming is implement as described in 

highlight the capabilities of these mechanisms in the metada

“Club” concept is in the repository

5.17. A Club has a name (that’s used as an identifier), the name of the country where it’s located and 

the name of its stadium. 

Figure 

Figure 

the management file for an Instance with internal identifier “7

with internal identifier “7.2”. Instance 7.2 also has a relation with “7.1” 

InverseRelations element, which means there’s a cyclic reference between 

Querying and Transforming 

Metadata querying and transforming is implement as described in 4.5

highlight the capabilities of these mechanisms in the metadata repository. As an example, suppose

in the repository and it has a XML Schema structure like the one

. A Club has a name (that’s used as an identifier), the name of the country where it’s located and 

Figure 5.16 Sample Instance Management File  

Figure 5.17 Club Concept XML Schema structure 

 

111 

the management file for an Instance with internal identifier “7.1” and 

with internal identifier “7.2”. Instance 7.2 also has a relation with “7.1” 

element, which means there’s a cyclic reference between 

4.5 and this chapter will 

ta repository. As an example, suppose a 

like the one depicted in Figure 

. A Club has a name (that’s used as an identifier), the name of the country where it’s located and 

 

 



 

 112 

Stored in the repository are two Insta

(Instance Manchester United and 

For this example, let’s consider the 

with the Arsenal Instance and the 

are the only relations these Instances have). 

every Club Instance, iterates through them, outputs the name, stadium and country of the Club as 

well as the name of the Club to which it’s related to (if it’s related)

Figure 

Stored in the repository are two Instances of this Concept, depicted in Figure 

and Arsenal, respectively). 

For this example, let’s consider the Manchester United Instance has a manually created relation 

Instance and the Arsenal Instance is not related with any other Instance (and these 

are the only relations these Instances have). Figure 5.20 presents a XQuery expression that retriev

, iterates through them, outputs the name, stadium and country of the Club as 

well as the name of the Club to which it’s related to (if it’s related). 

Figure 5.19 Instance Arsenal of Concept Club 

Figure 5.18 Instance Manchester United of Concept Club

Figure 5.18 and Figure 5.19 

 

as a manually created relation 

Instance is not related with any other Instance (and these 

presents a XQuery expression that retrieves 

, iterates through them, outputs the name, stadium and country of the Club as 

 

 

Instance Manchester United of Concept Club 



 

XQuery expressions are always executed in the context of the Instances collection

for details on the storage model) and to separate them from the repository’s storage model, a set of 

XQuery functions is provided in the form of a module that’s automatically included by every XQuery 

Instance. The module is defined in namespace 

“mdr” and provides a set of functions to deal with relations, identifie

content of the module will be 

mdr:getInstanceMRIOfConcept(MRI

Concept, while the mdr:getInstance(MRI) function retrieves a given Instance. The 

Figure 

XQuery expressions are always executed in the context of the Instances collection

r details on the storage model) and to separate them from the repository’s storage model, a set of 

XQuery functions is provided in the form of a module that’s automatically included by every XQuery 

The module is defined in namespace http://mdr.di.fct.unl.pt and mapped to the prefix 

“mdr” and provides a set of functions to deal with relations, identifiers and document retrieval, the

content of the module will be described in 5.6.1. In the example XQuery, the 

MRI) function is used to get the MRIs of all 

Concept, while the mdr:getInstance(MRI) function retrieves a given Instance. The 

Figure 5.20 XQuery example 

Figure 5.21 Instance of the Query System Concept 

 

113 

XQuery expressions are always executed in the context of the Instances collection (see section 5.4 

r details on the storage model) and to separate them from the repository’s storage model, a set of 

XQuery functions is provided in the form of a module that’s automatically included by every XQuery 

and mapped to the prefix 

rs and document retrieval, the 

In the example XQuery, the 

the MRIs of all Instances of the Club 

Concept, while the mdr:getInstance(MRI) function retrieves a given Instance. The 

 

 



 

 114 

mdr:getRelations(MRI) function is retrieves the MRIs of Instance to which this Instance relates to.

XQuery expression depicted in Figure 

Query System Concept where it wou

identified with the MRI mdr://transform.system.di.fct.unl.pt/Transform/Clubs&1 (which is a XSLT to 

output HTML), the definition of the Query Instance is depicted in 

The result of invoking the previous q

executeQuery(QueryName) method 

Since the result of the query is XML, 

to execute the query and pass its results to an associated XSLT (like the one referenced in 

5.21) and the result is depicted in 

 

etRelations(MRI) function is retrieves the MRIs of Instance to which this Instance relates to.

Figure 5.20, could be stored in the repository as an Instance of the 

Query System Concept where it would be related with the Instance of the Transform System Concept 

identified with the MRI mdr://transform.system.di.fct.unl.pt/Transform/Clubs&1 (which is a XSLT to 

output HTML), the definition of the Query Instance is depicted in Figure 5.21.

previous query, using the web service interface 

method is depicted in Figure 5.22. 

e the result of the query is XML, another method could be invoked in th

to execute the query and pass its results to an associated XSLT (like the one referenced in 

) and the result is depicted in Figure 5.23. 

Figure 5.22 Result of XQuery execution 

 

Figure 5.23 XSLT applied to the result of a query 

etRelations(MRI) function is retrieves the MRIs of Instance to which this Instance relates to. The 

, could be stored in the repository as an Instance of the 

ld be related with the Instance of the Transform System Concept 

identified with the MRI mdr://transform.system.di.fct.unl.pt/Transform/Clubs&1 (which is a XSLT to 

. 

, using the web service interface and invoking the 

another method could be invoked in the web service interface 

to execute the query and pass its results to an associated XSLT (like the one referenced in Figure 

 



 

 115 

5.6.1. Repository Built-in XQuery Functions 

Querying is a very important functionality of the Metadata Repository and the use of XQuery was 

a design choice; to abstract from the storage model of the repository and from the implementation 

choices regarding internal identifiers, a set of XQuery functions is provided by the repository. These 

functions are grouped in a XQuery module that’s automatically included in each XQuery expression 

that’s executed within the Metadata Repository (with the prefix “mdr”). The list of functions is 

presented and described in the following table. 

Function Description 

getRelationsInstance(MRI) Given the MRI of an Instance, returns a list of MRIs of Instances that the Instance 
relates to. 

getInverseRelationsInstance(MRI) Given the MRI of an Instance, returns a list of MRIs of Instances that have a relation 
with this Instance. 

getAllInstances() Returns all Instances of the repository, similar to the use of the XQuery 
collection(“CollectionName”) function. 

getInstance(MRI) Returns a single Instance given it’s MRI 

getInstancesOfConcept(MRI) Returns all Instances of a Concept, given the Concept’s MRI 

getLatestVersionInstances(MRI) Returns the latest version of each Instance of a Concept, given the Concept’s MRI 

getInstanceMRIOfConcept(MRI) Returns the list of MRIs of every Instance of a Concepts, given the Concept’s MRI 

getInstanceMRILatestVersion(MRI) Returns the list of MRIs of the latest version of each Instance, given the MRI of the 
parent Concept 

Table 5.6 List of XQuery functions provided by the repository 

 

5.7. Implementation Status 

This section lists the implementation status of the features of the Metadata Repository and 

presents the reasons for the status of each partially or non-implemented feature.  

 

 



 

 116 

Table 5.7 Implementation status of the features of the Repository 

Functionality Implementation 

Complete Partial Notes 

Metadata Storage  X  

Supporting database X   

Multiple Databases   a) 

Storage Model X   

Batch Storage X   

System Concepts and Instances  X b) 

Metadata Validation and Integrity  X c) 

Metadata Updates X   

Metadata Querying and Export X   

Metadata and Search   d) 

Users and Authentication  X e) 

 

Notes: 

a) Multiple database support is a feature that, for the purpose of validating the repository’s importing of 

metadata features and promotion of existing definition, adds no value and due to time constraints it was not 

implemented. 

b) Schematron System Concept and Instances, were not implemented due to time constraints and their value 

in extra validations were a small gain to the repository. 

c) Metadata Validation and Integrity are fully implemented, except for relations using XPath to select part of 

the content of a target Instance. The automatic relation’s behavior of updating the content of the origin 

Instance in case the target instance is changed is also not implemented, but the necessity of such a feature is 

arguable as most users will probably want to maintain control over the content of Instances (and who 

updates it) and not leave it to a metadata repository. 



 

 117 

d) Metadata about the elements in the Information Model (Fragments, Concepts, Instances and Relations) was 

not implemented as well as search functions, due to time constraints and the fact that without a user-

friendly graphical interface, searching is a not very important feature as well as it was not the mains focus of 

the thesis. 

e) Users are managed by the database system and authentication is done against the database by the 

repository, but the repository only stores information about a system user in its configuration files as all 

other user-related information are stored in the database. 





 

 119 

 

Chapter 6  
Validation 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6.1 Space Environment Support System - SESS………………………………………………………………………… 120 
6.2 ITDS - Xeo…….…….…….…….…….…….…….…….…….…….…….…….…….…….…….…….…….…….…………. 

 
129 

This chapter presents validation tests that were 

performed to assess if the repository complied with 

the requirements defined as objectives  



 

 120 

 
To provide evidence that the Metadata Repository complies with the requirements listed in 

section 3.1, two validation tests were conducted: The SESS tests and the ITDS test. The tests involved 

the creation of Fragment and Concept definitions (including definition of automatic relations based 

on content) and loading those Fragments and Concepts in the repository as well as loading a set of 

Instances and afterwards checking if the relations were successfully captured and the external 

metadata integrated. 

 

6.1. Space Environment Support System - SESS 

The Space Environment Support System (SESS) project, previously presented in section 1.2, was 

developed to monitor space weather and spacecraft phenomenon. In the project, a metadata 

repository was developed to store and manage metadata. The repository’s information model was 

also based on MOF and featured the notions of Concepts and Instances represented as XML Schemas 

and XML documents, respectively. To model all of the domain metadata, a set of Concepts was 

created and Instances were produced as a result of normal system operation. To test if this Metadata 

Repository complied with the requirements presented in section 3.1, two tests were made using the 

content of the SESS project. The first test consisted in the integration of the XML Schemas of SESS’s 

Concepts and loading of the XML documents; the second required modeling the set of SESS’s 

Concepts into Fragments and Concepts of this repository and then loading Instances. The list of 

Concepts used in this validation includes the full list of Concepts that modeled the domain of the 

project (and are described in  

Table 6.1) as well as a small set of Concepts that represented technical metadata (depicted in 

Figure 6.1). 

Table 6.1 List of Concepts from SESS project 

Concept Description Instances 

Ground Base Stations located on the earth that perform S/W measurements using 

dedicated instruments 

28 

Ground Station Stations located on the earth that are used for transmitting 

information to or receiving information from a S/C 

4 



 

 121 

S/C Event Types of temporal occurrences with the S/C during its operating 

phase, described start time, end time and value. 

0 

S/C Parameter Types of numeric or textual S/C telemetry measures in time, as 

functions in time – f(t) 

113 

S/C Position Types of components of a S/C position in time – f(t) 9 

S/W Event Types of temporal S/W occurrences, described by start time, end time 

and value. 

188 

S/W Parameter Types of single numeric S/W measures in time – f(t), or multiple 

component S/W measures in time – f1(t), f2(t), f3(t) 

226 

S/W Parameter Component Types of component S/W measures in time of a S/W measure – f(t) 174 

Space Agency Space Agencies that operate S/C missions 2 

Spacecraft Spacecraft that performs S/W measures or belongs to S/C missions 8 

 

Domain concepts are related with each other and those relations are expressed through instance 

relation elements. In Figure 6.1, the relationships between domain Concepts (as well as the relations 

with the technical Concepts) are depicted. 

 

 



 

 122 

All the concepts and instances of the SESS 

demonstration purposes and to limit the extent of the example, in this chapter the results will be 

limited to Concepts in the gray area

Figure 

Figure 

All the concepts and instances of the SESS project were imported in the repository, but for 

demonstration purposes and to limit the extent of the example, in this chapter the results will be 

area in Figure 6.2. 

Figure 6.2 SESS Concepts used as an example in import

Figure 6.1 SESS domain concepts relationships, taken from 
 

project were imported in the repository, but for 

demonstration purposes and to limit the extent of the example, in this chapter the results will be 

 

 

SESS Concepts used as an example in import 

 

SESS domain concepts relationships, taken from [1] 



 

 123 

The example will feature the Spacecraft Concept (related to the Space Agency and Ground Station 

Concept), the Space Agency Concept, the Ground Station Concept and the S/C Position Concept 

(related to the Spacecraft Concept), with a total of four concepts and twenty three (23) instances. To 

test if the repository met the various requirements present in section 3.1, two tests were made, 

which are described in the following sections. 

6.1.1. Standalone Test 

To test the capacity of the repository of loading external metadata “as-is”, concepts of the SESS 

project were converted into Concepts of this repository by declaring the structure of each Concept as 

an embedded schema with the full XML schema definition of the SESS one. An example is in Figure 

6.3, where the definition of the GroundStation Concept is depicted. In area “1” (of Figure 6.3) the 

definition of the XPath to identify Instances, because every SESS Instance had a unique Name 

element, which is a very good choice for using XPath as the method to identify Instances. The 

structure of the Concept is depicted in “2” and is the entire schema of the Groundstation XML 

Schema (not visible in the picture due to size restrictions). The Grounstation Concept defines a 

relation with the SpaceAgency Concept and in “3” the valid target is declared. In “4” is the 

declaration of the automatic rules (XPath) to create of relations in an automatic way.  



 

 124 

Concepts were all declared in the same way and loaded

loaded and the relations automatically captured by the XPath rules. The 

depicted in Figure 6.4, where the Instances of each of the four Concepts used 

named using the value of the 

ShortName). The analysis of the figure shows that every SCPosition Instance was related to the same 

Spacecraft Instance and that the 

related to it, as opposed to the Nasa

Figure 

Concepts were all declared in the same way and loaded in the repository, then Instances were 

loaded and the relations automatically captured by the XPath rules. The 

, where the Instances of each of the four Concepts used 

named using the value of the ShortName element in their content (each Instance has a unique 

. The analysis of the figure shows that every SCPosition Instance was related to the same 

Spacecraft Instance and that the ESA Instance of the GroundStation Concept had eight Instances 

Nasa Instance that only had four relations to it.

Figure 6.3 Definition of Concept Groundstation from SESS

 

in the repository, then Instances were 

loaded and the relations automatically captured by the XPath rules. The captured relations are 

, where the Instances of each of the four Concepts used for the example are 

element in their content (each Instance has a unique 

. The analysis of the figure shows that every SCPosition Instance was related to the same 

tion Concept had eight Instances 

Instance that only had four relations to it. 

 

Definition of Concept Groundstation from SESS 



 

6.1.2. Reusability Test

To validate the reusability requirement, a test 

SESS into Fragments and creating Concepts by reusing those Fragments wherever possible was made. 

The use of Fragments is better suited in an Information System being built from scratch, where 

information can be defined as separate parts and be constan

show the use of Fragments the Concepts of SESS were 

Fragments.  In this chapter, the 

were chosen because they make use of other schemas and, thus, those schemas are a good choice to 

be converted in Fragments). To illustrate the dependencies between the existing Concepts, in 

6.5 is depicted which schemas import or include other schem

name space or not. 

 

 

 

Figure 

Reusability Test 

To validate the reusability requirement, a test that consisted in converting the same 

and creating Concepts by reusing those Fragments wherever possible was made. 

The use of Fragments is better suited in an Information System being built from scratch, where 

information can be defined as separate parts and be constantly reused as Fragments, but in order 

the Concepts of SESS were “re-engineered” in order to make use of 

the Concepts used are the same ones used in the previous test (which 

make use of other schemas and, thus, those schemas are a good choice to 

To illustrate the dependencies between the existing Concepts, in 

is depicted which schemas import or include other schemas and if those schemas have a target 

Figure 6.4 Graph of captured relations from Instances of SESS

 

125 

 

converting the same schemas from 

and creating Concepts by reusing those Fragments wherever possible was made. 

The use of Fragments is better suited in an Information System being built from scratch, where 

tly reused as Fragments, but in order to 

in order to make use of 

same ones used in the previous test (which 

make use of other schemas and, thus, those schemas are a good choice to 

To illustrate the dependencies between the existing Concepts, in Figure 

as and if those schemas have a target 

 

Graph of captured relations from Instances of SESS 



 

 126 

 

Figure 6.5, at the center, features the four Concepts (Ground Station, Spacecraft, SCPosition and 

Space Agency) used in this example. Each of them import

SESS repository’s rules, and the Ground Station concept includes the 

Position concept, includes the parameter_base

schemas (and their content) the choice w

into Fragments and using the composition method to recreate the four Concepts

embedded schema to use the elements that are part of each Concept and were

included/imported schemas. 

Fragments 

The build process of Fragments was simple, as none of the schemas (DIM, base and 

parameter_base) included/imported other schemas

schema name and all of them associated to the re

means the following MRI’s were associated to the Fragments:

• mdr://sess.uninova.pt/DIM (Dim.xsd)

• mdr://sess.uninova.pt/baseMdr

• mdr://sess.uninova.pt/parameterBase (parameter_base.xsd)

Figure 6

, at the center, features the four Concepts (Ground Station, Spacecraft, SCPosition and 

Space Agency) used in this example. Each of them imports the base XML sch

SESS repository’s rules, and the Ground Station concept includes the DIM

parameter_base schema. After analyzing the relations between the 

schemas (and their content) the choice was to transform Base.xsd, DIM.xsd 

omposition method to recreate the four Concepts

embedded schema to use the elements that are part of each Concept and were

The build process of Fragments was simple, as none of the schemas (DIM, base and 

parameter_base) included/imported other schemas. Each Fragment was given a name equal to their 

schema name and all of them associated to the repository namespace “sess.uninova.pt” which 

means the following MRI’s were associated to the Fragments: 

mdr://sess.uninova.pt/DIM (Dim.xsd) 

mdr://sess.uninova.pt/baseMdr (base.xsd) 

mdr://sess.uninova.pt/parameterBase (parameter_base.xsd) 

6.5 Relations between Concepts and included Schemas

, at the center, features the four Concepts (Ground Station, Spacecraft, SCPosition and 

chema, as required by the 

DIM schema, while the SC 

After analyzing the relations between the 

 and parameter_base.xsd 

omposition method to recreate the four Concepts, including locally 

embedded schema to use the elements that are part of each Concept and weren’t part of any of the 

The build process of Fragments was simple, as none of the schemas (DIM, base and 

ach Fragment was given a name equal to their 

pository namespace “sess.uninova.pt” which 

  

included Schemas 



 

Each Fragment’s structure was defined by using the embedded schema option, as depicted in 

Figure 6.6 (example for the DIM Fragment, the same was done with the other two)

Concepts 

Each Concept in the example was built in the

of already existing Fragments with the inclusion of local embedded schema where needed. In 

6.7, the definition of the GroundStation Concept is depicted and will be described

paragraphs. 

The Instance identification method is the same as used 

taking advantage of the fact that each Instance had a unique name (as seen in the area marked by 

“1” in Figure 6.7). The structure of the Concept is 

GroundStation element, this is required as all Instances of the SESS Ground Station Concept had this 

element as its root element and, as explained in the Concept Defini

wrapper element will be converted in a XML Schema element with the same name. The same target 

namespace of the SESS Concept is used in the Concept definition (which can be seen in the area 

marked by “2”). The definition of the Structure is highlighted in areas 3,4 and 5 in the figure and is 

built as a sequence of elements. The sequence starts by reusing two 

(identificationElementGroup and 

then use locally embedded XML schema to include an element that was part of the GroundStation 

Figure 

ucture was defined by using the embedded schema option, as depicted in 

(example for the DIM Fragment, the same was done with the other two)

Each Concept in the example was built in the same way. The structure created was a composition 

of already existing Fragments with the inclusion of local embedded schema where needed. In 

, the definition of the GroundStation Concept is depicted and will be described

The Instance identification method is the same as used in the previous chapter, using 

taking advantage of the fact that each Instance had a unique name (as seen in the area marked by 

). The structure of the Concept is a composition whose wrapper element is the 

element, this is required as all Instances of the SESS Ground Station Concept had this 

element as its root element and, as explained in the Concept Definition Language (

wrapper element will be converted in a XML Schema element with the same name. The same target 

namespace of the SESS Concept is used in the Concept definition (which can be seen in the area 

2”). The definition of the Structure is highlighted in areas 3,4 and 5 in the figure and is 

sequence of elements. The sequence starts by reusing two 

and documentElementsGroup, area 3) from the baseMdr F

then use locally embedded XML schema to include an element that was part of the GroundStation 

Figure 6.6 Fragment definition of the DIM Fragment 

 

127 

ucture was defined by using the embedded schema option, as depicted in 

(example for the DIM Fragment, the same was done with the other two). 

 

same way. The structure created was a composition 

of already existing Fragments with the inclusion of local embedded schema where needed. In Figure 

, the definition of the GroundStation Concept is depicted and will be described in the following 

in the previous chapter, using  XPath and 

taking advantage of the fact that each Instance had a unique name (as seen in the area marked by 

composition whose wrapper element is the 

element, this is required as all Instances of the SESS Ground Station Concept had this 

tion Language (4.2.2), this 

wrapper element will be converted in a XML Schema element with the same name. The same target 

namespace of the SESS Concept is used in the Concept definition (which can be seen in the area 

2”). The definition of the Structure is highlighted in areas 3,4 and 5 in the figure and is 

sequence of elements. The sequence starts by reusing two group elements 

, area 3) from the baseMdr Fragment and 

then use locally embedded XML schema to include an element that was part of the GroundStation 

 

 



 

 128 

Concept (marked in area 4 and the same is true for the following 

Area 5 depicts the reuse of the DIM Fragment, referenci

Fragment baseMdr is reused again, but this time the Concept definition is reusing an attribute group 

definition. 

In Figure 6.7 there are no declaration of relations (as were presented i

Figure 6.3) but only because of space restrictions, they were present when that definition 

into the repository. 

The result of loading the definition in the repository is a XML Schema, that’s d

 

 

 

 

Figure 

Concept (marked in area 4 and the same is true for the following SpaceAgencyRelation

Area 5 depicts the reuse of the DIM Fragment, referencing the Location element. Finally, in area 6, 

Fragment baseMdr is reused again, but this time the Concept definition is reusing an attribute group 

there are no declaration of relations (as were presented in the Concept definition in 

) but only because of space restrictions, they were present when that definition 

The result of loading the definition in the repository is a XML Schema, that’s d

Figure 6.7 Groundstation Concept Definition 

SpaceAgencyRelation element). 

element. Finally, in area 6, 

Fragment baseMdr is reused again, but this time the Concept definition is reusing an attribute group 

n the Concept definition in 

) but only because of space restrictions, they were present when that definition was loaded 

The result of loading the definition in the repository is a XML Schema, that’s depicted in Figure 6.8 

 



 

In the area marked as “1” the import and includes of the Fragments is done, while in area 2 is the 

set of elements that were included with the use of local embedded Schema. Area 3

reference to elements from the baseMdr Fragment and area 4 the reference to elements locally 

embedded (GroundStationNumber

(Location). After the conversion of each Concept and Fragment 

and each Instance was also loaded in the repository, with every relation being captured in the same 

automatic way as it was previously described. The graph of relations between instances is depicted in 

Figure 6.4. 

Evaluation 

The purpose of the test was to evaluate importing of external metadata “as

Fragments to promote information reuse. Although the content from SESS was not particularly suited 

for this, it was possible to conce

with no trouble. Relations between Instances were also automatically captured and stored in the 

repository and, thus, the repository is able to deal with the requirements

import, validity, integrity, relationships and reuse.

6.2. ITDS - Xeo 

ITDS (Internet, Tecnologias e Desenvolvimento de Software)  

company that has created and developed the XEO platform. XEO stands for eXtensible Enterprise 

Objects and is a platform for business 

professional teams of business analysts and users to develop and maintain complex business 

Figure 6.8

In the area marked as “1” the import and includes of the Fragments is done, while in area 2 is the 

set of elements that were included with the use of local embedded Schema. Area 3

reference to elements from the baseMdr Fragment and area 4 the reference to elements locally 

GroundStationNumber and SpaceAgencyRelation) and referenced of the DIM Fragment

). After the conversion of each Concept and Fragment they were load

and each Instance was also loaded in the repository, with every relation being captured in the same 

previously described. The graph of relations between instances is depicted in 

The purpose of the test was to evaluate importing of external metadata “as

Fragments to promote information reuse. Although the content from SESS was not particularly suited 

for this, it was possible to concert the content in Fragments and Concepts and still loading Instances 

with no trouble. Relations between Instances were also automatically captured and stored in the 

repository and, thus, the repository is able to deal with the requirements such as metadata

import, validity, integrity, relationships and reuse. 

ITDS (Internet, Tecnologias e Desenvolvimento de Software)  [119] is a Portuguese software 

that has created and developed the XEO platform. XEO stands for eXtensible Enterprise 

platform for business modeling and applications development 

professional teams of business analysts and users to develop and maintain complex business 

8 Result of converting a Concept definition in XML Schema

 

129 

 

In the area marked as “1” the import and includes of the Fragments is done, while in area 2 is the 

set of elements that were included with the use of local embedded Schema. Area 3 shows the 

reference to elements from the baseMdr Fragment and area 4 the reference to elements locally 

) and referenced of the DIM Fragment 

they were loaded in the repository 

and each Instance was also loaded in the repository, with every relation being captured in the same 

previously described. The graph of relations between instances is depicted in 

The purpose of the test was to evaluate importing of external metadata “as-is” and the use of 

Fragments to promote information reuse. Although the content from SESS was not particularly suited 

rt the content in Fragments and Concepts and still loading Instances 

with no trouble. Relations between Instances were also automatically captured and stored in the 

such as metadata storage, 

is a Portuguese software 

that has created and developed the XEO platform. XEO stands for eXtensible Enterprise 

development that allows 

professional teams of business analysts and users to develop and maintain complex business 

 

Result of converting a Concept definition in XML Schema 



 

 130 

applications with much less effort and risk, simply by 

requirements in the form of business objects

ITDS uses XML to store XEO’s 

The framework uses objects as input and transforms them in 

content. ITDS was a company that was contacted during this thesis for feedback about the 

repository’s features and capabilities and they kindly agreed in supplying a small set of their XML 

objects to validate the metadata repository as a solution 

All of XEO’s objects are instances of one XML Schema, which was used to create a Concept in the 

repository. Objects are related to each other and those relations 

those objects, making them a candidate for th

ITDS supplied a set of one hundred and forty three (143) objects that are part of the base of their 

framework and these objects we imported as Instances of the Concept previously created (which 

includes the definition of automatic relations).

To load XEO’s objects in the repository a 

www.itds.pt and the structure of the Concept was the embedded schema supplied by ITDS as seen in 

Figure 6.9 (content of the schema omitted)

The content of a XEO object has an attribute that is unique among all object

natural choice for identifying objects with

example, the full MRI of object 

objects relate only to other XEO objects, the definition of a relation is done with a single target 

Concept (itself) and several automatic relation rules, since it can relate to 

ways. A subset of the relation definition is depicted in 

 

applications with much less effort and risk, simply by modeling their real wo

requirements in the form of business objects. 

ITDS uses XML to store XEO’s business objects, which are basically metadata for their framework. 

The framework uses objects as input and transforms them in an application according to their 

ITDS was a company that was contacted during this thesis for feedback about the 

repository’s features and capabilities and they kindly agreed in supplying a small set of their XML 

objects to validate the metadata repository as a solution for metadata integration. 

All of XEO’s objects are instances of one XML Schema, which was used to create a Concept in the 

repository. Objects are related to each other and those relations are reflected in the XML content of 

those objects, making them a candidate for the automatic capturing of relations

ITDS supplied a set of one hundred and forty three (143) objects that are part of the base of their 

and these objects we imported as Instances of the Concept previously created (which 

the definition of automatic relations). 

To load XEO’s objects in the repository a xeoModel Concept was created under the namespace 

and the structure of the Concept was the embedded schema supplied by ITDS as seen in 

(content of the schema omitted). 

The content of a XEO object has an attribute that is unique among all object

e for identifying objects with XPath as seen in the previous figure

full MRI of object Ebo_Flag is mdr://www.itds.pt/xeoModel/Ebo_Flag

objects relate only to other XEO objects, the definition of a relation is done with a single target 

Concept (itself) and several automatic relation rules, since it can relate to 

ways. A subset of the relation definition is depicted in Figure 6.10. 

Figure 6.9 xeoModel Concept definition 

their real world’s business 

metadata for their framework. 

application according to their 

ITDS was a company that was contacted during this thesis for feedback about the 

repository’s features and capabilities and they kindly agreed in supplying a small set of their XML 

ntegration.  

All of XEO’s objects are instances of one XML Schema, which was used to create a Concept in the 

reflected in the XML content of 

e automatic capturing of relations, based on content. 

ITDS supplied a set of one hundred and forty three (143) objects that are part of the base of their 

and these objects we imported as Instances of the Concept previously created (which 

Concept was created under the namespace 

and the structure of the Concept was the embedded schema supplied by ITDS as seen in 

The content of a XEO object has an attribute that is unique among all objects and, as such, is the 

XPath as seen in the previous figure (Xpath element). As an 

mdr://www.itds.pt/xeoModel/Ebo_Flag. Since XEO 

objects relate only to other XEO objects, the definition of a relation is done with a single target 

Concept (itself) and several automatic relation rules, since it can relate to other objects in several 

 



 

The relation definition in the previous figure is only part of the definition and features two 

automatic relation rules, of the total of five declared in the full Concept definition.

in the repository, the number of relations was counted and ascended to one hundred and sixty eight 

(168) relations between the set of 

 

6.2.1. Evaluation 

The test case with XEO objects 

that is not available anywhere) stored the metadata after its validation and captured automatic 

relationships between objects. This situation 

requirements presented in section 

solution for the integration of external, real

 

The relation definition in the previous figure is only part of the definition and features two 

elation rules, of the total of five declared in the full Concept definition.

in the repository, the number of relations was counted and ascended to one hundred and sixty eight 

of objects. 

test case with XEO objects required that the repository imported external metadata (of a type 

that is not available anywhere) stored the metadata after its validation and captured automatic 

relationships between objects. This situation allows to validate the repository in some of the 

requirements presented in section 3.1, such as 1,2,3,4 and 6. Making the metadata repository a good 

solution for the integration of external, real-world, data. 

Figure 6.10 xeoModel relation definition sample 

 

131 

 

The relation definition in the previous figure is only part of the definition and features two 

elation rules, of the total of five declared in the full Concept definition. After the insertion 

in the repository, the number of relations was counted and ascended to one hundred and sixty eight 

required that the repository imported external metadata (of a type 

that is not available anywhere) stored the metadata after its validation and captured automatic 

he repository in some of the 

, such as 1,2,3,4 and 6. Making the metadata repository a good 

 





 

Chapter 7  
Conclusions and Future Work 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

  

7.1 Conclusions……………….……….……….……….……….……….……….……….……….……….……….………….. 134 
7.2 Future Work……….……….……….……….……….……….……….……….……….……….……….……….……….. 136 

This chapter draws final conclusions on the design 

and implementation of this thesis and presents future 

work activities   



 

 134 

This chapter draws final conclusions on the design and implementation of this thesis and presents 

future work. 

7.1. Conclusions 

The metadata repository, whose design and implementation is presented in this thesis, was built 

to comply with several requirements in metadata management (as listed in chapter 3.1) with strong 

emphasis on integration of external metadata and reusability. By complying with the requirements, 

the metadata repository becomes a solution for metadata management in any small or medium 

enterprise and it was designed to be the support for other systems. It has a lightweight architecture 

with a single web service interface so that other systems and management applications can connect 

to, using the stored metadata as source of input with quality guarantees. 

The use of an adequate information model combined with XML technologies to represent, validate 

and process metadata provides the repository with the extensibility and flexibility to ensure 

compliance with several of the requirements. The absence of restrictions imposed to documents 

eases the integration process and the use of a XML language to define the properties of elements in 

the M2 layer of the Information Model enables a separation between the XML vocabulary defined by 

the elements and the properties items in that layer can have inside the repository. This means 

documents can be imported “as-is”, without any effort of conversion. The use of Fragments (and 

XSLT templates associated to them) provides the mechanism to reuse available knowledge and avoid 

building definitions from scratch when they could be reused, thus, promoting reusability and being 

an advantage in the adoption of the repository. Still part of the information model, the repository 

features a relationships mechanism that allows representing dependencies between objects in the 

real world, by enabling the creation of connections between the metadata that represents these real 

world objects and maintaining the integrity of these relations through time (while assuring the 

metadata is valid at all times). 

To store metadata, the repository acts as a database management system and since XML 

technologies are extensively used, a native XML database was chosen as the support for persistent 

storage. Once the metadata is stored the repository provides management features such as a 

versioning system for each element of the information model (except the M3 layer) or querying and 

exporting mechanisms (via XQuery and XSLT) to enable sharing and exporting information with other 

systems or applications. 

The promotion of reusability is extended to the XSLT field, as Fragments can have associated XSLT 

templates that can be reused by other XSLTS (via a special processing instruction) or by Instances of 

the System Concept “Generic Transform” which creates on-the-fly XSLT to process Instances based 

on the structure of a Concept and on available XSLT associated to Fragments that are used by the 

Concept. Queries are defined in XQuery (stored in the repository as Instances of a System Concept) 



 

 135 

and can be linked to XSLTs or XSLT Pipelines so that applications connecting to the repository can 

request the execution of a query and subsequent XSLT execution over the results of the query, by just 

invoking a method in the API, specifying the query name and the transformation name associated to 

that query. 

The metadata repository provides features that ease the integration of external metadata and 

captures relations from an already existing context by content matching in documents. This feature, 

however, has a severe penalty in performance, as the number of documents to be queried can be 

very high, if the number of target Concepts is considerable or if the total number of Instances of 

target Concepts is considerable. Automatic relations are a powerful feature, but using it in systems 

with heavy load or with a high number of documents can lead to performance degradation. It is up to 

the users of the repository to assess if the performance penalty is acceptable or not. 

Fragments are at the core of the reusability features of the repository as they allow reusing 

already existing elements to create new definitions. However, the reusability mechanisms in the 

repository are “element-oriented” i.e. it’s possible to explicitly reuse elements, but XML Schema also 

has a property of defining “types” of elements that other elements can reuse, this mechanism is used 

when creating a new element and its structure is already defined in a “type”. Fragments are only built 

to reuse elements and not to create elements reusing structure (also because, in this way XSLT 

templates would be more difficult to associated to a Fragment, as XSLT are mainly designed to 

process elements and not “type” definitions).  

Metadata about Instances, Concepts, Fragments and relations was not implemented due to time 

constraints and the lack of a graphical tool that supported search by end-users, despite the presence 

of search mechanisms in any repository application being essential as stated in [17]: “It can therefore 

be concluded that the ability to find information is not just a “nice to have” but it drastically affects 

the bottom line”. The lack of such a tool makes any search mechanism to users rather useless and to 

applications it makes no difference, as common searches are keyword-based and no meaning or 

context is associated to them, as such, they would have great difficulty to process the results of such 

a search. The Sedna database does not have a built-in XQuery full-text extension, but the database 

engine implements the XQuery function “contains” that can be used for simple searches and 

supports the integration of the dtsearch [120] module, which provides a full-text search extension to 

XQuery. The dtsearch module features several kinds of searches, such as word searching, boolean 

searching, wildcard, phonic searching, fuzzy searching and synonym search. As a result, the 

repository is prepared to support competent search mechanisms and in the event a graphical tool to 

manage the repository content is produced it can make the interface to these features. 

Despite the problems described earlier, the metadata repository designed and implemented in this 

thesis was able to integrate metadata from external sources (SESS and ITDS) and capturing relations 

in an automatic way from the content of those sources. A “Fragment-version” of the SESS project in 



 

 136 

order to achieve a higher degree of reusability was also designed and loaded successfully in the 

repository. The result of these tests is a reason to think of the repository as a viable solution for the 

support of information systems that base their integration strategy in a metadata solution. 

7.2. Future Work 

This section presents future activities for the work described in this thesis, for the design and 

implementation of the metadata repository. Regarding these activities the following points are 

suggested.  

Performance – Implementation of caching mechanisms to enhance performance of the repository in 

several operations, such as the generation of XML Schemas, generation of XSLTs that reuse 

Fragments XSLTs or results of XQuery queries. 

Management Console – For the use of the repository in an Information System, a standalone 

graphical management console (preferably a web-based one) is required so that users can manage 

the content of the repository. 

Multiple-Database – Support for multiple databases, which can be used to support different systems 

with only one instance of the metadata repository. 

Metadata and Search – Implement the storage of metadata about the elements in the Information 

Model (Instances, Concepts, Fragments and Relations) and provide a search mechanism, preferably 

associated to the management console. 

Fault tolerance mechanisms – The metadata repository is designed to be a support for an 

Information System and high availability is required. This would require implementing fault-tolerance 

mechanisms and testing them in real world situations, with repositories in distinct geographic 

locations. 

Concept and Fragment Editor – Fragments and Concepts are defined using a XML language. To 

abstract users of this design choice by providing a graphical tool to “build” Fragments and Concepts, 

using the repository as a source of information. The ability to easily reuse Fragments to build 

Fragments and Concepts would be another step in the promotion of reusability. 

In the context of this thesis, the software-house ITDS showed interest in the metadata repository 

as a solution to manage their business objects library (XML objects) in order to help documents and 

reuse those objects, because of the lack of centralized source of these objects leads to the creation of 

new objects from scratch. Their interest went beyond and a meeting with the purpose of discussing 

the use (and customization) of the metadata repository as a tool to support their framework is in 

agenda.



 

References 
1. Martins, R.F., Extensible Metadata Repository for Information Systems, in Department of Computer Science. 

2007, Universidade Nova de Lisboa: Monte da Caparica. p. 200. 

2. Schmidt, A., et al., XMark: a benchmark for XML data management, in Proceedings of the 28th international 

conference on Very Large Data Bases. 2002, VLDB Endowment: Hong Kong, China. 

3. David Marco, M.J., Universal Metadata Models. 2004: Wiley Computer Publishing. 

4. Tannembaum, A., Metadata Solutions - Using Metamodels, Repositories, XML and Enterprise Portals to Generate 

Information on Demand. 2002: Adisson-Wesley. 

5. Vaduva, A. and K.R. Dittrich, Metadata Management for Data Warehousing: Between Vision and Reality, in 
Proceedings of the International Database Engineering & Applications Symposium. 2001, IEEE Computer Society. 

6. SOA. Service Oriented Architecture  2008; Available from: http://www.opengroup.org/projects/soa/. 

7. BPEL4WS. Business Process Execution Language for Web Services.  2008; Available from: 
http://www.ibm.com/developerworks/library/specification/ws-bpel/. 

8. BPML. Business Process Modeling Language.  2008; Available from: http://www.ebpml.org/bpml.htm  

9. ESA. Space Environment Support System for Telecom/Navigation Missions (SESS).  2005; Available from: 
http://telecom.esa.int/telecom/www/object/index.cfm?fobjectid=20470. 

10. Ferreira, R., et al., XML Based Metadata Repository for Information Systems, in EPIA 2005 - 12th Portuguese 

Conference on Artificial Intelligence. 2005: Covilhã, Portugal. 

11. Marco, D., Building and managing the Meta Data Repository: A Full Life-Cycle Guide. 2000: John Wiley & Sons, 
Inc. 416. 

12. XML. eXtensible Markup Language.  2008; Available from: http://www.w3.org/XML/  

13. Sun-Microsystems. Java EE at a Glance.  2008; Available from: http://java.sun.com/javaee/. . 

14. OMG. Object Management Group - MetaObject Facility (MOF).  2008; Available from: 
http://www.omg.org/mof/. 

15. OMG. Object Management Group.  2008; Available from: http://www.omg.org. 

16. Schematron. A language for making assertions about the presence or absense of patterns in XML documents.  
2008; Available from: http://www.schematron.com/. 

17. Inmon, W., B. O'Neil, and L. Fryman, Business Metadata: Capturing Enterprise Knowledge. 2007: Morgan 
Kaufmann Publishers. 

18. Murphy, L.D., Digital Document Metadata in Organizations: Roles, Analytical Approaches, and Future Research 

Directions, in Proceedings of the Thirty-First Annual Hawaii International Conference on System Sciences-Volume 

2 - Volume 2. 1998, IEEE Computer Society. 

19. Wootton, C., Developing Quality Metadata: Building Innovative Tools and Workflow Solutions. 2007: Focal Press. 

20. Harold, E.R., XML 1.1 Bible. 2004: John Wiley & Sons. 

21. SGML. W3C. Standard Generalized Markup Language Overview.  1995; Available from: 
http://www.w3.org/MarkUp/SGML/. 

22. W3C. World Wide Web Consortium.  2006; Available from: http://www.w3.org. 

23. HTML. HyperText Markup Language - W3C.  2006; Available from: http://www.w3.org/MarkUp/. 

24. Namespaces. Namespace in XML 1.0 (W3C).  2006; Available from: http://www.w3.org/TR/REC-xml-names/. 

25. Berners-Lee, T., R. Fielding, and L. Masinter, Uniform Resource Identifiers (URI): Generic Syntax. 1998: RFC Editor. 

26. DC, Dublin Core Metadata Initiative. 2008. 

27. McDonough, P., METS: standardized encoding for digital library objects. Int. J. Digit. Libr., 2006. 6(2): p. 148-158. 

28. XML Schema - Part 0: Primer Second Edition.  2004; Available from: http://www.w3.org/TR/xmlschema-0. 

29. Vlist, E.v.d., XML Schema. 2002: O'Reilly Media, Inc. 



 

 138 

30. XMLSpy, A. XML editor for modeling, editing, transforming, & debugging XML technologies. Available from: 
http://www.altova.com/products/xmlspy/xml_editor.html. 

31. Oxygen. XML Editor and XSLT Debugger. Available from: http://www.oxygenxml.com/. 

32. LibXML. The XML C parser and toolkit of Gnome. Available from: http://xmlsoft.org/. 

33. Xerces. Java Parser. Available from: http://xerces.apache.org/xerces-j/. 

34. Tools, X.S. List of XML Schema Tools (W3C).  2008; Available from: http://www.w3.org/XML/Schema#Tools. 

35. RELAX NG, a schema language for XML.  2008; Available from: http://relaxng.org/. 

36. DTD – Document Type Definition. Available from: http://www.w3.org/TR/REC-xml/#dt-doctype. 

37. OASIS. Relax NG Validators.  2009; Available from: http://relaxng.org/#validators. 

38. Skeleton - An Implementation of Schematron 1.5 in XSLT. 

39. XML Path Language (XPath) 2.0.  2006; Available from: http://www.w3.org/TR/xpath20/. 

40. Tidwell, D., XSLT: Mastering XML Transformations. 2007: O'Reilly Media, Inc. 

41. XSL Transformations (XSLT) Version 2.0.  2006; Available from: http://www.w3.org/TR/xslt20/. 

42. Holzner, S., Inside XSLT. 2001: New Riders Publishing. 616. 

43. XQuery 1.0: An XML Query Language.  2006; Available from: http://www.w3.org/TR/xquery/. 

44. Walmsley, P., XQuery. 2007: O'Reilly Media, Inc. 

45. Evjen, B., et al., Professional XML. 2007: Wrox Press Ltd. 

46. XML:DB. XML:DB Initiative: XUpdate - XML Update Language.  2000; Available from: http://xmldb-
org.sourceforge.net/xupdate/xupdate-wd.html. 

47. XML:DB. XML:DB Initiative for XML Databases.  2003; Available from: http://xmldb-org.sourceforge.net/. 

48. Chamberlin, D.D., et al., XQuery Update Facility 1.0, W.W.W. Consortium, Editor. 2008. 

49. XQilla. XQuery and XPath 2.0 Library.  2008; Available from: http://xqilla.sourceforge.net/XQueryUpdate. 

50. MonetDB. Database system with XQuery front-end.  2008; Available from: http://monetdb.cwi.nl/XQuery/. 

51. Semantic Web.  2006; Available from: http://www.w3.org/2001/sw/. 

52. Daconta, M.C., K.T. Smith, and L.J. Obrst, The Semantic Web: A Guide to the Future of XML, Web Services, and 

Knowledge Management. 2003: John Wiley & Sons, Inc. 281. 

53. Miles, A., et al., SKOS core: simple knowledge organisation for the web, in Proceedings of the 2005 international 

conference on Dublin Core and metadata applications: vocabularies in practice. 2005, Dublin Core Metadata 
Initiative: Madrid, Spain. 

54. Antoniou, G. and F. vanHarmelen, A Semantic Web Primer. 2004: MIT Press. 

55. OWL Web Ontology Language Use Cases and Requirements.  2004; Available from: 
http://www.w3.org/TR/webont-req/  

56. Silberschatz, A., H.F. Korth, and S. Sudarshan, Database Systems Concepts, ed. B.T. Allen. 1997: McGraw-Hill, Inc. 
821. 

57. Resource Description Framework (RDF).  2004; Available from: http://www.w3.org/RDF/. 

58. Beckett, D. New Syntaxes for RDF.  2003; Available from: http://www.dajobe.org/2003/11/new-syntaxes-
rdf/paper.html. 

59. An XML Syntax for RDF: RDF/XML. Available from: http://www.w3.org/TR/REC-rdf-syntax/#rdfxml. 

60. RDF Schemas and Namespaces. Available from: http://www.w3.org/TR/PR-rdf-syntax/#schemas. 

61. RDF Validation Service.  2007; Available from: http://www.w3.org/RDF/Validator/. 

62. RDF Vocabulary Description Language 1.0: RDF Schema.  2004; Available from: http://www.w3.org/TR/rdf-
schema/. 



 

 139 

63. SPARQL Query Language for RDF.  2006; Available from: http://www.w3.org/TR/rdf-sparql-query/. 

64. OWL Web Ontology Language.  2004; Available from: http://www.w3.org/TR/owl-features/. 

65. SKOS. Simple Knowledge Organization System.  2004; Available from: http://www.w3.org/2004/02/skos/. 

66. Common XML vocabularies.  2008; Available from: http://www.service-
architecture.com/xml/articles/common_xml_vocabularies.html. 

67. Oracle. Semantic Technologies Center. Available from: 
http://www.oracle.com/technology/tech/semantic_technologies/index.html. 

68. MySQL Xml Functions.  2008; Available from: http://dev.mysql.com/doc/refman/5.1/en/xml-functions.html. 

69. PostgreSQL 8.2.9 Documentation – XML Document Support.  2008; Available from: 
http://www.postgresql.org/docs/8.2/static/datatype-xml.html. 

70. XML Support in Microsoft SQL Server 2005.  2005; Available from: http://msdn.microsoft.com/en-
us/library/ms345117.aspx. 

71. OWL. Web Ontology Language  Guide.  2004; Available from: http://www.w3.org/TR/owl-guide/. 

72. Motik, B. and S. Grimm. Closed World Reasoning in the Semantic Web through Epistemic Operators. in OWL: 

Experiences and Directions. 2005. Galway, Ireland. 

73. Andrew, A.M., Rough-Neural Computing: Techniques For Computing With Words, ed. by Sankar Kumar Pal, Lech 

Polkowski and Andrzej Skowron, Springer, Berlin, 2004, xxv+734 pp., ISBN 3-540-43059-8, Cognitive Technologies 

Series, ISSN 1611-2482 and Modelling With Words: Learning, Fusion, and Reasoning Within a Formal Linguistic 

Representation Framework, ed. by Jonathan Lawry, Jimi Shanahan and Anca Ralescu, Springer, Berlin, 2003, 

xi+228 pp., ISBN 3-540-20487-3, LNAI Series no. 2873, ISSN 0302-9743. Robotica, 2004. 22(6): p. 698-699. 

74. Horrocks, I. OWL Rules, OK? in Rule Languages for Interoperability. 2005. Washington, DC, USA. 

75. Horrocks, I., et al. Semantic Web Architecture: Stack or Two Towers? in Principles and Practice of Semantic Web 

Reasoning. 2005: Springer. 

76. Noy, N.F., Semantic integration: a survey of ontology-based approaches. SIGMOD Rec., 2004. 33(4): p. 65-70. 

77. Noy, N.F. What do we need for ontology integration on the semantic web, position statement. in Workshop on 

Semantic Integration, jointed held with the 2nd International Semantic Web Conference. 2003. Sanibal Island, 
Florida, USA. 

78. Klein, M. Combining and Relating Ontologies: An Analysis of Problems and Solutions. in Workshop on Ontologies 

and Information Sharing, IJCAI. 2001. Seattle, WA. 

79. Uschold, M. and M. Gruninger, Ontologies and semantics for seamless connectivity. SIGMOD Rec., 2004. 33(4): p. 
58-64. 

80. Repository in a Box.  2006; Available from: http://icl.cs.utk.edu/rib/. 

81. Reuse Library Interoperability Group - The Basic Interoperability Data Model.  1995; Available from: 
https://kspace.cdvp.dcu.ie/repository/doc/bidm.html. 

82. MIT. DSpace Federation.  2006; Available from: http://www.dspace.org/. 

83. Mckoi SQL Database.  2004; Available from: http://mckoi.com/database/. 

84. Dspace on Windows. Available from: http://wiki.dspace.org/index.php/DSpaceOnWindows. 

85. MIT. DSpace System Documentation: Functional Overview.  2006; Available from: 
http://dspace.org/technology/system-docs/functional.html. 

86. Dspace Repository Users.  2008; Available from: 
http://www.dspace.org/index.php?option=com_content&task=view&id=596&Itemid=180. 

87. The Protégé Ontology Editor and Knowledge Acquisition System.  2006; Available from: 
http://protege.stanford.edu/. 

88. What is Protégé? A Protégé Overview.  2008; Available from: http://protege.stanford.edu/. 

89. Open Knowledge Base Connectivity.  1995; Available from: http://www.ai.sri.com/~okbc/. 



 

 140 

90. What is protégé-frames? A Protégé Overview.  2008; Available from: 
http://protege.stanford.edu/overview/protege-frames.html. 

91. What is protégé-owl?  A Protégé Overview.  2008; Available from: 
http://protege.stanford.edu/overview/protege-owl.html. 

92. Jena. A Semantic Web Framework for Java.  2006; Available from: http://jena.sourceforge.net/. 

93. Fedora Digital Repository System.  2008; Available from: http://www.fedora.info/. 

94. Introduction: Basic Concepts in Fedora.  2008; Available from: 
http://www.fedora.info/download/2.2.1/userdocs/tutorials/tutorial1.pdf. 

95. Fedora Information Page.  2008; Available from: 
http://www.fedora.info/documents/brochure/Fedora%20Page%20Final.htm. 

96. Fedora Development Team, Fedora White Paper.  2005; Available from: 
http://www.fedora.info/documents/WhitePaper/FedoraWhitePaper.pdf. 

97. CA. Computer Associates AllFusion Repository for Distributed Systems 2007; Available from: 
http://www.ca.com/us/products/default.aspx?id=1439. 

98. SAS. SAS - Metadata Server.  2007; Available from: 
http://www.sas.com/technologies/bi/appdev/base/metadatasrv.html. 

99. Fielding, R.T., Architectural styles and the design of network-based software architectures. 2000, University of 
California, Irvine. p. 162. 

100. Bourret, R. XML Database Products.  2007; Available from: http://rpbourret.com/xml/XMLDatabaseProds.htm. 

101. Database 11g | Oracle Database 11g | Oracle.  2008; Available from: 
http://www.oracle.com/database/index.html. 

102. SQL Server 2008 Overview, data platform, store data | Microsoft.  2008; Available from: 
http://www.microsoft.com/sqlserver/2008/en/us/default.aspx. 

103. MySQL ::  The world's most popular open source database. Available from: http://www.mysql.com/. 

104. PostgreSQL: The world's most advanced open source database. Available from: http://www.postgresql.org/. 

105. eXist Open Source Native XML Database. 

106. Meier, W., eXist: An Open Source Native XML Database, in Revised Papers from the NODe 2002 Web and 

Database-Related Workshops on Web, Web-Services, and Database Systems. 2003, Springer-Verlag. 

107. Meier, W. Index-driven XQuery processing in the eXist XML database. in XML Prague. 2006. Prague, Czech 
Republic. 

108. JBoss. Available from: https://www.jboss.org/. 

109. Apache Tomcat - An Open Source JSP and Servlet Container from the Apache Foundation.  2009; Available from: 
http://tomcat.apache.org/. 

110. OASIS eXtensible Access Control Markup Language. Available from: http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=xacml. 

111. Sedna XML Database. Available from: http://modis.ispras.ru/sedna/. 

112. Fomichev, A., M. Grinev, and S.D. Kuznetsov, Sedna: A Native XML DBMS, in SOFSEM 2006: Theory and Practice 

of Computer Science. 2006, Springer. p. 272-281. 

113. Fomichev, A., M. Grinev, and S.D. Kuznetsov. Descriptive schema driven XML storage. in Advances in Databases 

and Information Systems (ADBIS). 2004. Budapest, Hungary. 

114. XQuery Test Suite Result Summary. Available from: http://www.w3.org/XML/Query/test-
suite/XQTSReportSimple.html. 

115. Lehti, P., Design and Implementation of a Data Manipulation Processor for an XML Query Language. 2001, 
Technische Universitat Darmstadt. p. 82. 

116. Oracle Berkeley DB XML. Available from: http://www.oracle.com/database/berkeley-db/xml/index.html. 



 

 141 

117. Srivastava, A.V., Comparison and Benchmarking of Native XML Databases, in Department of Computer Science 

and Engineering. 2004, Indian Institute of Technology: Kanpur. p. 6. 

118. Mabanza, N., J. Chadwick, and G.S.V.R.K. Rao. Performance evaluation of Open Source Native XML databases - A 

Case Study. in International Conference on Advanced Communication Technology. 2006. 

119. ITDS - Internet, Tecnologias e Desenvolvimento de Software.  2008; Available from: http://www.itds.pt/. 

120. dtSearch - Text Retrieval / Full Text Search Engine.  2008; Available from: http://www.dtsearch.com/. 

 

 


