
An Object Query Language for M ultim edia Federations

Damir Becarevic

Bachelor of Science in Electrical Engineering

A dissertation subm itted in partial fulfilment of the

requirements for the award of

Doctor of Philosophy

to the

DCU
Dublin City University

School of Computing

Supervisor: Dr. Mark Roantree

June, 2004

Declaration

I hereby certify that, this material, which I now submit for assessment 011 the programme
of study leading to the award of Doctor of Philosophy is entirely my own work and has

not been taken from the work of others save and to the extent that such work has been

cited and acknowledged within the text of my work.

k k t \\£l c * ̂ -7/ . ̂■>
Signed

Student ID 99141655

Date June, 2004

i

Acknowledgment s

I would like to thank all those people who made this thesis possible and enjoyable expe
rience for me. First of all, I wish to express my sincere gratitude to my supervisor Dr.
Mark Roantree for his patient guidance, encouragement and excellent advices thought this

research. W ithout his guidance and availability this thesis would not have been possible.

A special note of thanks goes to Dr. Patricia Allen for her guidance and support on my

initial entry into this research.

Thanks should also go to the Strategic Research Grant Scheme at Enterprise Ireland which

supplied fundings towards this research. I am also thankful to School of Computing at
Dublin City University and all its employees for their continues support.

I thank my colleagues from the Interoperable Systems Group for sharing experiences and

knowledge during the time of study. Especially to Martin, Noel and Seamus for their help

in editing this thesis and Dalen for his support in P I^ X /L yx issues.

Special thanks go to my beloved parents Emina and Muhamed for their constant support,
understanding and love.

Finally, I would like to express my deepest gratitude to my wife Sabina for all her love

and encouragement during my work on this thesis.

This thesis is dedicated to my newborn son, my wife and my parents.

An Object Query Language for Multimedia Federations Damir Becarevic

Abstract

The Fischlar system provides a large centralised repository of multimedia files. As expan

sion is difficult in centralised systems and as different user groups have a requirement to
define their own schemas, the EGTV (Efficient Global Transactions for Video) project
was established to examine how the distribution of this database could be managed. The

federated database approach is advocated where global schema is designed in a top-down

approach, while all multimedia and textual data is stored in object-oriented (O-O) and

object-relational (0-R) compliant databases.

This thesis investigates queries and updates on large multimedia collections organised in

the database federation. The goal of this research is to provide a generic query language
capable of interrogating global and local multimedia database schemas. Therefore, a new

query language EQL is defined to facilitate the querying of object-oriented and object-
relational database schemas in a database and platform independent manner, and acts as

a canonical language for database federations. A new canonical language was required as

the existing query language standards (SQL: 1999 and OQL) axe generally incompatible

and translation between them is not trivial. EQL is supported with a formally defined

object algebra and specified semantics for query evaluation.

The ability to capture and store metadata of multiple database schemas is essential when
constructing and querying a federated schema. Therefore we also present a new platform

independent metamodel for specifying multimedia schemas stored in both object-oriented

and object-relational databases. This metadata information is later used for the construc

tion of a global schemas, and during the evaluation of local and global queries.

Another important feature of any federated system is the ability to unambiguously define

database schemas. The schema definition language for an EGTV database federation must
be capable of specifying both object-oriented and object-relational schemas in the database

independent format. As XML represents a standard for encoding and distributing data

across various platforms, a language based upon XML has been developed as a part of our
research. The ODLx (Object Definition Language XML) language specifies a set of XML-

based structures for defining complex database schemas capable of representing different
multimedia types. The language is fully integrated with the EGTV metamodel through

which ODLx schemas can be mapped to 0 - 0 and 0 -R databases.

Contents

Acknowledgments ii

Abstract iii

Contents iv

List of Figures ix

List of Tables xi

Preface xii

1 Introduction 1

1.1 The Fischlar Digital Video Recording and Browsing S y s te m 2

1.2 Distributed Database S ystem s.. 3

1.2.1 Federated Database Systems ... 4

1.3 The Canonical Data M o d e l .. 7

1.3.1 Object-Oriented Database Systems (OODBs) .. 8

1.3.2 Object-Relational Database Systems (O R D B s) .. 9

1.4 Multimedia Database S y stem s... 11

1.5 Research O b je c t iv e s .. 12

1.5.1 Motivating A r e a .. 13

1.6 C o n clu sio n s............................... .. 14

Declaration i

iv

Contents v

2 Related Research 15

2.1 Introduction ... 15

2.1.1 Sample Multimedia Archive Schema.. 15

2.2 L O Q IS .. 17

2.3 MOOD and MIND p r o je c ts .. 20

2.4 The Gallic P r o j e c t ... 24

2.5 T he News-On-Demand S y s t e m ... 27

2.6 I R O -D B .. 31

2.7 Hera Project .. 37

2.8 C o n clu sio n s... 41

3 The EGTV Metamodel 44

3.1 Introduction ... 45

3.2 The EGTV Metamodel S p ecifica tion .. 47

3.2.1 Defining Name S c o p e s .. 48

3.2.2 Defining T y p e s 49

3.2.3 Defining Properties... 51

3.2.4 Defining In h erita n ce .. 51

3.2.5 Defining O p e ra tio n s52

3.2.6 Defining Schemas , ... 53

3.2.7 Defining V ie w s .. 53

3.2.8 Eliminated ODMG M etaclasses... 54

3.2.9 A M eta-M etadata L e v e l ...55

3.3 Metamode! Mappings 56

3.3.1 EGTV To ODMG M ap p in g .. 57

3.3.2 EGTV To Object-Relational M a p p in g ... 63

3.4 C on clu sion s............. ... 68

4 Schema Definition 70

4.1 Introduction...70

4.2 The Structure of ODLx ... 72

4.2.1 Class Definition 73

4.2.2 Virtual Class D e fin it io n .. 75

4.2.3 Import Class D e f in it io n .. 75

4.3 The ODL* to Mctamodel Mappings ... 76

4.3.1 Base Schema M ap p in g .. 76

4.3.2 Virtual Class M ap p in g .. 78

4.3.3 Import Class Mapping ... 79

4.4 C on clu sion s... 79

5 The EQL Query Language 81

5.1 Query Language S ta n d a r d s ... 82

5.2 The EGTV Data M o d e l ... 83

5.2.1 Type S y s t e m .. 84

5.3 Language F u nd am entals.. 85

5.3.1 Query Input and Output .. 86

5.3.2 Query S tr u c tu r e ... 87

5.3.3 Deep and Shallow E x t e n t .. 88

5.3.4 Operation Invocation 89

5.3.5 A liases.. 90

5.3.6 Undefined V a lu es ... 91

5.4 Query Language O p e r a to r s ... 92

5.4.1 Type Operators 92

5.4.2 Language O p e ra to r s .. 94

5.5 EQL A lg e b r a .. 99

5.5.1 Algebraic Operators 101

5.5.2 General O p e ra to r s ..102

5.5.3 Set O perators.. 106

5.5.4 Mapping Operators ..109

5.6 C on clu sion s............................... 110

Contents vi

6 Implementation 112

6.1 Deployment Architecture113

6.2 Schema, Definition ... 115

6.3 Query P rocessin g ...118

6.3.1 Local Query P r o c e s s in g ..118

6.3.2 Global Query Processing... 120

6.4 EGTV Transaction Processing 122

6.4.1 TYansaction M o d e l ..123

6.4.2 The EGTV Object Pool ..125

8.4.3 Requirements125

6.4.4 Lock T y p e s ..126

6.4.5 TVansaction T y p e s ..126

6.4.6 Local T ran saction s.. 127

6.4.7 Global T ra n sa c tio n s ... 131

6.5 Experim ents... 134

6.5.1 Schema Definition T e s t s ... 134

6.5.2 Query Processing T e s t s ... 135

6.6 C on clu sion s.. * • • 138

7 Conclusions 139

7.1 Thesis S u m m a r y 139

7.2 Areas for Further Research 142

7.3 Final T h o u g h ts .. 146

Bibliography 147

A EGTV Metamodel UML Diagram 155

B An XML Schema Definition of the ODLÆ Language 157

Contents vii

C T h e O D L* L a n g u a g e S p ec ifica tio n an d M e ta m o d e l M a p p in g s 166

C .l Schema E le m e n t ... 166

C.2 Class E lem en t...167

C.3 Attribute E le m e n t .. 168

C.4 Inheritance Element 168

C.5 Relationship E lem en t...169

C.6 Method E le m e n t .. 170

C.7 Operator Element ... 171

C.8 Return Value E le m e n t171

C.9 Parameter E lem en t.. 172

C.10 Type E lem en t...173

C .l l Virtual Class E le m e n t ... 173

C.12 Extent E lem ent...175

C.13 Import Class E le m e n t175

D EQ L O p era to r C lassifica tion 177

E S am p le M u ltim ed ia D a ta b a se S ch em as 179

F T h e O D L j D e fin itio n o f a T est S ch em a 183

G EQL G ram m ar 192

H Q uery E x p e r im e n ts 197

H .l Basic Local Queries 197

11.2 Join Q ueries.. 197

H.3 Navigational Q u er ies198

H.4 Exported Q u er ies ..198

H.5 Update Q u er ies198

Contents viii

List of Figures

1.1 The Five Level Architecture of a. Federated Database System 5

2.1 Multimedia Archive Schema.. ... 16

2.2 LOQIS Metamodel Instance: A Character class example................................19

2.3 News-on-Demand schema generation... 28

3.1 Components of the EGTV project.. 44

3.2 Metadata Definition of Name Scopes... 48

3.3 Metadata Definition of Data Types..49

3.4 Metadata Definition of Properties... 51

3.5 Metadata Definition of Inheritance... 51

3.6 Metadata Definition of Operations... 52

3.7 M etadata Definition of Schema...53

3.8 Meta-Metamodel Specification... 56

4.1 Film Archive Schema... 72

4.2 Metamodel Representation of Film Archive Schema..77

4.3 Metamodel Representation of RecentFilms Virtual Class.............................. 78

5.1 The EGTV M odel........................ ... 83

5.2 Database Schema for Multimedia Recording System 87

6.1 EGTV Deployment Architecture... 113

6.2 Schema Generation Process... 116

6.3 Syntactic tree exam ple...119

6.4 Execution tree example...120

ix

6.5 Global query processing.. 124

6.6 EGTV Transaction Architecture... 124

E .l Multimedia Recording System schema..180

E.2 Multimedia Archive System schema.. 181

E.3 Multimedia Editing System schema...182

List of Figures x

List of Tables

3.2 The EG TV to ODMG Mapping.................. 58

3.4 EGTV Type Mappings.. 62

3.6 EGTV to Object-Relational Mapping.. 63

3.8 EGTV to Extended Object-Relational Mapping... 68

6.1 Concurrent Transaction Schedule.. 130

6.2 Schema Definition P erform ance.................................. .. 135

6.3 Query Processing Performance... 136

D.2 Comparison O p erators.. 177

D.4 Arithmetic Operators .. 178

D.6 Logic O perators.. 178

D.8 Aggregate Operators.. 178

D.10 Set Operators...178

xi

Preface

This thesis proposes that an object-oriented query language can be defined to facilitate
efficient queries and updates on distributed multimedia objects. It also provides extensions

to the ODMG metamodel and schema definition language to facilitate the integration of
multiple multimedia repositories, and implements services to query and update federated

schemas.

In chapter one, an introduction to the area of multimedia repositories and federated
database systems is provided for the reader. An architecture which has been adopted

by many researchers is described; the requirements for federated database models are

listed; standard technologies required by this research are introduced; and a hypothesis

for this research is offered.

In chapter two, related research into query languages, metamodels, federated databases

and database representation for multimedia is covered to outline the scope of this thesis.
The early form of this appraisal was first discussed in [Bec02b]. An examination and

comparison of some of existing global query languages is used to determine how query
definitions and their m etadata representations were specified in each project, and to assess

their execution capabilities. The output of this analysis provides requirements for the

design of a query language for this research.

A metamodel is an important prerequisite for the definition of the query language as it

models m etadata required for construction of federated schemas and for generic query
ing. Chapter three presents a new object-oriented metamodel developed to capture and

represent metadata for multiple database schemas. It is based upon the ODMG meta
model, but improved with a more simplified design, the ability to represent multimedia
data types and with an extended support for object views. The later is crucial when

defining federated schemas. The meta-metamodel is also specified to represent different
metamodel versions. The specification of the metamodel design was first presented in

[RB02]. Rules are specified to facilitate mapping of our metamodel to object-oriented and

object-relational schema repositories. This work was published in [BR04a],

Chapter four presents a schema definition language for our multimedia database federation.

This language is designed to facilitate an object schema definition in an implementation

independent format. Thus, it is based upon the XML as it represents a standard for

Preface xiii

encoding and distributing data across various platforms and the Internet. The language

is also capable of defining simple object views that are used to restructure data and to

construct global schemas.

In chapter five, a new query language is presented to facilitate querying of object-oriented

and object-relational schemas in a database and a platform independent manner. This

language (presented in [KBR03]) provides orthogonal query input and output; defines

a clear semantics for the updatability of query results; facilitates primitives for object
creation, update and deletion; includes operation invocation support; and provides ability

of querying multimedia data types. Furthermore, operators of the query language are
not hard-wired to the language itself, but defined in data types. Thus, the language is

fully flexible and can be easily adapted to support different application domains, including

multimedia. The query language is also supported with a formal algebraic representation,

presented in [BR04b].

Chapter six discusses the implementation of the query system. Firstly, the deployment

architecture for multimedia federations is presented, and then followed by a description of
the prototype system. This includes the canonical schema definition and local and global
query processing algorithms. A transaction control system developed to support global

updates is also discussed in this chapter. An early version of this system was presented in

[BR01]. This chapter concludes with a discussion of experiments performed on a small test

system. This system was constructed using multimedia data extracted from the Fischlar

video repository. Three separate multimedia schemas are defined and queried to test the

performance of different query types.

Finally in chapter seven, a summary of the work carried out for this thesis is presented.

Suggestions as to possible improvements are given, together with a discussion as to how

this work might continue.

Chapter 1

Introduction

The need to efficiently query all available information has driven the development of
database systems. Therefore, the amount of data electronically represented and stored

in different kinds of queryable repositories is constantly increasing. Traditionally, the ma
jority of this data was character based, thus consuming relatively small amounts of storage
space per information unit. However, the demand for electronically represented multime

dia contents has increased significantly in the last decade. This is mainly due to the
proliferation of web-based technologies and increased processing and storage capabilities

of mainstream personal computers. Despite the fact that most of the available multimedia

related information is stored outside of, what we would consider conventional database

system s (for instance, micro-filmed material, the Web etc.), there is growing need to store

this material in a format that can be easily queried. As others pointed out, without this

the information becomes useless data as digging for it is as simple as finding a needle in a
haystack.

This leads to the problem of storing and querying large quantities of multimedia data.
Contrary to traditional character data, multimedia consumes much more storage space

per information unit and requires more complex searching and manipulation algorithms.
The initial solution to this problem was to store multimedia files in file-systems, but it
soon became apparent that this approach has several flaws. Firstly, standard file sys

tems are not optimised for fast data retrieval. Secondly, their querying and searching

capabilities are very limited, and thirdly only sequential read and write access is possible.
For these reasons, multimedia repositories are stored in specialised data stores. These

include specialised file servers optimised for fast data streaming (i.e. Oracle Video Server,

Real Server) or standard databases which provide capabilities such as querying, indexing,

updating and transaction control.

Since multimedia data is constantly increasing in both volume and size, centralised storage

systems can not suffice as their processing power and storage capacity are limited. One

solution is to distribute multimedia storage and manipulation resources to a set of inexpen

sive data stores. This however raises other issues such as data partitioning, communication

1

Chapter 1: Introduction 2

protocols and platform interoperability. In the ideal scenario, distributed systems would

always be built from scratch, avoiding the problems of data and platform incompatibilities.

These systems would be modelled using a single data model and thus, be fully compatible.

However, the vast majority of existing multimedia repositories are mutually incompatible

and cannot be easily migrated to new platforms. Therefore, a different approach that

builds distributed systems by integrating existing repositories must be taken.

1.1 The Fischlar D igital V ideo Recording and Browsing Sys
tem

Fischlar [LSO+OO, OMM+ Ol, RS02] is a multimedia system developed at Dublin City

University to facilitate digital video recording, browsing, indexing and playback. It enables

clients to digitally record television programmes and watch previously recorded videos

through a web interface. Selected T V programs are first recorded in the MPEG-1 format
and stored in a regular file system. Recorded videos are then processed by video indexing

software which performs shot and scene boundary detection and places analysed programs

into a video library. The client interface is dynamically generated as a set of web pages

with thumbnail images representing the beginning of each scene within the analysed video.

Clients can select any of these images to begin video playback starting from that particular

scene. Real-time video streams are then broadcast over the T C P /IP network from the

video-streaming server to clients. A streaming server (Oracle Video Server) stores MPEG-
1 video files in a specialised file system optimised for fast retrieval, while scene and shot

indexing information are fully contained in the web interface as MPEG-7 content metadata.

The video indexing capability represents the most important feature of the Fischlar sys

tem. Automated shot and scene detection processes provide fast indexing and enable easy

browsing of large video files. However, the main problem with this type of system is the

lack of an advanced query interface for dynamic interrogation and updating of recorded
video data. The existing system can only store MPEG videos in a proprietary video repos
itory that is optimised for video streaming, but does not provide any database capabilities.

Furthermore, video indexing information is stored in a separate system, which can be dif
ficult to correlate with the main video repository. Existing behaviour for video indexing
cannot be integrated with the repository as its interface is limited only to file read and

write operations. Therefore, providing a database storage for both videos and indexing

information would benefit in queryability and updatability of recorded multimedia. For

example, a typical query in this system would retrieve all video clips made between years

2002 and 2003 where a white horse is featured (pattern recognition) and camera movement
is detected. Results of this query can be then aggregated into one video clip which is saved

to a database, thus facilitating updatability.

A further problem is the lack of support for unlimited expansion since the present storage

Chapter 1: Introduction 3

system can only store video files in a single centralised repository. Since MPEG-1 files

consume large amounts of space, problems like storage capacity, fast retrieval and real

time streaming can be expected with the growth of the system. Distribution of video

data over multiple repositories provides one viable solution for this problem. However, the

existing video repository cannot be distributed, nor it can be integrated into an existing

distributed system, as its design is proprietary. One viable approach is to use multiple

inexpensive databases to provide both data distribution and query support.

In this research we will explore the possibilities of providing data distribution and an ad

vanced query interface for the Fischlar system based on standard database technologies.
The strategy proposed here is to provide a distribution plan to cater for unlimited expan
sion, while also providing a federated-style [SL90] interface so that multiple autonomous

video stores can be subsequently rejoined if required by certain user groups. The remainder

of this chapter is organised as follows: an overview of distributed and federated databases
is provided, followed by a discussion on common data models for autonomous data sources,
and then an overview of multimedia databases. The chapter will conclude with a precise

motivation for the research undertaken.

1.2 D istributed Database System s

Database systems vary: starting from the platform (hardware and operating system) to the

model being used to structure and store the information in the database. The information,
independent of this, can be structured differently even if the same database is used, as

different designers perceive structuring differently [CBS96]. This brings us to the need for
sharing the information between different information sources, for which different models

have been introduced.

A distributed database system is any collection of interconnected databases that facilitate

information sharing and exchange. Usually they employ a global interface as a single access

point from which data stored in any database in the system can be reached. Distributed
systems can be classified into different categories based on the method of integration and

the level of global control over the local data [BHP92], The term multidatabase was em
ployed by researchers [OV91] to the complete family of distributed database systems, while
a general classification is given in [BHP92]. Distributed database systems are characterised

by tight integration between individual databases in the system which commonly employ

the same data model. Thus, these systems are homogeneous in terms of data model, and

tightly coupled. A global schema is created in a top-down approach [OV99] and the global
layer fully controls all databases in the system and data they locally store. As a result,
distributed database systems have good global performance, but at the cost of significant

loss of autonomy of its participating databases. Global queries are processed by the global
layer which fully controls data in the local databases affected by the query.

Chapter 1: Introduction 4

However, this approach cannot be applied when participating databases are heterogeneous,
and when local autonomy must be preserved. The only viable solution is to create an inte

gration layer that will overcome platform heterogeneities and data incompatibilities. This

is commonly achieved by transforming the data representation of each proprietary data

repository to a common data model, which can then be globally queried and manipulated.
This approach is known as a Federated Database System, and has already been proven
in integration of non-multimedia database systems. Thus, the same can be applied to

multimedia repositories.

1 .2 .1 F e d e r a te d D a ta b a s e S y s t e m s

A federated database system is a distributed system that provides a global interface to

heterogeneous local DBMSs [HB96]. All databases in this system are autonomous and have
full control over the local data they manage. As databases participating in the federation

need not be homogeneous, various types of existing database systems can participate. A

global schema is created in a bottom-up approach by joining schemas (or some parts of

them) from local databases exported to federation level. Global queries are processed

at the federated level. Processing includes subdividing a global query into a set of local
queries, and passing them to local databases for execution. Result sets retrieved from local

databases are combined at the federated (global) level and delivered to the user. Users do

not need to be aware of the internal organisation of local databases. Multiple federated

database architectures have been proposed [PBE95, BE96], and they all share a common

bottom-up design process.

Sheth and Larsen have defined a generic architecture for federated databases called a five-
layer schema architecture [SL90]. Each layer is represented with a schema that defines data

content and structure. Schemas are constructed by processors, an application-independent
software modules of a federated DBMS. The five-layer schema architecture illustrated in

figure 1.1 consists of following layers and processors:

Local Schema. A local schema is the conceptual schema of a participating database

which defines all local data. Databases at this layer are autonomous and unaware of
existence of federated database system. Federated operations facilitated through the com
ponent schema are regarded as standard applications that cannot be differentiated from

the any other application local to this database. Because a local schema is database

specific, different local schemas may be expressed using different data models.

Component Schema. A component schema represents the local schema translated

to the common (canonical) data model chosen for the federation. The main reason for

creating a component schema is the ability to describe the divergent local schemas using

a single representation. Also, semantics that are missing in a local schema can be added

Chapter 1: Introduction 5

External
Layer

Federated
Layer

cExternal Schema) cExternal Schema)
Filtering

Processor

0
A

Federated Schema

m
la)

Constructing
Processor

Export
Layer V _ Export Schema J Export Schema

t t
Filtering Filtering

Processor Processor

D

Component (^Component Schema') (^Component Schema)

T
T ran storming T ransforming

Processor Processor

Local
Layer F— H(L o c a l S c h e m a J [L o c a l S c h e m a J

Figure 1.1: The Five Level Architecture of a Federated Database System.

to its component schema. Mapping rules are defined to translate local schema objects

to corresponding objects in the component schema. These mappings are also used to

transform commands on a component schema into an equivalent commands on the local

schema.

E x p o r t S ch em a. An export schema is that portion of the component schema to be

shared with other nodes in the federated database. Multiple export schemas can be de

fined above one component schema. An export schema may also include access control
information regarding its use by specific federation users. The purpose of defining ex

port schemas is to facilitate control and management of local autonomy by allowing local
administrators to define the pieces of component schema to be shared with all federated

users.

F ed era ted S ch em a. A federated (global) schema is an integration of multiple export

schemas and represents a logical global schema of the federated system. Prior to federated
schema construction, export schemas can be further restructured to facilitate semantic

matching and integration of export schema objects. A federated schema also includes

information on data distribution that is generated when integrating export schemas.

Chapter 1: Introduction 6

E x ter n a l S ch em a . An external schema defines a subset of a federated schema cus
tomised for specific client or a group of clients of a federated system. The data model for

an external schema may be different than that of the federated schema. This is because

each client group can require a different data model as its interface to the federation (i.e.

a client-server or web interface). An external schema can also implement an access control
system and additional integrity constraints.

T ran sform in g P r o c esso r . A transforming processor constructs an interface between

the common form and the local representation of data. This is achieved by translating

the commands from the representation of the higher level schema to an equivalent set of
commands in the language of the lower level schema. Similarly, the result data is converted

in the opposite direction, from the lower level to higher level schema representations.

Therefore, this processor provides a data model transparency in which the data structures

and commands used by one database schema are hidden from the rest of the system. Data

model transparency hides the differences in query languages and data formats. In the
Sheth and Larson model, a transforming processor constructs component schemas by fully

encapsulating the command and data interface of heterogeneous local schemas.

F ilter in g P r o c esso r . A filtering processor resides between a component schema and its

export schema. Its role is to limit data and commands passed between these two layers,

thus acting as a security mechanism. Therefore, the filtering processor is used to place a

constraint on the size of data to be exported to federated layer. Exported data can be then

horizontally partitioned, where only a subset of object attributes are projected into the

export schema. The filtering processor can be also used for constructing external schemas,
where it restricts access to specific segments of the federated schema for different groups

of global users. This is illustrated in figure 1.1.

C o n stru c tin g P r o c e sso r . This processor resides between the export and federated

layer and is responsible for the construction of the federated schema. Its main role is to

merge data from multiple export schemas into a single data set which can be then fur
ther restructured to form federated schema. The constructing processor also decomposes

global queries into multiple sub-queries for component schemas and provides query op
timisation. Its final role is global transaction management where its responsibility is to

ensure concurrency and atomicity for transactions.

The architecture specified in [SL90] serves only as a framework architecture and does not

address implementation. Therefore, many research projects that employ this architecture

provide extensions where required. The EGTV multimedia architecture described in chap

ter six is also based upon the federated database concepts, but it is modified to include

global querying, multimedia support and updatability at the global layer.

Chapter 1: Introduction 7

1 .3 T h e C a n o n ic a l D a t a M o d e l

When constructing a federated database system, all local database models must be con

verted to a common representation (component schema) to facilitate schema integration.

Thus, a data model of the component schema must be capable of capturing data struc
tures and semantics of all local schemas in the database federation. This data model is
commonly referred to as a canonical data model (CDM) and its proper selection is crucial
for the construction of a federated database system. As the relational data model is used

in the majority of existing database systems, it is the most common candidate for the

canonical data model. When all participating local databases use a relational model, then

it can be easily employed as a canonical model. However, it has been shown [SCGS91]
that an object-oriented data model is the most suitable as a canonical model for database

federations. This is especially so when local databases in the federation are heterogeneous,
thus implementing different data models.

In [SCGS91] they measure the suitability of a number of data models including the rela
tional, object-oriented, functional and entity-relationship, as a canonical model for feder

ated database architectures. The principal idea is that the canonical data model must have

an expressive power that is greater than or equal to data models of all local databases.

Otherwise, the canonical data model would not be able to capture and represent the se
mantics of local database schemas. Therefore, each model is assessed using characteristics

such as expressiveness and semantic relativism. Expressiveness is described through com
mon properties such as classification, generalisation and specialisation, aggregation and

decomposition and extendibility of behaviour. All these are common properties of object-

oriented models and are described in software development books such as [Boo94, BRJ99].
The semantic relativism properties advocate a rich integration algebra such as that found

in [Mot87], and the power to define views. Two additional recommendations are made

for a suitable CDM. The first is a concept of one basic structure, which advocates usage

of only a single structure for representing the entity to be modelled. This eliminates the
possibility of modelling the same entity in different ways and rule out the ER model as a

CDM as it has two modelling constructs which are entities and relationships. The second

is a concept of multiple semantics that means the ability of defining multiple views of the
same semantic entity. For example, one user would identify a shoe colour as ’tan ’ while

the other would prefer the colour term ’cream’ [SCGS91]. This feature is important when

integrating semantically heterogeneous database schemas in the database federations.

When these metrics are applied to data models commonly used in the database world,
only the object-oriented model satisfies all categories, whereas the relational model fails to
provide generalisation and specialisation, aggregation and decomposition, and extensibility

of behaviour. It also fails to provide a rich integration algebra required for semantic

relativism. Based on this arguments, there is a clear motivation for using an object-based

canonical model. Presently, only two database standards are capable of representing all

Chapter 1: Introduction 8

the features of an object-oriented data model. These are object-oriented and more recently

introduced object-relational databases.

1.3.1 O bject-O rien ted D atabase System s (OODBs)

Data in object-oriented database systems are organised into classes [BP97], Contrary to

flat relational tuples, classes can model very complex data structures, thus providing de
velopers with more flexibility in representing real world entities and relationships. Classes
in object databases are very similar in structure to classes in object oriented programming

languages. The main difference is that objects instantiated from database classes are per
sistent in the database and object data persists when an application terminates [ER98],
Object databases provide features such as encapsulation, inheritance and polymorphism

and this makes them a natural persistent storage for object-oriented applications.

The major standard for object-oriented database systems is maintained by the Object Data
Management Group (ODMG) [CB99]. The ODMG standard defines rules for describing

and manipulating persistent objects stored in the database and represents the superset of
the CORBA OMG [OH98] model. Most of the commercial object databases have some

level of compliance with the ODMG standard, but none of them are totally compliant
with the standard. The final version of the ODMG standard is 3.0, and it consists of the

following parts:

• O b ject M o d e l.
It determines the meaning of basic concepts of object oriented data structures such
as: objects, attributes, relationships, collections, classes, interfaces, operations, in

heritance and encapsulation. Metadata is represented in the ODL Schema Reposi
tory metamodel. M etamodel specification consists of a set of ODL interface defini
tions where each interface defines one database construct. The actual implementa
tion of metamodel classes is not provided.

• O b ject D e fin it io n L a n g u a g e (O D L).
Both the object model and ODL are extensions of the corresponding parts of the

OMG CORBA standard. ODL is an extension of CORBA IDL [Sie96] and it is used

to determine the structure of a database, i.e., a database schema. The schema is

necessary to understand what the database contains and how it is organised.

• O b ject In terch a n g e F orm at (O IF).

ODMG has defined an Object Interchange Format (OIF) as a specification language

used to dump or load objects to or from a file. OIF can also be used for object
exchange between different ODMG compliant object databases where it acts as a

transport protocol for persistent object encapsulation.

Chapter 1: Introduction 9

• O b ject Q u ery L an gu age (O Q L).
The language has a SQL-like syntax, but semantically OQL is very different from

SQL, mainly because it follows the ODMG object model, which is essentially incom
patible with the relational model. OQL is intended to retrieve data from an object

base. It does not deal with updating and does not define SQL-like abstractions such
as views, constraints and stored procedures.

• B in d in g s to p ro g ra m m in g la n g u a g es C-|—|-, S m a llta lk and Java.

The bindings determine how to include ODL and OQL statements as constructs

of these programming languages. Furthermore, the bindings define many classes
(written in the syntax of a particular programming language), allowing access and

processing of an object base directly from an application. Behaviour is not stored in

the database, but it is linked with the client applications.

The ODMG model is currently the main standard for object oriented databases and it
is supported by the majority of object database vendors. It provides a standardised

object interface to the database from multiple object-oriented programming languages.
The ODMG model is convenient for the definition of a component schema for federated

database systems because of its ability to represent complex data structures and easy in

tegration with object-oriented languages. However, it lacks the ability of defining object
views required for the construction of an export schema. The OQL language does not

provide any updating capabilities, nor it can support server side behaviour. The later

is of particular importance when constructing multimedia federations, as complex opera
tions (indexing, editing, pattern recognition) on large multimedia collections can only be

supported at the server side.

1 .3 .2 O b j e c t -R e la t io n a l D a ta b a s e S y s t e m s (O R D B s)

Object-relational (O-R) databases are a hybrid between object databases and relational
databases. They provide an object-oriented interface built upon the relational database

engine. The object-relational data model is standardised in the SQL:1999 specification

[GP99, Mel03] where O-R data structures are defined.

• D a ta M o d el.
The object-relational model supports features commonly associated with object mod

els such as complex user-defined types, generalisation and association relationships,
polymorphism, and encapsulation of behaviour [Sto96], The main modelling entity

is a user-defined object type which corresponds to a class type in the object-oriented

databases, while its extent is instantiated as a typed object table. Contrary to the

relational tables, object tables can define complex domains and operations [GP99],

and each object in the table has unique system assigned object identifier.

Chapter 1: Introduction 10

A metamodel for the O-R databases is defined in the form of an Information Schem,a.
The Information Schema is a special database schema that defines a set of rela

tional views and tables for representing both relational and object-relational meta
data. However, this standard has not been widely accepted, and no object-relational

database has implemented it yet.

• D a ta d e fin itio n la n g u a g e (D D L).
An object-relational DDL is defined in a form of SQL. Its syntax consists of a series of

SQL CREATE statements for specifying the structure of user-defined types, object
tables, and other O-R model elements.

• D a ta m a n ip u la tio n la n g u a g e (D M L).
The O-R data manipulation language extends the relational SQL language with

object retrieval and update features. Thus, contrary to the OQL, objects in the
O-R database are directly updatable from the query language. Object views in the

O-R model can be defined as named SQL queries. However, these views can only be
based upon a single base table. Joins and other advanced schema transformations

are not supported in the object-relational view definitions. Object-relational views

employ a strict object-preserving semantics [KK95] by deriving their OIDs from the

base table objects.

• D a ta b a se b eh a v io u r .
Contrary to ODMG, the object-relational model supports server side behaviour. Be

haviour can be defined in the native SQL procedural language or as an external rou
tine specified in a standard programming language such as COBOL, C + + , or Java.

Native SQL procedural languages (e.g. Oracle’s PL/SQL and Sybase’s Transact-
SQL) are fully integrated with the database schema and share the same address

space as the SQL code. However, these languages are platform specific and not
portable across different systems. Operations written in SQL procedural languages

are also much slower then the equivalent external routines, as the code is interpreted

and not compiled. External operations have better performance, but they lack full

integration with the SQL and the O-R data model. Moving data between an external
routine and SQL code involves the impedance mismatch where object-relational data

must be mapped to different types in the external programming languages [Mel03].

The SQL:1999 standard provides a complete definition of the object-relational data model.

However, the majority of existing commercial databases does not support object-relational
features and only a few incomplete implementations of the O-R standard currently exist.
Although the O-R model has limited schema restructuring capabilities, its object views
are very simple and insufficient for complex federated schema integration. Server side be

haviour supported in the O-R model lacks some important features required for multimedia

processing: native SQL procedures are too slow and inefficient; while external routines are

Chapter 1: Introduction 1 1

not well integrated with the model. Therefore, both ODMG and O-R models are not an

ideal choice as canonical da,ta models for multimedia, database federations. However, the

O-R model has more potential for future improvements as it is standardised in SQL: 1999

standard, and is expected to be implemented by all major relational database vendors.

Thus, it is a preferred platform to the ODMG which is not widely accepted and does not

have a strong a user base.

1 .4 M u l t i m e d i a D a t a b a s e S y s te m s

Although there is no official standard for multimedia databases, all commercial multimedia

repositories fall into two general categories. The first category is dominated by specialised
file-based repositories optimised for large storage, fast data retrieval and streaming of mul

timedia data. Commercial products such as Oracle Video Server, QuickTime Streaming
■Server, and RealNetworks Helix Universal Server belong to this group. Their main role

is to provide fast on-demand multimedia streaming to multiple clients. However, all these

architectures lack querying and data manipulation capabilities, while data distribution
although supported at the file level, benefits only in improved scalability and server-level

fault tolerance [Lee98].

The other approach to building multimedia repositories is extending standard database

systems w ith multimedia storage and manipulation capabilities.This is supported in the

SQL Multimedia and Application Packages (SQL/MM) standard [Mel03]. The SQL/MM

is a multi-part standard that spans several domains including textual, spatial, and im

age data. Each domain provides a set of SQL and O-R data model extensions for stor
ing and manipulating specific categories of multimedia data (textual, image or spatial).
Multimedia data is stored in the object-relational user-defined types (UDTs), for which

type specific behaviour is provided. For example a SI_StillImage UDT is defined for

database storage of still images. SI_St ill Image stores image data as BLOBs (Binary

Large Object), while image parameters (height, width, etc.) are stored as text values. Each
SI_StillImage object type defines constructors and methods for basic image manipula
tion. Additional methods for context querying based on average colour, colour histogram,
positional colour, and texture are also defined in the standard. Similarly, a FullText
U D T supports the construction and storage of large textual data blocks. It also contain

methods for text retrieval, indexing and linguistic searching. The complete specification
of Image, Full-Text and Spatial SQL/MM standards are available in [IS002c], [IS002a],

and [IS002b] respectively. Commercial products such as Oracle InterMedia [0ra02a] and
IBM DataBlade [IBM01] provide a partial implementation of the SQL/MM standard.

The main advantage of SQL/MM as a query language for multimedia is that it provides

multimedia extensions for existing SQL. Since SQL is established as a standard for re
lational and object-relational database systems, developers do not need to learn a new

language for multimedia. The disadvantage of this approach is that SQL/MM is limited

Chapter 1: Introduction 12

only to relational and object-relational databases that support user-defined types. Also,
the SQL/MM Image standard supports still images only and cannot represent video con
tents. Data distribution features and multimedia metaschema are not included in this

standard.

1 .5 R e s e a r c h O b je c t iv e s

The Fischlar system [LSO+ 00] provides a large centralised repository of multimedia files.
As expansion is very difficult and different user groups often have a requirement to define
their own schemas, the EGTV (Efficient Global Transactions for Video) project [RS02]

was established to examine how the distribution of this database could be managed. Cur

rently, multimedia data is mainly stored in proprietary repositories that are vendor specific

and mutually incompatible. Any data interchange between these multimedia systems is
difficult to implement and provide many challenges for researchers. One solution is to use

standard object-oriented and object-relational databases for distributed storage of large

multimedia data in the form of objects. The individual databases are independently de
signed and supplied by different vendors, thus heterogeneous in terms of data model and

schema design. This assumes a federated database approach [SL90], although it is un

usual in that it takes a top-down strategy for design. The advantages of using a federated

architecture are its ability to distribute large amounts of multimedia data across multi
ple databases and to provide interoperability between proprietary multimedia data stores.

Thus, object-oriented and object-relational databases in the EGTV federation physically

store multimedia or act as object wrappers for proprietary data stores.

Our research is primarily aimed at providing efficient query and update capabilities for

this potentially large distributed repository of multimedia objects. It builds upon services

provided by other independent researches within the EGTV project, such as federated data
model, server side behaviour and remote object access. The hypothesis put forward in this

research is that an OQL-like object-oriented query language can be dynamically extended

to efficiently facilitate multimedia queries and updates in a distributed environment. Fur

thermore, an architecture and metadata services should be specified and implemented to

support global queries in this federated architecture. Therefore, issues that need to be
addressed in building a global query system for the EGTV multimedia federation can be

classified as follows:

Id en tif ica tio n o f re q u irem en ts for g lo b a l q u ery in terfa ce . This task should iden

tify and evaluate the existing research in the area of federated and multimedia systems. A

special emphasis should be placed on projects that use standard technologies and common

databases to create a global query interface.

Chapter 1: Introduction 13

C o m m o n m e ta d a ta in terfa ce to 0 - 0 an d O -R m u ltim ed ia d a ta b a ses . Meta
data information is crucial for generic querying and for construction of global schemas

in the federated architecture. Therefore, a common metadata representation is required
when capturing schema definitions from multiple heterogeneous databases at the local

layer. As all databases participating in the federation are capable of storing objects, a
common metamodel for the EGTV federation must be capable of supporting the full set
of object-oriented modelling paradigms. The met.amodel must also facilitate the defini
tion of federated schemas and multimedia types. Furthermore, metadata mappings must

be specified to translate between the canonical EGTV representation of metadata and

proprietary metamodels of 0 - 0 and O-R local databases.

F ed era ted (g lob a l) sch em a d efin itio n . Local database schemas must be integrated

to enable global querying. Therefore, a schema definition language capable of representing

multimedia schemas, both at local and global layers should be investigated. This language

must be able to fully capture both 0 - 0 and O-R multimedia schemas and map them to
the EGTV metamodel representation. Furthermore, the schema definition language should

facilitate the construction of federated schemas by providing a means for integrating and

restructuring multiple local database schemas.

G lo b a l q u ery la n g u a g e . A query language must be developed to facilitate queries at

both local and global layers of the EGTV federation. This language must be specifically

optimised for multimedia manipulation and updatability at the global layer. Furthermore,
a transaction control interface should be implemented at the federated layer to allow for

updatable global queries.

P r o to ty p e . The prototype should demonstrate the workability of research by imple
menting an appropriate number of services, by constructing a metadata repository for a

global schema and analysing the results of the queries specified at both the local and global

layers of the architecture. Furthermore, performance characteristics of the prototype must
be measured and analysed to evaluate implementability of the full scale system.

1.5.1 M otivating A rea

One application of querying a federated multimedia system can be illustrated by the

following example. Consider the scenario where a previously recorded video is edited

in the video studio. The video recording is stored in the specialised video store in the

recording studio. The director of the video wants to add some special effects to the

recorded video. Special effect clips are stored and managed by different database systems
within the recording studio that may be incompatible with video recording system. The

director needs the ability to access the special effects data store, browse available clips and

Chapter 1: Introduction 14

retrieve the selected ones. The problem becomes even more complicated if data from the

films archive is required for further video editing. The film archive is located outside the

recording studio and provides a browsing and retrieval interface to its clients. The film

archive is a completely autonomous data source with a data model and query interface that

can not be changed. Autonomous data sources from this example can be incorporated in

the federated database system that will be specifically constructed to support operations

on multimedia, data. This requires a solution whereby generic querying and updating will
be facilitated across a system of federated multimedia data stores.

1 .6 C o n c lu s io n s

In this chapter, a general introduction to federated database systems was provided, to
gether with the motivation and objectives of this research. It has also been argued that an

object-oriented model is the best suited as the canonical data model for federated database

systems. However, two existing standards, ODMG [CB99] and SQL:1999 [GP99] lack some
features required for efficient multimedia manipulation and global schema construction.

Existing proprietary multimedia repositories do not employ standard data models, thus

their distribution is difficult. Furthermore, they provide insufficient query features and

do not facilitate generic schema interrogation. Therefore a new federated architecture re

quires additional levels of functionality, a canonical data model which provides a common
representation for each local schema joined to the federation, and the services to support

each layer of functionality.

The underlining hypothesis of this thesis is that standard object-oriented and object-
relational databases can be used for distributing large repositories of multimedia data.
Although existing standards should be used where possible, extensions are necessary to

provide an efficient global query interface and a federated data and metadata repository.
In chapter two, related work in the area of federated databases, metamodels, query and

schema definition languages is discussed. In chapter three, a novel metamodel for database
federations is presented, and in chapter four an XML-based object definition language is

discussed. A new query language and its algebraic definitions are discussed in chapter five,
while the deployment architecture and prototype details are presented in chapter six. In

chapter seven we conclude our work and offer suggestions for future research topics.

C h a p t e r 2

Related Research

In this chapter several research projects covering object query languages, metamodels, fed

erated database architectures and multimedia databases are described. Existing research

into global query languages was studied in order to determine how query definitions and
their m etadata representations were specified in each project, and to assess their execution

capabilities. We also examine mechanisms used for global schema construction and trans

action control. There is also an interest in any multimedia database system that could
be applied in a federated architecture rather than simply operating as a single database.

The chapter is structured as follows: in §2.1 a brief introduction is provided, followed by a
discussion on a number of different research projects presented in §2.2 to §2.7; the output

of this discussion is a set of necessary and useful properties for our own query language

and metamodel; and in §2.8 some conclusions are presented.

2 .1 I n t r o d u c t i o n

Since the work presented in this thesis is focused on building a query language for a multi-
media federation, it was necessary to investigate the range of research projects that cover

areas of federated systems and multimedia databases. When examining these projects, the

emphasis was on their data distribution and querying facilities. Metadata representation

was also studied, as an efficient metamodel is an important perquisite for building any

dynamic query service.

Sample queries and schema definitions provided for some projects, are based on an object-
oriented multimedia schema defined in the EG TV project. In each case, an example is

presented in a query or schema definition language of the discussed project.

2 .1 .1 S a m p le M u lt im e d ia A r c h iv e S c h e m a

To illustrate differences between research projects covered in this chapter, we use a simple

multimedia schema illustrated in figure 2.1. This object-oriented schema represents an

15

Chapter 2: Related Research 16

Segment
image
startPosition
length
description

Character
Cartoon 0..* name

1..* description

Figure 2.1: Multimedia Archive Schema.

EG TV multimedia archive database for storing video clips extracted from the Fischlar

system. Database storage for recorded videos is required to facilitate dynamic querying

and integration with other data sources in multimedia database federation. All stored

multimedia is represented using subclasses of the R e c o r d in g abstract class. This class

contains the video c o n t e n t , its name, r e c o r d in g D a t e and textual d e s c r i p t i o n .

The source of the multimedia material is determined from relationship to S o u r c e class,

where relationship to R a n k in g determines its rating. Each recording is segmented into

multiple shots for navigational purposes. Each of the segments is an object of the S egm ent

class, it is associated with the R e c o r d in g , and described in terms of s t a r t P o s i t i o n ,

l e n g t h , im a g e , and textual d e s c r i p t i o n . The R e c o r d in g class is specialised in

the abstract class F ilm , and in the class News. The class F ilm contains y e a r and

c o u n tr y attributes and it has associations to G en re, D i r e c t o r and L an gu age classes.

All of these are in common for further specialised M o t io n P ic t u r e and C a r to o n classes.

Class M o t io n P ic t u r e has an association with A c to r class, where the class C a r to o n

has an association w ith C h a r a c te r class. The class News has an association with class

P r e s e n t e r . The schema was modelled using UML [BRJ99] and the Rational Rose case

tool [EP97].

Chapter 2: Related Research 17

2.2 LOQIS

In the LOQIS database system [SBMS94], a database is modelled as a set of triplets

< i , n , v > , whereas i is an unique object reference, n is the external name of the object

and finally, u is the contents of the object, which can be either an object-reference, a value,
or a set of object-references. External names are used for fetching objects, while object

references are considered internal to the data model. This is illustrated in Example 2.1
where an object of a class Cartoon is defined in a LOQIS representation. This object
contains attribute sub-objects name and description, and a relationship appears_-
in. The relationship takes a reference to an object if, as its value. Thus, unique identifiers
are given to both objects and their properties. An object of a subclass is created with

all the properties of its superclasses, i.e. no special notation is introduced. LOQIS does
not differentiate persistent and transient objects, thus both are treated equally within the

queries and behaviour.

<i5, CHARACTER,
{ <i5i, NAME, Goofy>,
<i5 2 , DESCRIPTION, Cartoon character>,
<i53, APPEARS_IN,

Example 2.1: LOQIS object representation.

Q u ery L an gu age. A single query, programming and view definition language named
the Stack-Based Query Language (SBQL) is used to manipulate database objects. Each

expression is considered a query and result of any query is an object reference (either to a

set of objects, or a to single object) which enables orthogonal subquerying. A simple query

in the SBQL language is illustrated in Example 2.2. This query first selects an object
of a Character class using the where condition, and then follows the appears_in
relationship to retrieve all related objects of a Cartoon class. Finally, a name sub-object
of each Cartoon object is retrieved as the end result. Thus, the result of a query is always

an object reference, as all object properties are objects themselves. The semantics of the

query execution is defined in terms of operations on two stacks. The environment stack
(ES) deals with the scope control and binding names, while the result stack (QRES) stores
intermediate and final query results. The environment stack is similar to procedure call
stacks in the programming languages, and contains references to objects used during the

evaluation of a query. The query result is always generated as a top element of a result

stack [SKL95]. Persistent objects can be inserted to the data store by invoking the create
persistent command of the SBQL language, while create local command is used

to define transient objects. The result of both of these create commands is always a set of
references to created objects. Any persistent object can be removed by an explicit delete

command, while transient object are automatically deallocated upon the termination of a

query or procedure call in which they are defined.

Chapter 2: Related Research 18

(CHARACTER where NAME = "Goofy").APPEARS_IN.CARTOON.NAME
Example 2.2: SBQL query example.

Behaviour is implemented as a set of procedures [SKL95], where a procedure is a named

sequence of queries and basic control statements such as f o r loops and i f clauses, return
ing an expression. The main objective of this research is to provide orthogonality between
query and procedural languages. The authors argue that one language can be used both

for queries and procedural code definitions. Therefore, LOQIS procedures are orthogonal
to queries as both languages consist of the same expression types and return an object
references as a result. Thus, queries can be easily embedded within the procedural code
and act as a procedure parameters, while procedures can be invoked from within the query

definition. Procedures are permanently stored within the database.

Views are seen as a result of procedure executions and they always evaluate to a single
virtual class. The result of view materialisation is a reference to an existing persistent
object or a newly generated temporary object, thus all views are directly updatable. The

original semantics of LOQIS views is extended in the recent paper [KLS03] where view

updates are further discussed. An extended view consists of an object extent and a set
of operations that define update semantics. This is illustrated in Example 2.2 where a

view is defined to retrieve all G ooiy’s cartoons. A virtual object clause is an SBQL query

that materialises a view extent in a form of LOQIS objects. However, these objects are
not directly updatable, as this may introduce unwanted side effects. For example, inserts

and deletes into a virtual class created from a join are ambiguous, as it is unclear how

base objects are affected by this operation. Therefore, each updating operations on a

view is defined as a SBQL procedure o n _ u p d a te , o n _ d e le t e and o n _ r e t r i e v e . The

execution of these procedures is triggered when a corresponding update operation on a

view extent is invoked.

create view GoofyFilmsDef {
virtual object GoofyFilms

{return (CHARACTER where NAME =
"Goofy"),APPEARS_IN.CARTOON.NAME as c}

on_retrieve do {...}
on__update rvalue do { . . . }
on_delete do {...}
on_insert objecref do {...}

Example 2.3: LOQIS view definition.

M e ta d a ta . The original LOQIS specification [SBMS94] does not discuss metadata

representation for types, views and operations, nor it does specify a metamodel. How-

Chapter 2: Related Research 19

MetaObject

Name: Character
Kind: Type

^MetaRelationship ^
MetaObject

target
Name: name
Kind: AttributeName: "subobject"

V J

MetaRelationship

Name: "subobject”

MetaRelationship

MetaObject

^Name: "subobject"

Name: name
Kind: Attribute

V__________

MetaObject

Name: appearsin
Kind: Relationship

r MetaAttribute N
J

^ MetaValue ^

^Name: “multiplicity"^, -------------- Value: 0..*
^ J

Figure 2.2: LOQIS Metamodel Instance: A C h a r a c te r class example.

ever, they introduce special class1 objects embedded within the LOQIS data model. Class
objects are used for mapping inheritance (by creating a triplet with external name In
herit sFrom that connects subclass with the superclass) and for referencing procedures,
constraints and properties belonging to a class. All objects of a class are considered to

be connected to their class object. Details regarding creation, contents and usage of class

objects are not published, but the published work clearly denotes that the class objects

do not specify property types and names.

In their later work, they introduce a flattened metamodel [HRS02] that can be applied
to LOQIS and other object-oriented database systems. This specification advocates a

minimalistic metadata repository where the majority of meta-metadata is represented at
the m etadata level. This reduces the total number of classes in the metamodel, as sev
eral modelling entities can be represented using a single metaclass that takes multiple

roles. Thus, a proposed metamodel contains only four metaclasses that represent types

(MetaObject), their attributes (MetaAttribute) with values (MetaValue), and rela
tionships (MetaRelationship) to other meta-objects. Figure 2.2 illustrates an instance

of class Character represented in the flattened metamodel representation. Each prop
erty of the Character class is represented as a separate meta-object connected to the

root Character meta-object with the sub-object relationship. The relationship property

appears_in defines cardinality meta-attribute with the 0 . . * value.

1In th is research, som etimes referred as to m aster object.

Chapter 2: Related Research 20

L im ita tio n s . The model contains no notion of scopes, and both base and virtual classes

are stored together, resulting in naming restrictions (no two classes can have the same

name). The SBQL language is not SQL compliant and uses syntax similar to low-level

programming languages, therefore it is not intuitive to many database engineers. Further

more, the authors use the same language for both queries and stored procedures. This

can have a negative performance impact, as procedural code must be interpreted each

time the procedure is invoked, thus resulting in a longer execution time. Therefore, com

plex multimedia operations written in this language cannot achieve optimum performance.

Published work does not discuss any data distribution features, nor interoperability of LO-

QIS system in heterogeneous environments. Although the view system for SBQL is defined

in the form of stored procedures, neither global views nor schema restructuring capabili

ties are discussed. The m etadata side of the model is neglected: the class objects are too

restrictive to be considered m etadata as they do not describe attributes the objects have,

nor their types, simply the methods. The published work does not discuss how database

schemas are specified, nor how a schema definition language is provided. The flattened

metamodel specification reduces the modelling complexity by using only a minimal set of

metaclasses. This however results in the creation of multiple meta-objects for representing

the m etadata of a single class. Interrogation of this flattened structure is difficult, as it re

quires complex queries that span multiple objects in the schema repository. Furthermore,

complex algorithms for maintaining the consistency of schema repository must be defined

to allow updatability of the metamodel.

S um m ary . The reference-based model of the LOQIS system represents the central fea

ture of this research. The concept of direct referencing of both object and its properties

is reused in the E G T V project where it provides a basis for updatability of queries and

views. This way, the query language does not need special syntax or keywords for updating

objects. However, the proprietary syntax of SBQL is replaced with the more familiar SQL-

like one. The query language must also be extended to address issues of interoperability

of heterogeneous data sources and global schema construction. M etadata representation

and schema definition language, neglected in LOQIS must be redefined and enhanced with

the ability of representing multimedia metadata.

2 .3 M O O D a n d M I N D p r o j e c t s

The MOOD database system [D 0A 094, D D K + 96] is a proprietary object-oriented DBMS

that derives its model from the C + + object model. The C + + model was chosen to avoid

the impedance mismatch when converting objects between database and programming

language representation. Therefore, types used for the definition of persistent classes are

identical to the ones specified in the behaviour methods. The MOOD database kernel was

built using the Exodus Storage Manager (ESM) to provide database kernel functions such

Chapter 2: Related Research 21

as storage management, concurrency control, and backup and recovery. Persistent classes

can be defined using MOOD SQL (an extended form of SQL-92 for object querying) or

C + + class definitions.

M ETU INteroperable DBM S (MIND) [DDK+ 96] is a multidatabase system that integrates

multiple MOOD databases with other commercial databases (Oracle 7 and Sybase) into a

multidatabase system. The integration is implemented using database wrappers specified

in a form of CO RBA objects. All command and data interactions between participating

databases and global multidatabase services are facilitated through the CORBA architec

ture [HV99],

F ed era ted A r c h ite c tu r e . The MIND system is based upon a four layer multidatabase

architecture similar to [SL90]. The architecture consists of Local Schema, Export Schema,

Federated Schema and External Schema layers.

• L ocal S ch em a .
A Local Schema is expressed in the native data model of the MOOD database or

any commercial database for which an object wrapper is provided.

• E x p o r t S ch em a .
An Export Schema defines a canonical data model in a form of ODMG [CB99]

objects and corresponds to both Canonical and Export Schema layers in [SL90],

Data models of all databases at the local layer must be translated to the canonical

ODMG model.

• F ed era ted S ch em a .

The individual Export Schemas are integrated into a Federated Schema using an

extended form of the ODL language: the keyword interface is used to define the

structure of the exported class (attributes and relationships), while the new keyword

m app in g is introduced to facilitate definition of the mapping rules, i.e. the class

extent and how the attributes and relationships map to the source classes at the

Export layer. Thus, a simple virtual class can be defined using multiple source

classes located at different local database nodes. The virtual class extent is defined

as a MOOD SQL query, while ODL extensions specify mapping rules to base classes.

Inheritance of virtual classes can also be defined in the interface declaration of

the class. A definition of a simple virtual class GoofyFilm is illustrated in Example

2.4, where a class interface is specified first, and then mappings to the source classes

Character and Cartoon in the export schema are defined.

• E x ter n a l S ch em a .

An External Schema is created to facilitate requirements of a specific application or

a group of users. It represents a subset of the Federated schema and can contain

additional integrity constraints and schema transformations.

Chapter 2: Related Research 22

interface GoofyFilm {
extent GoofyFilms;

attribute string name;
attribute string description;

}

mapping GoffyFilm {
origin MMArchive:Character Character,

MMArchive:Cartoon Cartoon;

def_extent GoffyFilms as
select *
from Cartoon, Character
where Character.name = 'Goofy'
and Character.appears_in = Cartoon;

deff_att name as Cartoon.name;
deff_att description as Cartoon.description;

}
Example 2.4: Virtual Class definition in MIND.

Q u ery L an gu age. The M OOD SQL [Alt94] is an “objectised” version of SQL-92 [MS92]

that facilitates method invocation within queries and path navigation based on relation

ships defined between classes. The language is separated into DDL (Data Definition Lan

guage) and DM L (Data Manipulation Language) segments. The DDL part of the language

defines database schema as a collection of type and class definitions. The difference be

tween MOOD types and classes is that types define only structure and no behaviour, while

classes can have both structure and behaviour. Furthermore, only classes can be instanti

ated to objects, and define an object extent. Properties of both classes and types can have

complex domains that include collection types, association and generalisation relation

ships, and other user-defined types. Exam ple 2 .5 illustrates a MOOD DDL definition of

a class Character. The data manipulation part of the MOOD SQL includes constructs

for performing CRUD (Create, Retrieve, Update, Delete) operations on database objects.

New objects are created by invoking an object constructor (defined as a C + + method)

through the NEW command of MOOD SQL. Delete is based on a reference counting, where

reference count is defined as the number of other objects in the database that reference the

deleted object. Thus, an object can be permanently deleted from the database only when

its reference count reaches zero. Otherwise, the reference count is only decreased each time

an object is deleted. Behaviour is seen as a collection of persistent class methods defined in

C + + [DAO+ 95] which can be invoked within the MOOD SQL queries. However, virtual

classes cannot define new behaviour.

Chapter 2: Related Research 23

CREATE CLASS Character
TUPLE(

name STRING[12],
description STRING[40],
appears_in R E F (Cartoon)

)
Example 2.5: MOOD definition of a Character class.

The MOOD SQL language is supported with an object algebra [Alt94], Therefore, all

queries can be represented in the algebraic form. The algebra defines three categories

of operators: general, collection and conversion. General operators are applied to single

objects to facilitate path navigation, identifiability and object dereferencing. Collection

operators manipulate object collections that can be of a list, set or extent type. This

group of algebraic operators include projection, selection and join operations. Conversion

operators are used for conversion between different collection types.

The MIND multidatabase system supports execution of global queries specified against

the federated and external schemas [NKOD96] of the architecture. Global queries are first

decomposed to a multiple subqueries by the Global Query Manager (GQM) processor,

implemented as a CO RBA object. This decomposition process is based on the definition

of the virtual class which specifies how its structure is derived from multiple base classes.

Each subquery is targeted to one participating database node where it is translated to the

proprietary query language of local layer database. Subquery results are converted back to

the canonical data model representation and then merged at the federated layer by GQM

to produce the final result. This merging is achieved through post-processing operations,

namely join, the outer-join and union.

T ra n sa ctio n M o d e l. Global transaction control is incorporated into the MIND archi

tecture, where the ticketing method [GRS94] is used to enforce the stabilizability of global

transactions in a multidatabase environment. However, this transaction method is im

plemented in a distributed manner, so that global transactions can be equally submitted

to each participating site capable of coordinating their execution. A Global Transaction

Manager (G TM) processor at the coordinating site employs an optimistic scheduling al

gorithm which assigns ticket values in a form of a global timestamp. Thus, global tickets

are maintained distributively, and it is not necessary to obtain tickets from a specific

central site. Global subtransactions are serialised in the timestamp order at all sites. Lo

cal conflicts between subtransactions are resolved by forcing each subtransaction to write

and read ticket value in the local database. This guarantees the local serialisation order

equivalent to the order of global transactions.

Chapter 2: Related Research 24

L im ita tio n s . MOOD is based on a proprietary object database model which restricts its

usability. Since the data model is standard C + + , the database is completely bound to this

language and mappings to different programming languages are difficult to define. The

integration approach chosen in MIND has multiple problems: firstly, it does not facilitate

the definition of methods in views; secondly, although it uses ODMG as its canonical data

model, virtual class extents are still defined in a proprietary M OOD SQL; and finally,

MIND facilitates the definition of inheritance between unrelated virtual classes without

offering any discussion on implications for querying and updating.

Details of defining External Schemas are not discussed, and no metamodel for MOOD was

ever published, though in the M IND multidatabase system one of component databases

is a M OOD database. Thus, it remains unclear how federated metadata is represented

and stored. The MOOD SQL language allows invocation of custom methods from within

queries, but operators (arithmetic, logical and comparison) are hard-coded in the language

itself, and therefore not supported for user-defined types. Global query processing is com

plex and involves multiple stages of query transformation and rewriting. This requires

complex query processors that translate queries from MOOD SQL to the proprietary lan

guage of local layer databases. However, specified transaction rules are still not able to

support the full semantics of all local query languages used in the system. Updatability of

global queries has not been discussed, while the MOOD SQL algebra is not fully orthogo

nal, as inputs and outputs to algebraic operators can be either, objects, identifiers or class

names.

S um m ary . The most important feature of the MOOD object database system is a query

language capable of invoking user-defined methods. Methods are specified in a standard

(compiled) programming language, thus having minimal performance overhead. Perfor

mance is an important feature when processing large quantities of multimedia data stored

in a database^ Therefore, we reuse and further enhance this functionality in our query

language developed within the E G T V project. The MIND multidatabase system provides

a framework for integration of multiple local databases into a federation using CORBA

services. CORBA solves platform dependencies by providing a layer of interoperability

between different databases, thus simplifying the system. Global transaction management

guarantees stabilizability of M IND transactions across multiple databases participating in

the federated system, and provides a starting point when designing transaction manage

ment for the E G T V prototype.

2 .4 T h e G a r l ic P r o j e c t

The goal of the Garlic Project [CHS+ 95] is to develop an architecture for a distributed

database system that can store and manipulate heterogeneous multimedia data. This is

Chapter 2: Related Research 25

achieved by constructing a distributed middleware capable of integrating multiple multi-

media and traditional text-oriented data sources into a queryable multidatabase system.

The middleware interacts with the heterogeneous databases and video repositories to fa

cilitate global queries while preserving the autonomy of local data.

S y s te m A rch itec tu r e . The architecture of Garlic system consists of three layers: Data

Source, Wrapper and Integration Schema layer.

• D a ta S ou rce layer.
This layer provides storage for multimedia and textual data in the system. Different

storage systems are supported ranging from simple file systems to specialised multi-

media repositories and standard databases. The only requirement for an integration

of a data repository to the Garlic system is that a wrapper has been provided for

that specific repository.

• W rap p er L ayer.

D ata stores are connected to the Garlic system by wrappers [HMN+ 99] that fully

encapsulate their data retrieval interfaces and provide a common query language ac

cess to stored data. Wrappers also transform proprietary data models of underlining

data stores to a canonical Garlic Data Model (GDM).

• In teg r a tio n L ayer.
A global schema is created at this layer as a union of all wrapper schemas represented

in Garlic data model. This schema can be further restructured to combine data from

multiple data stores. All queries in the system are executed only against the global

schema.

G arlic D a ta M o d e l. The Garlic Data Model is effectively an ODMG model extended

with weak object identity, type conformance and views. Garlic introduces a concept of

weak id en tity which provides a unique, but not necessarily immutable identification of

database objects. This approach enables an object encapsulation and referencing of mul

timedia data from repositories which do not support a strong notion of identity, such as

relational databases. Therefore, object identifiers in the Garlic canonical schema are de

rived from the identifiers used by proprietary data stores. However, instantiated objects

cannot maintain a permanent reference to the underlining data, and are materialised as

snapshots only. Therefore, Garlic objects are not updatable. Another modification of the

ODM G data model is a concept of flexible type system. It introduces a notion of interface

conformance, where the conform s relationship is defined as a weaker form of inheritance

in which one interface can be considered as a subtype of another even if the explicit inheri

tance relationship between them does no exist. This is exploited later when heterogeneous

multimedia schemas are integrated in the federation.

Chapter 2: Related Research 26

Each canonical schema is defined as a set of interfaces specified in a Garlic Definition

Language (GDL). The GDL extends the ODM G ODL schema definition language with

the ability to rename types and attributes, change types and define relationships even if the

underlining data source stores none. While the interface definition is platform independent,

its implementation is bound to the repository where the actual data is stored. The interface

implementation uses the proprietary interface of data store to retrieve data and wrap it

into canonical layer objects. Therefore, Garlic data types are mapped to the native data

types of the underlining data source, while methods defined in the interface declaration

are just wrappers for the equivalent methods of the data source repository.

The global schema consists of multiple object views and is able to extend, simplify or

reshape properties and methods defined in wrapper interfaces. A view is defined as a

GDL interface, while its extent is generated as a SQL query. Any new method defined for

a view is also implemented as a parametrised query. However, each view can be based upon

a single base class. Objects originating from different data stores can be combined using

com plex objects. Complex objects are stored in the special Complex Object Repository

and model relationships that exist between multiple multimedia objects. Complex objects

are needed to integrate multimedia data with legacy data in situations where the legacy

data cannot be changed, and as a place to attach methods to implement new behaviour.

The existing behaviour in the source repositories can be invoked through the wrappers,

but new methods can only be specified in the form of SQL queries.

Q u ery L an g u ag e . The query language for Garlic is based on SQL-92 and extended

with object-oriented features such as references, collections and operations. Therefore,

new operators are introduced to the Garlic SQL, such as m a k e se t , n e s t and u n n e s t

for manipulating object collections and l i f t for generating virtual object OIDs. Virtual

identifiers are always based upon the object identifier of underlining base objects and

contain an identification of a wrapper and an OID of the object managed by the wrapper.

Query language extensions also include predicates and operations for context querying of

multimedia objects. A global query is decomposed to a set of subqueries that are executed

on the wrapper databases. It is then the wrappers job to translate these subqueries into

the repository’s native query language (or its native search API, if it has no actual query

language). All queries are read-only and data modifications are not possible.

L im ita tio n s . Garlic’s object-oriented query language has advanced querying capabili

ties, but no transaction support is provided. Queries are read only and thus, data modifica

tion is impossible. Limited view capabilities are the other disadvantage of the architecture.

The main issue w ith Garlic views is their inability to define relationships between classes

in the global schema. Relationships are substituted by the concept of complex objects

that must be stored in the special repository. A metamodel was not included in any of the

literature covered, while multimedia querying requires an extension of an existing query

Chapter 2: Related Research 27

language, thus limiting its generality. Our aim in E G T V is to preserve general SQL-like

syntax and semantics of a language, but to provide a full integration of query language

with the behaviour that implements multimedia operations. Furthermore, our approach

extends ODM G OQL as it is more suited to querying an object-oriented data model than

SQL. However, our E G T V data model requires a re-specification of OQL in order to ex

ploit data distribution and updatability of views. Thus, while employing an OQL like

syntax, the semantics are different.

S um m ary . The global schema and object based data model for multimedia are the

most important features of the Garlic architecture. Different multimedia data stores can

be joined to the Garlic system by using object wrappers that provide translation to the

Garlic data model. We adopt the Garlic approach of extending the ODMG model, but

our extensions are more comprehensive than those implemented in Garlic as they include

a full specification of the metamodel and updatability at the global level. We regard a

metamodel specification as a crucial feature in semantic integration.

2 .5 T h e N e w s - O n - D e m a n d S y s te m

The News-On-Demand System [OSEM+ 96, W LE+ 97] is a multimedia project developed

at the University of Alberta in Canada. Its main objective is to provide database storage

and advanced query interface for a collection of multimedia news articles. Each news doc

ument consists of textual and multimedia elements with spatial and temporal relationships

between them. The spatial relationships between multimedia elements are represented in

SGML, while the HyTime standard was used for temporal relationships. SGML (Standard

Generalised Markup Language) [IS086] is a predecessor of XM L, and as such it provides

markup representation of textual documents. The HyTime standard [IS092] adds sup

port for hypermedia and synchronised documents, thus enabling definition of complex

documents containing hyperlinks and video.

A r ch itec tu r e . From a database aspect, the system provides an object-oriented repre

sentation for multimedia data. Non-continuous media (text and still images) are stored

in the ObjectStore object-oriented database, while continuous media (audio and video)

are stored in a specialised media file server. A wrapper has been provided to encapsulate

this proprietary multimedia server into an ObjectStore database schema. The architecture

does not provide heterogeneity, since all objects must be stored in these two data stores.

However, data can be stored in a distributed manner, as multiple databases can be joined

to the system. A global schema is a simple union of all local ObjectStore schemas, and

is fully encapsulated within the client application. Thus, queries can operate on multiple

databases, but due to the simplicity of schema integration only a simple global queries are

possible.

Chapter 2: Related Research 28

Figure 2.3: News-on-Demand schema generation.

The system uses SGM L related technologies for defining database schemas and multimedia

documents. Therefore, multimedia schemas are first specified in the form of DTD (Data

Type Definition) files. A DTD defines the blueprint for instantiation of SGM L documents,

and as such represents a m etadata specification. Actual database schemas in the News-on-

Demand system are generated from these DTD specifications as illustrated in figure 2.3.

In the first step, a DTD Parser processes a DTD file, and creates its in-memory object

tree representation where each DTD element is an object in a tree. A Type Generator
uses this information to generate prototypes for C + + classes that are then loaded to an

ObjectStore database, thus generating an object-oriented database schema. One class is

created per element in the DTD specification, while element attributes are mapped to

class attributes. For example if a subset of a Multimedia Archive schema, defined in the

DTD in Exam ple 2.6, is parsed, classes representing Recording, Segm en t, Sources,
and Ranking elements would be created in the database.

<!ELEMENT Recording>
<!ELEMENT Segment>
<!ELEMENT Sources>
<!ELEMENT Ranking>

Example 2.6: News-on-Demand schema definition example.

Actual data is specified in a form of SGM L/HyTim e documents conforming to the pre

viously specified DTD definitions. The process of document insertion to a database is

also illustrated in figure 2.3. A document is firstly parsed by the SGML Parser which

validates it and creates a parse tree. The Instance Generator processor traverses

this parse tree and instantiates appropriate objects in a database corresponding to the

elements in the document and previously created database classes. The database is then

populated with persistent objects that can be accessed using the query interface.

In addition to user-defined types created from DTD definitions, some common multimedia

Chapter 2: Related Research 29

types are already provided within the system. These types are defined as extensions to

an existing ObjectStore type system, and are available to all users. System types are

represented in a multimedia class hierarchy. The base multimedia type is an abstract class

Atomic and all other types in the class hierarchy are descendants of Atomic. Its direct
ancestors are non-continuous media class (further specialised as Image and Text) and

continuous media class (further specialised as Audio and Video). Classes that represents
single multimedia (like jpg, avi, mpeg) derive from leaf classes in this class hierarchy.
Complex multimedia objects consist of interrelated single multimedia objects. Complex

objects are represented as SGML and HyTime documents, where SGML describes spatial

relationships between component single multimedia objects, while HyTime model temporal

relationships.

Q u ery L an g u a g e. The query language for multimedia (MOQL) [L0S097] was devel

oped as a part of the News-on-Demand project. The language adds multimedia extensions

to an existing ODMG OQL query language. These extensions represent the most impor
tant feature of the language as they include constructs for capturing the temporal and

spatial relationships between multimedia objects in the database schema. All extensions
are separated into two categories: predicate expressions and functional expressions. Pred
icate expressions extend the syntax of the language by introducing new predicates, while

functional expressions are global functions defined specifically for manipulating different

kinds of multimedia objects. For example, a c o n t a i n s predicate checks if a physical

object is contained within some multimedia object (i.e. if a v id e o C l ip contains any
persons). Each predicate or function expression can belong to either a spatial or temporal

category.

Spatial expressions include predicates for querying spatial relationships between multime

dia objects such as n e a r e s t , f a r t h e s t , i n s i d e , l e f t , r i g h t , a b o v e and b e lo w .
By using these predicates, the position of an object and distance from other objects can be

queried. Spatial functions compute attributes of an object or a set of spatial objects. For
example, the function d i s t a n c e returns distance between two objects, while l e n g t h ,

a r e a and p e r im e t e r functions calculate the size of an object to which they are applied.

Temporal functions such as before, after, overlap, and during can compute tem

poral dependencies between objects in the MOQL query. Special category of temporal
functions are those specifically constructed for querying video contents. These functions

can manipulate video clips as a whole, or at the level of individual frames. Therefore, a

query can ask for the previous frame to the current frame, or the last frame of a video.
Functions belonging to this category include: prior, next, firstFrame, lastFrame,
firstClip, and lastClip.

A sample MOQL query is illustrated in Example 2.7. This query selects the last frame in

all video clips where cartoon character Goofy appears. It uses spatial predicate c o n t a in s

Chapter 2: Related Research 30

in the where clause to filter the result set, and the global function lastFrame to extract

the last frame from all video clips returned as a result of a subquery.

select lastFrame(
select c.content
from Cartoon c
where c.content contains Character("Goofy"))

Example 2.7: MOQL query example.

L im ita tio n s . The main deficiency of the News-on-Demand system is its inability to

provide a true heterogeneous multidatabase environment. The data distribution model is
simple and supports only two proprietary data stores: the ObjectStore database and spe
cialised media server. However, integration of the media server with the database schema

is not discussed in published research. The global schema is constructed as a union of all
local schemas and is fully contained within the client application. Therefore, schema re
structuring is not possible as a single consistent schema instance must be maintained across

multiple clients. Although, a schema definition process is fully specified, no metamodel is

discussed in the published research.

MOQL is a read-only language and does not provide updatability or transaction features.

Also, all MOQL multimedia functions are hard-coded to the query language itself. Thus, a
language and existing type system cannot be extended with new multimedia operators and

functions. Furthermore, each user-defined class must derive from an existing multimedia

class hierarchy predefined in the data model. Behaviour methods and operators cannot

be specified for these classes.

S um m ary . The main advantage of this system is its ability to define complex multime

dia schemas using the standard markup language SGML. This enables the capturing of a
complex spatial and temporal relationships between multimedia objects, while maintain
ing simple algorithms for parsing and constructing database schema. We use a similar

approach in the EG TV project where a XML markup language (a successor to SGML) is

used for defining both local and global database schemas.

The MOQL language adds advanced multimedia extensions to an existing ODMG OQL

query language. Although these extensions enable querying of spatial and temporal re
lationships between database objects, their implementation is proprietary. Furthermore,

MOQL multimedia functions cannot be extended or modified. Therefore, our query lan
guage for the EG TV project takes a different approach by providing flexible operators

and methods whose behaviour can be easily modified. Thus, a query language can be
customised for any specific domain, including multimedia.

Chapter 2: Related Research 31

2 .6 I R O - D B

The IRO-DB (Interoperable Relational and Object-Oriented DataBases) project [GGF+ 96]
aims for the provision of appropriate integration tools to achieve interoperability between

pre-existing object-oriented and relational databases. A global schema is constructed to

enable queries evaluated against multiple databases, while the updatability is guaranteed

by the global transaction mechanism.

A r ch itec tu r e . The system follows the general concept of federated database systems
[SL90], which provide interoperability of autonomous data sources by adding multiple

schema transformation layers. However, the IRO-DB architecture differs from the generic

[SL90] model as it consists of only three layers: local layer, communication layer and

interoperable layer.

• L oca l Layer.
This layer encapsulates local databases and transform their proprietary data model

into the canonical model of database federation. Only a subset of the local schema is
represented in the canonical format, thus the canonical schema at this layer is effec

tively an export schema of the generic [SL90] federated architecture. The canonical
model chosen for the IRO-DB project is the ODMG data model [CB99], therefore

this layer is able to answer OQL queries and define export schemas in terms of IDL

interfaces.

• C o m m u n ica tio n L ayer.
The communication layer implements remote object access services for both clients

and servers. Thus, its role is to pass OQL queries and updates from the upper layer

to the Local Layer, and return results in a virtual object representation.

• In tero p era b le L ayer.
The Interoperable Layer facilitates the definition of an integrated (federated) schema,
thus providing a single access point to multiple local databases joined in a federation.
The integrated schema is defined using global views. Views are specified as an OQL

queries and are able to integrate and restructure interface definitions imported from
multiple Local Layer schemas. Views and imported interface definitions are stored

in the specially constructed data dictionary built upon the specialised ODMG com
pliant database at the Interoperable Layer. This database is called home OODBMS
and its roles also include materialisation of virtual objects, transaction control and

provision of data manipulation interface in a form of OQL embedded within the

C + + mappings for ODMG.

S ch em a D efin itio n . The IRO-DB project extends the ODMG data model with the

ability to define federated schemas. Therefore, an IDL data definition language is extended

Chapter 2: Related Research 32

with support for defining virtual classes in the integrated (federated) schema and with

syntax for importing an existing class definition from multiple local nodes to integrated

schema [BFN94], These extensions are similar to ones defined in the MIND project. The

main difference is that instead of proprietary query language, virtual class extents in IRO-

DB are defined in the ODMG OQL language.

Each schema transformation step adds a new layer of virtual classes. Therefore, four
different types of classes can be distinguished in the IRO-DB integrated and local schemas.

1. E x ter n a l c la sses .
These classes are created at the Local Layer to provide an external schema that can

be accessed and queried by the federated clients. External classes are simply ODMG

wrappers for data in proprietary data sources. Their definition is specified as a set of
interfaces in the ODMG IDL schema definition language, while their implementation

is platform specific and defines mappings to the underlining proprietary data sources.

2. Im p o r te d c la sses .
Imported classes are 1-to-l copies of external classes imported to the federated

schema. They provide only a means for hiding physical locations and for mak

ing the external classes accessible from the Interoperable Layer. Imported classes

generate a global instance for each local object that needs to be accessed from the

integrated schema and propagate accesses to the attributes of this global instance

to the original local objects. Thus, they act as global proxies. A simple extension

to the ODL language (keyword im p o r te d) is provided for specifying classes to be

imported into the federated schema.

3. D er iv ed c la sses .
This is a further transformation layer in the federated schema that integrates im
ported classes originating from multiple local databases. Derived classes also provide
schema restructuring capabilities, as they are able to hide attributes of the under

lining imported classes or derive new ones. Thus, a derived class may be based

upon multiple imported or other derived classes. The interface of a derived class is
specified in the ODL language, while its implementation is defined as an OQL query

embedded within a m ap p in g declaration. This declaration is an IRO-DB extension

to the ODL schema definition language for defining the extent and attributes of de
rived virtual classes. Thus, a derived class acts as a simple view in the federated

schema.

4. S ta n d a rd c la sses .
These are stand-alone classes defined in the integrated schema and are not based on

any imported class.

An extent of each virtual class contains surrogate objects only. This is an important feature

of the IRO-DB federated schema as surrogate objects do not contain any data, but provide

Chapter 2: Related Research 33

references to other real or surrogate objects. Thus, surrogate objects instantiated from an

imported class are simply references to corresponding objects in the Local Layer databases.
Surrogates instantiated from a derived class reference other derived or imported surrogate

objects in the integrated schema. This can create multiple referencing levels until each

surrogate object is ultimately resolved to a real object in a local database.

Surrogate objects are important for updatability of virtual classes, as each update on the

surrogate object is directly propagated to objects in local databases it is based upon.
Therefore, IRO-DB views are updatable.

M e ta m o d e l. The metamodel specification for IRO-DB is discussed in [BFN94], This

metamodel stores virtual class metadata in an object-oriented database schema, thus fa
cilitating their dynamic querying. Both interface definitions for virtual classes and the
implementation mappings are extracted from the ODL schema specifications and repre
sented in the metamodel. Interface definitions are represented in the InterfaceDef
metaclass, while their attributes, relationships and operations are represented in the asso
ciated AttributeDef, RelationshipDef, and OperationDef metaclasses. An OQL

query defining the interface implementation is stored in the QueryDef metaclass which

is also associated to the InterfaceDef metaclass. Thus, both the structure and extent
definition of virtual classes can be queried from within the schema repository. However,

direct mappings from virtual classes in the integrated schema to external classes in local
databases are not represented in this metamodel. Furthermore, each attribute and rela
tionship of a virtual class is mapped to a query defined upon its extent specification, and

not directly to properties of the underlining external classes.

G lob a l q u eries. The IRO-DB system uses ODMG OQL as a common query language to

facilitate both local and global queries [SFF95]. Since OQL does not support updatability,
queries in the IRO-DB are a retrieval only. However, query results can be updated from

within the C + + programming language interface to which OQL query calls are embedded.
The result of each query is represented as a set of surrogate objects in the integrated schema
that maintain mappings to base objects physically storing data. Thus, an update on the

surrogate object’s property is propagated to an update of an equivalent property of its

base object.

Each global query is evaluated in the home OODBMS that stores both federated schema

and metamodel. Global query processing can be broken down into four general steps.

1. The OQL Parser processor performs syntax and semantic analysis of the global

query to check whether the query references the correct class and property names.
This analysis is preformed by examining the metamodel definitions of virtual classes

upon which the query is based.

Chapter 2: Related Research 34

2. The Global Query Processor (GQP) decomposes a global query into multiple

subqueries, where each subquery is targeted at one local database. Metadata infor
mation is used to resolve all derived virtual classes specified in the query definition

to their actual OQL implementations. Thus, each derived class is replaced with

an OQL query, and this process is repeated recursively until all subqueries refer to

imported classes only.

3. At Local Layer databases, subqueries are executed in proprietary databases, and

object identifiers for retrieved objects are generated. This set of identifiers is then

returned through the communication interface to the Interoperable Layer.

4. The Global Query Evaluator (GQE) processor receives results from all sub

queries, and generates imported surrogate objects corresponding to object identi
fiers contained in these results. Then the GQE recomposes these surrogate objects by

starting the evaluation of the global query part. This effectively integrates data from

multiple sources and produces a final result in a form of derived surrogate objects.
These objects are sent back to the client application which can modify their state.

Updates to surrogate objects are propagated through the object references back to
corresponding local database objects.

When imported and derived surrogate objects are created in the home DBMS, they can

be instantiated in one of three states. These instantiation modes are significant as they

directly influence the optimisation of global query processing.

• M in im a l s ta te .
It corresponds to the minimal instantiation, where no surrogate objects are created.
Thus, the global query is completely evaluated at local sites, and no global objects

are created.

• T o ta l S ta te .
This state corresponds to the total instantiation of a virtual class in the home DBMS.
This fully instantiates all surrogate objects belonging to the virtual class extent.

The consequence is that all local data is moved to the Interoperable Layer before a
query is evaluated. Therefore, a global query is fully resolved within the federated

schema and no remote access is required. The downside of this approach is that
large amounts of objects must be transfered and cached at the global database node.
Also, all query processing is centralised within the integrated schema.

• P a rtia l S ta te .
It corresponds to a partial instantiation when only part of the virtual class extent is

instantiated in the federated schema. Query processing with a partial state requires

a mixed evaluation. Some information is already cached in the home database, but
not all. Thus, remote accesses are also required. The principle is that missing data is

Chapter 2: Related Research 35

retrieved from local sites by issuing subqueries, and then integrated with previously

cached data to evaluate the global part of the query. In this approach processing

and data transfer is balanced between local and global layers, but data integration

can be complex as it requires numerous calculations.

T ra n sa ctio n s. Updatability at the federated layer of the IRO-DB architecture is sup

ported with a global transaction control system. This system is based upon the open

nested transaction model [TW97], where each global transaction consists of multiple lay
ers of nested subtractions. Global seralisability is ensured by the optimistic ticket method

[GRS94] that does not violate the autonomy of local databases. This method forces con
flicts between subtransactions on local database to determine their serialisation order.
Thus, if subtransactions are serialised in the same relative order at all local databases,

then the seralisability of the global transaction is also preserved. A two-phase commit is

required for the processing of commits and aborts of global subtransactions. Therefore,
each local database must natively support a visible prepare-to-commit state or it can be

simulated by the Local Transaction Manager (LTM) . The LTM guarantees that a

subtransaction cannot be unilaterally aborted by the local database if it is fully executed

and does not issue further data operations.

The Global Transaction Manager (GTM) processor implements transaction control

at the global level. Therefore, the execution of a global transaction by the GTM can be

represented as a sequence of four steps.

1. T ake tick ets .
Tickets are taken by the GTM from each participating local database the global
transaction has accessed.

2. P re p a r e th e lo ca l tr a n sa c tio n to co m m it.
The GTM acts as commit coordinator in a two-phase commit protocol.

3. V a lid a te th e g lo b a l ser ia lisa tio n order.
The GTM checks the order of tickets each subtransaction obtained, to determine if
all subtransactions follow the same relative execution order.

4. E n fo rce th e d ec is io n .
If the validation of a global transaction was successful, the GTM commits all sub-
transactions, otherwise, an abort command is issued. This completes the global

transaction.

L im ita tio n s . The canonical data model chosen for the IRO-DB system is the ODMG

model. Although, it represents a standard for object-oriented databases, this model is not

fully supported by commercial 0 - 0 databases. Therefore, the IRO-DB project was forced

Chapter 2: Related Research 36

to develop complex adaptors to provide at least a minimum ODMG and OQL facility on

top of existing object-oriented databases used in the system. Furthermore, the ODMG

model does not provide sufficient support for large objects required for multimedia repre

sentation, nor can the server-side behaviour be defined to support performance intensive

multimedia operations. The available literature does not discuss mappings between the

ODMG canonical model and proprietary object-oriented and object-relational databases

at the Local Layer. Basic ODMG wrappers are provided for only two databases: the

relational database Ingres and the object-oriented database O2. A relational wrapper is
limited only to transformation of tuples into objects, while more advanced features such

as referential integrity and behaviour are not supported.

Although the OQL query language is a natural choice as a global query language oper
ating on top of an ODMG database, it has several deficiencies. Firstly, OQL does not

support updates from within the query language. Secondly, all query language operators

are hard-coded into the language itself, and cannot be modified to support multimedia

data types. Finally, query translation from OQL to the proprietary languages of the Lo
cal Layer databases is non trivial, and published IRO-DB research does not discuss this
issue. The evaluation of global queries in IRO-DB can be optimised by caching local data

as surrogate objects in the federated schema. However, keeping this object cache syn

chronised is difficult when operating in the multi-user environment. The metamodel for

IRO-DB follows the ODMG metamodel specification, and extends it with metaclasses for

representing virtual classes in the federated schema. However, mappings from virtual to

base classes are not defined in this metamodel.

S u m m ary . The IRO-DB project delivers a system that integrates relational and object-
oriented databases into database federations using ODMG standards. Therefore, the IDL
schema definition language is extended to define federated schemas, while OQL is used

as a global query language. The main advantage of the IRO-DB system is its ability to

provide updatability at the global level. This is achieved by creating surrogate objects in

the federated schema for all objects imported from local databases. Thus, each update on
a surrogate object is propagated directly to its base objects in local databases. Although

this feature allows for the definition of an updatable global query language, updates are

not supported in the existing OQL standard. The IRO-DB metamodel stores definitions
of virtual classes at the global layer, thus providing for dynamic querying. Global updata
bility based on surrogate objects is reused in the EGTV project, where it forms a platform

for the definition of a new query language that supports global updates. We also reuse and

improve the IRO-DB concept of transaction control and provide multimedia extensions to

the query language.

Chapter 2: Related Research 37

2 .7 H e r a P r o j e c t

The primary focus of the Hera project [VH01, VBH03] is to provide an integration in

terface for heterogeneous semi-structured data sources. This is achieved by constructing

a global schema that integrates multiple semi-structured repositories into a queryable

multidatabase system. Furthermore, the Hera project is designed specifically to enable

capturing of web-based data sources and to provide efficient querying at the global level.

A r ch itec tu r e . The architecture of Hera system consists of four layers [VH02]: Source,
Reconciliation, Mediating and Application layer.

• S ou rce layer.
The Source Layer contains external data sources such as relational or object-oriented

databases, HTML pages, XML repositories, or RDF data sources. This layer provides

the content to be integrated, but all data sources are expected to have capability of
exporting their data in XML serialisation. However, since this is not supported by

most legacy data sources, some external XML wrapping processes may be required.
Due to the heterogeneity, none particular structure of the exported XML data is

imposed, thus fully preserving the autonomy of the local data source.

• R e c o n c ilia t io n layer.
This layer defines a canonical schema unique within the entire Hera system in a

form of R D F/R D FS schemas. The Resource Description Framework (RDF) [Wor99]

is a general purpose data language issued as a W3C standard that describes data
in a terms of resources, their properties and property values. The RDF Schema

(RDFS) [Wor99] is an extension to RDF that provides a support for creating vocab

ularies at the metadata (schema) level. The Reconciliation layer consists of multiple
XML2RDF brokers that provide mapping between XML data repositories at the

Source layer and the canonical schema in the RDF representation. Each XML2RDF

broker is tailored specifically to its data source by encoding mapping rules in a sim
ple mapping language LMX [VH01]. Mapping rules are automatically generated for

structured data sources (i.e. relational and object-oriented databases) or when a
full XML Schema definition of a data source is provided. However, for most of the

semi-structured data sources, mappings must be manually defined.

• M e d ia tio n layer.
The Mediation layer is responsible for integrating canonical representations of local
data into a global schema. The global schema is constructed as a union of all
canonical schemas defined at the Reconciliation layer. The other role of this layer

is to facilitate evaluation of global queries in the Hera system. Each global query at

this layer is firstly decomposed into multiple subqueries which are then distributed

Chapter 2: Related Research 38

among brokers. In this process it is attempted to push processing of the query as

much as possible on the source data repositories, while taking into account the source

query capabilities. In a second stage of global query processing, partial results are

collected from the brokers and used as a source upon witch global part of the query

is evaluated. This produces the final result which is then returned to the issuing

client.

• A p p lica tio n layer.
This layer acts as a client to the Mediation layer as it generates global queries and

receives their results. It also facilitates the graphical front-end interface for the end-
users of the system. This front-end displays global RDF schemas in a navigable

tree representation and guide users to visually build queries by selecting RDF nodes
and their properties. This generates global queries in the RQL language [KAC+ 02]

which are then passed to the Mediation layer for the execution. Retrieved results

are converted back to the graphical representation and displayed to the end-user.

D a ta m o d e l. Canonical data model chosen for the Hera project is R DF/R D FS [Wor99,
WorOO] standard. This is a semi-structured model, therefore it is better suited for cap
turing web sources that traditional structured-data models. This model provides uniform

interface to all data sources integrated in the Hera system. The RDF and RDFS lan

guages are fully standardised by the W3C committee and can be represented either in a

XML-like tagged encoding or in its DOM-like memory representation. This is illustrated

in Example 2.8 where a RDFS metadata for the Character class is given. The RDF

encoding for objects conforming to this class is provided in Example 2.9. Since, the RDF

schema standard does not support data types, String and Relationship types used

in Example 2.8 represent Hera’s extensions of the RDFS. All extensions are defined in

a proprietary s y s namespace. RDF schemas can be further extended with higher level
ontology languages to enhance the expressive power of the canonical model. However none

of these is implemented in the Hera project.

Q u ery la n g u a g e . The Hera project implements R D F/R D FS as its canonical model to

facilitate capturing of web-based data sources. Therefore, its query language must be capa
ble of retrieving and browsing semi-structured data in these repositories. The RQL query
language [KAC+ 02] is chosen for a global query language as it provides querying of both

metadata RDF schemas and their data instances. Furthermore, it defines predicates for

position based queries on unstructured and semi-structured RDF data sources. The lan

guage, similarly to SQL, consists of s e l e c t - f rom -w h ere clauses. The s e l e c t clause

specifies resources (variables) to be retrieved; the from part defines one or more path

expressions to which the variables axe bound; while the w h ere clause contains filtering

conditions that are applied to variables bound in the from statement. This is illustrated

in Example 2.10 where a simple RQL query is defined over the sample RDF schema. This

Chapter 2: Related Research 39

<?xml version='1.0' encoding='ISO-8859-1'?>
<!DOCTYPE rdf:RDF [

<!ENTITY rdf 'http://www.w3.Org/19 99/02/22-rdf-syntax-ns#'>
<!ENTITY rdfs 'http://www.w 3 .org/TR/1999/PR-rdf-schema-19990303#'

]>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://w w w .w 3 .org/TR/199 9/PR-rdf-schema-l9 9903 03#">

<!--- Class Character — >
<rdfs:Class rd f :about="Person">

</rdfs:Class>

<!— properties of the Character class — >
<rdf:Property rd f :about="name">

crdfs:domain rd f :resource="Character"/>
<rdfs:range rd f :resource="&rdfs;Literal"/>

</rdf:Property>
<rdf:Property rd f :about="description">

<rdfs:domain rd f :resource="Character"/>
<rdfs:range r d f :resource="&rdfs;Literal"/>

</rdf:Property>
<rdf¡Property r d f :about="appearsIn">

<rdfs:domain rd f :resource="Character"/>
crdfs :range r d f :resource="Cartoon"/>

</rdf:Property>
</rdf:RDF>

Example 2.8: RDFS schema definition.

query selects names of all cartoons where Goofy character appears. The central part of

this query is the from clause where two path expressions are used to bound CART00N_-
NAME variable retrieved in the select clause and CHARACTER_NAME variable used in
the filtering condition of .the where clause. Variable bindings must be provided for each

stage of path navigation when traversing an RDF schema. Although the RQL is flexible

enough to support complex RDF schema queries, its syntax is not intuitive, and therefore
a simple graphical front-end has been provided for the Hera project. This front-end allows

visual (point-and-click) composition of queries which are then automatically converted to

the RQL representation. However its functionality is limited only to very simple queries,
and RQL language cannot be fully encapsulated.

L im ita tio n s . Although the R D F/R D FS defines an efficient representation for semi
structured data it does not provide all modelling primitives required to support struc
tured data models. Namely, the notion of cardinality and inverse relationships is missing

and there is also a lack of system types. The later is compensated in the Hera project by

http://www.w3.Org/19
http://www.w3.org/TR/1999/PR-rdf-schema-19990303%23'
http://www.w3.org/1999/02/22-rdf-syntax-ns%23
http://www.w3.org/TR/199

Chapter 2: Related Research 40

<Character rdf:about=Goofy_Object>
<name>

<sys:String>
<sys:data>Goofy</sys:data>

<sys:String>
</name>
<description>

<sys:String>
<sys:data>Cartoon character</sys:data>

<sys:String>
</description>
<appearsln>

<sys:Relationship>
<sys:data>Goofy and Friends</sys:data>

<sys:Relationshp>
</appearsIn>

</Character>
Example 2.9: RDF schema instance example.

select CARTOONJSIAME

from {CHARACTER:Character}appears In{CARTOON:Cartoon}.name{CARTOON_NAME},
{CHARACTER}.name{CHARACTER_NAME}

where CHARACTER_NAME="Goofy"
Example 2.10: RQL query example.

defining a custom extensions to R D F/R D FS standards. However these extensions are pro

prietary and limit the interoperability of the system with other R D F/R D FS data sources.
Furthermore, the query language RQL has complex and nonintuitive syntax and does not

provide updatability and schema restructuring capabilities. Global schema is just an union

of all canonical schemas and views cannot be specified.

S u m m ary. The main advantage of Hera system is its ability to integrate semi-structured

data sources with traditional databases in a multidatabase system and to provide an inter
face for global querying. This enables definition of queries that can combine results from
web-based sources and structured databases to generate a single result set. However, the

query language is read-only and updates are not supported. Furthermore, since queries are

evaluated against in-memory representations of RDF objects and no multimedia specific

operators are provided, this language is not suitable for querying large multimedia reposi
tories. Therefore, our query language for the EGTV project takes a different approach by

utilising structured object-oriented schemas to provide efficient object management and

support for user-defined operators of the query language. Behaviour of these operators

can be customised and optimised for any specific domain, including multimedia.

Chapter 2: Related Research 41

2.8 C o n c lu s io n s

In this chapter some of the major research projects on object query languages were ex

amined, together with some projects which specified metadata architectures, multimedia

querying and global transaction control. During the study of these projects, some key

characteristics emerged, which together with the analysis of federated and multimedia

systems from chapter one, provide the functional requirements for a suitable global query

language.

These requirements are summarised below: 1, 2 and 3 emerged as broad requirements
from the study of existing object-oriented query languages; 4 and 5 are prerequisites that

must be defined to support global queries in the federated environment; and 6 and 7 are

outputs from the study of federated database systems.

1. T h e SQ L -lik e s y n ta x o f th e q u ery la n g u a g e.
The new query language for an EG TV database federation must provide a simple and

easy to use client interface. Therefore, our query language should employ SQL-like
syntax familiar to the majority of database users. All research projects examined

in this chapter excluding LOQIS [SBMS94] follow this approach. SQL-like syntax

is also used by the ODMG OQL query language, a standard for object-oriented

databases.

2. U p d a ta b ility for q u eries and v iew s .
Our query language must support updatability at both global and component layers

of a federated architecture. This feature is essential, as clients of the federation

are required to insert new and update existing multimedia and textual data in 0 - 0

and 0 -R databases. Updatability is provided in LOQIS [SBMS94] through direct

referencing between virtual and base objects, and in IRO-DB [GGF+ 96] which uses

proxy objects in the global schema to relay updates to local databases. However,
LOQIS does not facilitate the definition of a federated schema, nor does it support
queries at the global level. IRO-DB uses OQL as its global query language, thus
updates can only be facilitated through external behaviour and not within the query

language itself. The remaining projects assessed in this chapter do not provide

updates in the global schema.

3. M u ltim e d ia e x te n s io n s for q u ery la n g u a g e .
The EGTV query language must provide extensions for manipulating different mul
timedia types stored in a database. However, contrary to the News-on-Demand

(MOQL language [L 0S097]), our multimedia extensions should be flexible, and not
hard-coded in the language itself. Therefore, operators of the query language should

be defined within data types as behaviour methods. Thus, operators can be easily cus

tomised for each data type to optimise execution of complex multimedia operations.

Chapter 2: Related Research 42

Furthermore, the proposed query language is not bound to a single (multimedia)

domain, and can be easily extended with different data types and operators.

4. F ed era ted m e ta d a ta .
Metadata information is crucial for any generic querying as it provides a runtime

description of database schema and relationships between its elements. Therefore,
specification of a common metamodel for the EGTV federation is an important

prerequisite for a global query language. Of the projects involved in this study, only

LOQIS [HRS02] fully discusses a metamodel and its ability to represent database
schemas. However, this metamodel does not support data distribution, nor can it

operate in a federated environment. There is very little metadata research in other

assessed projects: News-on-Demand [OSEM+ 96] represents its schema metadata in
a form of DTD files, IRO-DB [BFN94] extends the ODMG schema repository with

virtual class metadata, while Hera [VBH03] uses RDFS standard to define semi

structured schemas. However, none of these projects fully supports dynamic schema

repository interrogation, federated m etadata or multimedia data types. Thus, a

new metamodel must be defined for the EGTV project. This metamodel should
be capable of providing a common representation for both component and global

schemas in a federated architecture. Furthermore, it should be easily queried, and
be capable of representing multimedia data types. Since all data in our federation is

physically stored in 0 - 0 and 0 -R local layer databases, mappings must be provided

between platform independent EGTV metamodel and local layer databases.

5. S ch em a d e fin itio n la n g u a g e .

Schema definition for the EG TV federation should provide the ability of specifying

multimedia database schemas in a platform neutral format. This is required both at
the component layer where local 0 -R and 0 - 0 database schemas are captured, and at
the federated layer where virtual classes must be defined to integrate multiple com

ponent database nodes. Related research projects specify their database schemas

either in a form of SQL DDL (M OOD/M IND [Alt94]) or extended ODMG IDL
schema definition language (Garlic [CHS+ 95] and IRO-DB [BFN94]). The News-
on-Demand project [WLE+ 97] takes a different approach as it defines multimedia

schemas using the SGML markup language. This benefits in providing simple al

gorithms for parsing and constructing the database schema. A similar approach is
taken in the Hera project [VBH03] where schemas are specified in the XML encod

ing of the RDFS language. The EGTV schema definition language should be based

on ODMG IDL, as it is well suited for definition of object schemas. However, the

syntax of our query language should be defined in XML and supported with the

XML Schema, as it provides the highest level of interoperability and simple parsing

algorithms. Furthermore, mapping between this schema definition language and the

EGTV metamodel must be specified to support dynamic generation of queryable

metadata.

Chapter 2: Related Research 43

6. G lo b a l q u ery p ro cess in g .

The query system should have clear semantics of query evaluation, both for local and

global queries. Of the query systems involved in this study, LOQIS, MOOD/MIND

and IRO-DB provide the more detailed descriptions of the generation of query results.

LOQIS uses a stack based approach to evaluate queries and generate fully updatable

results, although it does not support global queries. M OOD/M IND, IRO-DB and

Hera use query decomposition in the federated schema to evaluate global queries, but
their results are not fully updatable. Our aim is to provide full updatability within
the EG TV query language at both component and global layers of the federated

architecture.

7. G lob a l tr a n sa c tio n m a n a g em en t.
Updatability at the global layer requires an efficient transaction control system.

Thus, EGTV query processing services should incorporate local and global transac
tion managers. This is similar to the approach taken in M OOD/M IND [DDK+ 96]
and IRO-DB [TW97] projects where global seralisability and consistency is ensured
by implementing ticketing serialisation method and two-phase commit protocol.

The hypothesis presented in this thesis is that an efficient query language can be defined

to support global queries and updates in the multimedia database federation. Therefore,

a critical review of existing research projects was conducted in this chapter to identify re
quirements for such a language. The review was focused to the area of federated systems,
global query languages and metadata architectures. The latter study was necessary once

the requirement for a metamodel and schema definition language was identified in chapter

one. This critical analysis enabled us to define methodology for our research and metrics

for validating the feasibility of the hypothesis. It was concluded that a full specification

of a new object-based metamodel is a vital prerequisite for providing generic query in
terface. Therefore, before the new EGTV query language is introduced in chapter five,
it is necessary to present the EGTV metadata architecture (in chapter three) and new

schema definition language (in chapter four). Transaction control system must also be

defined to support updates at the global level. Thus, chapter six presents requirements
for such a system and addresses its implementation. Prototype developed to support this

research is discussed in chapter six, where thorough analysis of conducted experiments is

also presented. The thesis concludes with the reexamination of hypothesis and detailed
discussion of areas for future research, which is offered in chapter seven.

C h a p t e r 3

The EGTV Metamodel

Current object-oriented and object-relational data models provide only basic support for

handling multimedia and other complex data. This is limited to storing an object’s state,
while the server-side behaviour can only be specified in proprietary languages. Therefore,

a new data model was defined within the separate research track of the EGTV project to

provide a common interface to multimedia objects stored in object-oriented and object-
relational databases. This model also supports definition of multimedia specific server-side

behaviour using standard programming languages such as C+-1- or Java. However, this

aspect of the EGTV research had no requirements for metamodel as it did not facilitate

any schema integration or generic querying features. Figure 3.1 presents all components

of the EGTV project. Those represented in shaded boxes (EGTV Model and Behaviour
Processing) are external to this thesis and are part of a separate research track within

the EGTV. All other components of the EG TV projects (represented in transparent boxes)
contain research covered in this thesis.

The ability to capture and store metadata of multiple database schemas is essential when

constructing a database federation. This is emphasised in the EGTV project where the
focus is on the integration of heterogeneous multimedia data sources. Thus, additional

metadata information must be defined to capture multimedia specific data types and to

Figure 3.1: Components of the EGTV project.

4 4

Chapter 3: The E G TV Metamodel 45

describe heterogeneous and often incompatible data models. In this chapter we present a

new metamodel for representing multimedia schemas stored in both object-oriented (0 -0)

and object-relational (0-R) databases. This metadata information is later used for the
construction of a federated schema and during the evaluation of local and global queries.

However, since EGTV metamodel represents multimedia schemas in platform independent
format, it must be mapped to object-oriented and object-relational databases where actual
data is stored. This is achieved by defining rules for transforming EGTV metamodel

structures to equivalent 0 - 0 and 0 -R ones.

In §3.1 a general introduction to metadata and metamodeling is provided. Different meta
model representations for relational, object-relational and object-oriented databases are

discussed. §3.2 provides a detailed description of the EGTV metamodel and its compo
nents using the UML notation. Special emphasis is placed on improvements and extensions

to the ODMG metamodel. A meta-metamodel is also defined to represent different meta
model versions. This allows users to change their database model according to their needs.

Metamodel mappings to object-oriented and object-relational metamodels are discussed
in §3.3, as these define rules for metadata translation between the EG TV metamodel
and object-oriented and object-relational standards. A simple language is introduced to

formally define mapping rules. Finally, conclusions are presented in §3.4.

3 .1 I n t r o d u c t i o n

A metamodel is a model that describes other models. It consists of data elements that
define the structure of underlining models. Each metamodel can be seen as an instance of
some other metamodel at the level above, and there is no restriction on number of levels.

Usually, a four level approach [Ode95] is used when defining metadata levels in a software
engineering and database applications.

1. D a ta and P r o c e ss L evel: This is the lowest level. Entities on this level are run
time objects, i.e. instances of classes and processes running on a concrete system.

2. M o d e l L evel: This level is an abstraction of the data and process level. Entities

defined at the model level (i.e., classes, tables, relationships) describe the underlying
physical system. In a database, this level is represented as the database schema.

3. M e ta m o d e l L evel: The metamodel level describes the structure and capabilities of

the model level. In databases, this is a description of how a class or table is defined

and how it relates with other classes or tables.

4. M e ta -M e ta m o d e l L evel: This level defines the metamodel level. Different meta
model structures can be developed as instances of the meta-metamodel level. For

example, a meta-metamodel can define the structure of the database metamodel.

Chapter 3: The E G TV Metamodel 46

Metamodel classes and their relationships are represented as objects in the meta

metamodel.

The main purpose of any metamodel is to provide a detailed specification of data models

at lower levels in the metadata hierarchy. For example the metamodel for the Unified
Modelling Language (UML) [BRJ99] describes the structure and elements of the UML

modelling language. The UML metamodel corresponds to the third level of the meta
modelling architecture and is itself defined recursively using UML [BRJ99].

The main function of a database metamodel is to describe the database schema. Schema

metadata includes a catalogue of system data types and their properties, user defined enti
ties such as tables or classes, relationships and database behaviour. Additional metadata

may include physical data storage organisation, data distribution information, database

users and security rules. The exact content and structure of a database metamodel depends

of concrete implementation. A metamodel schema is usually stored within the database
in a special segment called the schema repository [EN94].

The metamodel and schema repository of relational databases are relatively simple, due

to the simplicity and highly formalised definition of the relational model itself. While the

metamodel for relational databases is not standardised, the majority of implementations

are very similar, although not always compatible. Relational database vendors usually

represent a schema repository as a set of relational system tables that store metadata

information on user defined tables, columns, data types, constraints and other relational
model elements. The heterogeneity was partly overcome by ODBC (Open Database Con
nectivity) that standardises a data access interface for relational databases. The problem

of heterogeneous and non-standard metamodels still remains.

The SQL:1999 specification [GP99] defines a schema repository standard for representing

object-relational model in the form of an Information Schema. The Information Schema
is a special database schema that defines a set of relational views and tables for repre

senting both relational and object-relational metadata. However, this standard has not
been widely accepted, and no object-relational database has implemented it yet. Object-

relational databases extend relational databases by adding an object interface on top of
a relational database engine. The majority of object-relational databases define a schema

repository in the form of extensions to the existing relational metamodel1. Although it
can represent object types and object tables, the object-relational schema repository itself
is implemented as a set of relational tables. Thus, the metamodel can be regarded as

semantically poorer than the model.

The main standard for object-oriented databases is defined by the Object Data Manage

ment Group (ODMG). The current version of the standard is 3.0 [CB99] and the majority

of object-oriented databases conform (at some level) to this standard. The standard

1For this reason, we regard the Oracle 9i m odel as a standard as it has the m ost advanced object-
relational m odel.

Chapter 3: The EG TV Metamodel 47

introduces an Object Definition Language (ODL) to define a database schema at an ab

stract level. This feature enables the portability of schema definitions between different
implementations of ODMG compliant databases. Unlike ODL itself, the ODL Schema

Repository is not fully specified in the standard. The ODL Schema Repository is a meta
data repository for ODL definitions and allows runtime queries and updates. The Schema

Repository specification consists of a set of ODL interface definitions, where each inter

face defines a single database construct. The metamodel presented in this specification is

complex, with a large number of interfaces and association links between them. Interface
definitions are cumbersome, and the same information is repeated at different places in the

metamodel. Each interface defines a number of data access operations. These operations
provide a means of ensuring a semantic integrity of metamodel by implementing rules for

the creation, addition and removal of metadata from the metamodel. The drawback of

this approach is in limitation of generic metadata access. Users are not able to perform
generic queries and updates, but forced to use a predefined set of operations.

In [Jor98], they define a C + + implementation for the ODMG metamodel, where only

some segments of the ODMG metamodel are implemented in a form of C + + classes, while

others are restructured or totally omitted. Although this implementation corrects some

redundancies and imprecise definitions, it preserves an overall structure of the metamodel
as defined by the ODMG. Contrary to ODMG metamodel specification, this metamodel

is supported by graphical diagrams and explanations in natural language making it more

understandable to the reader. Still, this model inherits a lot of redundancies from the

original ODMG metamodel: redundant relationships between metamodel elements, re

trieval and manipulation operations that limits the generality of metamodel access, and
redundancy of some metaclasses.

3 .2 T h e E G T V M e ta m o d e l S p e c i f ic a t io n

This section describes the object-oriented metamodel designed for multimedia databases,
which has a special emphasis on database integration. In this context, the metamodel

defines an object-oriented meta-schema for representing textual and multimedia metadata
for databases at both the canonical and federated layers. An object-oriented model is

chosen as it has already been shown that an object model is the most suitable for a

canonical data model [SCGS91] in a federated database architecture.

The EGTV metamodel is based on the ODMG metamodel specification [CB99] and the

C + + implementation defined in [Jor98]. Our inetamodel eliminates ambiguities and re
dundancies present in both specifications by clearly defining the metamodel structure, and

significantly reducing the overall complexity. Some modifications required for the repre

sentation of multimedia data types and behaviour were also introduced. The metamodel
does not incorporate the metadata access interface (as the ODMG metamodel does) be

Chapter 3: The E G TV Metamodel 48

cause this has been shown to limit generic query capabilities [HRS02], All metaclasses in

our metamodel are identified by the s y s _ prefix.

The specification defines the abstract, platform independent representation of the meta

model structure. The actual implementation of metaclasses is not discussed here as it
depends on the type of database upon which the metamodel schema repository is im
plemented. The metamodel mappings developed for the object-relational and ODMG

databases specify platform specific implementation details, and are presented later in this
chapter. The full UML specification of the EG TV metamodel is provided in Appendix A.

3 .2 .1 D e f in in g N a m e S c o p e s

virtual_connector

Figure 3.2: Metadata Definition of Name Scopes.

Each database entity has a name that must be unique within the scope to which it belongs.

For example, attribute names are uniquely defined within the containing class, while class
names are unique in the database schema. Name scopes and containment relationships in

the metamodel are closely related because each metaclass provides a scope for all its con
tained elements. Our metamodel defines a single containment/scope relationship between
metaclasses as illustrated in Figure 3.2.

The sys_MetaOb ject is an abstraction for all elements in the metamodel and defines

common attributes such as name, metaclass type (metaType) and comment. These three
attributes provide name, type and user defined comment properties for all elements stored

in the metamodel. Metaclasses that are not capable of containing other metamodel ele
m ents, like sys_Property, sys_Parameter and, sys_Inheritance derive directly

from the sys_MetaObject, while all container metaclasses derive from sys_Scope-
dObject. The sys_ScopedObject defines the containment relationship (contains)

Chapter 3: The E G TV Metamodel 49

to sy s _ M e ta O b je c t , so that each instance of s y s _ S c o p e d O b je c t can contain and

define name scope for many s y s _ M e ta O b je c t instances. For example, an instance

of sy s_ S co p ed O b j e c t can contain attributes, relationships and operations which are

uniquely identified within the scope of that class.

Since the sys_ScopedOb ject metaclass also derives from the sys_MetaOb ject meta

class, each container metaclass can recursively contain another container class. Metaclasses

sys_Class, sys_Schema and sys_Operation derive from the sys_ScopedOb ject,
as they provide naming scope for elements contained within them. The top level scope
is the database schema itself (sys_Schema), and it contains the classes (sys_Class)
defined by users.

3.2.2 Defining Types

Figure 3.3: Metadata Definition of D ata Types.

Type metaclasses derived from sys_ScopedOb ject provide a description for all built-
in and user-defined types. All data types are represented in a metadata class hierarchy

as illustrated in Figure 3.3. The sys_Type metaclass is an abstraction for all types in

the database, and the more specific metaclasses which derive from it. Our metamodel

is enhanced by permitting operations for the sys_Type metaclass, whereas the ODMG

metamodel permits only user defined classes to have operations. Moving operation support

to the level of the sys_Type base class enables the definition of operations not only

for classes, but also for other data types (e.g. multimedia and collection types). The

importance of this feature arises from the fact that the internal structure of complex data

Chapter 3: The E G TV Metamodel 50

types is fully encapsulated and the only interface is provided through operations. For

example, a jp e g lm a g e multimedia data type can have operations for query by pattern,

resizing and rotating of an image it contains. These operations are registered in the

metamodel and publicly available, while the implementation and storage details of the

jp e g lm a g e data type are hidden from the user.

The built-in and user defined types are represented as a specialisation of the sys_Type
metaclass. Built-in types are used as attributes of classes, or parameters of operations,
and they cannot be instantiated to persistent self contained database objects. Built-in

types can achieve persistence only as attributes of user defined classes. All built-in types

can be classified as primitive or collection types.

• P r im it iv e ty p es: Represented in the sys_PrimitiveType metaclass. The full

set of primitive types are Integer, Float, String, Date, Blob and Boolean.
Additional primitive types can also be defined and added to the metamodel.
Special data types for multimedia storage are incorporated into this metamodel and

they are represented as instances of the sys_MediaType metaclass. The meta
model defines the sys_MediaType metaclass as a specialisation of the sys_Prim-
itiveType. The mediaKind property identifies multimedia type (audio, video,
t e x t or image), while encodingFormat, f ormatVersion and compression
provide information on media encoding characteristics. The internal structure and
storage details of multimedia data types are encapsulated from the user. An in

terface is provided through operations registered with the multimedia type. For

example, operations provide an interface for searching, retrieval or updating of the
corresponding multimedia objects.

• C o llec t io n ty p es: Collections store multiple objects of one system type and are

represented by the sys_CollectionType metaclass. Supported collection types

include Bag, Set, and List as specified in the ODMG standard. Key collection

types are defined in the sys_KeyCollectionType metaclass. They are collections
of key-value pairs optimised for fast indexing and are represented with a Map type.
Operations for element manipulation are defined for each collection type as operator
and method behaviour.

The sys_Class metaclass represents user-defined types and corresponds to d_Class
in the ODMG metamodel. Classes can contain attributes, relationships and operations

for which they provide scope. All classes defined in the metamodel are classified in two
categories: base classes and virtual classes. Base classes can be instantiated to persistent

database objects that store data, while virtual classes are components of object views and

they are constructed from the base classes. Virtual classes and object views are discussed

in the §3.2.7. The isAbstract property is applicable only to base classes and is used to

specify if the class is defined as an abstract one.

Chapter 3: The E G TV Metamodel

3.2.3 Defining Properties

51

Figure 3.4: M etadata Definition of Properties.

Tfie sys_Property metaclass is an abstraction for all property types that can be spe

cialised as attributes or relationships and it is derived directly from the sys_Met a Ob
ject. The positionNumber property indicates the relative order of properties in the

class definition, while the accessKind can be private, protected or public. Mem

bers of a class are specified in the sys_Attribute metaclass, where each attribute can

be optionally defined as static or constant using isStatic and isConstant properties.

Attributes can be of a system or a class type, where each attribute has only one type, while

one type can be used by many attributes. This is represented with the attribute_type
relationship between sys_Attribute and sys_Type metaclasses where the sys_Type
is a superclass for all types in the metamodel.

The sys_Relationship metaclass defines bidirectional relationships between two classes
where a cardinality of one or many is specified for each side of the relationship. The

traversal property of the sys_Relationship returns the other side of the bidirectional

relationship. Each relationship w ith cardinality greater than one can have ordered values

(isOrdered property) or it can be defined as unique (isUnique property).

3.2.4 Defining Inheritance

in h er its_ to

F ig u r e 3 .5: M e ta d a ta D e f in it io n o f In h e r ita n c e .

Chapter 3: The E G TV Metamodel 52

Inheritance relationships are defined for classes only. Inheritance in the metamodel is

represented by the sys_Inheritance metaclass which inherits from the sys_MetaOb-
ject. The instance of sys_Inheritance has an inherits_to and a d e r i v e s „ f rom
relationship with two instances of s y s _ C la s s . Each class has a list of inherited classes

and a list of derived classes. The positionNumber parameter indicates the order of base

classes in multiple inheritance definitions.

3 .2 .5 D e f in in g O p e r a t io n s

Figure 3.6: Metadata Definition of Operations.

Operations can be defined for both built-in types and classes. Operations specified for

system types are part of the type definition and cannot be modified by the user, while
operations on classes are user defined. The sy s_Operation metaclass is an abstraction

for all operations defined in the database and it is derived from the sys_ScopedOb ject
metaclass. This metaclass corresponds to the d_Operation class in the ODMG meta
model with the difference that in our metamodel, sys_Operation is a generalisation for

two types of operations: methods and operators defined by sys_Method and sys_Op-
erator metaclasses respectively. Operators are not supported in the ODMG metainodel
and thus new in this metamodel. An operator can be unary or binary as defined in

operatorKind property, while methodKind property of the sys_Method indicates if

method is prefixed as static or virtual.
Each operation can have a list of parameters and a return value. Parameters are specified

by the sys_Parameter metaclass and can be of any system type. Classes cannot be

passed by value as parameters or as return values of operations, and thus class references
are used instead. The positionNumber attribute of the sys_Parameter metaclass

indicates the relative position of the parameter within the parameter list. Operations can

be public, private or protected as specified in the accessKind property. Each

operation can be defined as constant (isConstant property), indicating that the internal
state of the object cannot be changed. There are many issues concerning representation

Chapter 3: The E G TV Metamodel 53

and invocation of database behaviour, but they are outside the scope of this research and
are addressed elsewhere in the EG TV project [KR03].

3 .2 .6 D e f in in g S c h e m a s

Figure 3.7: Metadata Definition of Schema,

A schema represents the top level container for classes and object views. The ODMG model

implements a schema as an instance of the d_Module metaclass, while in our metamodel
sys_Schema, derived from sys_ScopedOb ject, is an abstraction for database schema

and view subschema metaclasses. An instance of sys_DatabaseSchema represents one

database schema, defining a global scope for the database objects it contains. Objects

that can be registered within a database schema are base and virtual classes.

3 .2 .7 D e f in in g V ie w s

Object views provide schema restructuring functionality for object-oriented database mod
els. This feature is commonly used in federated database systems for the construction of

different component and federated schemas. Object view support is not provided in the

ODMG standard, but our metamodel defines extensions for representing view metadata.
Views are commonly defined in a special view definition language and then transformed

to the metamodel representation to facilitate runtime schema interrogation. Two types

of object views can be represented in the EGTV metamodel: simple views and schema
views.

S im p le v iew s . This is a concept where a view is represented as a single virtual class.

The virtual class is defined as a stored query; its attributes are derived explicitly from the
query definition; while the object extent is generated as a result of query execution. The

query expression can be defined upon other base and virtual classes in the schema, thus
providing the basic schema restructuring and integration features. Simple views are used

in the EGTV architecture for construction of federated schemas as explained in chapter

six. A virtual class is represented in the metamodel as an instance of the sys_Class

Chapter 3: The E G TV Metamodel 54

metaclass, while the query expression is stored in the v i r t u a l E x t e n t property of the

s y s _ C la s s .

Schema views. A schema view consists of multiple interconnected virtual classes that
define a subschema. Subschemas are represented in the sys_SubSchema metaclass of
the EGTV metamodel, and one database schema can contain multiple subschemas. This

representation is necessary as a view is always based on a subschema, and not on a sin

gle virtual class. Schema view support in this metamodel is designed to represent the

view mechanism specified in [RKBOla], Each object view, represented as an instance of
sys_SubSchema metaclass, contains one or more virtual classes. A virtual class is con
structed recursively from base classes or other virtual classes using restructuring operators

specified in [RKBOla]. Operators define transformation rules applied to virtual class as
it is constructed from the base or virtual classes defined at the level below. The oper-
atorType property of the sys_Class specifies type of the operator applied to virtual
class transformation.

Each virtual class (in both simple and schema views) can be based on one or two base

or virtual classes at the level below. This class mapping is defined recursively until all
virtual classes are resolved to base classes in the database schema. During this process,
class definitions at one level map to corresponding classes at the level below, attributes

map to attributes, relationships to relationships and inheritance to inheritance at the level
below. The recursive structure of virtual classes is represented in the abstract metaclass

sys_MetaObject from which all metamodel elements are derived. The virtual_-
connector relationship provides mapping to elements defined one virtual level below as
illustrated in Figure 3.2. Each sys_MetaOb ject instance (class, attribute, relationship,

inheritance, subschema) can have relationship to zero, one or two elements of the same
type defined at lower level. The virtualLevel property indicates the virtual level at

which the element is defined. The virtualLevel value of zero indicates base class, while
classes and their components with the virtualLevel grater then zero are virtual.

3 .2 .8 E l im in a te d O D M G M e ta c la s s e s

The following metaclasses, defined in the ODMG metamodel specification are dropped
from our metamodel.

d_Constant_Type : This class is dropped as constants can be defined only as attributes

of user defined types or operation parameters. In both cases a constant value is denoted

by isConstant parameter of sys_Attribute and sys_Parameter metaclasses and

additional metaclass for constants representation is not required.

d_Enumeration_Type: The d_Enumeration_Type as defined in [Jor98] represent C-

style enumerations. Object-relational databases does not have enumeration types, and

Chapter 3: The E G TV Metamodel 55

this type is also not supported in the Java programming language. Enumeration types

are not included because they are supported only in C and C + + and are not object data

types.

d_Exception: Exceptions represent the internal segment of the behaviour implementa

tion, and are not part of the operation signature. Our metamodel defines only metadata

required for generic operation invocation such as operation names, parameters, return

values and types.

d_Structure_Type: Contrary to user defined types, structures in object databases do
not have object identification and cannot define operations. Structures are not included

in the metamodel since nesting of the complex data types by value is not allowed. Also,

passing a structure by value as a parameter or return value of operation is not supported
in the EG TV model. The EGTV data model is discussed in chapter 5 where its features

are explained.

3 .2 .9 A M e t a - M e t a d a t a L e v e l

Each metamodel describes the structure of the database schema at some level of abstrac
tion. Our metamodel is specifically constructed to support multimedia metadata by recog

nising multimedia types as a special form of data type. The model in which the metamodel
is specified and constructed is called the meta-metamodel. Metamodels for representation

of specific database models (e.g. multimedia) can be easily defined in the meta-metamodel.

Migration from the one metamodel structure to the another is accomplished by changing

metamodel representation in the meta-metamodel. Our specification of meta-metamodel

is illustrated in Figure 3.8. We recognise the meta-metamodel as beneficial to our system,
because it allows us to specify new metamodels and to add new metaclasses to the existing

ones. Furthermore, autonomous users are able to dynamically read metamodel structure
and map metaclasses and properties to their locally defined data types.

The m_Abstract metaclass is an abstraction for any type of metamodel element. It de
fines name and comment attributes common for all entities in the meta-metamodel. The

m_Abstract can be realised as element, attribute, association, generalisation or schema.
The m_Element metaclass represents a general container element, and instances of the

m_Element correspond to sys_Class metaclasses in the metamodel definition. Each

m_Element can contain attributes and associations represented by the m_Attribute
and m_Association. The type defines attribute type, while is U n iq u e property spec

ifies if attribute instances must be unique. Associations in the meta-metamodel can be

unidirectional (m_UniAssociation) or bidirectional (m_BiAssociation). The car
dinality, isUnique and isOrdered properties are defined for both association types,

but only bidirectional associations have a traversal link to the inverse association el
ement. Inheritance relationships between metadata elements are represented by the m_-

Generalisation metaclass, while the m_Schema is the root container for all elements

Chapter 3: The E G TV Metamodel 56

Figure 3.8: Meta-Metamodel Specification.

in the meta-metamodel. Each m_Schema instance corresponds to one metamodel schema

defined in the meta-metamodel. The associable_elements relationship between m_-
Association and m_Element metaclasses defines association rules for metamodel in
stances of the meta-metamodel. The relationship specifies all subclasses to which an
association defined between their superclasses, can be propagated. This feature enables

definition of strict association rules that specify which subclasses are allowed to create an

association link defined for their superclasses.

3 .3 M e t a m o d e l M a p p in g s

This section is aimed at providing a detailed specification of mappings from the EGTV

metamodel [Bec02a] to object-oriented and object-relational schema repositories. This
is required for representing EG TV multimedia schemas in different object-oriented and

object-relational compliant databases.

Mappings are defined to transform schemas from the the EGTV metamodel to the object-
relational and ODMG object-oriented metamodel representations [BR04a]. Mappings are

generally straightforward except for some features of the EGTV metamodel not included in

the ODMG and object-relational specifications such as multimedia types and object views.

Therefore, the ODMG and object relational metamodels must be extended to support

Chapter 3: The E G TV Metamodel 57

mappings to new EGTV features. For simplicity, we represent all ODMG and object-
relational metamodel extensions either as a single ODMG class d_Extension or as an

object-relational table all_extensions. The d_Extension class is a generic container
that can map any EGTV metaclass property to the ODMG representation. It defines four

attributes: egtvClassName, propertyName, propertyValue and propertyType.
The egtvClassName attribute contains the name of the source EGTV metaclass, while
the propertyName is the name of the property that is mapped to an extension. The

propertyValue and propertyType attributes contain the actual value of mapped

property and its data type (e.g. string or integer). An identical set of properties is defined

for the a l l _ e x t e n s i o n s table. W ithout defining these extensions, the existing 0 - 0
and 0 -R metamodels would be incapable of supporting the full semantics of the EGTV

metamodel. This is specially the case when representing metadata for multimedia types,
operators and views. For a full description of the ODMG object-oriented standard, please

refer to the [CB99], the object-relational SQL: 1999 features are explained in the [GP99].

Mappings can be formally represented by the map function specified in Definition 3.1.
This function transforms an EGTV metaclass to an equivalent 0 - 0 and 0 -R representa
tion. Each EG TV metaclass is mapped to one or more ODMG classes, or to one or more

0 -R tables (0 -R metamodels are implemented as tables and not object types). Meta
class properties are mapped to corresponding ODMG properties and 0 -R table columns.

Mappings are defined in a simple mapping language and presented for each EG TV meta

class discussed in this section. The mapping language consists of a series of expressions,
where each EG TV class, attribute, and relationship is assigned an equivalent 0 - 0 or 0 -R
properties.

D e fin itio n 3 .1 {ODMG Class}1"* m ap(EGTV Metaclass) \
{ 0-R table}1"* *— m ap(EGTV Metaclass)

3 .3 .1 E G T V T o O D M G M a p p in g

The EGTV metamodel is based on the ODMG metamodel specification, so both meta
models share a similar object-oriented platform. The mapping is relatively simple for

metaclasses that have similar definition in both metamodels, but is more complex for mul

timedia types and object views. This section explains individual mappings, while major

EGTV metaclasses and their counterparts in the ODMG metamodel are illustrated in
Table 3.2. In all of these descriptions we provide a formal mapping language example to
demonstrate.

S ch em a M a p p in g

The sys_DatabaseSchema metaclass defines database schema properties including a

root naming scope for all schema elements. It is mapped to the d_Module metaclass

Chapter 3: The E G TV Metamodel 58

E G T V m eta c la ss O D M G m eta c la ss
sys_DatabaseSchema cLModule

sys_Class d_Class
sys_Attribute dLAttribute

sysJnheritance dJnheritance
sys_Relationship cLRelationship

sys_Method, sys_Operator cLOperation
sys_Parameter cLParameter

sys_PrimitiveType dJP r imit ive_Typ e
sys_CollectionType d_Collection_Type

sys_MediaType cLClass
sys_SubSchema Extended ODMG

Table 3.2: The EGTV to ODMG Mapping.

which represents the equivalent class in the ODMG metamodel. For each database schema

specified in the sys_DatabaseSchema, the mapping creates one d_Module instance in

the ODMG metamodel. The schema mapping is illustrated in Example 3.1.

map sys_DatabaseSchema := d_Module, d_Extension
{

attribute:
isGlobal := d_Extension.isGlobal
databaseType := d_Extension.databaseType

relationship:
containedln := d_Module.definedln
containedObjects := d_Module.defines

}
Example 3.1: ODMG Schema Mapping.

The map function defines the mapping for the sys_DatabaseSchema to d_M odule and
d_Extension ODMG metaclasses. Attributes of the same name and type in both meta
models (name and comment) are omitted from this example as their mapping is implicit.
The isGlobal and databaseType attributes are unique to the EG TV metamodel, so
they are mapped to the d_Module extensions. The containment relationships between the

database schema and its classes (containedln and containedOb jects) are mapped

to the equivalent d_Module relationships d e f i n e d l n and defines.

C lass M a p p in g

Both metamodels represent database classes with a single metaclass. This mapping is

illustrated in Example 3.2.

The map function defines the mapping between the EGTV sys_Class and ODMG d_-
Class metaclasses. Properties of sys_Class for which equivalents cannot be found in

Chapter 3: The E G TV Metamodel 59

map sys_Class := d_Class, d_Extension
{

attribute:
isAbstract := d_Extension.isAbstract

relationship:
containedln := d^Class.definedln
containedObjects := d_Class.defines
inheritsTo := d_Class.inherits
derivesFrom := d„Class.derives

i
Example 3.2: ODMG Class Mapping.

the d_Class are mapped to the ODMG extensions (d_Extension). Attributes having

the same name and type in the both metamodels (name and comment) are implicitly

mapped. The isAbstract attribute is new to EGTV metamodel, and maps to the
same attribute in the d_Extension class. The containedOb jects EGTV relation

ship represents attributes, operations and relationships contained within the instance of
the sys_Cass, and maps to the definedln relationship of the d_Class. The class con
tainment in the database schema is represented with the containedln relationship which

maps to the defines relationship of the d_Class. The inheritance relationships in
heritsTo and derivesFrom map to the d_Class inheritance relationship inherits
and derives. The EG TV sys_Class defines additional attributes virtualLevel,
operatorType, virtualExtent and relationship virtualConnector for represent
ing virtual classes. These attributes are mapped only to the the ODMG extensions for

object views as found in [RKBOla].

A ttr ib u te M a p p in g

Each attribute defined in the EGTV sys_Attribute class is mapped to one instance of
ODMG d„Attribute metaclass. This is illustrated in Example 3.3.

map sys_Attribute := d_Attribute, d_Extension
{
attribute:

accessKind := d_Extension.accessKind
isConstant := d_Attribute.is_read_only
isStatic := d_Extension.isStatic

relationship:
containedln := d„Attribute.definedln
attributeType := d_Attribute.type

j
Example 3.3: ODMG Attribute Mapping.

Chapter 3: The E G T V Metamodel 60

The map function maps the sys_Attribute EG TV metaclass to the d_Attribute and

d_Extension classes. The name, comment, cardinality and traversal properties

of sys__At tribute are not specified in Example 3.3 as these mappings are implicit in

this function. The isConstant attribute of the sys_Attribute EGTV metaclass

maps to the is_read_only ODMG counterpart, while the attributeType EGTV

relationship is mapped to the type relationship in the ODMG model. The accessKind
and is Static attributes do not have counterparts in the d_Attribute, and are mapped

to the ODMG extension class.

In h er ita n ce M a p p in g

Inheritance mapping is from the sys_Inheritance metaclass to the ODMG defined

class d_Inheritance . All attributes of sys_Inheritance are mapped to the d_Ex-
tension metaclass since they are not defined in the ODMG metamodel. The inherit-
sTo and derivesFrom relationships between sys_Inheritance and sys_Class are

mapped to the same relationships (inherits and derives) between d_Inheritance
and d_Class. This is illustrated in Example 3.4.

map sys_Inheritance := d_Inheritance, d_Extension
{

attribute:
name := d_Extension.name
comment := d_Extension.comment
isVirtual := d_Extension.isVirtual
positionNumber := d_Extension.positionNumber

relationship:
inheritsTo := d_Inheritance.inherits
derivesFrom := d_Inheritance.derives

}
Example 3.4: ODMG Inheritance Mapping.

R e la tio n sh ip M a p p in g

The EGTV sys_Relationship metaclass maps to the ODMG metaclass d_Rela-
tionship. Attributes in the sys_Relationship which do not have an equivalents in

d_Relationship, are mapped to the ODMG extensions. The relationship mapping is
illustrated in Example 3.5.

The map function maps the sys_Relationship EG TV metaclass to the d_Relation-
ship and d_Extension classes. The name, comment, cardinality and traversal
properties of sys_Relationship are not specified in Example 3.5 as these mappings

are implicit in this function. The isUnique and isOrdered attributes do not have

counterparts in the d_Relationship, and are mapped to the ODMG extension class.

Chapter 3: The E G TV Metamodel 61

map sys_Relationship := d_Relationship, d_Extension
{

attribute:
cardinality:= d_Relationship.cardinality
accessKind := d_Relationship.accessKind
isUnique := d_Extension.isUnique
isOrdered := d_Extension.isOrdered

relationship:
containedln := d_Relationship.definedln
traversal := d_Relationship.traversal

}
Example 3.5: ODMG Relationship Mapping.

O p era tio n S ig n a tu re M a p p in g

Operations in the EGTV metamodel can be defined as methods or operators, but the

ODMG specification supports only methods and not operators. This means that EGTV

metaclass sys_Method maps directly to the ODMG d_Operation, while operator map
ping must be further defined. Operators defined in the EGTV sys_Operator metaclass

can be mapped to the ODMG d_Operation as methods with special system defined
names. The rule is that operator name starts with the keyword operator followed by

the operator type symbol. For example operator + is named operator+ and mapped in

the d_Operation metaclass. This and similar operator names are system reserved and

cannot be used for regular methods. Methods and operator parameters represented in the

EGTV metaclass sys_Parameter are mapped to the equivalent ODMG d_Parameter
metaclass. The behaviour mapping is not specified further here as it forms part of separate

research [KR03] into the specification of the EGTV model itself.

D a ta T y p e M a p p in g

Primitive types and collection types are represented in EGTV in the same way as in the

ODMG metamodel. The sys_PrimitiveType is mapped to the d_Primitive_Type
and sys_CollectionType is mapped to the d_Collection_Type. This mapping is
defined in Table 3-4• However, since the ODMG standard does not define a data type

for blobs, it was extended with the BOb ject (binary large object) class to which EGTV
Blob type is then is mapped. In other words, the metamodel is extended with a user-
defined class to encapsulate raw multimedia data. Multimedia types were introduced in

the EGTV metamodel and do not have equivalent representations in the ODMG model.

Furthermore, multimedia types can define behaviour operations, which is not supported

for types in ODMG metamodel. The solution is to map the EGTV sys_MediaType to

d_Class in the ODMG specification. This means that EGTV multimedia data types are

represented in the ODMG metamodel as system defined classes. For example the jpeg

Chapter 3: The E G TV Metamodel 62

E G T V T y p e O D M G T y p e O -R T y p e
Integer long integer
Float float number

Double double number
String string varchar
Date timestamp date

Boolean boolean boolean
Blob B Object blob
Set set nested table
Bag Bag nested table
List List array
Map Dictionary Map

Table 3.4: EGTV Type Mappings.

multimedia type can be represented as jp g lm a g e class in the d_Class metaclass. The
names of the multimedia classes are system reserved and users cannot define classes of
the same name. Since classes in the d_Class can have operations, the multimedia type

operations are mapped to operations of the ODMG classes, however due to limitations of

the ODMG, only interface mapping is provided, and not actual behaviour.

O b jec t V iew M a p p in g

The ODMG metamodel does not provide support for object views, so they can be mapped

only to the extended ODMG metamodel specified in [RKBOlb], This metamodel extends

the ODMG specification with the set of metaclasses for view and virtual class repre
sentation. These classes are identified by the v _ prefix and they reassemble the same
structure as the original (d_) ODMG metaclasses. Simple EGTV views are mapped di
rectly from the sys_Class to the v_Class in the extended ODMG model. The schema

view definitions represented in the sys_SubSchema EGTV metaclass are mapped to
the v_SubSchema metaclass in the extended ODMG. The virtual class definitions are

mapped to the v_Class, while their attributes, relationships and inheritance are mapped

to the v_Attribute, v_Relationship and v_Inheritance respectively. Multilevel
structure of the virtual class definitions represented in the EGTV metamodel with the

virtual_connector recursive relationship is mapped to the base and virtual con
nector relationships in the extended ODMG. The end result is that EGTV views can be

mapped to the object-oriented view system specified in [RKBOla].

Chapter 3: The EG TV Metamodel 63

3 .3 .2 E G T V T o O b j e c t - R e la t io n a l M a p p in g

Object-relational databases do not use the SQL:1999 metamodel at present, so in this

discussion we will regard the Oracle 9i metamodel as a standard as it has the most advanced

features. The object-relational schema repository is represented as a set of relational
tables which store both relational and object-relational metadata [WR03]. The EGTV

metaclasses are mapped to the Oracle 9i schema repository tables as illustrated in Table
3.6. The attributes of the EGTV metaclasses are mapped to the table columns, while

relationships are mapped to referential integrity constraints between schema repository
tables.

E G T V M e ta c la ss O -R T able
sys_DatabaseSchema alLusers

sys_Class alLtypes, alLtypes
sys_Attribute alLtype_attrs, all_tab_columns

sys_[nheritance alLob j ect_types
sys_Relationship alLtype_attrs

sys_Method, sys_Operator alLtype_methods
sys_Parameter alLtype_attrs

sy s_P r imit iveTyp e alLtypes
sys_CollectionType alLtypes

sys_MediaType alLobject_types
sys_SubSchema Extended O-R

Table 3.6: EG TV to Object-Relational Mapping.

S ch em a M a p p in g

In the object-relational model, each database user owns one database schema which con
tains object types, tables and other model elements. The object relational schema repos

itory represents database schemas in the a l l _ u s e r s system table to which the EGTV

sy s_ D a ta b a se S c h e m a metaclass is mapped. The mapping represents each schema de
fined in the sy s_ D a ta b a se S c h e m a as one tuple of the a l l _ u s e r s table. Each schema

defined in the a l l _ u s e r s table provide root naming scope for all types and tables it
contains. This is illustrated in Example 3.6.

The map function maps the sy s_ D a ta b a se S c h e m a EGTV metaclass to the O-R table

a l l _ u s e r s . The name attribute is mapped to the u sern a m e column of the a l l _ u s e r s

table. The other attributes of the s y s_ D a ta b a se S c h e m a do not have counterparts

in the a l l _ u s e r s table, and are mapped to the O-R metamodel extensions (a l l _ -

e x t e n s io n s) . The relationship c o n ta in e d O b j e c t s between sy s_ D a ta b a se S c h e m a

and s y s _ C la s s metaclasses is mapped to the referential integrity constraint between

a l l _ u s e r s and a l l _ t y p e s tables.

Chapter 3: The E G T V Metamodel 64

map sys_DatabaseSchema := all_users, all_extensions
{

attribute:
name := all„users.username
comment := all_extensions.comment
isGlobal := all^extensions.isGlobal
databaseType := all_extensions.databaseType

relationship:
containedObjects := all_users.username ref_to

all_types.owner
}

Example 3.6: O-R Schema Mapping.

C lass M a p p in g

Classes in the object-relational model are represented as user defined types (UDT) and
instantiated in the form of object tables [0ra02b], For this reason, the sys_Class from

the EGTV metamodel is mapped to two O-R schema repository tables: all_types
and all_ob ject_tables. The all_types table contains all user defined types in the

database schema, while the all_ob ject_tables represent object tables that instantiate
these UDTs. The class mapping is illustrated in Example 3.7.

map sys_Class := all_types, all_object_tables,
all_extensions

{
attribute:

name := all_types.type_name,
all_object_tables.table_name

comment := all_extensions.comment
isAbstract := all_types.instantiable

relationship:
containedln := all_users.username ref„to

all_types.owner
containedObjects := all_types.type_name ref_to

all_type_attrs.type_name,
all_types.type_name ref_to

all_type_methods.type_name
derivesFrom := all_types.supertype_name
inheritsTo := all_extensions.inheritsTo

}
Example 3.7: O-R Class Mapping.

The object-relational mapping requires a map function which transforms the sys_Class
metaclass to all_object_tables and all_types O-R tables. The attribute name
is mapped to name columns of both all_types and all_object_tables tables,

Chapter 3: The E G TV Metamodel 65

while the comment attribute (not existing in the O-R schema repository) is mapped

to the all_extensions table. The isAbstract attribute maps to the instan-
tiable column of the all_types table and containedln relationship between class

and its containing schema is mapped to referential integrity constraint between all_-
types and all_users tables. Attributes and relationships defined within the class

(containedOb jects relationship) are mapped to referential integrity constraint between

all_types and all_type_attrs tables, while operations are mapped to the constraint
between all_types and all_type_methods tables. Inheritance in the sys_Class
is represented with derivesFrom and inheritsTo relationships. The first relationship

is mapped to the supertype_name column of the all_types table, while the second
maps to the O-R schema repository extensions.

A ttr ib u te M a p p in g

Class attributes defined in the EG TV metaclass sys_Attribute are mapped to two

object-relational tables. The all_type_attrs table defines UDT attributes, while

all_tab_columns stores their object table instantiations. The containment relationship

between attributes and user defined types is mapped to the referential integrity constraint
between all_type_attrs and all_types schema repository tables. The sys_attribute

properties isConstant, isStatic and accessKind does not have object-relational
counterparts, so they are mapped to the O-R schema repository extensions. The attribute

mapping is illustrated in Example 3.8.

map sys_Attribute := all_type_attrs, all_tab_columns,
all_extensions

{
attribute:

name := all_type_attrs.type_name,
all_tab_columns.column_name

comment := all_extensions.comment
accessKind := all_extensions.accessKind
isConstant := all_extensions.isConstant
isStatic := all_extensions.isStatic

relationship:
containedln := all_type_attrs.type_name ref_to

all_object_types.type_name,
attributeType := all_type_attrs.attr_type_name

}
Example 3.8: O-R Attribute Mapping.

Chapter 3: The E G TV Metamodel 66

In h e r i ta n c e M a p p in g

Inheritance in the object-relational metamodel is represented as a relationship between
a subclass and a superclass instances of the a l l _ t y p e s schema repository table. The
s y s _ I n h e r i t a n c e EGTV metaclass maps to the inheritance property s u p e r ty p e _ -
name of this table. The inheritance mapping is illustrated in Example 3.9.

map s y s _ I n h e r i t a n c e := a l l _ t y p e s , a l l _ e x t e n s i o n s
{

a t t r i b u t e :
nam e := a l l _ e x t e n s i o n s . name
com m ent := a l l _ e x t e n s i o n s . com m ent
i s V i r t u a l := a l l _ e x t e n s i o n s . i s V i r t u a l
p o s i t io n N u m b e r := a l l _ e x t e n s i o n s . p o s i t i o n N u m b e r

r e l a t i o n s h i p :
i n h e r i t s T o := a l l _ e x t e n s i o n s . i n h e r i t s T o
d e r iv e s F r o m := a l l _ t y p e s . s u p e r ty p e _ n a m e

}

Example 3.9: O-R Inheritance Mapping.

The name, comm ent, i s V i r t u a l and p o s i t io n N u m b e r attributes of the s y s _ I n h e r -
i t a n c e cannot be m apped directly to the O-R schema repository tables. Instead, the
mapping to the O-R m etamodel extensions is provided. The d e r iv e s F ro m relationship
of the s y s _ I n h e r i t a n c e maps to the s u p e r ty p e _ n a m e column of the a l l _ t y p e s
table, while the i n h e r i t s T o relationship is mapped to the a l l _ e x t e n s i o n s table.

R e la tio n sh ip M a p p in g

Relationships are represented as reference (REF) attributes and nested tables (collec
tions) of REF attribu te types [0ra02b]. The REF attribu te type represents o n e side of
the relationship, while the nested table of REF types is used to describe m any side of
the relationship. The object-relational mapping translates relationships from the EGTV
s y s _ R e l a t i o n s h i p metaclass to the a l l _ t y p e _ a t t r table. Since the class attributes
are also mapped to the same table, the property a t t r _ t y p e of this table is used to distin
guish relationships (REF attributes) from the non-reference attributes. This is illustrated
in Example 3.10.

O p e ra tio n S ig n a tu re M a p p in g

Behaviour methods defined for user defined types are represented in the object-relational
schema repository in the table a l l _ t y p e _ m e t h o d s to which EGTV s y s _ M e th o d class
is mapped. Type operators are not supported in object-relational schema repository, so
they are mapped as m ethods with special system defined names which cannot be used for

Chapter 3: The E G TV Metamodel 67

map s y s _ R e l a t i o n s h i p := a l l _ t y p e _ a t t r s , a l l _ t a b _ c o l u m n s ,
a l l _ e x t e n s i o n s

{
a t t r i b u t e :

nam e := a l l _ t y p e _ a t t r s . ty p e _ n a m e ,
a l l _ t a b _ c o l u m n s . co lu m n _ n am e

com m ent := a l l „ e x t e n s i o n s . com m ent
a c c e s s K i n d := a l l ^ e x t e n s i o n s . a c c e s s K i n d
i s U n iq u e := d _ E x t e n s i o n . i s U n iq u e
i s O r d e r e d := d _ E x t e n s i o n . i s O r d e r e d
'R E F ' := a l l _ t y p e _ a t t r s . a t t r _ t y p e _ m o d

r e l a t i o n s h i p :
c o n t a i n e d l n := a l l _ t y p e _ a t t r s . ty p e _ n a m e r e f _ t o

a l l _ o b j e c t _ t y p e s . ty p e _ n a m e ,
t r a v e r s a l := a l l _ e x t e n s i o n s . t r a v e r s a l

}

Example 3.10: O-R Relationship Mapping.

other methods. For example the operator = is represented in the a l l _ t y p e _ m e t h o d s

table as a m ethod named o p e r a t o r ^ . Operation param eters represented in the s y s _ -

P a r a m e t e r EG TV metaclass are mapped to a l l _ t y p e _ a t t r s O-R metatable.

D a ta T y p e M a p p in g

Primitive and collection data types are m apped from the s y s _ P r i m i t i v e T y p e and
s y s _ C o l l e c t i o n T y p e EG TV metaclasses to the a l l _ t y p e s table in the object-relational
schema repository. The mappings are defined in Table 3-4- Multimedia types and the Map

type are not defined in the O-R schema repository, so they are represented as a special
user defined types in the a l l _ o b j e c t _ t y p e s table. For example, the m peg multime
dia data type defined in the s y s _ M u l t im e d ia T y p e EG TV metaclass is mapped to the
m p eg V id eo user defined type in the a l l _ o b j e c t _ t y p e s table. Operations defined for
multimedia types are m apped to UDT operations. Regular UDTs cannot have the same
name as these UDTs for multimedia representation, since these names are reserved for
multimedia types representation.

O b je c t V iew M a p p in g

The object-relational m etamodel supports only a simplified form of views (as virtual ta
bles). For this reason the EG TV view subschemas must also be mapped to the extended
object-relational metamodel. These metamodel extensions should include a set of tables
which supplement the existing object-relational schema repository with view m etadata.

Chapter 3: The E G TV Metamodel 68

E G T V M e ta c la ss V ir tu a l T ab le B ase T ab le
sys_SubSchema vie_sub_schema -

sys_Class vie_types alLtypes
sys_Attribute vie_type_attr alLtype_attr

sys_Relationship vie_type_attr alLtype_attr
sys_Inheritance vie_types alLtypes

sys_Method vie_typ e_met ho ds alLtype_methods
sys_Operator vie_typ e_methods alLtype_methods

Table 3.8: EG TV to Extended Object-Relational Mapping.

Extension tables describe view subschemas, virtual object types, virtual attributes, rela
tionship and inheritance elements. The extension tables listed in Table 3.8 should preserve
the same structure as the original object-relational schema repository tables, and are dis
tinguished by the v i e _ prefix.

The EG TV metamodel mapping is defined so th a t the sys_S ubS chem a metaclass is
m apped to the v ie _ s u b _ s c h e m a extended schema repository table. The virtual classes
from the s y s _ C la s s are m apped to the to the v i e _ t y p e s table, while their operations
are represented in the v ie _ ty p e _ _ m e th o d s t a b l e . V irtual attributes and relationships
are both mapped to the v i e _ t y p e _ a t t r table as a regular attributes or REF attributes.

3.4 Conclusions

In this chapter we described our approach to designing and implementing a metamodel
for multimedia databases. The metamodel defines a set of metaclasses for m etadata stor
age in our multimedia database federation. It is based on the ODMG metamodel, but
provides a more simplified design, includes multimedia data types and extended support
for object views. We have developed and implemented a standard metamodel interface to
object-based multimedia systems, while the contribution is in the fact th a t no federated
database research project has published a single metamodel capable of representing both,
base schemas and view subschemas. In [RKBOla] they provide a single interface to both
base and view schemas, but view m etadata is represented in a special metamodel segment,
separate from base schemas. The detailed mappings were defined for each EGTV m eta
model element and represented in the form of simple mapping language. This provides us
with the ability to create EG TV multimedia databases and map their schemas to existing
object-oriented and object-relational schema repositories. By publishing the metamodel, it
is possible to create an architecture which is both open and extensible. This has proved to
be beneficial when creating federations of multimedia databases, which is the focus of our
research. Metamodel has a significant role in construction of the EGTV multimedia feder
ation. Firstly, it provides a platform independent representation for multimedia schemas
defined in local 0 - 0 and 0 -R databases. Secondly, it facilitates the construction of fed-

Chapter 3: The E G T V Metamodel 69

crated schemas in a form of views th a t integrate and restructure multiple local schemas.
Thirdly, m etadata can be defined to support multimedia data types and operations they
provide. Finally, the EGTV metamodel provides infrastructure for dynamic (ad-hoc) in
terrogation of both base and virtual schemas. This feature is crucial for supporting query
execution, as syntactic and semantic m etadata validation of query expressions must, be
performed in runtime.

The metamodel and its database mappings are required prerequisites for specification of
a schema definition language and a query language. Schema definition language provides
a platform independent specification of EGTV multimedia schemas in the top-down ap
proach. In chapter 4 we discuss the ODLx language for EGTV schema specification. Our
query language is also based on the EGTV metamodel, as it requires schema repository
m etadata for dynamic (run-time) evaluation of queries. This language is capable of query
ing schemas a t both canonical and federated layers of our architecture and is discussed in
chapter 5.

Chapter 4

S c h e m a D e f i n i t i o n

W hen storing data in heterogeneous databases, it is useful to have a single schema defini
tion language. Such a language enables the definition of database schemas in a platform
independent format, th a t can be subsequently mapped to any database representation.
This is especially emphasised in federated database systems, where participating databases
can be both heterogeneous and distributed. As XML represents a standard for encoding
and distributing data across various platforms and the Internet, a language based upon
XML has been developed in this research. The ODLx (Object Definition Language XML)
language specifies a set of XML-based structures for defining object-oriented and object-
relational database schemas in the database independent format. The XML Schema is
used to facilitate formal definition of ODLx grammar and to provide blueprint for syn
tactic validation of user-defined ODLx schema files. The language is fully integrated with
the EG TV metamodel through which ODLx schemas can be m apped to 0 - 0 and 0 -R
databases.

The chapter is structured as follows: in §4.1 different approaches to database schema
creation are discussed and our solution is motivated; in §4.2 an overview of the ODLx
language is given and explained through a series of examples; in §4.3 mappings of ODLx
language elements to the EG TV metamodel are elaborated; and finally in §4.4 some con
clusions are given. The complete XML Schema definition of the ODL,,: language is given
in Appendix B, while the full reference of all ODLx language elements and their mappings
is provided in Appendix C.

4.1 Introduction

A database schema is created from definitions commonly specified in the form of a Data
Definition Language (DDL). A D ata Definition Language provides a set of constructs that
define database schema elements (types, tables, classes, etc.) and models the relationships
between them. A schema is usually stored in a text file, and interpreted by the schema

70

Chapter 4: Schema Definition 71

definer process which creates the database schema and populates m etadata in some schema
repository.

Relational databases commonly use SQL DDL [MS92] as a schema definition language.
This language specifies a set of SQL CREATE statem ents for defining tables, integrity con
straints and other elements of the relational database model. The language is standardised
and generally portable across all relational database platforms. However, it cannot define
schemas which include objects and concepts such as inheritance and relationships.

SQL:1999 specifies a D ata Definition Language [GP99] for defining O-R schemas as an
extension to the existing relational SQL. The standard extends SQL CREATE statement
with new constructs for defining O-R, schema elements. These extensions include object
types and tables, inheritance and association relationships, and collection types. In ad
dition to these, behaviour methods can be defined as part of an object-relational type.
Although this specification is complete, it has not been widely adopted, and majority
of O-R databases are still not fully compliant with the standard, most specifically when
defining collection types, table inheritance, and user-defined methods. An O-R view is
defined as a stored SQL query, the result of which can be interpreted as an extent of
a User-Defined Type (UDT). However, updatability of these views is limited, and the
semantics of virtual object identifiability remains unclear.

The ODMG standard [CB99] specifies the Object Definition Language (ODL) as a data
definition language for object schema specification. This language supports the definition
of classes and other entities th a t can be created in an ODMG schema. However, it does not
provide constructs for defining views (virtual classes), and global schemas. ODL is based
on the CORBA IDL language [OH98] (Interface Definition Language), so it inherits some
of its limitations. Specifically, m ethod overloading and static methods are not defined in
the ODL syntax and thus, their semantics are unknown.

Since ODMG ODL and SQL:1999 DDL are two different and incompatible standards for
database schema specification, our contribution is to specify and deploy a more general
object schema definition language. In addition, we chose to use the emerging standard for
data exchange, XML. This provides an added benefit in tha t our schema specifications are
fully portable across different platforms. Furthermore, we use the XML Schema standard
to provide a formal definition of the ODLx language grammar as this has several advantages
over commonly used BNF notation. Firstly, in addition to unambiguous syntax definition
of ODLz, the XML Schema can describe relationships between different ODL;,; language
elements and specify constraints on their values. Secondly, XML Schema has built-in
support for da ta types and can enforce strong typing of O D L x database schemas. Finally,
the XML Schema is a fully standardised and platform independent technology, hence
each user-defined ODLx schema file can be validated for correctness using standard XML
parsers. The ODLx language provides a schema definition syntax for both ODMG and O-R
databases used in our architecture. The language is completely XML-based and supports
the definition of virtual classes (simple views), multimedia data types, and global schemas.

Chapter 4: Schema Defìnition 72

\ virtual class
RecentFilm s

film N am e
m p e g F ile

RecentFilmsO
-R ecentF ilm sQ

M o tio n P ic tu re 1 ..*
_____________ N

A c to r

o p e r a to r = = 0
1 .. * n a m e

Figure 4.1: Film Archive Schema.

4.2 The Structure of ODL^

ODL^ is the definition language for specifying schemas in the EG TV model [KBR03].
This model is object-oriented, and capable of representing all features of both ODMG
and O-R database models. The EG TV model introduces classes consisting of attributes,
relationships and operations. Relationships in the EGTV model are bi-directional. Each
operation can be either an operator or a method, differing in the invocation style. This is
explained fully in [Kam04], In this model, simple views can be defined as stored queries
and represented as virtual classes. The role of a virtual class is to restructure and integrate
database schemas, and is used in the construction of global schemas.

The O D L, is fully XML-based and structured as a hierarchy of elements. The top-level ele
ment is a database schema which contains m ultiple classes and virtual classes. The validity
of each ODL^ database schema is verified against its XML Schema [WorOl] specification.
This provides an unambiguous definition of the ODL^ syntax and defines consistency and
referential integrity rules for ODLx database schemas.

Usage of the ODLx language is explained using a Film Archive subschema illustrated in
Figure 4-1- This is an extract of a larger M ultimedia Archive Schema defined in the
EG TV project to store video recordings. The subschema consists of three classes: F ilm ,

M o t i o n P i c t u r e and A c to r which are part of an existing base schema. The F i lm is
an abstract class from which a M o t i o n P i c t u r e genre is derived to represent a special
subcategory of films. The M o t i o n P i c t u r e defines an 1 -n relationship to the A c to r class
which represents actors appearing in the motion picture. This relationship is bidirectional.
The equivalent ODLx definition is provided in example 4-1• Using the base schema, a
single v irtual class R e c e n tF i lm s is defined as illustrated in example 4-2. This virtual
class selects only those motion pictures released after the year 2000. This example use the
CDATA XML tag to encapsulate ODLr/: content non-compliant with XML.

Chapter 4: Schema Definition 73

< ?xm l v e r s i o n = " 1 .0 " e n c o d in g = " U T F - 8 "?>
<dbSchema n a m e = " F ilm A rc h iv e " d a ta b a s e T y p e = " O R " >

< c la s s n a m e = "F ilm " a b s t r a c t = " t r u e " >
« a t t r i b u t e n am e= "n am e">

< p r im it iv e T y p e n a m e = " s t r i n g " />
< / a t t r i b u t e >
< a t t r i b u t e n a m e = " y e a r" >

< p r im it iv e T y p e n a m e = " d a te " />
< / a t t r i b u t e >
< a t t r i b u t e n a m e = " m e d ia ">

<m ediaType n a m e= "m p eg " />
< / a t t r i b u t e >

< /c la s s >
< c la s s n a m e = " M o t io n P ic tu r e " >

< in h e r i t a n c e n a m e = " M o tio n P ic tu r e G e n " i n h e r i t s F r o m = " F i l m " />
< r e la t io n s h ip n a m e = " M o t io n P ic tu r e R e f " t r a v e r s a l = " A c t o r R e f "

c a r d i n a l i t y = " m a n y " />
< o p e ra to r n am e= "= = " c o n s t a n t = " t r u e " o p e r a t o r K i n d = " b i n a r y ">

« r e tu r n V a l c o n s t a n t = " t r u e " >
< p r im it iv e T y p e n a m e = " b o o l" />

< / r e tu r n V a l>
« p a ra m e te r n a m e = " in C la s s " c o n s t a n t = " t r u e " >

< c la s s T y p e n a m e = " M o t i o n P i c t u r e " />
< / p a ra m e te r>

< /o p e r a to r >
< /c la s s >
c c la s s n a m e = " A c to r ">

« a t t r i b u t e n am e= "n am e">
< p r im it iv e T y p e n a m e = " s t r i n g " />

< / a t t r i b u t e >
« r e la t io n s h ip n a m e = " A c to r R e f " t r a v e r s a l = " M o t i o n P i c t u r e R e f "

c a r d i n a l i t y = " m a n y " />
< / c la s s >

</dbSchem a>

Example 4.1: An O D L x definition of the Film Archive schema.

4 .2 .1 C la s s D e f in i t io n

The ODLje c l a s s element represents a class in the database schema. The Film Archive
schema in exam,pie 4-1 defines three classes: F i lm , M o t i o n P i c t u r e , and A c to r , where
the F i lm class is defined as an a bstrac t class. Class attributes are defined as a t t r i b u t e

subelements. A ttribute definitions have a name and type properties, with attribute types
defined as subelements of the a t t r i b u t e element. The F i lm class contains three a t
tributes: nam e, y e a r and m e d ia which are defined as s t r i n g and d a t e primitive
types, and m peg multimedia type respectively.

In exam ple 4-1 the class M o t i o n P i c t u r e derives from the class F i lm by defining the i n -

Chapter 4: Schema Definition 74

h e r i t a n c e element M o t io n P ic tu r e G e n inside the specification of M o t i o n P i c t u r e

class. The i n h e r i t s F r o m attribute of the i n h e r i t a n c e element specifies the name of
the superclass. In our example this is the F i lm class.

The bidirectional relationships of the EG TV model are represented els two relationship
elements where each element defines one side of the relationship. Example 4..1 specifies
a many-to-many relationship between classes M o t i o n P i c t u r e and A c to r by defining
r e l a t i o n s h i p elements in both of these classes. The t r a v e r s a l attribute specifies
the other side of the bidirectional relationship, and its value must correspond to the nam e
attribute of the inverse relationship defined in the second class. This is enforced in the
XML Schema using key and keyref constraints. The c a r d i n a l i t y attribu te defines the
cardinality of the relationship and takes a value of o n e or m any.

The behaviour of the class is declared using o p e r a t o r or m e th o d elements. In either case,
the operation nam e must be specified together with mutability (attribute c o n s t a n t) , list
of parameters (subelements p a r a m e t e r) and the type of the return value (subelement
r e t u r n V a l) . For each param eter, the type and name must be provided. The syntax
of the definition is similar to the one used for class attributes. In our example, the
o p e r a t o r = = (testing for equality) is declared for class M o t i o n P i c t u r e , and it compares
two M o t i o n P i c t u r e objects. Definition of behaviour (programming language code), its
storage and processing can be found in [Kam04].

< ?xm l v e r s i o n = " l .0 " e n c o d in g = " U T F -8 "?>
<dbSchema n a m e = " F i lm A r c h iv e " d a ta b a s e T y p e = " O R " >

c v i r t u a lC la s s n a m e = " R e c e n tF i lm s ">
< e x te n t> < ! [CDATA[

s e le c t nam e as f ilm N a m e , m e d ia as m p e g F i le
fro m M o t i o n P i c t u r e
w here y e a r > 20 0 0 ;]] >

< / e x t e n t >
cm ethod n a m e = " R e c e n tF i lm s " a c c e s s K i n d = " p u b l i c " >

« p a ra m e te r n am e = "film N a m e " c o n s t a n t = t r u e >
< p r im it iv e T y p e n a m e = " s t r i n g " />

< /p a r a m e te r >
« p a ra m e te r n a m e = " r e c o r d in g D a te " c o n s t a n t = " t r u e " >

< p r im it iv e T y p e n a m e = " d a te " />
< /p a ra m e te r>

< /m ethod>
«m ethod n a m e = " - R e c e n tF i lm s " a c c e s s K i n d = " p u b l i c " >
</m ethod>

< /v i r t u a lC la s s >
</dbSchem a>

Example 4.2: An ODLE definition of the R ecen tF ilm s virtual class.

Chapter 4: Schema Definition 75

4 .2 .2 V i r tu a l C la s s D e f in i t io n

The v i r t u a l C l a s s element facilitates the definition of a virtual class (simple view) as a
stored EQL (EGTV Query Language) query [KBR03]. A detailed description of the EQL
language is provided in next chapter. Each view definition is evaluated to one virtual
EGTV class and represented in the EGTV Schema Repository. The attributes of this
virtual class are derived implicitly from the EQL query definition, but its methods and
operators are specified using the same syntax as for classes. Example 4-2 defines a virtual
class R e c e n tF i lm s in the F i l m R e p o s i t o r y database schema. The e x t e n t 1 subele
ment defines a query from which the virtual class extent is generated. In our example, the
extent is defined as a query tha t selects “all films made after the year 2000”. The attribute
list is specified in the s e l e c t clause of the query and attribu te types are read from the
Schema Repository.

While updatability of virtual objects is provided by the EGTV model, operations play
a crucial role in removing ambiguities when inserting new objects. For example, if the
view contains a join, it is unclear how new objects are created, or existing ones deleted.
Furthermore, a new object of a virtual class cannot be created if the virtual class hides some
attributes of the underlining base class. The only way to unambiguously define semantics
of create and delete operations on virtual classes is to specify constructor and destructor
methods as a part of the view definition. Updates can also be redefined by overloading
the assignment operator. Behaviour representation and processing is out of scope of this
research, and a full discussion is provided in [Kam04], In our example, the constructor
of the virtual class R e c e n tF i lm s is declared. This m ethod receives two parameters:
f ilm N am e and r e c o r d i n g D a t e , which axe used to create new M o t i o n P i c t u r e objects
and set the values of its attributes. The m p e g F i le attribute is left as n u l l , to be updated
later. In a similar fashion, the destructor can be used to maintain integrity when objects
are deleted. The destructor deletes the source object the virtual object was based upon,
which effectively deletes the object from the database. Other operations can also be
specified in a virtual class.

4 .2 .3 I m p o r t C la s s D e f in i t io n

A virtual class imported into the global schema from a canonical layer database is specified
using the i m p o r t C l a s s subelement of the v i r t u a l C l a s s element. This ODL^ element
is required to unambiguously define source class as each imported class acts as a proxy
for the original class in the canonical schema. Thus, the i m p o r t C l a s s element is used
for defining global schemas in the EGTV database federation. Other virtual classes can
be constructed upon classes imported from multiple local database nodes, thus facilitat
ing global schema integration and restructuring. Example 4.3 illustrates the definition of

lrThe CDATA is an XM L keyword w hich denotes tex t not to be interpreted by XML parsers.

Chapter 4: Schema Definition 76

the L o c a lR e c e n tF i lm s virtual classes imported into the G lo b a lF i lm s global schema.
A ttributes of the i m p o r t C l a s s ODLx element provide information required to unam
biguously locate original virtual class within the database federation. These include class
nam e and identification of the sch em a and d a t a b a s e where original class is located.
Classes successfully imported into a global schema can be instantiated, queried and up
dated by global clients.

< ?xm l v e r s i o n = " 1 .0 " e n c o d in g = " U T F -8 "?>
<dbSchema n a m e = " G lo b a lF i lm s " d a ta b a s e T y p e = " 0 0 " >

< v i r t u a lC la s s n a m e = " L o c a lR e c e n tF i lm s "
c im p o rtC la s s d a t a b a s e = " V i d e o R e p o s i t o r y "

s c h e m a = " F i lm A rc h iv e " n a m e = " R e c e n tF i lm s />
< /v i r t u a lC la s s >

</dbSchem a>

Example 4.3: An ODLx definition of the R e c e n tF i lm s import class.

4.3 The ODLa; to Metamodel Mappings

In this section we discuss mappings of the ODLx encoded database schemas to the EGTV
metamodel representation. Metamodel mappings are required as all EG TV database
schemas must be represented in the schema repository to allow for dynamic querying
and global schema integration. Therefore, a formal mapping language was developed to
transform ODLx elements and their attributes to metaclasses and properties in the EGTV
metamodel. However, a t this point we defer a discussion of formal mapping language
specification. Instead, we introduce an ODLx to metamodel mapping process through a
set of examples based upon the simple Film Archive Schema illustrated in figure 4.1. The
full reference of all ODL^ language elements and their metamodel mappings is provided
in A ppendix C.

4 .3 .1 B a s e S c h e m a M a p p in g

Mapping of base ODLa, schemas is a generally straightforward process where each OD I^
element (i.e. d b S ch em a, c l a s s , a t t r i b u t e) is m apped to a single metaclass, while ele
ment attributes are m apped to metaclass attributes. This is illustrated in figure 4-2 where
mappings of the Film Archive schema (defined in Example 4.1) are represented as metaob
jects in the UML collaboration diagram. The d b S ch em a ODL^ element is mapped to the
F i lm A r c h iv e instance of the s y s _ D a ta b a s e S c h e m a metaclass, while each c l a s s el
ement (F ilm , M o t i o n P i c t u r e , A c to r) defined in the F ilm Archive ODL^schema is
m apped to an instance of the s y s _ C l a s s metaclass. The c o n t a i n e d _ i n relationship
defined between s y s _ C l a s s and s y s _ D a ta b a s e S c h e m a metaclasses is instantiated to
a set of object links th a t represent containment of class m etaobjects within a schema

Chapter 4: Schema Definition 77

Film :
svs Class

contained In

name:
svs Attribute

attiibu e._type

FllmArchive :
svs DatabaseSchema

conatmscf in
contained In

MotlonPicture :
__svs Class__

contained in

inherits to

ntajnned in

dorivesjrom

MotionPictureGen :
_sysjnheritance

=: svs Operator

rasult.type

contained in
X

V

MotionPictureRef :
sys_Relationshlp traversal

string : boolean :
svs PrimltiveTvoe svs PrimitiveTvDe

Actor:
svs Class

contained In

ActorRef :
svs Relationship

Figure 4.2: M etamodel Representation of Film Archive Schema.

instance. This relationship was implicitly defined in ODLx by nesting c l a s s elements
w ithin a dbSchem a element.

Class attributes (a t t r i b u t e ODL^ element) are represented as s y s _ A t t r i b u t e in
stances, and linked to the containing s y s _ C l a s s object (c o n t a i n e d _ i n relationship).
Figure 4.2 illustrates this by defining m apping for the nam e attribu te of the F i lm class.
A ttribute type defied as a p r i m i t i v e T y p e element in the Film Archive ODLx schema
is m apped to the a t t r i b u t e _ t y p e relationship in the EG TV metamodel. This re
lationship links an instance of the s y s _ A t t r i b u t e metaclass w ith the instance of the
s y s _ T y p e metaclass (supertype of the s y s _ P r i m i t i v e T y p e) to define a ttrib u te ’s type.

Relationships are m apped to the s y s _ R e l a t i o n s h i p metaclass, where each side of the
bidirectional relationship (r e l a t i o n s h i p ODLx element) corresponds to an instance of
the s y s _ R e l a t i o n s h i p metaclass. For example, the M o t i o n P i c t u r e R e f relationship
in Example 4.1 is m apped to s y s _ R e l a t i o n s h i p instance of the same name in Figure

4.2. This m etaobject defines a t r a v e r s a l relationship to the A c to r R e f m etaobject
representing the other side of the bidirectional relationship.

The inheritance element M o t i o n P i c t u r e G e n is m apped to an object of the s y s j n

h e r i t a n c e metaclass, while m ethods and operators are m apped to s y s _ M e th o d and
s y s _ O p e r a t o r metaclass instances. The m ethod’s or operator’s return value specified as
r e t u r n V a l ODLx element is m apped to the the r e s u l t _ t y p e relationship defined in
the s y s _ O p e r a t i o n , the superclass for both s y s _ O p e r a t o r and s y s _ M e th o d meta-
classes. Thus, a re tu rn value of the o p e r a t o r == in Example 4.1 is m apped to an instance
of the r e s u l t _ t y p e relationship. This relationship points to a b o o l e a n instance of the
s y s _ P r i m i t i v e T y p e metaclass th a t defines operator’s re tu rn value.

Chapter 4: Schema Definition 78

Figure 4.3: M etamodel Representation of R e c e n tF i lm s V irtual Class.

4 .3 .2 V i r t u a l C la s s M a p p in g

Virtual classes in the ODLx language are defined as stored queries and facilitate definition
of simple views. Each virtual class definition (v i r t u a l C l a s s ODLx element) is m apped
to an instance of the s y s _ C l a s s metaclass in the EGTV metamodel. Although this is the
same metaclass to which base classes are mapped, its v i r t u a l L e v e l and v i r t u a l E x -

t e n t properties are m apped differently for v irtual classes. The v i r t u a l L e v e l property
defines a non-zero value (zero level identifies base classes), while the v i r t u a l E x t e n t

contains an EQL query string which defines how virtual class extent is generated. The
later property is directly m apped to the e x t e n t element in the ODLx specification. Each
virtual class extent (EQL query) is evaluated to a set of v irtual attributes th a t are m apped
to s y s _ A t t r i b u t e metaclass in the EG TV metamodel. This is illustrated in figure 4-3

where m apping for v irtual class R e c e n t F i l m s (Example 4-2) and its attributes is defined
in the UML collaboration diagram.

Each virtual class instance is linked with the v i r t u a l _ c o n n e c t o r relationship to one or
more base metaclass instances from which it was constructed. Similarly, virtual class prop
erties are linked to corresponding properties of base classes. This enables direct navigation
from virtual to base classes and is used to facilitate direct updatability of virtual class in
stances. In figure 4-3, the R e c e n tF i lm s virtual class is linked to the M o t i o n P i c t u r e

Chapter 4: Schema Definition 79

base class, while v irtual a ttrib u tes f ilm N am e and m p e g F i le are directly linked to nam e
and m e d ia a ttrib u tes of the base class.

Methods and operators of the virtual class cannot be reused from base classes, and must
by explicitly defined within the virtual class specification. Therefore their metamodel
mapping is identical to base classes.

4 .3 .3 I m p o r t C la s s M a p p in g

Virtual classes imported from canonical databases to the global schema are represented
in the ODLx language with i m p o r t C l a s s subelement of the v i r t u a l C l a s s ODLx
element as illustrated in Example 4.3. Metamodel mapping is straightforward where
each v i r t u a l C l a s s element is mapped to one instance of s y s _ C la s s metaclass. The
d a t a b a s e , sch e m a and nam e attributes of the i m p o r t C l a s s subelement are mapped
to a single v i r t u a l E x t e n t attribute in the s y s _ C l a s s metaclass. This mapping
is represented in @ < d a ta b a s e > : :< s c h e m a > : : <nam e> format, where each attribute
is mapped to a segment of the same name, while @ and : : characters are used as
segment delimiters. Therefore, imported class L o c a lR e c e n tF i lm s in Example 4.3 is
mapped to one instance of the s y s _ C la s s metaclass in the global schema repository.
Its d a t a b a s e , s c h e m a and nam e attributes are m apped to the value @ V id e o R e p o s i-

t o r y : : F i lm A r c h iv e : :R e c e n tF i lm s in the v i r t u a l E x t e n t attribute of the s y s _ -
C l a s s metaobject.

4.4 Conclusions

W hen creating new database federations or extending existing ones, it is useful to have
a common specification language for schemas. This requirement is highlighted when
databases in the federation are heterogeneous and mutually incompatible. In this chapter
we introduced ODLx, the schema specification language used in the EGTV project. This
language has been designed to facilitate an object schema definition in an implementation
independent format. The language also addresses some deficiencies of the existing schema
definition languages. The approach we have chosen is based upon standard technologies,
and is portable across different platforms. These include, bu t are not restricted to, defin
ing virtual classes, multimedia types and class operators. The language is supported with
an XML Schema definition which provides a full syntax definition and specifies rules for
integrity constraints enforcement. The complete XML Schema specification of ODLx is
provided in Appendix B.

The ODL* language can be easily mapped to the EGTV metamodel, thus providing per
sistent m etadata storage and dynamic browsing for both local and federated schemas. The
ODLz database schemas transformed to the EGTV metamodel representation can be then

Chapter 4: Schema Definition 80

easily m apped to 0 - 0 and 0 -R databases using metamodel mapping rules defined in the
previous chapter.

By defining a platform independent schema definition language and its metamodel map
pings, we are now in position to create m ultimedia enabled database schemas and integrate
them into a database federation. The next step will be a specification of a query language
capable of interrogating and updating bo th local and global EG TV multimedia schemas.
In the next chapter we define a such language and discuss its features.

T h e E Q L Q u e r y L a n g u a g e

Chapter 5

W hen storing data in heterogeneous databases, one of the top-down design issues concerns
the usage of multiple query languages. A common language enables querying of database
schemas in a platform independent format. This is particularly useful in federated database
systems when newly added databases may be both numerous and heterogeneous. As the
existing query language standards are generally incompatible and translation between
them is not trivial, a new query language has been developed. The EQL language facil
itates querying of both local and global EGTV multimedia schemas in a database and
platform independent manner. The EQL language also provides an orthogonal type sys
tem, extensible operator semantics, the ability to define simple views, and updatability at
the global level. In the previous chapter the schema definition language ODLx was intro
duced. This chapter describes the structure of the EQL language, discusses its features
and describes how ODLx schemas are dynamically queried.

The ability to provide formal and unambiguous query representation is an im portant
requirement for any query processing service. Query processing algorithms are able to
evaluate only queries whose syntax and semantics are unambiguously specified. Thus,
queries defined in a high-level query language are commonly transformed to an algebraic
representation. Query algebra is a collection of formally defined operators for manipulating
data structures defined in database model. Operators are atomic, and one operator’s
output can be used as an input for other operators. Thus, algebraic operators can be
cascaded to form complex data transformation expressions th a t can represent high-level
query definitions. The second part of this chapter discusses an object algebra for the
EQL. This algebra is orthogonal as it manipulates classes only, which are both an input
and output of each algebraic operator. A class is defined as the pair of m etadata and
object extent. EQL algebraic operators are type independent and they can be applied
to any EGTV type, thus performing a high level transformations specific to the query
language itself.

The remainder of this chapter is structured as follows: in §5.1 different approaches to
schema querying are discussed and our solution is motivated; in §5.2 a brief explanation of

81

Chapter 5: The EQL Query Language 82

the EGTV reference-based model is given; §5.3 introduces some general language concepts,
while EQL language operators are categorised and discussed in §5.4; an object algebra for
the EQL language is discussed in §5.5; in §5.6 some conclusions are given.

5.1 Query Language Standards

The EGTV project is primarily aimed at providing efficient query and update capabilities
for a large distributed repository of multimedia objects. The individual repositories take
the form of databases, independently designed and supplied by different vendors, thus het
erogeneous in terms of da ta model and schema design. This assumes a federated database
approach, where a canonical query language is used to provide a common interface to the
system as whole.

The ODMG standard [CB99] specifies the Object Query Language (OQL) for querying
object database schemas. The language is based on the ODMG data model and its type
system. The main problem of this type system is different semantics used for representing
object types and literals. As the consequence, the semantics of OQL is complex and inputs
and output to the query language are not orthogonal. This results in an unclear semantics
of nested queries and makes the process of query evaluation more difficult. The OQL
language does not provide constructs for defining views (virtual classes), global schemas,
nor does it support updates of database objects.

The SQL:1999 [GP99] specifies a standard for querying O-R databases by extending an
existing relational query language with object features. Since the backward compatibility
to relational model is preserved, the syntax and semantic of added object extensions is very
complex and non-intuitive. This is especially the case when querying nested collections
and references. The SQL: 1999 type system adds User-Defined Types (UDT), collections
and a reference type to an existing set of atomic literals, thus making query inputs and
results non-orthogonal. Views can be defined as stored SQL queries, the result of a which
can be interpreted as an extent of a UDT.

Since ODMG OQL and SQL:1999 SQL are two different and incompatible standards for
database schema querying, query translation is not trivial. Also, both O-R and ODMG
models have insufficient support for object views and lack the ability of defining efficient
operators for multimedia types. Thus, OQL and SQL:1999 are not suitable for query
ing heterogeneous multimedia repositories. These problems motivated us to define a new
query language th a t can be applied to provide an efficient interface to both O-R an 0 - 0
databases in our multimedia federation. This language provides mapping to both O-R and
0 - 0 databases and defines an orthogonal type system. The main contribution of the EQL
language is the ability to query heterogeneous databases operating in a federated environ
ment. The language supports global queries and provides full orthogonality between query
inputs and outputs in a form of classes. EQL also defines semantics for updates of database

Chapter 5: The EQL Query Language 83

objects and supports the definition of simple views. Operators of the query language are
not hard-coded in the language itself, but defined as behaviour of da ta types. This adds
additional flexibility to the query language, and enables definition of custom operators for
multimedia handling. The EQL language is supported w ith a formally specified algebra,
and a defined semantics of the process of query evaluation which are discussed later in
this chapter.

5.2 The EGTV Data Model

Virtual
Layer

 ̂ virtual EGTV
ŝ j objects

1 n i m m

Peritateti! Object 1 Persistent Object 2
Attribute 11
Attribute 12 Relationship 11

Attribute 21
Attribute 22
Relationship 21

Storage Layer

Objects in
ODMG and
O-R databases

Figure 5.1: The EGTV Model.

The EQL query language was specifically designed for the EGTV data model [Kam04],
This model was developed as part of a separate research project within the EGTV project
[KR03], but a brief overview is necessary to provide context for the remainder of this
chapter. It provides a common interface to objects stored in ODMG or object-relational
databases and is specifically designed to facilitate global updates. It uses classes as tem
plates for the instantiation of objects. A class defines properties (attributes and rela
tionships) tha t belong to the object, and set of operations th a t can be applied against
the object. Classes can also define generalisation relationships with other classes in the
schema, where multiple inheritance is possible. It is im portant to note th a t the EGTV
model does not provide object storage itself, but acts as a wrapper for 0 - 0 and O-R mod
els. Unlike many other object-oriented models, properties of an object are not contained
in the object. Rather, they are independent objects, referenced from their parent object.
Properties contain the actual values of the corresponding persistent object’s properties.
Using object-oriented modelling terminology, the EGTV model replaces all containments

with aggregations, not affecting the expressiveness of the model. An advantage of this ap
proach is tha t both objects and their properties can be directly referenced using the same
type of reference. Of course, storage is required in the system in the form of object-oriented

Chapter 5: The EQL Query Language 84

and object-relational databases at the Storage Layer.

Figure 5.1 illustrates a representation of a join operation, where two EGTV objects are
form a virtual one. Persistent objects are first transformed to EGTV objects (at the
Canonical Layer) and later joined (at the V irtual Layer). Object identities are shown in
square brackets with their values generated by the system. Persistent objects are stored
in an external database (at the Storage Layer), and can only be m anipulated through an
EG TV wrapper object. For each persistent object, a single EG TV object is materialised,
forming a canonical representation of the persistent object. This EGTV object has a new
object identity, which is bound to the identity of their original object for the lifetime of
the EGTV object. The properties of all EGTV objects have object identities of their own,
which are also immutable.

V irtual objects are materialised at the V irtual Layer as query results or views. An object
identifier is generated for all virtual objects and thus, the materialisation of view or query
objects uses an object generating semantics. The properties of virtual objects retain the
identifiers of the EG TV properties upon which they are based. In figure 5 .1 , they are shown
as dashed elements, with dashed arrows pointing to EGTV properties. This approach has
benefits in updatable virtual objects, as updates to their properties are directly propagated
to base and persistent objects.

5 .2 .1 T y p e S y s te m

Types in the EGTV model are categorised as built-in or user-defined. Built-in types
are those provided by the model, and include atomic types (i n t e g e r , f l o a t , d o u b le ,
b o o le a n , s t r i n g , b lo b , and d a te) , collection types (s e t , b ag , l i s t) , the bidirec
tional relationship type, and the reference type r e f . A user-defined type is effectively a
class th a t contains attributes and defines association and generalisation relationships to
other classes in database schema.

The EG TV atomic types are typical to object models and require no further explanation.
Additional atomic types can be added to capture the semantics of different multimedia
formats such as mpeg, jp e g and mp3. Thus, we are able to extend the EGTV model with
a native interface for multimedia storage and manipulation. The r e f is a type used to
reference objects (and their properties) and is internal to the EG TV model.

Collection types encapsulate multiple references; l i s t is a list of references where order
of elements is maintained; s e t is a se t of references where order of elements is not relevant
and duplicates are disallowed; and b a g is an unordered set o f references allowing dupli
cates. Collection types provide operations to traverse, extract and remove encapsulated
references and to insert a new reference into a collection.

A relationship connects two related objects and is modelled as a linked pair of relationship-

sides. In the EGTV model, relationships are bidirectional, and manipulation with one

Chapter 5: The EQL Query Language 85

side of the relationship changes the other side of the same relationship. This preserves
data consistency when objects are updated. The cardinality of each relationship-side
is individually specified and can be one or m any , where for cardinality many, it can
be specified if the ordering is relevant (o rd e re d) or not (u n o rd e re d) . An ordered
relationship-side encapsulates a l i s t , where an unordered one encapsulates a s e t of
references.

An im portant feature of EGTV type system is the orthogonality between built-in and
user-defined types. Contrary to ODMG, O-R, and some other database models, instances
of EGTV built-in types are not literals, but objects with OIDs. Objects instantiated from
built-in types can be directly referenced and are manipulated by the query language in
the same manner as user-defined classes, thus providing full orthogonality and reducing
the complexity of the type system. The other advantage of this approach is the ability to
define type specific operators and methods (i.e. string comparison, date conversions). We
commonly refer to both built-in types and user-defined classes as types.

5.3 Language Fundamentals

The EGTV Query Language (EQL) provides querying and updating for (distributed)
EGTV multimedia database schemas. This language extends ODMG OQL [CB99] by pro
viding new functionality and resolving existing ambiguities. However, contrary to some
other query languages for reference-based models [SBMS94], the EQL language retains
the familiar OQL-like syntax. Although the query syntax is relatively similar, the EGTV
Query Language differs semantically from OQL in the way th a t queries are executed and
results are generated. These differences are caused by the different representation of ob
jects in the ODMG and EGTV models. We believe tha t this is superior as the EGTV
model provides an orthogonal representation of types and full updatability of virtual ob
jects.

Simple views can be defined as stored EQL queries where the view specification syntax
is ODLx based, as explained in chapter 4. For each view definition, one virtual class is
created in the EG TV metamodel [RB02] representation and stored in a Schema Repository.
Attributes of the virtual class are deduced from the EQL query result type, while methods
and operators must be explicitly defined. M etadata representation for EGTV views is
discussed in chapter 3, while view pragmatics and their role in global schema definition
and querying are elaborated in chapter 7 after implementation details are discussed.

The main EQL language extensions are as follows:

• Clearly defined and fully orthogonal query input and output in the form of EGTV
classes.

• Query language support for updates, creates and deletes.

Chapter 5: The EQL Query Language 86

• A new navigational join operator which simplifies path queries.

• The ability to define custom operators and redefine behaviour of existing ones.

• Support for multimedia data types.

• The ability to define simple views as stored queries.

• A fully updatable query result set.

The language is described through a series of examples based on the Multimedia Recording
System database schema illustrated in figure 5.2. This schema stores information about
Fischlar system users, their subscriptions and recording requests. The recordings system
is used by administrators and users, each of which is represented using A d m i n i s t r a t o r

and U s e r classes. The basic difference between administrators and users is th a t adminis
trators can lock and supervise a user’s account. The common properties of administrators
and users (nam e, l o g i n and p a s s w o r d) are placed in the abstract superclass G e n e r -

i c U s e r . The U s e r class has a relationship to class R a t in g , which gives the maximum
rating of the user. The class P ro g ra m models individual programs: news, film etc. It
aggregates optional T r a i l e r s and S c r e e n s h o t s , and has an association to R a t in g .
The type of program is modelled using a relationship to C a te g o r y . The C a te g o r y

facilitates recursive definition of categories, so th a t for example, Science Fiction can be
defined as a sub-category of Movies. To place a recording request, a relationship between
G e n e r i c U s e r and P ro g ra m is established. Each individual broadcast of the program
is represented using a T V S c h e d u le object, which is associated with a C h a n n e l object.
In each of the broadcasts, a program can have a different duration (for instance, because
of commercial breaks). The user’s subscriptions are modelled with the S u b s c r i p t i o n
class, which has relationships to both U s e r and C h a n n e l .

5 .3 .1 Q u e r y I n p u t a n d O u t p u t

EQL provides full orthogonality between query input and output in the form of classes.
This is different to OQL whereby each query can return either an object id, atomic value,
structure or collection. Orthogonal input and output benefits EQL with easy subquerying,
where subqueries can be freely composed as they are not constrained by incompatible result
types. Input to an EQL query is a set of classes (either virtual or base ones), and the
result of query evaluation is a single virtual class. This is illustrated in Definition 5.2

where a query is formally represented as a generic function EQ L _Q uery which takes a set
of classes as input and generates a new virtual class as a result. The full semantics of base
and virtual EGTV classes was explained in §5.2.

D e fin itio n 5.2 V ir tu aL E G T V -C lass EQL^Query({ E G T V - C la s s } 1-*)

Chapter 5: The EQL Query Language 87

GenericUser

name
login
password

genera tePassword()
requestRecordlngO

r e c o rd in g s

0..' 0./

Program

name
description

delete AIITrailers()
getTrailer()
getScreenShot()
opera tor=()
length()

T \
Administrator User

lockAecountQ rating Limlt()
subscribe()
changeRating()

|o.-
|1

Subscription

startDate
endDate

getDuration()
cancel()

s u b s c r ib e d T o

Channel

0.,‘
Category

name
description

cancelUserQ
recordProgram()

Figure 5.2: Database Schema for M ultimedia Recording System.

The structure of an EG TV class (either base or virtual one) is formally specified in Defi

n ition 5.3.

D e fin itio n 5.3 E G T V -C la s s : := p a ir< m etadata , object-extent >

A class is defined as a pair of m etadata information and an object extent. M etadata
defines the structure of the class and the types of its properties, while an object extent
contains all objects of the class. M etadata is represented in the EG TV metamodel format
[RB02] and stored in the EG TV Schema Repository. M etadata representations and schema
repository mappings were fully discussed in chapter 3. Class m etadata has an im portant
role in query evaluation where it is used to resolve class and property names specified in
the query definition to objects in the class extent.

5.3.2 Q uery Structure

Each query consists of a projection specification (s e l e c t clause), a source specification

(fro m clause) and an optional res tr ic tion specification (w here clause). A query can also
contain two or more subqueries to which a set operation (union, intersection, or difference)
is applied. This is formally specified in Definition 5.4-

D e fin itio n 5 .4 E Q L _ Q u e r y : : = s e l e c t < a t t r i b u t e _ l i s t >

f r o m < s o u r c e _ p r e d i c a t e >

(w h e r e < p r e d i c a t e >) *

I

(Q u e r y l < s e t o p > Q u e r y 2) +

Chapter 5: The EQL Query Language 88

The attribute-list is a coma separated list of attributes representing the query’s result. An
attribute can be a selected class property, operation invocation, path navigation, assign
ment, or a complex expression involving any combination of these. The source-predicate

defines the extent on which the query is processed. It can contain class names, join expres
sions, and subqueries. The predicate is any expression tha t evaluates to boolean t r u e or
f a l s e for each object in the initial extent generated in the from clause. This syntax is
illustrated in Example 5.1 where all recorded programs longer then 2 hours (120 minutes)
are selected.

s e le c t n am e, d e s c r i p t i o n
fro m P ro g ra m
w here l e n g t h () > 1 2 0 ;

Example 5.1: Query structure.

The structure of an EGTV query result extent is identical to the structure of class extent,

which is a set of objects belonging to a single class. This identical structure facilitates
easy subquerying (nesting queries), as subqueries can be freely nested in any part of the
EQL query. Furthermore, client applications m anipulate query extents and objects using
the same interface (as both are of type s e t) . This is distinct from the semantics of nested
ODMG queries which are unclear, as the class extent is different in structure to the query
extent. It also provides a simple view mechanism whereby views are represented as stored
EQL queries. Example 5.2 illustrates this feature by defining query tha t selects from the
result of a its subquery. The subquery retrieves the name and the l e n g t h only for those
programs th a t are categorised as news.

s e le c t n am e, l e n
fro m (s e le c t n am e, l e n g t h () as l e n

fro m P ro g ra m
w here P r o g r a m . c a t e g o r y R e f . C a te g o r y = "N ew s") as N ew s;

Example 5.2: Nested query.

5 .3 .3 D e e p a n d S h a llo w E x te n t

The EQL queries which return a set of objects can be evaluated against the deep or shal
low extent of the classes specified in the source specification (f ro m clause). The shallow
extent includes only objects of the specified class, while the deep extent contains all ob
jects instantiated from the specified class and all of its subclasses. This feature is defined
in EQL with d e e p and s h a l l o w modifiers which precede the class name in the source
specification. If a modifier is omitted, the default value is a deep extent. For example
in the Multimedia Recording System, illustrated in figure 5.2, classes U s e r and A dm in

i s t r a t o r are derived from superclass G e n e r ic U s e r . Example 5.3 illustrates a shallow

Chapter 5: The EQL Query Language 89

extent query where th e set of objects consisting of name a ttrib u tes of all G e n e r ic U s e r

objects is re tu rned , b u t th is result set does no t include any instances of the U s e r and

A d m i n i s t r a t o r classes.

s e le c t U s e r .n a m e
fro m s h a llo w G e n e r i c U s e r ;

Example 5.3: Shallow modifier.

In Example 5.4, th e deep extent query re tu rns a set of nam e a ttr ib u te objects of all objects

instan tia ted from U s e r , A d m i n i s t r a t o r and G e n e r i c U s e r classes.

s e le c t U s e r .n a m e
fro m deep G e n e r i c U s e r ;

Example 5.4: Deep modifier.

5 .3 .4 O p e r a t io n I n v o c a t io n

The EGTV model defines three categories of operations: methods, operators and class
(static) methods. All three can be invoked in the EQL language, and the result they
return is orthogonal to the query result which is an EGTV class. Operation behaviour
is not defined in the EQL language but externally in the EGTV model. This makes our
query language flexible, as behaviour is associated with data types, and not hard-wired
to the language itself. The additional benefit is the ability to add new operations and
redefine semantics of the existing ones independently of query language. However, new
and redefined methods can be invoked from EQL in a same way as existing ones. As
mentioned earlier, behaviour processing is outside the scope of this research and is covered
elsewhere [KR01, Kam04].

M e th o d s . Methods are always applied to individual objects, and they must be invoked
by specifying m ethod’s name and an optional list of parameters. Methods can be invoked
in any segment of the query (s e l e c t , fro m , and w h e re) using the same notation as
for attributes and relationships. However, opened and closed brackets are a m andatory
identification of a method. M ethod invocation syntax is illustrated in Example 5.5 where
g e n e r a t e P a s s w o r d () m ethod defined in G e n e r i c U s e r class is invoked in the s e l e c t
clause of the query to generate user’s password. The r a t i n g L i m i t () method is invoked
in the w h e re clause once for each object in the U s e r extent, taking one R a t i n g object
as its input param eter.

O p e ra to rs . Operators are a special category of methods for which an alternative, ab
breviated invocation style is also available: an unary operator is specified in front of the

Chapter 5: The EQL Query Language 90

s e le c t u . l o g i n , u . g e n e r a t e P a s s w o r d ()
fro m U s e r u
w here u . r a t i n g L i m i t (u . r a t i n g R e f . R a t i n g) < 5 ;

Example 5.5: M ethod invocation.

target object, and a binary one between the target object and the param eter. This is il
lustrated in Example 5.6 where the binary operator o p e r a t o r t is defined for the built-in
type s t r i n g with the effect of string concatenation. An extent of U s e r objects is first
selected in the f ro m clause of the query, and then for each object in th a t extent an o p e r

a t o r is invoked on its nam e attribute. The l o g i n attribu te is used as a param eter of
the o p e r a t o r + method. All invocation rules defined for methods also apply to operators
as they are simply a special category of methods.

s e le c t u .n a m e + u . l o g i n
fro m U s e r u

Example 5.6: Operator invocation.

C lass m e th o d s . Class (static) methods differ from regular methods as they are not
applied to single object instances, but to a class extent as a whole. Thus, class methods
are commonly used for calculating aggregate values from a set of input objects. This is
further explained in §5.4.1. Class methods must be specified in the s e l e c t clause of
the query as they require different invocation semantics to other operations. While non
static operations are individually invoked for each object in the fro m clause extent, class
methods are invoked only once for an object extent as a whole. This is illustrated in
Example 5 .7 where class m ethod m in defined for built-in type d a t e is used in query that
selects minimum duration of all T V S c h e d u le objects. The query processing algorithm
first evaluates the fro m clause of the query where the full T V S c h e d u le object extent is
materialised. This set of objects is then used as an input to class m ethod m in to determine
the minimal duration value. The result is a virtual class containing the minimum duration
object.

s e le c t m i n (s . d u r a t i o n)
fro m T V S c h e d u le s

Example 5.7: Static method invocation.

5.3.5 A liases

Aliases can be defined for expressions, class and attribu te names. Once defined, alias
names can be used anywhere in the projection, source and restriction specification where

Chapter 5: The EQL Query Language 91

the original name or expression is expected. Aliases are defined with the keyword a s which
follows the original name. This keyword is not m andatory and can be omitted. Example

5.8 illustrates the usage of alias p for the class P ro g ram , and alias C ategoryN am e for
path expression in the s e l e c t clause.

s e le c t p . C o n t a i n e d P r o g r a m s . C a t e g o r y . nam e as C ate g o ry N a m e
fro m P ro g ra m as p
w here p .n a m e = " M o rn in g N ew s";

Example 5.8: Name alias.

5 .3 .6 U n d e f in e d V a lu e s

An undefined value is a term that generally denotes any form of incomplete/missing/
uncertain/non-applicable information in the database schema. Database models generally
represent this kind of da ta as a special null value.

Null values originated in the relational database model as a way of representing undefined
states of relational table columns. The main reason for inclusion of undefined values was
the inability of the relational model to represent complex inheritance and association re
lationships between tables. The consequence is th a t properties of conceptually different
modelling entities are often merged into a single relational table, where they can have
undefined states. For example, two tables with the inheritance relationships must be flat
tened to form a single table. W hen data corresponding to the parent table is inserted, the
state of all child table columns is left undefined (null). Null values are fully incorporated
in the SQL-92 standard [MS92], however this extension does not have any theoretical
background and is rather is a technical trick which can be used for different purposes
[SKLU96]. For example, null values in the w h ere clause are always treated as a f a l s e
value, while aggregate functions (avg, sum, max, m in) completely ignore them when per
forming calculations. Since the object-relational model [Sto96] and its SQL: 1999 standard
[GP99] are extensions of the relational model, they fully support the relational syntax and
semantics of null values.

Undefined values are generally not used in object-oriented models and programming lan
guages as they violate strict type checking rules. However, the ODMG model defines an
undefined value type nil. Every attribu te of an ODMG object regardless of its type can be
assigned a nil value, which means it can have an undefined state. Nil values are imported
to ODMG from the OMG CORBA type model [OH98] on which it is based, but the OQL
specification does not expand on this issue. The keyword n i l in OQL is a special “object
literal” denoting an absent object or non-initialised value [SKLU96]. An OQL expression
returns nil if it cannot be evaluated correctly. A function th a t does not return a value
also returns nil. O ther than testing for equality, the ODMG standard does not specify the

Chapter 5: The EQL Query Language 92

semantics of nil values in advanced query facilities such as aggregate functions, grouping,
joins, and method invocations.

The EG TV data model is a pure object-oriented model and as such it rejects the notion
of undefined values in the database schema. Objects in the EGTV model are strongly
typed, thus the introduction of null values would violate the static type checking of class
operations which are an essential feature of the model. However, null value functionality
is substituted with the concept of default values [DD92, Ges91] in object constructors.
Thus, constructor param eters not specified when object is created, are substituted with
their default values defined in the body of constructor method.

The EQL language defines a special nil type for describing unassigned relationships. The
EQL nil type, contrary to OQL, does not represent an undefined value, nor can it be
assigned to an attribu te of an object. Its role is limited solely to denoting if the relationship
points to an object (or a set of objects), or if it is unassigned. The nil type is supported
in the EQL language with the n i l keyword. This can be used in the query language to
decouple a relationship, or to test if the relationship points to an object.

5.4 Query Language Operators

All operators of the EQL query language can be classified into two categories: type oper
ators and language operators. Type operators are individually defined for each built-in or
user-defined type, while language operators are type independent and defined within the
query language.

5 .4 .1 T y p e O p e r a to r s

Type operators defined in EQL are applied to objects or collections of objects in the
EGTV model. Unlike other query languages, EQL type operators are not hard-wired to
the query language, bu t associated with types. Each EQL operator invokes the appropriate
operator defined within the type. Thus, our query language is unique, as its operators
can be individually specified for each database type. EQL type operators are classified as
comparison (=, <, >, <=, => ,!= , i d e n t i c a l) , arithmetic (*, / , +, -) , logic (and, o r ,
n o t) , assignment (:=) , and aggregate (max, m in, avg , sum, c o u n t) .

Each EQL type operator is supported for built-in types, where the behaviour of built-
in types is part of the model itself and cannot be changed. Operators in user-defined
classes are defined by the class designer, where for some operations, the default behaviour
is provided. This default behaviour can be redefined by modifying operator’s definition.
Operator redefinition is a feature of the EQL language tha t is not present in OQL. Each
redefined operator is represented as a m ethod in the user-defined class. For example, the
EQL equality operator = is defined in the class P ro g ra m as a m ethod o p e r a t o r s This is

Chapter 5: The EQL Query Language 93

illustrated in figure 5.2. Thus, when two P ro g ra m objects in an EQL query are compared
for equality, the corresponding o p e r a t o r = method is invoked. The EGTV metamodel is
used for mapping between class methods and EQL type operators. Operator redefinition
enables us to define custom operators for each user-defined class independently of query
language. This feature is beneficial for multimedia databases, where special behaviour
must be defined for operations on the large multimedia objects. For example, the equality
operator = can be redefined to support comparison of different video recordings based on
their content, and not the file size.

W ith all of the operators described in this section, the result is always a virtual class where
each object in the v irtual class extent will have a newly generated identifier and comprise
one or more properties. The complete classification of all EQL type operators is provided
in Appendix D.

C o m p a riso n O p e ra to rs . This category includes operators for testing equality of ob
jects. All comparison operators are binary, they receive two objects as input and return
a virtual b o o le a n object (t r u e or f a l s e) generated as a result value. The default
behaviour of the equality operator is to compare all object properties for equality. By de
fault, two objects are equal if all their properties are equal by value. This can be changed
by redefining the o p e r a t o r = m ethod of the class, and specifying the new behaviour. The
i d e n t i c a l operator is stricter than the equality one as it tests if two objects have the
same object identifiers. The i d e n t i c a l operator cannot be overloaded.

A r i th m e tic O p e ra to rs . Arithmetic operators are binary, they receive two objects as
input and generate a v irtual object containing the result value. They are defined for some
system types, but the custom behaviour can be specified for each user-defined class using
operator redefinition.

Logic O p e ra to rs . All logic operators are defined as binary except the logical negation
which is an unary operation. All operators receive objects of b o o le a n (t r u e or f a l s e)
type as input and retu rn a virtual object of the same type.

A ss ig n m en t O p e ra to r . The assignment operator := takes the form of IRef := rRef and
is defined to assign the value of the right-hand side object to the value of the left-hand
side object. The assignment operator plays an im portant role in update queries and it is
further described in §5.4.2.

A g g re g a te O p e ra to rs . Aggregate operators are applied to collections of objects, but
their result is always a single virtual object. This result object can be based on an existing
database object or a it can be a newly generated virtual object containing the aggregate

Chapter 5: The EQL Query Language 9 4

value. The max and m in aggregate operators return an existing object, so their result
set is updatable. The other aggregate operators generate a new virtual object as their
result, which is not updatable. Aggregate operators are defined for all system types, but
each user-defined class must explicitly define aggregate operators which could be applied
to objects of th a t class. This is achieved by specifying one class (static) method for each
aggregate operator in the definition of the class. The query in Example 5.9 can only be
executed if the max aggregate operator is defined for the P ro g ra m class.

s e le c t m a x (U s e r . r e c o r d i n g s .P r o g r a m)
fro m U s e r
w here U s e r .n a m e = J o h n ;

Example 5.9: Aggregate operator.

User-defined classes can have custom aggregate operators. These operators are also spec
ified as class methods and can be applied only to objects of those classes for which they
have been defined. For example the l e n g t h operator can be defined for class P ro g ram
to return the the to tal length in seconds of all recordings in the result set of P ro g ram
objects as it is illustrated in the Example 5.10.

s e le c t l e n g t h (U s e r . r e c o r d i n g s . P ro g ra m)
fro m U s e r
w here U s e r .n a m e = " J o h n " ;

Example 5.10: Custom aggregate operator.

5 .4 .2 L a n g u a g e O p e r a to r s

Language operators are type independent, and can thus be applied to any EGTV object
regardless of its type. These operators are not defined as behaviour of types, but a t the
more general level of the query language itself. Language operators are required as they
provide high level operations of the query language not relevant for individual types, but
im portant for expressiveness of EQL. This category of operators include set operators,
path navigation, property and navigational joins, and update operators.

S e t o p e ra to rs

Set operators defined in EQL are u n io n , u n i o n a l l , i n t e r s e c t i o n , d i f f e r e n c e ,
i n s e t , d i s t i n c t . They allow set-like m anipulation on collections of objects. Set op
erators are defined at the level of the EQL query language and not as the behaviour of
built-in types and user-defined classes. This is because set operators are only ever applied
to dynamically created virtual classes (resulting from two subqueries) which do not have
any behaviour defined or included from input classes. This is illustrated in Example 5.11

Chapter 5: The EQL Query Language 95

where name and l o g i n attributes are selected for those people th a t are both administra
tors and users. The i n t e r s e c t i o n set operator is applied to virtual classes that result
from two subqueries. Since these virtual classes are dynamically created, they contain
state only, and do not define any behaviour to which the set operator can be mapped.

s e le c t nam e, l o g i n
fro m U s e r
i n t e r s e c t i o n
s e le c t nam e, l o g i n
fro m A d m i n i s t r a t o r ;

Example 5.11: Set operator.

All set operators except the operator i n s e t generate a set of objects as a result of its
evaluation. The i n s e t operation takes as an input a set and a single object, returning
a virtual b o o le a n object with value t r u e (encapsulated as a singleton object) if the
object is contained within the set. All set operations are based on object value comparison,
and not on the comparison of object references which are unique in the system. When
duplicate elements are removed from the set, the language does not guarantee which of
the duplicate objects are removed. This is because duplicate objects are equal by value
and not by reference.

P a th N a v ig a tio n

P a th navigation in the EQL language allow traversing through object graphs. The syntax,
similar to path navigation in OQL, uses the operator (dot) for traversing between
interrelated objects in the database schema. The expression o l . o 2 where o l and o 2 are
class names, evaluates to the set of o 2 objects pointed from one instance of the object o l .
The path navigation can be used in the projection, source and restriction specifications as
long as all class names in the navigation path except the last one evaluate to the single
objects. Different examples of the navigation are illustrated in Examples 5.12, 5.13, 5.14.

s e le c t P r o g r a m . r a t e d l n . R a t i n g . n a m e
fro m P ro g ra m
w here nam e = " M o rn in g N ew s";

Example 5.12: P a th navigation in projection specification.

s e le c t name
fro m U s e r
w here U s e r . a l l o w a n c e s . R a t i n g . nam e = " A l l " ;

Example 5.13: Path navigation in condition predicate.

Chapter 5: The EQL Query Language 96

s e le c t p . nam e
fro m (s e le c t C a te g o r y

fro m C a te g o r y
w here nam e = "N ew s") . C o n t a i n e d P r o g r a m s . P ro g ra m p ;

Example 5.14: Nested query path navigation.

The query in Example 5.12 identifies one P ro g ra m object and uses path navigation in
the projection specification to traverse to the R a t i n g object and display its name. Each
P ro g ra m object has a relationship to exactly one R a t i n g object. Example 5.13 illustrates
the syntax for path navigation in the restriction specification, while Example 5.14 provides
path navigation in the source specification. The nested query expression in Example 5.14
was used to retrieve one C a te g o r y object to which the path navigation is then applied.
This results in a set of P ro g ra m objects from which the name attribute is selected.

Path navigation through n - 1 and n-m relationships is ambiguous as the left-hand side of
the relationship is not a single object, bu t an object collection. Thus, there is no single
way of traversing between objects as multiple paths exist. The only unambiguous way of
traversing such a relationship is by using iterators to transform n - 1 and n-m relationships
into multiple 1 - 1 relationships, which are easily navigable. OQL resolves this problem by
using implicit iterator syntax in the f ro m clause of the query as illustrated in Example

5.15. Here, for each P ro g ra m object related U s e r objects are retrieved and their names
selected. However, this approach has several flaws. Implicit iterator definition cannot be
formalised in the query algebra [Sub96], thus query optimisation is difficult. Furthermore,
ambiguities can arise in the processing of nested queries where nested query aliases can
be mistaken for implicit iterator syntax. These inconsistencies can severely limit the
orthogonality of the query language, so we have chosen not to follow this OQL syntax.
Instead we introduced a new navigational jo in operator which has a direct algebra mapping
and resolves implicit naming ambiguities. We discuss navigational join operator later in
this section.

s e le c t p .n a m e as uNam e, P ro g ra m .n a m e as pName
fro m P r o g r a m . r e c o r d i n g s p , p . U s e r ;

Example 5.15: OQL implicit iterator syntax.

Jo in s

EQL defines two join operators: property join, and navigational join.

P r o p e r ty J o in defines the standard inner join operator. This is illustrated in Exam

ple 5 .16 where classes U s e r and A d m i n i s t r a t o r are joined to create a virtual class
containing only those persons th a t belong to both Administrators and Users.

Chapter 5: The EQL Query Language 9 7

s e le c t u .n a m e , u . l o g i n , a . l o g i n
fro m U s e r u j o in A d m i n i s t r a t o r a on u . n a m e = a . nam e;

Example 5.16: Property join.

A join is specified with the keyword j o i n in the source specification of the EQL query,
while the joining predicate is defined with the keyword on. It is important to note that
equality in the join condition is tested using type operators. In Example 5.16, User and
Adm inistrator name properties are strings, so they are compared for equality using the
o p e r a to r = defined in the built-in type s t r i n g .

N a v ig a tio n a l J o in creates a join-like result th a t spans two interconnected classes using
path navigation. This operator is not defined in OQL, but is found in other object-oriented
query languages [SBMS94]. The result set produced by the navigational join is a set of
pairs containing the s tart and the end points of the navigation path. EQL introduces
a new operator c o n n e c t which denotes the navigational join operation. For example,
consider the query where a list of programs marked for recording should be retrieved for
each user. This query uses a navigational join to connect instances of U s e r and P ro g ra m
classes (m-n relationship) as is illustrated in Example 5.17.

s e le c t U s e r .n a m e as uN am e, P ro g ra m .n a m e as pName
fro m P ro g ra m c o n n e c t U s e r on U s e r . r e c o r d i n g s ;

Example 5.17: Navigational join.

The result set for the query in Example 5.17 contains a set of objects consisting of user
name and program name attributes. The keyword on specifies the name of the relationship
th a t interconnects two joined classes. This keyword is optional and can be omitted if no
more than one relationship is defined between joined classes. Multiple c o n n e c t operators
can be cascaded in the source specification to provide navigational joining of two or more
classes.

U p d a te O p e ra to rs

OQL does not support create, update or delete operations on database objects. These
operations can only be performed through user-defined methods. This provides a limited
update functionality and as the operation invocation semantics is vaguely defined and the
effect of such an operation invoked within a query remains unclear. The EQL language
extends OQL with support for update operations. EQL defines only projection, source and
optional restriction specification, with no special language elements provided for updates.
This maintains a syntax th a t is both simple and consistent.

Chapter 5: The EQL Query Language 98

C re a te . New objects are created by invoking an object constructor in the projection
specification. This is illustrated in Example 5.18 where a new object of the class U s e r is
created by invoking a constructor m ethod in the s e l e c t clause.

s e le c t U s e r ("T om ", " to m h " , " to m 5 4 " , n i l , n i l , r a t i n g R e f)
fro m U s e r , R a t i n g a s r a t i n g R e f
w here R a t in g .n a m e = " a l l " ;

Example 5.18: Create.

Param eters of the constructor are provided in the order specified in the Schema Repository
definition of the constructor method. The last three parameters in the U s e r constructor
are references to objects of P ro g ra m , S u b s c r i p t i o n , and R a t i n g classes. In Example

5.18, the P ro g ra m and S u b s c r i p t i o n references are initialised to n i l , while the R a t
i n g reference is set to the value selected from the query. The effect of this query is that
an EGTV object is materialised, and the corresponding persistent object in the Storage
Layer (see figure 5.1) is created. The query returns a virtual class containing a newly
materialised object.

D e le te . Objects are deleted from the schema by invoking their destructor method. De
structors are provided for all built-in types and default destructor behaviour is applied
to each user-defined class which does not have an explicitly defined destructor method.
Delete is represented in the EQL syntax by assigning n i l to the object as illustrated in
Example 5.19. This invokes a destructor on the object and releases the reference. This has
the effect of deleting the physical object through the EGTV interface. The delete query
returns a n i l for each successfully deleted object as a result of its execution.

s e le c t U s e r := n i l
fro m U s e r
w here nam e = "Tom ";

Example 5.19: Delete.

U p d a te . Updates in EQL are specified using assignment operator ’ : to assign new
values to the properties of the selected object or to the object itself. These modifications
are then propagated to persistent objects in the database. The behaviour of the assignment
operator is defined for each system type and default behaviour can be applied to any user-
defined class. The default behaviour of the assignment operator for user-defined classes
is to copy each attribu te of the r-value object to the corresponding attribute of the 1-
value object. References defined in the r-value object are assigned to the corresponding
reference properties of the l-value object and no new instances of the referenced objects
are created. This is a shallow copy, although this default behaviour can be changed in

Chapter 5: The EQL Query Language 99

each user-defined class by overloading the assignment operator and specifying the new
behaviour. To maintain orthogonality, the result returned by the query is a virtual class
containing updated objects. This result set can be used as an input to the other queries or
to the parent subquery in the nested query. The database can also be updated by methods
invoked in the EQL query, thus producing possible side effects discussed in [KR03].

The query in Example 5.20 illustrates an update of l o g i n and p a s sw o rd attributes for
one object of the class U se r. The new values are provided in the query itself. Example

5.21 illustrates an update of the same two attributes, but this time from the result set
of a subquery, while in Example 5.22 the TV schedule with the maximum duration is
first selected and then its duration is increased by 10. Example 5.23 demonstrates how
d u r a t i o n properties, updated in the subquery of the nested query, are used as the input
for an aggregate function sum in the parent query.

s e le c t l o g i n := " to m g " , p a s s w o r d := " to m 3 4 "
fro m U s e r
w e re nam e = "Tom ";

Example 5.20: Simple direct update.

(s e le c t l o g i n , p a s s w o r d
fro m U s e r
w here nam e = "Tom ") := s e le c t l o g i n , p a s s w o r d

fro m U s e r
w here nam e = " J o h n " ;

Example 5.21: Update from subquery result set.

s e le c t m a x (d u r a t i o n) := m a x (d u r a t i o n) + 10
fro m T V S c h e d u le ;

Example 5.22: Update of a m ethod result set.

s e le c t sum (D a y S c h e d u le . d u r a t i o n)
fro m (s e le c t d u r a t i o n := d u r a t i o n + 10

fro m T V S c h e d u le
w here b r o a d c a s t D a t e = " 1 4 /1 1 /2 0 0 2 ") a s D a y S c h e d u le ;

Example 5.23: Update within the subquery.

5.5 EQL Algebra

The query algebra is a theoretical language th a t can formally and unambiguously define
queries on a database. The algebra itself is defined as a set of atomic operations th a t

Chapter 5: The EQL Query Language 100

manipulate input collections of da ta to construct results. Both input operands and results
are the same data structures, so the output from one operation can subsequently form
the input to other operations. This property is called closure: data representations are
closed under the algebra. Thus, queries in a high-level language are transformed into a
sequence of unambiguous algebraic operations tha t can be easily executed by the query
processor. For every syntactically correct query written in a query language, there is
an equivalent algebraic expression as intermediate form, describing how to carry out the
computation. This intermediate form is then input to a query processor. Furthermore,
algebraic representation is suitable for query optimisation. A query, once translated into
an algebra expression, can in many cases be transformed into an equivalent expression
tha t can be evaluated much more efficiently.

Relational algebra [CBS96] is based upon the formal relational model th a t is highly stan
dardised and used in all relational databases. The mathematical simplicity of the relational
model allows a clean and formally consistent definition of algebraic operators and the data
structures they manipulate. Inputs and outputs to all algebraic operators are relations
(set of tuples), and all transformations in the algebra are based upon relations. However,
this algebra cannot support complex data structures and lacks some advanced modelling
concepts such as relationships, nested relations, and identifiability. These types of ad
vanced modelling concepts are incompatible with the relational model, and thus cannot
be represented in the relational algebra.

Object-relational databases extend the relational data model and SQL language with user-
defined types, OIDs, and type methods. In addition to simple atomic types, attributes
in an O-R relation may have complex structures such as references, nested tuples and
collection values. However, the SQL:1999 standard [GP99] does not discuss the alge
braic representation of these extensions. Thus, the object-relational algebra has not been
formally standardised, although many independent implementations exist [LL098], O-R
algebras extend the existing relational algebra with operators for nesting.and unnesting
non-normalised relations, and with the path navigation. However, these algebras gener
ally ignore object identity and trea t inputs and outputs to algebraic operations as complex
(nested) relations [LL098].

The main distinction between object-oriented algebras and their object-relational coun
terparts is in the type of data structures they manipulate. Inputs and outputs to object-
oriented algebraic operators are uniquely identifiable objects and collections of these ob
jects. This is different to relational and O-R algebras where algebraic operations ma
nipulate literal data structures only. The AQUA object-oriented algebra [LMS+ 93] is an
example of such an algebra. It provides a large set of algebraic operators capable of sup
porting multiple object-oriented query languages. However, the query language mapping
is complex and algebraic operators are not fully orthogonal as they must be defined for
both objects and literals (immutable objects) th a t exist in some 0-0 query languages.
The ODMG standard [CB99] defines the OQL query language, but does not discuss its

Chapter 5: The EQL Query Language 101

algebraic representation. Recently, an independent algebra for OQL has been proposed
[Zam02], This algebra specifies a set of algebraic operators th a t operate on both records
(literals) and objects. Although the algebra can support OQL queries by defining a min
imal set of algebraic operators, it is not orthogonal as inputs and outputs to algebraic
operators are both objects with identity and records with 110 identity.

The EQL algebra presented in this chapter defines a minimal set of operators required
for algebraic representation of EQL queries. It represents the execution model for EQL
language and is supported with formal EQL to algebraic mappings. Algebraic operators
are type independent high level operations specific to the query language itself, and not to
individual types. Furthermore, inputs and outputs of all EQL algebraic operators are fully
orthogonal and represented in the form of EGTV classes. This ensures tha,t our algebra
remains compact and enables the simple translation to an equivalent query processing
algorithms. This section discusses theoretical definitions of the EQL algebra, while its
implementation and role in the query processing is explained in the next chapter.

5 .5 .1 A lg e b ra ic O p e r a to r s

The EQL algebra is defined as a set of high level operators for m anipulating EGTV classes.
Algebraic operators have the same input and output as queries, so each EQL query can
be easily transformed to an algebraic representation. This is illustrated in Definition 5.5.

An EQL query takes as input a set of classes and a query expression (EQL query string),
while the result is a new virtual class. EQL queries can be transformed to a sequence of
algebraic operators, where the result of one operator is an input to other operators. Each
operator takes as input one or two classes, and an expression to be applied to them. EQL
algebraic operators can be binary or unary, while the expression is an optional argument.
The operator’s result is always a single virtual class, and is consistent with closure rules
defined for relational algebraic operators [EN94] and orthogonality of the EQL language.

D e fin itio n 5.5

egtvClass *— E Q L Q u e r y ({eg tvC la ss}1"*, queryExpression)

egtvClass +— a l g e b r a i c O p e r a t o r ({eg tvC la ss}1 '2, {expression}0"1)

queryExpression ::= E Q L Query String

expression booleanPredicate \ propertyList \ pathExpression

| renameExpression

All algebraic operators are classified into two categories: general and set operators. Gen
eral operators are: projection, filter, cartesian product, path, navigational join, property

join, and rename. Set operators define mathematical set operations on sets of EGTV
objects and include union, unionall, intersection, difference, and distinct. All other EQL
operators (comparison, logic, arithmetic, aggregate, and assignment) are not part of the
algebra, since they are defined as behaviour of built-in types and user-defined classes.

Chapter 5: The EQL Query Language 102

Operators and methods defined in types can be accessed and invoked from within EQL al
gebra. EQL algebraic operators are not type dependant and can be applied to any EGTV
type.

5.5.2 General Operators

This group of operators comprise the core of the EQL algebra and facilitate the high level
operations of the query language. Operators can manipulate class m etadata, objects or
both.

The description of each operator is clearly separated into m etadata and a da ta related set
of actions. This separation is im portant for the evaluation of EQL views where the process
of view m etadata construction is independent of any subsequent view materialisations.

F i l te r (<f>)

Filter is a unary operator th a t filters unwanted objects from the source class Ci using
the boolean predicate expression commonly specified in the w h ere clause of the EQL
query. This is formally represented in Definition 5.6. The boolean predicate expression is
any sequence of methods and properties th a t return result of type b o o le a n . A boolean
predicate is usually constructed by applying EQL logic operators (and , o r , n o t) to class
properties and results of m ethod invocations.

D e fin itio n 5.6 jr.. P i n) < 4* booleanPredicate C\ (p 1 / • ■ P in)

M e ta d a ta p ro cess in g . A new virtual class C2 is generated to represent the structure
of the result. This class contains an identical set of properties (p n . .p in) to the source
class Ci. This is because the filter operator does not modify the m etadata of the source
class, but manipulates only the object extent.

D a ta p ro cess in g . The source ex ten t of objects belonging to class Ci is filtered according

to th e b o o l e a n P r e d i c a t e condition to generate a new object extent of class C2- The
b o o l e a n P r e d i c a t e is applied to every object in the source class Ci, and only those

objects of Ci for which the b o o l e a n P r e d i c a t e evaluates to t r u e are included in the
result class C2.

P ro je c t io n (7r)

Projection is used to project properties into a new class: its input is a class and an
expression in the form of a property list. The property list corresponds to the s e l e c t
clause of the EQL query and defines attributes of the result class. Each property in the

Chapter 5: The EQL Query Language 103

property list can be a constant specified in the query definition, class attribute, method
invocation, or a path navigation. This is illustrated in Definition 5.7. Methods and
type operators can be cascaded to form complex expressions where the output of the one
operation is used as the input to other operations.

D e fin itio n 5 .7

Cs(P21•• P2m) * 7T property List C\ (p 11.. P ln)
propertyList : := { constant \ attribute \ operator \ method \ pathNavigation }■*”*

M e ta d a ta p ro cess in g . The expression specified in the form of a property list is evalu
ated, and a virtual class C2 representing the result type is constructed. A ttributes of this
virtual class m atch properties specified in the property list. Each property in the list is an
expression which defines how a corresponding attribu te of the result class C 2 is generated
from the source class C i . Thus, each expression in the the property list is resolved to an
attribu te of class C 2 . For example, a m ethod expression is evaluated and its result type is
represented as an a ttribu te of the class C 2 .

D a ta p ro ce ss in g . The result of this processing stage is as an object extent of the virtual
class C 2 . The transform ation rules defined in the property list are applied to objects of
the class Ci to generate the corresponding objects of the class C2- In this case, for each
object in the class extent Ci, one object in the class extent C2 is generated.

C a r te s ia n P r o d u c t (x)

This is a binary operator which generates a cartesian product of two source classes. The
cartesian product operator is never used directly and is required only for construction of
more complex join operators. It does not require any parameters (predicate expression)
as its processing is straightforward. The formal definition is presented in Definition 5.8.

D e fin itio n 5.8 C3(p u . . p ln, p 2i .. P2m) * - C1(pn .. Pin) x C2(p s i■■ P2m)

M e ta d a ta p ro cess in g . The source classes C i and C2 contain two object extents and
corresponding m etadata definitions. The m etadata definition of the result class C 3 contains
all attributes of both C i and C 2 classes.

D a ta p ro cess in g . The object extent of class C 3 is created to contain all combinations
of Ci and C2 object pairs. Each object in the object extent Ci is paired with all objects
from the C 2 extent to generate the cartesian product of two object sets.

Chapter 5: The EQL Query Language 104

P a th (b)

The path operator takes as an input one class and a path expression. For each object in
the source class extent, a path expression is evaluated to an object or to a set of objects
located one nesting level below. These objects comprise the extent of the result class and
are directly referenced by the source class objects. For example, the path expression C . p
applied to object of class C returns a set of p objects. This is illustrated in Definition 5.9.

D e fin itio n 5.9 C z (p 2 1 ■■ P 2 m) < \~pathExpression C \ (p n . . Pin)
pathExpression := className

M e ta d a ta p ro ce ss in g . A path expression is applied to class Ci to retrieve the m etadata
of the referenced class C2 from the Schema Repository.

D a ta p ro cess in g .

1. For each object in the class C* object extent, a set of referenced objects is retrieved,
These objects belong to the virtual class C2.

2. The result set is generated by combining all partial results retrieved in the previous
processing step to construct the object extent of the class C2.

P r o p e r ty jo in (cxi)

Property join is a binary operator which takes two classes as input and an expression
defining the joining criteria. Result is a new virtual class containing all properties of both
source classes. This is effectively an inner join operator applied to EGTV classes. The
operator is presented formally in Definition 5.10.

D e fin itio n 5.10

C ^ (p i l . . P i n ; P 2 1 " P 2 m) C \ (p 11 • • P in) ^booleanPredicate C 2 (P21 • • P 2 m)

f t boolean Predicate (C l (p i 1 .. P in) X C 2 (p21 • • P 2 m))

The operator can be formally expressed as the cartesian product of classes Ci and C2 to
which is the filter operator then applied with the b o o l e a n P r e d i c a t e condition.

M e ta d a ta p ro cess in g . A new virtual class C3 representing the join is constructed. This
class contains all the properties of both source classes Ci and C2.

Chapter 5: The EQL Query Language 105

D a ta p ro cessin g .

1. The object extent of the virtual class C3, constructed during the m etadata processing
stage is created as the cartesian product of both source extents.

2. The filter operator is applied to the object extent C 3 to remove unwanted objects.
A b o o l e a n P r e d i c a t e evaluates each object in the extent.

3. The result is returned as a virtual class C 3 . All objects in the C 3 object extent must
satisfy the predicate condition.

N a v ig a tio n a l jo in (x)

This algebraic operator maps directly to the c o n n e c t operation in EQL. It is a binary
operator th a t takes two classes as input and creates a join-like result based on the re
lationship defined between them. The joining condition is specified as the name of the
relationship as is illustrated in Definition 5.11.

D e fin itio n 5.11

C s(pn.. Pint P2 1 PS m) * C\ (p 1 i • ■ Pin) ^ pathExpression C2 (p21 • • P2m) ^
$ BpathExpression (C \ (p n . . P in) X C a (p g i. . P 2 m))

The navigational join operator can be formally represented as the cartesian product of the
classes C] and C2, to which the filter operator is then applied to remove all objects not
satisfying the p a t h E x p r e s s i o n condition.

M e ta d a ta p ro cess in g . The result virtual class C 3 is constructed to contain all proper
ties from both joined classes (Ci and C2) except the relationship on which the navigational
join is performed. Since all relationships in the EGTV model are bidirectional, this rela
tionship is excluded from both source classes.

D a ta p ro cess in g .

1. For each object in the extent C i , related objects in the extent C2 are retrieved. A
new set of object pairs (first set object, second set object) is created as the partial
result.

2. The final result is generated as a union of all partial results. All objects of the result
extent are instantiated from the virtual class C 3 .

Chapter 5: The EQL Query Language 106

R e n a m e (R)

Rename is a unary operator th a t can change class name or names of its properties. Rename
can be formally represented as the special case of the projection operator, where all prop
erties are projected to the equivalent but, only with different names. This is illustrated in
Definition 5.12.

D efin itio n 5.12

Cg(pu-. Pin) * RrenameExpression C (pj].. Pin) ^ ^ property List C \(pn-. Pin)
renameExpression : = { (olcLname, neu)-name) } 1"*

name := olcLname \ new..name

property list { nam e } 1"*

M e ta d a ta p ro ce ss in g . A new virtual class C2 is generated to contain all properties of
the source class Ci, and only the names specified in the expression are changed to new
values.

D a ta p ro cess in g . The full extent of the class Ci is projected to the newly generated
virtual class C2-

5.5.3 Set O perators

Set operators in EG TV algebra include: union, unionall, intersection , difference and dis

tinct. Set operators are the only type operators of the EQL query language explicitly
defined in the algebra, and not as the behaviour of the built-in types and user-defined
classes. This is because the query processor applies set operators only to dynamically
created virtual classes (resulting from two subqueries) which do not have any behaviour
defined or included from source classes. For this reason, set operators must be supported
at the EQL algebra level as global operators. All other operators of the EQL language
are always m apped to the existing behaviour in the built-in types, user-defined classes
or views. The semantics of each operator is straightforward and described earlier in this
chapter.

U n io n a ll (til)

Unionall is binary operator th a t takes two classes as input and merges their object extents
to produce the virtual class result. Duplicate objects are not eliminated in this process.
Both source classes must have the same number of properties, and property types must
match. This is illustrated in Definition 5.13.

D e fin itio n 5.13 C3 (pn .. p ln) <- C i(p n .. p i n) W Cs (p2i ■■ P2J
typeO f(pu) = typeOf(p2i)

Chapter 5: The EQL Query Language 107

M e ta d a ta p ro cess in g . T he new v irtu a l class C 3 is constructed in the E G T V m etam odel

representation to contain the identical set of a ttrib u te s as source classes Ci and C2.

D a ta p ro cess in g . An object extent of th e result class C3 is created by m erging object

extents of Ci and C2 classes..

In te rs e c tio n (fl)

This is a b inary operato r th a t provides intersection of two object sets. T he result is a

new v irtu a l class w ith only those objects th a t are equal in b o th source classes. This is

illustra ted in D e fin itio n 5.14■ Since all objects in th e E G T V model have d istinct object

identifiers, object equality is value based. If all a ttrib u tes of two source objects are equal

by value, th en these objects are equal. E quality is tested using the equals (=) operator

defined for each a ttr ib u te type. All bu ilt-in types in the E G T V model have the equality

operator. A default equality operato r is generated for each user-defined class, b u t it can
be redefined by a class designer.

D e fin itio n 5.14 C3(pn .. pln) * - Ci(pn .. pln) n Cs(p2i.. P s J

ty p e O f(p u) = typeO f(psi) A p u = Pm

M e ta d a ta p ro cess in g . V irtual class C 3 is constructed to contain result objects. Its
m etad a ta s tructu re is identical to the s tructu re of source classes Ci and C2.

D a ta p ro cess in g . T he object extent of the result class C3 contains only those objects

of Ci extent for which equal objects exist in the object extent of a class C2. T he equality
is tested using th e equals (=) operators of class properties.

D ifference (\)

T his operator im plem ents set difference of two source classes. B oth classes m ust have the
sam e num ber of a ttrib u tes , and a ttr ib u te types m ust m atch. T his operator is illustrated
in D efin itio n 5.15.

D e fin itio n 5.15 C3 (p u . . p ln) <- C1(p11.. p ln) \ Cs (psi-- P2n)

typeOf(pu) = typeOf(psi) A pu^ p2l

M e ta d a ta p ro cess in g . This processing stage constructs a m etad a ta representation of

th e result class C3 . I t defines th e identical set of a ttrib u tes as source classes Ci and C2-

Chapter 5: The EQL Query Language 108

D a ta p ro cessin g . T h e result is generated as an object ex ten t of class C3. I t contains

only those objects of class Ci ex ten t th a t are not present in the C2 extent. This is evaluated

by testing objects for equality. Two objects are equal only if all their properties are equal.

D is tin c t (©)

T he role of th e d istinct operator is to elim inate duplicate objects from th e source class.
This is an unary operator and its result is a new v irtu a l class w ith no duplicate objects in

its extent. This is illu stra ted in Definition 5.16.

D efin itio n 5.16 C2 (p n .. p i n) < - © C1 (p 11.. p ln)

M e ta d a ta p ro cess in g . A v irtu a l class C2 w ith an identical s tructu re to th e source class
Ci is created in the E G T V schem a repository.

D a ta p ro cess in g . T h e object ex ten t of result class C2 is created to contain only unique

objects, and discard all duplicates from th e source class Ci- Uniqueness is defined based

on the object equality, where two objects are equal if all their a ttrib u tes are equal. T his is

a default equality which can be redefined for each user-defined class. W hen two or more

objects are duplicated in th e source class Ci, the d istinct operator does not guarantee

which objects are discarded and which are moved to th e result class C2. This is because

object equality is determ ined by value and not by identity. Thus, duplicate objects are

indistinguishable.

U n io n (U)

T his operator perform s an union operation on two object extents. It differs from the

unionall operator as it elim inates duplicate objects from the result v irtual class. Thus, this

operator can be form ally represented as a com position of unionall and distinct operators
as illustra ted in Definition 5.17.

D efin itio n 5.17

C3 (p u ■■ Pin) C i (p n .. p ln) U C s(ps i . . p 2n) ^ © (C l (p u - . p ln) W C2(pZl •• PSn))

typeO f(pu) = ty p e 0 f (p 2i)

M e ta d a ta p ro cess in g . A result v irtu a l class C3 is created in th e E G T V m etam odel

represen ta tion to contain an identical set of a ttrib u tes as source classes Ci and C2 .

D a ta p ro cessin g . O bjec t extents of two source classes Ci and C2 are merged, and then

th e d istinct operator is applied to filter out duplicate objects. T he result is generated as

an object extent of the v ir tu a l class C3 .

Chapter 5: The EQL Query Language 109

5.5.4 M apping O perators

The operator set defined in the EQL algebra can be used to formally represent any EQL
query. Algebraic operators are directly mapped to algorithms in the query execution
tree, where each algorithm defines one stage of the query processing. However, since the
EGTV model is a canonical model and effectively a wrapper for persistent objects stored
elsewhere, two additional operators have been defined. Their role is to provide on-demand
m aterialisation of EGTV object extents and behaviour invocation. These operators are
referred to as mapping operators, they are not part of the formal algebra and are defined
only as algorithms in the query execution tree. These two operators are e x t e n t , and
e v a l .

e x te n t

e x t e n t is an unary operator whose role is to materialise EG TV objects and retrieve their
m etadata. This is then used as input to other operators in the query execution tree. The
e x t e n t operator is always invoked at the s tart of query processing as it facilitates direct
interaction with the EG TV model and the EG TV Schema Repository.

M e ta d a ta p ro cess in g .

1. Class m etadata is retrieved from the Schema Repository.

2. All superclasses of the retrieved class are then recursively flattened to create a new
virtual class.

3. The result is returned as a virtual class (created in a previous step) containing
properties from the base class and its superclasses.

D a ta p ro cess in g . An object extent belonging to the virtual class constructed in the
m etadata phase is materialised from the database. This extent is then added to the class
created in the m etadata processing.

eval

The role of this operator is to provide an invocation interface for behaviour (methods
and operators) defined in the built-in types and user-defined classes. Thus, this operator
effectively acts as a wrapper for behaviour defined in EG TV model types.

5.6 Conclusions

Chapter 5: The EQL Query Language n o

The EGTV project involves the top-down design of a multimedia based federated database
system. The top-down approach allowed us to choose target database systems and mod
els, but the heterogeneity across the standard for 0 - 0 and 0 -R databases meant that
neither query language met the requirements of a canonical query interface. Also, both
ODMG OQL and SQL: 1999 languages were unable to provide efficient representation and
querying of complex multimedia contents. Thus, we developed a new query language using
conventional syntax but with different semantics for specific query types.

In this chapter we dem onstrated the EQL query language th a t facilitates querying of 0 - 0
and 0 -R schemas'in a database and a platform independent manner. This built on our
earlier work which specified a new metamodel and schema definition language to act as a
wrapper for both database model types. In EQL, we preserved the familiar OQL syntax,
but resolved some of the negative issues associated with OQL and made it orthogonal in
terms of query input and output. EQL also provides a clear semantics for the updatability
of the result set, facilitates primitives for object creation, update and deletion, and includes
operation invocation support. EQL support for multimedia da ta types and ability to define
custom operators are crucial when constructing and querying large multimedia database
federations. Simple updatable views can be defined as stored EQL queries to provide
schema restructuring functionality. This is later used for construction of federated schemas
and updatable global queries. Global queries and views are fully explained in the next
chapter.

The query algebra is a formal language th a t can unambiguously define database queries.
The algebra itself is defined as a set of atomic operators th a t manipulate input sets of data
to construct results. Each syntactically correct query can be represented as a composition
of algebraic operators where the output of one operator forms the input for others. When
inputs and outputs to algebraic operators are object structures, the algebra is considered
as an object algebra.

An object algebra for the EQL language was formally defined in this chapter. The EQL
algebra is fully orthogonal as its inputs and outputs are EG TV classes and thus, identical
to inputs and outputs of the EQL query language. Each EQL query can be easily trans
formed to the algebraic representation. EQL algebraic operators are type independent
and can be applied to to any built-in type and user defined class in the EGTV model. For
each algebraic operator a formal definition has been provided, while its evaluation is dis
cussed separately for da ta and m etadata processing stages. This separation is im portant
for the evaluation of stored queries (views) where the process of virtual class m etadata
construction is independent of any subsequent query materialisations. The main benefit of
specifying a query language algebra is the ability to formalise query evaluation algorithms.
Each EQL algebraic operator can be easily represented as an algorithm in the query ex
ecution tree. Therefore, we are now able to unambiguously represent EQL queries and

Chapter 5: The EQL Query Language 111

define a methodology for their evaluation.

By defining a platform independent query language and an orthogonal object algebra, we
are now in position to interrogate existing multimedia database schemas and populate
them with new data. The next step will be the the specification of query processing
semantics. In the next chapter we discuss an implementation of the EQL query processor
service and introduce an architecture for defining and executing global queries.

I m p l e m e n t a t i o n

Chapter 6

The term interoperability is frequently used in research work into distributed and federated
systems. Federated database systems are generally created from systems which were not
designed to interact with outside processes, and the issue of accessing data is one of the
first problems to face system engineers. This is further emphasised when federating large
multimedia collections as they are commonly represented in proprietary data stores which
are difficult to interface w ith and do not facilitate querying. Therefore, the EGTV project
firstly defined canonical data and metamodels capable of capturing multimedia schemas,
and then m apped them to standard object-oriented and object-relational databases. This
provided a basis upon which our query language and its algebraic representation were
constructed.

The role of a prototype is to explore the hypothesis and to validate research. Thus, it
defines a test environment where experiments are conducted and performance results are
assessed. These are then compared with the initial hypothesis of the thesis to prove the
workability of research and identify areas for future improvements. The prototype system
discussed in this chapter was based upon the new EGTV architecture which assumes that
all databases in the system are available through a single common interface. In order
to provide this level of interoperability, new services for query processing and schema
definition are specified, while transaction control is provided to support write operations.
However, the prototype developed to cover research presented in this thesis forms one
segment of an overall EG TV project implementation. Other prototype systems developed
within the EGTV are outside the scope of this research, but they provide some services used
by our implementation. Specifically, implementation of the EG TV model and behaviour
invocation is defined in [Kam04], and we use it as a basis upon which query and transaction
processing is implemented.

The remainder of this chapter is structured as follows: §6.1 provides an overall deploy
ment architecture for the EG TV federated system; In §6.2 definition of EGTV schemas is
explained, while in §6.3 local and global query processing is discussed; §6.4 describes the

112

Chapter 6: Implementation 113

> O b je c t M a n a g e r

^ C o m p o n e n t nod e

\ v ir tu a l Ì

(M e ta o b je c ts ") ' O b je c ts) B e h a v io u r J

V y

r
base

M e ta o b je c ts ' O b je c ts) B e h a v io u r

J

B e h a v io u r R e p o s ito r y

G lo b a l

Q u e r y S e r v ic e

r v i r tu a l '

(^ M e t a o b j e c t i ^) ^ O b je c ts ') C B e h a v io u r j)

V. ? ^ ----------- J

Virtual
Layer

Canonical
Layer

Database
Layer

Global
Layer

Figure 6.1: EGTV Deployment Architecture.

transaction system developed to support updatable queries; In §6.5 details of experiments
are described, and in §6.6 some conclusions are drawn.

6.1 Deployment Architecture

The EGTV project facilitates the construction of a global schema for integrating different
multimedia data sources into a database federation. It is based on the standard archi
tecture for federated database systems [SL90] with some modifications required for multi-
media data handling. The architecture can support large multimedia libraries integrated
from many inexpensive general purpose databases, where the emphasis is on m etadata
and generic querying. M etadata has a significance as it is required for the construction of
a global schema, while the query language facilitates generic schema interrogation at both
local and global layers of the federation.

The architecture, illustrated in Figure 6.1 consists of four layers, where each layer is defined
in a form of database schema. Schemas are constructed and m anipulated by processors
th a t are located between layers. Our architecture differs from the generic five layer archi
tecture [SL90], in several aspects. Firstly, multimedia data stores at the Database Layer
are restricted to the ODMG object-oriented and object-relational databases. Secondly,
server-side behaviour is an integral part of EGTV objects, and can be invoked from within

Chapter 6: Implementation 114

the query language. Thirdly, th e canonical schema is defined in the form of E G T V m eta

model and E G T V model representations. I t uses one processor (O b je c t M an a g e r) to

in teract w ith the data , m etad a ta and behaviour repositories a t the D atabase Layer. Ob

jects in s tan tia ted from the canonical schema are represented in the p latform independent

EG TV m odel representation [KBR03]. Finally, th e client interface is provided a t bo th

Global and V irtual Layers in a form of E G T V objects, and no E x terna l Layer is used.

• D a ta b a s e L ay e r.
In the EG T V federation, all d a ta is physically stored in either ODM G or object-

relational databases a t th is layer. T his does no t constrain the application dom ain of

th is research as o ther projects (such as [RKBOla]) have shown th a t object w rappers
can be used to represent d a ta in legacy (non object) database system s and multi-

m edia d a ta stores to objects. M e tad a ta is represented in the Schema Repository

segm ent of the database, while behaviour is stored separately in a special Behaviour
Repository.

• C a n o n ica l Layer.
T he Canonical Layer contains b o th d a ta and m etad a ta in a common E G T V repre

sentation. T he canonical m etaschem a is represented in the E G T V m etam odel form at

[RB02], while d a ta objects and behaviour are provided in the E G T V model repre

sentation. This layer is th e en try po in t for database schem a definition and for local

queries. From the user’s perspective, the D atabase Layer is com pletely encapsulated

and accessed through a single com m on interface.

• O b je c t M a n ag e r.
T he O b j e c t M a n a g e r processor m aintains objects a t the Canonical Layer and

in teracts w ith the E G T V Schema Repository. I t uses m etad a ta inform ation to

transform persisten t objects into E G T V base objects, and facilitates CRUD (cre
ate, retrieve, u p d ate and delete) functionality over E G TV objects. This processor is

also responsible for propagating updates on the E G T V objects back to to the local

database and m aintaining tran sac tio n consistency. To im plem ent behaviour requests,
th e O b j e c t M a n a g e r loads behaviour libraries from the Behaviour R epository and

m akes them available to E G T V objects.

• V ir tu a l Layer.
T he V irtual Layer represents results of local queries and view m aterialisations. Thus,

it contains v irtu a l E G T V objects and their m etad a ta definitions. V irtual objects

are constructed from base E G T V objects at the Canonical Layer to which query

processing transform ations are applied. These transform ations correspond to the
EQ L algebraic operators discussed in the previous chapter. V irtual E G T V objects

are also used to represent th a t subset of the Canonical Layer schema to be shared

w ith in o ther databases. Thus, they effectively define an export schema which can be

Chapter 6: Implementation 115

fu rther queried and updated from th e Global Layer. Behaviour a t the V irtual Layer

can only be specified for views (stored queries). V irtual objects generated as results

of ad-hoc queries cannot define new behaviour as their s tructu re is not known in
advance.

• Q u e ry Service.
T he V irtual Layer is m aintained by th e Q u e ry S e r v i c e processor which similar to
th e O b j e c t M a n a g e r , provides a CRUD interface for v irtual E G T V objects. This

processor is responsible for query evaluation and construction of v irtual E G T V ob

jects. V irtual objects generated as query results are fully updatab le and any update

on their properties is directly p ropagated to the E G T V objects at the Canonical
Layer on which th ey are based upon. Furtherm ore, behaviour invocations in vir

tu a l objects are processed through th e behaviour interface a t th e Canonical Layer.

T he Q u e ry S e r v i c e can form v irtu a l objects based on other v irtual objects thus

m aking a recursive loop, in cases where th e source clause of a query is another query.

• G loba l L ayer.
T he Global Layer contains an in tegration of m ultiple V irtual Layer schemas. It

stores global m etad a ta in th e E G T V m etam odel representation and provides an ac

cess point for global queries. V irtual E G T V objects a t this layer are either directly

im ported from different C om ponen t N odes , or generated as results of global queries

and views. O bject interchange between th e Global Layer and com ponent nodes is

facilitated through the CO RBA based object exchange protocol. This interface cre

ates a CO RBA proxy for each im ported v irtual object to support updatab ility across

different database nodes. U pdates on global objects are propagated to their V irtual

Layer counterparts, thus m aintain ing th e overall d a ta consistency. T he CORBA

bridge does not form p art of th is research and is covered in [Kam04],

• G lo b a l Q u e ry P ro c esso r .
T he G lo b a l Q u e ry S e r v i c e facilitates the construction of global schemas and
provides query and transaction interface for global clients. I t defines the same set

of services as the local Q u e ry S e r v i c e , w ith the addition of global transaction

control. T he architecture and im plem entation of th e EG T V transaction system is
discussed later in th is chapter.

6.2 Schema Definition

T he E G T V schema definition process creates a Canonical Layer database and defines

m e tad a ta in th e E G T V Sch em a R epository . Thus, d a ta and m etad a ta are represented

in a canonical form at th a t can be queried and updated from any E G T V application.

D epending on th e existence of local d a ta , each canonical database can be defined in either

a bo ttom -up or top-dow n approach. T he bottom -up schema definition transform s existing

Chapter 6: Implementation 116

Figure 6.2: Schem a G eneration Process.

database schemas to th e canonical E G T V representation, while th e top-dow n approach

creates new schemas a t b o th Canonical and Local layers.

• B o tto m -u p sch em a d e fin itio n .
D atabase schemas are firstly specified in the native D a ta Definition Language (DDL)

of object-oriented or object-relational database. These DDL definitions are th en pro

cessed to create classes, properties, relationships and other m etad a ta elements in the
Schema Repository. Finally, m etam odel m apping rules (discussed in chap ter three)

are applied to transform these schem a definitions from the p roprie tary database
m etam odel to the E G T V m etam odel representation.

• T o p -d o w n sc h em a d e fin itio n .
T he database schem a m e tad a ta is firstly created in the E G T V m etam odel repre

sen tation using th e platform independent d a ta definition language ODLx discussed

in chapter four. M etam odel m apping rules are th en applied to transform m etadata
from the E G T V representation to th e obj.ect-oriented or object-relational database

m etam odel, and to create database schemas.

At present, only a top-dow n schem a definition process is im plemented. T his is because

the existing m ultim edia d a ta is no t sto red in queryable databases, bu t in a specialised
file-based repository. Therefore, new m ultim edia database schemas cannot be reused, as

they m ust be generated from “scratch” in a top-dow n approach.

T he existing pro to type for the top-dow n schem a definition process is illustrated in figure

6.2.

A database schema is first specified in a p latform neu tra l ODLx schema definition language,

and th en stored in a file. This file is processed by th e ODL^ P a r s e r processor, which

reads th e ODL^ specification of th e schema and transform s it to in-m em ory object tree

Chapter 6: Implementation 117

representation. Since the ODLT language is encoded in a standard XML format, it can
be easily parsed using the standard DOM (Document Object Model) libraries for XML.
We use the Apache XERCES implementation of DOM in C + + , as it provides portability
across different operating systems. The ODLx schema file is checked for syntax errors
by validating its DOM representation against the XML Schema specification of ODLx
language.

The syntactically correct database schema in an object tree representation is the input for
the EGTV S chem a D e f i n e r processor. Its role is to create database types and insert
m etadata to the Schema Repository. Semantic validation of the database schema against
the metamodel definition (specified as an XML Schema document) is also performed by
this processor. Since the ODMG and O-R databases differ in data model and schema
definition interface, two methods of schema and m etadata generation were developed.
The first one is implemented for a Versant 0 - 0 database, while the second m ethod is
developed for the Oracle 9i O-R database.

For ODMG databases, the Schem a D e f i n e r creates an object-oriented schema as a
database im port file, containing the Versant specific definition of database classes and
their structures. This file is then loaded to the database, to create the Versant (ODMG)
database schema consisting of persistent classes and relationships between them. For 0 -
R databases, the S chem a D e f i n e r generates a sequence of SQL CREATE statements.
These statem ents conform to SQL:1999 syntax for object types and object tables. The
generated SQL is saved to an SQL script file which is then executed against database to
create an Oracle 9i (O-R) database schema.

After the schema is successfully created, the S chem a D e f i n e r generates m etadata from
the ODLx specification and inserts it into the EGTV Schema Repository database segment.
Translation from the ODLx schema definition to the EGTV metamodel (stored in the
EGTV Schema Repository) is a straightforward process where each ODLx element (i.e.
dbS chem a, c l a s s , a t t r i b u t e) is m apped to one metamodel class as defined in ODLj;
to metamodel mappings discussed in chapter four.

View definitions are represented in the ODLx, and thus processed by the Schem a De
f i n e r processor together with base schema definitions. The Schem a D e f i n e r parses
the view definition and transforms it to the EG TV metamodel representation which is
then stored in the EG TV Schema Repository. This information is later used by the
Q u e ry P r o c e s s o r to materialise view extents.

In terms of platform, Versant (ODMG) and Oracle 9i (O-R) databases were used on both
Windows XP and Linux. The schema definition prototype was fully developed using stan
dard C + + and STL (standard Template Libraries). The ODL^ definitions are processed
using the Apache XERCES DOM parser, while database access is facilitated using OCCI
(Oracle C + + Call Interface) object library for Oracle 9i and ODMG C + + mappings for
Versant database.

Chapter 6: Implementation 118

6.3 Query Processing

EQL queries are processed by Q u e ry S e r v i c e processors illustrated in figure 6.1. These
processors are categorised as local and global ones, where local query processors evaluate
queries at the canonical layer, while global query processing manipulate object extents
from multiple distributed sources and includes global transaction control.

6 .3 .1 L o c a l Q u e r y P ro c e s s in g

The processing of a local EQL query can be divided into three stages: query parsing,
execution tree construction, and result materialisation. In the parsing stage, the syntactic
and semantic validation of the EQL query is performed. The second stage translates a
query to its algebraic representation. This effectively generates an execution tree and
invokes m etadata processing to determine the m etadata for the result class. The final
stage generates the result by applying the operations defined in the execution tree to class
extents.

In terms of platform, the local query processor is implemented as a C + + service that
receives EQL queries in a string format as input and generates a virtual EGTV class as
a result. The result class consists of an object extent and m etadata definition for objects
in tha t extent. EG TV objects and m etadata are created and manipulated using EGTV
model and metamodel API which fully encapsulates Local Layer databases. Therefore, the
query processor is platform independent, as it manipulates only canonical EGTV objects,
An ANTLR parser [ANT02] is used for parsing of query definitions and generation of
the syntactic tree. The EQL grammar definition in ANTLR BNF syntax is provided
in Appendix G. Query evaluation is implemented entirely in standard C + + , where STL
containers are used for in-memory representation of object collections and query execution
tree manipulation.

Q u ery P a rs in g

• input: EQL query string

• output: EQL syntactic tree

In the first stage of processing, an EQL query string is parsed to the syntactic tree repre
sentation. The nodes of the tree are class, property and operation names grouped in three
branches: s e l e c t , from , and w here . Example 6.1 illustrates a simple EQL query which
is transformed to the syntactic tree represented in Figure 6.3. During the construction of
the tree, the query is syntactically validated. Syntax validation checks if the syntax of the
EQL query string is correct and in accordance with the EQL language specification. The
result of the parsing stage is an EQL syntactic tree. The benefit is tha t the query string
is tokenised and transform ed to the tree representation suitable for further processing.

Chapter 6: Implementation 119

s e le c t U s e r .n a m e as u se rN a m e ,
P ro g ra m .n a m e as p ro g ram N am e

fro m U s e r c o n n e c t P ro g ra m on U s e r . r e c o r d i n g s
w here U s e r . r a t i n g L i m i t () > 5;

Exam ple 6.1: Query processing example.

w h e res e le c t

: as as ^ ^ (ponnect)^

(^ ~) jj js 'e r N a m e) (~ ^ " ^ p r o g r a m N a r n e) (U s e r T fW o g ^ ^ ' o n

(U s e r ") (n a m e) (P r o g r a m) (n a m e ^) (■ U s e r) (r a l i n g U m l t (j)

(U s e r ; (r e c o r d in g s)

Figure 6.3: Syntactic tree example.

E x e c u tio n T ree C o n s tru c tio n

• input: EQL syntactic tree

• output: Algebraic execution tree

In th e second stage of processing, th e query in th e syntactic tree is transform ed to its al

gebraic representation. T he transform ation process s ta rts by exam ining th e f ro m branch

of the syntactic tree and resolving class nam es to th e v irtual classes in th e Schema Repos

itory. These classes represent the s ta rting po in t for query evaluation. EQL algebraic

operators are successively applied until the v irtu a l class representing the query result set

is constructed. In th is process the whole syntactic tree is traversed and all EQL syntac

tic elem ents (select, from, where, p a th navigation, join, and behaviour invocations) are

transform ed to algebraic operators and represented as th e query execution tree illustra ted

in Figure 6.4. T his effectively perform s sem antic validation of the query to check if types

used in th e query exist in the Schema R epository and if operations are com patible w ith
these types. T he execution tree can be optim ised for speed and resource utilisation, b u t

this would form p a r t of fu tu re research for th is pro ject. T he benefits of th is stage are the

following: sem antic analysis of the query; creation of th e v irtual class representing the

query resu lt type; and query execution tree construction.

R e su lt M a te r ia lis a tio n

• input: Algebraic execution tree

Chapter 6: Implementation 120

(NJoin) (Projection)

(Eva? operator»[)) RenameExtent, User

(Exlent User) (~ Patti_j Ç Path_J (Constant 5) (Path }(Constant; userName) (Path) (Constant: pfogtamNtOTi&~)

(Extent: recordnga) (Extern Program) (Extern: User) (£val; raimgLtmHQ) (Extoni User) (Extent name) (Extent Program) (Extent: name)

Figure 6.4: Execution tree example.

• output: Virtual class representing the query result

In the m aterialisation phase, the execution tree is processed and a query result generated.
The processing starts with the m aterialisation of all class extents required as inputs for
algebraic operators. Then, operations defined in the execution tree are sequentially applied
(post-order traversal method) to create the final result. During this process, temporary
objects can be created as intermediary results. This is because each algebraic operator
returns a result as a virtual class which subsequently becomes an input for other operators.
However, when the final result is generated, all intermediary results (temporary objects)
are closed. The final result is a single virtual class. The m etadata component of the
virtual class was defined in the previous (EQL algebra transformation) processing step,
while this step constructs its object extent. Properties of result objects directly reference
corresponding properties of the source EGTV objects providing updatability.

6 .3 .2 G lo b a l Q u e r y P r o c e s s in g

Global queries are specified a t the Global Layer of our federated architecture using the
same EQL syntax as local queries and processed by the G lo b a l Q u e ry S e r v i c e pro
cessor. They are evaluated against a global schema constructed using views imported from
different component databases. In this section the construction of the global schema is
first explained and then the generation of the global query extent is discussed.

G loba l S ch em a C o n s tru c tio n

The construction of the global schema begins at each component node where a set of
views is defined at the V irtual Layer. These views represent export schemas [SL90] which
can be accessed and queried from the Global Layer. They are defined as EQL queries,
and their result is represented as a virtual class. This is illustrated in Figure 6.5, where
F ilm P ro g ra m (Example 6.2) and T V R e c o rd in g (Example 6.3) views are defined in
two different databases of the Fischlar system. These are based on P ro g ra m and F ilm

classes as represented in processing step (1) of Figure 6.5. The UML definition of two

Chapter 6: Implementation 1 2 1

< ?xm l v e r s i o n = " 1 .0 " e n c o d in g = " U T F -8 "?>
<dbSchema n a m e = " M u lt im e d ia R e c o rd in g S y s te m " d a t a b a s e T y p e = " 0 0 " >

< v i r t u a lC la s s n a m e = " F ilm P ro g ra m " >
< e x t e n t > < ! [CDATA[

s e le c t nam e as f ilm N a m e , d e s c r i p t i o n
fro m P ro g ra m p
w here p . c a t e g o r y R e f . C a t e g o r y . nam e = " F i l m " ;]] >

< /e x te n t >
<m ethod n a m e = " F ilm P ro g ra m " a c c e s s K i n d = " p u b l i c " >

< p a ra m e te r n am e = "film N a m e " c o n s t a n t = t r u e >
< p r im it iv e T y p e n a m e = " s t r i n g " / >

< / p a ra m e te r>
< p a ra m e te r n a m e = " d e s c r i p t i o n " c o n s t a n t = " t r u e " >

< p r im it iv e T y p e n a m e = " s t r i n g " />
< /p a ra m e te r>
< p a ra m e te r n a m e = " c a te g o r y " c o n s t a n t = " t r u e " >

< p r im it iv e T y p e n a m e = " s t r i n g " />
< /p a ra m e te r>

< /m ethod>
<m ethod n a m e = " ~ F ilm P ro g ra m " a c c e s s K i n d = " p u b l i c " >
< /m ethod>

< /v i r t u a lC la s s >
</dbSchem a>

Example 6.2: An ODL^ definition of the F ilm P ro g ra m virtual class.

canonical database schemas is provided in Appendix E. The global schema is then defined
by importing view m etadata (2) to the Global Layer. Other views can be constructed
upon the imported ones, thus providing the restructuring of the global schema. A global
view R e c e n tF i lm (Example 6.4) is defined in the global schema as an EQL query tha t
joins F ilm P ro g ra m and T V R e c o rd in g imported classes (3).

E x te n t G e n e ra tio n

The process of global query evaluation is the same as for local queries, and it follows the
three processing stages defined in §6.3.1. The only difference is in the m aterialisation of
extents for imported virtual classes (views). The extent of each imported class is first
materialised at its local node by evaluating its EQL query definition, and is then imported
to the global schema. This is represented as step (4) in Figure 6.5. Properties of objects
in imported extents are only references to corresponding objects materialised at local
nodes, so performance and memory overhead is minimal. Properties are dereferenced and
physical da ta is passed to the Global Layer only when required for query processing. The
interconnection between different nodes and the exchange of objects is facilitated through
the CORBA service. Any update to objects in imported extents are propagated through

Chapter 6: Implementation 122

< ?x m l v e r s i o n = " 1 .0 " e n c o d in g = " U T F -8"?>
<dbSchema n a m e = " V id e o A rc h iv e " d a t a b a s e T y p e = " 0 0 " >

< v i r t u a lC la s s n a m e = "T V R e c o rd in g ">
< e x te n t> < ! [CDATA[

s e le c t n am e, r e c o r d i n g D a t e
fro m F i lm
w here F i l m . l a n g R e f . L a n g u a g e . nam e = " F r e n c h " ;]] >

< / e x t e n t >
cm ethod n a m e = "T V R e c o rd in g " a c c e s s K i n d = " p u b l i c " >

< p a ra m e te r nam e= "nam e" c o n s t a n t = t r u e >
< p r im it iv e T y p e n a m e = " s t r i n g " />

< /p a ra m e te r>
< p a ra m e te r n a m e = " r e c o r d in g D a te " c o n s t a n t = " t r u e " >

< p r im it iv e T y p e n a m e = " d a te " />
< /p a r a m e te r >
< p a ra m e te r n a m e = " la n g u a g e " c o n s t a n t = t r u e >

< p r im it iv e T y p e n a m e = " s t r i n g " />
< /p a ra m e te r>

< / m ethod>
<m ethod n am e = "~ T V R e c o rd in g " a c c e s s K i n d = " p u b l i c " >
< /m ethod>

< /v i r t u a lC la s s >
</dbSchem a>

Exam ple 6.3: An ODLx definition of the T V R e c o rd in g v irtual class.

references to original objects a t com ponent database node. This is a feature of EG TV

m odel and was explained in chapter five. G lobal transaction consistency is guaranteed by
the two-phase com m it protocol.

For th is research only a lim ited p ro to type of th e G lo b a l Q u e ry S e r v i c e processor

has been im plem ented. I t facilitates query evaluation and transaction control system , b u t

all objects m ust originate from a single database. This is due to the fact th a t CORBA
object exchange segm ent of the E G T V architecture is p a rt of external research [Kam04]

and not com pleted yet, thus d a ta interconnection between m ultiple databases cannot be

facilitated. However, it is expected th a t the full im plem entation of this system will be
available in a near future. Therefore, th is protocol will be used as a basis upon which our

d a ta d istribu tion features are built.

6.4 EGTV Transaction Processing

Efficient tran sac tio n control is the im portan t requirem ent for every m ultiuser database sys

tem . This issue is even m ore em phasised in federated database systems where transaction

consistency m ust be preserved across m ultiple heterogeneous databases. T he E G T V feder-

Chapter 6: Implementation 123

< ?x m l v e r s i o n = " 1 .0 " e n c o d in g = " U T F -8 "?>
<dbSchema n a m e = " G lo b a lS c h e m a " d a ta b a s e T y p e = " 0 0 " >

< v i r t u a lC la s s n a m e = " R e c e n tF i lm " >
< e x te n t> < ! [CDATA[

s e le c t t .n a m e , f . d e s c r i p t i o n
fro m F ilm P ro g ra m f j o in T V R e c o rd in g t on f . f i lm N a m e = t .n a m e
w here r e c o r d i n g D a t e > " 0 1 / 0 3 / 2 0 0 4 " ;]] >

< / e x t e n t >
<m ethod n a m e = " R e c e n tF i lm " a c c e s s K i n d = " p u b l i c " >

< p a ra m e te r n am e= "n am e" c o n s t a n t = t r u e >
< p r im it iv e T y p e n a m e = " s t r i n g " />

< /p a ra m e te r>
« p a ra m e te r n a m e = " d e s c r i p t i o n " c o n s t a n t = " t r u e " >

< p r im it iv e T y p e n a m e = " s t r i n g " / >
< /p a ra m e te r>
« p a ra m e te r n a m e = " la n g u a g e " c o n s t a n t = " t r u e " >

< p r im it iv e T y p e n a m e = " s t r i n g " />
< /p a ra m e te r>
« p a ra m e te r n a m e = " r e c o r d in g D a te " c o n s t a n t = " t r u e " >

< p r im it iv e T y p e n a m e = " d a te " />
< /p a ra m e te r>

< /m ethod>
«m ethod n a m e = " ~ R e c e n tF i lm " a c c e s s K i n d = " p u b l i c " >
< /m ethod>

< /v i r t u a lC la s s >
</dbSchem a>

Exam ple 6.4: An ODLx definition of th e R e c e n tF i lm v irtual class.

a ted architecture in tegrates transaction control mechanisms w ith th e new reference-based
E G T V model and the EQL query language. Here we in troduce the EG T V transaction

m odel and explain th e global and local transaction processing. O ur transaction model

facilitates transaction scheduling and extends th e s tan d ard locking mechanism by intro
ducing write-copy lock.

6 .4 .1 T r a n s a c t io n M o d e l

A transaction encapsulates a set of operations executed on database objects, and is always

processed atomically, m eaning th a t all operations in transaction are successfully executed
or none are. O perations perform retrievals and updates on database objects and can take

th e form of EQL queries or behaviour invocation. Each transaction is s tarted w ith the

b e g i n _ t r a n s a c t i o n and ended w ith the co m m it or r o l l b a c k command.

T he E G T V transaction architecture is illustra ted in figure 6.6. The G lo b a l Q u e ry

S e r v i c e receives global transactions, partitions them into a. set of subtransactions and

Chapter 6: Implementation 124

G lo b a l s c h e m a

J G lo b a l Q u e r ie s

J -L
G lo b a l L a y e r (E x te n t : R e c e n t F i lm) V ie w : R e c e n t F i lm

[3)'
(E x t e n t : F i lm P r o g r a m) V ie w : F i lm P r o g r a m

(4)
T
(2)

V i r t u a l L a y e r

C a n o n ic a l L a y e r

(E x t e n t : F i lm P r o g r a m)
I

V ie w : F i lm P r o g r a m

* A
(4) (1)

I I
(E x te n t : P r o g r a m) C la s s : P r o g r a m

M u l t im e d ia R e c o r d in g s S y s t e m

V ie w : T V R e c o r d in g (E x t e n t : T V R e c o r d in g)

t t

(2) (4)

I . i
V ie w : T V R e c o r d in g (E x t e n t : T V R e c o r d in g)

A

(1)
I

A
(4)

I
C la s s : F i lm (E x te n t : F i lm)

M u l t im e d ia A r c h iv e

Figure 6.5: Global query processing.

then submits them to multiple L o c a l Q u e ry S e r v i c e s for execution. It is responsible
for ensuring the atomicity and serialisability of global transactions. The L o c a l Q u e ry

S e r v i c e executes local transactions and global subtransactions at each participating
database node. Its responsibility is to guarantee transaction consistency by applying
locks on persistent objects in the database. The database must be ODMG or object-
relational compliant, and must have a transaction interface available to users. Although
some databases provide a nested transaction interface, this is generally not supported in
available ODMG [CB99] and SQL-99 [GP99] compliant databases. Therefore, our imple
m entation supports only flat transactions, although nested transaction interface will be
investigated in other EG TV research projects.

Global
Transaction

N o d e 1 N o d e 2

Figure 6.6: EGTV Transaction Architecture.

Chapter 6: Implementation 125

6 .4 .2 T h e E G T V O b je c t P o o l

Object materialisation denotes the process of creating EGTV objects as a canonical repre
sentation of persistent objects in an 0 - 0 or 0 -R database. EGTV objects are materialised
in the E G T V Object Pool and are not shareable with other concurrent sessions. This is
required for guaranteeing atomicity of concurrent transactions. The EGTV Object Pool
contains all EGTV and virtual EGTV objects materialised in one client session. One Ob
ject Pool is created per each client session and all objects in the pool belong to the same
transaction- Persistent objects from the Storage Layer can be simultaneously materialised
in multiple object pools, but EGTV objects in one pool are inaccessible to other object
pools. If an object is materialised as updatable in one pool, it is read-only in other pools
to preserve transaction atomicity. The query processor is a client of the EGTV Object
Pool and can read and update any object in the pool. W hen the client (query processor)
attem pts to access a non-materialised single object or full object extent in the EGTV
Object Pool, the autom atic materialisation procedure is triggered. This includes m ate
rialisation of one EGTV object for each persistent object in the database and applying
transaction control (locking) mechanisms. The query processor can also explicitly close
objects materialised in the pool. This process includes writing of all modified objects back
to the Storage Layer database and deallocating EGTV objects from the pool. When client
session is closed, all objects in the pool are automatically closed.

6 .4 .3 R e q u i r e m e n ts

Both, the L o c a l Q u e ry S e r v i c e s and the G lo b a l Q u e ry S e r v i c e must provide

a set of services required for atom ic processing of global and local transactions.

L ocal Q u ery S erv ice R e q u ire m e n ts

1. Strict two-phase locking protocol [BH87] supported in each object-oriented and
object-relational database at the Storage Layer.

2. Each database must provide transaction interface which supports b e g i n _ t r a n s -
a c t i o n , com m it and r o l l b a c k (a b o r t) operations.

3. Database supports visible p r e p a r e - t o - c o m m i t s ta te , or sim ulated p r e p a r e - t o -

co m m it s ta te [Geo91] is provided by the L o c a l Q u e ry S e r v i c e .

4. Database notifies the L o c a l Q u e ry S e r v i c e of any unilateral transaction abort.

5. Database transaction interface must support per-object locking granularity.

Chapter 6: Implementation 126

G lo b a l Q u e ry Serv ice R e q u ire m e n ts

1. There is a t most one subtransaction per component database node for each global
transaction.

2. Two-phase commit protocol is supported [OV99],

3. Support for Cascadless Ticketing [GRS94] global serialisability protocol.

6.4.4 Lock Types

T he L o c a l Q u e ry S e r v i c e is responsible for persistent object locking. I t invokes the
transaction interface provided by the database directly to set and release locks on persistent

objects. Locking granularity is per object, which m eans th a t locks can be applied to a
single object or to an object set of any cardinality. Two types of object locks can be set

by the L o c a l Q u e ry S e r v i c e : read and write-copy locks.

R e a d lock. This lock maps directly to the shared (read) lock as defined in the two-
phase locking protocol. M ultiple non-conflicting read locks can be applied to the same
persistent object, but a read lock conflicts with a write lock. All read locks are applied to
persistent objects before they are materialised at the Canonical Layer. This ensures the
materialisation of consistent set of EGTV objects.

W rite -c o p y lock. The write-copy lock is the enhancement of the standard write lock
in two-phase locking protocol. It exclusively locks a persistent object in the database and
then creates a copy of its original state (before locking). The L o c a l Q u e ry S e r v i c e

applies write-copy lock by materialising two EGTV objects for each persistent object
locked in the database. The first EGTV object is updatable, it can be modified by the
transaction, and all updates are propagated to the persistent object. The second object
cannot be modified, and it is used as a read-only data source for other transactions. Thus,
transactions th a t request read-only access to exclusively locked objects are able to proceed
without waiting for locks to be released. The overall transaction concurrency is increased
since transactions that otherwise would have to be serialised are simultaneously executed
without violation of data integrity. An example illustrating this feature is given in §6.4.6.

6.4.5 Transaction T ypes

The EGTV model defines two types of transactions: read-only and read-write.

R e a d -o n ly tra n s a c t io n s do not acquire any locks on the database objects, except for
a short interval of time while EG TV objects are materialised at the Canonical Layer.
Persistent objects in the local database are temporally locked in the read (shared) mode

Chapter 6: Implementation 127

to ensure the consistency of the retrieved object extent. All locks axe released im m ediately
after the E G T V objects are m aterialised. T he read-only transaction effectively creates a

database snapshot which is not updatab le . T he m aterialised E G T V objects are not bound
to objects in the database.

R e a d -w rite tra n s a c t io n s are required for query updates, or when the client application

requests the retrieval of updatab le query result. A read-w rite transaction acquires write-
copy locks on all persisten t objects retrieved by the query. These locks can be released only

when transaction com m its or aborts. T he E G T V objects m aterialised at the Canonical

Layer are bound to the corresponding persisten t objects in the database for the whole

dura tion of the read-w rite transaction.

T he formal syntax for EQL transactions is presented in Definition 6.18. A sequence of

EQL queries is enclosed w ith in the b e g i n _ t r a n s a c t i o n and e n d _ t r a n s a c t i o n block.

R ead-only transactions m ust not contain any query which modifies database state . E xam

ple 6.5 illustrates a typical read-only tran sac tio n defined as a sequence of EQL queries.

D e fin itio n 6.18 transaction : = <beg in -transac tion>

< E Q L Q u ery> *

< endLtransaction>

< begirL.transaction> t r a n s a c t i o n r e a d - o n ly \ r e a d - w r i t e

< encLtransaction> ~ c o m m i t \ ro l lb a c k

t r a n s a c t io n r e a d - o n l y ;
s e le c t nam e, d e s c r i p t i o n fro m P ro g ra m ;
s e le c t nam e, l o g i n fro m U s e r ;

com m it;

Exam ple 6.5: R ead-only transaction example.

6.4.6 Local Transactions

T he L o c a l Q u e ry S e r v i c e m aterialises E G T V objects and binds them to the persis

ten t objects in the database. I t is responsible for m aintaining d a ta consistency of locally
executed transactions by applying locks to persistent objects in the database. The locking

m echanism is no t applicable to tran sien t objects. T he E G T V transaction m odel guaran

tees statem ent-level read consistency, which m eans th a t all the d a ta th a t th e query sees
come from the single po in t of tim e.

E G T V objects can be m aterialised from persisten t database objects using either extent or
navigational m aterialisation.

E x te n t m a te r ia lis a tio n m aterialises a full class extent into a set of EG T V objects at

the Canonical Layer. T he extent to be m aterialised is specified in the source specification

Chapter 6: Implementation 128

(from clause) of the EQL query. Depending of the type of transaction, the appropriate
locking mechanisms are applied to the materialised extent.

Navigational materialisation is applied only when navigating between objects using
references. An attempt to navigate from materialised EGTV object to a non-materialised
EGTV object, or a set of objects (l-many relationships) triggers the navigational materi
alisation. When EGTV objects are materialised, the appropriate locking mechanisms are
applied to their corresponding persistent objects in the database. Persistent objects are
accessed directly through object references, and no queries are used during the retrieval.

Local Transaction Processing

Each transaction executed by the Local Query Service is subject to strict locking rules. The
execution of any transaction can be generalised to following set of steps that guarantees
data consistency and transaction atomicity.

1. The transaction is started at the local database by invoking the be g in _ tr ans ac
t io n command of the database transaction interface.

2. Each query in the transaction is processed by the Local Query Service. The
processing returns result as an extent of EGTV objects and includes the following
steps.

(a) The full extents of all classes specified in the from clause of the query are locked
in the database and EGTV objects are materialised at the Canonical Layer.
Read locks are used in read-only transactions, and write-copy locks in read-
write transactions. Read locks materialise one non-updatable EGTV object
for each persistent object locked in the database. Write-copy locks materialise
one updatable, and one read-only EGTV object per a persistent object. The
read-only object preserves the original state of the persistent object and it can
be read by other transactions. The updatable object propagates all updates
to the persistent object in the database and its state cannot be accessed from
other transactions.

(b) A restriction condition is applied to materialised EGTV object extent. EGTV
objects not satisfying the condition are closed and locks on their persistent
object counterparts are released. This is not a violation of the locking protocol,
since the released objects have not been modified since the transaction started.
However, when an EGTV object is modified, locks on its persistent object
counterpart must not be released until the transaction is committed or rolled
back. This is in accordance with the separation of growing and shrinking phases
in the strict two-phase locking protocol [BH87].

Chapter 6: Implementation 1 2 9

(c) Updates specified in the query are applied against EGTV object extents filtered
in the previous step. The result set generated as a set of EGTV objects is
returned to the issuing client where it can be further updated. Any updates on
the result set objects are propagated to the persistent objects in the database.

3. The transaction is completed by issuing commit or ro llb a c k commands. Commit
flushes all cached updates from EGTV objects to persistent database objects and
commits transaction in the database. This effectively releases all locks held by
the transaction, while EGTV objects arc invalidated and closed. Rollback closes
all EGTV object without flushing the changes and releases locks on the persistent
objects in the database. The database is restored to the state before the start of
transaction. This is guaranteed by the transaction interface of the local database.

Transaction Scheduling

Scheduling improves the overall transaction concurrency by allowing simultaneous execu
tion of multiple transactions on the same class extent. The only condition is that object
sets locked by different transactions must be disjoint. Let Ti, T j and Tk be independent
transactions operating on the Ec class extent. Transaction Ti starts its execution before
Tj, which precedes Tk. Ti and Tj operate on disjoint subsets Ei and Ej of Ec class
extent, while extent Ek of transaction Tk overlaps with the Ei extent. The remaining
(unused) subset of Ec extent is denoted as sub-extent Er. Read-only extents are denoted
with r -o subscript (i.e. Eir.0).

Ti < Tj < Tk
Ei n Ej = 0
Ei n Ek 0
Ec = Ei U Ej U Ek U Er

The execution of Ti, T j and Tk transactions is represented as a sequence of time intervals
(tO. . t5).

tO: Ti started; Ec = Ei U Er
t l : Ti processing, Tj started; Ec = Eir-o U Ej II Er
t2 : Ti processing, Tj processing, Tk blocked; Ec = Eir.0 U Ejr-o U Er
t3: Tl completed, Tj processing, Tk started; Ec = Ejr-o U Ek U Er
t4: Tl completed, Tj completed, Tk processing; Ec = Ekr_0 U Er
t5: Tl completed, Tj completed, Tk completed; Ec

At time tl, transaction T j was able to start because it had the full access to the Ec extent
(including the read-only sub-extent Eir.0) and it attempted to lock only unused objects
(E j sub-extent) from the Ec class extent. The Tk transaction was blocked in t2 although
it had read-only access to the full Ec extent, but it required locking of objects already

Chapter 6: Implementation 1 3 0

locked by transaction Ti (Ei and Ek object sets were not disjoint). Tk was serialised after
the Ti and it was allowed to resume execution in t3, when Ti completed and released
locks on objects it held.

Local Transaction Example

This example demonstrates the usage of write-copy locks to facilitate concurrent execution
of two read-write transactions operating on a disjoint set of objects from the same extent.
The persistent class X containing one attribute a of type in t is defined in the local
database. The extent of the class X contains the following values (objects): X{ 1, 2, 3,
4, 5, 6, 7}. Two read-write transactions TI and T2 concurrently update the values
of the extent X. The transaction TI decrements all objects which are less than 4, while the
transaction T2 increments all X objects greater than 4. This is illustrated in Table 6.1.
Transactions are processed by the Local Query Service which utilises the write-copy
lock mechanism.

Transaction T I Transaction T2
transaction read-write; transaction read-write;
select a := a - 1 select a := a + 1
from X from X
where a < 4; where a > 4;
commit; commit;

Table 6.1: Concurrent Transaction Schedule.

Suppose the transaction TI was submitted first, but before it completed, the transaction
T2 had been started. The local transaction schedule is defined as: { update (TI) ,
update (T2), commit (TI), commit (T2) }. This execution can be represented els

the following sequence of steps.

1. TI : The full extent X is materialised at the Canonical Layer, and all persistent
objects of class X are exclusively locked in the database.

2. TI : The read-only copies of the EGTV objects {1, 2, 3, 4, 5 ,6 ,7} are
constructed at the Canonical Layer. These copy objects retain the original object
state, before any changes are applied by transaction TI.

3. TI : The restriction condition is applied. Those EGTV objects with a value a not
less than 4 are closed and locks on the corresponding persistent objects are removed.
The objects {1, 2, 3 } remain locked.

4. TI : EGTV objects are updated, and their values are decremented by 1. The result
set of the transaction T1 is generated as { 0, 1, 2 }.

5. T2 : The materialisation of the full extent X is requested by the transaction T2. Since
one segment of this extent is still locked by transaction TI, only available objects

Chapter 6: Implementation 131

(unlocked) will be materialised for transaction T2 and locked in the database. The
write-copy locks are applied.

6. T2 : The transaction T2 applies its restriction condition. It is evaluated against
the objects materialised and locked by transaction T2 and read-only copy objects
created by transaction T1 in step 3. The evaluation concludes that only objects
{5, 6, 7} are required for transaction T2, while the others can be released. The
transaction T2 is allowed to continue because objects locked by the transaction T1
are not required for execution of T2.

7. T1 : Transaction T1 commits and releases locks held on permanent objects in the
database. EGTV objects are invalidated and closed. The new state of database is
{0, 1, 2, 4, 5, 6, 7}.

8. T2 : transaction T2 commits, releases locks and closes EGTV objects. The database
has the following state: {0, 1, 2, 4, 6, 7, 8}.

If the restriction condition of transaction T2 had been different and had evaluated to
objects locked by transaction Tl, the transaction T2 would have been blocked and would
have to wait until the Tl commits and releases the locks on objects it was holding. Any
deadlock situation involving two or more transactions is detected by the locking system of
the local database and conflicting transactions are aborted.

Implications of the EGTV Locking System to Transaction Concurrency

Read-write transactions always lock the full class extent in the database and then apply
restriction conditions. This approach can limit the overall transaction concurrency, so we
introduced the write-copy lock. This lock allows multiple non-conflicting read-write trans
actions to simultaneously operate on the same extent. However, conflicting transactions
attempting to lock the same objects are still serialised.

Read-only transactions also apply locks to full class extents. However, this does not
introduce significant concurrency degradation since all persistent objects are locked in
the shared (read) mode, and read-only locks are released immediately after all EGTV
objects are materialised. Read-only transactions do not have to wait for objects locked by
the read-write transactions, since they are able to access and use their read-only object
copies.

6.4.7 G lobal T ransactions

The Global Query Service executes global transactions and provides global atomicity
and serialisability. Global atomicity ensures that all or no subtransactions are successfully

Chapter 6: Implementation 1 3 2

committed. The serialisability of global transactions is preserved only if their subtrans
actions are committed in the same relative order at all participating nodes. The global
atomicity protocol used in the EGTV transaction model is the two-phase commit [OV99],
while the global serialisability is enforced by the Cascadless Ticket Method [GRS94],

Atomicity. The two-phase commit is a two-stage global commitment protocol. After
subtransactions are submitted to participating nodes, the Global Query Service sends a
p rep are command to all Local Query Services. The subtransaction is in the prepared
state only if it is fully executed and is guaranteed to commit. Each Local Query Service,
executes subtransaction and sends a p rep ared or n o t-p re p a re d response to the Global
Query Service. If all participating nodes respond with p rep ared message, the global
command is commit, otherwise all nodes are instructed to ab o rt their subtransaction
and roll back any database modifications. The global transaction is committed when all
participating nodes commit or ab o rt their sub transactions.

Serialisability. Local databases maintain only their local transaction schedules and are
not aware of the global schedule. This is the reason why global serialisability must be con
trolled externally by the Global Query Service. The serialisability of global trans
actions in the Cascadless Ticket Method is preserved by forcing direct conflicts between
their subtransactions on the each participating database node. All subtransactions com
pete to acquire a ticket object and the order in which they take the ticket represents the
serialisation order of subtransactions at the participating node. If relative serialisation
order of global transactions at all participating nodes is the same, the serialisability of
global transactions is preserved and global transactions are allowed to commit, otherwise
conflicting transactions are aborted and re-executed.

The execution of a global transaction is distributed between the Global Query Ser
vice and participating database nodes. A global transaction is processed by the Global
Query Service, while the Local Query Services at participating nodes execute
its subtransactions. Different algorithms are applied for processing of read-only and read-
write subtransactions. This is due to differences in locking mechanisms between these two
subtransaction types.

Global Transaction Processing

1. A global transaction is broken into a set of subtransactions, where each subtransac
tion is aimed for a different database node.

2. The transaction timer is started. It defines the time interval in which each subtrans
action must complete its execution. This feature is important for detecting global
deadlocks caused by different serialisation schedules at different participating nodes.
If the timeout expires, the global transaction is aborted and restarted.

Chapter 6: Implementation 133

3. Subtransactions are submitted for execution to participating nodes.

4. The Global Query Service waits until the response to prepare command is
received from all Local Query Services or until the timer timeouts.

5. If all subtransactions responded with the p rep ared message, the global command is
commit. If any of the subtransactions is not ready or the timeout has been reached
while waiting for response, all Local Query S erv ices are instructed to ab o rt
its subtransactions and global transaction is restarted.

Read-Only Subtransaction Processing

1. Acquire read (shared) locks on all extents accessed by subtransaction.

2. Materialise EGTV objects at the Canonical Layer.

3. Filter the EGTV object extent and close all EGTV objects not satisfying the filtering
condition.

4. Release all read locks.

5. Take a ticket (attempt to acquire a write lock on the ticket object). This step is
required to guarantee correct serialisation order of global transactions.

6. If the ticket was successfully acquired, the subtransactions is prepared for global
commit. The prepared message is sent to the Global Query Service.

7. The commit or abort command is received from the Global Query Service.
This initiates the commit or rollback in the database and the release of the ticket
object. All EGTV objects are closed.

Read-W rite Subtransaction Processing

1. Acquire a write-copy lock on all extents accessed by the subtransaction.

2. Materialise EGTV objects at the Canonical Layer.

3. Process subtransaction queries and selectively release objects not required for pro
cessing. All objects released before the commit must not be modified by the sub-
transaction.

4. Perform updates on database objects as specified in subtransaction definition.

5. Take a ticket (attempt to acquire a write lock on the ticket object).

6. If successful, signal the prepared state to the Global Query Service and wait
for a global command.

Chapter 6: Implementation 134

7. If the commit command is received, the subtransaction is committed and all changes
are made persistent. The ab o rt command triggers the rollback of all modifications
and the database is returned to the state prior to the start of subtransaction. In
both cases, the ticket object is released and EGTV objects closed.

6 .5 E x p e r i m e n t s

In this section, a discussion on the performance of schema definition and query process
ing is presented. All experiments were conducted within a laboratory environment where
a limited amount of multimedia data was extracted from the Fischlar system [LSO+OO]
and inserted to the Versant 0-0 database. While this does not reflect all working envi
ronments, it does demonstrate that integration using the EGTV metamodel is possible,
updates through query results are feasible, and when outside influences are controlled,
the materialisation of most EGTV objects is achieved at an acceptable performance level.
The results of experiments are categorised into the times taken to define the database
schema from the ODLx specification file, and the times taken to evaluate query results
once data resides in a Local Layer database. Due to the unavailability of the CORBA
based object exchange protocol (developed within a separate project), we were not able
to perform tests involving multiple databases in the system. Thus, all results presented in
this section reflect only a single database acting as both component and federated node of
the architecture.

Three separate database users designed schemas according to their different goals and
design patterns: multimedia recording system, multimedia editing system and multimedia
archive database. The UML diagrams for these three schemas are provided in Appendix E.
The multimedia content was mainly drawn from the Fischlar system, although once stored
locally, it was possible for users to manipulate the data set according to their own needs.
In terms of platform, Versant 6.0 (ODMG) and Oracle 9i (O-R) databases were used on
both Windows XP and Linux. The existing prototype allows users to define database
schemas on both target platforms, although the query interface is currently developed
only for Versant databases running on Windows platforms.

6.5.1 Schem a D efinition Tests

Schema definition testing was based upon the database schema for the Multimedia Record
ing System that contains 11 classes, 16 attributes, 11 bidirectional associations and 2 gen
eralisation relationships. It also defines 1 behaviour operator and 16 behaviour methods.
This schema was fully defined in ODLx and then processed by the SchemaDef program
to create both Versant and Oracle 9i database schemas. The complete ODLx definition
of the schema is provided in Appendix F. The Versant implementation of the SchemaDef
was developed for the Windows platform, while the Oracle 9i implementation is for Linux.

Chapter 6: Implementation 135

ODLæ
parsing

M etadata
definition

Schema
definition

Total
time

Versant (Windows) 0.3 sec 0.5 sec 7.1 sec 7.9 sec
Oracle (Linux) 0.2 sec 0.7 sec 1.2 sec 2.1 sec

Table 6.2: Schema Definition Performance

Schema processing consists of three stages: ODLx parsing, Schema Repository population
and database schema creation. Performance was measured for each processing stage and
results are provided in Table 6.2. The poor schema definition results for Versant are the
direct consequence of the complex procedure for creating new schemas in this database.
The schema definition file generated by the SchemaDef program is firstly compiled by
the Versant schcmp utility to produce a database import file, which is then loaded into
Versant to create the database schema (sch2db utility). The schema definition process
for Oracle is much simpler and only requires execution of a series of SQL DDL statements
through an open database connection. This is reflected in the measured values which are
much lower for Oracle.

In a terms of platform, the SchemaDef program was tested on a PC with a Pentium
4 1.7 GHz processor and a 512 MB of RAM. The operating system for the O-R schema
definition was RedHat Linux 9.0, while Versant schemas were defined on the Windows
XP Professional platform. Windows version was compiled with Microsoft Visual C++ 7.0
compiler, while on Linux we used the GNU g++ 3.2 compiler.

The ObjectPopulator application was specially constructed to facilitate loading of
the initial set of multimedia data into the database schema. It also extracts content
metadata information (duration, frame rate, resolution, etc.) from the MPEG and JPEG
files and maps it to the corresponding properties of the EGTV multimedia data types. The
performance depended on the size of the memory buffer used for caching data reads from
a file. On average, with the buffer size of 100MB, the loading process took 3.6 minutes
for each 100MB of the multimedia file. Textual data was produced using a random value
generator and then inserted into the database schema together with multimedia objects.
This process resulted in the instantiation of persistent objects from the classes defined
previously by the SchemaDef program.

From these experiments it was discovered that the only negative performance factor was
due to multimedia data load.

6.5.2 Q uery P rocessing Tests

To test the performance of the Query Service, queries can be divided into five broad
categories: basic queries, join queries, navigational queries, exported queries, and update
queries. In this section, query types are briefly described, together with performance

Chapter 6: Implementation 1 3 6

Query type Number of objects Average execution time
Basic queries 1000 4 sec
Join queries 1000 10 sec

Navigational queries 1000 6 sec
Exported queries 1000 5 sec
Update queries 100 4 sec

Table 6.3: Query Processing Performance.

details. Behaviour based EQL operators used in these queries are limited to built-in types
s t r in g and in t . This is because content specific behaviour for multimedia types has not
been developed yet. Thus, our test queries perform data comparisons and updates only
on textual attributes of EGTV objects. Query sets used for these tests are provided in
Appendix H, while their execution times are listed in Table 6.3.

1. Basic Queries. This category of queries is defined locally (at the component
schema) and does not involve join operations. Their purpose was to test selection
and projection of EGTV objects materialised from Versant database. All EGTV
object extents were materialised in less than 1 second, as they contain only object
references and not the actual data. However, projection and selection operations on
these extents required dereferencing of some attributes, thus consuming more time.
With 1000 objects, selection and projection on textual attributes was evaluated in
under 4 seconds. These results were consistent with our initial performance estima
tions. Fast materialisation of EGTV objects from the local database was largely due
to usage of native database API (Oracle OCCI and ODMG C++ bindings) for object
retrieval and updating. This eliminated the need for translation of EQL queries to
their SQL/OQL counterparts which would consume mush more time and resources.
No object caching and query rewrite optimisations were used for materialised EGTV
objects. Thus, all selection and projection operations on materialised object extents
evaluated within the initial performance expectations for unoptimised query system.

2. Join Queries. This category of queries is defined locally, and employ integration
operators to join classes. Since neither database contained natural joining properties,
string values were used to perform the joins. For example, one query used login at
tribute to join the User and Administrator classes of the Multimedia Recording
schema. With 1000 objects in the join operation, all queries were evaluated in under
10 seconds. Slower execution time was expected as no optimisation algorithms were
used in the implementation of join operator. Thus, all objects in the User extent
had to be iteratively compared to all objects of the Administrator extent. Imple
mentation of more advanced join algorithms (merge join, has join, etc.) and EGTV
object caching would significantly improve performance of the join operation.

3. Navigational Queries. This group of queries include path expressions and navi-

Chapter 6: Implementation 1 3 7

gational join operations. These operations include object navigation through refer
ences, and materialisation of individual EGTV objects at the Canonical Layer. The
obtained results indicate no significant performance degradation as all queries were
evaluated under 6 seconds. Thus, execution times for navigational join queries were
better that those obtained for property join queries. This is because navigational join
is based upon object reference navigation and does not involve any value matching.
The only performance overhead is related to the materialisation of navigated objects
at the canonical layer. No sorting and joining algorithms are required, thus mate
rialised objects can be immediately retrieved or passed to other algebraic operators
for further processing. Navigational query experiments show that in object-based
data models querying through path navigation is less performance intensive then
property joining.

4. Exported Queries. This category of queries were defined locally and exported
to the global schema which is stored on the same database node. Thus, an addi
tion layer of indirection was introduced. These tests were designed to monitor any
degradation in performance as a result of the query definition located in a different
database schema from base classes. No noticeable difference in the processing times
were recorded. Due to the unavailability of CORBA object exchange protocol ex
periments involving more than one database node could not be performed. However,
performance degradation can be estimated by analysing the efficiency and costs of
the EGTV inter-node communication. The EGTV communication protocol consists
of three layers: TCP/IP network transport, CORBA services and EGTV object ex
change which is built upon the first two layers. The network interconnect used for
the prototype is the fast lOOMBs switched network, thus its performance degrada
tion is reasonably low, up to 8% compared to a single instance database. CORBA
layer adds additional 5% overhead due to name referencing and object marshaling
and unmarshaling operations. The biggest performance degradation of a range of
10% is expected for the EGTV object exchange protocol which creates and maintains
virtual objects in the global schema as proxies of equivalent objects in the canonical
layer databases. Therefore, it is estimated that the total performance degradation
of a networked EGTV system compared to the existing single node setup would be
23%. However, this can be reduced by optimising the prototype implementation.
Firstly, TCP/IP performance degradation can be reduced by implementing faster
lGBs networks or aggregating multiple existing lOOMBs communication channels.
Secondly, implementation of global caching for EGTV virtual objects and optimisa
tion the existing algorithms for maintaining proxy objects could significantly improve
the overall response time of the interconnection system.

5. Update Queries. This group of queries facilitate update, create and delete op
erations on EGTV objects. The results obtained reflect total performance of the
EGTV system, as the execution time is influenced by the performance of both Ver-

Chapter 6: Implementation 138

sant database and the EGTV model that maintains object references. Each update
was propagated through EGTV objects to Versant database, where it was applied to
corresponding persistent objects. Performance tests updated three textual attributes
of 100 EGTV objects in 4 seconds. The execution time includes time required to
materialise EGTV objects in the canonical schema, and time required to propa
gate updates from EGTV objects back to persistent objects in the local database.
Transaction control is mandatory for updatable queries and can also increase the
overall processing time. Thus, update operations incur additional overhead in writ
ing objects back to the database and maintaining transactional consistency. Update
experiments were consistent with the initial estimations as the write segment of an
update EQL operation takes significantly more time then the initial object mate
rialisation and evaluation of the query extent. This is largely due to the initial
implementation of the EGTV model, where all updates are immediately propagated
to local databases and transaction consistency is maintained between multiple con
current sessions. This can be improved by caching updates in the EGTV model and
propagating them to local database only when write access is requested by other
concurrent transactions. Furthermore, the implementation of the transaction sys
tem can be further optimised to result in better response time when applying locking
mechanisms to EGTV objects.

6 .6 C o n c lu s io n s

In this chapter an overview of the EGTV deployment architecture was presented, and
this was followed by a description the prototype system. This included the full specifi
cation of schema definition process and the analysis of query processing algorithms for
both local and global queries. Furthermore, a transaction control system was also devel
oped to support update operations. By providing generic update operations, one of the
object-orientation design principles, data encapsulation, is compromised. However, we
and other researchers ([Sub96, RKBOlb]) regard the encapsulation of data in a database
as an unnecessary requirement, as views and security procedures can be used to emulate
data hiding. Therefore, simple views (stored EQL queries) were provided in the EGTV
prototype to facilitate schema restructuring and integration operations.

A description of the prototype environment and experiments were also provided. This
chapter has demonstrated that the research ideas developed in this thesis are imple-
mentable, and limited experiments demonstrate that even a crude query evaluation strat
egy (in terms of optimisation) can provide acceptable results. However, query optimisation
and a strategy for caching updates on virtual objects in global schema provide interesting
areas for further research. Suggestions as to how this research could progress are offered
in the final chapter.

C h a p t e r 7

Conclusions

The aim of this research was to demonstrate that an object-oriented canonical query
language can be developed to facilitate efficient queries and updates on distributed multi-
media objects. Unlike other research projects, one objective of our research was to provide
dynamic extensibility where the behaviour of query language operators can be redefined
independently of the language itself. Thus, the EQL language can be easily extended to
support other application domains apart from multimedia. A second objective was to en
able this language to operate in the federated environment. Therefore, a metamodel and
a schema definition language were defined to facilitate construction of a global schema,
while a transaction control system was implemented to support updatability at the global
layer. Furthermore, the EQL language also provided full orthogonality between query in
puts and results, while its algebraic form was defined to facilitate formal and unambiguous
query representation. The limited prototype system provided us with a platform both to
test the ability to construct various multimedia schemas and to measure the performance
or queries. In this chapter a review of the thesis is presented in §7.1; options for further
research are discussed in §7.2; while in §7.3 final conclusions are offered.

7 .1 T h e s i s S u m m a r y

In chapter one, an introduction to federated database systems was presented and existing
standards for multimedia archiving and retrieving were discussed. It was concluded that
existing multimedia repositories do not provide the required level of interoperability and
query features. Therefore, a distributed database storage of large multimedia data was
proposed. The Sheth and Larson architecture adopted by many researchers was described;
requirements for canonical data model were discussed; and a hypothesis for this research
emerged. Federated database systems form an important research topic because they
provide a solution to many industrial problems. Previous canonical models were either
relational models which were unable to manage the semantics of participating systems,

1 3 9

Chapter 7: Conclusions 1 4 0

or object models which failed to conform to any standard. Presently, two standards ex
ist for object-based database models: the SQL:1999 object-relational standard and the
ODMG 3.0 object-oriented database standard. However, neither of these models satisfy
all requirements for a canonical data model, nor do they provide efficient multimedia ma
nipulation and global schema construction features. Thus, the choice was to define a new
federated model that includes canonical data and metadata representation for multimedia
objects stored in standard 0-0 and O-R databases. The aim was to provide generic query
capabilities for a set of inexpensive object-based databases organised into the federated
system, and demonstrate its usability through a working prototype.

In chapter two, several research projects covering object query languages, metamodels,
federated database architectures and multimedia databases were analysed and discussed.
An examination and comparison of some of the existing global query languages was con
ducted to uncover how query definitions and their metadata representations were specified
in each project, and to assess their execution capabilities. The output from this anal
ysis provided the requirements for the design of a query language for this research. It
was also concluded that a metadata repository and language for global schema specifica
tion are required prerequisites for defining any query language in the EGTV architecture.
Further requirements were provided by the examination of federated database systems
and multimedia repositories in previous chapter. Both chapters are used to prepare the
introduction to the metamodel, schema definition language and finally the global query
language in chapters three, four and five.

Chapter three presented a new metamodel developed to capture and store metadata from
multiple heterogeneous database schemas. It was based upon the ODMG metamodel,
but improved with a more simplified design, the ability to represent multimedia data
types and with an extended support for object views. A metamodel is an important
prerequisite for the definition of the global query language as it stores metadata required
for generic (run-time) querying. The meta-metamodel was also specified to represent
different metamodel versions. Metamodel mapping rules were defined for both object-
oriented and object-relational databases and represented in the form of simple mapping
language. This provided us with the ability to create EGTV multimedia databases and
map their schemas to existing object-oriented and object-relational schema repositories.

A schema definition language for an EGTV federation was presented in chapter four.
This language was designed to facilitate an object schema definition in an implementation
independent format. Both Canonical Layer base schemas and global virtual schemas can be
specified in the ODLx language, that also supports multimedia data types. The language
was based upon the XML as it represented a standard for encoding and distributing data
across various platforms and the Internet. Furthermore, it was supported with an XML
Schema definition which provided a full syntax definition and specified rules for integrity
constraints enforcement. The ODLx language was mapped to the EGTV metamodel, for
which a simple mapping language was developed. Base schemas were then easily mapped

Chapter 7: Conclusions 141

to 0 - 0 and 0 -R databases using metamodel mapping rules defined in previous chapter,

while global schemas were constructed as a union of v ir tu a l class definitions.

In chapter five we presented the EQ L query language th a t facilitates querying of 0 - 0 and

0 -R schemas in a database and p la tfo rm independent manner. The EQ L preserved the

fam ilia r OQL syntax, bu t resolved some of the negative issues associated w ith OQL and

made it orthogonal in terms of query inpu t and output. Furthermore, i t also provided

a clear semantics for the upda tab ility of query results, facilita ted prim itives for object

creation, update and deletion, and included operation invocation support. EQ L support

for m ultim edia data types and ab ility to define custom operators were crucial when con

structing and querying m ultim edia database federations. The EQ L language was also

supported w ith a query algebra, a formal language th a t can unambiguously define queries

on a database. The EQ L algebra was defined as a set of atom ic operators th a t manipulate

inpu t sets of data to construct results. A ll algebraic operators are fu lly orthogonal as the ir

inputs and outputs are E G T V classes which is identical to inputs and outputs of the EQL

query language.

Chapter six discussed the im plem entation of the query system. F irstly, the overall de

ployment architecture o f the E G T V pro ject was presented and this was then followed by

a description of the prototype system. This included the fu ll specification of schema def

in itio n process and the analysis of query processing algorithms for both local and global

queries. A transaction contro l system developed to support global updates was also dis

cussed in this chapter. Chapter six then provided details of a prototype implementation

which was constructed using m ultim edia data extracted from the Fischlar system. Three

separate m ultim edia schemas were constructed and queried to test the performance of

different query types, and to provide data for fu ture research into areas such as query

optim isation and E G T V object caching.

The in it ia l hypothesis of th is research was tha t an object query language can be defined

to provide efficient queries and updates for large m ultim edia database federations. There

fore, a research methodology set to verify th is hypothesis identified metamodel and schema

defin ition language as im portan t prerequisites for construction of such a query language.

Thus, a new m ultim edia metamodel was firs tly specified and then implemented to enable

run-tim e access to schema metadata and to provide an infrastructure for generic querying.

Furthermore, the O DLz schema defin ition language enabled specification of global m ul

tim edia schemas in a p la tfo rm and database independent form at. These two provided a

foundation upon which the EQ L query language was defined. I t delivered simple SQL-like

query interface and an orthogonal type system th a t facilitates easy subquerying. These

features are combined w ith the ab ility to customise query language operators (at the

data type level) to deliver powerful too l for querying and updating federated m ultim edia

repositories. However, the existing implementation of the EQ L does not facilita te any

query optim isation strategy which lim its the overall performance of the system. Further

more, global m ultim edia schemas are created using simple (one v irtu a l class) views tha t

Chapter 7: Conclusions 1 4 2

can lim it schema restructuring capabilities of the federation. A lthough the prim ary goal

of th is research has been achieved and the in itia l hypothesis verified, some open issues

related m ain ly to performance of the prototype and optim isation strategies need to be

fu rther addressed. These and other issues are identified as areas for fu ture improvements

and are thoroughly discussed in the remainder of th is chapter.

7 .2 A r e a s fo r F u r t h e r R e s e a r c h

Object-based database systems are rap id ly becoming a standard storage mechanisms in the

database world. However, th is is p rim arily due to recent expansion in object-relational

database models and the increasing trend of the ir standardisation. W hile pure object-

oriented O D M G databases struggle to make an impact, the irony is th a t the relational

database com m unity is moving closer to the usage and storage of objects. The object-

relational model has already been standardised in the form of SQL:1999 specification, and

m ajor re lational database vendors are starting to implement i t in the ir database servers.

This trend w ill lead to gradual evolution of re lational database systems, u n til the object

interface becomes standard and pure re lational tables become obsolete.

A new trend in the database world is the arriva l of semi-structured and X M L databases.

These systems store and query semi-structured data in its native representation and do not

a ttem pt to restructure or convert i t to another form at (i.e. relational). A lthough database

representation and query interface for semi-structured data are not yet standardised, this

field offers a m ajor po ten tia l for future expansion. Current development in th is area is

m ain ly focused on independent academic and non-commercial projects (w ith an exception

of Tamino), while mainstream database vendors are s t ill lagging behind. However, the

same trend as w ith object-based databases can be observed here. A lthough, standalone

independent databases (such as eXist and Xindice) are firs t to deliver workable prototypes,

i t may well be the big re lational database vendors who w ill eventually pu t th is technology

to mainstream users, and in it ia l signs are already evident. M ost mainstream relational

databases are now able to provide some form of interfacing between re lational and semi

structured data representations, while more advanced integration mechanisms are expected

soon.

Support for semi-structured data. The expansion o f Internet, and web-based tech

nologies dram atica lly increased the amount of data stored in H T M L, X M L and other

semi-structured representations. This trend is also evident in the m ultim edia domain

where hypertext is commonly used to integrate different m ultim edia contents in to a single

browsable document, and where X M L encoding of M PEG -7 [Mar02] is a standard way

of representing content specific video metadata. Some aspects of th is trend were already

identified in the Hera pro ject [VH02] assessed in chapter tree. However, the existing im

plementation of the E G T V federated system can only manipulate structured database

Chapter 7: Conclusions 1 4 3

schemas where data is encapsulated as objects. Therefore, E G T V system could possi

b ly be enhanced w ith support for storing and querying semi-structured m ultim edia data.

However, this extension would have im plications to all segments of the E G T V architec

ture. Extensions at the database level should include development of an integration layer to

fac ilita te incorporation of native X M L databases as new data sources for the E G T V federa

tion. A more complex problem would be canonical representation for semi-structured data

and its in tegration w ith the existing structured database schemas. One option [LAW99]

is to w rap semi-structured data in to generic objects and then provide connection points

between structured and semi-structured segments o f the integrated schema. M etadata in

tegration for semi-structured data is another area o f research where issues such as E G TV

metamodel in tegration w ith the X M L Schema standard, support for semi-structured data

types (e.g. M PEG -7), and construction o f global schemas must be investigated. Finally,

extensions to the EQ L language should be defined to facilita te querying and updating of

semi-structured m ultim edia data. This should include navigation through hyperlinks and

transaction control for updates on semi-structured data.

Query optimisation. A topic which has not been covered in this research is tha t of the

optim isation when processing EQ L queries. There are several areas where th is research

could be focused, ranging from optim isation of query execution plans to more efficient

caching algorithms for m ateria lisation of E G T V objects.

• Query rewriting.
This involves transform ing query statements in to a form which gives better per

formance. Traditionally, th is involves placing selections before joins, but for some

systems, i t may be possible to provide query predicates to reduce the amount of

locking at the local level, and m inim ise data retrieval at the canonical level.

• Access to index structures in local databases.
Unfortunately, some local database systems may not provide index inform ation, and

some databases may drop or change an index during the life tim e of the database

system. A dynamic approach m ight involve the analysis of EQ L statements of current

applications, and extending the O bject Manager processor to detect the presence of

indexes in local databases and make th is in form ation available to the query processor.

• Improved algorithms for join operations.
Techniques such as hash jo in and merge jo in algorithms can be used to improve

query performance when jo in ing large collections of data.

• Behaviour analysis.
EQ L language defines most of its operators as behaviour of data types. Th is ap

proach benefits in fle x ib ility and adaptab ility o f the query language, b u t presents a

challenge for query optim isation. Behaviour definitions are encapsulated w ith in their

Chapter 7: Conclusions 1 4 4

data types and therefore cannot be analysed by the query optim iser. Thus, a query

optim iser is unable to evaluate the performance im pact of these behaviour operations

and generate alternative execution plans. One solution is to generate behaviour spe

cific metadata. This metadata is created at compile tim e and contains in form ation

on classes tha t are accessed from w ith in the behaviour code and on the type of tha t

access (i.e. read, update, object m aterialisation, property de-referencing, etc.). The

other approach could involve performance analysis of behaviour invocations. Con

secutive behaviour executions can bu ild up reliable statistica l data th a t can be then

used for fu ture query optim isations.

• Object caching.
E G T V objects are closed and released (from canonical and global schemas) when

the user commits a transaction or has finished working w ith query results. I t should

be possible for some local database systems to perm it the materialised objects to

remain in Canonical Layer schemas u n til an update takes place at the local database.

I t may also be possible to update the cached data using a system of triggers. I t is

like ly th a t th is is possible for some local systems, bu t may be im practica l for others.

Real-time wrappers for multimedia repositories. The existing implem entation re

quires th a t a ll m ultim edia data must be physically relocated to a set of 0 - 0 and 0 -R

databases. However, there could be situations where th is data relocation would be un

achievable, or where m ultim edia files would continue to be updated in the ir proprietary

repositories. Therefore, the E G T V system should provide real-time interfaces for such

repositories. This would expand the overall app licab ility of the E G T V system and provide

read-only querying of m ultim edia data stored in the ir native repositories. Development

of the object wrapper for Oracle Video Server should be the prio rity , bu t should later be

followed by implementations for other multimedia, repositories integrated to the E G T V

system. However, the performance and usability of these wrappers must be tested.

Advanced object view system. The view system for E G T V is based upon simple

views th a t evaluate to a single v ir tu a l class only. The main lim ita tio n of th is approach

is the in a b ility to define relationships between v irtu a l classes in the global schema. One

solution would be the expansion of the E G T V view system to support more complex

schema views as provided in [RKBOla]. In th is scenario, each schema view would evaluate

to a set of interrelated v ir tu a l classes. A lthough schema views can already be defined in the

E G T V metamodel, they are not supported in other components of the E G T V architecture.

Therefore an extension of the O D Lx schema defin ition language is required to facilitate

syntactic and semantic defin ition of these views. A n alternative solution would investigate

the possib ility of adding new relationships to existing v ir tu a l classes in the global schema,

created as results of simple (class) views.

Chapter 7: Conclusions 145

Transaction processing. The current im plem entation o f the E G T V transaction sys

tem requires th a t a ll local databases support s tric t two-phase locking and the two-phase

commit protocol (either provided native ly or simulated). This can prove to be a lim it

ing factor when selecting database systems for m ultim edia storage, as not a ll databases

fu lf il these s tric t transaction requirements. The problem is especially evident when 0 - 0

and 0 -R databases at the Storage Layer act only as object wrappers for m ultim edia data

externally stored in proprie tary repositories w ith lim ited transaction support. One solu

tion would be to relax the existing transaction requirements by implementing support for

compensated and resubm itted transactions. This approach eliminates the requirement for

two-phase commit protocol and s tric t two-phase locking making the E G T V transaction

system applicable to larger number of existing database systems. The area of compen

sating transactions has already been extensively researched in projects such as A Q U A

[NZ96], InterBase [MBE96] and others. Therefore, the ir experiences should be assessed

and adapted to support m ultim edia transactions in the E G T V federated system. The

other area of possible research is the investigation o f specific transaction mechanisms tha t

can be applied to semi-structured data and X M L documents stored in the E G T V federated

system. This research would also require relaxation o f existing transaction rules, as semi

structured data does not conform to existing database transaction standards [YEHOO].

External layer. A n external layer is not defined in the current version of the E G T V

federated architecture. Therefore a ll federated clients are required to use a native C + +

object A P I as the ir only interface to the system. However, there is an increased demand

for representing query results in the X M L form at as th is would enable a more diverse

set of clients to access E G T V federation. Thus, an external layer should be constructed

to transform existing E G T V schemas to a X M L representation. This would then allow

construction of a query interface th a t could use standard XQuery and X P ath languages

to interrogate E G T V global schemas. Since these two languages do not facilita te updates

and transactions, extensions must also be investigated. Furthermore, a SOAP-based ob

ject exchange protocol should be considered as a replacement to the existing CORBA

implementation. This protocol would be used for communication between X M L enabled

clients and the newly constructed external layer o f the E G T V federated architecture.

Extending the EQL language with grouping predicates. The current specifica

tio n of the E Q L query language does not provide support for the predicates g ro u p b y

and h a v in g . This is due to the inab ility o f the E G T V reference-based model to guaran

tee upda tab ility of results for grouping queries. We now briefly explain this issue. The

evaluation of a grouping query starts w ith the partition ing of a source object extent in to

m ultip le groups (according to the grouping condition), and then one v irtu a l object is gen

erated as an aggregate result for each of these groups. However, properties of these result

objects cannot be unambiguously mapped to corresponding properties of base objects from

Chapter 7: Conclusions 146

which they were constructed as m ultip le mapping options exist. Thus, i t is not possible

to define update semantics as i t is unclear how updates on the result v ir tu a l objects can

be propagated to its base objects. This is the m ain reason th a t prevented inclusion of

grouping predicates to the current specification of EQ L language. However, as signifi

cance and usability of these predicates is high, the resolution of the problem should be

a p rio rity in fu ture versions of the EQ L language. A simple solution would be to disal

low any updates 011 results of grouping queries, b u t th is is perceived as too restrictive.

Therefore, a new approach should be developed where a special o n _ u p d a t e rule would

be constructed to unambiguously define update semantics o f stored queries. This rule

would be triggered each tim e a property o f an object generated as result of grouping query

is updated. The o n _ u p d a te rule should override the default update behaviour and i t

could be implemented as a special operator of each database type. This could be further

extended to provide custom upda tab ility semantic for any v ir tu a l object generated as a

result of a stored query. F inally, the E Q L algebra should also be updated to support

grouping operators.

A graphical tool for schema definition and integration. A graphical too l to assist

w ith defin ition of external schemas and w ith the ir subsequent integration into a global

schema would be beneficial. This too l should be capable of reading existing ODLx schema

files, transform ing them in to a graphical representation where they could be easily modified

and w ritin g those modifications back to O D Lx form at. Furthermore, the graphical too l

should be also capable of generating new O D Lx schemas and assisting adm inistrators in

defining export and global schemas. The later func tiona lity should include features for

detecting semantic discrepancies during schema integration and i t should provide some

assistance in resolving these issues.

7 .3 F in a l T h o u g h t s

In th is research, great emphasis has been placed on issues such as database representation

for m ultim edia collections, the pub lication of a semantically rich metamodel, the defin ition

o f global schemas th a t integrate m ultip le m ultim edia repositories, and fina lly specification

o f a new object query language.

Some form of object-based storage mechanisms represent the future for database tech

nology, and w ith the arriva l of the W orld W ide Web (W W W) as an inform ation sharing

medium, the storage o f new data types cannot be served by older, trad itiona l systems such

as re lational databases. However, the arriva l of novel technologies tha t store and query

semi-structured data in the ir native representations introduces new challenges for system

integrators. This is especially evident in the m ultim edia area where the integration of

m ultim edia and hypermedia systems has already begun. The challenge to integrate these

more complex forms of data is like ly to arise sooner rather than later.

Bibliography

[Alt94]

[ANT02]

[BE96]

[Bec02a]

[Bec02b]

[BFN94]

[BH87]

[BHP92]

[Boo94]

[BP97]

[BR01]

Altinente l, M ., Design and implementation of a Dynamic Function Linker
and an Algebra for an object-oriented database system, M aster’s thesis, M idd le

East Technical University, 1994.

A N T LR , ANTLR Reference Manual, A N T LR , 2002.

Bukhres, O. and E lm agarm id, A ., Object Oriented Multidatabase Systems: A
Solution for Advanced Applications, Prentice H all, 1996.

Becarevic, D ., A M etadata Model for a M ultim eda Database Federa

tion, in Technical Report ISG-02-01, pp. 1-13, 2002, U R L h t t p : / / w w w .

c o m p u t in g .d c u . ie / ~ i s g .

Becarevic, D ., The Federated Database System For M ultim edia, in PhD
Transfer Report, pp. 1-23, 2002, U R L h t t p : / /w w w . c o m p u t in g . d c u . i e /

~ is g .

Busse, R., Fankhauser, P. and Neuhold, E., Federated Schemata in O DM G,

in Proceedings of the Second International East/West Database Workshop,
pp. 356-379, Springer, 1994.

Bernstein, P. and Hadzilacos, V ., Concurrency Control and Recovery in
Database Systems, Addison Wesley, 1987.

B righ t, M ., Hurson, A . and Pakzad, S., A Taxonomy and Current Issues in

M ultidatabase Systems, in IEEE Computer, vol. 25(3), pp. 50-60, 1992.

Booch, G., Object-Oriented Analysis And Design with Applications (2nd edi
tion), Benjam in Cummings, 1994.

Blaha, M. and Premerlani, W ., Object-Oriented Modeling and Design for
Database Applications, Prentice Hall, 1997.

Becarevic, D. and Roantree, M ., D is tribu ted Transactions for ODM G Feder

ated Databases, in Zielinski, K ., Geihs, K . and Laurentowski, A ., eds., DAIS,
vol. 198 of IFIP Conference Proceedings, pp. 317-322, K luwer, 2001.

147

http://www

Bibliography 148

[BR04a]

[BR04b]

[BRJ99]

[CB99]

[CBS96]

[CHS+95]

[DAO+95]

[DD92]

[DDK+96]

[D 0A 094]

[EN94]

[EP97]

[ER98]

[Geo91]

Becarevic, D. and Roantree, M ., A M etadata Approach to M ultim edia

Database Federations, in Information and Technology Journal, vol. 46(3),

p p .195-207, 2004.

Becarevic, D. and Roantree, M ., The E G T V Query Language, in Proceedings
of the 21th British National Conferenc on Databases (BNCOD 21), pp. 45-56,

Springer, 2004.

Booch, G., Rumbaugh, J. and Jacobson, I., The Unified Modeling Language
User Guide, Addison-Wesley, 1999.

Catell, R. and Barry, D., The Object Data Standard: OD MG 3.0, Morgan

Kaufmann, 1999.

Connolly, T ., Begg, C. and Strachan, A., Database Systems: A Practical Ap
proach to Design, Implementation and Management, Addison Wesley, 1996.

Carey, M . et al., Towards Heterogeneous M ultim ed ia In form ation Systems:

The Garlic Approach, in Proceedings of the Fifth International Workshop on
Research Issues in Data Engineering (RIDE): Distributed Object Manage
ment, pp. 124-131, IEEE-CS, 1995.

Dogac, A . et al., M E T U Object-Oriented DBM S Kernel, in Proceedings of the
6th International Conference on Database and Expert Systems Applications,
pp. 14-27, Springer Verlag, 1995.

Date, C. and Darwen, H., Relational Database Writings, 1989-1991, Addison-

Wesley, 1992.

Dogac, A. et al., A M ultidatabase System Im plem entation on CO RBA, in

6th Int Workshop on Research Issues in Data Engineering: Nontraditional
Database Systems, pp. 2-11, 1996.

Dogac, A. et al., M E T U Object-Oriented DBMS, in On Object-Oriented
Database Systems, pp. 513-541, Springer Verlag, 1994.

Elmasri, R. and Navatbe, S., Fundamentals of Database Systems, Addison

Wesley, 1994.

Eriksson, H.-E. and Penker, M ., UML Toolkit, W iley, 1997.

Eaglestone, B . and R idley, M ., Object Databases: An Introduction, McGraw-

H ill, 1998.

Georgakopoulos, D., M ultidatabase Recoverability and Recovery, in Proceed
ings of the First International Workshop on Interoperability in Multidatabase
Systems, 1991.

Bibliography 1 4 9

[Ges91]

[GGF+96]

[GP99]

[GRS94]

[HB96]

[HMN+99]

[HRS02]

[HV99]

[IBM01]

[IS086]

[IS092]

[IS002a]

[IS002b]

[IS002c]

Gessert, G. H., Handling M issing D ata by Using Stored T ru th Values, in

SIGMOD Record, vol. 20(3), pp. 30-42, 1991.

Gardarin, G. et al., IRO-DB : A Distributed System Federating Object and
Relational Databases, pp. 684-709, 1996.

Gulutzan, P. and Pelzer, T ., SQL-99 Complete, Really, R & D Books, 1999.

Georgakopoulos, D., Rusinkiewicz, M. and Sheth, A. P., Using Tickets to

Enforce the Seria lizability o f M ultidatabase Transactions, in Knowledge and
Data Engineering, vol. 6(1), pp. 166-180, 1994.

Hurson, A. R. and B righ t, M . W ., Object-Oriented Multidatabase Systems,

in [BE96], pp. 1-36, 1996.

Haas, L. et al., Transform ing Heterogeneous D ata w ith Database Middleware:

Beyond Integration, in IEEE Data Engineering Bulletin, vol. 22(1), pp. 31-

36, 1999.

Habela, P., Roantree, M. and Subieta, K ., F la tten ing the Metamodel for

Object Databases, in Proceedings of the Sixth East-European Conference on
Advances in Databases and Information Systems (ADBIS 2002), pp. 263-276,

Springer, 2002.

Henning, M . and V inoski, S., Advanced CORBA Programming with C++,
Addison-Wesley, 1999.

IB M Corporation, Informix DataBlade Version 8.11, 2001.

ISO-8879, Information Processing - Text and Office Information Systems -
Standard Generealized Markup Language, In te rna l Standards Organization,

1986.

ISO-10744, Hyperm.edia/Time-based Structuring Language: HyTime, In terna l

Standards Organization, 1992.

ISO/IEC-13249-2:2002, Information technology - Database languages - SQL
Multimedia and Application Packages - Part 2: Full-Text, 2nd edition, In te r

nal O rganization for Standardization, 2002.

ISO/IEC-13249-3:2002, Information technology - Database languages - SQL
Multimedia and Application Packages - Part 3: Spatial, 2nd edition, In terna l

Organization for Standardization, 2002.

ISO/IEC-13249-5:2002, Information technology - Database languages - SQL
Multimedia and Application Packages - Part 2: Still Image, 2nd edition,
In terna l O rganization for Standardization, 2002.

Bibliography 150

[Jor98]

[KAC+02]

[Kam04]

[KBR03]

[KK95]

[KLS03]

[KR01]

[KR03]

[LAW99]

[Lee98]

[LL098]

[LMS+93]

[L0S097]

Jordan, D., C++ Object Databases: Programming with the ODMG Standard,
Addison Wesley, 1998.

Karvounarakis, G. et al., RQL: a declarative query language for RDF, in Pro
ceedings of the 11th International World Wide Web Conference, WWW2002,
pp. 592-603, A C M Press, 2002.

Kam bur, D., Behaviour in Object Views, Ph.D. thesis, School of Computing,

D ub lin C ity University, 2004.

Kam bur, D., Becarevic, D. and Roantree, M ., A n Object Model Interface

for Supporting M ethod Storage, in In proceedings of the 7th East European
Conference on Advances in Databases and Information Systems ADBIS, 2003.

K im , W . and Kelley, W ., On View Support in Object-Oriented Databases
Systems, pp. 108-129, 1995.

Kozankiewicz, H., Leszczylowski, J. and Subieta, K ., Updatable X M L Views,

in Proceedings of the Seventh East-European Conference on Advances in
Databases and Information Systems (ADBIS 2003), pp. 381-399, Springer,

2003.

Kam bur, D. and Roantree, M ., Using stored behaviour in object-oriented

databases, in Proceedings of the 4th Workshop EFIS 2001, pp. 61-69, IOS

Press, 2001.

Kam bur, D. and Roantree, M ., Storage of complex business rules in object

databases, in 5th International Conference on Enterprise Information Sys
tems (ICEIS 2003), 2003.

Lah iri, T ., Ab itebou l, S. and W idom , J., Ozone: Integrating Structured and

Semistructured Data, in Proceedings of the 7th International Workshop on
Database Programming Languages (DBPL’99), pp. 297-323, Springer, 1999.

Lee, J., Parallel Video Servers: A Tutoria l, in IEEE Multimedia, vol. 5(2),

pp. 20-28, 1998.

L i, H., L iu , C. and Orlowska, M ., A Query System for Object-Relational

Databases, in Proceedings of the Australia Database Conference (ADC98),
pp. 39-50, Springer, 1998.

Leung, T . et al., The A Q U A Data Model and Algebra, in Workshop on
Database Programming Languages, pp. 157-175, 1993.

L i, J. et al., M oql: A M ultim ed ia Query Language, in T R - 9 7 - 0 1 , pp. 1-10,

1997, U R L h t t p : / /w w w . c s . u a l b e r t a . c a / ~ d u a n e / p d f /1 9 9 7 w m m is .

pd f .

http://www.cs.ualberta.ca/~duane/pdf/1997wmmis

Bibliography 151

[LSO+ 00] Lee, H. et al., The Fischiar D ig ita l Video Recording, Analysis, and Brows

ing System, in Proceedings of the RIAO 2000 - Content-based Multimedia
Information Access, pp. 1390-1399, 2000.

[Mar02] M artinez, J., M PEG -7 Overview (version 8), in Online document, 2002,

U R L h t t p : / /m p e g . t e l e c o m i t a l i a l a b . c o m /s ta n d a rd s /m p e g -7 /

m p e g -7 . htm .

[MBE96] M ullen, J., Bukhres, O. and Elmagarm id, A., InterBase: A M ultidatabase

System, in [BE96], pp. 652-683, 1996.

[Mel03] M elton, J., Advanced SQL:1999 Understanding Object-Relational and Other
Advanced Features, M organ Kaufmann, 2003.

[Mot87] M otro , A., Superviews: V ir tu a l Integration of M u ltip le Databases, in IEEE
Transactions on Software Engineering, vol. 13(7), pp. 785-798, 1987.

[MS92] M elton, J. and Simon, A ., Understanding the New SQL: A Complete Guide,
M organ Kaufmann, 1992.

[NKOD96] Nural, S. et al., Query decomposition and Processing in Multidatabase Sys

tems, in Proceedings of Object Oriented Database Symposium of the 3rd Euro
pean Joint Conference on Engineering Systems Design and Analysis, Prance,
pp. 41-52, 1996.

[NZ96] Nodine, M. and Zdonik, S., The Im pact of Transaction Management on

Object-Oriented M ultidatabase Views, in [BE96], pp. 57-104, 1996.

[Ode95] Odell, J., M eta-M odeling, in OOPSLA ’95 Workshop on Metamodeling in OO,
1995.

[OH98] O rfa li, R. and Harkey, D., Client/Server Programming with Java and
CORBA, W iley, 1998.

[O M M +O l] O ’Connor, N. et al., Fischiar: an on-line system for indexing and browsing

broadcast television content, in Proceedings of the 26th International Confer
ence on Acoustics, Speech, and Signal Processing (ICASSP 2001), vol. 3, pp.

1633-1636, IEEE , 2001.

[0ra02a] Oracle Coorporation, Oracle9i InterMedia Reference Release 9.2, 2002.

[0ra02b] Oracle Coorporation, Oracle9i SQL Reference Release 9.2, 2002.

[OSEM+ 96] Ozsu, M. et al., Database Management Support for a News-on-Demand Ap

plication, in SPIE Procceedings of the First International Symposium on
Technologies and Systems for Voice, Video, and Data Communications - Mul
timedia: Full-Service Impact on Business, Education, and the Home, Vol.
2617, pp. 24-32, 1996.

Bibliography 152

[0V91]

[OV99]

[PBE95]

[RB02]

[RKBOla]

[RKBOlb]

[RS02]

[SBMS94]

[SCGS91]

[SFF95]

[Sie96]

[SKL95]

[SKLU96]

Ozsu, T . and Valduriez, P., D is tribu ted Database Systems: W here Are We

Now?, in IEEE Computer, vol. 12(3), pp. 68-78, 1991.

Ozsu, T . and Valduriez, P., Principles of Distributed Database Syst,em.s, Pren

tice Hall, 1999.

Pitoura, E., Bukhres, O. and Elmagarm id, A ., Object orientation in m u lti

database systems, in ACM Computing Surveys, vol. 27(2), pp. 141-195, 1995.

Roantree, M . and Becarevic, D., M etadata Usage in M ultim edia Federations,

in First International Meta informatics Symposium (MIS 2002), pp. 132-147,

2002.

Roantree, M ., Kennedy, J. and Barclay, P., Integrating View Schemata Using

an Extended ODL, in Proceedings of the 9th International IFCIS Conference
on Cooperative Information Systems (CoopIS), pp. 150-162, Springer, 2001.

Roantree, M ., Kennedy, J. and Barclay, P., Using a M etadata Software Layer

in In fo rm ation Systems Integration, in Proceedings of the 13th International
Conference on Advanced Information Systems Integration (CAiSE 2001), pp.

299-314, Springer, 2001.

Roantree, M . and Smeaton, A., Research in In form ation Management at

D ub lin C ity University, in Sigmod Record, vol. 31(4), 2002.

Subieta, K . et al., A Stack-Based Approach to Query Languages, in Proceed
ings of the Second International East/West Workshop, pp. 159-180, Springer

Verlag, 1994.

Saltor, F., Castellanos, M . and Garcia-Solaco, M ., S u itab ility of D ata Models

as Canonical Models for Federated Databases, in SIGMOD Record, vol. 20(4),

pp. 44-48, 1991.

Smahi, V ., Fessy, J. and Finance, B., Query Processing in IRO -DB, in Pro
ceedings of the Fourth International Conference on Deductive and Object-
Oriented Databases, DOOD’95, pp. 299-318, Springer, 1995.

Siegel, J., Corba Fundamentals and Programming, W iley, 1996.

Subieta, K ., Kambayashi, Y . and Leszczylowski, J., Procedures in Object-

Oriented Query Languages, in Proceedings of the 21st International Confer
ence on Very Large Data Bases, pp. 182-193, Morgan Kaufmann, 1995.

Subieta, K . et al., N u ll Values in O bject Bases: Pulling Out the Head from

the Sand, in Technical Report, pp. 1-19, 1996, U R L h t t p : //w w w . ip ip a n .

w a w .p i / - s u b ie ta /E n g P a p e r s / in d e x .h tm l .

Bibliography 153

[SL90]

[Sto96]

[Sub96j

[TW97]

[VBH03]

[VH01]

[VH02]

[WLE+97]

[Wor99]

[WorOO]

[WorOl]

[WR03]

Sheth, A. and Larson, J., Federated Database Systems for Managing Dis

tribu ted , heterogeneous and Autonomous Databases, in , vol. 22(3), pp. 183-

226, 1990.

Stonebraker, M., Object relational DBMSs the next great, wave, Morgan Kauf

mann, 1996.

Subieta, K ., Remarks on the O D M G Standard, in Technical Report, pp. 1-18,

1996, U R L h t t p : / / w w w . i p ip a n . waw. p i / s u b i e t a .

Tesch, T . and Wasch, J., G lobal Nested Transaction Management for ODMG-

Com pliant M ulti-Database Systems, in Proceedings of the Sixth International
Conference on Information and Knowledge Management (CIKM97), pp. 67-

74, A C M Press, 1997.

Vdovjak, R., Barna, P. and Houben, G.-J., Designing a Federated M ultim edia

In form ation System on the Semantic Web, in Proceedings of the Advanced In
formation Systems Engineering, 15th International Conference, CAiSE 2003,
pp. 357-373, Springer, 2003.

Vdovjak, R. and Houben, G.-J., RDF-Based A rchitecture for Semantic In

tegration of Heterogeneous In fo rm ation Sources, in Proceedings of the Inter
national Workshop on Information Integration on the Web 2001, pp. 51-57,

Springer, 2001.

Vdovjak, R. and Houben, G.-J., Provid ing the Semantic Layer for W IS De

sign, in Proceedings of the Advanced Information Systems Engineering, 14th
International Conference, CAiSE 2002, pp. 584-599, Springer, 2002.

Wong, J. et al., Enabling Technology for D istribu ted M ultim ed ia Applica

tions, in IBM Systems Journal, vol. 36(4), pp. 489-507, 1997.

W orld W ide Web Consortium, Resource Description Framework (RDF)
Model and Syntax Specification, 1999.

W orld W ide Web Consortium, Resource Description Framework (RDF)
Schema Specification 1.0, 2000.

W orld W ide Web Consortium, XML Schema Parts 0-2 [Primer, Structures,
Datatypes], 2001.

Wang, L. and Roantree, M ., Designing Roles For Object-Relational

Databases, in Proceedings of the 5th Workshop EFIS 2003, pp. 106-116, IOS

Press, 2003.

Bibliography 154

[YEHOO] Younas, M., Eaglestone, B. and Holton, R., A Review of Multidatabase Trans
actions on the Web: Prom the ACID to the SACReD, in Proc.ecd.ings of the
17th British National Conferenc on Databases (BNCOD 17), pp. 140-152,
Springer, 2000.

[Zam02] Zamulin, A., An Object Algebra for the ODMG Standard, in Proceedings of
the 6th East European Conference on Advances in Databases and Information
Systems (ADBIS 2002), pp. 291-304, Springer, 2002.

EGTV M etamodel UML Diagram

A p p e n d i x A

155

Virtual connector

sys_MetaObject
name
metaType
virtualLevel
comment

sys_Property
accessKind
positi onNumber

isConstant
positi onNumber

sys_ Attribute
isConstant
isStatic

sys_Relationship
cardinality
isUnique
isOrdered

sysCol I ectionType sys_Primit!veType

traversai

sysJVlediaTypesys_KeyCol I ecti onType
mediaKind
encoding For mat
formatVersion
compression

I§
Cl
S'

contains 1 sys_ScopedObject

£
sys_Operation

result type isConstant
I n accessKind

positianN umber
isResultConstant

sysJVIethod sysOperator
methodKind operations nd

sysDatabaseSchema sys_SubSchema
databaseType sourceDatabase

isAbstract
operatorType
virtual Extent

CDCt-po
3DCl[t>

t-i
b
*s
I

An XML Schema Definition of the
ODLz Language

A p p e n d i x B

157

<?xml version=n1.0" encoding="UTF-8"?>
<xs : schema xmlns:xs="http://www.w 3 .org/2001/XMLSchema" elementFormDefault="qualified" at-
tributeFormDefault="unqualified">

<xs:annotation>
<xs: documentation xml :lang="en”>Definition of Primitive, Media, Class ans Collec

tion types</xs:documentation>
</xs:annotation>
<xs:complexType name="generalType”>

<xs: attribute name="name" type="xs: string" use="required"/>
</xs:complexType>
<xs: group name="attributeTypeGroup">

<xs:choice>
<xs:element name="primitiveType" type=ngeneralType"/>
<xs:element name="mediaType" type="generalType"/>
<xs: element name="collectionType" tvpe="collectionType"/>— >

</xs;choice>
</xs:group>
<xs: group nam&="parameterTypeGroup">

<xs:choice>
<xs: group ref="attributeXypeGroup"/>
<xs:element name="classType" type="generalType'V>

</xs:choice>
</x s :group>
<xs:complexType name="collectionType">

<xs:group ref="parameterTypeGroup"/>
<xs:attribute name="name" type="xs: string" use="requiredn/>

Appendix
B: An

XM
L

Schem
a

D
efinition

of
the

O
D

Lx
Language

http://www.w3.org/2001/XMLSchema

<xs: attribute name="comment" type="xs¡string" use="optional"/>
<xs: attribute name="size" type="xs: integer" use="optional" default="0"/>

</xs:complexType>
<xs:annotation>

<xs: documentation xml :lang="en">Operation result types, parameters, operators and meth-

</xs:annotation>
<xs:complexType name="returnValType">

<xs:group ref="parameterTypeGroup"/>
<xs¡attribute name="constant" type="xs:boolean" use="optional" default="false"/>

</xs:complexType>
<xs:complexType name="parameterType">

<xs:group ref="parameterTypeGroup"/>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs¡attribute name="comment" type="xs:string" use="optional"/>
<xs¡attribute name="constant" type="xs¡boolean" use="optional" default="false"/>

</xs¡complexType>
<xs¡group name="operationIypeGroup">

<xs:sequence>
<xs:element name=”returnVal” type="returnValType” minOccurs="On/>
<xs:element name="parameter" type="parameterType" min0ccurs="0” maxOccurs="unbounded"/>
<xs¡element name="code" minOccurs="0"/>

</xs¡sequence>
</xs;group>
<xs¡attributeGroup name="operationTypeAttrGroup">

<xs¡attribute name="name" type="xs¡string" use="required"/> g

ods</xs¡documentation>

Appendix
B: An

XM
L

Schema
Definition

of
the

O
D

Lx
Language

<xs: attribute narae="comment" type="xs: string" use="optional"/>
<xs: attribute name="constant" type="xs¡boolean" use="optional" default="false"/>
<xs: attribute name="accessKind" type="xs: string" use="optional" default="public"/>
<xs: attribute name="library" type="xs: string" use="optional"/>

</xs:attributeGroup>
<xs:complexType narae="operatorType">

<xs: group ref="operationTypeGroup"/>
<xs¡attributeGroup ref="operationTypeAttrGroup"/>
<xs: attribute name="operatorKind" type="xs: string" use=”required"/>

</xs:complexType>
<xs:complexType name="methodType">

<xs¡group ref="operationTypeGroup"/>
<xs¡attributeGroup ref="operationTypeAttrGroup"/>
<xs¡attribute name="methodKind" type="xs¡string” use="optional"/>

</xs¡complexType>
<xs¡annotation>

<xs¡documentation xml¡lang="en">Attribute, relationship and inheri
tance </ xs¡documentâtion>

</xs¡annotation>
<xs¡complexType name="attributeType">

<xs¡group ref="attributeTypeGroup"/>
<xs¡attribute name="name" type="xs¡string" use="required"/>
<xs¡attribute name="comment" type="xs¡string" use="optional"/>
<xs¡attribute name="constant" type="xs¡boolean" use="optional" default="false"/>
<xs¡attribute name="static" type="xs¡boolean" use="optional" default="false"/>
<xs¡attribute name="accessKind" type="xs¡string" use="optional" default="public"/>

Appendix
B: An

XML
Schema

Definition
of

the
O

D
Lx

Language

</xs:complexType>
<xs:complexType name="relationshipType">

<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="comment" type="xs:string" use="optional"/>
<xs:attribute name="traversal" type="xs:string" use="required"/>
<xs:attribute name="cardinality" type="xs:string" use="required"/>
<xs:attribute name="unique" type="xs¡boolean" use="optional" default="false"/>
<xs:attribute name="ordered" type="xs:boolean" use="optional" default="false"/>

</xs:complexType>
<xs:complexType name="inheritanceType">

<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="comment" type="xs:string" use="optional"/>
<xs:attribute name="inheritsFrom" type="xs:string" use="required"/>
<xs:attribute name="virtual" type="xs:boolean" use="optional" default="false"/>

</xs:complexType>
<xs:annotation>

<xs:documentation xml:lang="en">Class definition</xs:documentation>
</xs:annotation>
<xs:complexType name="importClassType">

<xs:attribute name="database" type="xs:string" use="required"/>
<xs:attribute name="schema" type="xs:string" use="required"/>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="comment" type="xs:string" use="optional"/>

</xs:complexType>
<xs:complexType name="classType">

<xs:choice maxOccurs="unbounded"> <2

Appendix
B: An

XM
L

Schema
Definition

of
the

O
D

Lx
Language

<xs¡element name="inheritance" type="inheritanceType" min0ccurs="0" maxOc-
cur5="unbounded"/>

<xs:element name="attribute" type="attributeType" min0ccurs="0" maxOccurs="unbounded"/>
<xs:element name="relationship" type="relationshipType". min0ccurs="0" maxOc-

curs="unbounded"/>
<xs:element name="method" type="methodType" min0ccurs="0" maxOccurs="unbounded"/>
<xs:element name="operator" type="operatorType" min0ccurs="0" maxOccurs="unbounded"/>

</xs:choice>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="comment" type="xs:string" use="optional"/>
<xs:attribute name="abstract" type="xs¡boolean" use="optional" default="false"/>

</xs:complexType>
<xs:complexType name="extentType">

<xs:simpleContent>
<xs:extension base="xs:anySimpleType"/>

</xs:simpleContent>
</xs:complexType>
<xs:complexType name="virtualClassType">

<xs:choice>
<xs:sequence>

<xs¡element name="extent" type="extentType"/>
<xs¡element name="method" type="methodType" min0ccurs="0" maxOccurs="unbounded"/>
<xs¡element name="operator" type="operatorType" minOccurs="0" maxOccurs="unbounded"/>

</xs¡sequence>
<xs:element name="importClass" type="importClassType"/>

</xs¡choice>

Appendix
B: An

XM
L

Schema
Deßnition

of
the

O
D

Lx
Language

<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="comment" type="xs:string" use="optional"/>

</xs:complexType>
<xs:complexType name="libraryType">

<xs:choice minOccurs="On maxOccurs="unbounded">
<xs¡element name="include" min0ccurs="0" maxOccurs="unbounded">

<xs:complexType>
<xs:attribute name="name" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>
<xs:element name="systemLibrary" min0ccurs="0" maxOccurs="unbounded">

<xs:complexType>
<xs:attribute name="name" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

</xs:choice>
<xs:attribute name="name" type="xs:string" use="required"/>

</xs:complexType>
<xs:annotation>

<xs:documentation xml:lang="en">Schema definition</xs:documentation>
</xs:annotation>
<xs:complexType name="schemaType">

<xs:sequence>
<xs:element name="class" type="classType" min0ccurs="0" maxOccurs="unbounded"/>
<xs:element name="virtualClass" type="virtualClassType" min0ccurs="0" maxOc-

curs="unbounded"/>

Appendix
D: An

XML
Schema

Definition
of

tiie
O

D
Lx

Language

<xs:element name="library" minOccurs=nO" maxOccurs="unbounded">
<xs:complexType>

<xs:complexContent>
<xs:extension base="libraryType">

<xs:attribute name="language" type="xs:string" use="required"/>
</xs:extension>

</xs:complexContent>
</x s :complexType>

</xs:element>
<xs¡element name="importSchema" type="importType" min0ccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="comment" type="xs:string" use="optional"/>
<xs:attribute name="federated" type="xsrboolean" use="optional" default="false"/>
<xs:attribute name="databaseTypen type="xs:string" use="required"/>

</xs:complexType>
<xs:annotation>

<xs:documentation xml:lang="en">Schema root element and constraint defini-
tions</xs: documentation

</xs:annotation>
<xs:complexType name="importType">

<xs:attribute name="startWithClass" type="xs:string" use="required"/>
<xs¡attribute name="relationships" type="xs:boolean" use="required"/>
<xs:attribute name="inheritance" type="xs:boolean" use="required"/>

</xs:complexType>
<xs:element name="dbSchema" type="schemaType"> ®

Appendix
B: An

XM
L

Schema
Definition

of
the

O
D

Lx
Language

<xs:key name="ClassID">
<xs: selector xpath="classn/>
<xs: field xpath="0name"/>

</xs:key>
<xs:key name=nRelationshipID">

<xs: selector xpath="class/relationship"/>
<xs: field xpath="@name"/>

</xs:key>
<xs:keyref name=nRelationshipRef" refer="RelationshipID">

<xs: selector xpath="class/relationship"/>
<xs: field xpath="Straversal"/>

</xs:keyref>
<xs:keyref name="ClassGeneralizationRef" refer="ClassID">

<xs: selector xpath="class/generalization"/>
<xs : field xpath="@inheritsFrom',/>

</xs:keyref>
<xs:key name="LibraryID">

<xs: selector xpath=nlibrary"/>
<xs: field xpath="@name"/>

</xs:key>
</xs:element>

</xs:schema>

02

Appendix
B: An

XM
L

Schema
Definition

of
the

O
D

Lx
Language

A p p e n d i x C

The ODLx Language Specification
and M etamodel Mappings

In this appendix we provide a full specification of all ODLx language elements and discuss
their mappings to the EGTV metamodel. Metamodel mappings are required as all EGTV
schemas must be represented in the schema repository to allow for dynamic querying
and global schema integration. Mappings define rules for translation of ODLx elements
and their attributes to metaclasses in the EGTV metamodel. Translation is generally a
straightforward process where each ODLx element (i.e. dbSchema, class, a t t r ib u te)
is mapped to a single metaclass, while element attributes are mapped to metaclass at
tributes. Mappings can be formally represented by the xmap function specified in Defi
nition 3.19. This function takes as input one ODLx element to which a mapping rule is
applied to create a new meta-object in the EGTV Schema Repository. During this process,
attributes of the newly created meta-objects are initialised from the values specified in the
ODL* element. Mapping rules are defined in a simple mapping language and presented
for each ODLx element discussed in this appendix. ODLx elements are on the left hand
side, while EGTV metaclasses are on right hand side of mapping language definitions.

Definition 3.19 EGTV M e ta c la ss := xm ap(ODLx E lem ent)

C . l S c h e m a E le m e n t

• Parent element: none

• Example: <dbSchema name="FilmArchive" global="false"
databaseType="OR">

The dbSchema is the root element of the ODLx database schema specification and each
dbSchema element contains multiple class and virtual class definitions. Attributes name

1 6 6

Appendix C: The ODLx Language Specification and Metamodel Mappings 1 6 7

and global define database schema name and a schema type, while the databaseType
denotes the type of the underlying database. Schema type can be either global in terms of
federated database architecture, or component, thus bound to a single database. Database
type can be object-oriented (00) or object-relational (OR). Boolean attribute global is
optional, and if not specified, a value of false is assumed.

M etamodel Mapping. The dbSchema element is mapped to the sys_Databas-
eSchema metaclass and its sys_Schema, and sys_MetaObject superclasses. This
mapping is illustrated in Example C.l.

xmap dbSchema := sys_DatabaseSchema, sys_Schema, sys_MetaObject
{
name := sys_MetaObject.name
comment' := sys_MetaObject.comment
federated := sys_Schema.isGlobal
databaseType := sys_DatabaseSchema.databaseType

}
Example C.l: Schema Mapping.

C .2 C la s s E le m e n t

• Parent element: dbSchema

• Example: <class name="Film" abstract="true">

The c la s s element represents a class defined in the database schema. Each class belongs
to one schema and a class can contain multiple a t t r ib u te , r e la t io n s h ip , in h e r
i ta n c e , method and o p e ra to r elements. Attributes defined for the c la s s element
are name, comment and a b s tr a c t . The name attribute represents a class name that
must be unique within the database schema. The comment is an optional user defined
string value that can be specified not only for class, but for any other ODLx element.
The a b s tr a c t attribute specifies if the class is defined as abstract. If not specified, it
defaults to the boolean value fa ls e . Abstract classes provide only definitions used by
their subclasses and cannot be instantiated to EGTV objects.

Metamodel mapping. The ODLx class element maps to the sys_Class metaclass
and its superclasses. The mapping is straightforward where each class attribute is
mapped to the corresponding attribute of the sys_Class. Class containment in the
database schema is implicitly defined in the ODLx by nesting the class element within
the dbSchema element. The mapping language represents this relationship by defining a

Appendix C: The ODLx Language Specification and Metamodel Mappings 168

virtual attribute <parent> which is then mapped to the co n ta in ed _ in relationship of
the sys_MetaOb je c t abstract class. This is illustrated in Example C.2.

xmap class := sys_Class, sys_MetaObject
{

name := sys_MetaObject.name
comment := sys_MetaObject.comment
<parent> := sys_MetaObject.contained_in
abstract := sys_Class.isAbstract

}

Example C.2: Class Mapping.

C .3 A t t r i b u t e E le m e n t

• Parent element: class

• Example: <attribute name="ReleaseDate" constant="true"
accessKind="Public">

Attributes are defined within a class, and each class can contain multiple attribute def
initions. Attributes in ODLx are represented with an a t t r i b u t e element. Each a t
t r i b u t e element must have a name, while other attributes are optional. The co n sta n t
defines if attribute values are mutable, and defaults to f a ls e . The accessKind defines
the visibility of an attribute within a class. It can be p u b lic , p ro te c te d or p r iv a te ,
and if unspecified, the default value is p u b lic . The s t a t i c attribute is of type boolean
and defines attribute scope. It is set to tru e , the a t t r i b u t e element has a class (static)
scope, otherwise an attribute is instantiated per object basis. This attribute is optional
and defaults to fa ls e .

M etamodel Mapping. All attributes of the attribute element are mapped to the
corresponding properties of the sys_Attribute metaclass and its superclasses, as illus
trated in the Example C.3. Attribute type is defined with as nested subelement <type>
which is then mapped to relationship attribute_type between metaclasses sys_At-
tribute and sys_Type. Detailed discussion of data type mapping is provided in §C.10.

C .4 I n h e r i t a n c e E le m e n t

• Parent element: class

• Example: <inheritance name="MotionPictureGen" inheritsFrom="Fi
virtual="false"/>

Appendix C: The ODLx Language Specification and Metamodel Mappings 1 6 9

xmap attribute := sys_Attribute, sys_Property, sys_MetaObject
{

name := sys_MetaObject.name
comment := sys_MetaObject.comment
<parent> := sys_MetaObject.contained_in
constant := sys_Attribute.isConstant
static := sys_Attribute.isStatic
accessKind := sys_Property.accessKind
<name> := sys_Attribute.attribute_type

Example C.3: Attribute Mapping.

The generalisation relationship between two classes is represented with the in h e r ita n c e
element specified in the definition of each derived class. The inheritsFrom attribute
specifies the name of the superclass, while the attribute v i r t u a l is optional, and it
specifies if inheritance is defined as virtual. The default value for this attribute is fa ls e .

Metamodel Mapping. The mapping rule for inheritance element is illustrated in Ex
ample C-4- The positionNumber attribute of the sy s_ In h e rita n c e metaclass defines
the order of inheritance definitions in the case of multiple inheritance. The value of this
attribute is determined by the relative position number of the in h e r ita n c e element in
the c la s s definition.

xmap inheritance := sys_Inheritance, sys_MetaObject
{

name := sys_MetaObject.name
comment := sys_MetaObject.comment
<parent> := sys_MetaObject.contained_in
inheritsFrom := sys_Inheritance.inherits_to
virtual := sys_Inheritance.isVirtual

Example C.4: Inheritance Mapping.

C .5 R e l a t i o n s h i p E le m e n t

• Parent element: class

• Example: <relationship name="MotionPictureRef" traversal="ActorRef"
cardinality="many"/>

Each class can define relationships with other classes in the same database schema. Only
bidirectional relationships can be defined in the EGTY database schemas and ODLx repre
sents them as a pair of two interconnected r e la t io n s h ip elements where each element

Appendix C: The ODLx Language Specification and Metamodel Mappings 1 7 0

defines one side of the relationship. The name is a mandatory attribute of the r e l a
t io n s h ip definition as it uniquely identifies the relationship within the c la ss . The
t r a v e r s a l attribute specifies the other side of the bidirectional relationship, and its
value must correspond to the name attribute of the inverse relationship defined in the
same database schema. The c a r d in a l i ty defines the cardinality of the relationship and
can have values of one or many. The boolean attributes unique and ordered specify
if relationships values are ordered or unique. These two attributes are applicable only
to relationships with cardinality greater than one, and if left unspecified, they default to
fa ls e .

Metamodel Mapping. The relationship mapping is illustrated in Example C.5. Con
tainment of the relationship within the class implicitly defined in the ODLx is represented
with the virtual attribute <parent>. This attribute is mapped to con ta ined_ in rela
tionship of the sys_MetaOb je c t superclass.

xmap relationship := sys_Relationship, sys_Property, sys_MetaObject
{

name := sys_MetaObject.name
comment := sys_MetaObject.comment
<parent> := sys_MetaObject.contained_in
traversal := sys_Relationship.traversal
cardinality := sys_Relationship.cardinality
unique := sys_Relationship.isUnique
orderd := sys_Relatsys_MetaObjectionship.isOrdered
accessKind := sys_Property.accessKind

}
Example C.5: Relationship Mapping.

C .6 M e t h o d E le m e n t

• Parent elements: class, virtualClass

• Example: <method name="getScreenShot" constant = "true"
accessKind="public">

The method element is used to represent a signature of a method defined within the
EGTV class. Each method can contain a result value and a list of parameters defined as
ODLx elements nested within the main method element. The name attribute is mandatory
and specifies the name of the method. It must be unique within the containing class. The
accessKind can be public, private or protected, and if not specified, its default
value is public. By default method is not constant, but mutability can be defined by the
boolean constant attribute. The methodKind is an optional attribute which defines

Appendix C: The ODLx Language Specification and Metamodel Mappings 1 7 1

if method is prefixed as s t a t i c or v i r tu a l . If methodKind is unspecified, method is
neither static nor virtual.

Metamodel Mapping. The method ODLx element is mapped to the sys_Method
metaclass and its abstract superclass sys_Operation as illustrated in Example C.6.

xmap method := sys_Method, sys_Operation, sys_MetaObject
{

name := sys_MetaObject.name
comment := sys_MetaObject.comment
<parent> := sys_MetaObject.contained_in
constant := sys_Operation.isConstant
accessKind := sys_Operation.accessKind
methodKind := sys_Method.methodKind

}
Example C.6: Method Mapping.

C .7 O p e r a t o r E le m e n t

• Parent elements: class, virtualClass

• Example: coperator name="==" constant = "true" accessKind="publi
operatorKind="binary">

Class operators represent an additional type of behaviour supported in the EGTV meta
model. Multiple operators can be defined for each class using operato r element provided
in the ODLx. Similarly to methods, operators can have parameters and a return value.
The name attribute is a mandatory and it specifies the operator name. The accessKind
and c o n s ta n t attributes are optional and they have the same default values as corre
sponding attributes in the method element. The operatorKind is a mandatory and
specifies if operator is defined as unary or b in a ry one.

M etamodel Mapping. The mapping of operator element to the metaclass sys_-
Operator and its superclasses is illustrated in Example C.7.

C .8 R e t u r n V a lu e E le m e n t

• Parent elements: method, operator

• Example: <returnVal constant="true">

Appendix C: The ODLx Language Specification and Metamodel Mappings 1 7 2

xmap operator := sys_Operator, sys_Operation, sys_MetaObject
{

name := sys_MetaObject.name
comment := sys_MetaObject.comment
<parent> := sys_MetaObject.contained_in
constant := sys_Operation.isConstant
accessKind := sys_Operation.accessKind
operatorKind := sys_Operator.operatorKind

}

Example C.7: Operator Mapping.

The returnVal element specifies the result value type returned from a method or opera
tor function call. This element has only one optional attribute constant which specifies
if the return value is constant. The default value is false.

M etamodel Mapping. Since the EGTV metamodel does not define specific metaclass
for operation result, the ODLx returnVal element is mapped to the sys_Operation,
the superclass for the sys_Method and sys_Operator metaclasses. Result type (de
fined as nested <type> element) is mapped to the result_type relationship between
metaclasses sys_Operation and sys_Type. This is illustrated in Example C.8.

xmap returnVal := sys_Operation
{

constant := sys_Operation.isResultConstant
<type> := sys_Operation.result_type

}
Example C.8: Return Value Mapping.

C .9 P a r a m e t e r E le m e n t

• Parent elements: method, operator

• Example: <parameter name="inClass" constant="true">

The parameter element belongs to the operation, and it is always nested within the
method or operator element. Attributes of the parameter elements are name, com
ment and constant. The name attribute defines parameter name that must be unique
within the operation to which it belongs. The constant specifies if the parameter value
is mutable. This attribute is optional, and if left unspecified, the default value is false.

Appendix C: The ODLx Language Specification and Metamodel Mappings 173

Metamodel Mapping. Parameter mapping is illustrated in Example C.9. Parameter
type is defined as a nested subelement <type> and mapped to the parameter_type
relationship between metaclasses sys_Parameter and sys_Type.

xmap parameter := sys_Parameter, sys_Metaobject
{

name := sys_MetaObject.name
comment := sys_MetaObject.comment
<parent> := sys_MetaObject.contained_in
constant := sys_Parameter.isConstant
<type> := sys_Parameter.parameter_type

}
Example C.9: Parameter Mapping.

C .1 0 T y p e E l e m e n t

• Parent elements: attribute, parameter, returnVal

• Example: <primitiveType name="integer"/>

Primitive, collection and multimedia built-in types defined in the metamodel are repre
sented as ODLx elements primitiveType, mediaType, collectionType, and key-
CollectionType respectively. Type elements in ODLx are used to denote data types for
attribute, parameter and result elements. Each type element has only one manda
tory attribute, the name that uniquely identifies data type already registered within the
metamodel. Collection and key collection types can recursively contain other type ele
ments, including the other collections. Key collection types must also define a type for the
key element by nesting additional ODLx type element.

The classType is a special type element that represents a user-defined class in the
EGTV database schema. Its name attribute denotes the name of a user-defined class
already registered in the EGTV metamodel.

M etamodel Mapping. Data type mappings are illustrated in Example C.10. A map
ping rule is provided for each category of built-in and user-defined types. Mapping is
straightforward, where each type category maps to corresponding metaclass in EGTV
metamodel type hierarchy.

C . l l V i r t u a l C la s s E le m e n t

Parent element: dbSchema

Appendix C: The ODLx Language Specification and Metamodel Mappings 174

xmap primitiveType := sys_PrimitiveType
{

name := sys_PrimitiveType.name
}

xmap mediaType := sys_MediaType
{

name := sys_MediaType.name
}

xmap collectionTypeType := sys_CollectionType
{

name := sys_CollectionType.name
}

xmap keyCollectioType :** sys_KeyCollectionType
{

name := sys_KeyCollectionType.name
)

xmap classType := sys_Class
{

name := sys_Class.name

Example C.10: Type Mapping.

• Example: <virtualClass name="RecentFilms">

The virtualClass element represents a virtual class defined in the database schema.
One database schema can contain multiple virtual classes, where each virtual class can
be either a simple view definition, or an imported class. The view definition contains
one mandatory extent element and multiple optional method and operator elements.
The extent element is defined as an EQL query which is constructed upon other virtual
and base classes in the schema. The import class (the importClass element) is used for
construction of global schemas and its role is to specify virtual classes to be imported into
the global schema from the canonical layer. Attributes defined for the virtualClass
element are name and comment. The name attribute represents the name of the virtual
class and must be unique within the database schema. The comment is an optional user
defined string value.

Metamodel Mapping. Virtual class mapping is illustrated in Example C.ll. All vir
tual classes map to sys_Class metaclass in the EGTV metamodel. Although this is the
same metaclass to which base classes are mapped, the virtualLevel and virtualEx-
tent properties are mapped differently for virtual classes. The virtualLevel property

Appendix C: The ODLx Language Specification and Metamodei Mappings 175

contains non-zero value (level zero identifies base class), while the v ir tu a lE x te n t de
fines the EQL query string. A detailed description of metamodel representation for virtual
classes was presented in chapter 3.

xmap virtualClass := sys_Class, sys_MetaObject
{
name := sys_MetaObject.name
comment := sys_MetaObject.comment
<parent> := sys_MetaObject.contained_in

}

Example C.ll: Virtual Class Mapping.

C .1 2 E x t e n t E l e m e n t

• Parent element: virtualClass

• Example: <extent> <! [CDATA [EQLQuery]]> </extent>

The e x te n t element defines an EQL query from which the virtual class extent is gener
ated. This is only a metadata definition represented as a string value. The EQL query is
enclosed in the the CDATA XML type, because the query can contain some characters not
compliant with XML encoding. The e x te n t element defines only the comment attribute
which is a user defined string.

Metamodel Mapping. The virtual class extent (defined as a query) is mapped to
the virtualExtent property of the sys_Class. An EQL query string in the ODLx is
not represented as an attribute of the extent element, but as its textual value TEXT
subelement. The mapping language represents this subelement as a <content> virtual
attribute and maps it to the virtualExtent property of the sys_Class metaclass.
This is illustrated in Example C.12.

xmap extent := sys_Class, sys_MetaObject
{

comment := sys_MetaObject.comment
<content> := sys_Class.virtualExtent

}

Example C.12: Extent Definition Mapping.

C .1 3 I m p o r t C la s s E le m e n t

• Parent element: virtualClass

Appendix C: The ODLx Language Specifícation and Metamodel Mappings 1 7 6

• E x a m p le : <importClass database="VideoRepository"
schema="FilmArchive" name="RecentFilms">

T he i m p ó r t e l a s s ODLx element defines a v irtual class im ported into th e global schema
from the canonical layer. This elem ent is required when creating global schemas in the

federated database architecture, since im ported class acts as a proxy for the original class
defined in the canonical layer schema. Global schemas, their construction and querying are

fully explained in chapter 6. Any d a ta m anipulation on the im ported class in the global

schem a is propagated to its canonical schem a counterpart. D atabase interconnectivity and

d a ta exchange is facilitated by the E G T V reference m odel which was discussed in chapter

5. A ttribu tes of the i m p ó r t e l a s s elem ent define nam e and location of the class to be
im ported. This includes the d a t a b a s e nam e, th e nam e of th e sch e m a in th a t database,

and th e nam e of v irtu a l class in th e schema. All these a ttrib u tes are m andatory, while
the com m ent a ttr ib u te is optional.

M e ta m o d e l M a p p in g . T he database, schema and name attrib u tes of the import-
Class element are m apped to a single virtualExtent a ttr ib u te of the sys_Class
m etaclass. T he m apping represen ta tion of the virtualExtent a ttrib u te is specified in

Example C.13. T he m apping is straightforw ard, where each ODLx a ttrib u te is m apped

to th e virtualExtent segm ent of th e same nam e. T he @ and : : characters are used

as segm ent delim iters. T his m apping provides sufficient inform ation for retrieving and

m aterialisation of im ported v irtual class.

xmap importClass := sys_Class, sys_MetaObject
{

comment := sys_MetaObject.comment
database, schema, name := sys_Class.virtualExtent

[@<database>::<schema>::<name>]
}

E xam ple C.13: ODLx Im port Class M apping.

EQL Operator Classification

A p p e n d i x D

EQL Symbol Description
— equality
< less then

<= less or equal then
> greater then
> greater or equal then
!= non equality

identical object identity

Table D.2: Comparison Operators

177

Appendix D: EQL Operator Classification 178

EQL Symbol Description
* multiplication
/ division
+ addition
- subtraction

Table D.4: Arithmetic Operators

EQL Symbol Description
and logical and
or logical or

not logical negation

Table D.6: Logic Operators

EQL Name Description
max Maximum element in the collection
min Minimum element in the collection
avg Average of all elements in collection
sum Summary of all elements in collections

count Number of elements in collection

Table D.8: Aggregate Operators.

Name Description
union Union of two object sets with duplicatas eliminated

unionall Union of two object sets with duplicates preserved
intersection Intersection of two object sets
difference Difference of two object sets

inset Boolean true/false if the element is contained in the set
distinct Eliminate duplicate elements

Table D.10: Set Operators.

Sample Multimedia Database
Schemas

A p p e n d i x E

179

Appendix E: Sample Multimedia Database Schemas 180

GenericUser
name
login
password

generatePasswordQ
requestRecordingQ

recordings
0 ..* 0 ..'

Program
name
description

deleteAllTrailers()
getTrailer()
getScreenShotQ
operator=()
length()

Administrator

lockAccountQ

User

ratingLimit()
subscribe()
changeRating()

0 ..*

1
0 ./

0 ..*

1

Rating
name
description

isUserFit()

Subscription
startDate
end Date

getDurationQ
cancel()

subscribedTo

0..*

Channel
name

cancelUser()
recordProgram()

0J

Category
name
description

0 ..*

TVSchedule
broadcastDate
duration

updateSchedule()
record()

Figure E.l: Multimedia Recording System schema.

Appendix E: Sample Multimedia Database Schemas 181

Sources
name
description

Ranking
name
description

Genre
name
description

Director
name
description

Actor
name 1 ..* MotionPicture
description 0 ..*

Character
Cartoon U„* name

1.* description

Figure E.2: Multimedia Archive System schema.

Appendix E: Sample Multimedia Database Schemas 182

Figure E.3: Multimedia Editing System schema.

The ODLz Definition of a Test
Schema

A p p e n d i x F

183

<?xml version="l.0" encoding="UTF-8"?>
<dbSchema xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:noNamespaceSchemaLocation="metaSchema.xsd" name="MMRecordSys" database-
Type="00">

<!— ######GenericUser class definition######— >
cclass name="GenericUser" abstract="true">

<attribute name="name">
<primitiveType name="string"/>

</attribute>
<attribute name="login">

<primitiveType name="string"/>
</attribute>
<attribute name="password">

<primitiveType name="string"/>
</attribute>
cmethod name="generatePassword" accessKind="public"/>
<method name="requestRecording" accessKind="public,,>

<returnVal>
<primitiveType name="string"/>

</returnVal>
</method>
<relationship name="GenericUserProgramRef" traversal="ProgramGenericUserRef" cardinal-

ity="many" unique="false"/>
</class>
<!— ######Administrator class definition######— >
<class name="Administrator"> oo

Appendix
F: The

O
D

Lx
Definition

of a
Test

Schem
a

http://www.w3.org/2001/XMLSchema-

cinheritance name="AdministratorGenericUser" inheritsFrom="GenericUser" virtual="false"/>
<method name="lockAccount" accessKind="public">

<returnVal>
<primitiveType name="bool"/>

</returnVal>
<parameter name="pUser" constant="true">

<classType name="User"/>
</parameter>

</method>
</class>
<!— ######User class definition######— >
<class name="User">

<inheritance name="UserGenericUser" inheritsFrom="GenericUser" virtual="false"/>
<method name="ratingLimit" accessKind="public"/>
<method narae="subscribe" accessKind="public">

<parameter name="pProgram">
<classType name="Program"/>

</parameter>
</method>
<method name="changeRating" accessKind="public">

<parameter name="pRating">
<classType name="Rating"/>

</parameter>
</method>
<relationship name="UserRatingRef" traversal="RatingUserRef" cardinal-

ity="one" unique="false"/> c®

Appendix
F: The

O
D

Lx
Definition

of a
Test Schem

a

crelationship name="UserSubscriptionRef" traversal=nSubscriptionUserRef" cardinal-
ity=nmany" unique="false"/>

</class>
<!— ######Program class definition######— >
<class narae="Program">

<attribute name="name">
<primitiveType name="string"/>

</attribute>
<attribute name="description">

<primitiveType name="string"/>
</attribute>
cmethod name="deleteAHTrailers" accessKind="public"/>
cmethod name=”getTrailer" accessKind="public">

<returnVal>
<classType name="Trailer"/>

</returnVal>
<parameter name="nuinTraiiern>

<primitiveXype name="integer"/>
</parameter>

</method>
cmethod name="getScreenShot" accessKind="public">

<returnVal>
<classType name="ScreenShot"/>

</returnVal>
<parameter name="numScreenShot">

<primitiveType name="integer"/> 2°

Appendix
F: The

O
D

Lx
Definition

of a
Test

Schem
a

</parameter>
</method>
<operator name="=" operatorKind="binary" accessKind="public">

<returnVal>
<primitiveType name="bool"/>

</returnVal>
<parameter name="pProgram">

<classlype name="Program"/>
</parameter>

</operator>
<relationship name="ProgramGenericUserRef" traversal="GenericUserProgramRef" cardinal-

ity="raany" unique="false"/>
<relationship name="ProgramCategoryRef" traversal="CategoryProgramRef" cardinal-

ity="one" unique="false"/>
<relationship name="ProgramRatingRef" traversal="RatingProgramRef" cardinal-

ity="one" unique="false"/>
crelationship name="PrograraTVScheduleRef" traversal="TVScheduleProgramRef" cardinal-

ity="many" unique="falsen/>
<relationship name="ProgramTrailerRef" traversal="TrailerProgramRef" cardinal-

ity="many" unique="false"/>
<relationship name="ProgramScreenShotRef" traversal="ScreenShotProgramRef" cardinal-

ity="many" unique="false"/>
</class>
<!— ######Category class definition######— >
Cclass name="Category">

<attribute name="name"> óo

Appendix
F: The

O
D

Lx
Deänition

of a
Test

Schem
a

<primitiveType name="string"/>
</attribute>
<attribute name="descriptionn>

<primitiveType name="string"/>
</attribute>
<relationship name="CategoryProgramRef" traversal="ProgramCategoryRef" cardinal-

ity=nmany" unique="false"/>
<relationship name="CategorylRef" traversal="Category2Ref" cardinal-

ity="one" unique="false"/>
<relationship name="Category2Ref" traversal="CategorylRef" cardinal-

ity="many" unique="false"/>
</class>
<class name="Trailer">

<attribute name="clip">
<mediaType name="jpeg"/>

</attribute>
<relationship name=nTrailerProgramRef" traversal="ProgramTrailerRef" cardinal-

ity=none" unique="falsen/>
</class>
<!— ######ScreenShot class definition######— >
cclass name="ScreenShot">

<attribute name="image">
<mediaType name="mpeg"/>

</attribute>
<relationship name="ScreenShotProgramRef" traversal="ProgramScreenShotRef" cardinal-

ity="one" unique="false"/>

</class>
< ! — # # # # # # R a tin g c la s s d e f in i t io n # # # # # # — >

<class name="Rating">
<attribute name="name">

<primitiveType name="string"/>
</attribute>
<attribute name="description">

<primitiveType name="string"/>
</attribute>
<method name="isUserFit" accessKind="public">

<returnVal>
<primitiveType name="bool"/>

</returnVal>
<parameter name="pProgram">

<classType name="Program"/>
</parameter>
<parameter name="püser">

<classType name="User"/>
</parameter>

</method>
<relationship name="RatingUserRef" traversal="UserRatingRef" cardinal-

ity="one" unique="false"/>
<relationship name="RatingProgramRef" traversal="ProgramRatingRef" cardinal-

ity="many" unique="false"/>
</class>
< ! — # # # # # # S u b s c r ip t io n c la s s d e f in i t io n # # # # # # — >

Appendix
F: The

O
D

Lx
Definition

of a
Test

Schem
a

cclass name="Subscription'^
<attribute name="startDate">

<primitiveType name="string"/>
</attribute>
<attribute name="endDate">

<primitiveType name="date"/>
</attribute>
<method name="getDuration" accessKind="public">

<returnVal>
cprimitiveType name="integer"/>

</returnVal>
</method>
<method name="cancel" accessKind="public">

<returnVal>
<primitiveType name="bool"/>

</returnVal>
</method>
<relationship name="SubscriptionUserRef" traversal="UserSubscriptionRef" cardinal-

ity="one" unique="false"/>
Crelationship name="SubscriptionChanelRef" traversal="ChanelSubscriptionRef" cardinal-

ity="one" unique="false"/>
</class>
< ! — ######C h an n el c la s s d e f in i t io n # # # # # # — >

cclass name="Channel">
cattribute name="name">

cprimitiveType name="string"/> g

Appendix
F: The

O
D

Lx
Definition

of a
Test

Schem
a

</attribute>
cmethod name="cancelUser" accessKind="public"/>
cmethod name="recordProgram" accessKind="public"/>
<relationship name="ChanelTVScheduleRef" traversal="TVScheduleChanelRef" cardinal-

ity="many" unique="false"/>
<relationship name=nChanelSubscriptionRef" traversal="SubscriptionChanelRef" cardinal-

ity="many" unique="false"/>
</class>
< ! — ######TV S chedu le c la s s d e f in i t io n # # # # # # — >

<class name="TVSchedule">
<attribute name="broadcastDate">

<primitiveType name="date"/>
</attribute>
<attribute name="duration">

<primitiveType name="float"/>
</attribute>
<method name="updateSchedule" accessKind="public"/>
cmethod name="record" accessKind="publicn/>
<relationship name="TVScheduleProqramRef" traversal="ProqramTVScheduleRef" cardinal-

ity="one1' -unique="false"/>
<relationship name="TVScheduleChanelRef" traversal="ChanelTVScheduleRef" cardinal-

ity="one" unique="false"/>
</class>

</dbSchema>

Appendix
F: The

O
D

Lx
Definition

of a
Test

Schem
a

E Q L G r a m m a r

A p p e n d i x G

The grammar for the EQL language is implemented using ANTLR and is presented in

ANTLRs own BNF. The semicolon symbol is used to signify the end of each grammar
rule.

/ /
// EQL Grammar (ANTLR)
/ /
statement

: ! qrqueryExpression {## = #([EQLQUERY ,"EQL
Query"], q);}

/
queryExpression

: (querySpecification SEMICOLON! EOF!) => querySpec-
ification |

subQueryExpression ((UNION* | UNIONALLA | INTER-
SECTIONA | DIFFERENCE'') subQueryExpression) + SEMI
COLON! EOF!

r
subQueryExpression

: ! (LPAREN!)? q :querySpecification (RPAREN!)? {## = #([EQL
QUERY ,"EQLQuery"], q);}

t
querySpecification

selectClause
fromClause
(whereClause)?

192

Appendix G: EQL Grammar 193

selectClause
: SELECT* attributeList

fromClause
: FROM* sourceList

whereClause
: WHERE* logicalORExpr
/

attributeList
: assignmentExpr (COMMA! assignmentExpr)*
/

sourceList
: sourceExpr (COMMA! sourceExpr)*
f

parameterList
: generalExpr (COMMA! generalExpr)*
}

primaryExpr
: IDENTIFIER
I constant
| (LPAREN! generalExpr RPAREN!)
Ì

signExpr
: (MINUS)? primaryExpr
/

operationExpr
: (signExpr ~LPAREN!) => signExpr |
! se:signExpr ((lp:LPAREN) (pi :parameterList)? (rp:RPAREN)

{ ##=# (se, pi); }
}

pathExpr
: operationExpr ((DOT*) pathExpr)?
/

mulExpr
: pathExpr ((TIMES* | DIVIDE* | MOD*) mulExpr)?
t

g e n e r a l E x p r

Appendix G: EQL Grammar 194

: mulExpr ((PLUS* I MINUS*) generalExpr)?
t

renameExpr
: generalExpr (AS* IDENTIFIER)?
f

assignmentExpr
: renameExpr (ASSIGN* assignmentExpr)?
t

subQueryGeneralExpr
: renameExpr I

! LPAREN! q :querySpecification RPAREN!
(## = #([EQLQUERY ,"EQLQuery"], q);}

r
logicalNOTExpr
: (NOT*)? subQueryGeneralExpr

comparisonExpr
: logicalNOTExpr ((EQUAL* | NOTEQUAL* I

LESSTHANOREQUALTO* |
LESSTHAN* |
GREATERTHANOREQUALTO* |
GREATERTHAN*) comparisonExpr)?

logicalANDExpr
: comparisonExpr ((AND*) logicalANDExpr)?

logicalORExpr
: logicalANDExpr ((OR*) logicalORExpr)?

pjoinExpr
: ! lhs:subQueryGeneralExpr PJOIN

rhs:subQueryGeneralExpr ON LPAREN
ex:logicalORExpr RPAREN

{ ##=#(PJOIN, lhs, rhs, # (ON, ex)); }

njoinExpr
: ! lhs:subQueryGeneralExpr NJOIN

rhs:subQueryGeneralExpr ON LPAREN
ex:pathExpr RPAREN

{ ##=#(NJOIN, lhs, rhs, # (ON, ex));)
f

Appendix G: EQL Grammar

joinExpr
: (pjoinExpr) => pjoinExpr I

(njoinExpr) => njoinExpr
/
sourceExpr
: (subQueryGeneralExpr) => subQueryGeneralExpr |

joinExpr
i
constant
: (INTEGER | CHARACTER)

/
// ANTLR DECLARATIONS
//
class EQLLexer extends Lexer;
options {

k = 2;
exportVocab=EQLExpr;
caseSensitiveLiterals = false;
charVocabulary='\u0000'..'\uFFFE';

}
tokens
{

SELECT = "select";
FROM = "from" ;
WHERE = "where" ;
AS = "as";
INTERSECTION = "intersection" ;
UNION = "union" ;
UNIONALL = "unionall" ;
INSET = "inset" ;
AND = "and" ;
OR = "or" ;
NOT = "not" ;
PJOIN = "join";
NJOIN = "connect";
ON = "on";

)
Whitespace : (' ' I '\t' | '\n' | '\r')

(_ttype = Token.SKIP;)

Appendix G: EQL Grammar 196

SingleLineCoiranent
: "//" (~('\r' | '\n'))*
{ _ttype = Token.SKIP; }
/

MultiLineComment
. ii / * n („ , ' * ') * r * r (> * r | (| ' / ') r * r) t f t

{ _ttype = Token.SKIP; }

IDENTIFIER : \ fA'..'Z' \

r) ((' a' . .' z' | 'A'..'Z' |
I ('0' . . ' 9'))* ;

INTEGER : '0'..'9' ('0'..'9')* ;
CHARACTER : '\0'..'\255' ;
COMMA : ', ' ;
DOT : ' .' ;
SEMICOLON : ' ; ' ;
LPAREN : ' (' ;
RPAREN : ')' ;
LCURL : '{' ;
RCURL : ' }' ;
PLUS : '+' ;
MINUS : ;
TIMES : ;
DIVIDE : ;
MOD : ' %' ;
EQUAL : ' ;
ASSIGN : ;
NOTEQUAL : "!=" ;
LESSTHANOREQUALTO : "<=" ;
LESSTHAN : "<" ;
GREATERTHANOREQUALTO : ">=" ;
GREATERTHAN : ">" ;

Q u e r y E x p e r i m e n t s

A p p e n d i x H

In this appendix, the query specifications used in the experiments discussed in chapter six
are listed.

H .l Basic Local Queries

E xp erim ent 1 (basic se lect)

select name, recordingDate, description
from Recording;

Experiment 2 (method invocation)

select name, description
from Program
where length() > 120;

Experiment 3 (operator invocation)

select u.name + u.login
from User u;

H.2 Join Queries

Experiment 4 (property join)

select d.name, d.description, a .description
from Director d join Actor a on d.name = a.name;

197

Appendix H: Query Experiments 198

E xperim ent 5 (property jo in w ith filter)

select u.name, u.login, a.login
from User u join Administrator a on u .name=a.name
where u.login != a.login;

H.3 Navigational Queries

E xperim ent 7 (p ath navigation)

select name, recordingDate
from Film
where Film. langRef.Language.narrie = "French";

E xperim ent 7 (path navigation w ith filter)

select Program.ratedln.Rating.name
from Program
where name = "Morning News11 ;

E xp erim ent 8 (navigational jo in)

select User.name as uName, Program.name as pName
from Program connect User on User.recordings;

H.4 Exported Queries

E xperim ent 9 (querying exp orted v irtual class)

select name, recordingDate
from TVRecording;

H.5 Update Queries

E xperim ent 10 (u p d ate o f tw o attr ib u tes)

select login := "tomg", password := "tom34"
from User
were name = "Tom";

Appendix H: Query Experiments 199

Experiment 11 (update of three attributes)

select year := "2003", country := "Ireland", descrip
tion := "empty"
from Film
where recording date > "01/01/2003";

