172 research outputs found

    Hybrid incremental modeling based on least squares and fuzzy K-NN for monitoring tool wear in turning processes

    Get PDF
    There is now an emerging need for an efficient modeling strategy to develop a new generation of monitoring systems. One method of approaching the modeling of complex processes is to obtain a global model. It should be able to capture the basic or general behavior of the system, by means of a linear or quadratic regression, and then superimpose a local model on it that can capture the localized nonlinearities of the system. In this paper, a novel method based on a hybrid incremental modeling approach is designed and applied for tool wear detection in turning processes. It involves a two-step iterative process that combines a global model with a local model to take advantage of their underlying, complementary capacities. Thus, the first step constructs a global model using a least squares regression. A local model using the fuzzy k-nearest-neighbors smoothing algorithm is obtained in the second step. A comparative study then demonstrates that the hybrid incremental model provides better error-based performance indices for detecting tool wear than a transductive neurofuzzy model and an inductive neurofuzzy model

    Sistemas granulares evolutivos

    Get PDF
    Orientador: Fernando Antonio Campos GomideTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Recentemente tem-se observado um crescente interesse em abordagens de modelagem computacional para lidar com fluxos de dados do mundo real. Métodos e algoritmos têm sido propostos para obtenção de conhecimento a partir de conjuntos de dados muito grandes e, a princípio, sem valor aparente. Este trabalho apresenta uma plataforma computacional para modelagem granular evolutiva de fluxos de dados incertos. Sistemas granulares evolutivos abrangem uma variedade de abordagens para modelagem on-line inspiradas na forma com que os humanos lidam com a complexidade. Esses sistemas exploram o fluxo de informação em ambiente dinâmico e extrai disso modelos que podem ser linguisticamente entendidos. Particularmente, a granulação da informação é uma técnica natural para dispensar atenção a detalhes desnecessários e enfatizar transparência, interpretabilidade e escalabilidade de sistemas de informação. Dados incertos (granulares) surgem a partir de percepções ou descrições imprecisas do valor de uma variável. De maneira geral, vários fatores podem afetar a escolha da representação dos dados tal que o objeto representativo reflita o significado do conceito que ele está sendo usado para representar. Neste trabalho são considerados dados numéricos, intervalares e fuzzy; e modelos intervalares, fuzzy e neuro-fuzzy. A aprendizagem de sistemas granulares é baseada em algoritmos incrementais que constroem a estrutura do modelo sem conhecimento anterior sobre o processo e adapta os parâmetros do modelo sempre que necessário. Este paradigma de aprendizagem é particularmente importante uma vez que ele evita a reconstrução e o retreinamento do modelo quando o ambiente muda. Exemplos de aplicação em classificação, aproximação de função, predição de séries temporais e controle usando dados sintéticos e reais ilustram a utilidade das abordagens de modelagem granular propostas. O comportamento de fluxos de dados não-estacionários com mudanças graduais e abruptas de regime é também analisado dentro do paradigma de computação granular evolutiva. Realçamos o papel da computação intervalar, fuzzy e neuro-fuzzy em processar dados incertos e prover soluções aproximadas de alta qualidade e sumário de regras de conjuntos de dados de entrada e saída. As abordagens e o paradigma introduzidos constituem uma extensão natural de sistemas inteligentes evolutivos para processamento de dados numéricos a sistemas granulares evolutivos para processamento de dados granularesAbstract: In recent years there has been increasing interest in computational modeling approaches to deal with real-world data streams. Methods and algorithms have been proposed to uncover meaningful knowledge from very large (often unbounded) data sets in principle with no apparent value. This thesis introduces a framework for evolving granular modeling of uncertain data streams. Evolving granular systems comprise an array of online modeling approaches inspired by the way in which humans deal with complexity. These systems explore the information flow in dynamic environments and derive from it models that can be linguistically understood. Particularly, information granulation is a natural technique to dispense unnecessary details and emphasize transparency, interpretability and scalability of information systems. Uncertain (granular) data arise from imprecise perception or description of the value of a variable. Broadly stated, various factors can affect one's choice of data representation such that the representing object conveys the meaning of the concept it is being used to represent. Of particular concern to this work are numerical, interval, and fuzzy types of granular data; and interval, fuzzy, and neurofuzzy modeling frameworks. Learning in evolving granular systems is based on incremental algorithms that build model structure from scratch on a per-sample basis and adapt model parameters whenever necessary. This learning paradigm is meaningful once it avoids redesigning and retraining models all along if the system changes. Application examples in classification, function approximation, time-series prediction and control using real and synthetic data illustrate the usefulness of the granular approaches and framework proposed. The behavior of nonstationary data streams with gradual and abrupt regime shifts is also analyzed in the realm of evolving granular computing. We shed light upon the role of interval, fuzzy, and neurofuzzy computing in processing uncertain data and providing high-quality approximate solutions and rule summary of input-output data sets. The approaches and framework introduced constitute a natural extension of evolving intelligent systems over numeric data streams to evolving granular systems over granular data streamsDoutoradoAutomaçãoDoutor em Engenharia Elétric

    Multiobjective programming for type-2 hierarchical fuzzy inference trees

    Get PDF
    This paper proposes a design of hierarchical fuzzy inference tree (HFIT). An HFIT produces an optimum tree-like structure. Specifically, a natural hierarchical structure that accommodates simplicity by combining several low-dimensional fuzzy inference systems (FISs). Such a natural hierarchical structure provides a high degree of approximation accuracy. The construction of HFIT takes place in two phases. Firstly, a nondominated sorting based multiobjective genetic programming (MOGP) is applied to obtain a simple tree structure (low model’s complexity) with a high accuracy. Secondly, the differential evolution algorithm is applied to optimize the obtained tree’s parameters. In the obtained tree, each node has a different input’s combination, where the evolutionary process governs the input’s combination. Hence, HFIT nodes are heterogeneous in nature, which leads to a high diversity among the rules generated by the HFIT. Additionally, the HFIT provides an automatic feature selection because it uses MOGP for the tree’s structural optimization that accept inputs only relevant to the knowledge contained in data. The HFIT was studied in the context of both type-1 and type-2 FISs, and its performance was evaluated through six application problems. Moreover, the proposed multiobjective HFIT was compared both theoretically and empirically with recently proposed FISs methods from the literature, such as McIT2FIS, TSCIT2FNN, SIT2FNN, RIT2FNS-WB, eT2FIS, MRIT2NFS, IT2FNN-SVR, etc. From the obtained results, it was found that the HFIT provided less complex and highly accurate models compared to the models produced by most of the other methods. Hence, the proposed HFIT is an efficient and competitive alternative to the other FISs for function approximation and feature selectio

    Evolutionary and Reinforcement Fuzzy Control

    Get PDF
    Many modern and classical techniques exist for the design of control systems. However, many real world applications are inherently complex and the application of traditional design and control techniques is limited. In addition, no single design method exists which can be applied to all types of system. Due to this 'deficiency', recent years have seen an exponential increase in the use of methods loosely termed 'computational intelligent techniques' or 'soft- computing techniques'. Such techniques tend to solve problems using a population of individual elements or potential solutions or the flexibility of a network as opposed to using a rigid, single point of computing. Through use of computational redundancies, soft-computing allows unmatched tractability in practical problem solving. The intelligent paradigm most successfully applied to control engineering, is that of fuzzy logic in the form of fuzzy control. The motivation of using fuzzy control is twofold. First, it allows one to incorporate heuristics into the control strategy, such as the model operator actions. Second, it allows nonlinearities to be defined in an intuitive way using rules and interpolations. Although it is an attractive tool, there still exist many problems to be solved in fuzzy control. To date most applications have been limited to relatively simple problems of low dimensionality. This is primarily due to the fact that the design process is very much a trial and error one and is heavily dependent on the quality of expert knowledge provided by the operator. In addition, fuzzy control design is virtually ad hoc, lacking a systematic design procedure. Other problems include those associated with the curse of dimensionality and the inability to learn and improve from experience. While much work has been carried out to alleviate most of these difficulties, there exists a lack of drive and exploration in the last of these points. The objective of this thesis is to develop an automated, systematic procedure for optimally learning fuzzy logic controllers (FLCs), which provides for autonomous and simple implementations. In pursuit of this goal, a hybrid method is to combine the advantages artificial neural networks (ANNs), evolutionary algorithms (EA) and reinforcement learning (RL). This overcomes the deficiencies of conventional EAs that may omit representation of the region within a variable's operating range and that do not in practice achieve fine learning. This method also allows backpropagation when necessary or feasible. It is termed an Evolutionary NeuroFuzzy Learning Intelligent Control technique (ENFLICT) model. Unlike other hybrids, ENFLICT permits globally structural learning and local offline or online learning. The global EA and local neural learning processes should not be separated. Here, the EA learns and optimises the ENFLICT structure while ENFLICT learns the network parameters. The EA used here is an improved version of a technique known as the messy genetic algorithm (mGA), which utilises flexible cellular chromosomes for structural optimisation. The properties of the mGA as compared with other flexible length EAs, are that it enables the addressing of issues such as the curse of dimensionality and redundant genetic information. Enhancements to the algorithm are in the coding and decoding of the genetic information to represent a growing and shrinking network; the defining of the network properties such as neuron activation type and network connectivity; and that all of this information is represented in a single gene. Another step forward taken in this thesis on neurofuzzy learning is that of learning online. Online in this case refers to learning unsupervised and adapting to real time system parameter changes. It is much more attractive because the alternative (supervised offline learning) demands quality learning data which is often expensive to obtain, and unrepresentative of and inaccurate about the real environment. First, the learning algorithm is developed for the case of a given model of the system where the system dynamics are available or can be obtained through, for example, system identification. This naturally leads to the development of a method for learning by directly interacting with the environment. The motivation for this is that usually real world applications tend to be large and complex, and obtaining a mathematical model of the plant is not always possible. For this purpose the reinforcement learning paradigm is utilised, which is the primary learning method of biological systems, systems that can adapt to their environment and experiences, in this thesis, the reinforcement learning algorithm is based on the advantage learning method and has been extended to deal with continuous time systems and online implementations, and which does not use a lookup table. This means that large databases containing the system behaviour need not be constructed, and the procedure can work online where the information available is that of the immediate situation. For complex systems of higher order dimensions, and where identifying the system model is difficult, a hierarchical method has been developed and is based on a hybrid of all the other methods developed. In particular, the procedure makes use of a method developed to work directly with plant step response, thus avoiding the need for mathematical model fitting which may be time-consuming and inaccurate. All techniques developed and contributions in the thesis are illustrated by several case studies, and are validated through simulations

    Brain-Computer Interface for Control of Wheelchair Using Fuzzy Neural Networks

    Get PDF

    Neuro-Fuzzy Based Intelligent Approaches to Nonlinear System Identification and Forecasting

    Get PDF
    Nearly three decades back nonlinear system identification consisted of several ad-hoc approaches, which were restricted to a very limited class of systems. However, with the advent of the various soft computing methodologies like neural networks and the fuzzy logic combined with optimization techniques, a wider class of systems can be handled at present. Complex systems may be of diverse characteristics and nature. These systems may be linear or nonlinear, continuous or discrete, time varying or time invariant, static or dynamic, short term or long term, central or distributed, predictable or unpredictable, ill or well defined. Neurofuzzy hybrid modelling approaches have been developed as an ideal technique for utilising linguistic values and numerical data. This Thesis is focused on the development of advanced neurofuzzy modelling architectures and their application to real case studies. Three potential requirements have been identified as desirable characteristics for such design: A model needs to have minimum number of rules; a model needs to be generic acting either as Multi-Input-Single-Output (MISO) or Multi-Input-Multi-Output (MIMO) identification model; a model needs to have a versatile nonlinear membership function. Initially, a MIMO Adaptive Fuzzy Logic System (AFLS) model which incorporates a prototype defuzzification scheme, while utilising an efficient, compared to the Takagi–Sugeno–Kang (TSK) based systems, fuzzification layer has been developed for the detection of meat spoilage using Fourier transform infrared (FTIR) spectroscopy. The identification strategy involved not only the classification of beef fillet samples in their respective quality class (i.e. fresh, semi-fresh and spoiled), but also the simultaneous prediction of their associated microbiological population directly from FTIR spectra. In the case of AFLS, the number of memberships for each input variable was directly associated to the number of rules, hence, the “curse of dimensionality” problem was significantly reduced. Results confirmed the advantage of the proposed scheme against Adaptive Neurofuzzy Inference System (ANFIS), Multilayer Perceptron (MLP) and Partial Least Squares (PLS) techniques used in the same case study. In the case of MISO systems, the TSK based structure, has been utilized in many neurofuzzy systems, like ANFIS. At the next stage of research, an Adaptive Fuzzy Inference Neural Network (AFINN) has been developed for the monitoring the spoilage of minced beef utilising multispectral imaging information. This model, which follows the TSK structure, incorporates a clustering pre-processing stage for the definition of fuzzy rules, while its final fuzzy rule base is determined by competitive learning. In this specific case study, AFINN model was also able to predict for the first time in the literature, the beef’s temperature directly from imaging information. Results again proved the superiority of the adopted model. By extending the line of research and adopting specific design concepts from the previous case studies, the Asymmetric Gaussian Fuzzy Inference Neural Network (AGFINN) architecture has been developed. This architecture has been designed based on the above design principles. A clustering preprocessing scheme has been applied to minimise the number of fuzzy rules. AGFINN incorporates features from the AFLS concept, by having the same number of rules as well as fuzzy memberships. In spite of the extensive use of the standard symmetric Gaussian membership functions, AGFINN utilizes an asymmetric function acting as input linguistic node. Since the asymmetric Gaussian membership function’s variability and flexibility are higher than the traditional one, it can partition the input space more effectively. AGFINN can be built either as an MISO or as an MIMO system. In the MISO case, a TSK defuzzification scheme has been implemented, while two different learning algorithms have been implemented. AGFINN has been tested on real datasets related to electricity price forecasting for the ISO New England Power Distribution System. Its performance was compared against a number of alternative models, including ANFIS, AFLS, MLP and Wavelet Neural Network (WNN), and proved to be superior. The concept of asymmetric functions proved to be a valid hypothesis and certainly it can find application to other architectures, such as in Fuzzy Wavelet Neural Network models, by designing a suitable flexible wavelet membership function. AGFINN’s MIMO characteristics also make the proposed architecture suitable for a larger range of applications/problems

    Dynamic non-linear system modelling using wavelet-based soft computing techniques

    Get PDF
    The enormous number of complex systems results in the necessity of high-level and cost-efficient modelling structures for the operators and system designers. Model-based approaches offer a very challenging way to integrate a priori knowledge into the procedure. Soft computing based models in particular, can successfully be applied in cases of highly nonlinear problems. A further reason for dealing with so called soft computational model based techniques is that in real-world cases, many times only partial, uncertain and/or inaccurate data is available. Wavelet-Based soft computing techniques are considered, as one of the latest trends in system identification/modelling. This thesis provides a comprehensive synopsis of the main wavelet-based approaches to model the non-linear dynamical systems in real world problems in conjunction with possible twists and novelties aiming for more accurate and less complex modelling structure. Initially, an on-line structure and parameter design has been considered in an adaptive Neuro- Fuzzy (NF) scheme. The problem of redundant membership functions and consequently fuzzy rules is circumvented by applying an adaptive structure. The growth of a special type of Fungus (Monascus ruber van Tieghem) is examined against several other approaches for further justification of the proposed methodology. By extending the line of research, two Morlet Wavelet Neural Network (WNN) structures have been introduced. Increasing the accuracy and decreasing the computational cost are both the primary targets of proposed novelties. Modifying the synoptic weights by replacing them with Linear Combination Weights (LCW) and also imposing a Hybrid Learning Algorithm (HLA) comprising of Gradient Descent (GD) and Recursive Least Square (RLS), are the tools utilised for the above challenges. These two models differ from the point of view of structure while they share the same HLA scheme. The second approach contains an additional Multiplication layer, plus its hidden layer contains several sub-WNNs for each input dimension. The practical superiority of these extensions is demonstrated by simulation and experimental results on real non-linear dynamic system; Listeria Monocytogenes survival curves in Ultra-High Temperature (UHT) whole milk, and consolidated with comprehensive comparison with other suggested schemes. At the next stage, the extended clustering-based fuzzy version of the proposed WNN schemes, is presented as the ultimate structure in this thesis. The proposed Fuzzy Wavelet Neural network (FWNN) benefitted from Gaussian Mixture Models (GMMs) clustering feature, updated by a modified Expectation-Maximization (EM) algorithm. One of the main aims of this thesis is to illustrate how the GMM-EM scheme could be used not only for detecting useful knowledge from the data by building accurate regression, but also for the identification of complex systems. The structure of FWNN is based on the basis of fuzzy rules including wavelet functions in the consequent parts of rules. In order to improve the function approximation accuracy and general capability of the FWNN system, an efficient hybrid learning approach is used to adjust the parameters of dilation, translation, weights, and membership. Extended Kalman Filter (EKF) is employed for wavelet parameters adjustment together with Weighted Least Square (WLS) which is dedicated for the Linear Combination Weights fine-tuning. The results of a real-world application of Short Time Load Forecasting (STLF) further re-enforced the plausibility of the above technique

    Heuristic design of fuzzy inference systems: a review of three decades of research

    Get PDF
    This paper provides an in-depth review of the optimal design of type-1 and type-2 fuzzy inference systems (FIS) using five well known computational frameworks: genetic-fuzzy systems (GFS), neuro-fuzzy systems (NFS), hierarchical fuzzy systems (HFS), evolving fuzzy systems (EFS), and multi-objective fuzzy systems (MFS), which is in view that some of them are linked to each other. The heuristic design of GFS uses evolutionary algorithms for optimizing both Mamdani-type and Takagi–Sugeno–Kang-type fuzzy systems. Whereas, the NFS combines the FIS with neural network learning systems to improve the approximation ability. An HFS combines two or more low-dimensional fuzzy logic units in a hierarchical design to overcome the curse of dimensionality. An EFS solves the data streaming issues by evolving the system incrementally, and an MFS solves the multi-objective trade-offs like the simultaneous maximization of both interpretability and accuracy. This paper offers a synthesis of these dimensions and explores their potentials, challenges, and opportunities in FIS research. This review also examines the complex relations among these dimensions and the possibilities of combining one or more computational frameworks adding another dimension: deep fuzzy systems
    corecore