
Evolutionary and Reinforcem ent

Fuzzy Control

By

M ina M unir-ul M ahm ood Chow dhury BEng, MSc

A thesis submitted in partial fulfilment o f the requirement for
the degree o f

Doctor o f Philosophy

April 1999

Department o f Electronics and Electrical Engineering

University o f G lasgow

Glasgow G12 8LT

United Kingdom

© M unir C how dhury 1999

ProQuest Number: 13818689

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 13818689

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

GLASGOW
UHTVERSiTY’
UBRAHY

H6>6 HD

For

my parents, Ammu and Abbu

and

in loving memory of my grandparents

(may they rest in peace)

Abstract

Abstract

Many modem and classical techniques exist for the design of control systems. However,

many real world applications are inherently complex and the application o f traditional design

and control techniques is limited. In addition, no single design method exists which can be

applied to all types of system. Due to this ‘deficiency’, recent years have seen an exponential

increase in the use of methods loosely termed ‘computational intelligent techniques’ or 'soft-

computing techniques'. Such techniques tend to solve problems using a population o f individual

elements or potential solutions or the flexibility of a network as opposed to using a rigid, single

point o f computing. Through use o f computational redundancies, soft-computing allows

unmatched tractability in practical problem solving. The intelligent paradigm most successfully

applied to control engineering, is that of fuzzy logic in the form of fuzzy control. The

motivation o f using fuzzy control is twofold. First, it allows one to incorporate heuristics into

the control strategy, such as the model operator actions. Second, it allows nonlinearities to be

defined in an intuitive way using rules and interpolations.

Although it is an attractive tool, there still exist many problems to be solved in fuzzy

control. To date most applications have been limited to relatively simple problems of low

dimensionality. This is primarily due to the fact that the design process is very much a trial and

error one and is heavily dependent on the quality o f expert knowledge provided by the operator.

In addition, fuzzy control design is virtually ad hoc, lacking a systematic design procedure.

Other problems include those associated with the curse o f dimensionality and the inability to

learn and improve from experience. While much work has been carried out to alleviate most of

these difficulties, there exists a lack of drive and exploration in the last of these points.

The objective of this thesis is to develop an automated, systematic procedure for

optimally learning fuzzy logic controllers (FLCs), which provides for autonomous and simple

implementations. In pursuit of this goal, a hybrid method is to combine the advantages artificial

neural networks (ANNs), evolutionary algorithms (EA) and reinforcement learning (RL). This

overcomes the deficiencies of conventional EAs that may omit representation o f the region

within a variable’s operating range and that do not in practice achieve fine learning. This

method also allows backpropagation when necessary or feasible. It is termed an Evolutionary

NeuroFuzzy Learning Intelligent Control technique (ENFLICT) model. Unlike other hybrids,

ENFLICT permits globally structural learning and local offline or online learning. The global

EA and local neural learning processes should not be separated. Here, the EA learns and

optimises the ENFLICT structure while ENFLICT learns the network parameters. The EA used

here is an improved version of a technique known as the messy genetic algorithm (mGA),

2 Abstract

which utilises flexible cellular chromosomes for structural optimisation. The properties of the

mGA as compared with other flexible length EAs, are that it enables the addressing of issues

such as the curse o f dimensionality and redundant genetic information. Enhancements to the

algorithm are in the coding and decoding o f the genetic information to represent a growing and

shrinking network; the defining o f the network properties such as neuron activation type and

network connectivity; and that all o f this information is represented in a single gene.

Another step forward taken in this thesis on neurofuzzy learning is that o f learning online.

Online in this case refers to learning unsupervised and adapting to real time system parameter

changes. It is much more attractive because the alternative (supervised offline learning)

demands quality learning data which is often expensive to obtain, and unrepresentative of and

inaccurate about the real environment. First, the learning algorithm is developed for the case of

a given model o f the system where the system dynamics are available or can be obtained

through, for example, system identification. This naturally leads to the development o f a method

for learning by directly interacting with the environment. The motivation for this is that usually

real world applications tend to be large and complex, and obtaining a mathematical model of the

plant is not always possible. For this purpose the reinforcement learning paradigm is utilised,

which is the primary learning method of biological systems, systems that can adapt to their

environment and experiences. In this thesis, the reinforcement learning algorithm is based on

the advantage learning method and has been extended to deal with continuous time systems and

online implementations, and which does not use a lookup table. This means that large databases

containing the system behaviour need not be constructed, and the procedure can work online

where the information available is that of the immediate situation.

For complex systems of higher order dimensions, and where identifying the system model

is difficult, a hierarchical method has been developed and is based on a hybrid of all the other

methods developed. In particular, the procedure makes use of a method developed to work

directly with plant step response, thus avoiding the need for mathematical model fitting which

may be time-consuming and inaccurate.

All techniques developed and contributions in the thesis are illustrated by several case

studies, and are validated through simulations.

Acknow ledgem ents 3

Acknowledgements
I never thought writing acknowledgements would be just as difficult, if not more so, as

writing the thesis itself. There are so many people to remember, thank, acknowledge and credit

that I hope anyone reading this who has been influential in some way will forgive me if 1 have

omitted them.

Two people I have to most definitely thank and express my love and appreciation are my

parents for first bringing me to this world and for sticking with me through thick and thin. This

work could not have been completed without their love, understanding, patience,

encouragement and guidance. There were times when I would have given up on myself, during

my various mood and personality changes, but they didn’t

Most people leave their gratitude and thanks to their supervisors to last. I have always

been taught that the teacher’s position is next to the parent, and hence I feel it only apt that my

supervisor, Yun Li, should be mentioned after my parents. Dr Li has been more than my

supervisor. I have now known him for 7 years, almost from the time he joined the Department,

and in that time he has been my teacher, my supervisor, a mentor and I hope a friend. I have

been very impressed with his understanding o f the academic subjects I have had the privilege of

studying under him. However, my lasting impression o f him will be his caring, understanding

and patience and dynamism. There were times when only he and I know that his duties as a

supervisor were exceeded, and I can not thank him enough for those times and at the same time

apologise for the pains I have put him through. Nor can I express enough gratitude for his being

a constant source of inspiration and guidance through all those years.

All my brothers and sisters (Moti, Mohi, Atia and Aliah) need mentioning for their

constant encouragement, help and support, but more specifically my elder sister, Atia. Everyone

seems to bug her for proof reading their work and various secretarial works. God only knows

the number of times I’ve been a pain to her. If I’ve not shown it or said it, thanks for all those

times and good luck to her when she, God willing, starts her own research work this time next

year.

Thanks also to Prof Murray-Smith for the advice and guidance he has given me in Dr Li’s

absence and matters outwith my research. A special thanks to Tom O ’Hara, often the unsung

soldier in the Centre for Systems and Control, for being there when I needed help with any

equipment problems and during those lab demo sessions.

Finally, there have been many friends and colleagues who have given me a lot of

encouragement, help and support, specially all the folks of the “box” and the “dungeon”: Euan,

KC, Albert, Anna, Graham, Gary, Henrik, Lipton, Wenyuan, Markus, Torsten, Iain, Seelan,

Muktihar and Jay. Outside the “box”, people who deserve a mention for their constant support

and encouragement are my good friends, Max, Kenny, Asif and Mo! Thanks guys!

4 List o f Figures

List of Figures

Chapter 1:

Figure 1.1 Schematic o f FLC 12

Figure 1.2 Overlap between SC control algorithms 14

Chapter 2:

Figure 2.1 Nominal plant response: Fuzzy v PD 32

Figure 2.2 Comparison of plant response with FLC 32

Figure 2.3 Comparison of plant response with PD controller 32

Figure 2.4 System response due to non-symmetrical rule base 34

Figure 2.5 Comparison of membership function shapes 34

Figure 2.6 Comparison of different number of MFs 34

Figure 2.7 Comparison of defuzzification process 35

Figure 2.8 Standard crossover on fixed length string 39

Figure 2.9 Cut and splice operation 40

Figure 2.10 Messy GA flow diagram 42

Figure 2.11 The n independent uni-dimensional functions that form the 20-D objective

function 44

Figure 2.12 Standard reinforcement learning schematic 46

Figure 2.13 Comparison of reinforcement learning and evolutionary algorithms 48

Chapter 3:

Figure 3.1 ENFLICT structure 53

Figure 3.2 Layer 2 A/-node sub-network 54

Figure 3.3 Trapezoidal membership function 55

Figure 3.4 Layer 4 /Cnode sub-network 56

Figure 3.5 Encoded ENFLICT structure 64

Figure 3.6 Control system set-up 73

Figure 3.7 Network behaviour after mGA learning 74

Figure 3.8 Extracted membership functions after mGA learning. 78

Figure 3.9 Network performance with changing cross sectional area of orifice 1. 77

Figure 3.10 Network membership function adaptation to changing environmental

conditions. 77

Figure 3.11 Network performance with changing discharge constant 1. 78

Figure 3.12 Network performance due to a sinusoidal reference signal 78

___ 5

79

80

81

81

94

94

95

97

98

101

101

102

103

103

103

104

104

106

106

107

107

1 1 1

1 14

115

1 17

120

121

122

122

123

123

123

123

124

Comparison of ENFLICT with conventional PD and ANFIS structures

Normalised error measure

Position and velocity of cart for cart-pole system

Angle and angular velocity o f pole for cart-pole system

(a) Ship heading with respect to reference and (b) rudder motion

Performance measure at each learning cycle

Block diagram of the evolutionary neurofuzzy RL algorithm

Triangular activation function

Extracted activation functions (a) before learning, (b) after learning

Neurofuzzy network of tank system after stage 1

Extracted fuzzy sets from network o f tank system after stage 1

Closed Loop response of tank system after stage 1

Neurofuzzy network of tank system after stage 2

Extracted fuzzy sets from network of tank system after stage 2

Closed Loop response of tank system after stage 2

Closed loop response with disturbance

Comparison between ENFLICT and NEFCON

Cart position and velocity

Pendulum 1 angle and angular velocity

Pendulum 2 angle and angular velocity

Network Learning Curves (a) offline and (b) online

Schematic of unity feedback control system

Global Network Structure for Local Controller Design

Lower level controller representation by gaussian fuzzy subspaces

Hierarchical control structure for aircraft landing

Hierarchical structure for cart-pole system

Controller for cart sub-system

Controller for pole sub-system

Fuzzy subspaces pertaining to cart switching policy box

Fuzzy subspaces pertaining to the pole switching policy box

Position of cart for initial conditions (0;0;0;0)

Velocity of cart for initial conditions (0;0;0;0)

Angle of pole for initial conditions (0;0;0;0)

Angular velocity of pole for initial conditions (0;0;0;0)

6 List o f Figures

Figure 5.14 Plant response data for non-linear model and data obtain by convolution 124

Figure 5.15 Hierarchical structure for liquid level control system 125

Figure 5.16 Tank performance at various set points 126

Figure 5.17 Control signal applied to tank system from the local controllers 126

Appendices:

Figure A. 1 2-layer feed-forward network 153

Figure B.l Schematic of liquid-level system 156

Figure C. 1 Cart-pole co-ordinate system 160

Figure D. I Definition of co-ordinates Fixed to the ship. 163

Figure D.2 Variables used to describe the linearised yaw motion o f a ship 165

Figure D.3 The determination of the stationary motions as the intersections of the curves

J{v, r)=0 and g(v, r)=0. 165

Figure E. 1 Double pole system co-ordinates 167

List o f Tables 7

List of Tables
Table 2.1 Fuzzy rule base for nominal plant 3]

Table 2.2 Non-symmetrical rule base for nominal plant 33

Table 2.3 Theoretical solutions and objectives o f Benchmark Problem (2.4) 44

Table 2.4 Benchmark test results on the 10-D problem 45

Table 3.1 Comparison o f fuzzy system optimisation using evolutionary algorithms 67

Table 3.2 Comparison of neurofuzzy networks 70

Table 4.1 Comparison o f fuzzy reinforcement learning systems 99

Table 5.1 Comparison o f ENFLICT with evolutionary neurofuzzy methods 118

8 Table o f C ontents

Table of Contents

ABSTRACT

ACKNOW LEDGEM ENTS

LIST O F FIGURES

LIST OF TABLES

TABLE O F CONTENTS

CHAPTER 1

INTRODUCTION

1.1 M o t i v a t i o n

1 .2 M e t h o d o l o g y a n d L i t e r a t u r e R e v i e w

1.2.1 Neurofuzzy Learning: A First Step Towards Automated Tuning

1.2.2 Learning Through Interaction

1.2.3 Fuzzy Genetic Combination: Towards Global Tuning

1.2.4 Optimisation With Flexible Structures

1 .4 T h e s i s C o n t r i b u t i o n s

Publications

1 .5 T h e s i s O r g a n i s a t i o n

CHAPTER 2

BACKGROUND

2 .1 F u z z y C o n t r o l S y s t e m s - A n a l y s i s a n d C o m p a r i s o n

2 . 2 N e u r o f u z z y C o n t r o l

2 . 3 M e s s y G e n e t i c A l g o r i t h m

2.3.1 An Overview o f mGA

2.3.2 Flexible Coding

2.3.3 mGA Decoding

2.3.4 mGA Operators

2.3.5 mGA Operation

2.3.6 A Benchmark Test

2 . 4 R e i n f o r c e m e n t L e a r n i n g

2.4.1 Reinforcement and Advantage Learning

2.4.2 Reinforcement Learning and Evolutionary Algorithms

2 . 5 S u m m a r y

1

3

4

7

8

II

1 1

11

15

15

18

19

21

24

26

27

29

29

29

35

37

38

38

39

39

41

43

45

45

47

48

Table o f C ontents 9

CHAPTER 3 50

SYSTEMATIC APPROACH TO FLC DESIGN AUTOMATION 50

3.1 T h e D e s i g n o f FLC 50

3 . 2 S e l f - E v o l v i n g N e u r o f u z z y C o n t r o l 5 1

3.2.1 ENFLICT Network Architecture 52

3.2.2 The Learning Algorithm 57

3.2.3 Evolutionary Learning o f Structure 63

3.3 C o m p a r i s o n o f ENFLICT w i t h o t h e r N e u r o f u z z y a n d E v o l u t i o n a r y - N e u r o f u z z y

A p p r o a c h e s . 6 6

3.3.1 Evolutionary Algorithm Optimisation 66

3.3.2 Neurofuzzy Learning 70

3 . 4 A p p l i c a t i o n t o C o u p l e d N o n - l i n e a r P r o c e s s C o n t r o l 7 2

3.4.1 Global Structure Learning 74

3.4.2 Parameter Pruning 75

3 . 5 C a s e S t u d y - C a r t - P o l e S y s t e m 7 9

3 . 6 S u m m a r y a n d D i s c u s s i o n 81

CHAPTER 4 84

FURTHER LEARNING THROUGH REINFORCEM ENTS 84

4 .1 T h e N e e d o f R e i n f o r c e m e n t L e a r n i n g 8 4

4 . 2 C o n t i n u o u s T i m e R e i n f o r c e m e n t A d v a n t a g e L e a r n i n g 8 6

4.2.1 Advantage Learning 86

4.2.2 Delayed Rewards 88

4 . 3 G r a d i e n t D e s c e n t D e l a y e d A d v a n t a g e R e i n f o r c e m e n t L e a r n i n g 8 9

4 . 4 A p p l i c a t i o n o f M o d i f i e d R L t o S h i p C o n t r o l R e g u l a t i o n 9 2

4 . 5 E v o l u t i o n a r y N e u r o f u z z y R e i n f o r c e m e n t L e a r n i n g 9 4

4.5.1 Off-line Learning 95

4.5.2 On-line Learning 96

4.6 C o m p a r i s o n o f ENFLICT w i t h o t h e r R e i n f o r c e m e n t L e a r n i n g T e c h n i q u e s . 98

4 . 7 A p p l i c a t i o n t o a N o n - l i n e a r C o u p l e d S y s t e m 1 0 0

4 . 8 A p p l i c a t i o n t o a S i n g l e - I n p u t M u l t i - O u t p u t N o n - l i n e a r S y s t e m w i t h O n - l i n e

L e a r n i n g 1 0 4

4 . 9 S u m m a r y a n d D i s c u s s i o n 1 0 7

CHAPTER 5 110

MODEL-FREE DESIGN O F FLCS 110

5 . 1 A u t o n o m y a n d E a s e o f D e s i g n 1 1 0

5 . 2 D a t a a s M o d e l 1 11

5 . 3 H i e r a r c h i c a l C o n t r o l A p p r o a c h 1 12

10 Table o f C ontents

5.3.1 Global Network Structure Optimisation 113

5.3.2 Local Network Structure and Parameter Learning 117

5.4 C o m p a r i n g ENFLICT w i t h E v o l u t i o n a r y N l u r o f u z z y L e a r n i n g S y s t e m s 118

5 . 5 C a s e S t u d i e s 1 2 0

5.5.1 Single inverted pendulum 120

5.5.2 Case Study - Liquid Level Control Example 124

5 . 6 S u m m a r y a n d D i s c u s s i o n 12 6

CHAPTER 6 128

CONCLUSION AND FUTURE RESEARCH 128

6 .1 C o n c l u s i o n s 1 2 8

6 . 2 F u t u r e R e s e a r c h 131

REFERENCES 133

APPENDIX A 154

THE BACKPROPAGATION ALGORITHM 154

APPENDIX B 157

THE COUPLED TANK SYSTEM 157

APPENDIX C 161

DYNAMICS OF CART-POLE SYSTEM 161

APPENDIX D 164

SHIP DYNAMICS 164

APPENDIX E 168

DOUBLE INVERTED PENDULUM MODEL 168

1 Introduction

Chapter 1

Introduction

You see things and you say Why ?

But I dream things that never were; and I say Why not?

- George Bernard Shaw

1.1 Motivation

Many industrial systems are inherently non-linear and time-varying. To deal with this,

controllers are often designed by first linearising the system model about a given operating

condition. Clearly, this can imply severe consequences when operation moves to a new region.

Therefore, robustness, adaptiveness and autonomy in the algorithm and design are very

important, but may not be addressed adequately by conventional control schemes. Although

many control techniques such as PID, Bode-Nyquist, adaptive, H ^ , sliding mode and inverse

model based schemes exist, it cannot be argued that they are equally suitable or applicable in

practice.

Many practical control systems in operation still need a human operator. An example

would be a vehicle cruising along a defined path, where a model and a controller would

somehow have to accommodate changes and handle noise or disturbances within the system and

the environment, such as an accident further down its path. In addition, the mathematical

models for such applications can be ill-defined, very complex or too difficult to obtain. A

conventional controller may rely too heavily on a mathematically rigid model o f the system and

the environment and hence may not cope with the situation, while a human controller (driver)

can deal with it first by learning and then by reinforcing.

Mathematically rigid limitations have led many designers to more 'intelligent' control

schemes, which exhibit properties such as ‘knowledge representation’, inferencing, ‘learning’,

and ‘evolution’. Research into such schemes also arises from the insufficient flexibility and

autonomy of traditional control techniques. The desire on the operator’s part is not surprising

considering the fact that humans are able to generalise, infer reason, and evaluate complex

functions simply from knowledge and events encountered in everyday activities.

In control system design, the plant input/output measurements need to be mapped onto

the controller parametric space under an optimal output requirement criterion. When this

mapping is described using various pieces of uncertain knowledge, conventional control

methods are faced with various limitations and difficulties such as dealing with ill-defined and

12 1 Introduction

time-varying environments, potentially unknown systems, uncertainty with systems and

adaptation necessary to compensate for changing operating conditions. As has been mentioned,

the design of controllers typically involves reasoning, describing the system and control

instructions, adapting and learning the controller to various and changing operating situations,

and optimising and evolving the controller to operate optimally to local and global levels.

It is therefore desirable and appropriate to utilise methods exhibiting the above properties,

such as soft computing (SC) techniques. Soft computing techniques differ from conventional

computing in that, unlike conventional techniques, it is tolerant of imprecision, uncertainty and

partial truth, emulating the human mind. Current research into SC or intelligent control can be

divided into three strategies, namely:

• reasoning (encompassing knowledge based systems, classifiers and fuzzy logic)

• learning theory, and

• evolution.

Fuzzy logic control is an extension o f Zadeh's fuzzy set and fuzzy logic principles (Zadeh

1965), and was pioneered by Mamdani (Mamdani 1974). Just as a human controller would

define a control action in the form of a set o f linguistic rules, fuzzy logic controllers (FLCs) are

also defined by a set o f linguistic rules in the form o f a set of ‘I F ... THEN' statements.

A general FLC consists o f four blocks as shown in Figure 1.1. First, measurements are

taken o f all variables that represent relevant conditions o f the controlled process. Next, these

measurements are converted (fuzzified) into appropriate fuzzy sets to express measurement

uncertainties. The inference engine then uses the fuzzified measurements to evaluate the control

rules stored in the fuzzy rule-base. The result o f this evaluation is a fuzzy set (or several fuzzy

sets) defined on the universe of possible actions. Finally, the fuzzy set is converted (<defuzzified)

into a single {crisp) value, which is the best representation of the fuzzy set. The defuzzified

values represent actions taken by the FLC in individual control cycles.

Condition

Fuzzy Rule Base

Action

Fuzzification

Fuzzy inference
Engine

Defuzzification

Controlled Process

Figure 1.1 Schematic of FLC

1 Introduction 13

The advantage that a controller based on fuzzy logic has over conventional controllers, is

that it is easier to understand and implement because it emulates human reasoning. Control

actions can be described using linguistic descriptions that even a non-control individual can

understand and interpret. In addition, the generality o f FLCs makes them very suitable for non­

linear control. Fuzzy control is also able to operate without a clear mathematical definition of

system. It can be seen as a loosely defined form of table based control method. Its

development can be viewed as a type of knowledge based expert system. It essentially consists

o f a knowledge base expressed in terms o f relevant fuzzy inference rules, and an appropriate

inference engine to solve a given control problem. In contrast to conventional controllers, FLCs

are capable o f utilising knowledge extracted from human operators. The knowledge o f an

experienced human operator may be used as an alternative to a precise model o f the controlled

process.

Fuzzy control has been successfully applied to a wide range o f industrial problems such

as heating systems (Altrock et al 1994); steam engines (Mamdani 1974, Kiupel and Frank

1993); cement kiln control (Larsen 1980, Umbers and King 1980, Holmblad and Ostergaard

1982); water purification plants (Tang and Mulholland 1987); oil refineries (Graham and

Newell 1988, Aliev et al 1992); traffic control (Gegov 1994, Jia and Zhang 1994, Ngo and Li

1994, Pappis and Mamdani 1977, Sasaki and Akiyama 1988); air conditioning systems (Tobi

and Hanafusa 1991); warm water plants (Kickert and Van Nauta Lemke 1976); refuse

incineration plants (Krause et al 1994); robot control (Nedungadi 1993, Uragami et al 1976),

control o f space structures (Ross et al 1993), hydropower plants (Djukanovic et al 1997) and

nuclear power systems (Uhrig and Tsoukalas 1998)

While research and development on the three main areas o f intelligent control have

broadly progressed independently o f each other, there is in fact much similarity and

interconnection between them as illustrated in Figure 1.2. The overlap between fuzzy logic and

each of the other SC methods is significant as well as “ logical” .

Artificial neural networks (ANNs) give rise to a particular class o f parameterised

controllers and models. They are essentially an interconnection of non-linear units, with local

memory elements such as integrators or delay lines when dynamic behaviour is of interest. The

weights characterising the connections play a role similar to the concentrations of

neurotransmitters in biological synapses, while the non-linear elements correspond to the

neurons themselves. The weights are then adjusted in learning to model a plant or act as a

controller. From a theoretical perspective, the connection between fuzzy systems and neural

networks is that they are both universal approximators of continuous functions. Since the early

1990s, it has also been identified that fuzzy systems can be mapped to a particular type o f neural

network. The input nodes and layers of the neural network would represent the fuzzification

process of the fuzzy system; the output layer the defuzzification and the hidden and internal

nodes and layers the inferencing mechanism of the fuzzy system. Indeed, under certain

14 I Introduction

circumstances, there is a functional equivalent between fuzzy systems and neural networks

(Jang 1993).

G enetic a lgorithm s (GAs) are loosely modelled on processes that appear to be at work in

biological evolution and the immune system (Holland 1975, Goldberg 1989a). The connection

between FLCs and GAs is not as incongruent as it appears. GAs have proven to be a very

useful tool in dealing with various optimisation problems involving FLCs. GAs are typically

utilised for optimising the fuzzy rules and linguistic variables in FLCs, resulting in near optimal

controller operation.

In nature, humans follow a nature cycle o f evolution-reasoning-learning and reinforcing

what has been learned. It is therefore not a surprise that Reinforcem ent learning (RL), an

approach to machine intelligence com bining unsupervised learning and dynamic programming

to solve problems that neither o f these disciplines are able to address alone (Barto et a l 1983),

also finds itself interconnected with the intelligent methods already discussed. In fact, RLs

exhibit similar properties to A NNs and GAs, and thus the learning and evolving o f FLCs is

maintained through the entire nature cycle.

Despite much exploration and exploitation o f FLCs with many o f these other intelligent

techniques, research has mainly been limited to passive combination o f the methods. Thus, the

potential o f the other methods in the nature cycle are not fully utilised or realised. For example,

w hen integrating FLCs to neural netw orks, much o f the undesirable properties o f ANNs are also

brought in. During learning, the neurofuzzy controller (NFC) is prone to getting trapped in

regions o f local optima. On the other hand, while fuzzy-GA combinations find near optimal

controllers, such controllers are typically designed and applicable around limited operating

conditions. While the underlying subject o f this thesis is fuzzy logic control, the aim o f the

thesis is to systematically build up a paradigm based on fuzzy control, exhibiting evolutionary

and learning properties, and the net objective is optimal fuzzy control.

E = Evolutionary Algorithms

F = Fuzzy Logic

K = Knowledge Based Systems

N = Neural Networks

R = Reinforcement Learning

Figure 1.2 Overlap between SC control algorithms

1 Introduction 15

1.2 M ethodology and Literature Review

Fuzzy control is a very effective, flexible, robust and intuitive tool for dealing with

complex and non-linear systems, and despite its apparent success, it has many problems

associated with it. Its major handicap is that it is not always implemented in the best way. It is

very much ad hoc, lacking any systematic design procedure, and is very dependent on input and

interaction from a human, and hence the quality o f the controller may vary. For instance, in

some complex applications such as robot control and ship auto pilot, fuzzy control is applied at

the lowest level. Such controllers would have to be very fast and precise where bandwidths are

high and nonlinearities are strong. O f course, it is possible to obtain fast and accurate FLCs on

VLSI chips. The problem lies in the fact that in such fast systems, human experience alone is

not sufficient. One person's reasoning o f a certain problem may not ally with another's and

controller parameter tuning becomes difficult.

Unlike conventional control, the design and implementation of fuzzy control have, on the

whole, been ad hoc. There has not been any real drive or effort towards formalising or

generalising fuzzy control theory. Simply looking at the basic structure of the FLC, one can see

the difficulty fuzzy researchers face when attempting to formalise fuzzy control. As a result,

there have been numerous fuzzification, inferencing and defuzzification methods. This further

hinders practising engineers with confusing design choices. To address and alleviate some of

these issues and problems, there grew a need for computer-aided design and tuning techniques

highlighted in Figure 1.2, and such procedures will now be reviewed.

1.2.1 Neurofuzzy Learning: A First Step Towards Automated T uning

The complexity o f manually tuning a FLC has prevented it from better and wider

applications. Further, if system parameters change or if the environment in which the system

functions changes, the FLC needs to be tuned again for the new settings. There have been

various attempts at automating and optimising the design of FLCs by utilising other "intelligent

paradigms" shown in Figure 1.2, such as neural networks, genetic algorithms and machine

learning. The primary purpose for most of these hybrid systems is to tune the parameters of the

FLC.

The combination o f ANNs with FLCs are generally termed neurofuzzy controllers and

such combinations present the advantages o f both while avoiding many of the drawbacks of

both. While fuzzy control uses reasoning, it can not learn from path experience without some

level of supervision. On the other hand, ANNs are able to function supervised or unsupervised

and can learn from past experience or data. However, in order for this learning procedure to be

effective, quality data representing different states or conditions have to be provided. In

16 1 Introduction

addition, tuning and identifying the different nodes and elements o f an ANN require some

degree of expertise and knowledge or else the learning procedure may be handicapped. By

mapping a FLC to an ANN, such difficulties can be overcome as the components o f the fuzzy

controller are intuitive and simple to implement (Berenji 1990, Brown and Harris 1991, Lin and

Lee 1991, Kosko 1991, Horikawa et al 1992, Nomura et al 1992, Bruske et al 1993, Jang 1993,

Kim 1993, Khalid et al 1994, Chen and Chen 1994, Linkens and Nie 1994, Nauck and Kruse

1994, Fukuda and Shibata 1994, Ichihashi et al 1995, Lee et al 1995).

An example o f such a neurofuzzy hybrid is that proposed by Khalid et al (Khalid et al

1994) called NeuFuz. The neurofuzzy scheme is similar to a self-organising FLC set-up

(Procyk and Mamdani 1979, Scharf and Mandic 1985) and consists o f two multi-layered neural

network models. The first neural network is a plant emulator and the second is used as a

compensator to improve the performance of the basic fuzzy logic controller. The development

o f this system consists of three phases. The first phase is developing a basic FLC for the plant.

The second phase involves training a neural network model in the forward dynamics o f the plant

to be controlled. The training o f this neural plant emulator can be done off-line as well as on­

line, depending on the type o f plant. For fast-acting plants, such as robotics manipulators or

servo-motors, it is possible to train the neural network to emulate the plant in an on-line way.

However, if the plant is a slowly varying process, the neural plant emulator needs to be trained

off-line as convergence is rather slow. The function of the neural network plant emulator is to

provide the correct error signal at the output o f the neurofuzzy compensator, without the need

for any mathematical modelling of the plant. The third phase involves on-line learning o f the

neurofuzzy compensator. The performance error, which is the error between the desired output

and the actual plant output, is backpropagated through the neural plant emulator to adapt the

weights of the neurofuzzy compensator on-line. The performance of the neural plant emulator

can be further improved on-line by backpropagation o f the error between the neural plant

emulator and the actual plant output. Variations and use of this method are found in Rao and

Gupta (1994) and Spooner and Passino (1996).

Despite its potential it has not been too warmly embraced by the fuzzy logic community,

the main objections being the amount o f training required, the quality o f the performance tables,

and questions about the stability of the resulting controller.

Such early neurofuzzy methods used neural networks and fuzzy systems independently,

but functioning together. After a FLC is designed, a neural network is used to track changes in

the system. Therefore, the fuzzy system parameters are not tuned, and if any tuning does take

place it is partial. In other words, either the fuzzy rules or the fuzzy sets are tuned, not the

structure as a whole.

More recently, neurofuzzy systems are treated as single structure, i.e., they are either a

neural network with fuzzy properties, or fuzzy systems in a neural network structure. While

there are numerous fuzzification, inferencing and defuzzification strategies, the actual fuzzy

1 Introduction 17

system topology is fixed. Hence, any representation of fuzzy systems as a neural network

means that the number o f layers of the neurofuzzy structure is limited. In fact, as a result, there

has been very little change in the way fuzzy systems are represented as a neural network

structure, and thus most new neurofuzzy structures are derivatives of early popular and

established ones.

One such method is that proposed by Lin and Lee (Lin and Lee 1991). The fuzzy logic

components are directly integrated in the neural network, and have a multi-layer feed-forward

topology. The input and output nodes represent the input states and control signals,

respectively, and in the hidden layers there are nodes that code membership functions and rules.

The learning algorithm used for building rule nodes and training the membership functions is

based on the backpropagation algorithm. The limitations of this system are that it only tunes the

fuzzy sets, no rule reduction of formation takes place to reflect changes in the system behaviour,

and only gaussian membership functions are used. The shape and type o f the fuzzy sets are

important as they can influence the smoothness o f the control surface. The most used shapes

are trapezoids and triangles because they are simple to implement and are computationally

efficient. However, because o f their piece-wise nature, they are not well suited for a smooth

transition between fuzzy sets and instead the smoother membership functions, gaussian and

generalised bell, are used. However, the advantage this system has over the ANFIS structure

(see below) is that this system can represent the output variables as fuzzy sets. Most neurofuzzy

controllers have structures similar to this model, with slight variations, and the Lin and Li

method is in fact the work that best resembles the neurofuzzy structure developed here.

Possibly the most well known of neurofuzzy models is Jang’s ANFIS (adaptive

neurofuzzy inference system) (Jang 1993). It is a variation o f the Lin and Lee model, but the

learning algorithm is described only for the Sugeno fuzzy model, and employs Kalman filters.

Again, the network only adjusts the parameters o f the fuzzy sets and does not allow for rule

modification. This means that in addition to the operator knowing the control surface, the

network size can potentially increase in size exponentially depending on the size of the input

space. Another drawback of both systems is that they are supervised, and hence quality,

accurate and reliable training data has to be provided.

A third type of neurofuzzy structure can be found in the works of Harris et al (Harris et al

1993). It uses B-splines to implement fuzzy sets, and the network resembles a CM AC or RBF

network. While using B-spline functions well for storing information locally, the structure does

not store the membership functions directly as in the models described above. Instead, fuzzy

rules and sets are learned through data clusters. Another difference between this and other

models is that the fuzzy sets may be subnormal. That is, at least one element o f the fuzzy set

may not have value unity within the universe of discourse of the variable, and hence the set may

have special constraints placed on it which it would not have if a standard fuzzy set were used.

1 1 1 Introduction

1.2.2 Learning Through Interaction

One of the limitations o f using ANNs for learning fuzzy systems is that ANNs require

gradient information to guide the learning. Also, in order to define the training data used by

ANNs, the condition-action o f the problem has to be known or simulated. Often this is difficult

or impossible to obtain. For example, a robot may be trained to navigate around a room while

avoiding obstacles in its path. To train it to avoid any obstacle anywhere in its path would

require a large amount of data which would be expensive, tedious and possibly difficult to

obtain. In "nature", such systems would not have data to train it, instead it would learn to

navigate by interacting with the environment directly. Learning through interaction is also

known as reinforcement learning, and is the primary learning method of biological systems.

Recently, efforts to apply the RL methods to fuzzy systems have been reported (Berenji

and Khedkar 1992, Whitely 1993, Lin and Lee 1994, Glorennec 1994, Buijtenen et al 1998, Lin

and Kan 1998). The majority o f these is based on Q-leaming and is applied to classifier

systems where patterns are matched using fuzzy linguistic type if-then rules. Usually, in an

FLC, some rules trigger on the same crisply defined state, and together co-operate to produce an

action. There is a one-to-one mapping between an agent (i.e. a set o f rules) and the action it

produces. Therefore, the performance of each agent is evaluated independently o f each other.

The difficulty with this method is that the rule structure contains all possible combinations of

rules making it computationally inefficient.

The system closest to the work presented in this thesis is Nauck and Kruse’s NEFCON

(NEural Fuzzy CONtrollers) model, (Nauck and Kruse 1994). Nauck and Kruse proposed a

generic three-layer neurofuzzy model with a single output. The network is trained using

reinforcement learning, which uses a rule based fuzzy error measure as the reinforcement signal.

In NEFCON, both the fuzzy rule base and the fuzzy sets are achieved. The drawback o f the

NEFCON approach is that it starts from an empty rule base and builds up the rule base. The

rule antecedent is formed by finding membership functions for each variable that yields the

highest membership value for the appropriate input variable. The rule consequents are formed

by guessing the output value from the fuzzy error. This form of rule creation implies that the

operator has sufficient information about the desired output data, hence the model is only

suitable for supervised off-line learning. In contrast, the reinforcement learning model

presented in this thesis is applicable to both off-line and online learning, and assumes no

information on the desired output.

Another method that uses reinforcement learning was proposed by Whitely (Whitely

1993). In this method the system receives a signal o f success or failure from the real world, and

learns from the strength of this signal to improve its success rate. However, since the quality of

such a feedback signal is generally poor, learning is inefficient. Another drawback is a noisy

I Introduction 19

value function and biased signals, which means that not all the possible state occurrences are

learned.

1.2.3 Fuzzy Genetic Combination: Towards Global T uning

Evolutionary algorithms (EA), of which genetic algorithms is a specific type, are

techniques based on the Darwinian principles o f evolution through survival o f the fittest.

Central to the evolutionary system is the idea o f a population of genotypes or phenotypes that

are elements o f high dimensional search space. Through “natural selection” and genetic

operators, genotypes or phenotypes with better fitness are learned. Thus by survival o f the

fittest GA over several generations, the population gradually evolves towards genotypes that

correspond to high fitness phenotypes.

EAs work in a similar manner to RLs, both using an evaluation function to guide the

learning and optimisation process, and neither requiring the gradient information that neural

networks use. However, EAs and RLs differ in a number of ways: first, EAs search the solution

space in a completely random manner and hence ignore a lot o f the information between state

transitions. Second, an EA discards poor solutions in favour o f good ones whereas RLs take this

information on board and attempts to improve on it. Finally, unlike EAs, the evaluation

function defined for RLs does not indicate a performance measure, but whether the learning

system is performing well or badly.

The primary purpose for most of these hybrid systems is to tune the parameters o f the

fuzzy sets defining the linguistic variables, while some systems also deal with rule reduction

(Thrift 1991, Homaifar and McCormick 1992, Linkens and Okola 1992, Chen et al 1993, Lee

and Takagi 1993, Surman et al 1993, Buckley and Hayashi 1994, Cooper and Vidal 1994,

Renders and Bersini 1994, Bastian 1995, Cordon and Herrera 1995, Fukuda et al 1995a,

Hishiyama et al 1995, Cotta et al 1996, Filipic and Juricic 1996, Gonzalez and Perez 1996,

Huang and Hung 1996, Magdalena and Velasco 1996, Popovic and Xion 1996, Tarng et al

1996). A first attempt at optimising fuzzy control with genetic algorithms was mainly

concerned with tuning the positions of the fuzzy membership functions (Karr et al 1989,

Homaifar and McCormick 1991, Wang and Kwok 1992). The approach uses a fixed predefined

number o f fuzzy sets to define the input and output domains. Genetic algorithm is used only to

adjust the shape o f the fuzzy sets in the given rule base. The chromosome is made up of binary

numbers representing the supports o f the membership function. Nonetheless, this is very basic

and no optimisation of the rule base is carried out, and an exclusive membership function shape

is used. This requires a great deal o f knowledge on behalf of the expert operator such as

knowing what control actions to take for a given situation.

20 1 Introduction

Herrera et al (Herera et al 1995a) encodes the entire knowledge base. The fuzzy sets are

o f trapezoidal form represented by a 4-tuple parameter set indicating the apex and the base

points of the set. Each rule is thus represented in the following way:

C n ~ (®ii n bt\ i c t\ ■> d t\ , , am ,bm,cm,d m,a n bn cl ,d l) (1.1)

where (am,bm,c m,d m) is the 4-tuple representing the fuzzy set in the said domain. The

complete rule base representing the whole chromosome is thus a concatenation of all such C .

Real values are used to encode the genes, and the whole GA operates using simple and min-max

arithmetical crossovers and non-uniform mutation. This approach is slightly different from the

other approaches mentioned above in that the fitness function is a square-medium error function

using an input-output training data set similar to that used in neural network training. This

implies that the operator must provide quality and accurate data for the GA to converge

smoothly to the desired goals. The other drawbacks o f this approach are that it uses only

trapezoidal fuzzy sets and that it is limited to Mamdani-type FLCs.

Another approach to optimising the entire rule base structure was proposed by Kinzel et

al (Kinzel et al 1994). This method uses a x . . .x nd matrix instead of a string to code the

rule base. Here nj is the number of fuzzy sets in domain Each element of the matrix consists

of a fuzzy set o f the output domain. The fuzzy sets are coded by a string o f genes where each

gene represents the membership values of the fuzzy sets o f domain d at a certain x-value. The

initial population is generated by applying the mutation operator on all genes, and the initial

fuzzy partitions are homogeneous. Crossover on the rule base is carried out using a point radius

operator. A two-point crossover is used on the fuzzy sets, which exchanges ranges of the

partitions represented by the two chromosomes. A side effect of this type of crossover is that a

repair algorithm has to be used to repair any resulting non-convex fuzzy sets to convex ones. In

addition, there may also be situations where some fuzzy sets may not be present for the

controller to operate in some ranges.

This naturally led to the search for systematic designs and ways to optimise the entire

fuzzy control structure (Lee and Takagi 1993, Kinzel et al 1994, Ng and Li 1994, Herera et al

1995a). Lee and Takagi optimises the rule base, the number o f rules and the shape of the fuzzy

sets. The rule base is encoded such that three genes represent each fuzzy set in each domain,

where each gene represents the distance of the support of the working fuzzy set from the support

o f the previous fuzzy set. The drawback o f this system is that in order to keep the length of the

encoded chromosome short, it is only applicable for Sugeno-type FLCs, i.e. the output domain

is not fuzzified. Another drawback is that it only handles rule reduction and there is no

provision for rule adding.

1 Introduction 21

Within the research group at Glasgow, Ng and Li (Ng and Li 1995) developed an

approach that uses base-7 coding if 7-level fuzzification and a 7x7 rule-base is predefined. The

positioning and shape of the linguistic variables are determined by the set parameters (a, /?, cr)

representing the position, shape and scaling respectively. The remaining part of the

chromosome encodes the membership function parameters. That said, the Ng and Li approach

does present a novel and efficient solution to the curse o f dimensionality problem by reducing

an n-dimensional rule base to a one-and-half dimension or a two-dimensional rule base. As can

be seen, the drawbacks o f this system are that the number of rules is fixed, is limited to a two-

input and single output configuration, and that there is no provision for rule modification, and

once again, it is left up to the operator to define the control actions.

As can be seen, due to the amount o f information needed to represent the entire structure,

it is neither efficient nor practical to attempt to liberate the complete structure o f the FLC by

encoding it in a fixed size GA chromosome. That is, the more information is encoded in a GA

chromosome, the larger it gets. Thus the performance o f the GA is degraded despite using non­

binary coding schemes to keep the length o f the chromosome short. In addition to affecting the

performance o f the GA, the stability and performance o f the system is also compromised. The

stability o f the system is governed largely by the number of rules and the combination of

premise and action for each rule. Hence, to accommodate higher order problems, such methods

as described above compromise by using a smaller number of rules. Therefore, fixed structure

FLCs and length EA chromosomes are often inadequate.

1.2.4 Optimisation With Flexible Structures

At Glasgow, structural design problems were recognised but remained unsolved (Ng

1995, Li and Ng 1996). In order to liberate the structure, there have been a few approaches that

used flexible GA coding schemes (Lee and Takagi 1993, Cooper and Vidal 1994, Hoffmann

and Pfister 1995, Chowdhury and Li 1996, Carse et al 1996, Li and HauBler 1996). The

structural optimisation method for selecting neural network architectures reported by Li and

HauBler (Li and HauBler 1996) is based on network pruning and may be adopted here. In

pruning however, the EA chromosome has to start from a parent architecture that has to be very

large to accommodate all predicted possible architectures. However, some a priori knowledge

o f the controller structure is not always possible, as has already been argued. It also means that

if the operating conditions change and there is need for growing the network to follow the

change, it is not possible. It is also limited to small problems as for larger and more complex

problems, the size would be too large and computationally inefficient. Hence, pruning is not

fully adequate to achieve the objectives of the thesis.

22 I Introduction

Cooper and Vidal tried to address the complexities and issues highlighted in the previous

subsection through a coding scheme based on matching fuzzy rules that are similar (Cooper and

Vidal 1994). In this, each membership function representing a control variable is represented by

two integers, and only triangular membership functions are used where only the centres and half

widths o f the functions are tuned. Each rule is a concatenation all the membership functions of

the variable, and the rule base, represented by a full chromosome, is a concatenation o f all such

rules. Cooper and Vidal address the curse of dimensionality and redundant coding issues by

using a mechanism whereby variables are ignored when their half-length values fall outside a

certain range. Reproduction and combination in this approach are based on crossing over rules

o f similar structure. That is, before reproduction, the rules in the two mating chromosomes

must be aligned so that they match as closely as possible. Any rules that are not matched are

appended to the end of the chromosome.

As can be seen from the above description, the Cooper and Vidal method has many

problems and limitations. First of all, using two integers to represent a single membership

function lengthens the chromosome and the problem gets worse with higher order problems.

The method is also not flexible with regard to the type of membership functions that can be

used. Only triangular membership functions are used, and tuning o f such functions is limited to

the centre and the widths, but not the supports. It is also not clear how membership function

overlap is maintained when the half-length o f the fuzzy sets falls outside a certain range and is

then ignored. This would suggest discontinuities in certain regions o f operation. Before

reproduction and combination, the Cooper and Vidal approach requires reordering of the rules,

and hence the genes of the chromosomes. This not only introduces computational inefficiency,

but also the likelihood of matching schemes is not guaranteed.

Based on the work by Cooper and Vidal, Carse et al proposed a flexible representation

scheme to tune fuzzy sets for classifier systems (Carse et al 1996). A chromosome represents

fuzzy parameters belonging to an input or output variable, which must be a triangular fuzzy set.

The parameters o f the set encoded are its centres and widths. Each rule is in the form,

'■ < * *) = >) c - 2)

where x is the input; y is the output; n is the number of inputs; m is the number o f outputs; k is

the rule index; x c is the centre o f the fuzzy set representing input n and x w k is the width o f the

fuzzy set representing input n. This representation allows rule premise and consequent variables

to have their own fuzzy sets instead o f sharing a global one, as found in most fuzzy rule base

representations.

To accommodate a variable number of fuzzy sets, this approach uses a variable length

chromosome and the crossover operator in a standard GA is replaced by a new one which works

differently depending on the size o f the input dimension. For the case of a single input, the

I Introduction 23

genes are sorted according to the centres of the input fuzzy sets before crossover takes place

such that the resulting chromosomes o f the offspring will be valid. For the case o f n-

dimensional input space, instead of using a single crossover point, a vector o f points is created,

as given by Carse el al (1996)

C, =MIN, + (M A X , - M I N ,) - R ' <'" (1.3)

where [MIN, , MAX,] is the range o f the input variable x. The vectors are applied such that

x ak < Ci ’> ^ and ru*es fr°m Parent 2 such that x ak > c t , V (. The remaining rules from both

rule-sets then form the other child. Finally, a random creep is used to fine tune the fuzzy set

parameters.

While the Carse et al approach offers an improvement on the Cooper and Vidal one, it

still has a number o f limitations. First, fuzzy tuning takes place only at the centres and widths,

thus representing symmetrical fuzzy sets. Second, only triangular fuzzy sets can be

accommodated. If, for example, trapezoidal sets are mixed in, the number o f parameters and

hence the chromosome length will be changed, which will complicate sorting the now irregular

genes and selecting the crossover points. Third, such sorting is prone to premature convergence

as it is against the proven philosophy of well mixing the genes as in uniform crossover scheme.

Also, it is not clear what would happen after crossover occurs and one chromosome ends up

with one single rule while the other child ends up with a very large rule base. Other issues also

arise, such as why it is necessary to have different fuzzy sets for similar rules since each rule

will have its own fuzzy sets.

Hoffmann and Pfister (Hoffmann and Pfister 1995) accomplished a structure using messy

genetic algorithms (mGA) (Goldberg 1989b), similar to the design of FLCs. The coding,

decoding and representation are simple and less ambiguous than the above process. The coding

scheme has both input and output variables where the universe of discourse o f each of the

variables is covered by fixed fuzzy sets defined a priori. The coding element represents the

fuzzy clause and is a pair of integers. The first refers to the variable and the second refers to the

fuzzy set of this variable. Since the orders of the genes are irrelevant, a first-come-first-served

precedence rule is also applied to resolve conflicts between two rules with identical conditional

steps. The whole rule base is encoded in the string and each rule within the string is treated as a

gene, thus representing a hierarchical structure. The drawback o f this system is that although it

allows for rule structure modification, the actual type and shape of the fuzzy sets can not be

modified. In addition, the universe of discourse of each o f the variables, as well as the number

of fuzzy sets in each variable, is fixed. That said, the approach is novel because it was the first

scheme to have a flexible structure through an EA other than the regular GA. Messy GA is

significantly superior to the regular GA for such structural optimisation because it allows for

representation of more than one type o f information within each gene, thus enabling the coding

24 1 Introduction

of higher order systems. Depending on what information each gene holds, it is also possible to

encode all the information pertaining to a specific fuzzy set. In addition, the order of the genes

is not important hence increasing computational efficiency.

Even with flexible encoding schemes, representing a complete FLC within a GA is

difficult and learning o f such systems is more involved. On-line implementation is not practical

due to the nature o f the EAs. Hence such hybrids usually function off-line and are generally

restricted to simulation only. When encoding neurofuzzy systems in a GA chromosome, one

can either decide only to type the fuzzy parameters, obtain the network structure or both.

Naturally, the more information encoded, the greater the processing power required, and

computational efficiency is compromised. This realisation of the limitations o f both approaches

has in recent years seen the reporting o f hybrids comprising o f both methods resulting in

evolutionary based neurofuzzy FLCs. Either such hybrids utilises neural learning techniques on

the EA chromosomes, or gradient decent algorithm is applied to an EA learned FLC, or the EA

tunes an ANN representing a FLC.

The novel approach of Hoffmann and Pfister has inspired many o f the thoughts presented

in this work (Chowdhury and Li 1996). The underlying objective has been put into ensuring

that all three desirable properties o f a FLC are satisfied based on a mGA-neurofuzzy hybrid. By

using a neurofuzzy structure, it was possible to tune the fuzzy sets as well as the rule structure.

Halving the gene size of a pair o f integers, a single integer is used to encode the fuzzy premise

or consequence and the type o f fuzzy set. In addition, the restrictions o f the Hoffman approach

on the number o f fuzzy sets was eased by allowing the mGA to explore with a variable number

o f fuzzy sets. While the mGA is used to obtain the structure o f the FLC, the tuning o f the fuzzy

set parameters is carried out using a neurofuzzy model. This forms the foundation of the work

presented in this thesis.

1.4 Thesis Contributions

The aim of this thesis is to develop a method for optimally designing fuzzy control

systems that are autonomous, flexible and globally and structurally explored. Autonomous in

this case implies that the controller has to be self-supporting with learning and adjusting

capabilities, and should be able to track environmental uncertainties and system parameter

variations. Such design should be flexible enough to tackle problems where description o f the

plant is difficult to obtain or unavailable, and it should be independent o f the need for training

data. The main original contributions presented in this thesis are summarised below followed

by more detailed descriptions of each point highlighting differences with other state-of-the-art

work found in literature. Emphasis is on systematic and automatic design.

1 Introduction 25

1. A systematic and novel approach to flexible and optimal design automation of FLCs

In chapter 3, fuzzy control components have been analysed and compared with a more

“conventional” approach in order to identify the areas where learning and optimisation are best

required. Earlier work relevant to this thesis

• uses supervised learning models only

• uses either Mamdani or Sugeno type FLCs

• is constrained to a specific fuzzification, inferencing and defuzzification strategy

• uses only one type o f membership function

• deals with partial tuning o f the fuzzy system and requires expensive, accurate, and reliable

training data.

The model that has no such restrictions has been developed. The structure of the model is

such that it can

• be in batch mode (supervised)

• be ready for operation and tuning online (unsupervised)

• switch between Mamdani or Sugeno type controllers, with a network structure

accommodating both

• deal with mixed types of fuzzy sets; with no restriction on the type of fuzzification,

inferencing and defuzzification schemes.

The coding and representation scheme developed enables the automatic FLC designer to

obtain from the decoded mGA chromosome a neurofuzzy network structure in terms of its

• topology

• number of network building blocks

• type of fuzzy sets

• number of fuzzy sets for each input and output variable

With this representation, the network structure is completely liberated in terms o f size,

connectivity, operation and optimality. While modular in approach, the evolutionary learning

and the neural learning of the FLC are part of the same model, which is labelled ENFLICT.

Both learning methods complement each other, and separating the evolutionary part from the

neurofuzzy part would therefore be inappropriate.

26 1 Introduction

2. Advantage reinforcement learning technique achieving refinement and online learning

The need for and advantages of learning from interaction with the environment are

analysed. On-line learning algorithms found in literature require prior knowledge o f probability

distributions or complex matrices. In this thesis, no such matrices are required. Instead online

learning is achieved (Chapter 4) using ideas borrowed from simulated annealing.

The basic advantage learning algorithm has been extended for continuous and online

learning o f neurofuzzy control without the need for lookup tables.

3. Model free design of fuzzy control systems

Combining the model dependent ENFLICT structure with the reinforcement learning

procedure developed, a new method is further developed in Chapter 5 to deal with complex

systems or with systems where obtaining a mathematical model of the system is difficult or

impossible. Unlike existing methods, the method developed here does not require any a-priori

knowledge of or information on the path to the desired output. It is not limited to rule deletion

only, nor to offline supervised learning.

4. A new method for hierarchical neurofuzzy structure to handle complex systems

For systems of higher dimensions respectively, a new method for hierarchical fuzzy

control has been developed in Chapter 5. By using the response data as the model, it is possible

to leam the controller off-line while still working with a true representation o f the model. The

advantage of this procedure is that mGA, which has so far been used off-line for structure

optimisation, is now integrated to the neurofuzzy-reinforcement autonomous system.

Publications

The work presented in this thesis has been published in the following papers.

1. M. Chowdhury and Y. Li, 1996. Messy genetic algorithm based new learning method for

structurally optimised neuro-fuzzy controllers. Proceedings o f the IEEE International

Conference on Industrial Technology, December 1996, pp.274-279. Shanghai, China.

2. M. Chowdhury and Y. Li, 1997. Evolutionary reinforcement learning for neurofuzzy

control. Proc. Seventh International Fuzzy Systems Association World Congress, June

1997, vol. II, pp.434-439. Prague, Czech Republic.

1 Introduction 27

3. M. Chowdhury, T. Brune and Yun Li, 1998. Direct design o f evolutionary neurofuzzy

controllers from plant response data. Third Asia-Pacific Conference on Control and

Measurement, August 1998, pp. 147-151. Dunhaung, China.

4. W. Feng, M. Chowdhury, T. Brune and Yun Li, 1998. Benchmarks for testing evolutionary

algorithms. Third Asia-Pacific Conference on Control and Measurement, August 1998,

pp. 134-138. Dunhaung, China.

5. M. Chowdhury and Y. Li. Learning fuzzy control systems directly from the environment.

International Journal o f Intelligent Systems, 1998, vol. 13, no. 10-11, pp.949-974.

1.5 Thesis Organisation

The remainder o f the thesis is structured as follows.

Chapter 2 provide background material necessary to the rest o f the thesis. First,

background to neurofuzzy control is presented, followed by analysis of and comparison between

conventional and FLCs to identify areas of a FLC that need learning, tuning and optimisation.

Finally, the messy genetic algorithm (mGA) is introduced. The semantics and benefits of mGA

for flexible encoding and representation are discussed, and a simple benchmark is carried out to

support the reasons for using mGA over the simple GA.

Chapter 3 builds the ENFLICT (Evolutionary NeuroFuzzy Learning Intelligent Control

Technique) model from the bottom up. The objective is to construct a method for automatic

controller design. Emphasis is placed on learning and flexibility o f structure and

implementation using neural, fuzzy and evolutionary methods. First, the neurofuzzy structure is

constructed, and then, to enable online learning, a method based on annealing is developed.

Then the messy genetic algorithm and coding scheme for the network structure optimisation is

explained. Finally, the features o f the ENFLICT model, which distinguish it from other models,

are compared and discussed, and the effectiveness o f the developed method is illustrated with

some case studies.

Chapter 4 extends the model-based approach that ENFLICT uses in the previous chapter

to work without a model by directly interacting with the environment. The interaction is

achieved through reinforcement learning. Reasons for using RL are given and a correlation

between EAs and RLs is established. To cope with continuous time systems, and online

learning without a look-up table, an extension is made to the advantage learning RL algorithm.

The modified algorithm is then used with the ENFLICT model to learn the network structure

28 1 Introduction

and parameters online. Since no model description is present, the gradient information

unavailable, the backpropagation learning algorithm is replaced with a new and novel way for

learning the fuzzy sets online with the ability for rule reduction. Finally, the entire procedure is

tested against some benchmark problems.

Chapter 5 discusses how to tackle more complex and large systems through hierarchical

structures, where the EA works at the upper level and the reinforcement neurofuzzy structure

works at the lower level. The difficulties of on-line and real-time RL are discussed and a

method of overcoming this by using plant data directly is suggested. To illustrate, a comparison

between this method and that developed in Chapter 3 is made on the same case study problems.

Chapter 6 analyses and discusses the work in the thesis and explores possibilities and

scope for further work in this field.

2 Background 29

Chapter 2

Background

“To be or not to be: that is the question”

- William Shakespeare

The purpose o f this chapter is to lay the foundation fo r the contributions o f

the thesis. First the origins and role o f neurofuzzy control is presented,

followed by an investigation and analysis o f the components that make up a

FLC. The purpose o f this is to identify and demonstrate the various

combinations possible in the design o f FLCs, and where learning and

optimisation can be applied. Then the messy genetic algorithm is

introduced. Messy genetic algorithm is the evolutionary algorithm

technique in the thesis fo r the structure optimisation o f the neurofuzzy

network and the technique used as the teacher in hierarchical fuzzy control

structure. The main characteristic o f mGA is it enables flexible coding that

is ideal fo r network topology optimisation. mGA is used instead o f any other

flexible coding scheme, or devising a coding scheme from scratch because it

has been proven theoretically and has been applied to a number o f

applications. To demonstrate the effectiveness o f mGA, a simple benchmark

test is carried out, comparing it with other EA techniques. Following on

from this, reinforcement learning as a tool fo r model free unsupervised

learning is explained and the similarities and differences between RL and

EA are highlighted.

2.1 Fuzzy Control Systems - Analysis and Comparison

The main reason for the popularity o f fuzzy logic is the successful application of its

principles in the design of fuzzy logic controllers. Fuzzy logic controllers are essentially a type

o f fuzzy logic system employing a knowledge base and an inference engine to solve a specific

control problem. There is no set type o f FLC. In other words, the way of expressing the rules

to describe the knowledge base and the inferencing engine varies with the type o f control

problem.

Control systems based on fuzzy logic are popular because they are able to utilise

knowledge extracted from human operators. Fuzzy logic control does not require a

30 2 Background

conventional model of the process, whereas most conventional (model based) control

techniques need either an analytical model or an experimental model. Therefore, fuzzy logic

control is appropriate for complex and poorly defined processes in which analytical modelling is

difficult due to various factors, for instance the process may only be partially known or

experimental model identification is not practicable because the inputs and outputs may not be

measurable. It is more feasible to express control rules in linguistic form based on the

knowledge o f an experienced human operator, which the operator understands.

In this section fuzzy logic controllers are explored, looking in detail at the components

making up a fuzzy logic controller. When designing fuzzy logic controllers, a number o f

assumptions are usually made (Ross 1995).

1. The plant is observable and controllable: state, input and output variables are available for

observation and measurement

2. There is a knowledge base consisting o f input and output measurement data that can be

fuzzified for rule extraction

3. There is always a solution

4. An optimum solution is not necessary as long as it is “good enough”.

5. The controller can only be designed with the knowledge available and within an acceptable

range of precision

6. Optimality and stability problems are still persistent in FLC design.

With these assumptions in mind, the architecture o f a FLC will now be studied through a

comparative study with PD controller. First the various components are identified and then the

effect of different membership functions, numbers of rules, different fuzzy reasoning and the

positioning of the membership functions are examined. The tests are carried out using computer

simulation. A nominal plant (2.1) and two perturbed plants, (2.2) and (2.3), based on the

nominal are defined below. The design condition is that the controller must satisfactorily control

all the plants under closed loop for a step response following.

G„(s)
5

(2 . 1)
s + 3^ + 2

(2 .2)

(2.3)

2 Background 31

The specifications are that the settling time should be about 20 seconds, with fastest rise

time and smallest overshoot possible. Using trial and error manual tuning Kp = 0.2

(proportional action) and Kd = 0.1 (derivative action) are obtained. The FLC is of Takagi-

Sugeno type with seven equally spaced triangular memberships for each of the input variables

(error and rate o f change o f error). The output variable is defined using seven spikes and the

weighted average defuzzification strategy is employed. Only a PD type controller is considered

because the inputs to the FLC resemble a PD controller. Table 2.1 shows the rule base for the

FLC, with the universe o f discourse and membership positions shown above and to the side of

it. Each input and output are described by the linguistic variables ‘NB’ (Negative Big), ‘NM’

(Negative Medium), ‘N S’ (Negative Small), ‘ZE’ (Zero), ‘PS’ (Positive Small), ‘PM’ (Positive

Medium), and ‘PB’ (Positive Big).

Figure 2.1 shows the response o f the nominal plant with the PD and FLCs to a unit step

input. From these it is apparent that both controllers perform well but with the FLC there is no

overshoot and has a faster rise time. However, the responses of the perturbed systems with the

same controllers are quite different. Figure 2.2 and Figure 2.3 shows the response o f the

perturbed systems with each o f the controllers. As can be seen the FLC performs significantly

better than the PD in terms of robustness. Notice the case for perturbed plant 2. The PD

controller is extremely erratic, while the FLC, although not reaching the desired response, is

nonetheless much more stable. Note that none o f the controllers are tuned after the initial

design.

xxxxxx
\ -3 3

NB NM NS ZE PS PM PB

NB NB NB NB NB NM NS ZE

NM NB NB NB NM NS ZE PS

NS NB NB NM NS ZE PS PM

ZE NB NM NS ZE PS PM PB

PS NM NS ZE PS PM PB PB

PM NS ZE PS PM PB PB PB

PB ZE PS PM PB PB PB PB

Table 2.1 Fuzzy rule base for nominal plant

O
ut

pu
t

O
ut

pu
t

O
ut

pu
t

11 2 Background

0 * --------------------------1----------------------- i------------------------ i

0 5 10 15

T im e (se c)

FLC PD

Figure 2.1 Nominal

0L i----------------------— i----------------------------- 1 _

0 5 10 15
Time (sec)

 Nominal (FC)

Perturbed I (F C) Perturbed 2 (FC)

Figure 2.2 Com parison

0 .5

100 5 15
Time (sec)

 Nominal (PD)

Perturbed I (I’D) Perturbed 2 (PD)

0.6

o
fc 0 4

LD

0.2

- 0.2
0 10 15 205

T im e (sec)

FLC PD

response: Fuzzy v PI)

0 .3

0 6

0 4

0 2

200 5 10 15
Time (sec)

 Nominal (FC)

Perturbed l (F C) Perturbed 2 (FC)

plant response with FLC

'v

Ot
LU

■0.5

2015100 5
Time (sec)

 Nominal (PD)

Perturbed I (P D) Perturbed 2 (PD)

Figure 2.3 C om parison of plant response with PD controller

2 Background 33

Next the various stages of the FLC are investigated. The first stage is the knowledge

base. As opposed to the simple PID design where there are only three parameters to optimise,

in fuzzy control the number o f parameters to optimise are numerous. For instance, in the

knowledge base the parameters to consider are choice of universe of discourse for each variable

and the structure o f the rule base. Figure 2.4 shows the response o f the system to the non-

symmetrical (and completely randomly generated rules) rule base o f Table 2.2. The difference

in response is obvious. The random generation of the rules was to demonstrate that the structure

o f the rule base is dependent on the knowledge of the operator. That said, the robustness of

fuzzy control as a method for controller design is well demonstrated. The response due to the

non-symmetrical rule base, while rather oscillatory and erratic, does not fail in the long run.

Although not shown in the time scale for Figure 2.4, over a longer period, the non-symmetrical

rule base does reach the desired states. In addition to the positions o f the membership functions,

the shape and number o f the membership functions are also important. Figure 2.5 shows the

response of the system to various shapes of membership function at the same centre points, and

Figure 2.6 shows the response to a varying number of membership functions. For complex

systems it is generally better to use more membership functions to define areas o f specific

sensitivity. The choice o f the membership function shapes depends on the application. For

systems where smoother transitions between regions are required gaussian shapes are better

suited, but where piece-wise implementation is sufficient, triangular and trapezoidal are

preferred because they are simpler to implement and computationally efficient.

Another two stages in the fuzzy control design process are the inferencing mechanism

and the defuzzification process. Figure 2.7 shows the response to various implication and

defuzzification processes. The mean of maximum has a faster rise time but also a greater steady

state error. The advantages and disadvantages of the various defuzzification methods are found

Klir and Yuan (1995). As can be seen the sensitivity o f the system depends on the information

the operator provides to the controller.

N B NB ZE

NM

PM

NS

ZE

PB ZE

PS PB

PM

NB ZE PM ZE

NB NS ZE PS

PS NB

PS PS ZE i PB

PM PB I NS

NM

NB

PB

Table 2.2 Non-symmetrical rule base for nominal plant

O
ut

pu
t

O
ut

pu
t

O
ut

pu
t

34 2 Background

0 8

0.6

0.8 c 0 4

0 4

0 2 - 0.2

-0 .40 5 10 15 20 0 10 15 205
Time (sec) Time (sec)

 Sym metrical Rule Base

 Non-sym m etrical rule base

 Symmetrical Rule Base

 Non-symm etrical rule base

Figure 2.4 System response due to non-symmetrical rule base

0 8

0 8 0.6

o0.6 0 4
LU

0 4 0 2

0.2

-0 20 5 10 15 20 200 10 155
Time (sec) Time (sec)

Triangle

Gaussian Trapezoidal

Figure 2.5 Com parison of membership function shapes

----- Triangle

Gaussian ___ Trapezoidal

1 8

0.4

0 2

0 205 10 15

0 8

0 6

0 .4

0.2

0

- 0.2
15 20100 5

Time (sec) Time (sec)

7 MFs 6 MFs 5 Ml's 7 MFs 6 MFs 5 MFs

Figure 2.6 C om parison of different n u m b er of MFs

2 Background 35

0 8

0.6
3
Q .

§ 0 .40.63
o LU

0 4 0.2

0.2

- 0.20 105 2015 100 15 205
Time (sec) Time (sec)

____ W eighted average W eighted sum

___ Mean o f maxim a ____Centre o f gravity

___ Weighted average Weighted sum

___ Mean o f maxima ___ Centre o f gravity

Figure 2.7 Com parison of defuzzification process

From this simple test one might conclude that fuzzy control offers as good, if not better

than, an alternative to conventional methods. However the design process is not as simple.

There are far more variables to consider and unless the operator is confident o f the knowledge

provided to the controller, the FLC will not give satisfactory results. It is therefore necessary to

find ways to automate the design process and optimise the controller. It is possible, through trial

and error, to work through all the possible solutions but that could often be a painful, tiring and

very time consum ing process. From literature, it can be seen that numerous attempts have been

made at reducing a lot o f the guesswork from the design process through self-organising and

neural network based systems. However, while this seems to have solved some problems, it has

introduced many others. How to decide what type o f activation functions, thresholds, size o f

network, number o f neurons and num ber o f links and connections to use? In the next section, a

messy genetic algorithm as a means for addressing some o f these issues is introduced, and a

benchmark test on the algorithm is carried out to demonstrate its effectiveness.

2.2 Neurofuzzy Control

Fuzzy logic is based on the theory o f approximate reasoning that enables certain classes

o f linguistic statements to be treated mathematically. This is akin to decision-making by

humans who tend to work with vague or imprecise concepts that can be expressed linguistically.

To put it simply, fuzzy logic is an extension o f conventional logic theory, and is essentially a

way o f mapping an input space to an output space. These input and output spaces contain

objects, or parameters, with defined boundaries. From here on, fuzzy set theory moves away

from conventional set theory. In conventional set theory, an object must either belong to a

specified set or not, hence partial values are not possible. Therefore the two possible states are

36 2 Background

one (existence) and zero (non-existence). Fuzzy set theory on the other hand assigns all the

objects (variables) of a particular class o f membership (linguistic variable) in the form of a

membership function (degree of membership). This membership is usually defined in the range

zero (non-membership) and one (full membership).

It is known that fuzzy control systems may be used as an alternative to some conventional

control schemes where significant improved system behaviour can be obtained when fuzzy

reasoning is applied. However, there are no optimal guidelines for designing FLCs. If they are

designed manually, then a long period o f trial and error and much input from experts are

required. Because the design process is ad hoc it is difficult to defend the choice of, for

example, any particular type o f membership functions or the reasoning structure. What may be

adequate for one set of conditions, may not be appropriate under similar but different

conditions. In addition, fuzzy control systems lack the learning ability o f other intelligent

techniques such as neural networks.

Neural network and fuzzy logic theories were developed about the same period of time.

ANNs are massive parallel structures with high non-linear processing elements whose weights

and characteristics may be “trained”. Fuzzy systems are also of parallel structures but are more

suitable for knowledge extraction and representation. However, both knowledge extraction and

knowledge representation in an ANN are difficult. On the other hand, the weak points of fuzzy

systems are the difficulty o f defining accurate membership functions and o f applying the

learning method. One o f the most obvious similarities between a fuzzy system and an ANN is

that they can both handle extreme nonlinearities in the system collectively by a network of

“ local” elements such as memberships or neurons. The functionality o f the shape of the

membership function in the fuzzy system and that of the threshold function in the ANN, are

similar. Multiply-add operation o f artificial neurons is very close to M A X -M IN operation of

approximate reasoning. The M IN operation of input fuzzy variables conducted at each

proposition o f IF parts of fuzzy inference rules correspond to a product of input to the neuron

and synaptic weights. The M A X operation to obtain the final inference value from TH EN parts

of these plural inference rules corresponds to the input sum with a neuron. These reasons lead

to the idea o f merging these two approaches.

The following is a summary o f the main results, drawn from literature, regarding

computational equivalence between neural networks and fuzzy systems (Kosko 1991, Lin and

Lee 1991, Horikawa et al 1992, Nomura et al 1992, Jang 1993, Nauck and Kruse 1993, Spooner

and Passino 1996)

1. Feedforward neural networks with n inputs, m outputs (n> 1,m> 1), one or more hidden

layers, and a continuous activation function (e.g., the sigmoid function) in each neuron are

universal approximators.

2 B ackground 37

2. Fuzzy systems based on multiconditional approximate reasoning can approximate

feedforward neural networks with n inputs, m outputs, one or more hidden layers, and a

continuous activation function in each neuron, provided that the range of the input variable

is discretised into n values and the range of the output variable is discretised into m values.

3. It follows from (1) and (2) that fuzzy expert systems of the type described in (2) are also

universal approximators.

4. Fuzzy input-output controllers based on multiconditional approximate reasoning and a

defuzzification of obtained conclusion, are universal approximators.

Neurofuzzy networks vary in size from 3-layer to 6-layer networks. In the three-layer

format, the first layer represents fuzzy input variables, with the middle layer representing the

fuzzy rule base and the final layer representing the fuzzy outputs as in the pure fuzzy logic

system. Early attempts at combining neural networks and fuzzy control were limited to just

tuning o f the shape o f the membership functions. A first work in this was by Nomura et al,

(Nomura et al 1992) where the membership functions are assumed to be symmetrical triangular

functions depending on two parameters, the peak and the width. Fuzzy cognitive maps

proposed by Kosko (Kosko 1991) are another scheme to integrate neural networks and fuzzy

logic. Here, the membership function or fuzzy rules are chosen subjectively. Below is a review

o f some o f the more popular fuzzynet structures and models. An overview of other models can

be found in (Brown and Harris 1995), (Gomide et al 1992) and (Nauck 1997).

2.3 M essy Genetic Algorithm

Messy Genetic Algorithms (mGAs) were developed to eliminate the major problems with

the simple GA (Goldberg 1989b). The simple GA is considered too rigid where the length of

the string is fixed and a good string arrangement is only possible when information on the tight

coding scheme is available. So the only way to bring important alleles together is to use

ordering schemes such as inversion. Messy GAs use a relaxed and flexible coding

representation to solve linkage problems. In addition, Goldberg showed that mGAs were able

to tackle complex higher order problems, which the simple GA was unable to do.

A similar linkage problem has also been existent in nature. In nature, evolution can also

be considered rigid because members o f a certain species tend only to mate with their own kind,

and the evolution operators and operation thus ensure that the full gene complement for that

gene is maintained. However, when one considers evolution over a wider time scale, this

apparent rule of evolution was not always so. In fact evolution began with simple life forms

which used and reused good building blocks through time to form more complex life forms.

Therefore, putting GA theory aside, nature itself has shown that structures need not be rigid and

38 2 Background

complex from the start, but rather begin by building simple structures and then evolve it to more

complex structures through time. In the following sections this alternative form of GA is

explored.

2.3.1 An Overview o f mGA

A Messy GA is a two-phase iterative optimisation method with a local search template

and adaptive representation. The two phases are primordial and juxtapositional. In the

primordial phase, using the selection operator alone, near global solutions are built up. In the

juxtapositional phase, the solutions are subjected to the mGA operators to obtain the optimal

solution. An mGA is different from the simple GA in that the mGA gene contains its locus and

alphabet, and also uses a variable length chromosome. Due to these features, the operators used

in the juxtapositional phase are different from the simple GA.

2.3.2 Flexible Coding

Messy GAs liberates the fixed allele position of the simple GAs by allowing the

construction o f chromosomes whose genes are ordered independent o f its position. A messy

gene is an ordered pair identifying its locus (or index) and its alphabet (or value). Since the

string is variable and can potentially increase in size, the size o f the locus has to be limited to

size. Not only is the chromosome of variable length, a certain locus can appear more than once

in the string or many may altogether be missing. Consider a problem of length 3, then all of the

following strings are valid:

S| = ((2,1) (1,0))

S2 = ((3,0) (2,0) (3,1) (1,1))

S3 = ((1,0) (2,0) (2,1))

The first string is an example o f an underspecified string because reference to locus 3 is

missing. The second string is a classic case o f overspecification because reference to locus 3

occurs twice, and is typically handled by some sort or precedence rule. The third example is

both underspecified and overspecified. It is underspecified because reference to locus 3 is

missing, and overspecified because reference to locus 2 appears twice. Notice also the order of

the genes. This is one of the characteristic properties of the mGA, i.e. the order of the genes are

irrelevant unlike in the simple GA where it is critical for the decoding process.

2 Background 39

2.3.3 mGA D ecoding

As has been seen, a messy chrom osom e can take various forms, and methods o f decoding

it have to reflect the chrom osom e representation. More often than not, a full gene com plem ent

is required in order to evaluate the objective function, and in such cases, o f the two types o f

representation, overspecification is the easier o f the two to handle. Consider a three parameter

problem represented by the string ((3,1) (1,1) (1,0)), there is a choice o f selecting a value o f 0 or

1 for parameter I. Goldberg and Smith suggested that the most reliable precedence rule is the

firs t-co m e-firs t-served rule (Goldberg and Smith 1987) where the first gene is taken from a left-

to-right scan, hence the gene (1,1) was chosen.

Underspecification need only be dealt with when all decision variables have to be

available in order to evaluate the objective function. In the above example, in order to evaluate

the objective function with the three values, the missing value needs to be filled in somehow.

This is done by com paring the string with a predefined template and by borrowing the missing

value from the template. How the template is defined is important. The missing parameter

value can be filled by randomly generating it, but this would have the effect o f introducing noise

that could lead to sub-optimal solutions. Alternatively, the template can be randomly set, but

fixed after generating the first time. Again some o f the problems with randomly generating

every time persist. Another method is to initialise the template with Os and build it up with

locally optimal ones obtained from the completed run. This way, it is possible to be certain to

some extent o f obtaining a partial sub-optimal performance. This is the method adopted in this

thesis. Supposing the locally optimal template were set to (1 1 0), then the missing gene in the

above example would take the value (2,1), giving the full gene com plement as ((1,1) (2,1)

(3,1)).

2.3.4 mGA Operators

Due to the nature o f the string representation, the standard genetic operator crossover has

to be modified. Consider the fixed length coding o f Figure 2.8 and the standard crossover

operator on it.

Crossover point Crossover

Figure 2.8 S ta n d a rd crossover on fixed length string

40 2 Background

In messy GA such operation would not work because of the variable length string

because a single cut point may not be applicable or available on both chromosomes. Instead, the

standard crossover is replaced by two operators: cut and splice.

The cut operator is based on a cut probability calculated as p c = p K{A ~ 1) , where A is

the length of the string and p K < 1 is a gene-wise cut probability. If the cut is called for, the

chromosome is cut at a position chosen uniformly at random. For example, if cut is called for in

the string ((2,1) (3,0) (1,1) (3,1) (4,0) (7,1)) and the cut occurs at position 2, the two resulting

sub-strings resulting from the cut operation would be ((2,1) (3,0)) and ((1,1) (3,1) (4,0) (7,1)).

The splice operator simply joins two sub-strings, resulting from the cut operator, to form

a single chromosome with splice probability p s . Applying the splice operator on the two sub­

strings above would result in the chromosome from which they were obtained through cut.

Figure 2.9 illustrates the cut and splice operators graphically.

Cut Point

(6,1)(4,1)(1, 1) (5 ,0) (2,1) (5,0) (2,1)(4, 1) (6, 1) ►

S p l i c eCut
Cut Point

(5,0)(3,0) (2 , 1)(1, 1) (2 , 1) (5,0) (3,0) (1, 1)

(6, 1)(3,0) (2,1)(1, 1)

(5,0) +(2 , 1)(5,0)(1,1) (4,0)

Figure 2.9 Cut and splice operation

If cut occurs on both strings, and splice is not called for in one or both cut parent parts,

the non-spliced parts are reinserted back in to the population as new individual strings.

Similarly, if cut occurs only on one parent string or no cut occurs at all, then the splice operator

is not called for. Note also that in mGA, a single-point crossover is applied.

Mutation in an mGA chromosome can take the form of any type described above for the

simple GA, as is also the case with the selection method. In this thesis, hyper-mutation

(Grefenstette 1992) and tournament selection (Goldberg et al 1991) is used for mGA

implementation.

2 Background 41

2.3.5 mGA Operation

A messy GA works in two phases: a primordial and a juxtapositional phase. Figure 2.10

shows the schematic of the mGA algorithm.

Before the primordial phase, the population is initialised randomly such that all possible

combinations of the currently considered relations are represented. Depending on how the

template is to be constructed, the initial population may be evaluated to obtain the objective

value for each string, and the locally optimal solution from the population can be used as the

template.

During the primordial phase, through the selection operator alone, the population is

enriched, over a number of generations, with locally optimal strings. In this phase, no function

evaluation is performed. Since no other operators are used, the strings in this phase retain their

original lengths. At this stage, if a complete era has passed, then the population with the fittest

* half is kept for future generation and the other half of the population is randomly generated to

introduce diversity into the population. Depending on the length of the primordial phase, it may

be that several eras will have passed before the next phase starts. After obtaining an enriched

population of strings, the population is processed in the next phase where all the mGA operators

are used (i.e. cut and splice) as described in §2.3.4. At the start o f the juxtapositional phase,

larger strings are obtained through splicing. The rest o f the operation in this phase follows the

standard GA process.

42 2 Background

No

No

End o f
Era?

Yes

Yes
Juxta­

positional
Phase?

Primordial
Phase?

No

Yes

Reduce Population

Select

Initialise

Rebuild Population

C ut & Splice

STO P

M utate

Evaluate

Splice

STA R T

C onstruct Tem plate

Figure 2.10 Messy GA flow diagram

2 Background 43

2.3.6 A Benchmark Test

The objective function of an ^-dimensional maximisation problem that was introduced by

Michalewicz (Michalewicz 1992) and further studied by Renders and Bersini (Renders and

Bersini 1994) is given by:

/(*) = E /(* ,)= L sin(*,)sin'
/ = i / = i

(■ 2 \
IX, for x e [0, x]n (2.4)

It is composed o f a family o f amplitude-modulated sine waves whose frequencies are

linearly modulated. This objective function is, in effect, de-coupled in every dimension

represented by f ix ,) . Every such member function is independent and is shown in Figure 2.11

for k = 1 and n = 20. This characteristic yields the following properties:

The theoretical benchmark solution to this ^-dimensional optimisation problem may be

obtained by maximising n independent uni-dimensional functions, f h the fact of which is

however unknown to an optimisation algorithm being tested. The results for k = 1 and n = 10

are shown in Table 2.3. Note that the lower boundary o f the objective is / m j n = 0 within the

given search space. The optimality, accuracy and sensitivity are, as shown in (Feng 1998):

Optimality = ^ m,n = (2.5)
f - f 9 6547J max J min ^ /

Accuracy] = 1 - lx 0 - x o | | 2

x - x
= 1 —

10 12
X K - * o , |
/ = l

VTo. (2 .6)
n

. . . 1 - Optimali ty
Sensitivity ~ -------------------- (2.7)

1 - Accuracy

• The larger the product kn is, the sharper the landscape becomes.

18 n• There are n\ = 2.4329x 10 local maxima within the search space [0, tt] .

• The ease of obtaining theoretical benchmarks regardless of n makes it ideal for studying

NP characteristics of the algorithms being tested.

44 2 Background

0.5 0.50.5

0
0 2 0 2 0 24 4 41 1 1

0.5 0.50.5

0.5

0.5

0.5

0.5 0.5 0.5

0
0 2 04 4

I k
Figure 2.11 The /i independent uni-dimensional functions that form the 20-D objective

function

Using the above benchmarks, the performances o f some EAs are tested. For each

method, 10 repeated experiments are carried out with randomly generated initial populations.

The results o f optimality, accuracy, sensitivity, reach-time and optimiser overhead are shown in

Table 2.4.

/ 1 2 3 4 5

*i0 2.072 1.571 1.305 1.916 1.718

fiO .8409 1.000 .9619 .9396 .9890
i 6 7 8 9 10

X,Q 1.571 1.458 1.755 1.655 1.571

f o 1.000 .9933 .9830 .9964 1.000

Table 2.3 Theoretical solutions and objectives of Benchmark Problem (2.4)

2 Background 45

Algorithm Supremum Optimality Accuracy
Random search 3.331613 34.51% 25.7369%
Simplex (Press et al 1994) 1.789972 18.54% 25.7807%
Hill-climbing (a posteriori) 9.6363 99.81% 99.21%
Simulated annealing 9.6402 99.85% 99.20%
Simple GA (Goldberg 1989) 5.876064 60.86% 21.7845%
FlexTool(GA) Toolbox 9.2081 95.37% 89.0542%
Messy GA 9.3743 97.10% 96.437%
Theoretical objective 9.6547 1 0 0 .0 0 % 100.00%
Algorithm Sensitivity N or

Reach-Time
Overhead

Random search 88.3786% 40,000 2.6437%
Simplex (Press et al 1994) 109.978% 40,000 5.5914%
Hill-climbing (a posteriori) 24.05% 39,038 25.07%
Simulated annealing 18.75% 38,721 34.23%
Simple GA (Goldberg 1989) 0.502699 40,000 1111.78%
FlexTool(GA) Toolbox 42.3732% 40,000 1170.36%
Messy GA 81.39% 40,000 1058.66%

Table 2.4 Benchm ark test results on the 10-D problem

2.4 Reinforcement Learning

2.4.1 Reinforcement and Advantage Learning

In many control problems, the most appropriate control actions are unknown and thus

learning techniques are employed. For learning, three types o f mainstream learning methods are

explored: supervised, unsupervised and reinforcement learning. Most learning fuzzy control

techniques fall into the category of supervised learning systems, and their biggest drawback is

the need for the desired output o f the controller. These desired outputs are generally considered

to be provided by a supervisor. This requirement is difficult to satisfy for a control system since

the most appropriate control actions may not be known.

A learning paradigm, known as reinforcement learning (RL), has a more appropriate

feature in that instead of requiring a supervisor to provide the correct control actions, it can

accept feedback o f scalar performance measured by a critic. The critic defines good and bad

performance. A motivation for RL is that it is the primary learning method of biological

systems. Animals learn and adapt daily with only reinforcement type error signals.

Reinforcement learning studies therefore seek to capture similar capabilities in artificial

systems. Just as artificial neural networks are patterned after biological neural networks, RL

systems strive to emulate animal learning and are investigated in this thesis.

Reinforcement learning is an approach to machine intelligence that combines

unsupervised learning and dynamic programming to solve problems that neither of these

disciplines are able to address alone (Barto et al 1983). Dynamic programming is a field of

mathematics that has traditionally been used to solve problems of optimisation and control. It

works by generating a utility function (J) which is optimised in the short term for an

46 2 Background

environment (m) with utility function (U), and U is optimised in the long run. However,

traditional programming is limited in the size and complexity of the problem it can address.

In reinforcement learning, a signal is received that does not say anything about the

desired response as in supervised and unsupervised learning, but it does say whether a system is

performing well or badly. Usually, a system is said to be learning when it improves its

performance based on a certain performance measure. Suppose that the performance measure is

calculated as a function of the parameters of the learning system, which represent its current

state. For instance, in a water tank system these parameters could be e the error between the

current and the destination height, h the destination height, u the inflow signal sent to the pump

and maybe some other sensory information. If the performance measure can be visualised as a

surface, then each state o f the system {e\ hd; u...) can be assigned to a point on that surface j{e\

hd\ u ...) where / i s the performance-measure function. Now, if the system is to improve its

performance, the point corresponding to its state on the performance surface should move

towards higher points (Barto 1992).

Figure 2.12 illustrates the reinforcement learning procedure. An agent is connected to its

environment via perception and action. On each step o f interaction the agent receives as input

some indication of the current state o f the environment; the agent then chooses an action to

generate as output. The action changes the state of the environment and the value o f this state

transition is communicated to the agent through a scalar reinforcement signal. The agent's

behavior should choose actions that tend to increase the long-run sum of values of the

reinforcement signal. It can learn to do this over time by systematic trial and error, guided by a

wide variety of algorithms.

Environment

State/Scalar
feedback

Action
Reinforcement

Learning
System

Agent

Figure 2.12 Standard reinforcement learning schematic

In addition to the environment and the agent, a reinforcement learning system has three

main sub elements:

2 Background 47

• A policy

• A reinforcement function

• A value function.

A policy is the central part of the agent, and on its own can define the behaviour o f the

agent. It decides which actions to take in a given state. All the other components work around

the policy and works to improve the policy. The reinforcement function determines the

objective o f the reinforcement learning agent, and the aim of the agent is to maximise the

reward it receives over the long run. It is fixed and indicates what is good or bad in the

immediate situation. The value function is a mapping from states to state value and can be

approximated using any type of function approximator (e.g. multi-layered perceptron, memory-

based system, radial basis functions, look-up table, etc.) (Anderson 1989, Watkins 1989,

Kaelbling 1991, Lin 1992, Millan and Torras 1992, Singh 1992, Thrun 1993, Anderson 1993,

Glorennec 1994, Gullapalli et al 1994, Lin and Lee 1994, Lee et al 1995, Shijojima et al 1995).

It is a reward predictor and indicates what is good or bad in the long run.

In application to the optimal control problems RL could be formulated in a way that the

long-term consequences o f actions are taken into account since in most o f the cases the goal is

to design a controller with an optimal long-term performance. The RL-controller is then

designed to receive a reinforcement signal from the controlled process based on its performed

action and the state o f the process. The objective o f the learning system is then to minimise or

maximise the amount o f reinforcement signals accumulated in the future, depending on what the

signal represents, cost or benefit. This performance measure is often calculated as a discounted

sum of the future reinforcement signals in which the earlier ones are weighted more.

2.4.2 Reinforcement Learning and Evolutionary Algorithms

The standard RL problem is based on dynamic programming approach, and the difficulty

with that is it uses an estimate of the value and value function hence does not actually produce

global solutions as evolutionary algorithms. However, on closer examination, evolutionary

algorithms can be identified to be a special type o f reinforcement learning system except that

they differ from dynamic programming RLs in two important ways. First, EAs search in a

completely random fashion and hence ignore a lot of the information between state transitions;

and secondly, EAs discards poor solutions in favour o f good ones whereas RLs use this

information in its decision making process. To illustrate this, consider Figure 2.13.

48 2 Background

Environment Fitness
Function

State/Scalar
feedback

Fitness

Action Candidate
SolutionReinforcement

Learning
System

Evolutionary
Algorithm

Agent Agent

Figure 2.13 Comparison of reinforcement learning and evolutionary algorithms

Comparing the way an RL system and an EA is structured, it is evident that EAs are in

fact RL systems. Evolutionary algorithms tackle the same kind of problems as the dynamic

programming RLs, and have similar properties. Neither requires derivative information, and

both work around a performance measure, and yet they work differently. EAs do not learn the

value function, but instead learn the candidate solution (or policy) directly. Instead o f working

with a single policy (i.e. population member) at a time, It generates population of policies and

can evaluate each one sequentially or in parallel. Through genetic operators, crossover and

mutation, new pool o f policies is constructed. Each policy is then evaluated against a

reinforcement function, and based on the goodness of that policy, credit assignment is carried

out. Unlike RLs though, the algorithm iterates until a sufficiently good policy is found. Since

EAs explore the search space in a random fashion, EAs ignore much of the useful structure of

the standard RL problems, in that they do not make use o f the fact that the policy they are

searching for is a function from state to action. Also they do not notice which states an

individual passes through during its lifetime or which actions it selects.

2.5 Summary

This chapter serves as background and foundation for the contributions made in the

thesis. The theme of the thesis is fuzzy learning through neural network representation, and the

relationship between fuzzy systems and neural networks was highlighted. Through a simple

analysis and experiment, the difficulties and confusion that a designer faces when design FLCs

were identified. The conclusion of the experiment is that a method or set of methods should

exists that allows for designing FLCs such that it is completely flexible and have self learning

properties so that the operator or designer does not have to design in ad hoc. For this purpose, it

has been decided that Goldberg’s messy genetic algorithm and reinforcement learning would be

used. Messy genetic algorithm for optimising and tuning neurofuzzy controllers was described,

and the original binary coding of Goldberg’s mGA is replaced by integer coding to enable

2 Background 49

flexible representation of neurofuzzy systems. This was followed by a simple benchmark test to

show the potential of mGA.

To demonstrate the need for flexibility in the structure, consider the general format for

representing fuzzy sets within a fixed length chromosome such that each gene represents a

parameter o f the fuzzy set (i.e. the spread and centre for gaussian sets). Then there would be a

need for 18 genes to represent a variable with 9 fuzzy sets. This is obviously not desirable if

there is a large number o f such variables to optimise. In addition to not knowing how many sets

to represent each variable with, one also has to consider the type of the sets and the form of the

rules defining the (state, action) pair. In addition, any redundant information identified as a

result o f the evolution process is not removed from the process as it still remains in the coded

structure.

Finally, reinforcement learning is described, and the relationship between RLs and EAs

has been highlighted. Just as artificial neural networks are patterned after biological neural

networks, reinforcement learning systems strive to emulate animal learning. Reinforcement

learning combines elements of both supervised and unsupervised learning. Like supervised

learning there is some training information available. However, an external teacher does not

provide this. Instead, as in unsupervised learning, there is a built-in critic that provides the

training information. In addition as in evolutionary algorithms, it works around an evaluation

function. In fact the correlation between evolutionary algorithms and reinforcement learning

systems, will be studied. However, unlike EAs, the evaluation function does not tell the agent

how it should change its behaviour. The agent simply tries to maximise or minimise the

performance measure o f the evaluation function.

The study has also highlighted the lack of a learning algorithm for the fuzzy systems that

is not handicapped by issues such as quality training data and learning online while system

parameters change. These are the objectives of the next chapter.

50 3 System atic Approach to FLC Design Autom ation

Chapter 3

Systematic Approach to FLC Design

Automation

Imagination is more important than knowledge. Knowledge is

limited. Imagination encircles the world.

- Albert Einstein

The success o f a neurofuzzy control system solving any given problem

critically depends on the architecture o f the network. Various attempts have

been made in optimising its structure using genetic algorithm automated

designs. In a regular genetic algorithm, however, a difficulty exists which

lies in the encoding o f the problem by highly f i t gene combinations o f a

fixed-length. For the structure o f the controller to be coded, the required

linkage form at is not exactly known and the chance o f obtaining such a

linkage in a random generation o f coded chromosomes is slim. This chapter

presents a new approach to structurally optimised designs o f neurofuzzy

controllers. Here, a messy genetic algorithm, whose main characteristic is

variable length chromosomes, is used to obtain structurally optimised

neurofuzzy controllers. Structural optimisation is regarded important before

neural network based learning is switched into. Upon structure

optimisation, a new neurofuzzy learning algorithm, based on the

backpropagation algorithm, is developed fo r online or off-line learning.

Both the evolutionary structure optimisation stage and the learning stage

belong to the same model, complimenting each other, and is known as

ENFLICT (Evolutionary NeuroFuzzy Learning Intelligent Control

Technique). The resulting model is a new method fo r neurofuzzy control that

is completely liberated in structure andfeature.

3.1 The D esign o f FLC

In the previous chapters it was seen that the usefulness of fuzzy control is offset by the

difficulties in tuning the controller, and also that there have been numerous attempts at

optimising, automating and tuning FLCs through neural network and genetic algorithm hybrids.

3 System atic Approach to FLC Design Autom ation 51

It is evident from the literature review that there is no systematic procedure for achieving these

tasks. There are presumptions, restrictions and complications associated with every model and

approach discussed. Therefore, in this thesis, an autonomous fuzzy control paradigm is

developed that is systematic, flexible and autonomous. In this chapter the process of achieving

an autonomous controller is worked through systematically, and since a single solution is not

available, several intelligent control components are required. The phases involved in designing

the controller are be broken down to:

1) Definition of the system behaviour such as system constraints and desired response.

2) Initialising the controller with a priori information. Here the input and output variable

operating regions are defined as are guestimated membership types, numbers and positions.

3) Off-line learning o f fuzzy parameters and global learning o f structure

4) Local or online learning and fine tuning o f fuzzy parameters

5) Validation o f the controller with conditions outwith the optimisation process

3.2 Self-Evolving Neurofuzzy Control

From the above experiment o f §2.2, it is possible to conclude that learning can be applied

to at least five different aspects of a fuzzy system

1) The definition of the fuzzy sets covering the universe o f discourse of the variable, i.e. the

shape and position o f their membership functions. This point is addressed by many

proposals within the fuzzy community. Most o f the proposals consider a given rule base,

either covering all the possible combinations of antecedent and consequent values, or given

by some expert.

2) Which values o f the variables in the rule antecedents are relevant for a given application?

Many of the approaches so far proposed address this problem considering all the possible

antecedent configurations, but this may lead to a non-minimal, large number of rules, some

of which might not match any relevant world state, thus leading to problems of unreliable

evaluation.

3) Which values of the variables in the rule consequences are relevant? Generally, this is

obtained as a by-product of the learning activity, centred on the next aspect.

4) What is the best combination of antecedent and consequent values in a rule? In other

words, what is the most appropriate action, given a situation? Notice that, with fuzzy rules,

the action sent to the actuators does not depend only on one rule, but on many different

rules triggering with different degrees.

5) What combination of rules best covers all the situations occurring?

52 3 System atic Approach to FLC Design Autom ation

Since the description of the system behaviour is system dependent, and the FLC is desired

to learn from experience, the choice of the initial FLC variables becomes less important as long

as they are reasonable. Therefore, in pursuit o f the main aim of the thesis, which is to develop a

method for constructing self-learning controllers based on fuzzy control, the construction of the

model is begun by developing a neurofuzzy model that will be responsible for the learning and

respond to system and environmental changes. The neurofuzzy model will henceforth be

known as ENFLICT (Evolutionary NeuroFuzzy Learning Intelligent Control Technique).

Thereafter, the process o f structure optimisation by the messy genetic algorithm of this model

will be described.

3.2.1 EN FLIC T Network Architecture

The ENFLICT structure developed in this thesis also exhibits properties similar to those

highlighted in §2.1. That is, it is an universal approximator based on a feedforward neural

network with / inputs and j outputs. The threshold functions of the neurons are represented by

fuzzy membership functions, and the M IN operation o f input fuzzy variables carried out at each

I F parts of fuzzy inference rules correspond to a product o f input to the neuron and synaptic

weights. The M A X operation is then used to obtain the inference value from TH EN parts of

these rules, corresponding to the input sum with a neuron. The model is depicted in Figure 3.1.

Layers Lj and L2 represent the fuzzification process while layers L3 and L4 represent the

inferencing mechanism with layer L5 equivalent to the defuzzification process. Since the

network essentially represents a fuzzy logic controller mapping there are restrictions on how

much the network can be adjusted in order to achieve the desired actions from the systems, e.g.

the number of layers cannot be altered since this has direct relation to the inferencing

mechanism. This limits the structural optimisation to the type of activation function of the

neurons, the number of neurons per layer and the necessary links between adjacent layers.

Therefore, the relevant parts of the network requiring optimisation are the shapes of the

antecedent membership functions, the number of rules, the network connectivity and the

consequent part, indicated by layers L3 and L4 as only these influence the action of the

controller. The other parts on the network are kept constant.

3 System atic Approach to FLC Design Autom ation 53

Fuzzification Fuzzy Inference Defuzzification

L4 U

Figure 3.1 ENFLICT structure

Layer L |: The function of this layer is simply to scale and map the input \ t to the

corresponding fuzzy subspace represented by the neuron in layer L2. The scaling is carried out

to make the input lie in the interval [0,1]. Consequently, the universe o f discourse for all inputs

lies in the interval [0,1]. Therefore, the output o f neurons of this layer does not connect to all

the neurons of its adjacent layer, i.e.,

0 ZO) = y/(x i) /= 1,2,....,/? (3.1)

where ij/ is the scaling factor given by

54 3 System atic Approach to FLC Design Autom ation

max mini

There are no link weights to adjust in this layer, hence all weights are unity, and the

number o f nodes is the same as the number o f inputs.

Layer L2: The nodes of this layer are labelled M-nodes. The output o f each node

depends on the type o f activation (membership) function used to define each linguistic variable.

The noticeable feature o f each node is that each node represents a sub-network with one hidden

layer whose nodes represent the parameters o f the membership function. For example, Figure

3.2 shows a typical sub-network for an A/-node representing a trapezoidal type membership

function. The nodes o f layer L2-i and L 2 - 2 have linearly saturated transfer functions, and the link

weights of layer L2.i are unity . The link weights o f layer L2.2 represent the membership function

parameter set. For the trapezoidal example, c o ^ 2'2̂ = {a ,b ,c ,d}, Figure 3.3 shows how these

parameters map to the trapezoidal shape.

<0 ^ =1 (3.3)

L 2-I L2-2 L2-3

*

Figure 3.2 Layer 2 Af-node sub-network

3 System atic Approach to FLC Design Autom ation 55

b da c

Figure 3.3 Trapezoidal membership function

The output o f layer L2.3 and hence of layer L2 is

(* ,))= / (t f / 2- 2,2- 3)(A/p (*,-))) p = 1,2, ... ,w and /= 1,2, ... ,/? (3.4)

where / i s the function defining the shape of the fuzzy set. This in essence gives the grade of

membership of the p'h membership function of the /th input variable. The link weights of layer

L2 do not change and are of unit value.

0) ^ = 1 (3.5)

Layers L3: This layer is part of the inferencing mechanism. For rules o f the form

/?/: IF (x\ is M|(*i)) AND AND (x, is Mp(x j)) THEN (y\ is AT|(yi)) . . . (y} is Âq(yj))

where / is the rule number, M and K are fuzzy variables characterised by the activation

functions. Every neuron in this layer then essentially performs the AND operation of the fuzzy

inferencing mechanism using the product operator. There are as many neurons in this layer as

there are rules. Each neuron output represents the firing strength of a rule.

0/(3) = l W * i) '= > .2« (3.6)
i

where p is the grade of the membership function activated by the fuzzy rule premise. Once

again, the link weights of this layer do not change and are of unity.

(3.7)

56 3 System atic Approach to FLC Design Autom ation

Layer 4: The nodes of this layer are o f two types. The © nodes resolve rules having the

same consequence through the OR operation. The SUM operator is used for fuzzy OR, and

there are as many © nodes as there are rules. The output o f each © node is given by:

O (4,®) _
= 1

I
I - 1,2 , ... , r and i= 1,2 , ..., n (3.8)

where / is the rule number. The other type of node in this layer is the AT-node. AT-nodes represent

a sub-network similar to the nodes of layer 2. Once again, there is one hidden layer. However,

the hidden layer nodes represent the parameters used to define the output membership functions.

For example, Figure 3.4 shows the sub-network for a /£-node representing a trapezoidal

membership function like Figure 3.3.

L 4-1 u -2 L 4-3

(4 -1 ,4 -2) (4 -2 ,4 -3)

A..

Figure 3.4 Layer 4 AT-node sub-network

As with the M-node sub-networks, layers L4.1 and L4.2 have saturated linear transfer

functions, and the link weights connecting L4_i and L 4 . 2 are unity. The link weights connecting

L 4 . 2 and L 4 . 3 reflect the output membership function parameter sets. The output of L 4 .3 , and

hence L 4 A^-nodes is given by

= J 4- 2A- 3\ K g { y j)) - r W * , -) (3.9)
/

where / = 1,2 , ... , r; /' = 1,2 , ..., n\ j = 1,2 , ..., m and &/2_2,2“^ represent the membership

function parameter set, for example, ry 2̂-2 2-^ = {a,b,c,d} for the trapezoidal case.

3 System atic Approach to FLC Design Autom ation 57

The advantage of using A^-type nodes for each rule consequence, instead o f using a single

node to represent an output membership function, is that both Mamdani and Sugeno type FLCs

may be designed. That is, it can represent continuous or discrete fuzzy sets. If desired, since

there are as many M and K nodes as there are rules, each neuron can represent a different fuzzy

set or fuzzy sets can be shared between rules trough grouping.

Since all the parameters relating to the shapes o f membership are dealt with in the sub­

network, there are no link weights of the main network that need adjusting. Hence the link

weights of layer L4 are also unity.

0) ^ = 1 (3.10)

Layer Ls: This is the output layer and acts as the defuzzification process. This is

dependent on the defuzzification type. Here the centroid defuzzifier is used because this

method almost always displays smooth control behaviour. If a specific rule is predominant in a

certain process, it may not be so dominant the next time. The centroid defuzzifier however will

ensure that it will still have some influence regardless o f how drastic the change in the

environment.

i
/

^ - 2 ,4 - 3

i

I
/

n <“ ;(* ,)
/

3.2.2 The Learning Algorithm

The learning algorithm resembles a backpropagation algorithm. First one needs to define

an energy function which indicates how well the neurofuzzy controller is performing at meeting

certain desired response or environment or condition. The error function employed is on the

relative entropy function (Solla 1988) defined by.

£ = ±(l+y)log ---- +L(l+_v)|o,
\ ' +y) 2

l + l
'+y.

(3.12)

where y is the desired response due to input x and y the actual. The function has an advantage

over the standard quadratic error function in that it accelerates convergence on plains in the

error landscape where the standard function could stick, and decelerates progress on sharp bends

58 3 System atic Approach to FLC Design Autom ation

of the cost surface. The function is defined for a single input pattern at any instance of time, but

can also be adapted and used for training data in off-line batch mode.

The task is to minimise (3.12) for the given network structure. The energy function

defined in (3.12) is the global energy function for the network indicating how well the whole

network is performing. However, the difficulty lies with the fact that controllers based on such

networks reflect only specific operating conditions. The other allied problem is that it also

implies, particularly in batch learning, that one needs to know the input-output relations which

the network tries to match through the learning rule. Obtaining accurate and quality training

data for engineering systems is probably the primary difficulty because often it is not possible to

do so or the algorithms producing the training data are not in general predictive and cannot truly

represent the varying environment. Ideally, all one would like to provide is a reference input

signal and one wants the system to follow this signal regardless of the states the system inputs

go through. Therefore, one should not have to be concerned about producing input-output test

patterns for the network to match, but simply some reference signal for the network to follow.

In addition, one would also wish to take this further and want the network to be able to operate

on-line where only a single input set is available at any instance o f time and thereafter eliminate

the input set after the network has learnt.

In order to achieve this and for the network to adapt to changing operating conditions, it

is necessary first to ensure that the input pattern drawn at time t is independent of the previous

input pattern, i.e. the input pattern to the network is provided at random. Second, one would

need to ensure that changes in the operating conditions take place by small amounts. Third, a

local energy function which takes account o f such fluctuations in the operating conditions,

needs to be introduced. Finally, static condition based networks have a learning algorithm with

an asymptotically vanishing learning rate. Therefore, the algorithm has to be adjusted to take

account of a non-vanishing learning rate.

Let al\ the weights and thresholds of the network be represented by vector w, then the

networks weights are updated according to the rule

w (t) - w(t - 1) + TjS(t - 1) —
dw

(3.13)

where i) is the learning rate, and

(3.14)

As already stated, the operation of the learning rate is a major factor in the convergence

and learning o f the network. The larger this rate, the faster the response o f the network to

3 System atic Approach to FLC Design Autom ation 59

changes in the environment. However, the negative side to this is that it causes large

fluctuations around the local optimal of the vector h > , thus affecting the network’s accuracy. On

the other hand accuracy has to be compromised for generality if the network is to be truly

adaptive and reflect any change in the environment. To address this issue, in the learning

algorithm the learning rate is replaced by an annealing rate a which is defined by.

where /? is a variable containing the boundary information o f the local weight vector, w. Both ft

and the - terms are used to prevent the annealing rate tending to zero as global energy

decreases. As the network learns more and more, around a specific operating region of change

in system parameters, so generality o f the network will be affected as it fluctuates around the

optimal value of w. To take account of this, a local energy function, s, is used to compensate

for the loss o f generality. The local energy function is defined as .

The simplicity o f this learning method is that it requires no prior knowledge o f any

probability distributions or complex matrices such as the Hessian or Jacobian as proposed in

other on-line learning algorithms (Berenji 92, Rattray and Saad 97). The other advantage of this

method is that fuzzy parameters can be dealt with directly as is needed to at the fuzzification

stage. As mentioned before, this rule need only be applied to weights of the membership

functions of layers L2.2 and L4.2. The weights of other layers are of unit strength.

a (t) = j [a(t - \)s (t - 1) - s ig n (s(t (3.15)

(3.16)

where (w) indicates the expected value of w over all inputs, and in (3.15), the direction of

change o f the annealing rate is controlled through

s ig n (s(t - 1)) (3.17)

The learning rule (3.13) is now updated as follows

w (t) = w(t - 1) + a S (t - \) -^ —
dco

(3.18)

5

60 3 System atic Approach to FLC Design Autom ation

Now that the necessary components of the backpropagation algorithm for on-line and

unsupervised learning have been identified and modified, it is possible to apply the algorithm

and work backwards through the network.

Layer L5: From the equations describing the behaviour of the network, it is clear that in«
the main network, there are actually no weights that need adjusting. Only when a sub-network

node is encountered does the error need to be taken at the output o f that network and the

learning algorithm applied with the annealing rate. Other than that, the error only needs to be

propagated backwards to the preceding layer.

d y d y j

1 + y
log

i + y j

i + y
+

i - y ,
log

1 - y
(3.19)

since y . = . Therefore, evaluating (3.19),

Oj 2 log

V

- l o g
f 1 - ^

l ~ y j
\ - y

J)
= - - l o g r] + y j _ \ - E

1 - y j 1 + y
(3.20)

Layer L4: the layer does not have any weights that need updating. Therefore, the error is

simply propagated backwards. However, there is still some computation involved. The weights

of the K-node sub-network layer L4.2 still need to be updated. Using the chain rule,

dE dE d O p K^

d J ^ (K q (j ,)) a 2 l >

dE dE

dO y . dO
(3.22)

From (3.11),

1

1

I
/

J 4 - 2- * - 3

i

d o \ * - K) e o f K)
S

I

1

1

c
-

1

1

3 System atic Approach to FLC Design Autom ation 61

8 0)

'y j
J**)

r w * ,)

hence,

(3.24)

dE

dO
- #

I
/

(3.25)

and then from (3.18), the weights o f the hidden layer L4.2 are obtained from

„tM _ „ (4 , K) _ - o (5) .
m(t) 1) a O j

d O (4.AT)

n M i k i)

(3.26)

where

(3.27)

Since the error propagates through types of nodes at layer L4 the sum of the errors passed

through each type of node is taken.

4 4)= - £
j d O

dE J dE dE ^

j \ d o f ' K) + d o f ^
(3.28)

dE dE d y ,

dO d y j dO)(4,©)
(3.29)

From (3.8), (3.9) and (3.11), it is clear that

8 y j ?
eo (4.®)

r i f t k)
/

Using (3.25), (3.28) and (3.30), the error propagated to the preceding layer is

(3.30)

62 3 System atic Approach to FLC Design Autom ation

-Z
j

- s {? z r i / ' . k) + Z ® /4'A)- n M x ,)

\

1 1 i / i
f

z
v I

(3.31)

Layer L3: Returning to the single type of nodes in this layer, the error to propagate to the

preceding layer is derived as in the following:

< # = - 2 :
dE

= - z
/

1 CD '"CT
'

1

(4)dE dE 80}

8 y , a O ;(4) 5 o) 3)
, (4) ^

S l a o F
(3.32)

From (3.6), (3.8) and (3.9)

SO (4'
+ 1 (3.33)

(j p) = - 4 < 5 ! 4, U 4'A' , + i)J (3.34)

Layer L2: As with the Anodes, the AZ-nodes are treated separately to adjust the

parameters of its sub-network. Denote:

< 2 , M) = < y (2 - 2 , 2 - 3 (3.35)

then by the chain rule,

dE = _ _ dE 8 0 {,3) d o) 2)

d a > ^ ~ 7 d 0 ^ d O {2) d c o f ' ^
(3.36)

then (3.4) and (3.6),

t % > = r w * ,)3 o ! 2) / -1
(3.37)

and,

3 System atic Approach to FLC Design Autom ation 63

(3.38)

where is the function used to define the A/h membership function o f the / h input.

Therefore,

(3.39)

There is no need to propagate the error back to layer Lj since there are no weights to

adjust at that layer and there are no further sub-networks. Thus far the learning ability o f the

ENFLICT architecture has been discussed. In the next section a consideration is made as to

how to obtain the structure necessary before any learning algorithm is applied.

3.2.3 Evolutionary Learning o f Structure

The network topology optimisation is concerned with finding out the number of

subspaces for each input variable and output variable and also the network connectivity or the

rule structure. The regions o f fuzzy subspaces are defined according to the information available

about the plant to the operator. Where the operating regions are known, a fixed universe of

discourse with varying size membership functions is used. When the operating region range is

not so clear, fixed size membership functions with varying universe of discourse is used. The

resulting network is one where the entire operating region is well covered with equally spaced

overlapping membership functions, enabling smooth transition between states. However, such a

network will only give coarse network performance without any fuzzy set tuning.

When optimising using mGA, each gene is a set o f numbers that indicates the

input/output (I/O) index, the neuron of the adjacent layer it connects to and the type of

activation of the neuron (fuzzy set shape). Using the mechanism of the mGA, a candidate

neurofuzzy controller system may be initialised, coded and decoded as described in example

Example 3.1: Consider a 2-input and 1-output system. Before encoding the controller, it

is first necessary to decide the maximum and minimum number of fuzzy subspaces desired to

work with for each I/O domain for the controller to operate satisfactorily. These can be defined

25 (5-5) rows where each row corresponds to a fuzzy rule. The initial population would have

3.1.

as 5 and 2 subspaces respectively for each domain. Then, the initial template would consist of

64 3 System atic Approach to FLC Design Autom ation

strings o f length 75 (number of domains-IKmaximum of each input domain)) maximum, and

length 12 (number of domains-ri(minimum of each input domain)). Deciding that one wants to

work only with gaussian and triangular membership shapes, these are assigned as:

Type I : Gaussian

Type 2: Triangular

Type 3: Trapezoidal

Then, a typical gene may be encoded as follows:

where,

g n = S (>> + S a ' + S m (3-40)

5 " ’ = i p (r - (r f - 1) + l)-100 (3.41)

S >2> = iP(r ' <3-42>
i - ' m m i - ' m m

where ip () indicates the integer part of a number, r is a uniformly distributed random number

and d is the number of domains. Smax and Sm]n are the minimum and maximum subspaces of

domain S. A typical chromosome is shown in Figure. 3.5.

1 2 3 2 3 3 3 5 1 1 3 3 3 3 3 1 4 2 2 3 1 2 2 2 2 5 2 1 2 3 1 4 1 2 1 1 3 2 1 2 4 3 2 4 3 1 5 2 1 4 1 3 3 3 3 5 3

R u l e 1 R u l e 2 R u l e 3 R u l e 4 R u l e S*

Figure 3.5 encoded ENFLICT structure

The noticeable feature is how the chromosome is divided up to form the rules. The

division is made every d+\ gene from a left-to-right scan. Each gene decodes to a 3-tuple

vector [v(l)v(2) v(3)] as follows:

v(,) = ip g
100

(3.44)

3 System atic Approach to FLC Design Autom ation 65

v(2) - ip
g l - 100v (1)

10
(3-45)

v<3> = i p ^ - 100v(l* - 10v(2)) (3.46)

The first column indicates the input-output domains. The second column refers to the M-

node or A>node o f the adjacent layer to which the I/O variable connects to and the last column

refers to the activation type of that node. For instance, the first gene of rule string 3, (252),

decodes to [2 5 2). This interprets as

[2 5 2]: Input 2 connects to the 5th A/-node belonging to this domain, and this node has

shape type 2. Decoding the other genes,

(123) - > [1 2 3]: Input 1 connects to the 2nd M-node belonging to this domain, and this node has

shape type 3.

(141) - > [1 4 1[: Input 1 connects to the 4th A/-node belonging to this domain, and this node has

shape type 1.

(211) —>(2 1 1]: Input 2 connects to the 1st A/-node belonging to this domain, and this node has

shape type 1.

Notice there is no rule consequence, i.e. there is no reference to the output domain. In

such a situation one would refer to the template and extract the appropriate consequent part.

However, first it is necessary to resolve the premise. There is reference to both inputs more

than once in this rule string. In such a case, the gene to appear first is used and the other

rejected. The same precedence rule is also applied to resolve rules having the same premise but

different consequent. The same rule also hold for resolving shape conflicts at both the Af-nodes

and /C-nodes.

The parameter that introduces diversity into the GA so that it adapts to changes in the

environment, is mutation. Although the standard mutation with a uniformly distributed

probability of mutation every generation, performs well at a continuously changing

environment, it fails even with a high mutation rate to track an environment which changes

unexpectedly. Instead hyper-mutation can be used, which has the advantage of being adaptive

(Grefenstette 92). The drawback of this type of mutation is that it does not perform well for

large changes in the environment. Provided the changes are not large, the hyper-mutation will

ensure the diversity needed in the GA even for discontinuous changes in the environment. The

way that hyper-mutation works is that when the performance of the GA is poor or tends towards

66 3 System atic Approach to FLC Design Autom ation

poor, the mutation rate is set high with a non-uniform distribution. In all other cases, the

mutation rate is set to a very low value with a uniform distribution.

3.3 Comparison of ENFLICT with other Neurofuzzy and

Evolutionary-Neurofuzzy Approaches.

It is perhaps worthwhile comparing the functions and properties with other similar

hybrids from literature aiming to achieve similar objectives. As was seen from the literature

review in §1.2, the paths to obtaining optimal fuzzy control are many and fragmented. Since

ENFLICT is a complete model, the only true comparisons can only be made against

evolutionary-neurofuzzy hybrids. Although, a true comparison is not appropriate with simply

neurofuzzy or evolutionary-fuzzy hybrids, there are some such hybrids that resemble individual

components of ENFLICT. Therefore, comparisons between the complete ENFLICT model are

made between other evolutionary-fuzzy and neurofuzzy models. The whole ENFLICT model is

used for comparing both approaches because as the name suggests,, ENFLICT is a single unite

and separating it inappropriate. These are summarised in Tables 3.1 and 3.2 respectively. The

comparison is made on two areas: optimisation and learning. Flere, in optimisation, one is

concerned with using evolutionary techniques for representation o f fuzzy systems in terms of

structure, flexibility o f rule base representation, tuning of the fuzzy sets, gene representation and

ability to continuously learn and adapt to system and environmental changes.

3.3.1 Evolutionary Algorithm O ptim isation

Table 3.1 compares several optimisation techniques. Early methods were concerned with

simply tuning certain parts of the fuzzy system while keeping other parts fixed. One o f the

main reasons for doing this was that such schemes were represented by binary encoded

chromosomes, as a result, the more information that is encoded, the longer the chromosomes

would get (Karr 1991a, Cooper and Vidal 1993).

3 System atic Approach to FLC Design Autom ation 67

ENFLICT

Hoffman &
FTister
(1995) Ng (1995)

C arse et
al. (1996)

Takagi &
Lee

(1993)
Karr

(1991)
Kinzel et
al. (1994)

H enera et
al. (1995)

Thrift
(1991)

Cooper &
Vidal

(1993)
Fuzzy S ystem O ptim isation
Rule b ase construction ✓ ✓ ✓ ✓ ✓ X ✓ ✓ ✓ ✓
Fuzzy se t construction ✓ JC X ? X X ✓ JC X X

Fuzzy se t tuning ✓ X ✓ ✓ ✓ ✓ ✓ S ✓ ✓

Variable universe of discourse ✓ X ✓ X X X X JC X X

[G]lobal or [L]ocal fuzzy se ts G,L G G L G G G G G G
Fuzzy se t type definition ✓ X X X X X X X X X

EA R ep re sen ta tio n
Integer encoding ✓ ✓ ✓ ✓ ✓ X ✓ ✓ ✓ X

Variable length representation ✓ ✓ X ✓ X X matrix X X ✓

Reproduction operator
cut and
splice

cut and
splice crossover

user
defined crossover crossover crossover crossover crossover

user
defined

Entropy cost function ✓ X X X X X X X X X

Single gene representation ✓ X X ? X X X X X X

Table 3.1 Comparison of fuzzy system optimisation using evolutionary algorithms

Crucial to the success of EAs is the way the fitness function is represented or coded in

genetic form and how the genes are represented. Generally, the parameters are encoded in two

forms: binary and non-binary, more specifically float. To float or not to float has always been

a subject o f debate in the GA community. Traditional GA theory is based around binary coding

because of its ease of manipulation and it is easier to prove theorem about them (Davis 1991).

However, using floating point numbers to represent the genes has several advantages. They are

more useful for higher order problem and problems requiring greater numerical precision.

Although the drawbacks of binary coding can be overcome with the aid of various coding

schemes such as gray coding (Srinivas 1994), the deciding and rearranging process is

cumbersome and complex. Perhaps the most compelling reason for floating is that floating

point representation allows a gene-variable direct mapping without the need for a complex

decoding process. Michalewicz also showed through various tests other benefits o f using

floating point representation such as avoiding hamming cliffs, increased speed and less

generation to population conformation (Michalewicz 1996).

ENFLICT presents a number of advantages over other methods. First, it uses a single

chromosome to represent all information pertaining to a certain variable. The advantage o f this

is that the same kind of information can be presented in any gene, thus making the order o f the

genes irrelevant, making the reproduction procedure simple. It also means that systems of

higher order can be represented without the length o f the chromosome getting out o f control. Of

the other methods being compared, the only one that uses a similar method is that o f Carse et al

(Carse et al 1996), although it is difficult to judge because this has not been clearly specified in

the literature. However, even if it does use a single gene representation, the order o f the gene is

important because the prior to crossover for reproduction, the genes have to be sorted according

to the centres of the fuzzy sets. Also, if a single gene is used, then the process of encoding and

decoding the parameter information is not specified. The process in ENFLICT is much simpler

because every gene represents the same kind of information, that is, the index of the input or

output variable; the number o f the fuzzy sets that the input or output maps to and the type o f that

68 3 System atic Approach to FLC Design Autom ation

fuzzy set. While ENFLICT does not tune the fuzzy set during the evolutionary learning stage,

as most of the other methods being compared with, the feeling is that there is no need to fine

tune it at this stage. Coarse tuning takes place by adding and removing the number o f fuzzy

subspaces for each variable. Fine-tuning is not carried out at this stage because first, fuzzy

control is robust enough to sustain reasonable performance, and in engineering applications,

often “reasonable” performance is sufficient. In addition, the problem with fine tuning fuzzy

sets with evolutionary algorithms is that it is a one-time process only. Due to the amount of time

that EAs take for a single cycle, it is almost impossible and impractical to continuously learn the

sets due to changing environment. Therefore, local learning is preferred to global learning.

Another advantage that ENFLICT provides over any o f the other methods is that it allows

for identifying the type o f fuzzy set to represent any specific subspace in the variable’s universe

o f discourse. All the other techniques employ a single type o f fuzzy sets, be it gaussian (Ng

1995), triangular (Karr 1991, Hoffman and Pfister 1995, Carse et al 1996) or trapezoidal

(Herrera et al 1995a). While this may not be as important a factor as, for example, the structure

o f the rule base in the optimality o f the fuzzy system, it nonetheless provides the versatility to

work with any type or functions, and is not restricted to these three types of fuzzy sets. In

addition, sometimes, mixed fuzzy sets may be desirable where the control surface varies

between continuous and less continuous.

The other major factor influencing the convergence o f the EA is the definition o f the cost

function. Most EAs have cost functions based on the standard quadric error function.

ENFLICT uses a relative entropy function. Although, due to the randomness, EAs are resistant

to getting trapped at local optima, they are not renowned for their speed. The purpose of the

entropy function is to speed this learning process up and has been found to have a faster

convergence than the standard quadratic error function.

More important to the stability of the fuzzy system is the number o f rules and the rule

base, that is the combination of premise and action for each rule. Most o f the methods being

compared with use a fixed length chromosome. The number of rules is found by introducing

“don’t care” entries in the chromosome (Thrift 1991, Takagi and Lee 1993, Ng 1995). This has

a number o f disadvantages. For example, first it implies some knowledge, on the part of the

operator, of the system, and this is always not the case, specially for complex systems. The

other problem is the curse o f dimensionality. As the number o f input and output variable

increase, so does the size o f the rule base. Do demonstrate this, a two-input-one-output system

with 3 fuzzy subspaces per variable would yield a maximum of 9 rules. Now increase this to a

three-input-one-output system with 3 fuzzy subspaces per variable. This would yield a maxim

of 27 (3-3-3) rules. Thus the problem increases exponentially. To alleviate this, a number of

works was carried out using variable length chromosome that grows and shrinks (Cooper and

Vidal 1993, Hoffman and Pfister (1995), Carse et al 1996). However, ENFLICT is much more

powerful and versatile than these methods. While Hoffman and Pfister’s work, and was the

3 System atic Approach to FLC Design Autom ation 69

initial inspiration for the messy genetic algorithm representation developed here is innovative,

they didn’t go far enough and the method has a number of restrictions. First, the number of

fuzzy subspaces is predefined, implying prior knowledge of the rule base structure, and second,

because, the number of subspaces is fixed, there is no fuzzy set tuning by addition and

subtraction of subspaces. The other differences are highlighted in Table 3.1 and have already

been discussed. Both Carse et al (Carse et al 1996) and Cooper and Vidal (Cooper and Vidal

1993) also have variable chromosome representation and have to perform special reordering or

sorting prior to reproduction, hence the order of the genes are important. This implies

knowledge o f the linkage format o f the genes, where as with ENFLICT, there is no such

presumption.

ENFLICT and the works of Hoffman and Pfister (Hoffman and Pfister) use the cut and

splice operators to deal with reproduction. This was preferred to developing a new operator, as

was the case in (Cooper and Vidal 1993) and (Carse et al 1996), because it’s convergence

properties has already been theoretically proven elsewhere (Goldberg 1989b, Goldberg 1990,

Goldberg 1991) and is not the place in this thesis to prove GA properties. In (Cooper and Vidal

1993) and (Carse et al 1996), the operation of the new reproduction operator was explained, but

no theoretical proof was provided. In (Carse et al 1996), the process is a little complicated

because the operation of the modified crossover operator is different based on the number of

inputs and outputs. This is not the case with the cut and splice operators.

Another difference between ENFLICT and all the other methods is that it allows for both

global and local fuzzy set representation. Global fuzzy sets imply that rules and inputs and

output variables share fuzzy sets, where as, local fuzzy sets are more appropriate for local

learning and tuning. However, local fuzzy sets can present conflict problems of some

dominating fuzzy sets engulfing other sets (Carse et al 1996) and some sort of precedence rule

has to be applied. In ENFLICT, although, provision exists for both local and global fuzzy sets

exist, global representation is preferred, as local learning with the neurofuzzy structure takes

care of the local structure. The other time local fuzzy sets are useful is when designing a

Sugeno-type controller.

As has already been stated, a main property of ENFLICT is its flexibility. With the

exception Ng’s work (Ng 1995), none of the methods allow for variable universe of discourse.

Just as fixing the size of the rule base implies knowledge of the search space and control surface

area, so does fixing the universe of discourse. Therefore, as can be seen, even simply

comparing the optimisation process with existing methods, ENFLICT is much more powerful

and versatile.

70 3 System atic Approach to FLC Design Autom ation

3.3.2 N eurofuzzy Learning

It is often claimed that during optimisation with EAs, fuzzy sets are learning (Case et al

1996). In the strictest sense this is incorrect. Learning implies a continuous process, with

adaptation and tuning, and modification properties. At the extreme case, in the case of

evolutionary-fuzzy system hybrids, it can be claimed that the fuzzy sets are learned for a

specific set o f environmental conditions. To reflect these learning properties, ENFLICT is a

two-phase process, where the first phase involves global optimisation and the second phase is

local learning using a neurofuzzy structure. To reiterate again, the two phases are inseparable

because the first phase in essential to the success o f the second phase. Table 3.2 compares only

the learning properties of ENFLICT with other neurofuzzy “learning” methods.

ENFLICT
Jang

(1993)
Lin et al.
(1991)

Kaur & Lin
(1998)

Harris et
al (1996)

Bruske at
al. (1993)

Khan
(1993)

Spooner &
Passino
(1996)

Kim etal.
(1993)

Fuzzy set tuning ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Rule modification ✓ X X ✓ ✓ ✓ ✓ ✓ X

Mamdani controller ✓ X ✓ ✓ X ✓ X X V
Sugeno controller ✓ ✓ X X X X X ✓ X

Non-symmetrical fuzzy sets ✓ ✓ ✓ ✓ X X X X ✓
Different inferencing mechanism ✓ X X X X X X X X

Different defuzzification process ✓ X X X X X X X X

Supervised learning ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Unsupervised learning ✓ X X X ✓ X X X X
Online learning ✓ X X X ✓ ✓ X X X
Local learning ✓ X X X X X X ✓ ✓

Model dependent ✓ X ✓ X ✓ ✓ ✓ ✓ ✓
Model independent ✓ ✓ ✓ ✓ X X X X X

Table 3.2 Comparison of neurofuzzy networks

Neurofuzzy methods, as the name suggests, are combinations o f fuzzy systems and neural

networks, and the reason for such combinations arises from the properties of both. While fuzzy

systems can be described using heuristics, easy to implement and interpret, it possesses no

learning ability and requires detailed knowledge of the problem to be solved, although not

necessarily a mathematical description of the system itself. In contrast, neural networks require

very little a priori knowledge of the system, specifically developed for learning from patterns,

work in parallel and function unsupervised. However, it is difficult to interpret the information

that a neural network learns, and a priori knowledge is required of the derivative information of

the functions that guide the learning process, before learning can be applied.

Neurofuzzy learning systems come in various forms. They vary from part neurofuzzy

and part conventional control (Spooner and Passino 1996); through pure neural networks used

to fine tune the performance of FLCs (Kim et al 1993, Khan and Venkatapuram 1993); to neural

networks based on the functional equivalence of fuzzy systems and neural network using radial

basis functions (Harris et al 1996); and fuzzy systems taking the form of neural networks, and

3 System atic Approach to FLC Design Autom ation 11
functioning as neural networks (Lin and Lee 1991, Jang 1993, Bruske et al 1993, Kaur and Lin

1998). ENFLICT is based on the last of these types, and is considered the best set-up because it

allows directly representing, modifying, tuning and interpreting the structure.

One o f the major objections to using neural networks, and subsequently neurofuzzy

networks is the reliance of training data for learning the system. In order for the network to

succeed in properly learning to control the system, such data has to be of sufficient quality and

accuracy. Obtaining the accurate and quality training data for engineering systems is probably

the primary difficulty because often it is not possible to do so or the algorithms producing the

training data are not in general predictive and can not truly represent the real world. Despite

this, most neurofuzzy hybrids are dependent on training data, and hence supervised. The

advantage o f this is that a model is not required because the network can learn directly from the

data. Other than the difficulties of obtaining the quality data, the disadvantage o f the supervised

process is that it is off-line, and is not truly generalised to accurately control a real system. This

is not necessarily the case with ENFLICT because, ENFLICT can use both training data and

operate online.

One o f the major reasons for people avoiding online unsupervised learning is the learning

algorithm itself. Most neurofuzzy algorithms (including ENFLICT) is based on the

backpropagation (BP) algorithm (Appendix A). In the BP algorithm, the major factor affecting

the convergence of the network is the learning rate. The larger this rate, the faster the response

o f the network to changes in the environment, but the side effect being that it causes large

fluctuations around the local optimal thus affecting the network’s accuracy. The neurofuzzy

methods that ENFLICT is being compared with are selected because they are representative of

neurofuzzy structures in general, and ENFLICT is the only one o f these methods that addresses

this issue o f learning rate so that online learning possible.

Looking at table 3.2, it can be seen that neurofuzzy networks are generally Sugeno-type

(Jang 1993, Spooner and Passino 1996) or Mamdani Type (Lin and Lee 1991, Bruske et al

1993, Kaur and Lin 1998). Sugeno controllers do not have output variables represented by

fuzzy sets, and are computationally easier to implement, and use the weighted average method

to obtain the final output process (Takagi and Sugeno 1983). This is fine if enough information

is available on the partitioning of the output variable and how the inputs relate to the output. It

is therefore no surprise that most neurofuzzy networks are based on the Mamdani controller

where the output is represented by fuzzy sets. ENFLICT does not chose either camp, instead

allows for any type of controller. This is possible because the underlying network structure

does not change, but instead, the fuzzy sets are tuned through sub-networks. Such fuzzy sets

can either be local or global, and it is this format that allows one to design both type of

controller.

By choosing to design a Mamdani type of controller, one has to then choose a type of

inferencing mechanism and a type o f defuzzification process. The most popular of all the

72 3 System atic Approach to FLC Design A utom ation

defuzzification processes in fuzzy control because it uses the whole of the output membership.

It gives much smoother control behaviour than any other method and is also less sensitive to

small perturbations (Sugeno 1985). However, other inferencing and defuzzification

mechanisms are also available, and ENFLICT allows for any o f these to be used without any

modification to the structure of the network.

Neurofuzzy networks learn by adjusting the threshold function (or fuzzy sets), and

generally a sigmoidal or gaussian type function is used. This means that the tuned fuzzy sets

are symmetrical in shape since only two parameters can be tuned, namely the width and centres.

As has been mentioned already, mixed fuzzy sets are desirable sometimes, and in contrast to the

other methods, ENFLICT allows one to do this, and tune non-symmetrical fuzzy sets. For

instance, the supports a and d of Figure 3.3 need not necessarily be equidistant from its centre

position.

To summarise, from this comparative study, it can be seen that ENFLICT is very novel

and original in its approach. It’s flexibility liberates the design environment completely, and

provides the operator and control designer every possible option to suit the environment under

which it is to be operated. It combines two separate approaches of optimisation and learning

and functions as a single model, complementing both phases.

3.4 Application to Coupled Non-linear Process Control

As an example, Figure B.l shows the general construction o f a non-linear coupled liquid

level regulation system. The system consists o f a container divided at the centre partition into

two areas which represent the two tanks. A variable speed pump that supplies water to the first

tank provides the fluid input. The actual flow rate is measured by a flow meter. The water of

the second tank drains out via an adjustable tap into a tray, which provides the supply reservoir

for the pump. The objective is to control the liquid level of tank 2 by means o f the pump flow

into the system. This sort o f control problem typically occurs in the dairy, chemical or heat-

balancing process industries where the fluid level in a storage tank or reaction vessel has to be

controlled. Any variations in the upstream supply flow (Q0) are filtered out by tank 1. The

system dynamics are described by the equations

A ^ - = Q0 - C d,a ^ 2 g (H , - / / ,) (3.47)
dt

A — 2- = Cdl a, J 2 g(H, - H ,) - C i2a, p g (H, - d)
dt

(3.48)

3 System atic Approach to FLC Design Autom ation 73

where, H\{t) and H2{t) are the liquid levels of Tank I and Tank 2, respectively; d(t) is also a

pumped input but is used to test the rejection of disturbances when necessary; and g = 9.81 m s' 2

is the gravitational constant. A = 0.01 m2 is the cross-sectional area of both tanks; /?0= 0.03 m is

the minimum liquid level bounded by the height o f the orifices. The derivations of the

equations of motion for this system are given in Appendix B. The other parameters are variable

and used to test the variations in the environment.

Flow rate 0 < Q0 < 5 x 10"5m3/s

Discharge constants: 0.3 < Cdi, Cd2 < 0.6

Cross sectional area o f orifice 1: 30x1 O'6 m2 < a\ < 50x1 O'6 m2

Cross sectional area o f orifice 2: 30x1 O'6 m2 <a 2 < 50x1 O'6 m2

The controller and the plant set-up are as in Figure 3.6. During the learning process, a

reference signal is fed into the system, and the ENFLICT network model takes as its input the

error and the change o f error. The output o f the network is the control signal, u, and is fed into

the plant. © is a vector o f all the adjustable environment parameters, © = (Cdi, Cd2, a h a2)T, and

is adjusted at regular intervals to enable the network to adapt to the change and for the system to

settle down to a stable level. For the learning algorithms and the mGA to follow the changes in

the environment, only a small change in the environment is allowed, hence only one parameter

is adjusted at any time.

PLANT

ENFLICT

Figure 3.6. Control system set-up

The first step toward getting a self-learning controller is to learn the global structure of

the network by mGA evolution. Before using mGA for the network optimisation, one must first

to decide on how large the network should grow, and what type of activation to use. The

universe o f discourse to use for each input variable and output variable, is already known as

they are all scaled to the interval [0,1]. The activation type used is the gaussian type described

by equation (3.49). The advantage of this type is that it enables smooth transition between states

and sub-regions. This is necessary since there is no information available on the way in which

the environment changes.

(x - c)2
Gaussian(x\cr,c) = g 2o2 (3.49)

74 3 System atic Approach to FLC Design Autom ation

where c is the centre and crthe width o f the activation function.

3.4.1 Global Structure Learning

To begin with, the network is initialised as a fully connected one with seven membership

functions for each input variable and output variable. The choice on the number of

memberships is entirely arbitrary. The inputs to the network are the error e between the set

point and the output y, and the rate of change in error. A population size o f 100 was used over

100 generations and 2 eras. At the start o f the second era (i.e. at generation 55), the mGA was

reinitialised and the population was reconstructed by filling half o f it with the best members

from the previous era and by randomly generating the other half. For the juxtapositional phase

the cut and splice rates were set to 75% and 80% respectively. The hyper mutation had a

baseline rate of 0.001 and an upper limit rate of 0.02 and the genes were mutated to a value not

in the chromosome. The reference signal presented is a step-up-step-down signal. This is to

ensure a greater degree o f generality in the operating points in addition to the changes in the

plant parameters. The cost function that the mGA tries to minimise is equation (3.12).

Figure 3.7(a) shows the response of the network to the step-up-step-down reference signal

after the mGA has learned. Figure 3.7(b) shows the control action applied to achieve the

response while Figure 3.7(c) shows the control surface which is equivalent to the network

connectivity. Figure 3.7(d) shows the progress o f the best-fit individual through the mGA

learning. The reason for the sudden decrease in the quality of the individual’s fitness is that at

generation 55 the second era was executed where half o f the old population members were

carried forward to the next generation, and the other replaced by randomly generated population

members.

x icr5

2.5
0.14

0.12

v 0.08

□ 0.06

0.04

0.02
0 200 400 600 800 1000 1200

1.5

T (seconds)

(a)
T (s e c o n d s)

(b)

Figure 3.7 Network behaviour after mGA learning

(a) controller response, (b) control action

7463

3 System atic Approach to FLC Design Autom ation 75

O 50

(C)

........................... 1................................. 1............................... ••

K :
\

.............................. ;...............................-

i i

20 40 60 80
G e n e ra t io n N u m b e r

(d)

100

Figure 3.7 Network behaviour after mGA learning, (c) control surface, (d) fitness of best

individual over 100 generations

Figure 3.8 displays the extracted equivalent membership functions of the network. It can

be observed from the response of Figure 3.7(a) that the network is able to follow the reference

signal. However, there is a lot of switching occurring at the operating points as reflected by the

control action in Figure 3.7(b). The system being considered is a slow system, and hence it is

possible under a simulation environment to achieve such a sudden change in the control action

which otherwise may not be possible in real-time full-scale operation. This reinforces De

Jong’s statement about GAs wandering about near the global area (De Jong 1985). Hence

further parameter tuning of the network is required.

X 0.6

02

-0 1 -0 05 0.05
H

0.8

X 0.60 6
o>
& 0404

0.20.2

-0.2 -0.1 0.2 0 3

Figure 3.8 Extracted membership functions after mGA learning.

3.4.2 Parameter Pruning

While the mGA tries to obtain a network structure to give reasonable response, the

network learning operates simply as a feedforward network. No parameter tuning o f the

weights is carried out. Only after the mGA phase has been completed is the parameter tuning

carried out on the “best” network. The inputs to the network are held over an interval to enable

the network to adapt to changes due to the previous inputs. The annealing rate is set to 0.95

76 3 System atic Approach to FLC Design A utom ation

with boundary [0.5,1.5]. The response of the controller due to various changes in the

environment is shown in Figure 3.9-3.12. Figure 3.9 shows the response of the network as

changes to the environment are introduced by varying the cross-sectional area of orifice 1. It is

adjusted as follows.

3.956e~sm 2 0 < t < 2 0 0

"5 -2 200 < /< 6 0 03.056e m
4.512 e~5m 2 6 0 0< /< 1000

7.856e~5m 2 1000 < / < 1200

It is apparent from the response that the networks work very well with the learned

parameters, Figure 3.9, except for the final third o f the time period where the response remains

rather coarse. During this period two incidences occur. First the operating point changes

suddenly by a large amount and second, before the network can adapt to this sudden change,

variations in the system parameters also occur by quite a large amount. This validates the

statement that the learning algorithm is suitable only for small variations in the environment.

The reason for this is that although the annealing rate adapts the network well, it can not change

quickly enough to adapt the network for large environmental variations. Figure 3.10 shows the

changes in the parameters of the network, taking place as it adapts to the variations in the

environmental conditions. Each row of Figure 3.10 corresponds to a time period o f 200 seconds

in Figure 3.8. Further tests were carried out to validate the algorithm that it does indeed adapt

to varying environmental conditions, and results are shown in Figure 3.11 and Figure 3.12.

Figure 3.11 shows the network behaviour to a changing discharge coefficient while Figure 3.12

indicates the network behaviour to a sinusoidal reference signal. For Figure 3.12, no retraining

of the network was necessary by mGA, and the same network topology as illustrated in Figure

3.7(c) was used.

To compare the performance o f the ENFLICT network with other method, the learned

network was tested against a PD controller and the ANFIS model (Jang 1993), Figure 3.13. The

PD controller was manually tuned to follow the reference signal, and for ANFIS, training data

was generated by simulating the model using the 4(h order Runga-Kutta method. The

ENFLICT response is that of the learned network (above) without any disturbance or parameter

changes. As can be seen, all three controllers perform reasonably well. However, the PD

controller was found to oscillate erratically when the step size changed, before recovering to the

set point. It can also be seen that, with the same PD parameters, it is difficult to follow the

reference properly. In contrast, the ENFLICT model, while having larger settling times, has

smaller overshoots, more stable around the operating regions and follows the reference signal

much more closely. Comparing ANFIS with ENFLICT, it can be seen that ANFIS is not as

oscillatory as the PD controller, and appears to be just as good as the ENFLICT model.

3 Systematic Approach to FLC Design Automation 77

However, this is only because it is using training data, while ENFLICT is performing without

the training data. ENFLICT is learning by interacting with the system with one set o f input data

at any time instance. Hence, it takes longer to reach the desired set points. The point is that, in

this case, description o f the model was available, and it was possible to obtain training data for

ANFIS. For instances where this is not possible, ENFLICT would be more suitable.

Com parisons with vary ing system parameters are also difficult because modelling such changes

in the process for generating training data would require system identification techniques.

Whereas, as has been demonstrated in Figure 3.9-3.12, with ENFLICT, no such identification

process is necessary.

x icr5

53 0.1

s 0 08

2.2

2

1.8

16

1 4

1.2

1
20 0 4 0 0 6 0 0 80 0

T (s e c o n d s)
1000 1200 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1200

T (s e c o n d s)

Figure 3.9 Network perform ance w ith changing cross sectional area of orifice 1.

1
0 5

-0.1 -0 05 0 0 05 0 1

0 5

-0 1 -0 05 0 0 05 0 1
• 1 0)
S' 0 5Q

0
-0 1 -0 05 0 0 05 0 1

m 0 5

-0 1 -0 05 0 0 05 0 1
100

b) 0 5 0 Q 0

100
g> 0 5
o

0

-0 1 -0.05 0 0 05 0 1

-0 1 -0 05 0 0 05 0 1
H

1
0.5

0

1
0 5

0

1
0 5

0

1
0 5

0

1
0 5

0

1
0 5

0

-0 2 -0 1 0 0.1 0.2

- 0 .2 - 0 1 0 0.1 0 2

-0 2 -0 1 0 0 1 0.2

-0 2 -0 1 0 0 1 0 2

-0 2 -0 1 0 0 1 0 2

-0 2 -0 1 0 0 1 0 2
H'

(a)

(c)

(e)

(0

<K)

Figure 3.10 Network membership function adaptation to changing environm ental

conditions.

0 1 2 3 4 x 10-5

>no-5

Li
qu

id

le
ve

l(
m

)
Li

qu
id

le

ve
l(

m
)

Li
qu

id

le
ve

l(
m

)

78 3 System atic Approach to FLC Design A utom ation

0.14 2.2

0.12

m
E

0.08 -

LL
0.06

0.04

0.02
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200

T (s e c o n d s) T (s e c o n d s)

Figure 3.11 Network performance with changing discharge constant 1.

x icr5

200 400 600 800 1000 1200
T (s e c o n d s)

(a)

200 400 600 800 1000 1200
T (s e c o n d s)

(b)

x 10r5
0.09

0.08

0.07

0.06

0.05 Ll_

0.04

0.03

0.02
0 200 400 600 800 1000 1200

T (s e c o n d s)

(c)

1

2

9

8

7

.6

5

4
200 400 600 800 1000 12000

T (s e c o n d s)

(d)

Figure 3.12 Network performance due to a sinusoidal reference signal (a) controller

response before network parameters tuning (b) corresponding control action (c) controller

response after parameters tuning (d) corresponding control action

3 System atic Approach to FLC Design Autom ation 79

0.2 0.14

0.12
0.15

E

(D
>0)

g 0.06
0.05

0.04

0.02
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200

T im e (s e c) T im e (se c)

 ENFLICT PD ENFLICT ANFIS

Figure 3.13 Comparison of ENFLICT with conventional PD and ANFIS structures

3.5 Case Study — Cart-Pole System

For the second case study, consider the example o f the inverted pendulum in Appendix C,

but with only one link. The problem is to control the motion of the cart along a horizontal line

so that the pole will not fall down and will eventually stand at a desired angle. The problem is of

particular interest because it resembles many practical engineering robot-arm like applications,

such as ballistics, cranes, space shuttle arm, which depend on precision, stability and flexibility.

There are four states associated with this model: cart position x , cart velocity v, pole angular

position 6, and pole angular velocity co. The pendulum is controlled by applying a force of

varying magnitude to the cart’s centre o f mass. The simplified equations of motion are:

6 = co (3.49)

6 = d) =

g s i n # + c o s #
- U - m lO 2 s i n #

m + M

/
4 / h c o s 2 6
3 m + M

(3.50)

x = v (3.51)

U + m / [# 2 s i n 6 - 0 c o s #]

m + M
(3.52)

80 3 System atic Approach to FLC Design Autom ation

For the tests, the following parameters were used:

g (acceleration due to gravity) = 9.81 m/sec2

0.1 <m (mass o f pole) < 1 kg

0.5 < M (mass of cart) < 2.0 kg

0.5 < / (length of pole) <0.1 m

The first task is to control the pole and bring it to a vertical position by applying a force

o f varying magnitude to the centre of mass of the cart. The messy genetic optimisation was

carried out and the fixed universe o f discourse scheme was used. The initial template was

defined as a fully connected network with seven memberships for each input and output

domain, and the optimisation process was carried out on the neurofuzzy controller with with a

single era of 100 generations and a population size o f 200. The probability for cut and splice

was set to 75% and 65% respectively, and mutation was set as 5%. The best network after the

100 generation was then mapped onto the ENFLICT structure for fine-tuning. Figure 3.14

shows the normalised error curve after mGA learning. The strength o f the mGA is well

demonstrated as near optima region is reached quite quickly.

For the online learning, the pendulum was reset with different settings. Figures 3.15 and

3.16 show the responses o f the cart and pole system respectively for pole o f length 0.5m, mass

0.3kg and a cart o f mass 1kg, starting from the initial condition (x ,0 ,v ,&) (0.4, 5, 0, 0). It can

be seen that the system is brought to its equilibrium point where the pole is balanced vertically

and the cart is positioned to the middle of the track, i.e., the objectives have been reached.

1 r r

0.8 -

O'— x ■ ----- »---------- •---------
0 20 40 60 80 100

G e n e ra tio n

Figure 3.14 Normalised error measure

3 System atic Approach to FLC Design Autom ation 81

0.8 0.8

0.6
0.6

0.4

0.4 m 0.2E
x

0.2

- 0.2

-0.4

- 0.6- 0.2
0 10 0 6 82 4 6 8 2 4 10

Time (Seconds) Time (Seconds)

(a) (b)

Figure 3.15 (a) Position of cart for cart-pole system, (b) velocity of cart for cart-pole

system

6

........;4

1......
-10

CD -15

-4 -20

-6 -25
810 0 6 102 4

Time (Seconds) Time (Seconds)

(a) (b)

Figure 3.16 (a) Angle of pole for cart-pole system, (b) Angular velocity of pole for cart-pole

system

3.6 Summary and Discussion

In this chapter, a new model for designing intelligent controllers based on evolutionary

and neurofuzzy technique has been developed. At the heart of this new model are portability,

flexibility, usability, learning and evolution. While not based on any previously developed

models elsewhere, the ENFLICT model can be applied to the same sort o f problems as the Lin,

ANFIS (Jang 1993), NeuFuz (Khan 1993), NN-FLC (Kaurand Lin 1998).

Flexibility implies freedom to choose from the various types of membership functions,

the number of membership functions and the rule structure. Although the overall structure takes

the form of a neural network, the underlying operation is simply a FLC with the ability to adapt

to changing operating situations. Flexibility is achieved through the sophisticated messy genetic

82 3 System atic Approach to FLC Design Autom ation

algorithm. The variable length of the mGA chromosomes allows for growing network size

(with certain preconditions), while the template and era operations allow for quick recovery o f

lost information. In order to accommodate the network connectivity, shape definitions and rule

structures, the original mGA coding has been modified. In addition to the information that each

gene now has, its structure is also different. In the developed model, the genes are represented

by single integers. Of course, the resulting network obtained by the mGA lacks the ability to

prune the network parameters, and hence its performance is coarse. Fine-tuning of the

parameters is achieved through an on-line backpropagation learning algorithm.

Central to the working of the model is its learning properties. It was identified that the

major drawback of other neurofuzzy models is that they are based on supervised batch learning.

They depend on the operator providing quality network training data that can be expensive,

unrepresentative and of poor quality. Despite various claims, such networks operate poorly

outside the data they are trained with. The other difficulty that the ENFLICT model overcomes

is that of on-line operation where the input pattern to the network is provided at random, and

independent of the previous pattern. This has meant the need to modify the major parameter

affecting the learning and convergence o f the network. Therefore, the learning rate is replaced

with an annealing rate, which is adaptive and reflects changes in the operating conditions so that

the ENFLICT model operates on-line. The network structure optimisation needs to be carried

out off-line due to the nature of genetic algorithms. In addition, the other drawback o f this

model is that it fails to operate satisfactorily to large changes in the operating conditions

because the annealing rate can not adapt fast enough to reflect this change.

Finally, the ENFLICT model stands out from others for its usability. Usability can be

tied up to flexibility because, although the backpropagation type learning is described for

Mamdani type controllers, it can equally be applied for Sugeno type controllers. This is

possible because the network operates at two levels. The main network remains unchanged and

does not have any adjustable weights. However, by choosing the appropriate shape parameters

at the various sub-networks, and selecting different defuzzification strategies, one can easily

switch between the two types of controllers.

While ENFLICT is a two-phase model, the phases are inseparable, and comparisons have

been made with optimisation techniques and neurofuzzy learning systems so that like for like

comparisons can be made for flexibility, learning and optimisation. The main tasks and

properties sought in optimisation are representation o f fuzzy sets in terms o f structure,

flexibility o f the rule base representation, tuning o f the fuzzy sets, gene representation and

ability to continuously learn and adapt to a changing environment. While many techniques exist

for carrying out these tasks, most falls short from being a complete model that encompasses all

properties. For example, binary representation of information as those of (Karr 1991) and

(Cooper and Vidal 1994), mean that in order to keep the length of the string down, the amount

3 System atic Approach to FLC Design A utom ation 83

of information that can be encoded is restricted, whereas with integer encoding, a one-to-one

gene-parameter representation can be used, and hence more information can be encoded.

ENFLICT takes the coding scheme further, but encoding all the information pertaining to

a certain variable in one gene. This is very advantageous specially when using the variable

length chromosomes. In contrast, other variable length representations require knowledge of the

order of the gene and the linkage format because the order of the genes is important (Cooper

and Vidal 1994, Carse et al 1996). Although in (Hoffman and Pfister 1995), the order of the

gene is not important, a single integer representation was employed. Instead two integers were

used to represent a single gene. This thus restricted the amount o f information that could be

encoded. For instance, in (Carse et al 1996), the genes consisted of only the centres and with of

triangular fuzzy sets, and in (Hoffman and Pfister 1995) the genes made up only the rule base.

In ENFLICT, the genes represented the type o f fuzzy sets, the number o f fuzzy sets and the

mapping o f the fuzzy sets. This means that high dimensional problems can be easily

represented without any extra computational effort on the processor.

One o f the main reasons for having the learning and optimisation phases separated is that,

EAs are difficult to use for on-line processing, especially for fast and complex systems. Hence,

most optimisations are applicable only for a set operating region for a set o f parameters. For

learning, universal approximators such as neural networks and fuzzy systems are better suited.

By combining fuzzy systems to neural networks, it is possible to overcome the difficulties o f

both while retaining the advantages o f both. The properties o f neurofuzzy learning systems

compared in §3.3.2 are symptomatic o f neurofuzzy systems in general. That is, they are suitable

either for off-line or online learning; applicable for either a Mamdani or Sugeno type controller;

model dependent or independent based; use a single defuzzification and inferencing strategy.

The reason for so many combinations being in existence is that as the authors of these works

have shown, they are suitable for specific type of application. The aim of ENFLICT is not to be

ad hoc, but to be suitable for any kind o f system. Using the structure of ENFLICT presented,

with its new annealing rate, it is possible to accomplish all the above tasks. The only limitation

o f ENFLICT when in the learning phase is that it works best for slow varying systems.

In the next chapters the ENFLICT model is taken a few steps further, and direct

interaction with the environment through reinforcement learning is worked towards. This will

lead to a completely model free, unsupervised and autonomous neurofuzzy control method for

continuous time systems.

84 4 Further Learning Through Reinforcem ents

Chapter 4

Further Learning Through Reinforcements

Supposing is good, but finding out is better.

- Mark Twain in 'Eruption'

In this chapter reinforcement learning (RL) enhances the flexible

evolutionary learning method fo r neurofuzzy control so that controllers can

learn directly from the environment. The difficulty with on-line learning is

that o f knowing the exact future actions that will lead to global optimality.

The standard dynamic programming based reinforcement learning uses an

estimate o f the value and advantage function hence does not actually

produce global solutions. Evolutionary algorithms are identified to be a

special type o f reinforcement learning system. Evolutionary algorithms

address the same set o f problems as the dynamic programming RL. In the

ENFLICT model unsupervised learning was preferentially chosen in order to

overcome the undesirable property o f having to rely on a teacher to provide

correct answers to input patterns at the start o f the problem. In

unsupervised learning this is done by incorporating how to behave within

the system. This is, in fact, undesirable too because it hinders the generality

o f the system. In this chapter, reinforcement learning techniques are used to

overcome the difficulties associated with on-line learning. The model

features are compared with other similar reinforcement learning methods

and tested against some application.

4.1 The N eed of Reinforcement Learning

Reinforcement learning is an approach to machine intelligence that combines

unsupervised learning and dynamic programming to solve problems that neither o f these

disciplines are able to address alone (Barto et al 1983). Dynamic programming is a field of

mathematics that has traditionally been used to solve problems of optimisation and control. A

motivation for RL is that it is the primary learning method of biological systems. Animals learn

and adapt daily with only reinforcement type error signals. Reinforcement learning studies

therefore seek to capture similar capabilities in artificial systems. Just as artificial neural

4 Further Learning Through Reinforcem ents 85

networks are patterned after biological neural networks, RL systems strive to emulate animal

learning.

Reinforcement learning is o f interest in this chapter because first, the ENFLICT model in

its present state requires a model of the system so that derivative information can be collected

on its error measures so that the network parameters can be adjusted to minimise this error.

However, often such derivative information is not available, and the actual description o f the

model is not always possible to obtain. Therefore, instead o f using an error measure to indicate

the performance of the network, RL can be used directly interact with the system to learn the

network though reinforcements. The second reason for using RLs is that they are very similar

to EAs in their semantics. However, RLs differ from EAs in two important ways: EAs search in

a completely random fashion and hence ignore a lot o f the information between state transitions,

and secondly, EAs discards poor solutions in favour o f good ones whereas RLs use this

information in its decision making process. The similarities and differences o f RL and EAs are

highlighted in §2.5.

In the previous chapter a learning model was developed on the basis of neurofuzzy and

genetic based methods. The system was based on off-line neurofuzzy structure optimisation

and then on-line parameter tuning. The off-line learning was necessary because GA is not

computationally viable for on-line implementation o f fast and large systems. This leads on to

the use of a simulation model of the system to be controlled, which has have discussed is not

desirable as the simulated system cannot truly represent the actual system. There is, therefore, a

need to modify the ENFLICT learning model so that not only are the network parameters fine-

tuned, but also there is room for modifying the structure in terms of the control rule structure

while on-line.

In the ENFLICT model unsupervised learning was preferentially chosen in order to

overcome the undesirable property of having to rely on a teacher to provide correct answers to

input patterns at the start o f the problem. In unsupervised learning this is done by incorporating

how to behave within the system. This is, in fact, undesirable too because it hinders the

generality of the system.

In pursuit of the objective of this chapter an algorithm is used and extended that does not

require a model to be given or learned, is fast and, perhaps most importantly, applicable to

continuous systems. The RL algorithm is based on Harmon and Baird’s (Harmon and Baird

1996) advantage learning, which is an enhancement of their advantage updating algorithm

(Baird 1993) and requires the RL system to store only one type o f information. This learning

algorithm as it stands works only for the discontinuous case where a look-up table is used to

guide the learning. The algorithm is therefore first extended for delayed reinforcement and on­

line learning before applying to the ENFLICT model.

Finally, the procedures are compared with methods found in literature, and applied on

some benchmark problems to demonstrate the stability and flexibility.

86 4 Further Learning Through Reinforcem ents

4.2 Continuous Tim e Reinforcement Advantage Learning

The goal o f RL is to find a policy for selecting actions in a way that the selected sequence

o f actions will be optimal according to a certain evaluation (value) function. Since the actual

outputs of the evaluation function involve future data not immediately available to the learning

system, it leads to the fundamental question of almost all reinforcement learning research, i.e.

how to devise an algorithm that will efficiently find the optimal value function?

Consider an RL-controller used to optimise a continuous system. Let x(t) represent the

system state at time t and u(t) the action based on the state o f the system and not on the previous

ones. Suppose the system starts at t = 0, then r(x(t), w(0) represents the reinforcement received

by the system after performing action u at state x. Then the value is taken as the weighted sum

of future reinforcements, which should be maximised for the system to perform optimally, and

the value function for a given policy is defined as:

J (x) = (Z ,* o Y 'r (x (0>t‘(0)lx (0) = *) (4-1)

where <•> is the expectation operator and ythe discount factor which represents the extent to

which the learning system is concerned with future reinforcements of the control actions. The

discount factor takes a value 0 < y < 1. The closer it is to 1, the greater the weight of future

reinforcements, and y= 1 implies infinite future weighting. The optimal value function J u(x)

could then be calculated by:

J u (x) : m ax J (x) V x (4.2)
u

4.2.1 Advantage Learning

Advantage learning is the RL algorithm used in this thesis to achieve the objective of

learning through interaction. It is an algorithm that enhances advantage updating (Baird 93) by

requiring only the learning update, and only the advantage function A(x,u) needs to be stored.

For each state-action pair (x,u), the advantage A(x,u) is stored, representing the advantage of

performing action u rather than the action currently considered best. The advantage in

advantage learning is the sum of the value of the state plus the expected rate at which

performing u increases the total discounted reinforcement. This advantage is so called because

what is being considered is the advantage of receiving an increased overall weighted

reinforcement by performing action u rather than the current action. The optimal advantage

4 Further Learning Through Reinforcem ents 87

function Au can be defined in terms o f the optimal value function J ‘. The optimal value function

f (x) represents the true value of each state, and is defined as:

J u{x) = m & x A u(x , u) (4.3)
u

The advantage Au (x,u) for state x and action u is defined to be:

lR + y * J u(x +j) - J u(x)
A u(x,u) = J u (x) + J - (4.4)

At

where <•> represents the expected value over all possible results of performing action u in state

x to receive immediate reinforcement R and to go to a next state jc+ , and yAt is the discount

factor per time step. For optimal actions the second term is zero, meaning the value o f the

action is also the value o f the state; for sub-optimal actions the second term is negative,

representing the degree o f sub-optimality relative to the optimal action.

Advantage Learning and other RL algorithms such as Q-leaming (Watkins 1989) and

TD(0) (Sutton 1988) are generally classed as direct methods because they use a look-up table

(Moore and Atkeson 1993) with a finite number o f states. Each entry o f the table has a state-

action pair and various states are visited in any order and any number o f times during each

learning cycle. Convergence theories of most RL algorithms are based on such a finite look-up

table structure. Although such methods are very fast and convergence for the finite space case

is proven, the problem arises when the input space is continuous or infinite. In the look-up

table, state and action spaces must be quantised into a finite number o f cells. There are

difficulties associated with determining an appropriate quantisation scheme to provide enough

accuracy and low quantisation error. Many real-world applications are very large and very

complex, and representing the states and actions is not a possibility because of the

complications associated with trying to interpolate or identify values that are never seen. Look­

up tables become impractical since the number of cells grows exponentially with the number of

variables and geometrically with the number of quantisation levels, and convergence o f the

learning algorithm becomes extremely slow as the number o f states and actions increases.

To overcome this, various function approximators such as neural networks (Anderson

1986, Thrun 1993, Gullapalli et al 1994) have been used because such approximators have

generalisation properties and are able to perform reasonably steadily outside the input space in

which they are trained. This is important because in systems with continuous state and action

spaces, it is unlikely that the agent will experience exactly the same situation it has experienced

before.

88 4 Further Learning T hrough Reinforcem ents

T he direct method of advantage learning is implemented by combining with

backpropagation based neural networks and shows convergence for a general neural network.

The aim of the network is to adjust the network parameter to minimise an error function such as

the mean squared error:

Although this method is more stable than the look-up table method, and performing

gradient descent on the mean squared Bellman residual is guaranteed to converge to a local

minimum, the method has a number o f drawbacks. The first is that it is suitable only for off­

line learning such as batch processing learning where the number o f states to be learned is finite.

The other noticeable feature is that it is an immediate RL algorithm.

4.2.2 Delayed Rewards

In an immediate RL, the agent receives reinforcements immediately after performing

action u at state x. While this is desirable in some situations such as a robot trying to navigate a

room, and it provides a lot of information, it is not possible in other situations. Consider the

case of a surface-to-air missile control system. In such cases immediate reward is of little use

because the performance measure is constantly changing. Instead it is more interesting to look

at the reward or punishment several steps later such as at the point o f impact between the

missile and its target. This is referred to as learning with delayed reinforcements. Delayed RL

is also very appropriate for situations where knowledge of the environment is incomplete or

(4.5)
p

The equivalent Bellman mean square error is:

P

(4.6)

where for input x, the output of the network is ./(jr) and the desired output is + y J (x +) j .

Between each transition from state x to jc+, the weights are updated according to

£st? r ^
A W = - ;? ------ = - r j R + y J (x +) - J (x) — x/(jc+)

' dW L - aw
(4.7)

4 Further Learning Through Reinforcem ents 89

unavailable. In other words, it is suitable for on-line learning where the environment could be

very large and complex.

In delayed RL, the consequences of long-term compared with short term actions are

adjusted by the discount factor y. Recall that the discount factor y lies between 0 < y < 1. The

closer the discount factor is to 0 the more immediate the reinforcement. Unlike the immediate

reinforcement method where each action-state is usually locally optimal, the delayed RL does

not perform optimally for each state transition. Instead it is said that the RL system operates

optimally on average.

4.3 Gradient D escent Delayed Advantage Reinforcement

Learning

Having argued the benefits for gradient descent RL and delayed RL, the advantage

reinforcement learning is extended for delayed RL. Immediate reinforcement is appealing

because there is available the immediate information about the goodness or otherwise of taking

an action at a state. This is not possible in delayed RL, and to achieve some sort of local

optimality, an estimate o f the optimal advantage function is used. Now, if an action u is taken at

state x resulting in the next state x+, then estimate A o f the optimal A* is taken as the immediate

reinforcement of (x, a), and a good locally optimal policy is obtained. Now, how to obtain an

estimate o f A u?

Identifying what is good or bad for each action is the problem that makes reinforcement

learning difficult. In other words, the goal is to find an estimate, of f (.) in (4.3),

where W is the parameter set o f the neural network. A good estimation of f (.) is important

since it could be used to check the optimality of the policy u and if necessary adapt it to get a

better policy. Let n represent the number o f time-steps elapsed after the system was in state x,

and for brevity r{t) instead of r(x(/), u{x{t)). Let an estimate of (4.1) be defined based on

geometrically averaging . / “̂ (x) . is defined as

J U x) = (\ - X) I a'-'-W
n=I

(4.8)

with (1-T) being a normalising term, and 0 < A < 1. Notice that the term J ^ (x) with smaller

values for n is weighted more in the averaging process. This makes sense since the terms with a

large n rely more heavily on future data and therefore should be weighted less in the average.

Now define an «-step truncation o f the sum in (4.1) as

90 4 Further Learning Through Reinforcem ents

*/ (“n) W = 2 > r H r) (4-9)
r=0

Since r(0) = r(x,u(x)), (4.8) can be rewritten recursively as

J “ (x) = r(x,u(x)) + y { \ - X) H x (y) \ W) + yXJuw (x<S)) (4.10)

with jc(1) being the system state one time-step after x. Using (4.10):

X = 0 -» J “ (x) = r(x,u(x)) + yJ(x(\) ;W) = J “ (x)

X = l -> J “ (x) = r(x,u(x))+ y.J"(x(\)) = . / " (*)

In other words, in order to calculate the discounted sum J u , J q makes use of the

immediate cost within one time-step plus the approximation o f the rest of the sum. , on the

other hand, relies only on the actual costs to achieve the same goal. This learning method using

J \ is called TD(A), with TD being the short form for temporal difference (Sutton 1988). Let a

learning rule now be defined using J \ :

J{x\ fV): = J(x; W) + a ' J \ (x) - J{x\ W)j (4.11)

A

where J is an approximation of f . To be able to use this rule, J ̂ (x) has to be calculated on­

line without requiring a system model. As was seen in (4.1), the evaluation function is defined

as the discounted sum of the future costs. The relation between two consecutive evaluations

could easily be derived as:

f (x) = r + y f { x { \)) (4.12)

with x(l) being the system state one time-step after x. However, the same relation should also

hold for the predictions of J if it is a good approximation o f f . If that is not the case then the

difference between these predictions could be used to adapt J . Now, £(.) is defined as the

temporal difference between two successive predictions of the evaluation function

4 Further Learning Through Reinforcem ents 91

£(x) = r(x ,i/(x))+ y J(x (l);lV) - J (x ;W) (4.13)

s(.) can be calculated using the temporal sequence of data available in each time step - hence the

name temporal difference learning. The error used in the learning rule in (4.11) is a weighted

sum of the temporal differences computed at each of the visited states.

Temporal differences are weighted exponentially with the earlier ones weighted more.

Still, this value could not be used in the learning rule (4.11) since the calculation of all the terms

except the first one involves data only available in the future. There are different ways to deal

with this problem:

In (4.14) the terms on the right hand side could be truncated to select only the first N

terms. This means that each term is calculated as the required information becomes available.

The estimator J stays unchanged for jV time-steps until the required error is accumulated, after

which it will be used to update J using (4.11).

Alternatively, the effects o f the temporal difference could be included as and when they

occur in time. This can be implemented through the use o f an eligibility trace, e(x, t) for each

visit, and using the rule at time t (Klopf 1988, Watkins 1989):

J \ { x) - J (x ;W) = e(x) + (yX)s(x(1)) + (yX)2s{x{2)) +... (4.14)

J (x \ W) = J (x ; W) + rje{x, t)s{x{t))\ fx (4.15)

where the eligibility trace is adapted according to

0 if x is not seen

e(x , /) = < yXe(x,l - 1) if x(t) * x

1 + yAe(x,t - 1) if x(l) = x

(4.16)

Similarly the estimate for A and a learning rule are obtained,

A(x, u; W) = A(x, u\ W) + rjeA (x, u , t) s A (*(/), u(l))v(x , i t) (4.17)

where the trace is given by:

92 4 Further Learning Through Reinforcem ents

0 i f (x,w) is not seen

e A{ x j) = \ yAeA(x , t - 1) if (x(t) ,u(/)) * (x , u)

\ + y A e A(x, t - l) i f (x(t) ,u(t)) = (x ,u)

(4.18)

and the temporal difference

s A = r (x , u) + , J* (x ,); W) - w; I f) (4.19)

The condition for using this procedure is that the trace be reset to zero if more than one

trial is carried out, and that it is only implemented with connectionist methods such as

backpropagation neural networks.

4.4 Application of Modified RL to Ship Control Regulation

The problem of manoeuvring a ship is challenging and of considerable interest because of

the complexity in obtaining an accurate dynamic model. Various external forces such as wave

motion and wind effects, allied with the coupled behaviour o f the navigation, steering and auto

pilot systems, make the control task very difficult. In this example the only point o f interest is

the design o f a controller for regulating a cargo ship heading at a desired angle. A fuller

description o f the problem is given in (Astrom and Kallstrom 1976) and is summarised in

Appendix D. It is also listed as IFAC benchmark problem number 89-08.

For straight-line motion the model of the ship under constant velocity is described as

u = rudder angle

y = heading angle of ship

x\ = sway velocity of ship

x2 = turning yaw rate

x^ = heading angle of ship

x = Ax + Bu (4.20)

y = cx (4.21)

3 I Iwhere jc e R , u e R , y e R are given as follows:

and the structure of A, B and C is given by

4 Further Learning Through Reinforcem ents 93

0.895 -0 .2 8 6 0 N ' 0.108 '

A = - 4 .3 6 7 -0 .9 1 8 0 B = -0 .9 1 8

v 0 1 o, , o ,

The objective is to find a controller of the system to control and regulate the heading angle of

the ship to a desired angle o f 12° such that no overshoot occurs for the heading angle, while the

rudder motion is constrained by:

I H I < 4 0 °

The reinforcement function is defined as the difference between the actual heading and

the desired angle. The amount o f reinforcement received as a result o f each state-action

operation is inversely proportional to the amount by which the ship is away from the desired

angle, with the amount overshot being penalised more:

ref
i f n o o v e r s h o o tl - e

r = \ ref i f d e s i r e d (4 . 2 2)

ref i f o v e r s h o o t

1 - 5e

where e is the difference between the desired and the actual heading angle, and re f is the desired

reference that should be followed. The function approximator used to approximate the

advantage function is a simple neural network with a single hidden layer. There are neurons in

the hidden layer and each neuron has a sigmoidal activation function. The network is fully

connected with three inputs and one output. The standard backpropagation learning algorithm

is used to update the network parameters, error is minimised according to (4.6), and the weights

updated according to (4.7). However, instead o f using J, the estimate o f the advantage function

A needs to be used, where A is as (4.17). The trials are generated using the 4th order Runga-

Kuta algorithm. The experiment was carried out over 200 trials where each trial consisted of

200 steps, and each trial terminates when overshoot occurs. Figure 4.1 shows the behaviour o f a

cargo ship of length 160m with a forward speed of 10 ms' 1 required to follow a path o f 45° to

the horizontal. As can be seen the ship has learned to follow this path correctly. Figure 4.2

shows the learning curve o f the network. After a slow start when the exploration space is large,

the ship learns quite quickly to follow the objectives set out.

94 4 l urthor I .earning, I hroimh Reinforcements

20

4 0 15

20 5

0

5
0 10 20 30 4 0 50 0 10 20 30 4 0 5 0

Time [sec] Time [sec]

(a) (a)

Figure 4.1(a) Ship heading with respect to reference and (b) R udder motion

10"

100
Cycles

150 200

Figure 4.2 Perform ance measure at each learning cycle

4.5 Evolutionary N eurofuzzy Reinforcem ent Learning

In Chapter 3, the network structure was learned off-line through the messy genetic

algorithm. Thereafter, the structure remained fixed while the network parameters were learned.

In this section, a two-phase learning algorithm is developed where network structure is learned

both on and off-line based on the dynamic programming and evolutionary reinforcement

learning methods. The algorithm is summarised in Algorithm 4.1, and illustrated in Figure 4.3

Algorithm 4.1 Evolutionary RL o f neurofuzzy networks

Stage 1: Off-line structural optimisation

1. Identify inputs and outputs

2. Identify approximate fuzzy subspaces for inputs variables

3. Obtain an approximate fuzzy rule base and network mapping

4. Optimise fuzzy subspaces and structure o f the network using mGA

4 Further Learning Through Reinforcements 95

Stage 2: On-line network weight tuning

1. Start with the off-line network to obtain controlled actions

2. While the system is successful within limits apply new input states to the network

3. Record time to failure to reward and reinforce the best networks using Advantage

Learning

u(t)

On-line Performance
EvaluatorP(t)

SYSTEM
Off-line y(t)

R a n d o m

N u m b e r

G e n e r a to rNFRL

ERL

Figure 4.3 Block diagram of the evolutionary neurofuzzy RL algorithm

In the off-line process, the RL block is based on evolutionary algorithms, more

specifically messy genetic algorithms. The on-line RL block is a gradient descent neurofuzzy

network based on the ENFLICT model. In either case, the RL block accepts a state vector *(/)

and produces a control signal u{t) which is then perturbed by adding a small signal generated by

a random number generator. The performance p(t) of the system due to this signal is then

evaluated and fed back to the RL blocks. In the off-line process, the NFRL (neurofuzzy

reinforcement learning) operates as a feed-forward network, and the ERL (evolutionary

reinforcement learning) block determines its structure. The messy genetic algorithm (mGA) of

the ERL block determines the shapes of the activation functions (fuzzy subspaces), the number

of nodes in each layer and the interconnection of the network.

4.5.1 Off-line Learning

The first stage therefore deals with obtaining the structure of the network using the mGA

procedure. The regions of fuzzy subspaces are defined according to the information available

about the plant to the operator. Where the operating regions are known, a fixed universe of

discourse with varying size membership functions is used. When the operating region range is

not so clear, fixed size membership functions with a varying universe of discourse are used.

The resulting network is one where the entire operating region is well covered with equally

spaced overlapping membership functions, enabling smooth transition between states. At this

stage, since no input-output data pattern is available, new input to the controller is obtained by

96 4 Further Learning Through Reinforcem ents

applying a 4th order Runga-Kutta algorithm to the system, and simulating the system over a

certain time frame. The simulation would be carried out over a number of cycles to obtain a

good general solution. The actual learning procedure using mGA is as described in §3.2.3.

On completion o f the first stage, the best network structure is passed to the second stage

where pruning and fine-tuning of the network is carried out and adjustments to the network

structure made if necessary. Random initial states are applied to the network, which is then

allowed to run until the system fails. If running off-line, new states to the controller are

obtained as before using the RK. algorithm. The number o f successful (x, u(x)) (i.e. {state,

action)) pairs are recorded and used as the overall reinforcement signal. The weights of the

network are updated according to the number o f hits they receive during each cycle of the

learning algorithm.

4.5.2 On-line Learning

On-line learning is concerned with taking a near optimal network structure, plugging to a

real system instead o f a simulation and observing the system behaviour, and adapting the

controller structure and parameters to these environmental changes. The learning algorithm

employed is that of §4.3. Learning is through reward and penalty. If certain weights

(corresponding to the parameters of the membership function (MF)) are used more often than

others are, then they are rewarded such that the base width of the membership function is

increased and its adjacent MFs are penalised by being reduced. Since no gradient information is

being used, it does not make any sense to use the backpropagation algorithm to update the rules

and network weights

Consider the equivalent fuzzy sets represented by the neurons at the M-nodes and K-

nodes of the ENFLICT model. Let the shapes of these fuzzy sets be o f triangular shape defined

as

(4.23)Triangle (x; a, b,c) = max
/ r \ \x-a c-x

, 0max min -----9-----
V vb-a c-b ,)

where a, b, c are parameters of the set as shown in Figure 4.4. x{C$,C S) and w(C5/ ,C$)

are defined as the [state, action] pair, and CS/ ,C S are the supports of the fuzzy set.

4 Further Learning Through Reinforcem ents 97

b

ca

Figure 4.4 Triangular activation function

CS l(0 = A S i(/)C S/_ (/ - l) (4.24)

CSr(0 = ASr (OCSr(« - l) (4.25)

where AS is the amount the support is shifted,

A S = — N
R (4.26)

where R ’ is the number of unique rules exciting set, R is the total number o f rules as found at

stage one o f the process, and TV is a weighting factor given by

N =
max(/Js (m)) (427)

where s is the set under consideration, S is the full range o f sets for the state and m is the

linguistic rule. Finally to use the advantage learning o f (4.17) the reinforcement signal is

defined as

') = ! / ,r,+k+rnfi(xi+n)
k (4.28)

where/ is the objective or value function and y(0.95) is the discount factor.

98 4 Further Learning Through Reinforcem ents

To illustrate the algorithm, consider Figure 4.5. Consider an initial network weight set-up

such that the corresponding membership function set-up is as in Figure 4.5a. Now, assuming

that the weights corresponding to the second membership function “NS” receive the most

attention, then the base of this MF is spread out more into the regions of its adjacent MFs, “ZE”

and “NM”, Figure 4.5b. At the same time, as a consequence, the bases of its adjacent MFs are

also reduced because they are playing a smaller role in the process. The amount of increase and

decrease is proportional to the extent to which the weights are activated

NM NS ZE PS PM NM NS ZE PS PM

«-
Spread increased

(a) (b)

Figure 4.5 Extracted activation functions (a) before learning, (b) after learning

This sort of reward-penalty policy also has the advantage of removing redundant MFs.

Consider Figure 4.5a again. In addition to “NS” receiving the most attention, assume “PS” is

receiving more attention than “ZE” and “PM”. The base of “PS” would then also be increased

and the base of “ZE” and “PM” reduced. So “ZE” is gradually squeezed out from both sides. If

as a result of increasing both “NS” and “PS”, “ZE” is completely encompassed or not activated

at all then ”ZE” is removed, and with it any rules referring to “ZE” is ignored. The cycle o f this

second stage is repeated until the plant operates successfully to the operator’s satisfaction (such

as for a specified period).

4.6 Comparison of ENFLICT with other Reinforcement

Learning Techniques.

When comparing the RL based ENFLICT, in addition to continuing the theme of learning

fuzzy systems, the main focus is on the learning aspects. That is, whether delayed actions can

be learned, continuous on-line learning is possible and flexibility exists to implement this

learning fuzzy system for wide range o f applications regardless o f size and complexity. Table

4.1 compares ENFLICT with other fuzzy and neurofuzzy RL methods.

4 Further Learning Through Reinforcem ents 99

ENFLICT
N au ck e t
al (1995)

B onarin i
(1996)

Berenji
(1992) Lin (1995)

Zikidis &
V asilak o s(

1996)

F u zzy s e t tun ing Y Y Y Y Y Y
R u le m odification Y Y Y X Y X

M am dani con tro lle r Y Y X X y X

S u g e n o con tro lle r Y X X Y X Y
N on-sym m etrica l fuzzy s e ts Y X Y X X X

D ifferent in fe ren c in g m ech an ism Y X X X X X

D ifferent defuzzification p ro c e s s Y X X X X X

U n su p e rv ise d lea rn in g Y X X X X Y
O n lin e lea rn in g Y X X X X X

Local le a rn in g Y Y Y X X X

C o n tin u o u s tim e lea rn ing Y Y Y Y X Y
D elay ed re in fo rcem e n t Y X X Y Y Y
M odel in d e p e n d e n t Y X X X X X

Table 4.1 Comparison of fuzzy reinforcement learning systems

As can been seen from Table 4.1, most work in literature have identified the need for

continuous learning and delayed reinforcement. However, none of these mainstream methods

are model independent as ENFLICT is. The main reason is that the neurofuzzy structures such

as NEFCON (Nauck et al 1995, Zikidis and Vasilakos 1996) are not really neurofuzzy

structures in the sense referred to in this thesis. That is they are not true representations o f fuzzy

systems as neural network structures. Instead, they are radial basis function networks that are

functionally equivalent to fuzzy systems. This means that they are restricted to gaussian

membership function type threshold functions, and the only parameters to learn are then the

centres and widths o f these functions, and only symmetrical fuzzy set tuning is possible. The

other disadvantages of these systems are that they can't truly learn a fuzzy system. That is, these

systems can not learn the type and shapes of the fuzzy sets, and only the rule base is learnt, and

not the rule structure.

To learn the rule premise and consequents, Bonarini's (Bonarini 1996) ELF used an

approach based on the Michigan evolutionary algorithm approach. This means that a group o f

rules, similar to a population of chromosomes, is used in the reinforcement learning approach.

The problem of using this sort of EA based RL is that the appropriate premise to consequent

mapping may always not be available, and thus result in sub-optimal solution. Thus, to begin

with, the population is composed with full rule compliment, and reduced gradually. This

implies that the operator has knowledge of the control surface to start off with. As (Nauck et al

1995) argues, this is also computationally expensive, as RL in general a slow learning process.

In ENFLICT, although the rules are also deleted in the on-line phase, the approximate control

surface has already been found by the off-line EA based RL, thus is less expensive. The

Bonarini method also posses the problem on the other extreme. Since some rules are not

available, the system can not cope with certain data. This problem is also shared with Nauck et

a ls NEFCON approach. From this point of view, the ENFLICT approach is a compromise

from both sides. No knowledge of the control surface is assumed, and constructed in the off­

line phase, and rules are decremented during more localised learning.

100 4 Further Learning Through Reinforcem ents

Berenji's (Berenji 1992) GARIC model is one o f the most cited works in this field

because it was one of the very first systems to learn fuzzy systems through reinforcement

learning. However, as can be seen, it only deals with fuzzy sets tuning, and does not have any

rule modification properties. In terms of true comparisons, the closest system is that of Nauck

et a fs NEFCON model. Although Lin's (Lin 1995) RFNC and the (Zikidis and Vasilakos 1996)

model has a neurofuzzy structure, these are based on gradient decent learning, hence requiring

knowledge o f the derivative information needed to guide the learning. This is not the case with

ENFLICT or NEFCON. However, as has mentioned already, NEFCON has certain restrictions,

amongst which, the fuzzy weights must be implemented in such a way, that identical linguistic

terms are represented by identical fuzzy sets. This symptomatic of other systems using the

Mamdani control approach. In addition, in NEFCON, for different application areas different

neurofuzzy models have to be derived. As has already been highlighted, this is not the case for

ENFLICT.

To summarise, RL using ENFLICT presents a completely new approach to continuous

time learning with relayed reinforcements for any kind of application without change of the

underlying network structure. This model is able to learn the fuzzy rule base, rule structure, the

fuzzy sets and the type o f fuzzy sets.

4.7 Application to a Non-linear Coupled System

To see the operation of the algorithm, consider again the twin tank system used in the

previous example. The objective of this control system is to drive, through the input to Tank 1,

the liquid level at Tank 2 towards the desired level o f 0.1 m in the first control cycle as fast as

possible with minimal overshoots and steady-state errors. A second control cycle takes place

from 600 s and the desired level in Tank 2 now is 0.2 m. The input states to the neurofuzzy

network, are the tank height and rate of change of height and the output the pump flow rate.

For stage 1, the mGA was configured to accommodate a maximum of nine membership

functions for each state variable. Since there are obvious limitations to the amount the liquid

level can rise and the capacity of the pump, a fixed universe of discourse scheme was used.

The activation type used was the triangular form. Since this system is very slow, to keep the

computational time minimal only one type of activation is used. In addition, the triangular

shape gives greater freedom when fine tuning the network in Stage 2 is carried out. The initial

template was defined as a fully connected network with 9 memberships to describe each

state/action variable. An initial population size o f 200 was used which was halved after each

era for 2 eras. This left a population size o f 100 after the primordial phase, and the remaining

population members were created randomly. For the juxtapositional phase the cut and splice

rates were set to 75% and 80% respectively. Mutation rate was set to 10% and genes were

4 Further Learning Through Reinforcem ents 101
mutated to a value not in the chromosome. The resultant network o f the system after stage 1 is

illustrated in Figure 4.6 and figure 4.7, and the response is given in Figure 4.8. As can be seen

the response is reasonable but not as smooth as one would wish. There appears to be excessive

switching effect taking place as was experienced before and therefore again much tuning is

required.

Figure 4.6 Neurofuzzy network of tank system after stage 1

/

0.8
Q.

| 0.6
<u
E

0.6

u .
o 0.40.4
00uQ

0.20.2

0
- 0.2 ■0 . 1 0 0.1 0.2 0.3■0 1 -0.05 0 0.05 0.1

h h

Figure 4.7 Extracted fuzzy sets from network of tank system after stage 1

102 4 Further Learning Through Reinforcem ents

x 1CT5
0 .2 5

0.2

Q -1 .5

0 .0 5
0 .5

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 000 2 0 0 4 0 0 6 0 0 8 0 0 1000 1200
T im e (s e c o n d s) T im e (s e c o n d s)

Figure 4.8 Closed Loop response of tank system after stage 1

This resulting “best” network if figure 4.6 is carried forward to the second stage for local

learning and fine-tuning. For each training state if the network was able to deliver a level of

liquid in tank 2 to within 5% of the desired level, it is rewarded with a score o f 1, and -1 if

outside the 5% boundary. With the objective not only to reach the desired height in the tank but

also to maintain the level for a set period of time, the cumulative score after each run is used to

reinforce the “local learning”. The process is repeated until a satisfactory response is observed.

Figures 4.9 and 4.10 show the resulting network of the system after local learning, and Figure

4.11 shows the response. Comparing with Figure 4.6, it is observed that in addition to the shape

of the activation being affected, the number of neurons and the network connectivity is

simplified. To test the robustness and ability in dealing with a non-linear system with varied

operating conditions, the resultant controller was tested for different desired heights and this
_5 2

time a constant inflow disturbance o f 8 .33x10 m / sec was applied at intervals of 300s.

Note that there are no steady state errors and no switching effect. Figure 4.12 shows the

responses for this test. Once again, observe that the oscillations are removed and the tank level

is within 'acceptable' limits.

4 Further Learning Through Reinforcements 103

Figure 4.9 Neurofuzzy network of tank system after stage 2

0.2 0.3- 0.2
h

c .

o
<uy

-005 0 0 5
h

Figure 4.10 Extracted fuzzy sets from network of tank system after stage 2

x 10-5
0 .25

0 2 3

E

><U 2.5

2
0 05

15
2 0 0 4 0 0 6 0 0 8 0 0 10 0 0 1200020 0 4 0 0 6 0 0 800 1000 12000

time (s) time (s)

Figure 4.11 Closed Loop response o f tank system afte r stage 2

104 4 Further Learning Through Reinforcements

x 1CT4
0.3

0 2 5

0 6^ 0 15

2- 0 .4

0.20 .0 5

2 0 0 4 0 0 6 0 0 8 0 0 1000 12000 2 0 0 40 0 600 80 0 1000 1200
time (s) time (s)

Figure 4.12 Closed loop response with disturbance

A comparison can also be made between ENFLICT and NEFCON as shown in Figure

4.13. As can be seen, NEFCON takes longer in comparison to ENFLICT to reach the desired

levels o f 0.1m and then 0.2m. This is because N EFCO N has to build up the rule base as it

learns, where as ENFLICT RL learning takes effect from a coarsely tuned network. As a result

o f not having the appropriate rules, there are more oscillations for N EFCON. However, since

NEFCON learns from training data, it is more accurate, whereas at a level o f 0.2m, there is a

small steady state error for ENFLICT. This is as a consequence o f the generalisation effect o f

the network, and can be solved using more localised learning.

0 22

0 16

Si 0 12

0 08

006

0 04

0 02
200 400 600

time (s)
800 12001000

Figure 4.13 comparison between ENFLICT and NEFCON

4.8 A pplication to a S ingle-Input M ulti-O utput N on-linear

System w ith On-line Learning

To illustrate the algorithm with another example,, consider the highly non-linear cart-

pendulum system. However, instead o f using the traditional single pendulum found in a lot o f

reinforcement learning and fuzzy control literature, and presented in Chapter 3, the more

4 Further Learning Through Reinforcem ents 105

complex double pendulum system is used as shown in Figure E.l. This non-linear control

problem is often selected because of its similarity to many practical engineering applications,

such as robot balancing, space shuttle arm, ballistics, and factory roof cranes, which require

precision, stability and flexibility. The objective is to centre the cart on the track and balance

both pendulums to vertical axis, by applying a control force to a cart centre of mass. The

dynamic equations of the system are given below and full derivation can be found in Appendix

E.

h]x + h2a] cos a , + h2ta 2 cos or2 - /z2dr,2 sin or, - h3d 22 sin a 2 = u (6.7)

h2x c o s a] + h4a x + h5a 2 cos(a, - a 2) - h sa 22 sin(ar, - « 2) - / z 7 sin a , = 0 ^ ^

h2x c o s a 2 + h5a x cos(a , - a 2) + h6a 2 - h5a 2 sin(ctr, - a 2) - h s s inar2 = 0 (6.9)

where hx be defined as below:

\ = mc + mx + h5 = m2l2 L,

h2 — m\l\ + #*2 hb = m2l2 + J 2

K = m2̂ 2 hn - mxlxg + m2L]g

h4 = m f i + MiJiS

where x is the cart position, ai and a2 are pendulum link angles in radians, Lt (=0.6m) and L2

(=0.5m) are lengths of pendulum links, g (=9.81 ms'2) is the gravitational constant, // and l2 are

the distances between the pivot and centre o f mass o f respective links, u is the control force, mc

(= 1.5 kg) is the mass of cart, m j (= 0.5 kg) and m2 (=0.75 kg) are masses of the first and

second links and J j and J2 (=0.0005kgm2) are the inertia of the first and second links about

their centre of mass.

The inputs to the neurofuzzy network are cart position, cart velocity, the pendulum link

angles and their angular velocities and the output variable is the control force. For Stage 1, the

mGA was configured to accommodate a maximum of nine membership functions for each state

variable. This time the only bounds were the length o f the track, which is set to 2m. Ideally the

pendulum would be able to operate successfully from any given angle, but in practice this is not

possible, hence a fixed universe of discourse scheme was used. The activation type used was

the triangular and gaussian bell shaped form. Since there are 6 inputs, if a single controller in

simple fuzzy form were to be used, a 6-D rule base would be needed, which would be incredibly

complex to implement. However, this is not a problem with the neurofuzzy structure.

The off-line learning requires an initial template describing the network structure to be

defined, and this was configured as a fully connected network with 9 memberships to describe

each state/action variables. With the size o f the problem in mind, an initial population size of

200 was used which was halved after each era and the other half refilled with random members

106 4 I urther Learning Through Reinforcements

for 2 eras. The eras were executed at generation 20 and 45 respectively. For the juxtapositional

phase the cut and splice rates were set to 80% and 80% respectively. Mutation rate was set to

15% and genes were mutated to a value not in the chromosome.

For the second phase (on-line learning), scores were awarded if the cart was within the

track limits and the pendulums did not fail. An error margin o f 5% was defined as

' ‘satisfactory” . Figures 4.14-4.17 illustrates the behaviour o f the cart-pendulum system with the

optimised controller. Figure 4.18 shows the learning curves for the on-line and off-line stages.

One can observe all the states reaching the desired states to a fast settling time and no

oscillations. Only a snap shot o f the entire time process is displayed to show the behaviour o f

the pendulums and cart before reaching the goal state.

£ -1

Time (Seconds)

Time [Seconds]

Figure 4.14 C art position and velocity

-20

Time [Seconds]

100

d)
>

I -50O)

< -100

Time [Seconds]

Figure 4.15 Pendulum 1 angle and an g u la r velocity

4 Further Learning Through Reinforcements 107

(/)

09£Q
0)O)

E -10
DTD
I -20

Time [Seconds]

0)
>
S
D
CD
C
<

-20

Time [Seconds]

Figure 4.16 Pendulum 2 angle and angular velocity

10"

,-3-

0 20 40 60 80 100 1500 50 100
Generations C yc|es

(a) (b)

Figure 4.17 Network Learning Curves (a) off-line and (b) on-line

4.9 Sum mary and D iscussion

In the previous chapter an unsupervised learning model was developed which was based

on the backpropagation algorithm. However, it had a number o f drawbacks that mean that the

model in its existing format is unsuitable. The first is that the network structure grew with the

size and complexity o f the problem and the number o f input and output domain variables.

Another drawback is that once one has a network as presented after the evolution process, there

is no scope to modify its structure. In other words there is no provision for modifying, rules.

Unnecessarily large network structures can lead to slow operation o f the model computationally,

and also be detrimental to the convergence o f the network parameters. In addition, being based

on the backpropagation algorithm for updating o f the network parameters implies that some

108 4 Further Learning Through Reinforcem ents

derivative information need to be available, like the direction of the annealing rate, to guide the

learning. Finally, it was assumed that a model was present that could be used by the network to

obtain a measure of its performance during learning. Therefore in this chapter reinforcement

learning techniques were developed to solve these problems.

Reinforcement learning is a paradigm of artificial intelligence and is interested in systems

that can adapt to their environment and experiences. A motivation for reinforcement learning is

that it is the primary learning method of biological systems. Animals learn and adapt daily with

only reinforcement type error signals. Reinforcement learning studies therefore seek to capture

similar capabilities in artificial systems. Just as artificial neural networks are patterned after

biological neural networks, reinforcement learning systems strive to emulate animal learning.

Reinforcement learning combines elements o f both supervised and unsupervised learning. Like

supervised learning there is some training information available. However, this is not provided

by an external teacher. Instead, as in unsupervised learning, there is a built-in critic that

provides the training information. In addition as in evolutionary algorithms, it works around an

evaluation function. In fact the correlation between evolutionary algorithms and reinforcement

learning systems, will be studied. However, unlike EAs, the evaluation function does not tell

the agent how it should change its behaviour. The agent simply tries to maximise or minimise

the performance measure o f the evaluation function.

In this thesis, Harmon and Baird’s advantage learning algorithm (Harmon and Baird

1996) was used because it has been shown to function for continuous time systems without the

need for a model definition. Some limitations o f this algorithm were identified, viz., that it

deals only with immediate reward RL, and uses a look-up table to guide the learning.

Immediate reward is not suitable for on-line learning where the environment can be very large

or complex. It is also unsuitable for situations where the system must be operating for

considerable lengths of time before any information can be gathered regarding its relative

performance. To overcome these limitations the gradient descent algorithm was extended to

delayed reinforcement. This is a significant change because it is the only RL algorithm that can

be truly applied to continuous time systems with a function approximator that is guaranteed to

converge, and it is also suitable for on-line, model-free, implementation. This cannot be said for

other RL algorithms. For instance, Q-learning and R-Leaming do not work in continuous time

and are sensitive to errors with small time steps. Other algorithms such as value iteration and

SRV can work in continuous time. However value iteration requires a model to be learned and

the calculation of the maximum of an infinite set o f integrals to perform one update, and the

SRV algorithm does not deal with delayed reinforcements.

After adapting the algorithm so that it can function for continuous time systems and on­

line, the gradient descent advantage learning is combined with the ENFLICT model, and a two

phase learning procedure is constructed that allows for off-line global network structure

learning, and local on-line pruning of the network parameters. Since the underlying function

4 Further Learning Through Reinforcem ents 109

approximator is the ENFLICT model, the network is able to adapt to system parameter

variations.

Comparisons with pure RL methods such as (Sutton 1988) and (Watkins 1989) are

difficult as these are table based, supervised and applied to environments where all the

information is available. Unfortunately, in the real world, this ideal environment does not exist.

However, comparisons with other fuzzy-RL methods show the developed method to be much

superior. To begin with, it is model independent unlike NEFCON (Nauck et al 1995), GARIC

(Berenji 1992) and RFNC (Lin 1995). ENFLICT is a true integration o f fuzzy and neural

methods, and not some functional equivalent. Hence, all aspects o f a fuzzy system can be

learned, and different types of controller (Mamdani or Sugeno) can be used to suit the

application without changing the network properties or structure. Unlike the likes of GARIC,

ENFLICT is a single structure, hence only one simple structure needs to be learned. It is a

compromise between the bottom up approach of NEFCON and top down approach o f ELF

(Bonarini 1996). With ELF, the Michigan style structure implies that rules may not exist for

certain input, while using the bottom up approach also suffers the same problem.

Much has been achieved towards the aim of developing a flexible, autonomous, learning

fuzzy control method. However, one important undesirable property has shown up in

ENFLICT in its present state. While the network learns well for a specific set point, for a new

set point, it performs sub-optimally, though not coarsely. Hence there is at least one further step

that has to be taken, before it can satisfactorily be said that the method has achieved the aims of

the thesis. The fact that EAs take a very long time (as does RL) for on-line operation means

that there is a need for some approach that accommodates much more complex and higher order

systems. An alternative approach to controlling such systems at a global level is to break the

system up into sub-systems so that individual sub-systems can be treated locally, and then to

connect up again through some hierarchical structure so that all the sub-systems when combined

operate at a global level. In the next chapter this is further explored.

5 M odel-Free Design o f FLCs

Chapter 5

Model-Free Design of FLCs

It's what you learn after you know it all that counts.

--John Wooden

This chapter focuses on localised learning aspects. Localised learning here

refers to learning at different operating regions and also learning complex

and coupled systems though hierarchical structures. In the last chapter,

reinforcement learning was used to learn without a model and by direct

interaction. However, to learn delayed actions, an estimate o f the optimal

action was used because knowledge o f the next state was not immediately

available. The effect o f this was that the network performed sub-optimally

around different operating regions. In this chapter, this problem is

overcome by using plant step response data as the model, thus allowing

immediate reinforcement to be used and more accurate networks to be

obtained. The advantage o f this approach is that learning can be done

offline using data that is truly representative o f the system. The method is

then extended to deal with complex systems by breaking the system up in to

sub-components and learning in a hierarchical structure. Then comparisons

are made with well known complete evolutionary-neurofuzzy methods and

the completed ENFLICT structure.

5.1 Autonomy and Ease of Design

Both evolutionary learning and reinforcement learning are good explorers and able to find

good solution after a number of trials and some exploration. However, the main difficulty with

such learning is that of knowing the plant behaviour in the form of a mathematical model and

what the goal state or the next states should be. It is therefore important for the simulation

model to be as accurate as the real plant itself so that the cost function and the fitness of a

particular design reflect its true performance in the real world. Similarly for RL, having a good

model and value function (especially if using an estimate) is of significant importance. This is,

however, a challenging task in engineering practice.

Li et al (Li et al 1996) showed that it is possible to design linear controllers directly from

plant response step data without the need for any mathematical model of the plant. When the

5 M odel-Free Design o f FLCs 111

plant is non-linear it is shown that using such data is actually o f a higher fidelity than any

linearised model. In this chapter, this technique is extended to non-linear control system design

and neurofuzzy system design in particular. The advantage of this is that the data can be treated

as a model and the actual model need not be used at all. The disadvantage is that the data can be

collected at any time for only one set point, but this is overcome by using the neurofuzzy

structure to learn the controller. The generalisation property o f the network means that it should

be possible for the controller to operate at other areas outside the set-point that the data

represents.

For more complex systems, where the system is highly coupled or the input and output

domains are o f higher order, the system can be broken down to sub-systems, and controllers

may be obtained for each sub-system response data. Therefore, the other objective in this

chapter is to construct a procedure for such a hierarchical structure.

5.2 Data as Model

In system design, the response to a step input is often utilised to analyse the system

performance in terms o f transient measures such as rise time, settling time and steady state

errors. Given step-response data the controlled closed-loop output can be viewed as an open

loop response o f the system to the input filtered by a first order high pass and then convoluted

by the step response o f the plant. This arises from the fact that a system or plant is characterised

by its unit impulse response, and the response o f a plant can be obtained mathematically by

convoluting the input waveform to that plant with its unit impulse response.

U(s)E(s)
R(s)

Y(s)
H(s) G(s)

Figure 5.1 Schematic of unity feedback control system

Consider the plant set-up of Figure 5.1. If U(s) = 1, then for the open loop, the output is

obtained by taking the inverse Laplace transform.

y(t) = r 1 {G(s) • U(s)} = r 1 {G(s)} = g (t) (5 .1)

5 M odel-Free Design o f FLCs

This can be generalised for any arbitrary input signal by applying the principle of

superposition summation (Dorf 1989). Since a step signal is most common to obtain in the

laboratory, let U(s) = —. Then the plant step response data will be given by:
.5

Ys {t)= ^ g { v) d v (5.2)

in other words,

g (0 = y s (t) (5 -3)

Now consider a candidate controller is being designed, which provides a control signal

U(t). The plant output can then be simulated by:

y{t) = w(/) * g{t) = u(t) * y s(/) = [u { t) - y s{ t - r) d v (5.4)

It is clear to see from (5.4) that there is no mention of G or g(t) i.e. the plant. Therefore, it

is possible to simulate the control system and evaluate its performance directly from the plant

response yx(t). Thus by taking this response to a step input, one can treat this like training data

and use the evolutionary and reinforcement learning methods to evolve and learn a neurofuzzy

controller. The difference between this and pure supervised learning is that the teacher has to

generate manually the learning pattern for the network to learn in supervised learning, whereas

in this case the data represents the true behaviour of the plant.

5.3 Hierarchical Control Approach

The drawback of this approach is that for a non-linear plant, such a method is valid only

around the operating point. That is, the convolution approach can only be used for one operating

region - which is undesirable since the aim is to have a controller that can perform over all

operating regions. A possible way around this problem would be to build a controller, like a

local controller network (Gawthrop 1996, Johansen and Foss 1992), around each operating

region and then switch between each controller when in the appropriate region.

The objective o f the hierarchical approach is to design a set of controllers which are

locally optimal, and also when put together are general enough to perform efficiently at a global

level. Therefore it is necessary to ensure that no single controller has priority over others, that

the rewards and penalties are distributed equally amongst all the controllers. The whole

5 M odel-Free Design o f FLCs

learning procedure can be broken up into three levels. The first is to obtain a global network

structure that encompasses all the lower level controllers (LLCs) or networks; then to use a

learning rule that adapts the ‘global’ network structure to environmental changes; and thirdly, to

use the global information for tuning each local network. The hierarchical structure can also be

applied for more complex and large systems. At the lower lever, individual controllers would be

constructed for each local (or sub-system) level, and a network at the upper level structure

would ensure that all the local networks would perform globally. Since EAs and, in the context

o f this thesis, a messy GA has been shown to be good global approximators, the upper level of

the hierarchical structure is overseen by the mGA. At the lower lever, each local network

controller is shaped by the reinforcement ENFLICT structure.

5.3.1 Global Network Structure Optimisation

Consider the case, at the top level o f the hierarchy, of landing an aircraft. At a lower

level, the sub-tasks may involve descending and taxiing the aircraft. Using the hierarchical

structure, at least 2 controllers would be needed. Then for all local ENFLICT controllers, an

upper lever structure consists o f the combination o f the networks such that it forms a global

network as shown in Figure 5.2. As can be seen, this network resembles a feedforward

structure.

In fact, this is another neurofuzzy network similar in structure to the ENFLICT model

used for each local controller. The objective of the upper level is to perform a mapping from

some input to some output space. For each state input, there is a switching policy that indicates

the extent to which that state input will affect a certain local controller. This is similar to

obtaining the degree of membership to which a certain fuzzy set is fired in a standard FLC. The

task of the switching policy is to distribute the inputs to each of the controllers at the lower

level. It does so by weighting the input according to the degree to which that input set is

relevant to the sub-system.

5 M odel-Free Design o f FLCs

L o c a l

C o n t r o l l e r 1

Switching
Policy 1

Inputs Action, u

L o c a l

C o n t r o l l e r 2 A c t i o n

S e l e c t o r

Switching
Policy n

L o c a l

C o n t r o l l e r m

Figure 5.2 Global Network Structure for Local Controller Design

For example, for the 2 controllers there would be a policy selector, and its output is a

measure, or degree of activation, of the immediate level o f activation o f the higher level

expressed quantitatively as a scalar. This is an indication o f the amount o f influence that the

upper level will have on the control action corresponding to the set-point during the control

cycle. Therefore, the switching policy blocks resemble fuzzy subspaces, where the fuzzy

subspaces correspond to the operating region of the sub-system it is hierarchy to. The fuzzy

subspaces are defined by gaussian membership functions such that the centre o f each

membership function is a set point, and the spread is such that there is 50% overlap between

adjacent membership functions, as shown in Figure 5.3. Here ‘LLC1’ stands for ‘Lower Level

Controller 1 \ ‘Lower’ does not imply a lower performance, but locally refined. Therefore, the

output of a policy selector is given by

{x-cf
M = e 2<j2 (5-5)

where x is the input, c is the centre of the fuzzy subspace, and a is the spread o f the fizzy

subspace. The output of each sub-network, or lower controller, is a reinforcement signal that

indicates how well that lower controller is performing for the given state inputs, and is given by

(4.28).

5 M o d e l-F ree D e s ig n o f F L C s_____________ H 5

Just as the policy switching block performs fuzzy operations, the action selector then

performs defuzzification operation. Just as in the conventional defuzzification process, the

result from all the rules is aggregated and defuzzified to provide crisp action, The action selector

also defuzzifies the aggregate o f all the output of ‘lower’ level controller in its hierarchy. This

means that the output of the lower level networks have to be presented as fuzzy sets to the

action selector. As a result, the defuzzification of the LLCs is carried out after their ‘parent’

defuzzification. Thus working up all the time, the output of the action selector of the highest

level controller represents the overall behaviour of the global system. The overall output o f the

hierarchy is thus given by

. . Y wr
V = — ----- (5.6)

where r is the reinforcement signal of each local network and w is the weight connecting the

lower network to the action selector of its parent network. 5.6 is in fact the weighted average

defuzzification process. Thus in essence the network is a neurofuzzy one. A normalised term is

used to avoid under-generalisation. If normalisation is not used, then the sum of all the

reinforcement signals may produce a value close to zero as a result o f contributions o f networks

well outside the set point.

LL LLC2 LLC3 LLC4

0.8

0.2

10 3020 2515

Figure 5.3 Lower level controller representation by gaussian fuzzy subspaces

It is worthwhile to note that while all the networks work in parallel, not all the networks

will actually be fully functional for any set point. If the said state input is not in the

neighbourhood of any LLC, or if the switching policy block has decided that during a certain

control cycle a certain LLC does not necessarily have to function, then that LLC by default

returns the worst reinforcement signal. Processing power is thereby saved and the time taken to

obtain the corresponding action is reduced. This is equivalent to the LLC having zero rules

5 M odel-Free Design o f FLCs

firing for the set-point in question. Since response data is being used as opposed to having the

controller being plugged into the real system, it is now possible to use the messy genetic

algorithm for continuous learning. Messy genetic algorithm is only used for the highest level in

the hierarchy because the exploration space is largest at this level. It can used for LLCs, but,

since the search space is narrower, RL is used instead.

The messy genetic algorithm codes and decodes as in the case of offline learning

described in §3.2.3, but the interpretation of the decoded information is different. Recall the

gene (252) which decodes to [2 5 2]. Previously, this was interpreted as

[2 5 2]: Input 2 connects to the 5,h A/-node belonging to this domain, and this node has

shape type 2 .

This now interprets as,

[2 5 2]: Input 2 connects to the 5th controller immediately under its hierarchy, and the

fuzzy subspace representing this local controller has shape type 2 .

Since the network output is given by the action selector, another difference is that each

gene encodes and decodes for the input domain only,. As before, there has to be some sort of

precedence rule, such as first-come-first-served, that governs the description o f the fuzzy

subspaces and the definition o f the premise. Note also that there has to be a predefined limit on

the number of local controllers, or else the mGA may end up with a very high dimensional

global network structure prematurely. However, there is provision for adding further local

networks should the need arise, and the rule for this is defined in the objective function for the

mGA as follows:

• Determine the local network with the largest cumulative error, and call this network 1

• Determine the local controller adjacent to network 1 with the highest cumulative error and

call this network 3.

• Create a new local controller, 2, in the middle of 1 and 3.

• Create a fuzzy subspace for 2 such that its centre is between that of 1 and 3, and its spread

has 50% overlap with those for 1 and 3. Note that if 1 is such that its fuzzy subspace is at

the boundary of the global operating condition, then 3 does not need to be scanned as it is

the only controller adjacent to 1.

5 M odel-Free Design o f FLCs 117

5.3.2 Local Network Structure and Parameter Learning

While the higher level behaviour is similar to a neurofuzzy structure in that it performs a

mapping from some input space to some output space, the lower level maps the inputs to control

outputs. Also, as the messy GA optimises the global structure, the local network structures and

parameters are learned with the advantage learning procedure described above. It should be

noted that each sub-system might itself have sub-systems immediately below it. To illustrate

this, consider again the example o f landing an aircraft. Under the sub-system dealing with the

aircraft’s descent, it is possible also to have the systems dealing with lifting of the wing flaps,

the lowering o f the wheels and controlling of the attitude. This is shown in Figure 5.4.

Therefore, each sub-system with further nodes below it operates in the same fashion as the node

at the highest level, except that the action selector returns a crisp value after its own parent has

carried out the defuzzification process. The other difference is that the learning o f the network

structure at this level is carried out by not mGA but by the RL algorithm. In this case, in

addition to the rule structures being adapted, the network parameters are also tuned. That is, the

positions of the fuzzy subspaces are changed.

Land
Aircraft

Taxi

Descend

Attitude Brake SteerWings W heels

Figure 5.4 Hierarchical control structure for aircraft landing

This operation also applies for the lowest level of the hierarchy, where the operation is at

a local region of the global search space. However, since only a local region o f the entire

exploration space is accessible to the network, the learning algorithm will be greatly

handicapped in pursuit of the optimal policy because it may not have enough information about

the system. There are two approaches to overcome this. The first is to remove some

information from the system such as narrowing of the global operating regions. However, while

this may make one local controller perform better around a certain operating region, it may

render the other controllers ineffective or sub-optimal.

118 5 M odel-Free Design o f FLCs

To avoid such interference, an alternative solution is to let each controller reach the best

optimality it can in its separate operating regions. Thereafter, if further learning is required and

more information is needed, detach the local controller from the hierarchical structure and let it

explore further on the global search space. The advantage of this is that the starting controller is

already near optimal and hence the time required for finding the optimal will be greatly reduced.

5.4 Comparing ENFLICT with Evolutionary Neurofuzzy

Learning Systems

Thus far, any comparison between ENFLICT and methods found in other literatures, has

been with evolutionary-fuzzy, neurofuzzy or fuzzy-reinforcement learning systems, and not

with any global and complete evolutionary neurofuzzy systems. Now that the development is

being concluded, it is a good moment to reflect on ENFLICT's properties and compare it with

methods that it can be compared with as a single structure. The summary o f the comparison is

shown in Table 5.1.

ENFLICT

Ishigami
et al.

(1995)
Fukuda et
al. (1994)

Melikhov
(1996)

Kim et al
(1995)

Perneel et
al (1995)

Russo
(1998)

Fuzzy System Optimisation
Rule base construction ✓ ✓ X X X X X

Fuzzy set construction ✓ ✓ X X X X X

Fuzzy set tuning ✓ ✓ ✓ ✓ ✓ ✓ ✓
Variable universe of discourse ✓ X X X X X X

[GJIobal or [Ljocal fuzzy sets G,L G G G G G G
Fuzzy set type definition ✓ X X X X X X

Mamdani controller ✓ ✓ ? ✓ ✓ ✓ ✓
Sugeno controller ✓ X ? X X X X

Non-symmetrical fuzzy sets ✓ ✓ X X X X X

Different inferencing mechanism ✓ X X X X X X

Different defuzzification process ✓ X X X X X ✓
Supervised learning ✓ ✓ ✓ ✓ ✓ ✓ V
Unsupervised learning ✓ X X X X X X

Online learning ✓ X X X X X X

Local learning V X ✓ X X X X

Model dependent ✓ ✓ ✓ ? ✓ ✓ V
Model independent X X ? X X X

Hierarchical structure ✓ X ✓ X X X X

Learning directly from data ✓ X X X X X X

Learning through reinforcement V X X X X X X

EA Representation
Integer encoding ✓ ✓ ? ✓ X ✓ X

Variable length representation ✓ X X X X X X

Reproduction operator
cut and
splice crossover crossover crossover crossover crossover

crossover
& hill

climbing
Entropy cost function ✓ X X X X X X

Single gene representation ✓ X X X X X X

Table 5.1 Comparison of ENFLICT with evolutionary neurofuzzy methods

5 M odel-Free Design o f FLCs 119

Comparisons are made against the major contributions of the thesis, that is, in the

flexibility o f the evolutionary algorithm representation. This involves coding o f the rule base,

the rule structure, gene representation, cost function and the number, type and shape of the

fuzzy sets. In this thesis, a variable length chromosome is used that allows for representing the

rule base and the rule mappings. In contrast, none o f the systems being compared with exhibit

this property. As has already been highlighted, using a fixed length chromosome is restrictive

on the size of the problem and the amount of information that can be represented in the genes.

Genes in the ENFLICT structure are integer encoded and a single gene coding is used, thus

allowing a gene-to-parameter representation and making the order of the genes in the

chromosome irrelevant. Therefore, knowledge o f the linkage format is not necessary. In

contrast to ENFLICT, all the other methods were found to be using some variation of the

quadratic error function as the cost function. In ENFLICT, an entropy function speeds up the

learning process and also is less resistant to getting trapped in local optima.

In the learning process, the focus is on how flexible and accommodating the network

structure is. It comes as no surprise that most methods employ the Mamdani type controller

because the Sugeno type uses crisp values to represent the output that is often difficult to

predict. However, as has been highlighted in §3.3, there are situations where Sugeno type is

useful. ENFLICT is the only model that allows for both types of controllers. However, what is

surprising is that with the exception o f (Ishigami et al 1995), none of the other methods are

concerned with optimising the rule base. These methods are only concerned with optimising

symmetrical fuzzy sets. As has been illustrated in §2.2, the shape and type o f fuzzy sets can

affect the performance o f the controller. From this point o f view, ENFLICT is much more

flexible as it is the only model that allows mixed type non-symmetrical fuzzy sets.

A third area of contribution of the thesis is in the type o f learning. Reinforcement

learning was used for unsupervised learning through direct interaction with the environment.

As can bee seen from Table 5.1, all these methods are based on supervised learning where

training data is used to train the network. In contrast, ENFLICT allows one to learn the network

on-line, unsupervised and independent of a model.

Final area of contribution is in local learning and learning of complex systems through

hierarchical structures. ENFLICT uses plant step response data to represent the model, thus

being able to learn off-line using data that is a true representation o f the model. None of the

methods being compared with exhibited this property.

In conclusion, whether being compared with individual components or as a whole

structure, the methods developed around ENFLICT for learning fuzzy systems is the most

flexible structure developed.

120 5 M odel-Free Design o f FLCs

5.5 Case Studies

5.5.1 Single inverted pendulum

To illustrate the above procedures, consider the example of the inverted pendulum in appendix

E, but with only one link, first studied in Chapter 3. The problem is to control the motion of the

cart along a horizontal line so that the pole will not fall down and will eventually stand at a

desired angle. As before, there are four states associated with this model: cart position x , cart

velocity v, pole angular position 6\ and pole angular velocity co. The pendulum is controlled by

applying a force o f varying magnitude to the cart’s centre of mass. The hierarchical structure

o f the system is illustrated in Figure 5.5. For the tests, the following parameters were used:

g (acceleration due to gravity) = 9.81 m/sec2

0.1 < m (mass o f pole) < 1 kg

0.5 < M (mass of cart) < 2.0 kg

0.5 < / (length of pole) <0.1 m

C a r t S u b ­
s y s t e m

B a l a n c e C a r t
a n d P o l e

P o l e S u b ­
s y s t e m

A c t i o n
S e l e c t o r

P o l i c y S e l e c t o r
f o r P o l e

P o l i c y S e l e c t o r
f o r C a r t

Figure 5.5 Hierarchical structure for cart-pole system

The aim is to find the control force required such that x(f) and 0(\) converge towards the

desired centre position on the track, and an angle of zero to the vertical axis respectively in the

shortest possible time for system parameter variations. As can be seen, there are two lower

level controllers, one deals with the cart and the other the pole. The first task is to set up the

global controller for the messy GA to optimise. This consists simply of two switching policy

blocks with two membership function definitions, and the hidden layer consisting of two nodes,

each representing a lower level controller. The evolutionary optimisation was carried out on the

global controller alone with 100 generations over a single era and a population size of 200. The

probabilities for cut, splice and mutation were set at 65%, 70% and 5% respectively. For

computational efficiency, the mGA was only allowed to select between triangular and gaussian

membership shapes.

For the local learning procedure, the local networks were each set initially with 5 fuzzy

subspaces, equally spaced out for each o f the input and output domains. To keep the

5 M odel-Free Design o f FLCs 121

computational burden down only the centres and widths o f each membership function were

learned. Figure 5.6 and 5.7 show the two LLCs, and 5.8 and 5.9 shows the global controller

input memberships. Figure 5.10-5.13 illustrates the response o f the system to the various points

used during and after the learning procedure. As can be seen, both the sub-system network

structures have changed during the learning operation, and have found some nodes to be

unnecessary and removed them from the structure. The responses are, as described, for the

highest level structure, which consists of the two local controllers and the two switching policy

structures o f Figure 5.8 and 5.9. As can be seen, the required objectives have been achieved.

Comparing the responses with those of the identical set-up for the model based system it can be

seen that this model free approach procedure is comparable.

F u zzy In fe ren c e

-37 44

9.72

-25.26

P o s i t i o n

17.28

F o r c e20.39

29
20

21.66
V e l o c i t y

49

Figure 5.6 Controller for cart sub-system

122 5 M odel-Free Design o f FLCs

F u zz y In fer en ce

A n g le

F orce

A n g u la r
v e lo c ity

1 .5 2 5

0 .1 3

- 1 .8 0 6

-0 .4 2 4

-0 .5 0 4

6 .2 6 8

1 .2 7 4

0 .4 6 5

7 .8 6 6

5 .8 4

-1 .0 7 1

-3 3 .5 5

0 .4 4 6

1 .6 9

0 .3 8 5

1 2 .7 4

.571

1 2 .7 4

F ig u re 5.7 C o n tro lle r fo r po le su b -system

:o.5
~o

60 8 02 0 4 00- 8 0 - 6 0 - 4 0 - 2 0
Position

F ig u re 5.8 Fuzzy su b sp aces p e r ta in in g to c a r t sw itch in g policy box

5 Model-1 rec Design olTLCs 123

-80 -60 -40 -20 20 40 60 800

Angle

Figure 5.9 Fuzzy subspaces pertaining to the pole switching policy box

1.5

^ 0.5

a-
-0.5

2 30 4 5
Time (Seconds)

Figure 5.10 Position of cart for initial conditions (0;0;0;0)

4

2

_2

4
2 3 40

Time (Seconds)

Figure 5.11 Velocity of cart for initial conditions (0;0;0;0)

o
- 1 0

-20

Time (Seconds)

Figure 5.12 Angle of pole for initial conditions (0;0;0;0)

124 5 Model-Free Design olTLCs

100

0

~ -100

-200
0 2 3 4 5

Time (Seconds)

Figure 5.13 Angular velocity of pole for initial conditions (0;0;0;0)

5.5.2 Case Study - Liquid Level Control Example

As a second example, consider again the liquid level control system first encountered in

Chapter 3. Simulations were first carried out on the tank system in open loop. Sample

response to a step input signal was obtained by applying 4th order Runga-Kutta to the system

equations. Figure 5.14 illustrates the response o f the system for a step-input signal in open loop

for the model and that obtained with the convolution method.

5 009

0 07

0 06

H 0 05

0 04
- P i rom Data

0 03
100 150

time (seconds)
200 250 30050

Figure 5.14 Plant response data for non-linear model and data obtain by convolution

For the local neurofuzzy networks, the type o f activation functions were limited to two

types, gaussian and triangular. However, this time the sub-components are different set-points

which the system must follow, instead o f physical sub-components, as shown in figure 5.15.

As before, the inputs to the networks are the tank level and the rate o f change o f the level, and

the output is the pump flow rate. Since the system is very slow and hence to keep the

computational time to a minimal possible, an upper limit o f 7 nodes per layer was imposed. For

the higher level network, an initial population size o f 400 was used which was halved after each

era for 2 eras. This left a population size o f 200 after the primordial phase, and the remaining

population members were filled randomly. For the juxtapositional phase the cut and splice rates

5 M o d e l-F r e e D e s ig n o f F L C s___]_25

were set to 75% and 80% respectively. Mutation rate was set to 10% and genes were mutated to

a value not in the chromosome.

Liquid-level
control

Set-point 1 Set-point 2 Set-point 3

Figure 5.15 Hierarchical structure for liquid level control system

Figure 5.16 shows the tank liquid level responses and the control actions needed for

various set points. It can be observed that the response obtained through the convolution

method using the neurofuzzy based on mGA and RL combination has faster rise time and

settling time than that obtained through the model. The neurofuzzy approach seemed to have a

small steady state error for set points different from that with which the training was carried out.

This is due to the difficulties stated, with the local controllers needing more information

available to them for optimal performance. This suggests the limitation of using the linear

convolution data to replace the non-linear plant. Nevertheless, it shows that a neurofuzzy

controller designed from the data can provide a good controller for an unknown non-linear

plant. For comparison, a single controller designed around a single operating point was also

constructed, and Figure 5.17 shows the behaviour o f the tank. As can be see, as expected, the

hierarchical method performs better because it is able to obtain controllers that are more

representative of the global system. The set-point used to obtain the single controller is 0.1m,

and it can be seen that for a set-point of 0.075m, which is in the neighbourhood of 0.1m, the

controller does a good job, deviating only slightly from the desired point. On the other hand,

for a set-point of 0.15m, the deviation from the desired is very significant. Comparing it with

5.16, the hierarchical structure has yielded a better global performance.

126 5 Model-free Design of'PLCs

x 1 0 53 r>

CO

E
T3133"

Q)000 08

5=
CL
E3
Cl

C n|

c?3
0 06

rom D ata
0 0 4

0 5

0 02
500 1000 1500 500 1000 1500

time (seco n d s)

Figure 5.16 Tank performance at various set points

0 16

0 08

f— 0 0 6

0 04

002
500 1000 500

Time (seconds)

Figure 5.17 Response of system to a single controller around a single set-point

5.6 Sum m ary and D iscussion

In this chapter, the learning through direct interaction with the environment procedure

was extended and a method for working with complex and large systems was developed. First,

the environment was replaced with plant response data. Using the convolution approach means

that no identification o f the plant is necessary'. The response data o f the system to a step can be

taken as the model. However it was identified that since the input-output data is not

representative o f the whole operating range o f the plant, a single controller performed

inadequately for set-points outside the response data.

To overcome this, a hierarchical structure for controller design was developed. This not

only allowed for learning controllers outside the step response data, but can also be used to learn

larger and more complex systems. The idea is to decompose the system into subsystems, or in

the case o f operating under different set-points. decompose the operating range into sub-regions

and work at a lower level on each subsystem or sub-region.

5 M odel-Free Design o f FLCs 127

All the levels in the hierarchy are neurofuzzy networks where the higher level performs a

mapping from an input space to an output space, and the lower level maps the inputs to control

outputs. At the top level, the global search space is handled by the messy genetic algorithm,

and it regulates the flow of information to the lower levels, while at lower levels RL is used to

learn network structure and tune parameters of the lower level networks. This enables the

system to compensate for local changes in the environment. Through examples, it has been

shown that this adaptive hierarchical structure is a flexible and efficient approach to

autonomous and globally optimal fuzzy control design.

128 6 Conclusion and Future Research

Chapter 6

Conclusion and Future Research
One never notices what has been done;

one can only see what remains to be done.

- Marie Curie

6.1 Conclusions

The aim of this thesis was not to reinvent fuzzy control but to help control designers build

better fuzzy controllers more easily. This has been achieved through Soft Computing (SC)

techniques. SC is a discipline that compliments the distinct methodologies of fuzzy logic,

neural network, evolutionary algorithms and learning theory. The underlying principle o f SC is

exploitation o f impricision and uncertainty to achieve flexibility, stability and robustness.

The reason for this work is associated with the fact that there appears to exist no

systematic design methodology for fuzzy control. The objective is also set out that the design

and the designed system should be flexible, autonomous and interactive. This is important

because many applications are very complex and time varying, and representing them by

traditional mathematical means may be impossible or impractical.

To achieve these goals, it was argued that the learning fuzzy control system be modelled

around SC. The important characteristic of SC is that it is not a mixture of FL, NN, EA, RL and

other learning theory, but that it is a complementary partnership in which each o f the individual

methods contribute a distinct methodology for addressing problems in its domain. Initially, the

learning fuzzy control system is modelled around a neural network framework because such a

network has been established as a fast learner with generalisation capabilities, and it is simple to

map onto. However, the existing neural and fuzzy hybrid structures, such as the ANFIS (Jang

1993), NEFCON (Nauck and Kruse 1994) and NEUFUZ (Khalid et al 1994) models, have been

found to have a number o f limitations. For example, the ANFIS model can deal with Sugeno

type controllers only, while the Neufuz model lacks the rule modification ability and its

performance with slow systems is rather poor. To overcome these inadequacies, the ENFLICT

(Evolutionary NeuroFuzzy Learning Intelligent Control Technique) has been developed. The

model is flexible in terms of:

6 C onclusion and Future Research 129

♦ the type of FLC it can represent

♦ the type of fuzzification

♦ the defuzzification strategy

♦ the inferencing mechanism

♦ the type of memberships that can be used to define the linguistic expressions

♦ the rule structure that can be used to define the control behaviour.

This is in contrast to other methods where the focus o f attention is mainly on fuzzy tuning

(Lin and Lee 1991), where only one type of symmetrical fuzzy set can be used (Harris et al

1996, Bruske et al 1993, Khan 1993), and which is restricted to a single type o f inferencing and

defuzzification process.

The developed model is more than just a neurofuzzy model. As the name suggests, it also

exhibits evolutionary optimisation properties, where global and flexible learning o f the FLC and

its structure is achieved. Although there have been a number of attempts at using flexible

chromosome representations to overcome some of the problems associated with traditional

chromosomes, the existing results are not as flexible as ENFLICT even excluding the neural

learning feature. For example, a variable length chromosome technique was developed by

Carse et al to tune the fuzzy sets by adjusting the width and centres of triangular fuzzy sets

(Carse et al 1996). Since only the centres and widths are adjusted, the fuzzy sets must be

predefined symmetrical. Further, the requirement o f reordering genes in this approach implies

that the number of rules and fuzzy sets per variable is limited.

Hoffman and Pfister (Hoffman and Pfister 1995) used a messy genetic algorithm to

encode the rule base using two integer representations. However, in this work the size of the

rule base was predefined and there exists no option for tuning the fuzzy sets. An improved

version of Goldberg’s mGA (Goldberg 1989b) has been used in this thesis because of its

attractive flexible coding properties. The improvement is in the gene and chromosome

representation. In the improved version, each gene uses integer encoding instead o f binary and

each single integer value can also hold more than one piece of information about the FLC. This

is to overcome the rigid, such as fixed-length, coding deficiency in existing evolutionary-fuzzy

hybrids (Takagi and Lee 1993, Kinzel et al 1994, Ng 1995, Herrera et al 1995). The extension

from the pair to three-parameter gene set has meant that it is possible to represent more

information within each gene without affecting convergence, while at the same time avoiding

chromosomes of large dimensions and redundant code. This also allows ENFLICT to

accommodate such non-symmetrical fuzzy sets. ENFLICT assumes no a priori knowledge and

requires no restrictions on the number of fuzzy set, rules and shapes, and the types of the fuzzy

sets are determined through the evolutionary process.

130 6 C onclusion and Future Research

The ENFLICT model has therefore been developed for the purpose of fine tuning the

network parameters. In addition to the flexible structure, significant differences between other

neurofuzzy models and the ENFLICT model are that ENFLICT is able to learn:

♦ online as well as offline

♦ local and global fuzzy sets

♦ Mamdani and Sugeno type controllers

♦ mixed membership functions

♦ non-symmetrical fuzzy sets

♦ with different fuzzification and defuzzification strategies

♦ a global structure followed by local fine tuning.

Learning online has the advantage that the network is able to adapt to real environmental

changes, which would otherwise have been difficult to simulate. It also implies that one does

not need to collect training data that may be unrepresentative or inaccurate. However, despite

these significant strides forward, the cost of using this global and flexible evolutionary

algorithm is that it is almost impossible to implement in real time. It is only possible to

optimise offline the network connectivity and the type of activation for each node or neuron.

This results in a controller that is coarse and further tuning is necessary. The second problem

left to tackle is that the standard ENFLICT learning procedure depended on a model being

available. One way to overcome these is to alter the rule structure online by directly interacting

with the environment. For this purpose reinforcement learning techniques have been employed.

Since RL is similar to an evolutionary algorithm, it naturally and smoothly expands the EA's

capability into online and offline fine and fast tuning.

There exists a number of reinforcement learning techniques, and it has been argued that

the one best suited to the purpose of this work is that of Advantage Reinforcement Learning.

This is because it requires no models to be defined and it can work with continuous time

systems. Using the ENFLICT model, its gradient descent backpropagation algorithm can be

switched on when needed in conjunction with the extended reinforcement learning method.

The problems with learning online are fully addressed in Chapter 4. In supervised

learning the goal state from any action is provided by the teacher. However, this can be very

time-consuming and inappropriate as what the goal state or the successive should be is

unknown. In online or unsupervised learning the system will only know this through

exploration. On the other hand, the aim of all methods developed is to make the system behave

optimally at each state. Therefore, one is caught compromising between exploration and

immediate optimal behaviour. If exploration is compromised, the optimal policy may not be

found, and if it is not, then immediate optimality is not likely to be achieved. Although it has

been argued that supervised learning is not desirable because of the various difficulties

6 Conclusion and Future Research 131

highlighted in Chapters 2 and 3, it seems that it should not be sidelined altogether. In fact,

comparison tests with methods from literature show such evidence. The resulting RL model

exhibits the following properties:

♦ continuous online learning without derivative information

♦ optimal behaviour at each state

♦ online control surface modification

♦ non-lookup table delayed reinforcement exploration

Learning from real plant data as opposed to from a model has been achieved in Chapter 5.

This has various advantages:

♦ the data is truly representative of the plant

♦ one does not have to use expensive equipment and set-up to learn the controller

♦ the response to step input allows system performance analysis in terms o f transient

measures such as steady state errors, rise and settling times.

However, since such response is taken around a set point, it limits the controller to learn

to only one set point. To expand to include an entire operating envelope, a Local Controller

Network (Gawthrop 1996) has been constructed to allow operation in different conditions or to

carry out different tasks. Thus it is possible to learn to control the most complex o f systems by

breaking it up into sub-components and learning each sub-component independently. While

there is a separate controller for each sub-goal, they do not operate sequentially. Therefore,

learning for all conditions is continuous until error thresholds are satisfied for all conditions.

6.2 Future Research

Although it is hoped that the aims of this thesis have been fulfilled, it is believed that

there is still scope for further work in this area.

♦ Stability and Robustness Analysis: In this work as well as in work reported elsewhere in

this field, stability and robustness are guarded by the design criteria in the form of fitness or

cost functions, which are validated through simulations in the design optimisation (Li et a/

1996). Although this is sufficient by human experience and linguistic expression o f control

behaviour, to a sceptic of fuzzy control it is mathematically insufficient. This is probably

one of the major factors that have dogged the progress of fuzzy control, and any work

towards a general and formalised design procedure. Therefore, it is believed that a step

132 6 C onclusion and Future Research

forward from the point to which the work has progressed, is to carry out theoretical analysis

on robustness and stability for all the methods developed.

• Digital Control: Fuzzy control is increasingly implemented by digital means. It is less

expensive, more flexible and easier to implement. It is technologically feasible nowadays to

implement a FLC on a single silicon chip using the modem system level integration

technology. Therefore, another possible direction that can be followed from the work in

this thesis is to work towards automation and code generation in addition to the

mathematics o f an optimal FLC. For example, for portability, platform independence and

object orientation, generating Java code for plugging in to a Java interpretable board could

be the first step towards the eventual goal o f "fuzzy control systems on a chip".

References 133

References

AKBARZADEH, M.R., Kumbla, K.K., and Jamshidi, M., 1995. Genetic algorithms in learning

fuzzy hierarchical control of distributed parameter systems. In Proc. IEEE Conference on

Systems, Man and Cybernetics, 1995, pp. 4027-4032. Vancouver.

ALIEV, R.A., Aliev, F.T. and Babaev, M.D., 1992. The synthesis of a fuzzy co-ordinate-

parametric automatic control system for an oil-refinery unit. Fuzzy Sets and Systems,

1992, vol. 42, no. 2, pp. 157-162.

ALTROCK, C.V., Arend, H.O. and Zimmermann, H.J.„ 1994. Adaptive fuzzy control applied

to home heating systems. Fuzzy Sets and Systems, 1994, vol. 61, no. 1, pp. 29-36.

ANDERSON, C.W., 1986. Learning and Problem Solving with Multilayer Connectionist

Systems, PhD thesis, 1986. Amberst, MA: University o f Massachussetts,

ANDERSON, C.W., 1989. Learning to control an inverted pendulum using neural networks.

IEEE Control Systems Magazine, April 1989, pp. 31-37.

ANDERSON, C.W., 1993. Q-Leaming with hidden-unit restarting. In Hanson, S.J., Cowan,

J.D. and Giles, C.L. (eds.), Advances in Neural Information Processing Systems 5, 1993,

pp. 81-88. San Mateo, CA: Morgan Kauffmann

ARJONA, D., 1998. A hybrid neuro-genetic approach to flow calculation based on the

representation o f an electrical power system by critical switches. Computers and

Artificial Intelligence, 1998, vol. 17, no. 2-3, pp. 231-247.

ASTROM, K.J. and Kallstrom, C.G, 1976. Identification of ship steering dynamics.

Automatica, 1976, vol. 12, pp. 9-22. Pergamon Press.

BAAKLINI, N., 1976. Automated Learning Control Using Fuzzy Logic, Ph.D. Thesis.

London, UK: London University.

BACHARACH, J.R., 1992. Connectionist modeling and control o f finite state environments,

PhD Thesis, 1992. Amherst, MA: University o f Massachussetts.

BACK, T. and Kursawe, F., 1995. Evolutionary algorithms for fuzzy logic, a brief overview.

In Bouchon-Meunier B., Yager R. R., and Zadeh L. A. (eds) Fuzzy Logic and Soft

Computing, 1995, pp. 3-10. World Scientific.

BACK, T., Hoffmeister, F. and Schwefel, H.-P., 1991. A survey of evolution strategies. In

Belew, R. and Booker, L., (eds.), Proceedings o f the Fourth International Conference on

Genetic Algorithms, 1991, pp. 2-9. San Mateo, CA, Morgan Kaufmann

BAIRD, L.C., 1993. Advantage Updating. (Technical Report WL-TR-93-1146), 1993.

Wright-Patterson Air Force Base Ohio: Wright Laboratory.

BAIRD, L.C., 1995. Residual Algoriths: Reinforcement Learning with Function

Approximation. In Armand Prieditis and Stuart Russell (eds.), Machine Learning:

134 References

Proceedings o f the Twelfth International Conference, 9-12 July 1995. San Francisco,

CA: Morgan Kauffmann

BAKER, J.E., 1985. Adaptive selection methods for genetic algorithms. In Grefenstette, J.J.

(ed.), Proceedings o f the First International Conference on Genetic Algorithms, 1985, pp.

101-111. Hillsdale, NJ: Lawrence Erlbaum Associates.

BALAZINSKI, M., Czogala, E and Bellerose, M., 1994. Application o f fuzzy logic techniques

to the selection of cutting parameters in machine processes. Fuzzy Sets and Systems,

1994, vol. 63, no. 3, pp. 307-317.

BANHRAMI, M, 1994. A new method of training direct neuro-controllers. 1994 IEEE

International Conference on Neural Networks, 1994, vol. 1-7, no. 881, pp. 2655-2660.

BARTO, A.G., 1992. Reinforcement learning and adaptive critic methods. In White, D.A., and

Sofge, D.A. (eds.), Handbook o f Intelligent Control: Neural, Fuzzy, and Adaptive

Approaches, 1992, pp. 469-491.

BARTO, A.G., Sutton, R. and Anderson, C.W., 1983. Neuron-like elements that can solve

difficult learning control problems. IEEE Transactions on Systems, Man, and

Cybernetics, 1983, vol. 13, pp. 835-846.

BASTIAN, A., 1995. A genetic algorithm for tuning membership functions. In Proc. Fourth

European Conference on Intelligent Techniques and Soft Computing, 1995, pp. 494-498.

Aachen.

BAVARIAN, B., 1988. Introduction to neural networks for intelligent control. IEEE Control

Systems Magazine, 1988, vol. 8, no. 2, pp. 3-8.

BERENJI, H.R., 1990. Neural networks and fuzzy logic in intelligent control. Proceedings o f

IEEE International Symosium O f Intelligent Control, 1990, pp. 916-919.

BERENJI, H.R., 1992. A reinforcement learning based architecture for fuzzy logic control.

International Journal o f Approximate Reasoning, 1992, vol. 6 , no. 2, pp. 267-292

BERENJI, H.R. and Khedkar, P, 1992. Learning and tuning fuzzy logic controllers through

reinforcements. IEEE Trans, on Neural Networks, 1992, vol. 3, no. 5, pp. 724-740.

BERNARD, J.A., 1988. Use of rule-based system for process control. IEEE Control Systems

Magazine, 1988, vol. 8 , no. 5, pp. 3-13.

BERTRAND, T., 1993. Design of a fuzzy controller for a rotating oscillator. International

Journal o f Systems Science, 1993, vol. 24, no. 10, pp. 1923-1934.

BONARINI, A., 1996. Delayed reinforcement, fuzzy Q-leaming and fuzzy logic controllers. In

Herrera, F. and Verdegay, J.L. (eds.), Genetic Algorithms and Soft Computing, 1996.

Physica-Verlag.

BOUSLAMA, F. and Ichiwaka, A., 1992. Fuzzy control rules and their natural control laws.

Fuzzy Sets and Systems, 1992, vol. 48, no. 1, pp. 65-86.

References 135

BROWN, M. and Harris, C.J. 1991. A nonlinear adaptive controller: a comparison between

fuzzy logic control and neurocontrol, IMA Journal Math. Control Inform., 1991 no 8 , pp.

239-265

BROWN, M. and Harris, C.J., 1994. Neurofuzzy Adaptive Modelling and Control. Prentice

Hall International.

BROWN, M. and Harris, C.J., 1995. A perspective and critique of adaptive neurofuzzy systems

used for modelling and control applications. International Journal o f Neural Systems,

1995, vol. 6 , no. 2, pp. 197-220.

BRUSKE, J., Puttkamer, E. and Zimmer, U.R., 1993. SPIN-NFDS learning and pre-set

knowledge for surface fusion - a neural fuzzy decision system. Proceedings o f the

ANZIIS ’93. 1993, Perth, Australia.

BUCKLEY, J.J. and Hayashi, Y., 1993. Numerical relationship between neural networks,

continuous functions and fuzzy systems. Fuzzy Sets and Systems, 1993, vol. 60, no. 1,

pp. 1-8 .

BUCKLEY, J.J. and Hayashi, Y., 1994. Fuzzy genetic algorithms and applications. Fuzzy Sets

and Systems, 1994, vol. 61, no. 2, pp. 129-136.

BUCKLEY, J.J., 1989. Fuzzy vs. non-fuzzy controllers. Control and Cybernetics, 1989, vol.

18, no. 2, pp. 127-130.

BUIJTENEN, M. van, Schram, G., Babuska, R. and Verbruggen, H.B., 1998. Adaptive fuzzy

control o f satellite attitude by reinforcement learning. IEEE Transactions on Fuzzy

Systems, May 1998, vol. 6 , no. 2, pp. 185-195

CAPONETTO, R., Lavorgna, M., and Presti, M.L., 1996. Automatic fuzzy controller design

via GA and neurofuzzy networks. In Chiang, W. and Lee, J. (eds.), FUZZYLogic fo r the

Application to Complex Systems, 1996, pp. 380-385. Singapore: World Scientific.

CARSE, B., Fogarty, T.C., and Munro, A., 1996. Evolving fuzzy rule based controllers using

genetic algorithms. Fuzzy Set and Systems, 1996, vol. 80, pp. 273-294.

CASTRO, J.L., Dalgedo, M., and Herrera, F., 1993, A learning method of fuzzy reasoning by

ms, Proceedings o f the First European Congress on Fuzzy, and Intelligent Technologies,

1993, pp. 804-809, Aachen

CHEN, C.L. and Chang, F.Y., 1996. Design and analysis of neural/fuzzy variable structural

PID control-systems. IEEE Proceedings - Control Theory and Applications, 1996, vol.

143, no. 2, pp. 200-208

CHEN, C.L., Chen, C.K., and Lin, J.M., 1993. Synthesis o f fuzzy logic controllers using

genetic algorithm. Journal o f Control Synthesis and Technology, 1993, vol. 1, no. 2, pp.

163-171.

CHEN, C.L. and Chen, W.C.H., 1994. Fuzzy controller design by using neural network

techniques. IEEE Transaction on Fuzzy Systems, 1994, vol. 2, no. 3.

136 References

CHEN, J.Q., Lu, J.H. and Chen, L.J., 1994. An on-line identification algorithm for fuzzy

systems. Fuzzy Sets and Systems, 1994, vol. 64, no. I, pp. 63-72.

CHIU, S. and Togai, M., 1988. A fuzzy logic programming environment for real-time control.

International Journal o f Approximate Reasoning, 1988, vol. 2, no. 2, pp. 163-176.

CHO, B.H. and No, H.C., 1996. Design of stability-guaranteed neurofuzzy logic-controller for

nuclear steam-generators, Nuclear Engineering and Design, 1996, vol. 166, no. 1, pp. 17-

29

CHOWDHURY, M and Li, Y, 1996. Messy genetic algorithm based new learning method for

structurally optimised neuro-fuzzy controllers. Proceedings o f the IEEE International

Conference on Industrial Technology, December 1996, pp. 274-279. Shanghai, China.

COOPER, M. G., 1995. Evolving a rule based fuzzy controller. Simulation, 1995, vol. 65, no.

1, pp. 67-72.

COOPER, M.G. and Vidal, J.J., 1994. Genetic design o f fuzzy logic controllers, the cart and

jointed pole problem. In Proc. Third IEEE International Conference on Fuzzy Systems,

1994, pp. 1332-1337. Orlando.

CORDON, O. and Herrera, F., 1995. A general study on genetic fuzzy systems. In Periaux J.,

Winter G. Galan M., and Cuesta P. (eds), Genetic Algorithms in Engineering and

Computer Science, 1995, pp. 33-57. John Wiley and Sons

CORDON, O., Herrera, F., Herrera-Viedma, E., and Lozano M., 1996. Genetic algorithms and

fuzzy logic in control processes. Archives o f Control Science, 1996, vol. 5, no. 1-2, pp.

135-168.

COTTA, C., Alba, E., and Troya, J.M., 1996. Evolutionary design o f fuzzy logic controllers.

In Proc. ISIC'96 Conference, 1996, pp. 127-132. Detroit.

CZOGALA, E. and Rawlik, T., 1989. Modelling o f a fuzzy controller with application to the

control o f biological processes. Fuzzy Sets and Systems, 1989, vol. 31, no. 1, pp. 13-22.

DAGLI, C.H. and Schierholt, K., 1997. Evaluating the performance of the genetic neuro

scheduler using constant as well as changing crossover and mutation rates. Computers &

Industrial Engineering, 1997, vol. 33, no. 1-2, pp. 253-256.

DALEY, S. and Gill, K.F., 1987. Attitude control of a spacecraft using an extended self-

organising fuzzy logic controller. Proceedings o f the Institute o f Mechanical Engineers,

1987, vol. 201, no. C2, pp. 97-106.

DALEY, S. and Gill, K.F., 1989. Comparison of fuzzy logic controller with a P+D control law.

Transaction o f ASME, 1989, vol. 111, pp. 128-137.

DASGUPTA, D. and McGregor, D.R., 1993. Genetically designing neuro-controllers for a

dynamic system. IJCNN '93-Nagoya: Proceedings o f 1993 International Joint

Conference on Neural Networks, 1993, vol. 1-3, no. 718, pp. 2951-2954.

DASGUPTA, D., 1998. Evolving neuro-controllers for a dynamic system using structured

genetic algorithms. Applied Intelligence, 1998, vol. 8, no. 2, pp. 113-121.

References 137

DAVIS, L. (ed.), 1991. Handbook o f Genetic Algorithms, 1991. New York: Van Nostrand

Reinhold.

DAVIS, L. and Steenstrup, M., 1987. Genetic algorithms and simulated annealing: an

overview. In Davis, L. (ed.), Genetic Algorithms and Simulated Annealing, 1987. San

Mateo, CA: Morgan Kaufmann.

DE JONG, K.A., 1985. Genetic algorithms: a 10 year perspective. Grefenstette, J.J., (Ed),

Proceedings o f the First International Conference on Genetic Algorithms, 1985, pp. 169-

177. Hillsdale, NJ: Lawrence Erlbaum Associates.

DE JONG, K.A., 1990. Genetic-algorithm-based learning. Kodratoff, Y. and Michalski, R.,

Machine Learning: An Artificial Approach, 1990, vol. 3, pp. 611-638. San Mateo, CA:

Morgan Kaufmann.

DESHPANDE, N.A. and Gupta, M.M., 1998. Inverse kinematic neuro-control o f robot systems.

Engineering Applications o f Artificial Intelligence, 1998, vol. 11, no. 1, pp. 55-66.

DJUKANOVIC, M.B., Calovic, M.S., Vesovic, B.V. and Sobajic, D.J., 1997. Neuro-fuzzy

controller o f low head hydropower plants using adaptive-network based fuzzy inference

system. IEEE Transactions on Energy Conversion, 1997, vol. 12, no. 4, pp. 375-381.

DORF, R.C., 1989. Modern Control Systems, 5lh ed., 1989. Addison-Wesley Publishing

DRACOPOULOS, D.C. and Jones, A.J., 1997. Adaptive neuro-genetic control o f chaos applied

to the attitude control problem. Neural Computing & Applications, 1997, vol. 6 , no.2, pp.

102-115.

DU, T.C.T. and Wolfe, P.M., 1997. Implementation of fuzzy logic systems and neural networks

in industry. Computers in Industry, 1997, vol. 32, no. 3, pp. 261-272.

ESHELMAN, L.J., Caruana, R.A., and Schaffer, J.D., 1989. Biases in the crossover landscape.

In Schaffer, J. (ed.), Proceedings o f the Third International Conference on Genetic

Algorithms, 1989, pp. 115-122. San Mateo, CA : Morgan Kaufmann.

FENG, W., Chowdhury, M., Brune, T. and Li, Y., 1998. Benchmarks for testing evolutionary

algorithms. Third Asia-Pacific Conference on Control and Measurement, August 1998,

pp. 134-138. Dunhaung, China.

FILIPIC, B. and Juricic D., 1996. A genetic algorithm to support learning fuzzy control rules

from examples. In Herrera, F. and Verdegay, J. (eds), Genetic Algorithm and Soft

Computing, 1996, pp. 403-418. Physica Verlag.

FOGEL, D.B., 1994. An introduction to simulated evolutionary optimization. IEEE

transactions on Neural Networks, special issue on EP, 1994, vol. 1, no. 5.

FOGEL, D.B., 1995. Evolutionary Computation: Towards a New Philosophy o f Machine

Intelligence, 1995. Piscataway, NJ: IEEE Press.

FOSS, B.A. and Johansen, T.A., 1993. On local and fuzzy modelling. In: 3rd Int. Conf. on

Industrial Fuzzy Control and Intelligent Systems, 1993. Houston, Texas.

138 R eferences

FUKUDA, T. and Ishigami, H., 1993. Structure optimisation of fuzzy neural network by

genetic algorithms. Proceedings o f the Fifth International Fuzzy Systems Association

World Congress, 1993, pp. 964-967. Seoul.

FUKUDA, T., and Shibata, T., 1994. Synthesis o f Fuzzy, Artificial Intelligence And Neural

Networks For Hierarchical intelligent Control, Neural and Fuzzy Systems, 1994, pp. 57-

83.

FUKUDA, T., Hasegawa, Y., and Shimojima, K., 1995a. Structure organisation o f hierarchical

fuzzy model using by genetic algorithm. In Proceedings o f Fourth IEEE International

Conference on Fuzzy Systems (FUZZ-IEEE'95), 1995, pp. 295-299. Yokohama.

FUKUDA, T., Hasegawa, Y., Shimojima, K., and Saito, F., 1995b. Reinforcement learning

method for generating fuzzy controller. In Proceedings o f Second IEEE Conference on

Evolutionary Computation (ECIEEE'95), 1995, vol. 1, pp. 273-278. Perth

GAWTHROP, P. J., (1996), Continuous-time local model networks, Zbikowski, R and Hunt,

K.J., (eds.), Neural Adaptive Control Technology, World Scientific Series in Robotics

and Intelligent Systems, 1996, vol. 15, p 41-70, Singapore: World Scientific.

GEGOV, A., 1994. Multilevel intelligent fuzzy control o f over-saturated urban traffic

networks, International Journal o f Systems Science, 1994, vol. 25, no. 6 , pp. 967-978

GLORENNEC, P. Y., 1994. Fuzzy Q-leaming and evolutionary strategy for adaptive fuzzy

control. In Proceedings o f Second European Conference on Intelligent Techniques and

Soft Computing (EUFIT9J), 1994, pp. 35-40. Aachen.

GOLDBERG, D.E., 1985a. Genetic algorithms and rule learning in dynamic control system. In

Grefenstette, J.J., (ed.), Proceedings o f the First International Conference on Genetic

Algorithms, 1985, pp. 8-15. Hillsdale, NJ: Lawrence Erlbaum Associates.

GOLDBERG, D.E., 1985b. Dynamic system control using rule learning and genetic

algorithms. Proceedings o f the International Joint Conference on Artificial Intelligence,

1985, vol. 9, pp. 588-592

GOLDBERG, D.E., 1989a. Genetic algorithms in Search, Optimization and Machine Learning,

1989. Reading, MA: Addison-Wesley

GOLDBERG, D.E., 1989b. Messy genetic algorithms: motivation, analysis, and first results.

Complex Systems, 1989, vol. 3, pp. 493-530.

GOLDBERG, D.E., 1990. Messy genetic algorithms revisited: studies in mixed size and scale.

Complex Systems, 1990, vol. 4, pp. 415-444

GOLDBERG, D.E., and Smith, R.E., 1987. Non-stationary function optimization using genetic

algorithms with dominance and dipliody. Genetic Algorithms and their Applications:

Proceedings o f the Second International Conference on Genetic Algorithms, 1987, pp.

59-68.

References 139

GOLDBERG, D.E., Deb, K., and Korb, B., 1991. Do not worry, be messy. Belew, R., and

Booker, L., (eds.), Proceedings o f the Fourth International Conference on Genetic

Algorithms, 1991, pp. 24-30. San Mateo, CA: Morgan Kaufmann.

GOMIDE, F., Rocha, A., Albertos, P., 1992. Neurofuzzy controllers. Low Cost Automation

1992 Techniques Components and Instrumentation Applications, 1992, vol 13, pp. 13-26.

GONZALEZ, A. and Perez, R., 1996. A learning system of fuzzy control rules based on

genetic algorithms. Herrera, F. and Verdegay, J. (eds.), Genetic Algorithms and Soft

Computing, 1996, pp. 202-225. Physica Verlag.

GRAHAM, B.P. and Newell, R.B., 1988. Fuzzy identification and control o f a liquid level rig.

Fuzzy Sets and Systems, 1988, vol. 26, no. 3, pp. 255-273.

GREFENSTETTE, J.J., 1986. Optimization o f control parameters for genetic algorithm. IEEE

Trans. On Systems, Man and Cybernetics, 1986, vol. 16, no. 1, pp. 122-128.

GREFENSTETTE, J.J., 1992. Genetic algorithms for changing environments. In Manner, R.,

and Manderick, B. (eds.), Parallel Problem Solving From Nature, 1992, vol. 2, pp. 137-

144.

GUILLEMIN, P., 1994. Universal motor control with fuzzy logic. Fuzzy Sets and Systems,

1994, vol. 63, no. 3, pp. 339-348.

GULLAPALLI, V., Franklin, J.A. and Benbrahim, H., 1994. Acquiring robot skills via

reinforcement learning. IEEE Control Systems Magazine, February 1994, pp. 13-24.

GUPTA, M.M., 1991. Theory of T-norms and fuzzy inference methods. Fuzzy sets and

systems, 1991, vol. 40, pp. 431-450.

GUPTA, M.M., 1997. Fuzzy-neural computing systems: recent developments and future

directions. Lecture Notes in Computer Science, 1997, vol. 1226, pp. 82-91.

HAN, J. and Ham, W., 1995. A GA-fuzzy controller with sliding mode. In Proceedings o f

First Korea-Australia Joint Workshop on Evolutionary Computation, 1995, pp. 199-205.

Taejon.

HANEBECK, U. and Schmidt, G., 1994. Optimization o f fuzzy networks via genetic

algorithms. In Proceedings o f Second European Conference on Intelligent Techniques

and Soft Computing, 1994, pp. 1011-1013. Aachen.

HARMON, M.E., and Baird, L.C., 1996. Multi-player residual advantage learning with general

function approximation. Technical Report WL-TR-96-1065, 1996. Wright-Patterson Air

Force Base Ohio: Wright Laboratory.

HARRIS, C.J., Moore, G.C and Brown, M, 1994, Intelligent Control: Aspects o f Fuzzy Logic

and Neural Nets, 1994, World Scientific, Singapore

HARRIS, C.J., Brown, M., Bossley, K.M., Mills, D.J. and Ming, F., 1996. Advances in

neurofuzzy algorithms for real-time modeling and control. Engineering Applications o f

Artificial Intelligence, 1996, vol. 9, no. 1, pp. 1-16.

140 References

HERRERA, F., Lozano, M., and Verdegay, J. L, 1994. Applying genetic algorithms to fuzzy

optimization problems. Fuzzy Systems and Artificial Intelligence, 1994, vol. 3, no. 1, pp.

39-52.

HERRERA, F., Lozano, M., and Verdegay, J. L., 1995a. Tuning fuzzy logic controllers by

genetic algorithms. International Journal o f Approximate Reasoning, 1995, vol. 12, no. 3,

pp. 293-315

HERRERA, F., Lozano, M., and Verdegay, J. L., 1995b. Design o f a control rule base based on

genetic algorithms. In Proceedings o f Sixth International Fuzzy Systems Association

World Congress, 1995, vol. 1, no. 265-268. Sao Paulo.

HIROTA, K. (ed.), 1993. Industrial Applications o f Fuzzy Technology, 1993. Springer-Verlag.

HIROTA, K.., Arai, Y. and Hachisu, S., 1989. Fuzzy controlled robot arm playing two-

dimensional ping-pong game. Fuzzy Sets and System, 1989, vol. 32, no. 2, pp. 149-159

HISHIYAMA, T., Takagi, T., Yager, R.R., and Nakanishi, S., 1995. Automatic generation of

fuzzy inference rules by genetic algorithm. In Proceedings o f Eighth Fuzzy System

Symposium, 1995, pp. 237-240. Hiroshima.

HOFFMANN, F. and Pfister, G., 1994. Automatic design o f hierarchical fuzzy controllers

using genetic algorithms. In Proceedings o f Second European Conference on Intelligent

Techniques and Soft Computing (EUFIT9X), 1994, pp. 1516-1522. Aachen.

HOFFMANN, F. and Pfister, G., 1995. A new learning method for the design o f hierarchical

fuzzy controllers using messy genetic algorithms. In Proceedings o f Sixth International

FUZZYSystems Association World Congress, 1995, vol. 1, pp. 249-252. Sao Paulo.

HOLLAND, J.H., 1975. Adaptation in Natural and Artificial Systems, 1975. Ann Arbor:

University o f Michigan Press.

HOLMBLAD, L.P. and Ostergaard, J.J., 1982. Control of a cement kiln by fuzzy logic. In:

Gupta, M.M. and Sanchez, (eds.), Fuzzy Information and Decision Processes, 1982, pp.

389-399. North-Holland.

HOMAIFAR, A. and McCormick, V.E., 1992. Full design o f fuzzy controllers using genetic

algorithms. In Chen, S. S. (ed.), Neural and Stochastic Methods in Image and Signal

Processing, 1992, vol. 1766, pp. 393-404. San Diego: The International Society of

Photo-Optics Instrumentation Engineers.

HORIKAWA, S., Furuhashi, T, and Uchikawa, Y., 1992. On fuzzy modelling using fuzzy

neural networks with the back-propagation algorithm. IEEE Transactions on Neural

Networks, September 1992, vol. 3, no. 4.

HRYCEJ, T., 1992. Modular Learning in Neural Networks: A Modularised Approach to

Neural Network Classification, 1992. John Wiley and Sons.

HSU, Y. and Cheng, C., 1993. A fuzzy controller for generator excitation control. IEEE

Transactions on Systems, Man, and Cybernetics, 1993, vol. 23, no. 2, pp. 532-539.

References 141

HUANG, S.J. and Hung, C.C., 1996. Genetic-evolved fuzzy systems for inverted pendulum

controls. In Chiang, W. and Lee, J. (eds), Fuzzy Logic fo r the Applications to Complex

Systems, 1996, pp. 35-40. Singapore: World Scientific.

HUNT, K. J. , Haas, R. and Murray-Smith, R., Extending the functional equivalence o f radial

basis function networks and fuzzy inference systems, Trans. IEEE on Neural Networks,

1996, vol. 7, pp. 776-781.

HUNT, K. J., and Johansen, T. A., Design and analysis of gain-scheduled control using local

controller networks, International Journal O f Control, 1997, vol. 66 , no. 5, pp. 619-651.

HUNT, K.J., 1995. Neurofuzzy. International Journal o f Neural Systems, 1995, vol. 6 , no. 2,

pp. 143.

HUNT, K.J., Zbikowski, R., Sbarbaro, D. and Gawthrop, P.J., 1992. Neural networks for

control sy s te m s-a survey. Automatica, 1992, vol. 22, no. 16, pp. 1083-1112.

HWANG, W. R and Thompson, W. E., 1994. Design o f fuzzy logic controllers using genetic

algorithms. In: Proceedings o f Third IEEE International Conference on Fuzzy Systems,

1994, pp. 1383-1388. Orlando.

ICHIHASHI, H., Miyoshi, T., Nagasaka, K., Tokunaga, M. and Wakamatsu, 1995. A

neurofuzzy approach to variational-problems by using Gaussian membership functions.

International Journal o f Approximate Reasoning, 1995, vol. 13, no. 4, pp. 287-302.

ISHIGAMI, H., Fukuda, T., Shibata, T. and Arai, F., 1995. Structure optimization o f fuzzy

neural networks by genetic algorithm. Fuzzy Sets and Systems, 1995, vol. 71, no. 3, pp.

257-264.

ISHIGAMI, H., Hasegawa, Y., Fukuda, T., and Shibata, T., 1994. Automatic generation of

hierarchical structure o f fuzzy inference by genetic algorithm. In: Proceedings o f IEEE

International Congress on Neural Network, 1994, pp. 1566-1570. Orlando.

JANG, R., 1993. ANFIS: Adaptive Network-based Fuzzy Inference System. IEEE Transaction

on Systems Man and Cybernetics, 1993, vol. 23, no. 3, pp. 665-685.

JIA, L.M. and Zhang, X.D., 1994. Distributed intelligent railway traffic control based on fuzzy

decisionmaking. Fuzzy Sets and Systems, 1994, vol. 62, no. 3, pp. 255-265.

JOHANSEN, T.A., and Foss, B.A., 1992. Nonlinear local model representation for adaptive

systems. In: Proceeding o f the Singapore Int. Conf. On Intelligent Control and

Instrumentation, 1992, vol. 2, pp. 677-682.

JUANG, C.F. and Lin, C.T., 1998. An on-line self-constructing neural fuzzy network and its

applications. IEEE Transactions on Fuzzy Systems, 1998, vol. 6 , no. 1, pp. 12-32

JUANG, C.F., and Lin, C.T., 1998. An on-line self-constructing neural fuzzy inference network

and its applications. IEEE Transactions on Fuzzy Systems, Feb. 1998, vol.6 , no. 1.

KAELBLING, L.P., 1991. Learning in Embedded Systems, 1991. Cambridge, MA: MIT Press.

142 References

KARR, C.L., Freeman, L.M., and Meredith, D.L., 1989, Improved Fuzzy Process Control of

Spacecraft Autonomous Rendezvous Using a Genetic Algorithm, SPIE Workshop on

Intelligent control and Adaptive Systems, 1989, ch 62, vol 1196, pp. 274-288

KARR, C.L., 1991a. Design of a cart-pole balancing fuzzy logic controller using a genetic

algorithm. In: Proceedings o f SPIE Conference on the Applications o f Artificial

Intelligence, 1991, pp. 26-36. Bellingham.

KARR, C.L., 1991b. Design of an adaptive fuzzy logic controller using a genetic algorithm. In:

Proceedings o f Fourth International Conference on Genetic Algorithms, 1991, pp.

450-456. San Diego

KARR, C.L., 1991c. Genetic algorithms for fuzzy controllers. Al Expert, 1991, vol. 6 , no. 2,

pp. 26-33

KARR, C.L., 1993. Real time process control with fuzzy logic and genetic algorithms. In:

Proceedings o f Symposium on Emerging Computer Techniques fo r the Minerals Industry,

1993, pp. 31-37. Littleton

KARR, C.L., 1994. Adaptive control with fuzzy logic and genetic algorithms. In Yager, R.R.

and Zadeh L.A. (eds.), Fuzzy Set, Neural Networks, and Soft Computing, 1994, pp. 345-

367. New York: Van Nostrand Reinhold.

KAUR, D. and Lin, B., 1998. On the design of neural-fuzzy control system. International

Journal o f Intelligent Systems, 1998, vol. 13, no. I, pp. 11-26.

KHALID, M., Omatu, S., Yusof, R., 1994. Adaptive fuzzy control of a water bath process with

neural networks. Engineering Applications o f Artificial Intelligence, 1994, vol. 7, no. 1,

pp. 39-52

KHAN, E. and Venkatapuram, P., 1993, NEUFUZ - neural-network-based fuzzy-logic design

algorithms, Second IEEE International Conference On Fuzzy Systems, 1993, vols I and 2,

ch 243, pp. 647-654

KHOSLA, R. and Dillon, T., 1997. Learning knowledge and strategy of a neuro-expert system

architecture in alarm processing. IEEE Transactions on Power Systems, 1997, vol. 12,

no. 4, pp. 1610-1618.

KICKERT, W.J.M. and Van Nauta Lemke, H.R., 1976. Application of a fuzzy controller in a

warm water plant. Automatical 1976, vol. 12, no. 4, pp. 301-308.

KIM K. C. and Kim J. H., 1995 Evolutionary programming based multicriteria fuzzy expert

system. In Proc. Eight Australian Joint Conference on Artificial Intelligence, 1995, p

475-482

KIM, S.H, Kim, Y.H., Sim, K.B. and Jeon, H.T., 1993. On developing an adaptive neural-fuzzy

control system. Proceedings o f the 1993 international Conference on Intelligent Robots

and Systems, 1993, vol. 1 -3, no. 313, pp. 950-957.

References 143

KINZEL, J., Klawonn, F. and Kruse, R., 1994 Modifications of Genetic Algorithms for

Designing and Optimizing Fuzzy Controllers. In Proc. IEEE International Conference on

Evolutionary Computation. 1994. Orlando,

KIUPEL, N. and Frank, P.M., 1993. Fuzzy control o f steam turbines. International Journal o f

Systems Sciences, 1993, vol. 24, no. 10, pp. 1905-1914.

KLIR, G.J. and Yuan, B., 1995, Fuzzy sets and fuzzy logic, Prentice Hall Inc., New Jersey

1995

KLOPF, A.H., 1988. A neuronal model o f classical conditioning. Psychobiology, 1988, vol. 16,

pp. 85-125.

KOHONEN, T., 1990. The self-organizing map. Proceedings o f the IEEE, 1990, vol. 78, pp.

1464-1480.

KOSKO, B., 1991. Neural Networks and fuzzy Systems: A Dynamical System Approach to

Machine Intelligence, 1991. Prentice Hall.

KOZA, J.R., 1992. Genetic Programming, 1992. Cambridge, MA: MIT Press.

KOZA, J.R., 1994. Genetic Programming 2, 1994. Cambridge, MA: MIT Press.

KRAUSE, B., Altrock, C.V., Limper, K. and Schafers, W., 1994. A neuro-fuzzy adaptive

control strategy for refuse incineration plants. Fuzzy Sets and Systems, 1994, vol. 63, no.

3, pp. 329-337

KROPP, K. and Baitinger, U.G., 1993. Optimization o f fuzzy logic controller inference rules

using a genetic algorithm. In: Proceedings o f First European Congress on Fuzzy and

Intelligent Technologies, 1993, pp. 1090-1096. Aachen

KUNG, Y.S. and Liaw, C.M., 1994. A fuzzy controller improving a linear model following

controller for motor drives. IEEE Transactions on Fuzzy Systems, 1994, vol. 2, no. 3, pp.

194-202

LARSEN, P.M., 1980. Industrial application of fuzzy logic control. International Journal o f

Man Machine Studies, 1980, vol. 2, no. 1, pp. 3-10.

LEE M.A. and Takagi H., 1993a. Integrating design stages of fuzzy systems using genetic

algorithms. In Proceedings o f the Second IEEE International Conference on Fuzzy

Systems, 1993, vol. 2, pp. 612-617. San Francisco.

LEE, C.C., 1990. Fuzzy logic in control systems: fuzzy logic controller - part 1. IEEE

Transactions On Systems, Man and Cybernetics, 1990, vol. 20, no. 2, pp. 404-418

LEE, H.C. and Jeon, G.J., 1998. A neuro-controller for synchronization o f two motion axes,

International Journal o f Intelligent Systems, 1998, vol. 13, no. 6 , pp. 571-586.

LEE, K.T., Jean, K.T., and Chen, Y.Y., 1995. Genetic-based reinforcement learning o f fuzzy

logic control systems. In Proceedings o f the IEEE International Conference on Systems,

Man and Cybernetics, 1995, vol. 2, pp. 1057-1060. Vancouver

144 References

LEE, M.A. and Takagi, H., 1993. Dynamic control o f genetic algorithms using fuzzy logic

techniques. In: Proceedings o f the Fifth International Conference on Genetic Algorithms,

1993, pp. 76-83. San Mateo, CA.

LEE, M.H., Lee, S.K.Y and Park, C.H., 1995. Neurofuzzy controller-design using neurofuzzy

identifier. International Journal o f Approximate Reasoning, 1995, vol. 13, no. 4, pp.

269-285.

LE1TCH, D. and Probert, P., 1994. Genetic algorithms for the development of fuzzy controllers

for autonomous guided vehicles. In: Proc. Second European Conference on Intelligent

Techniques and Soft Computing, 1994, pp. 464-469. Aachen.

LEITNER, J., Calise, A. and Prasad, J.V.R., 1998. A full authority helicopter adaptive neuro­

controller. 1998 IEEE Aerospace Conference Proceedings, 1998, vol. 2, no. 43, pp. 117-

126.

LEUNG, T.P., Qijie, Z., Zhongyuan, M., and Dejing, Y., 1995. An optimization design method

of fuzzy logic controller. Control Theory and Applications (China), 1995, vol. 12, no. 4,

pp. 491-496.

LI, C.S. and Priemer, R., 1996. Self-learning general purpose PID controller. Journal o f the

Franklin Institute - Engineering and Applied Mathematics, 1996, vol. 334B, no. 2, pp.

167-189.

LI, W., 1997. A method for design o f a hybrid neuro-fuzzy control system based on behaviour

modeling. IEEE Transactions on Fuzzy Systems, February 1997, vol. 5, no. 1, pp. 128-

137.

LI, Y and HauBler, A., 1996, Artificial evolution of neural networks and its application to

feedback control, Artificial Intelligence in Engineering, 1996, no 10, pp. 143-152.

LI, Y. and Ng, K.C., 1995. Genetic algorithm based techniques for design automation of three

term fuzzy systems. In Proceedings o f the Sixth International Fuzzy Systems Association

World Congress, 1995, vol. 1, pp. 261-264. Sao Paulo.

LI, Y. and Ng, K.C., 1996. Uniform approach to model-based fuzzy control system design and

structural optimisation. In: Herrera, F. and Verdegay, J. (eds.), Genetic Algorithms and

Soft Computing, 1996, pp. 129-151. Physica Verlag.

LI, Y., Tan, K. and Marionneau, C., 1996. Direct design o f uniform LTI controllers from plant

I/O data using a parallel evolutionary algorithm. UKACC Control '96, 1996, vol. I, no.

427, pp. 680-686.

LI, Y., Tan, K.C., Marionneau, C., 1996, Direct Design o f Uniform LTI Controllers from Plant

I/O Data Using a Parallel Evolutionary Algorithm, UKACC Control '96, 1996, vol 1, no

427, pp. 680-686.

LI, Y.F. and Lau, C.C., 1989. Development of fuzzy algorithms for servo systems. IEEE

Control Systems Magazine, 1989, vol. 9, no. 3, pp. 65-72.

References 145

LIN, C.T., 1995. A neural fuzzy control-system with structure and parameter learning. Fuzzy

Sets and Systems, 1995, vol. 70, no. 2-3, pp. 183-212.

LIN, C.T., 1996. A fuzzy adaptive learning control network with on-line structure and

parameter learning. International Journal o f Neural Systems, 1996, vol. 7, no. 5, pp. 569-

590

LIN, C.T., and Kan, M.C., 1998. Adaptive fuzzy command acquisition with reinforcement

learning. IEEE Transactions on Fuzzy Systems, February 1998, vol. 6 , no. 1.

LIN, C.T. and Lee, C.S.G., 1991. Neural-network-based fuzzy logic control and decision

system. IEEE Transactions on Computers, 1991, vol. 40, no. 12, pp. 1320-1336.

LIN, C.T. and Lee, C.S.G., 1994. Reinforcement structure/parameter learning for neural

network based fuzzy logic control system. IEEE Trans. Fuzzy Systems, 1994, vol. 2, no.

1, pp. 46-63

LIN, C.T. and Lu, Y.C., 1996. A neural fuzzy system with fuzzy supervised learning. IEEE

Transactions on Systems Man and Cybernetics Part B - Cybernetics, 1996, vol. 26, no. 5,

pp. 744-763

LIN, L.J., 1992. Self-improving reactive agents based on reinforcement learning, planning and

teaching. Machine Learning, 1992, vol. 8 , no. 3-4, pp. 293-321.

LIN, S.C. and Chen, Y.Y., 1995a. A GA-based fuzzy controller with sliding mode. In: Proc.

Fourth IEEE International Conference on Fuzzy Systems, 1995, pp. 1103-1110.

Yokohama.

LIN, S.C. and Chen, Y.Y., 1995b. On GA-based optimal fuzzy control. In Proc. Second IEEE

Conference on Evolutionary Computation (EC-IEEB'95), 1995, vol. 2, pp. 846-851.

Perth.

LING, C, and Edgar, T.F., 1993. A new fuzzy scheduling algorithm for process control. Asia-

Pacific Engineering Journal, 1993, vol. 3, no. 1-2, pp. 129-142.

LINKENS, D.A. and Nie, J.H., 1994. Backpropagation neural-network-based fuzzy controller

with a self-learning teacher. International Journal o f Control, 1994, vol. 60, no. 1, pp.

17-39

LINKENS, D.A. and Nyongesa, H.O., 1995a. Evolutionary learning in fuzzy neural control

systems. In: Proc. Third European Conference on Intelligent Techniques and Soft

Computing, 1995, pp. 990-995. Aachen

LINKENS, D.A. and Nyongesa, H.O., 1995b. Evolutionary learning in fuzzy neural control

systems. Proceedings o f the Third European Congress on Intelligent Techniques and

Soft Computing, EUFIT ’95, 1995, pp. 28-31. Aachen

LINKENS, D.A. and Okola, H., 1992. A real time genetic algorithm for fuzzy control. In Proc.

IEE Colloquium on Genetic Algorithm fo r Control and Systems Engineering, 1992, pp.

106, London.

146 References

LISKA, J. and Melsheimer, S.S., 1994. Complete design o f fuzzy logic systems using genetic

algorithms. In: Proc. Third IEEE International Conference on Fuzzy Systems, 1994, pp.

1377-1382. Orlando

LIU, T.S. and Wu, J.C., 1993. A model for rider-motorcycle system using fuzzy control. IEEE

Transactions on Systems, Man, and Cybernetics, 1993, vol. 23, no. 1, pp. 257-276.

MAGDALENA, L. and Velasco, J.R., 1996. Fuzzy rules-based controllers that learn by

evolving their knowledge base. In: Herrera, F. and Verdegay, J. (ed.), Genetic

Algorithms and Soft Computing, 1996, pp. 172-201. Physica Verlag

MAMDANI, E.H., 1974. Applications o f fuzzy algorithm for simple dynamic plant.

Proceedings IEE, 1974, vol. 121, no. 12, pp. 1585-1588

MATTHEWS, N.D., An, P.E., Roberts, J.M. and Harris, C.J., 1998. A neurofuzzy approach to

future intelligent driver support systems. Proceedings o f the Institution o f Mechanical

Engineers Part D - Journal o f Automobile Engineering, 1998, vol 212, no. D l, pp. 43-58

MEDDAH, D.Y. and Benallegue, A., 1997. A stable neuro-adaptive controller for rigid robot

manipulators. Journal o f Intelligent & Robotic Systems, 1997, vol. 20, no. 2-4, pp. 181-

193

MICHALEWICZ, Z. and Janikow, C., 1991. Genetic algorithms for numerical optimization.

Statistics and Computing, 1991, vol. l,no . 1.

MICHALEWICZ, Z. and Janikow, C., 1992. GENOCOP: A genetic algorithm for numerical

optimization problems with linear constraints. Communications o f the ACM, 1992

MICHALEWICZ, Z., 1996. Genetic Algorithms + Data Structures = Evolution Programs, 3rd

Revised and Extended Edn., 1996. Springer-Verlag.

MILLAN, J.D.R., and Torras, C., 1992. A reinforcement connectionist approach to robot path

finding in non maze-like environments. Machine Learning, 1992, vol. 8, pp. 363-395.

MOHAMMADIAN, M. and Stonier, R.J., 1994. Tuning and optimisation of membership

functions of fuzzy logic controllers by genetic algorithms. In: Proc. Third IEEE

International Workshop on Robot and Human Communication, 1994, pp. 356-361.

Nagoya

MOORE, A.W., and Atkeson, C.G., 1993. Memory-based reinforcement learning: Efficient

computation with prioritized sweeping. In Hanson, S.J., Cowan, J.D., and Giles, C.L.

(eds.), Advances in Neural Information Processing Systems 5, 1993, pp. 263-270. San

Mateo, CA: Morgan Kauffmann.

MURAKAMI, S. and Maeda, M., 1985. Automobile speed control system using a fuzzy logic

controller. In: Sugeno, M. (Ed.), Industrial Applications o f Fuzzy Control, 1985, 1 OS-

123. Amsterdam: North Holland.

MURRAY-SMITH, R., 1994. Local model networks and local learning. In: Fuzzy Duisburg,

'94, 1994, pp. 404-409

References 147

NAUCK, D., 1997. Neuro-fuzzy systems: review and prospects. In: Proc. 5th European

Congress on Intelligent Techniques and Soft Computing (EUFIT ’97), Sept. 1997, pp.

1044-1053. Aachen.

NAUCK, D. and Kruse, R., 1994. NEFCON-I: An X-Window based simulator for neural-fuzzy

controllers. Proc. IEEE Int. Conference on Neural Networks, June 1994, pp. 1638-1643.

Orlando, Florida.

NAUCK, D. Kruse, R, and Stellmach, R., 1995, New Learning Algorithms for the Neuro-Fuzzy

Environment NEFCON-I, Third German Gl-Workshop "Fuzzy-Neuro-Systeme'95",

Darmstadt, Germany, November 1995, pp. 15-17,

NEDUNGADI, A., 1993. A fuzzy logic-based robot controller. Journal o f Intelligent & Fuzzy

Systems, 1993, vol. 1, no. 3, pp. 243-251

NG, K.C., 1995. Switching Control Systems and Their Design Automation via Genetic

Algorithms, PhD Thesis, 1995. University o f Glasgow.

NG, K.C. and Li, Y., 1994. Design o f sophisticated fuzzy logic controllers using genetic

algorithms. In: Proc. Third IEEE International Conference on Fuzzy Systems, 1994, pp.

1708-1712. Orlando. Florida.

NG, K.C. and Li, Y., 1995, Genetic Algorithm Based Techniques for Design Automation of

Three-Term Fuzzy Systems, Proceedings. 6th International Conference on Fuzzy Systems,

August 1995, Sao Paulo, Brazil

NG, K.C., Li, Y., Murray-Smith, D.J. and Sharman, K.C., 1995. Genetic algorithms applied to

fuzzy sliding mode controller design, First IEE/IEEE International Conference on GA in

Engineering System: Innovations and Applications, University o f Sheffield, 1995a, pp.

220-225

NG, K.C., Li, Y., and Murray-Smith, D.J., Performance based linear control system design by

genetic evolution with simulated annealing, 34th IEEE Conference on Decision and

Control, Dec. 1995b, New Orleans, LA

NGO, C.Y. and Li, V.O.K., 1994. Freeway traffic control using fuzzy logic controllers.

Information Sciences: Applications, 1994, vol. 1, no. 2, pp. 59-76

NIE, J. and Linkens, D.A., 1993. Learning control using fuzzified self-organizing radial basis

function network. IEEE Transactions on Fuzzy Systems, 1993, vol. 1, no. 4, pp. 280-287.

NOMURA, H., Hayashi, I. and Noboru, W., 1992. A learning method of fuzzy inference rules

by descent method. In: Proceedings o f IEEE International Conference on Fuzzy Systems,

1992, pp. 203-210, San Diego.

NORIEGA, J.R. and Wang, H., 1998. A direct adaptive neural network control for unknown

nonlinear systems and its applications. IEEE Transactions On Neural NetM’orks, 1998,

vol. 9, no. 1, pp. 27-34

148 References

OHTANl, Y and Yoshimura, T., 1994. Fuzzy control o f a manipulator using the switching

motion of brakes. International Journal o f Systems Science, 1994, vol 25, no 6 , pp. 979-

989

OMATU, S. and Ide, T., 1994. Stabilization of inverted pendulum by neuro-control. 1994

IEEE International Conference on Neural Networks, 1994, vol. 1-7, no. 881, pp. 2367-

2372

OSTERTAG, E. and Carvalho-Ostertag, M.J., 1993. Fuzzy control o f an inverted pendulum

with fuzzy compensation o f friction forces. International Journal o f Systems Sciences,

1993, vol. 24, no. 10, pp. 1915-1922.

PALM, R, 1989. Fuzzy controller for a sensor guided robot manipulator. Fuzzy Sets and

Systems, 1989, vol. 31, no. 2, pp. 133-149.

PALM, R., Driankov, D., Hellendoom, H., 1996. Model Based Fuzzy Control, 1996. Springer-

Verlag

PAPPIS, C.P. and Mamdani, E.H., 1977. A fuzzy logic controller for a traffic junction. IEEE

Transactions on Systems, Man, and Cybernetics, 1977, vol. 7, no. 10, pp. 707-717

PERNEEL C., Themlin J. M., Renders J. M., and Acheroy M. 1995, Optimization of fuzzy

expert systems using genetic algorithms and neural networks. IEEE Transactions on

Fuzzy Systems, 1995, vol 3, no 3, pp. 300--312.

POPOVIC, D. and Xiong N., 1996. Design o f flexible structured fuzzy controllers using

genetic algorithms. In Proc. Fifth IEEE International Conference on Fuzzy Systems,

1996, vol. 3, pp. 1682-1685. New Orleans

PROCYK, T. and Mamdani, E., 1979. A linguistic self-organising process controller.

Automatica, 1979, vol. 15, pp. 15-30.

RAO, D.H. and Gupta, M.M., 1994. Neuro-fuzzy controller for control and robotics

applications. Engineering Applications o f Artificial Intelligence, 1994, vol. 7, no. 5, pp.

479-491

RATTRAY, M. and Saad, D., 1997. Globally optimal on-line learning rules for multi-layer

neural networks, Journal o f Physics, 1997, vol 30, pp. 771-776

RAY, K.S. and Majumder, D.D., 1984. Application of circle criteria for stability analysis of

linear SISO and MIMO systems associated with fuzzy logic controller. IEEE

Transactions on Systems, Man, and Cybernetics, 1984, vol. 14, no. 2, pp. 345-349

RAY, K.S. and Majumder, D.D., 1985. Fuzzy logic control o f a non-linear multivariable steam

generating unit using decoupling theory. IEEE Transactions on Systems, Man, and

Cybernetics, 1985, vol. 15, no. 4, pp. 539-558

RENDERS, J.-M., and Bersini, H., 1994. Hybridizing genetic algorithms with hill-climbing

methods for global optimization: two possible ways. In: Michalewicz, Z, Schaffer, D.,

Schwefel, H.-P., Fogel, D. and Kitano, H. (eds.), Proceedings o f the First IEEE

References 149

International Conference on Evolutionary Computation, 27-29 June 1994, vol. 1, pp.

312-317. Orlando

RENHOU, L. and Yi, Z., 1996. Fuzzy logic controller based on genetic algorithms. Fuzzy Sets

and Systems, 1996, vol. 83, pp. 1-10.

ROSS, T.J., 1995. Fuzzy Logic With Engineering Applications, 1995. McGraw-Hill

ROSS, T.J., Hasselman, T.K., Chrostowski, J.D. and Verzi, S.J., 1993. Fuzzy set methods for

assessing uncertainty in the modelling and control of space structures. Journal o f

Intelligent & Fuzzy Systems, 1993, vol. 1, no. 2, pp. 135-155

ROY, A., Govil, S. and Miranda, R., 1997. A neural network learning theory and a polynomial

time RBF algorithm, IEEE Transactions on Neural Networks, 1997, vol. 8 , no. 6 , pp.

1301-1313

SANCHEZ, E., 1992. Genetic algorithms, neural networks and fuzzy logic systems. In: Proc.

Second International Conference on Fuzzy Logic and Neural Network, 1992, pp. 17-19.

lizuka.

SANNER, R.M., and Slotine, J.J., 1992. Gaussian networks for direct adaptive control. IEEE

Transactions on Neural Networks, 1992, vol. 2, pp. 837-863

SASAKI, T. and Akiyama, T., 1988. Traffic control process o f expressway by fuzzy logic,

Fuzzy Sets and Systems, 1988, vol26, no 2, pp. 165-178.

SCHARF, E.M., and Mandic, N.J., 1985. The application of a fuzzy controller to the control of

a multi-degree-of-freedom robot arm. In: Sugeno, M. (ed.), Industrial Applications o f

Fuzzy Control, 1985, pp. 41-61. Amsterdam: North Holland.

SCHMITZ, G.P.J. and Aldrich, C., 1998. Neurofuzzy modeling of chemical process systems

with ellipsoidal radial basis function neural networks and genetic algorithms. Computers

& Chemical Engineering, 1998, vol. 22, no. SS, pS 1001-SI 004

SCHWEFEL, H-P., 1995. Evolution and Optimum Seeking, 1995. Chichester, UK: John

Wiley.

SHAOUT, A. and Quail, A., 1997. Applications of fuzzy logic in household appliances.

International Journal o f Computer Applications in Technology, 1997, vol. 10, no. 5-6, pp.

361-369.

SHEPANSKY, J.F., and Macy, S.A., 1987. Teaching artificial neural systems to drive: Manual

training techniques for autonomous systems. In Proceedings o f the First Annual

International Conference on Neural Networks, 1987. San Diego, CA.

SHIJOJIMA, K., Hasegawa, Y., and Fukuda, T., 1995. Unsupervised/supervised learning for

rbf-fuzzy system, adaptive rules, membership functions and hierarchical structure by

genetic algorithm. In Furuhashi, T. (ed), Advances in Fuzzy Logic, Neural Networks and

Genetic Algorithms: Proc. 199J IEEE/Nayoya University World Wide Wisepersons

Selected Papers, L N A I1011, 1995, pp. 127-147. Berlin: Springer-Verlag.

150 References

SINGH, S.P., 1992. Transfer of learning by composing solutions o f elemental sequential tasks.

Machine Learning, 1992, vol. 8, no. 3-4, pp. 323-329.

SOLLA, S.A., Levin, E., and Fleisher, M, 1988, Accelerated Learning in Layered Neural

Networks, Complex Systems, 1988, vol 2, pp. 625-639.

SPINRAD, M.D., 1991. Self-learning fuzzy control. Proceedings o f the ISA 91 International

Confernce and Exhibition, 1991, vol. 46, no. 169, pp. 1247-1260.

SPOONER, J.T. and Passino, K., 1996. Stable adaptive control using fuzzy systems and neural

networks. IEEE Transactions on Fuzzy Systems, 1996, vol. 4, no. 3, pp. 339-359

SRINIVAS, M. and Patnaik, L.M., 1994. Genetic algorithms, a survey. IEEE Computer, 1994,

vol. 27, no. 6 , pp. 17-26

SUBUDHI, B. and Swain, A.K., 1995. Genetic algorithm based fuzzy logic controller for real

time liquid level control. Journal Inst. Engineering, 1995, vol. 76, pp. 96-100.

SUGENO, M. (ed.), 1985. Industrial Applications o f Fuzzy Control, 1985, North-Holland.

SUGENO, M. and Kang, G.T., 1986. Fuzzy modelling and control of multilayer incinerator.

Fuzzy sets and Systems, 1986, vol. 18, no. 3, pp. 329-346

SUGENO, M. and Takagi T., 1985. Fuzzy identification o f systems and its applications to

modelling and control. IEEE Transactions on Systems, Man and Cybernetics, 1985, vol.

15, no. 1, pp. 116-132

SUNDARESHAN, M.K. and Condarcure, T.A., 1998. Recurrent neural-network training

by a learning automation approach for trajectory learning and control system design.

IEEE Transactions on Neural Networks, 1998, vol. 9, no. 3, pp. 354-368.

SURMANN, H., Kanstein, A., and Goser, K., 1993, Self-organising and genetic algorithms for

an automatic design of fuzzy control and decision systems, Proceedings o f the First

European Congress on Fuzzy and Intelligent Technologies, 1993, pp. 1097-1104, Aachen

SUTTON, R.S., 1988. Learning to predict by the method of temporal differences. Machine

Learning, 1988, vol. 3, pp. 9-44.

SYSWERDA, G., 1989. Uniform crossover in genetic algorithms. Schaffer, J., (ed.),

Proceedings o f the Third International Conference on Genetic Algorithms, 1989, 2-9.

San Mateo, CA: Morgan Kaufmann.

TAKAGI, H., 1993. Fusion techniques of fuzzy systems and networks and fuzzy systems and

genetic algorithms. Proc. SPIE Int. Soc. Opt. Eng., 1993, vol. 2061, pp. 402-413

TAKAGI, H. and Hayashi, I., 1991. NN-driven fuzzy reasoning. International Journal o f

Approximate Reasoning, 1991, vol. 5, pp. 191-212

TAKAGI, H. and Lee, M.A., 1993. Neural network and genetic algorithm approaches to

auto-design of fuzzy systems. In Klement, E.P. and Slany, W. (eds.), Lecture Notes in

Artificial Intelligence, 1993, vol. 695, no. 6F79. Springer-Verlag.

References 151

TAKAGI, T. and Sugeno M., 1983. Derivation o f fuzzy control rules from human operator’s

control actions. Proceedings o f the IFAC Symposium on Fuzzy Information, Knowledge

Representation and Decision Analysis, 1983, 55-60

TANG, K.L. and Mulholland, R.J., 1987. Comparing fuzzy logic with classical controller

designs. IEEE Transactions on Systems, Man, and Cybernetics, 1987, vol. 17, no. 6 , pp.

1085-1087.

TARNG, Y.S., Yeh, Z.M., and Nian, C.Y., 1996. Genetic synthesis of fuzzy logic controllers in

turning. Fuzzy Sets and Systems, 1996, vol. 83, pp. 301-310.

TETTAMANZI, A.G., 1995. An evolutionary algorithm for fuzzy controller synthesis and

optimisation. In: Proc. IEEE Conference on Systems, Man and Cybernetics, 1995, pp.

4021-4026. Vancouver

THAM, C.K. and Prager, R.W., 1994. A modular Q-leaming architecture for manipulator task

decomposition. In Cohen, W.W. and Hirsch, H. (eds.), Machine Learning: Proceedings

o f the Eleventh International Conference, 1994. NJ: Morgan Kauffmann.

THRIFT, P., 1991, Fuzzy logic synthesis with genetic algorithms, Proceedings o f the Fourth

International Conference on Genetic Algorithms, 1991, pp. 509-513, Morgan Kaufmann

THRUN, S.B., 1993. Issues in using function approximation for reinforcement learning. In

Proceedings o f the Fourth Connecticut Models Summer School, 1993. Hillsdale, NJ:

Lawrence Erlbaum.

TOBI, T. and Hanafusa, T., 1991. A practical application of fuzzy control for an air-

conditioning system. International Journal o f Approximate Reasoning, 1991, vol. 5, no.

3, pp. 331-348.

TOBI, T., Hanafusa, T., Ito, S. and Kashiwagi, N., 1992. The application o f fuzzy control to a

coke oven gas cooling plant. Fuzzy Sets and Systems, 1992, vol. 46, no. 3, pp. 373-381

TOKHI, M.O. and Wood, R., 1997. Active noise control using multi-layered perceptron neural

networks. Journal o f Low Frequency Noise Vibration and Active Control, 1997, vol. 16,

no. 2, pp. 109-144

TONG, R.M., Beck, M.B. and Latten, A., 1980. Fuzzy control of the activated sludge

wastewater treatment process. Automatica, 1980, vol. 16, no. 6 , pp. 695-701.

TONSHOFF, H.K. and Walter, A, 1994. Self-tuning fuzzy-controller for process control in

internal grinding. Fuzzy Sets and Systems, 1994, vol. 63, no. 3, pp. 359-373

UHRIG, R.E. and Tsoukalas, L.H., 1998. Neurofuzzy approaches and their applications to

nuclear power systems. Computers and Artificial Intelligence, 1998, vol. 17, no. 2-3, pp.

169-188

UMBERS, I.G. and King, P.J., 1980. An analysis of human decision-making in cement kiln

control and the implications for automation. International Journal o f Man-Machine

Studies, 1980, vol. 12, no. 1, pp. 11-23

152 References

URAGAMI, A., Mizumoto, M., and Tanaka, K., 1976. Fuzzy robot controls. Journal o f

Cybernetics, 1976, vol. 6 , no. 1-2, pp. 39-64

UTKIN, V.J., 1977. Variable structure systems: a survey. IEEE Trans. Automatic Control,

1977, vol. 22, pp. 212-222.

ZIKIDIS, K.C., and VASILAKOS, A.V., 1996, A novel, neuro-fuzzy architecture for fuzzy

computing, based on functional reasoning, Fuzzy Sets and Systems, 1996, vol.83, no.l,

pp.63-84

VELASCO, J.R. and Magdalena, L., 1995. Genetic learning applied to fuzzy rules and fuzzy

knowledge bases. In: Proc. Sixth International Fuzzy Systems Association World

Congress, 1995, vol. 1, pp. 257-260. Sao Paulo.

VONALTROCK, C., 1994. Neurofuzzy technologies. Computer Design, 1994, vol. 33, no. 8,

pp. 82-83.

WANG , L., 1994. Adaptive Fuzzy Systems and Control Design and Stability Analysis, 1994.

Prentice Hall.

WANG, L.X., 1993. Stable adaptive fuzzy control of nonlinear systems. IEEE Transactions on

Fuzzy Systems, 1993, vol. 1, no. 2, pp. 146-155

WANG, P. and Kwok, D. P., 1992. Optimal fuzzy PID control based on genetic algorithms. In

Proc. International Conference on Industrial Electronics, Control, and Instrumentation,

1992, vol. 2, pp. 977-981. San Diego.

WANG, Y.Y. and Kim, H., 1995. Implementing adaptive fuzzy logic controllers with neural

networks: a design paradigm. Journal o f Intelligent and Fuzzy Systems, 1995, vol. 3, pp.

165-180

WATKINS, C.J., 1989. Learning from Delayed Rewards, PhD Thesis, 1989. Cambridge, UK:

Cambridge University

WATTA, P.B., Hassoun, M.H. and Meisel, J., 1996. Design o f optimal neuro-controllers for

the separately excited dc motor using a hybrid genetic algorithm -- neural network

approach. Proceedings o f the Society o f Photo-Optical Instrumentation Engineers

(SPIE), 1996, vol. 2760, no. 79, pp. 230-241.

WHITELY, D., 1993. Genetic reinforcement learning for neurocontrol problems. Machine

Learning, 1993, vol. 13, pp. 259-284

WHITLEY, D., 1994. Genetic algorithms: a tutorial. In Michalewicz, Z. (Ed.), Statistics &

Computing, Special issue on Evolutionary Computation, 1994.

WIELAND, F. and Aliev, F., 1996. Neuro-fuzzy-genetic adaptive control system. In Proc.

Fourth European Conference on Intelligent Techniques and Soft Computing (EUFIT'96),

1996, pp. 747-751. Aachen.

WOLF, T., 1994. Optimization of fuzzy systems using neural networks and genetic algorithms.

In: Proc. Second European Conference on Intelligent Techniques and Soft Computing,

1994, pp. 544-551. Aachen.

References 153

WONG, C., Chou, C. and Mon, D., 1993. Studies on the output o f fuzzy controller with

multiple inputs. Fuzzy Sets and Systems, 1993, vol. 57, no. 2, pp. 149-158.

WU, J.C. and Liu, T.S., 1996. A sliding-mode approach to fuzzy control design. IEEE

Transactions on Control Systems Technology, 1996, vol. 4, no. 2, pp. 141-151.

WU, Z.Q., 1990. The application of fuzzy control theory to an oil-fueled annealing surface.

Fuzzy Sets and Systems, 1990, vol. 36, no. 1, pp. 145-156.

XU, C.W., 1989. Decoupling fuzzy relational systems: an output feedback approach. IEEE

Transactions on Systems, Man, and Cybernetics, 1989, vol. 19, no. 2, pp. 414-418

YAGER, R.R., 1992. Implementing fuzzy logic controllers using a neural network framework.

Fuzzy Sets and Systems, 1992, vol. 48, no. 1, pp. 53-64

YAMAZAKI, T. and Sugeno, M., 1984. Self organizing fuzzy controller, 1984. Transactions

o f the Society fo r Instrument Control Engineers, 1984, vol. 20, no. 8, pp. 720-726.

YING, H., 1994. Analytical structure o f a two-input two-output fuzzy controller and its relation

to PI and multilevel relay controllers. Fuzzy Sets and Systems, 1994, vol. 63, no. 1, pp.

21-33

YU, C., Cao, Z. and Kandel, A., 1990, Application o f fuzzy reasoning to the control, of an

activated sludge plant. Fuzzy Sets and Systems, 1990, vol. 38, no. 1, pp. 1-14

ZADEH, L.A., 1965. Fuzzy sets. Information and Control, 1965, vol. 8 , pp. 338-353

ZADEH, L.A., 1973. Outline of a new approach to the analysis of complex systems and

decision process. IEEE Transactions On Systems, Man and Cybernetics, 1973, vol. 3, no.

1, pp. 28-44

ZEINSABATTO, S., Alsmadi, O. and Kuschewski, J.G., 1996. An intelligent neuro-controller

based on system parameter-estimation. Proceedings o f the IEEE SouthEastCon '96, 1996,

vol. 146, pp. 517-520

ZHANG, Y.Q. and Kandel, A., 1998a. Compensatory neurofuzzy systems with fast learning

algorithms. IEEE Transactions on Neural Networks, 1998, vol. 9, no. 1, pp. 83-105

ZHANG, Y.Q. and Kandel, A., 1998b, Compression and expansion of fuzzy rule bases by using

crisp-fuzzy neural networks. Cybernetics and Systems, 1998, vol. 29, no. 1, pp. 5-34

ZHOU, Y.S. and Lai, L.Y., 1995. Optimal design o f fuzzy controllers by genetic algorithms.

In: Proc. IEEE/IAS International Conference on Industrial Automation and Control,

Emerging Technologies, 1995, pp. 429-435. Taipei

154 Appendix A - The B ackpropagation Algorithm

Appendix A

The Backpropagation Algorithm

Suppose that a given feed-forward network in layered representation has L-layers and

layer / (/ = 0,1, /=0 represents the input layer) has N(i) nodes. Then the output and

function nodes /(/ = 1, N(i)) o f layer i can be represented as x/ / and f i i respectively, as

shown in Figure A.I. Without loss of generality, we assume there are no jumping links, that is,

links connecting non-consecutive layers.

I,

h

O,

w, O,

Figure A.l 2-layer feed-forward network

Given an input vector P, the input at the hidden unit j is

h j = l . w jk I k (A .l)

where / £ is the input signal k belonging to an input vector P. The output from the same hidden

unit j is obtained by

o Pj = f (h Pj) - f T w ik Iki j; j ^ - ' j k
V k

(A.2)

Appendix A - The B ackpropagation Algorithm 155

Output unit / thus receives a net input

h t = 'Lwv o FJ = Z »V / f
j j V k

(A.3)

which produces the final output

O f = F (h '‘) = F
(\ f f \ \

z w i j 0 pj = F I wjk Ik
x J j j V k J J

(A.4)

The overall error measure at the output is

Z p i Z p i
T i - F \

r \ \
'LWijf 'LwJk Ik

v J v * J)
(A.5)

Provided the activation functions are differentiable, using the chain rule the change in

weights at the output layer is found from

AW;
m u P

(A.6)

where q is known as the learning rate and is used to decide how fast the weights are allowed to

change for each time step. Substituting equation A.3 into A .6

W y = 7 l [r f - o f] =Z S t o',
p m . p

(A. l)

where

S,P = T i - O i
dF

3 i
(A.8)

The updated weight Wy is found from Wy— Wy+AWy. The change in weight in the

hidden layer is found in a similar way

156 A ppendix A - The B ackpropagation Algorithm

Awjk =
dE /. p] o F i h f) c h f

d w j k P i c h ^ ^ j k
(A.9)

Using the chain rule, and from equations A .l, A.2 and A.3

A w Jk = n l I [t - - of]- • wtj ■

P i oh! oh , jk

P I at; a t ;

tiL L s ? -Wu
v k ' j)• P txr W / j P

i j ' Jt,p kp i 3 i J

= n ! . S j , - i k
P

(A. 10)

(A.l 1)

(A. 12)

(A-13)

The updated weight wjfc is found from w jk = w jfc+ A w jk . The update rule can be

generalised for an arbitrary number o f layers

mn - n Y 5 output ' ^input (A. 14)
P

where Vmp Ut is the input to the layer being considered, and m and n are the connection of the

two ends being considered.

A ppendix B - The C oupled Tank System 157

Appendix B

The Coupled Tank System

The system consists o f a glass container divided at the centre to form two areas that

represent the two tanks. Water is pumped into the first tank through a variable speed pump, and

the flow rate is measured by a flow meter. The water out of the second tank is recycled to

provide the supply reservoir for the pump. The depth o f fluid is measured using differential

pressure sensors that provide an analogue direct current signal for control purpose. Figure B.l

illustrates the set-up.

f l o w m e t e r

p u m p

F ig u re B .l S ch em atic o f liqu id -leve l system

Consider the tank set-up, as depicted in Figure B .l. A fluid balance about each tank

delivers:

Qo ~Q\ - d
d H]

~dt
(B .l)

Qi ~ Qi - a
d H :

dt
(B.2)

From Bernoulli’s equation can be derived:

g H] = g H 2 + ^ u]2 (B.3)

158 A ppendix B - The C oupled Tank System

g H 2 = g d + ^ u 22 (B.4)

where U\ and u2 are the flow velocities through orifice 1 or 2, respectively. With

Q\ = u]a] (B.5)

Q 2 = u 2a 2 (B.6)

the following equations are obtained:

Q, = c dl<7,V 2 g (/ / , - H2) (B.7)

Ql =cd2a2^S(f^2 ~d) (B.8)

where cdi and cd2 are the discharge coefficients of orifices 1 and 2 , respectively.

Substituting equation (B.7) and (B.8) into (B .l) and (B.2) gives:

A ^ L = Q0 - c Ma ^ 2 g (H l - H 2) (B.9)
at

A — 1 - = c d]a]yl 2 g (H l - H 2) - c A2a 2 ^ l g { H 2 - d) . (B .10)
dt

Equations (B.9) and (B.10) describe the system dynamics in their true non-linear form.

The discharge coefficients cd] and cd2 can be determined from experimental results as follows:

Discharge coefficient cd] :

Assuming there is no flow into tank 1 (Q0 = 0) and the drain tap is closed (Q2 = 0), from

equation (B .l) and (B.2),

d H ,
01 =<4— 1 (B.l I)

dt

A ppendix B - The C oupled Tank System 159

Q , = A — - ± . (B. 12)
dt

Subtracting these equations gives:

- 2 0 , - H 2) . (B. 13)
dt

Substituting Q} by equation (B.7) leads to:

- 2 c 6la j 2 g (H t - H 2) = A ^ - (H , - H 2) . (B.14)
dt

Equation (B. 14) can be rearranged to give:

where H] - H2 is substituted by HA .

Integration of (B.15) from / = /0 to t = t0 + T and from HA(0) = (t0) - H2(t0) to

HA (/0 + T)= H | (t0 + T)~ H2do + T) ■> respectively, delivers the final result:

cd] - j = ^ j H] (t0) - H 2(to) —^ H \ (t Q + T) — H 2(to + 7 ’)] (B.16)
a\Ty}2g

where /Yj (/0) , H2(to), / / 1(/0 + 7’) and H2(tQ + T) are to be measured at t = t0 and t = t0 + T,

respectively. T is a known time interval.

Discharge coefficient cd2

Assuming the tanks are one, i.e. with the partitions removed, with cross-sectional area

2 A , the following flow balance can be written:

^ „ d H 2- Q 2 = 2 A — ^ . (B.17)
dt

160 Appendix B - The Coupled Tank System

Substituting Q2 by equation (B.8) gives:

~ c d2a 2 ^ 2S (H 2 ~ d) =
d H :

~d t
(B.l 8)

As with discharge coefficient cdi equation (B .l8) can be rearranged and integrated to

give:

c d2
4 A

a 2r f i i
[\Z^ 2 (^o) ~ d ~ V '^ 2 (^o + T) — d (B. 19)

where H2(t0), H2(t0 + 7r) are to be measured at t = t0 and t = t0 + T, respectively. T is a

known time interval.

A ppendix C - Dynam ics o f Cart-Pole System 161

Appendix C

Dynamics of Cart-Pole system

The coordinate system for the single inverted pendulum is as Figure C.l

Figure C.l Cart-pole co-ordinate system

where

z - cart position, m

p , - pendulum link angle, radians

A - length of pendulum link, m

/, - distance between pivot and centre o f mass, m

/ - force exerted on cart, N

G, - centre of mass of primary link

General system equations:

M
z + c Z

+ N = 7 '

A A 0

Inertia matrix M , damping matrix C and nonlinear terms N are:

162 A ppendix C - D ynam ics o f C art-Pole System

M =
mc + m, m,/, cos/?,

, c =
'v 0 “

, N =
- m , l , sinp p 2

m,/, cos/?, m j f + J ^ [o c, - m ,l,g s in$

Considering motor equations, force is:

, K. J... D„ .f = — l, - t z - T Z (C.2)

The matrices M and C become:

Ja r Dm 1
M = mc + m, + —r

r
131,1, COS P

, c = V + - T - 0
r"

m, 1 ,cosp m,l2 +J, 0 Ci.

det(M) = ^mc + m, + J ,) - mflf cos2 P

In current control mode

ia = k tu

where the u is voltage. Introducing state variables:

= [x, x2 x3 x Af =[z P z p f (C.3)

x, = x 3 (C.4)

x2 = x4 (C.5)

* 3

'J
/7?j/| + J j

det(M)
. 2 K k i D mvx3 -W]/| sinx2x4 u + ——x3

+ " ' I ' ™ * 2 s i n x 2 + C ,x 4)
det(M)

(C . 6)

A ppendix C - Dynam ics o f C art-Pole System 163

m d x co s j c? (, • 2 Kk: D m
x d = ——--------- vx-> - m , l i s in x ?x 4 ---------u + —— x-,

4 de t(M) V r r

m c + m] + - j

 .■ .T V ; / -(~ 'W |/ |g s in jr2 + C |X 4)
de t(M)

(C.7)

164 Appendix D - Ship Dynam ics

Appendix D

Ship Dynamics

The equations describing ship dynamics are obtained from Newton's laws expressing

conservation o f linear and angular momentum. The forces are in general complicated functions

o f the ship's motion, i.e. the time history o f the velocity, angular velocity and the rudder motion.

Consider the ship as a rigid body with 6 degrees o f freedom corresponding to translations in 3

directions and rotation around 3 axes. Neglecting sensor and actuator dynamics, the ship can

thus be modelled as a 12-order system. Additional dynamics are also introduced by the rudder

servo. It is customary at least for tankers and similar ships to neglect the coupling between the

yaw motion and the pitch and roll motions. To describe the equations o f motion the co­

ordinate system fixed to the ship shown in Figure. D.l is used.

Figure D .l. Definition of co-ordinates fixed to the ship. Translation along the co-ordinate

axes are called surges sway and heave and rotation around the co-ordinate axes are called

rote pitch and yaw, respectively.

Let v be the projection of the ship's velocity on the y-axis, and r the component of the

angular velocity on the z-axis, Figure D.2. The projection of the ship's velocity on the .r-axis is

assumed to be constant and equal to u0. The equations for the yaw motion are then given by the

laws of conservation o f linear and angular momentum:

(D .l)

A ppendix D - Ship Dynam ics 165

where m is the mass of the ship, Iz its moment o f inertia about the z-axis, Y the component of

the hydrodynamic forces on the y~axis, N the z-component o f the torque due to the

hydrodynamic forces and x(i the x co-ordinate of the centre of mass. It is assumed that the

centre of mass is located in the x-z plane. The hydrodynamic force Y and the torque N are

complicated functions of the motion. It is usually assumed that

r = y(v,r,£,v,r), (D.2)

N = N(v,r,S,v ,r),

where S is the rudder deflection. The functions Y and N will also depend on trim and draught,

and the results will hold for one loading condition only.

Stationary solutions

Assuming that the rudder is kept constant at the centre position the steady-state solution

to the equations o f motion is given by

/ (v , r) = Y (v, r, 0,0,0) - m ruQ = 0,

g (v , r) = N (v ,r ,0 ,0 ,0) - m x Gru0 = 0,

(D.3)

For a ship which is symmetric around its centre plane the force Y and the torque N will

vanish for a motion with v = 0 and r = 0. The stationary solution to (D.3) is then given by v = 0

and r = 0. Depending on the properties of the functions Y and N there may, however, also be

other solutions. These are obtained from a graph o f the functions /a n d g. in Figure D.3. The

case of one stationary point Q only as shown in Figure D.3(A) is most common. For very large

tankers the case shown in Figure D.3(B) can, however, occur. In such a case the solution v = 0

and r = 0. point Q in Figure D.3(B), which corresponds to a straight line motion is unstable

while the solutions v = v0, r = -r0 and v = v0, r = r0, point P\ and Pi respectively in Figure

D.3(B), which correspond to circular motions are stable. A ship with these properties cannot be

kept on a straight course with zero rudder. It will either go into a port yaw or into a starboard

yaw and the motion will tend to a stationary circular motion.

166 Appendix D - Ship Dynam ics

t

Figure D.2. Variables used to describe the linearised yaw motion of a ship. Notice that

different conventions for the sign o f <?are used in the literature.

f(v ,r)= 0

g (v ,r)= 0

Figure D.3 The determination of the stationary motions as the intersections of the curves

/(v , r)=0 and g(v, r)=0. In case A the curves intersect at the origin only but in case B there

are 3 stationary solutions.

Normalisation and linearisation

It is customary to normalise the equations by introducing dimension free quantities. This

can be done in several different ways. In the 'prime' system, which is most common, the length

unit is the length o f the ship, I , the time unit is L/V, where V is the ship's speed, and the mass

unit is p l) l2, where p is the mass density o f water. The normalised variables are denoted by

introducing a 'prime' on the non-normalised variables. To linearise the equations it is necessary

to introduce the partial derivatives of the force Y and the torque N. The partial derivative

Yv = (S / S v) Y (v , r , S , v , f)

Appendix D - Ship Dynam ics 167

where the right hand side is evaluated at arguments zero, is called a hydrodynamic derivative.

The derivatives Yr , Y$, Ŷ , Yf. , N u , N r , , N 0 and AL are defined analoguously.

Linearisation of(D . I) around the stationary solution v=0, r= 0 and normalization gives

1

s f m 'x G - Y d V
V r

m 'x G - N v i z - y \ dr' / _
r

1 i

5l V
+

ii

K N r - m ' x G r' L ^ J

where all parameters and variables are dimension free. Notice that it has been assumed that
r t

Uq/V= 1. The derivatives Y0 and are negative. Notice that they appear in the equations in

the same way as the mass and the inertia. These terms are therefore sometimes called added

mass and added inertia.

State equations

The normalised equations of motion (D.4) are converted to standard state space notation

by solving for the derivatives d v ' / dt ' and d r ' / d t ' . This gives the following model for the

yaw motion o f the ship

d_

dt'

v' a \\ a \2 0 v' V
r' = a 2] a 22 0 r' + b2\ 6 , (D.5)

(P. 0 1 0 0

where the heading ^defined by d y / / dt' has also been introduced as an extra variable. The

heading ^ is shown in Figure D.2. The linearised yaw motion of a ship can thus be described as

a third-order dynamical system where the state variables can be chosen as

1. v’ the sway velocity, i.e. the component o f the ship velocity on the y-axis in the co-ordinate

system fixed to the ship,

2 . r ’ the ship’s angular velozity about the z-axis,

3. ^ th e deviation in heading angle

Other state variables are sometimes chosen. The angle o f attack, i.e. (3 in Figure D.2, can

be used instead of the sway velocity v.

168 _________________A ppendix E - Double Inverted Pendulum Model

Appendix B

Double Inverted Pendulum Model

The mechanic of the system consists o f 3 rigid bodies, as shown in Figure D .l, and has3

degrees of freedom, 1 translational and 2 rotational

Figure E.l Double pole system coordinates

Where, z is the cart position; /?j , /?2 are the pendulum link angles, Z,,, L2 are the lengths

of pendulum links; /,, l2 are the distances between the pivot and centre of mass o f respective

links; f is the force exerted on cart; G] is the centre of mass of primary link and G2 is the

centre of mass of second link

Equations of Motion

Using a Lagrangian approach, the system equations are developed by determining the

kinetic and potential energies of system components in terms of generalised co-ordinates.

Defining the Lagrangian Equation:

A ppendix E - Double Inverted Pendulum M odel 169

3L^

dt

dL cD „
 + ----- = Q adq dq

(E .l)

where L = T — V ; T is the kinetic energy; V is the potential energy; D is the Rayleigh

dissipation function; Q is the generalised forces not taken into account in T, V, and D; q is the

generalised co-ordinates

q = P\

P i

(E.2)

The system kinetic energy, T is:

with

T ~ Tcart + TpendulumX + T pendulum ! ~ T \ + T ! + ^3

Tt = —m ^ z ‘

(E.3)

T2 + 3 j , A 2

1 2 1 -2
^2 = ~ m2vG2 + 2*^2^2

(E.4)

where mc is the mass of cart ; m I the mass of first link; m2 is mass of second link; ./, is the

inertia of first link about centre of mass; J2 is inertia of second link about centre o f mass;

vc , vr; are the linear velocities of G 7 and G2.

Velocities vr , v,. can be found from radius vectorsf/,’ (>2

drx _ dr2
= — - and vr = — - (E.5)

G> dt dt

If r, = ru i + rXjj and r2 = r2ii + r2 j j , then

VC, - + t fj an<̂ vg2 - r2i + r2j (E.6)

170 A p p e n d ix E - D o u b l e Inverted P e n d u l u m M o d e l

where the derivatives are

ru = z + l ^ f t c o s /?,

*\j = ~ h P \ ^ n P\
and

r2i = z + L\ j3\ c o s /?, + l2P 2 c o s Pi
h j = ~L\P\ sin/?i - h P i P i

Therefore the velocities are given by

Vc, =(i + /iAcos/?,)2 +/,2sin2 ^iA2

vc2 ={z + l2P i ^ s p 2 + L \ P \ C o s P \ f +{l2P 2 s \ n p 2 +L\ P\ sin

(E.7)

(E.8)

(E.9)

Finally

T 1 -2
T\ = t mcz

T2 = - ~ mi (i + l \ P i cosP \ f + l \ s in2PtP\

h = ^ m2{i + l2P2cosP2+LlPlc°sP,f +

f m 2 {l2P 2 s in p 2 + L\P\ s in /9 ,)2 +

4 - / . A 2
(E.IO)

The expression for the system potential energy , V is:

V = K a r t + ^ pendulum1 + Vpendulum! = ^1 + ^2 + ^3 (E-11)

where:

F, = 0

F2 = /w ,g/, cos/?, (E.12)

F3 = w 2g (^ | cos /?, + 12 cos p 2)

where g is the gravitational constant 9.807 m/s2. For general viscous friction forces, Rayleigh's

dissipation function is defined as a quadratic function o f generalised velocities q,

1 i =I j =I

(E. 13)

A p p e n d ix E - D oub le Inverted Pendu lum M odel__[7 1

so that the viscous friction generalised force in the direction of the /,h co-ordinate becomes

dD n
Q vj = - — = - ' L c ij<ij (E. 14)

j =i

For the pendulum at hand, ctJ = 0, for ;V 0 . Also, for convenience o f notation we let

c n = v -> C22 = C , , c 33 = C 2 so that:

D = \ v i 2 + \ C ^ + \ C 2Pl (E-15)

where v is the coefficient of sliding viscous friction between track and cart; C| the coefficient of

viscous friction at the pivot of first link; C2 is coefficient of viscous friction at the pivot of

second link. The expression for generalised forces, Q is:

' f i r ' 7 '

2? = 2/?,
= 0 (E l 6)

where / is a force exerted on the cart by the actuator. Now we can write the Lagrangian

equations for L2 system as

d_(dL
d t y d z

d_

dt

d_

dt

dz dz

dL dD ^

y d p ,) dp, dp,

dL A

d p 2

d L d D
+ — = Qp,

d p 2 d p 2

(E.I7)

Let be defined as below:

/?! = m c + m\ + m 2

h2 = A721 / j + m 2L x

/z3 = m 2l 2
2 2

/ ? 4 — / 7 Z] / , + YYl2L\ + J ,

(E.l 8a)

172 A ppendix E - Double Inverted Pendulum Model

h5 = m 2l 2L\

h ̂ = ttl2l2 ^ 2

hn = m]l]g + m 2L]g

8̂ = m 2l l S

After simplifications the equations o f motion become

h{z + h20 \ cos p x + /z3/?2 cos P i ~ h iP \ sin p x - h3P 2 sin p 2 = f

h2z cos/?, + /i4 /j, + hs p 2 cos(/?, - p 2) + hsp l sin(/?! - P 2) - h - , sin /?|

/?3z c o s P 2 + h 5Pi c o s (p t - p 2) + h 6p 2 - h 5P f S i n (p t ~ P 2) ~ h sin p 2

The system equations can be written in compact form:

M (q)q + Cg + N (q ,q) = Qq

where the matrices M, C and A are defined as follows:

M (q) = M =

hx h2 cos p x

h2 cos p } /z4
hj cos P 2 h5 c o s (p 2 - P ,)

h2 cos P 2

h5 cos(/?2 - /?,)

K

V 0 0

c = 0 Q 0

0 0 C 2

All nonlinear terms are collected into N:

N { q , q) = N =

- h 2p } sin/?, - h 2p \ sinP 2

h5p 2 sin {fly - P 2) - h 1 sin /?,

- h5f)\ sin(Pf - P 2)-h& sinP 2

GL.ASGO'-'HT'V’UrRO 'I

(E. 18b)

0 (E. 19)

0

(E.20)

(E.21)

(E.22)

(E.23)

