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Abstract

Abstract

Many modem and classical techniques exist for the design of control systems. However, 

many real world applications are inherently complex and the application o f traditional design 

and control techniques is limited. In addition, no single design method exists which can be 

applied to all types of system. Due to this ‘deficiency’, recent years have seen an exponential 

increase in the use of methods loosely termed ‘computational intelligent techniques’ or 'soft- 

computing techniques'. Such techniques tend to solve problems using a population o f individual 

elements or potential solutions or the flexibility of a network as opposed to using a rigid, single 

point o f computing. Through use o f computational redundancies, soft-computing allows 

unmatched tractability in practical problem solving. The intelligent paradigm most successfully 

applied to control engineering, is that of fuzzy logic in the form of fuzzy control. The 

motivation o f using fuzzy control is twofold. First, it allows one to incorporate heuristics into 

the control strategy, such as the model operator actions. Second, it allows nonlinearities to be 

defined in an intuitive way using rules and interpolations.

Although it is an attractive tool, there still exist many problems to be solved in fuzzy 

control. To date most applications have been limited to relatively simple problems of low 

dimensionality. This is primarily due to the fact that the design process is very much a trial and 

error one and is heavily dependent on the quality o f expert knowledge provided by the operator. 

In addition, fuzzy control design is virtually ad hoc, lacking a systematic design procedure. 

Other problems include those associated with the curse o f  dimensionality and the inability to 

learn and improve from experience. While much work has been carried out to alleviate most of 

these difficulties, there exists a lack of drive and exploration in the last of these points.

The objective of this thesis is to develop an automated, systematic procedure for 

optimally learning fuzzy logic controllers (FLCs), which provides for autonomous and simple 

implementations. In pursuit of this goal, a hybrid method is to combine the advantages artificial 

neural networks (ANNs), evolutionary algorithms (EA) and reinforcement learning (RL). This 

overcomes the deficiencies of conventional EAs that may omit representation o f the region 

within a variable’s operating range and that do not in practice achieve fine learning. This 

method also allows backpropagation when necessary or feasible. It is termed an Evolutionary 

NeuroFuzzy Learning Intelligent Control technique (ENFLICT) model. Unlike other hybrids, 

ENFLICT permits globally structural learning and local offline or online learning. The global 

EA and local neural learning processes should not be separated. Here, the EA learns and 

optimises the ENFLICT structure while ENFLICT learns the network parameters. The EA used 

here is an improved version of a technique known as the messy genetic algorithm (mGA),
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which utilises flexible cellular chromosomes for structural optimisation. The properties of the 

mGA as compared with other flexible length EAs, are that it enables the addressing of issues 

such as the curse o f dimensionality and redundant genetic information. Enhancements to the 

algorithm are in the coding and decoding o f the genetic information to represent a growing and 

shrinking network; the defining o f the network properties such as neuron activation type and 

network connectivity; and that all o f this information is represented in a single gene.

Another step forward taken in this thesis on neurofuzzy learning is that o f learning online. 

Online in this case refers to learning unsupervised and adapting to real time system parameter 

changes. It is much more attractive because the alternative (supervised offline learning) 

demands quality learning data which is often expensive to obtain, and unrepresentative of and 

inaccurate about the real environment. First, the learning algorithm is developed for the case of 

a given model o f the system where the system dynamics are available or can be obtained 

through, for example, system identification. This naturally leads to the development o f a method 

for learning by directly interacting with the environment. The motivation for this is that usually 

real world applications tend to be large and complex, and obtaining a mathematical model of the 

plant is not always possible. For this purpose the reinforcement learning paradigm is utilised, 

which is the primary learning method of biological systems, systems that can adapt to their 

environment and experiences. In this thesis, the reinforcement learning algorithm is based on 

the advantage learning method and has been extended to deal with continuous time systems and 

online implementations, and which does not use a lookup table. This means that large databases 

containing the system behaviour need not be constructed, and the procedure can work online 

where the information available is that of the immediate situation.

For complex systems of higher order dimensions, and where identifying the system model 

is difficult, a hierarchical method has been developed and is based on a hybrid of all the other 

methods developed. In particular, the procedure makes use of a method developed to work 

directly with plant step response, thus avoiding the need for mathematical model fitting which 

may be time-consuming and inaccurate.

All techniques developed and contributions in the thesis are illustrated by several case 

studies, and are validated through simulations.
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1 Introduction

Chapter 1

Introduction

You see things and you say Why ?

But I  dream things that never were; and I  say Why not?

- George Bernard Shaw

1.1 Motivation

Many industrial systems are inherently non-linear and time-varying. To deal with this, 

controllers are often designed by first linearising the system model about a given operating 

condition. Clearly, this can imply severe consequences when operation moves to a new region. 

Therefore, robustness, adaptiveness and autonomy in the algorithm and design are very 

important, but may not be addressed adequately by conventional control schemes. Although 

many control techniques such as PID, Bode-Nyquist, adaptive, H ^ ,  sliding mode and inverse 

model based schemes exist, it cannot be argued that they are equally suitable or applicable in 

practice.

Many practical control systems in operation still need a human operator. An example 

would be a vehicle cruising along a defined path, where a model and a controller would 

somehow have to accommodate changes and handle noise or disturbances within the system and 

the environment, such as an accident further down its path. In addition, the mathematical 

models for such applications can be ill-defined, very complex or too difficult to obtain. A 

conventional controller may rely too heavily on a mathematically rigid model o f the system and 

the environment and hence may not cope with the situation, while a human controller (driver) 

can deal with it first by learning and then by reinforcing.

Mathematically rigid limitations have led many designers to more 'intelligent' control 

schemes, which exhibit properties such as ‘knowledge representation’, inferencing, ‘learning’, 

and ‘evolution’. Research into such schemes also arises from the insufficient flexibility and 

autonomy of traditional control techniques. The desire on the operator’s part is not surprising 

considering the fact that humans are able to generalise, infer reason, and evaluate complex 

functions simply from knowledge and events encountered in everyday activities.

In control system design, the plant input/output measurements need to be mapped onto 

the controller parametric space under an optimal output requirement criterion. When this 

mapping is described using various pieces of uncertain knowledge, conventional control 

methods are faced with various limitations and difficulties such as dealing with ill-defined and
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time-varying environments, potentially unknown systems, uncertainty with systems and 

adaptation necessary to compensate for changing operating conditions. As has been mentioned, 

the design of controllers typically involves reasoning, describing the system and control 

instructions, adapting and learning the controller to various and changing operating situations, 

and optimising and evolving the controller to operate optimally to local and global levels.

It is therefore desirable and appropriate to utilise methods exhibiting the above properties, 

such as soft computing (SC) techniques. Soft computing techniques differ from conventional 

computing in that, unlike conventional techniques, it is tolerant of imprecision, uncertainty and 

partial truth, emulating the human mind. Current research into SC or intelligent control can be 

divided into three strategies, namely:

• reasoning (encompassing knowledge based systems, classifiers and fuzzy logic)

• learning theory, and

• evolution.

Fuzzy logic control is an extension o f Zadeh's fuzzy set and fuzzy logic principles (Zadeh 

1965), and was pioneered by Mamdani (Mamdani 1974). Just as a human controller would 

define a control action in the form of a set o f linguistic rules, fuzzy logic controllers (FLCs) are 

also defined by a set o f linguistic rules in the form o f a set of ‘I F ... THEN' statements.

A general FLC consists o f four blocks as shown in Figure 1.1. First, measurements are 

taken o f all variables that represent relevant conditions o f the controlled process. Next, these 

measurements are converted (fuzzified) into appropriate fuzzy sets to express measurement 

uncertainties. The inference engine then uses the fuzzified measurements to evaluate the control 

rules stored in the fuzzy rule-base. The result o f this evaluation is a fuzzy set (or several fuzzy 

sets) defined on the universe of possible actions. Finally, the fuzzy set is converted (<defuzzified) 

into a single {crisp) value, which is the best representation of the fuzzy set. The defuzzified 

values represent actions taken by the FLC in individual control cycles.

Condition

Fuzzy Rule Base

Action

Fuzzification

Fuzzy inference 
Engine

Defuzzification

Controlled Process

Figure 1.1 Schematic of FLC
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The advantage that a controller based on fuzzy logic has over conventional controllers, is 

that it is easier to understand and implement because it emulates human reasoning. Control 

actions can be described using linguistic descriptions that even a non-control individual can 

understand and interpret. In addition, the generality o f FLCs makes them very suitable for non­

linear control. Fuzzy control is also able to operate without a clear mathematical definition of 

system. It can be seen as a loosely defined form of table based control method. Its 

development can be viewed as a type of knowledge based expert system. It essentially consists 

o f a knowledge base expressed in terms o f relevant fuzzy inference rules, and an appropriate 

inference engine to solve a given control problem. In contrast to conventional controllers, FLCs 

are capable o f utilising knowledge extracted from human operators. The knowledge o f an 

experienced human operator may be used as an alternative to a precise model o f the controlled 

process.

Fuzzy control has been successfully applied to a wide range o f industrial problems such 

as heating systems (Altrock et al 1994); steam engines (Mamdani 1974, Kiupel and Frank

1993); cement kiln control (Larsen 1980, Umbers and King 1980, Holmblad and Ostergaard 

1982); water purification plants (Tang and Mulholland 1987); oil refineries (Graham and 

Newell 1988, Aliev et al 1992); traffic control (Gegov 1994, Jia and Zhang 1994, Ngo and Li 

1994, Pappis and Mamdani 1977, Sasaki and Akiyama 1988); air conditioning systems (Tobi 

and Hanafusa 1991); warm water plants (Kickert and Van Nauta Lemke 1976); refuse 

incineration plants (Krause et al 1994); robot control (Nedungadi 1993, Uragami et al 1976), 

control o f space structures (Ross et al 1993), hydropower plants (Djukanovic et al 1997) and 

nuclear power systems (Uhrig and Tsoukalas 1998)

While research and development on the three main areas o f intelligent control have 

broadly progressed independently o f each other, there is in fact much similarity and 

interconnection between them as illustrated in Figure 1.2. The overlap between fuzzy logic and 

each of the other SC methods is significant as well as “ logical” .

Artificial neural networks (ANNs) give rise to a particular class o f parameterised 

controllers and models. They are essentially an interconnection of non-linear units, with local 

memory elements such as integrators or delay lines when dynamic behaviour is of interest. The 

weights characterising the connections play a role similar to the concentrations of 

neurotransmitters in biological synapses, while the non-linear elements correspond to the 

neurons themselves. The weights are then adjusted in learning to model a plant or act as a 

controller. From a theoretical perspective, the connection between fuzzy systems and neural 

networks is that they are both universal approximators of continuous functions. Since the early 

1990s, it has also been identified that fuzzy systems can be mapped to a particular type o f neural 

network. The input nodes and layers of the neural network would represent the fuzzification 

process of the fuzzy system; the output layer the defuzzification and the hidden and internal 

nodes and layers the inferencing mechanism of the fuzzy system. Indeed, under certain
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circumstances, there is a functional equivalent between fuzzy systems and neural networks 

(Jang 1993).

G enetic a lgorithm s (GAs) are loosely modelled on processes that appear to be at work in 

biological evolution and the immune system (Holland 1975, Goldberg 1989a). The connection 

between FLCs and GAs is not as incongruent as it appears. GAs have proven to be a very 

useful tool in dealing with various optimisation problems involving FLCs. GAs are typically 

utilised for optimising the fuzzy rules and linguistic variables in FLCs, resulting in near optimal 

controller operation.

In nature, humans follow a nature cycle  o f  evolution-reasoning-learning and reinforcing 

what has been learned. It is therefore not a surprise that Reinforcem ent learning  (RL), an 

approach to machine intelligence com bining unsupervised learning and dynamic programming 

to solve problems that neither o f  these disciplines are able to address alone (Barto et a l 1983), 

also finds itself interconnected with the intelligent methods already discussed. In fact, RLs 

exhibit similar properties to A NNs and GAs, and thus the learning and evolving o f  FLCs is 

maintained through the entire nature cycle.

Despite much exploration and exploitation o f  FLCs with many o f  these other intelligent 

techniques, research has mainly been limited to passive combination o f  the methods. Thus, the 

potential o f  the other methods in the nature cycle are not fully utilised or realised. For example, 

w hen integrating FLCs to neural netw orks, much o f  the undesirable properties o f  ANNs are also 

brought in. During learning, the neurofuzzy controller (NFC) is prone to getting trapped in 

regions o f  local optima. On the other hand, while fuzzy-GA combinations find near optimal 

controllers, such controllers are typically designed and applicable around limited operating 

conditions. While the underlying subject o f  this thesis is fuzzy logic control, the aim o f  the 

thesis is to systematically build up a paradigm based on fuzzy control, exhibiting evolutionary 

and learning properties, and the net objective is optimal fuzzy control.

E = Evolutionary Algorithms 

F = Fuzzy Logic 

K = Knowledge Based Systems 

N = Neural Networks 

R = Reinforcement Learning

Figure 1.2 Overlap between SC control algorithms
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1.2 M ethodology and Literature Review

Fuzzy control is a very effective, flexible, robust and intuitive tool for dealing with 

complex and non-linear systems, and despite its apparent success, it has many problems 

associated with it. Its major handicap is that it is not always implemented in the best way. It is 

very much ad hoc, lacking any systematic design procedure, and is very dependent on input and 

interaction from a human, and hence the quality o f the controller may vary. For instance, in 

some complex applications such as robot control and ship auto pilot, fuzzy control is applied at 

the lowest level. Such controllers would have to be very fast and precise where bandwidths are 

high and nonlinearities are strong. O f course, it is possible to obtain fast and accurate FLCs on 

VLSI chips. The problem lies in the fact that in such fast systems, human experience alone is 

not sufficient. One person's reasoning o f a certain problem may not ally with another's and 

controller parameter tuning becomes difficult.

Unlike conventional control, the design and implementation of fuzzy control have, on the 

whole, been ad hoc. There has not been any real drive or effort towards formalising or 

generalising fuzzy control theory. Simply looking at the basic structure of the FLC, one can see 

the difficulty fuzzy researchers face when attempting to formalise fuzzy control. As a result, 

there have been numerous fuzzification, inferencing and defuzzification methods. This further 

hinders practising engineers with confusing design choices. To address and alleviate some of 

these issues and problems, there grew a need for computer-aided design and tuning techniques 

highlighted in Figure 1.2, and such procedures will now be reviewed.

1.2.1 Neurofuzzy Learning: A First Step Towards Automated T uning

The complexity o f manually tuning a FLC has prevented it from better and wider 

applications. Further, if system parameters change or if the environment in which the system 

functions changes, the FLC needs to be tuned again for the new settings. There have been 

various attempts at automating and optimising the design of FLCs by utilising other "intelligent 

paradigms" shown in Figure 1.2, such as neural networks, genetic algorithms and machine 

learning. The primary purpose for most of these hybrid systems is to tune the parameters of the 

FLC.

The combination o f ANNs with FLCs are generally termed neurofuzzy controllers and 

such combinations present the advantages o f both while avoiding many of the drawbacks of 

both. While fuzzy control uses reasoning, it can not learn from path experience without some 

level of supervision. On the other hand, ANNs are able to function supervised or unsupervised 

and can learn from past experience or data. However, in order for this learning procedure to be 

effective, quality data representing different states or conditions have to be provided. In



16 1 Introduction

addition, tuning and identifying the different nodes and elements o f an ANN require some 

degree of expertise and knowledge or else the learning procedure may be handicapped. By 

mapping a FLC to an ANN, such difficulties can be overcome as the components o f the fuzzy 

controller are intuitive and simple to implement (Berenji 1990, Brown and Harris 1991, Lin and 

Lee 1991, Kosko 1991, Horikawa et al 1992, Nomura et al 1992, Bruske et al 1993, Jang 1993, 

Kim 1993, Khalid et al 1994, Chen and Chen 1994, Linkens and Nie 1994, Nauck and Kruse 

1994, Fukuda and Shibata 1994, Ichihashi et al 1995, Lee et al 1995).

An example o f such a neurofuzzy hybrid is that proposed by Khalid et al (Khalid et al

1994) called NeuFuz. The neurofuzzy scheme is similar to a self-organising FLC set-up 

(Procyk and Mamdani 1979, Scharf and Mandic 1985) and consists o f two multi-layered neural 

network models. The first neural network is a plant emulator and the second is used as a 

compensator to improve the performance of the basic fuzzy logic controller. The development 

o f this system consists of three phases. The first phase is developing a basic FLC for the plant. 

The second phase involves training a neural network model in the forward dynamics o f the plant 

to be controlled. The training o f this neural plant emulator can be done off-line as well as on­

line, depending on the type o f plant. For fast-acting plants, such as robotics manipulators or 

servo-motors, it is possible to train the neural network to emulate the plant in an on-line way. 

However, if the plant is a slowly varying process, the neural plant emulator needs to be trained 

off-line as convergence is rather slow. The function of the neural network plant emulator is to 

provide the correct error signal at the output o f the neurofuzzy compensator, without the need 

for any mathematical modelling of the plant. The third phase involves on-line learning o f the 

neurofuzzy compensator. The performance error, which is the error between the desired output 

and the actual plant output, is backpropagated through the neural plant emulator to adapt the 

weights of the neurofuzzy compensator on-line. The performance of the neural plant emulator 

can be further improved on-line by backpropagation o f the error between the neural plant 

emulator and the actual plant output. Variations and use of this method are found in Rao and 

Gupta (1994) and Spooner and Passino (1996).

Despite its potential it has not been too warmly embraced by the fuzzy logic community, 

the main objections being the amount o f training required, the quality o f the performance tables, 

and questions about the stability of the resulting controller.

Such early neurofuzzy methods used neural networks and fuzzy systems independently, 

but functioning together. After a FLC is designed, a neural network is used to track changes in 

the system. Therefore, the fuzzy system parameters are not tuned, and if any tuning does take 

place it is partial. In other words, either the fuzzy rules or the fuzzy sets are tuned, not the 

structure as a whole.

More recently, neurofuzzy systems are treated as single structure, i.e., they are either a 

neural network with fuzzy properties, or fuzzy systems in a neural network structure. While 

there are numerous fuzzification, inferencing and defuzzification strategies, the actual fuzzy
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system topology is fixed. Hence, any representation of fuzzy systems as a neural network 

means that the number o f layers of the neurofuzzy structure is limited. In fact, as a result, there 

has been very little change in the way fuzzy systems are represented as a neural network 

structure, and thus most new neurofuzzy structures are derivatives of early popular and 

established ones.

One such method is that proposed by Lin and Lee (Lin and Lee 1991). The fuzzy logic 

components are directly integrated in the neural network, and have a multi-layer feed-forward 

topology. The input and output nodes represent the input states and control signals, 

respectively, and in the hidden layers there are nodes that code membership functions and rules. 

The learning algorithm used for building rule nodes and training the membership functions is 

based on the backpropagation algorithm. The limitations of this system are that it only tunes the 

fuzzy sets, no rule reduction of formation takes place to reflect changes in the system behaviour, 

and only gaussian membership functions are used. The shape and type o f the fuzzy sets are 

important as they can influence the smoothness o f the control surface. The most used shapes 

are trapezoids and triangles because they are simple to implement and are computationally 

efficient. However, because o f their piece-wise nature, they are not well suited for a smooth 

transition between fuzzy sets and instead the smoother membership functions, gaussian and 

generalised bell, are used. However, the advantage this system has over the ANFIS structure 

(see below) is that this system can represent the output variables as fuzzy sets. Most neurofuzzy 

controllers have structures similar to this model, with slight variations, and the Lin and Li 

method is in fact the work that best resembles the neurofuzzy structure developed here.

Possibly the most well known of neurofuzzy models is Jang’s ANFIS (adaptive 

neurofuzzy inference system) (Jang 1993). It is a variation o f the Lin and Lee model, but the 

learning algorithm is described only for the Sugeno fuzzy model, and employs Kalman filters. 

Again, the network only adjusts the parameters o f the fuzzy sets and does not allow for rule 

modification. This means that in addition to the operator knowing the control surface, the 

network size can potentially increase in size exponentially depending on the size of the input 

space. Another drawback of both systems is that they are supervised, and hence quality, 

accurate and reliable training data has to be provided.

A third type of neurofuzzy structure can be found in the works of Harris et al (Harris et al 

1993). It uses B-splines to implement fuzzy sets, and the network resembles a CM AC or RBF 

network. While using B-spline functions well for storing information locally, the structure does 

not store the membership functions directly as in the models described above. Instead, fuzzy 

rules and sets are learned through data clusters. Another difference between this and other 

models is that the fuzzy sets may be subnormal. That is, at least one element o f the fuzzy set 

may not have value unity within the universe of discourse of the variable, and hence the set may 

have special constraints placed on it which it would not have if a standard fuzzy set were used.
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1.2.2 Learning Through Interaction

One of the limitations o f using ANNs for learning fuzzy systems is that ANNs require 

gradient information to guide the learning. Also, in order to define the training data used by 

ANNs, the condition-action o f the problem has to be known or simulated. Often this is difficult 

or impossible to obtain. For example, a robot may be trained to navigate around a room while 

avoiding obstacles in its path. To train it to avoid any obstacle anywhere in its path would 

require a large amount of data which would be expensive, tedious and possibly difficult to 

obtain. In "nature", such systems would not have data to train it, instead it would learn to 

navigate by interacting with the environment directly. Learning through interaction is also 

known as reinforcement learning, and is the primary learning method of biological systems.

Recently, efforts to apply the RL methods to fuzzy systems have been reported (Berenji 

and Khedkar 1992, Whitely 1993, Lin and Lee 1994, Glorennec 1994, Buijtenen et al 1998, Lin 

and Kan 1998). The majority o f these is based on Q-leaming and is applied to classifier 

systems where patterns are matched using fuzzy linguistic type if-then rules. Usually, in an 

FLC, some rules trigger on the same crisply defined state, and together co-operate to produce an 

action. There is a one-to-one mapping between an agent (i.e. a set o f rules) and the action it 

produces. Therefore, the performance of each agent is evaluated independently o f each other. 

The difficulty with this method is that the rule structure contains all possible combinations of 

rules making it computationally inefficient.

The system closest to the work presented in this thesis is Nauck and Kruse’s NEFCON 

(NEural Fuzzy CONtrollers) model, (Nauck and Kruse 1994). Nauck and Kruse proposed a 

generic three-layer neurofuzzy model with a single output. The network is trained using 

reinforcement learning, which uses a rule based fuzzy error measure as the reinforcement signal. 

In NEFCON, both the fuzzy rule base and the fuzzy sets are achieved. The drawback o f the 

NEFCON approach is that it starts from an empty rule base and builds up the rule base. The 

rule antecedent is formed by finding membership functions for each variable that yields the 

highest membership value for the appropriate input variable. The rule consequents are formed 

by guessing the output value from the fuzzy error. This form of rule creation implies that the 

operator has sufficient information about the desired output data, hence the model is only 

suitable for supervised off-line learning. In contrast, the reinforcement learning model 

presented in this thesis is applicable to both off-line and online learning, and assumes no 

information on the desired output.

Another method that uses reinforcement learning was proposed by Whitely (Whitely 

1993). In this method the system receives a signal o f success or failure from the real world, and 

learns from the strength of this signal to improve its success rate. However, since the quality of 

such a feedback signal is generally poor, learning is inefficient. Another drawback is a noisy
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value function and biased signals, which means that not all the possible state occurrences are 

learned.

1.2.3 Fuzzy Genetic Combination: Towards Global T uning

Evolutionary algorithms (EA), of which genetic algorithms is a specific type, are 

techniques based on the Darwinian principles o f evolution through survival o f the fittest. 

Central to the evolutionary system is the idea o f a population of genotypes or phenotypes that 

are elements o f high dimensional search space. Through “natural selection” and genetic 

operators, genotypes or phenotypes with better fitness are learned. Thus by survival o f the 

fittest GA over several generations, the population gradually evolves towards genotypes that 

correspond to high fitness phenotypes.

EAs work in a similar manner to RLs, both using an evaluation function to guide the 

learning and optimisation process, and neither requiring the gradient information that neural 

networks use. However, EAs and RLs differ in a number of ways: first, EAs search the solution 

space in a completely random manner and hence ignore a lot o f the information between state 

transitions. Second, an EA discards poor solutions in favour o f good ones whereas RLs take this 

information on board and attempts to improve on it. Finally, unlike EAs, the evaluation 

function defined for RLs does not indicate a performance measure, but whether the learning 

system is performing well or badly.

The primary purpose for most of these hybrid systems is to tune the parameters o f the 

fuzzy sets defining the linguistic variables, while some systems also deal with rule reduction 

(Thrift 1991, Homaifar and McCormick 1992, Linkens and Okola 1992, Chen et al 1993, Lee 

and Takagi 1993, Surman et al 1993, Buckley and Hayashi 1994, Cooper and Vidal 1994, 

Renders and Bersini 1994, Bastian 1995, Cordon and Herrera 1995, Fukuda et al 1995a, 

Hishiyama et al 1995, Cotta et al 1996, Filipic and Juricic 1996, Gonzalez and Perez 1996, 

Huang and Hung 1996, Magdalena and Velasco 1996, Popovic and Xion 1996, Tarng et al 

1996). A first attempt at optimising fuzzy control with genetic algorithms was mainly 

concerned with tuning the positions of the fuzzy membership functions (Karr et al 1989, 

Homaifar and McCormick 1991, Wang and Kwok 1992). The approach uses a fixed predefined 

number o f fuzzy sets to define the input and output domains. Genetic algorithm is used only to 

adjust the shape o f the fuzzy sets in the given rule base. The chromosome is made up of binary 

numbers representing the supports o f the membership function. Nonetheless, this is very basic 

and no optimisation of the rule base is carried out, and an exclusive membership function shape 

is used. This requires a great deal o f knowledge on behalf of the expert operator such as 

knowing what control actions to take for a given situation.
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Herrera et al (Herera et al 1995a) encodes the entire knowledge base. The fuzzy sets are 

o f trapezoidal form represented by a 4-tuple parameter set indicating the apex and the base 

points of the set. Each rule is thus represented in the following way:

C n ~ (®ii n bt\ i c t\ ■> d  t\ , , am ,bm,cm,d m,a n bn cl ,d l ) (1.1)

where (am,bm,c m,d m) is the 4-tuple representing the fuzzy set in the said domain. The 

complete rule base representing the whole chromosome is thus a concatenation of all such C . 

Real values are used to encode the genes, and the whole GA operates using simple and min-max 

arithmetical crossovers and non-uniform mutation. This approach is slightly different from the 

other approaches mentioned above in that the fitness function is a square-medium error function 

using an input-output training data set similar to that used in neural network training. This 

implies that the operator must provide quality and accurate data for the GA to converge 

smoothly to the desired goals. The other drawbacks o f this approach are that it uses only 

trapezoidal fuzzy sets and that it is limited to Mamdani-type FLCs.

Another approach to optimising the entire rule base structure was proposed by Kinzel et 

al (Kinzel et al 1994). This method uses a x . . .x  nd matrix instead of a string to code the 

rule base. Here nj is the number of fuzzy sets in domain Each element of the matrix consists 

of a fuzzy set o f the output domain. The fuzzy sets are coded by a string o f genes where each 

gene represents the membership values of the fuzzy sets o f domain d  at a certain x-value. The 

initial population is generated by applying the mutation operator on all genes, and the initial 

fuzzy partitions are homogeneous. Crossover on the rule base is carried out using a point radius 

operator. A two-point crossover is used on the fuzzy sets, which exchanges ranges of the 

partitions represented by the two chromosomes. A side effect of this type of crossover is that a 

repair algorithm has to be used to repair any resulting non-convex fuzzy sets to convex ones. In 

addition, there may also be situations where some fuzzy sets may not be present for the 

controller to operate in some ranges.

This naturally led to the search for systematic designs and ways to optimise the entire 

fuzzy control structure (Lee and Takagi 1993, Kinzel et al 1994, Ng and Li 1994, Herera et al 

1995a). Lee and Takagi optimises the rule base, the number o f rules and the shape of the fuzzy 

sets. The rule base is encoded such that three genes represent each fuzzy set in each domain, 

where each gene represents the distance of the support of the working fuzzy set from the support 

o f the previous fuzzy set. The drawback o f this system is that in order to keep the length of the 

encoded chromosome short, it is only applicable for Sugeno-type FLCs, i.e. the output domain 

is not fuzzified. Another drawback is that it only handles rule reduction and there is no 

provision for rule adding.
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Within the research group at Glasgow, Ng and Li (Ng and Li 1995) developed an 

approach that uses base-7 coding if 7-level fuzzification and a 7x7 rule-base is predefined. The 

positioning and shape of the linguistic variables are determined by the set parameters (a, /?, cr) 

representing the position, shape and scaling respectively. The remaining part of the 

chromosome encodes the membership function parameters. That said, the Ng and Li approach 

does present a novel and efficient solution to the curse o f dimensionality problem by reducing 

an n-dimensional rule base to a one-and-half dimension or a two-dimensional rule base. As can 

be seen, the drawbacks o f this system are that the number of rules is fixed, is limited to a two- 

input and single output configuration, and that there is no provision for rule modification, and 

once again, it is left up to the operator to define the control actions.

As can be seen, due to the amount o f information needed to represent the entire structure, 

it is neither efficient nor practical to attempt to liberate the complete structure o f the FLC by 

encoding it in a fixed size GA chromosome. That is, the more information is encoded in a GA 

chromosome, the larger it gets. Thus the performance o f the GA is degraded despite using non­

binary coding schemes to keep the length o f the chromosome short. In addition to affecting the 

performance o f the GA, the stability and performance o f the system is also compromised. The 

stability o f the system is governed largely by the number of rules and the combination of 

premise and action for each rule. Hence, to accommodate higher order problems, such methods 

as described above compromise by using a smaller number of rules. Therefore, fixed structure 

FLCs and length EA chromosomes are often inadequate.

1.2.4 Optimisation With Flexible Structures

At Glasgow, structural design problems were recognised but remained unsolved (Ng 

1995, Li and Ng 1996). In order to liberate the structure, there have been a few approaches that 

used flexible GA coding schemes (Lee and Takagi 1993, Cooper and Vidal 1994, Hoffmann 

and Pfister 1995, Chowdhury and Li 1996, Carse et al 1996, Li and HauBler 1996). The 

structural optimisation method for selecting neural network architectures reported by Li and 

HauBler (Li and HauBler 1996) is based on network pruning and may be adopted here. In 

pruning however, the EA chromosome has to start from a parent architecture that has to be very 

large to accommodate all predicted possible architectures. However, some a priori knowledge 

o f the controller structure is not always possible, as has already been argued. It also means that 

if the operating conditions change and there is need for growing the network to follow the 

change, it is not possible. It is also limited to small problems as for larger and more complex 

problems, the size would be too large and computationally inefficient. Hence, pruning is not 

fully adequate to achieve the objectives of the thesis.
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Cooper and Vidal tried to address the complexities and issues highlighted in the previous 

subsection through a coding scheme based on matching fuzzy rules that are similar (Cooper and 

Vidal 1994). In this, each membership function representing a control variable is represented by 

two integers, and only triangular membership functions are used where only the centres and half 

widths o f the functions are tuned. Each rule is a concatenation all the membership functions of 

the variable, and the rule base, represented by a full chromosome, is a concatenation o f all such 

rules. Cooper and Vidal address the curse of dimensionality and redundant coding issues by 

using a mechanism whereby variables are ignored when their half-length values fall outside a 

certain range. Reproduction and combination in this approach are based on crossing over rules 

o f similar structure. That is, before reproduction, the rules in the two mating chromosomes 

must be aligned so that they match as closely as possible. Any rules that are not matched are 

appended to the end of the chromosome.

As can be seen from the above description, the Cooper and Vidal method has many 

problems and limitations. First of all, using two integers to represent a single membership 

function lengthens the chromosome and the problem gets worse with higher order problems. 

The method is also not flexible with regard to the type of membership functions that can be 

used. Only triangular membership functions are used, and tuning o f such functions is limited to 

the centre and the widths, but not the supports. It is also not clear how membership function 

overlap is maintained when the half-length o f the fuzzy sets falls outside a certain range and is 

then ignored. This would suggest discontinuities in certain regions o f operation. Before 

reproduction and combination, the Cooper and Vidal approach requires reordering of the rules, 

and hence the genes of the chromosomes. This not only introduces computational inefficiency, 

but also the likelihood of matching schemes is not guaranteed.

Based on the work by Cooper and Vidal, Carse et al proposed a flexible representation 

scheme to tune fuzzy sets for classifier systems (Carse et al 1996). A chromosome represents 

fuzzy parameters belonging to an input or output variable, which must be a triangular fuzzy set. 

The parameters o f the set encoded are its centres and widths. Each rule is in the form,

'■ < * * )  = > )  c - 2 )

where x  is the input; y  is the output; n is the number of inputs; m is the number o f outputs; k is 

the rule index; x c is the centre o f the fuzzy set representing input n and x w k is the width o f the

fuzzy set representing input n. This representation allows rule premise and consequent variables 

to have their own fuzzy sets instead o f sharing a global one, as found in most fuzzy rule base 

representations.

To accommodate a variable number of fuzzy sets, this approach uses a variable length 

chromosome and the crossover operator in a standard GA is replaced by a new one which works 

differently depending on the size o f the input dimension. For the case of a single input, the



I Introduction 23

genes are sorted according to the centres of the input fuzzy sets before crossover takes place 

such that the resulting chromosomes o f the offspring will be valid. For the case o f n- 

dimensional input space, instead of using a single crossover point, a vector o f points is created, 

as given by Carse el al ( 1996)

C, =MIN,  + ( M A X , - M I N , ) - R ' <'" (1.3)

where [MIN, , MAX,] is the range o f the input variable x. The vectors are applied such that 

x ak < Ci ’> ^ and ru*es fr°m Parent 2 such that x ak > c t , V ( . The remaining rules from both

rule-sets then form the other child. Finally, a random creep is used to fine tune the fuzzy set 

parameters.

While the Carse et al approach offers an improvement on the Cooper and Vidal one, it 

still has a number o f limitations. First, fuzzy tuning takes place only at the centres and widths, 

thus representing symmetrical fuzzy sets. Second, only triangular fuzzy sets can be 

accommodated. If, for example, trapezoidal sets are mixed in, the number o f parameters and 

hence the chromosome length will be changed, which will complicate sorting the now irregular 

genes and selecting the crossover points. Third, such sorting is prone to premature convergence 

as it is against the proven philosophy of well mixing the genes as in uniform crossover scheme. 

Also, it is not clear what would happen after crossover occurs and one chromosome ends up 

with one single rule while the other child ends up with a very large rule base. Other issues also 

arise, such as why it is necessary to have different fuzzy sets for similar rules since each rule 

will have its own fuzzy sets.

Hoffmann and Pfister (Hoffmann and Pfister 1995) accomplished a structure using messy 

genetic algorithms (mGA) (Goldberg 1989b), similar to the design of FLCs. The coding, 

decoding and representation are simple and less ambiguous than the above process. The coding 

scheme has both input and output variables where the universe of discourse o f each of the 

variables is covered by fixed fuzzy sets defined a priori. The coding element represents the 

fuzzy clause and is a pair of integers. The first refers to the variable and the second refers to the 

fuzzy set of this variable. Since the orders of the genes are irrelevant, a first-come-first-served 

precedence rule is also applied to resolve conflicts between two rules with identical conditional 

steps. The whole rule base is encoded in the string and each rule within the string is treated as a 

gene, thus representing a hierarchical structure. The drawback o f this system is that although it 

allows for rule structure modification, the actual type and shape of the fuzzy sets can not be 

modified. In addition, the universe of discourse of each o f the variables, as well as the number 

of fuzzy sets in each variable, is fixed. That said, the approach is novel because it was the first 

scheme to have a flexible structure through an EA other than the regular GA. Messy GA is 

significantly superior to the regular GA for such structural optimisation because it allows for 

representation of more than one type o f information within each gene, thus enabling the coding
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of higher order systems. Depending on what information each gene holds, it is also possible to 

encode all the information pertaining to a specific fuzzy set. In addition, the order of the genes 

is not important hence increasing computational efficiency.

Even with flexible encoding schemes, representing a complete FLC within a GA is 

difficult and learning o f such systems is more involved. On-line implementation is not practical 

due to the nature o f the EAs. Hence such hybrids usually function off-line and are generally 

restricted to simulation only. When encoding neurofuzzy systems in a GA chromosome, one 

can either decide only to type the fuzzy parameters, obtain the network structure or both. 

Naturally, the more information encoded, the greater the processing power required, and 

computational efficiency is compromised. This realisation of the limitations o f both approaches 

has in recent years seen the reporting o f hybrids comprising o f both methods resulting in 

evolutionary based neurofuzzy FLCs. Either such hybrids utilises neural learning techniques on 

the EA chromosomes, or gradient decent algorithm is applied to an EA learned FLC, or the EA 

tunes an ANN representing a FLC.

The novel approach of Hoffmann and Pfister has inspired many o f the thoughts presented 

in this work (Chowdhury and Li 1996). The underlying objective has been put into ensuring 

that all three desirable properties o f a FLC are satisfied based on a mGA-neurofuzzy hybrid. By 

using a neurofuzzy structure, it was possible to tune the fuzzy sets as well as the rule structure. 

Halving the gene size of a pair o f integers, a single integer is used to encode the fuzzy premise 

or consequence and the type o f fuzzy set. In addition, the restrictions o f the Hoffman approach 

on the number o f fuzzy sets was eased by allowing the mGA to explore with a variable number 

o f fuzzy sets. While the mGA is used to obtain the structure o f the FLC, the tuning o f the fuzzy 

set parameters is carried out using a neurofuzzy model. This forms the foundation of the work 

presented in this thesis.

1.4 Thesis Contributions

The aim of this thesis is to develop a method for optimally designing fuzzy control 

systems that are autonomous, flexible and globally and structurally explored. Autonomous in 

this case implies that the controller has to be self-supporting with learning and adjusting 

capabilities, and should be able to track environmental uncertainties and system parameter 

variations. Such design should be flexible enough to tackle problems where description o f the 

plant is difficult to obtain or unavailable, and it should be independent o f the need for training 

data. The main original contributions presented in this thesis are summarised below followed 

by more detailed descriptions of each point highlighting differences with other state-of-the-art 

work found in literature. Emphasis is on systematic and automatic design.
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1. A systematic and novel approach to flexible and optimal design automation of FLCs

In chapter 3, fuzzy control components have been analysed and compared with a more 

“conventional” approach in order to identify the areas where learning and optimisation are best 

required. Earlier work relevant to this thesis

• uses supervised learning models only

• uses either Mamdani or Sugeno type FLCs

• is constrained to a specific fuzzification, inferencing and defuzzification strategy

• uses only one type o f membership function

• deals with partial tuning o f the fuzzy system and requires expensive, accurate, and reliable 

training data.

The model that has no such restrictions has been developed. The structure of the model is 

such that it can

• be in batch mode (supervised)

• be ready for operation and tuning online (unsupervised)

• switch between Mamdani or Sugeno type controllers, with a network structure 

accommodating both

• deal with mixed types of fuzzy sets; with no restriction on the type of fuzzification, 

inferencing and defuzzification schemes.

The coding and representation scheme developed enables the automatic FLC designer to 

obtain from the decoded mGA chromosome a neurofuzzy network structure in terms of its

• topology

• number of network building blocks

• type of fuzzy sets

• number of fuzzy sets for each input and output variable

With this representation, the network structure is completely liberated in terms o f size, 

connectivity, operation and optimality. While modular in approach, the evolutionary learning 

and the neural learning of the FLC are part of the same model, which is labelled ENFLICT. 

Both learning methods complement each other, and separating the evolutionary part from the 

neurofuzzy part would therefore be inappropriate.
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2. Advantage reinforcement learning technique achieving refinement and online learning

The need for and advantages of learning from interaction with the environment are 

analysed. On-line learning algorithms found in literature require prior knowledge o f probability 

distributions or complex matrices. In this thesis, no such matrices are required. Instead online 

learning is achieved (Chapter 4) using ideas borrowed from simulated annealing.

The basic advantage learning algorithm has been extended for continuous and online 

learning o f neurofuzzy control without the need for lookup tables.

3. Model free design of fuzzy control systems

Combining the model dependent ENFLICT structure with the reinforcement learning 

procedure developed, a new method is further developed in Chapter 5 to deal with complex 

systems or with systems where obtaining a mathematical model of the system is difficult or 

impossible. Unlike existing methods, the method developed here does not require any a-priori 

knowledge of or information on the path to the desired output. It is not limited to rule deletion 

only, nor to offline supervised learning.

4. A new method for hierarchical neurofuzzy structure to handle complex systems

For systems of higher dimensions respectively, a new method for hierarchical fuzzy 

control has been developed in Chapter 5. By using the response data as the model, it is possible 

to leam the controller off-line while still working with a true representation o f the model. The 

advantage of this procedure is that mGA, which has so far been used off-line for structure 

optimisation, is now integrated to the neurofuzzy-reinforcement autonomous system.
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1.5 Thesis Organisation

The remainder o f the thesis is structured as follows.

Chapter 2 provide background material necessary to the rest o f the thesis. First, 

background to neurofuzzy control is presented, followed by analysis of and comparison between 

conventional and FLCs to identify areas of a FLC that need learning, tuning and optimisation. 

Finally, the messy genetic algorithm (mGA) is introduced. The semantics and benefits of mGA 

for flexible encoding and representation are discussed, and a simple benchmark is carried out to 

support the reasons for using mGA over the simple GA.

Chapter 3 builds the ENFLICT (Evolutionary NeuroFuzzy Learning Intelligent Control 

Technique) model from the bottom up. The objective is to construct a method for automatic 

controller design. Emphasis is placed on learning and flexibility o f structure and 

implementation using neural, fuzzy and evolutionary methods. First, the neurofuzzy structure is 

constructed, and then, to enable online learning, a method based on annealing is developed. 

Then the messy genetic algorithm and coding scheme for the network structure optimisation is 

explained. Finally, the features o f the ENFLICT model, which distinguish it from other models, 

are compared and discussed, and the effectiveness o f the developed method is illustrated with 

some case studies.

Chapter 4 extends the model-based approach that ENFLICT uses in the previous chapter 

to work without a model by directly interacting with the environment. The interaction is 

achieved through reinforcement learning. Reasons for using RL are given and a correlation 

between EAs and RLs is established. To cope with continuous time systems, and online 

learning without a look-up table, an extension is made to the advantage learning RL algorithm. 

The modified algorithm is then used with the ENFLICT model to learn the network structure
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and parameters online. Since no model description is present, the gradient information 

unavailable, the backpropagation learning algorithm is replaced with a new and novel way for 

learning the fuzzy sets online with the ability for rule reduction. Finally, the entire procedure is 

tested against some benchmark problems.

Chapter 5 discusses how to tackle more complex and large systems through hierarchical 

structures, where the EA works at the upper level and the reinforcement neurofuzzy structure 

works at the lower level. The difficulties of on-line and real-time RL are discussed and a 

method of overcoming this by using plant data directly is suggested. To illustrate, a comparison 

between this method and that developed in Chapter 3 is made on the same case study problems.

Chapter 6 analyses and discusses the work in the thesis and explores possibilities and 

scope for further work in this field.
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Chapter 2

Background

“To be or not to be: that is the question”

-  William Shakespeare

The purpose o f  this chapter is to lay the foundation fo r  the contributions o f  

the thesis. First the origins and role o f  neurofuzzy control is presented, 

followed by an investigation and analysis o f  the components that make up a 

FLC. The purpose o f  this is to identify and demonstrate the various 

combinations possible in the design o f  FLCs, and where learning and 

optimisation can be applied. Then the messy genetic algorithm is 

introduced. Messy genetic algorithm is the evolutionary algorithm 

technique in the thesis fo r  the structure optimisation o f  the neurofuzzy 

network and the technique used as the teacher in hierarchical fuzzy control 

structure. The main characteristic o f  mGA is it enables flexible coding that 

is ideal fo r  network topology optimisation. mGA is used instead o f  any other 

flexible coding scheme, or devising a coding scheme from  scratch because it 

has been proven theoretically and has been applied to a number o f  

applications. To demonstrate the effectiveness o f  mGA, a simple benchmark 

test is carried out, comparing it with other EA techniques. Following on 

from  this, reinforcement learning as a tool fo r  model free unsupervised 

learning is explained and the similarities and differences between RL and 

EA are highlighted.

2.1 Fuzzy Control Systems -  Analysis and Comparison

The main reason for the popularity o f fuzzy logic is the successful application of its 

principles in the design of fuzzy logic controllers. Fuzzy logic controllers are essentially a type 

o f fuzzy logic system employing a knowledge base and an inference engine to solve a specific 

control problem. There is no set type o f FLC. In other words, the way of expressing the rules 

to describe the knowledge base and the inferencing engine varies with the type o f control 

problem.

Control systems based on fuzzy logic are popular because they are able to utilise 

knowledge extracted from human operators. Fuzzy logic control does not require a
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conventional model of the process, whereas most conventional (model based) control 

techniques need either an analytical model or an experimental model. Therefore, fuzzy logic 

control is appropriate for complex and poorly defined processes in which analytical modelling is 

difficult due to various factors, for instance the process may only be partially known or 

experimental model identification is not practicable because the inputs and outputs may not be 

measurable. It is more feasible to express control rules in linguistic form based on the 

knowledge o f an experienced human operator, which the operator understands.

In this section fuzzy logic controllers are explored, looking in detail at the components 

making up a fuzzy logic controller. When designing fuzzy logic controllers, a number o f 

assumptions are usually made (Ross 1995).

1. The plant is observable and controllable: state, input and output variables are available for 

observation and measurement

2. There is a knowledge base consisting o f input and output measurement data that can be 

fuzzified for rule extraction

3. There is always a solution

4. An optimum solution is not necessary as long as it is “good enough”.

5. The controller can only be designed with the knowledge available and within an acceptable 

range of precision

6. Optimality and stability problems are still persistent in FLC design.

With these assumptions in mind, the architecture o f a FLC will now be studied through a 

comparative study with PD controller. First the various components are identified and then the 

effect of different membership functions, numbers of rules, different fuzzy reasoning and the 

positioning of the membership functions are examined. The tests are carried out using computer 

simulation. A nominal plant (2.1) and two perturbed plants, (2.2) and (2.3), based on the 

nominal are defined below. The design condition is that the controller must satisfactorily control 

all the plants under closed loop for a step response following.

G„(s)
5

( 2 . 1)
s + 3^ + 2

(2 .2)

(2.3)
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The specifications are that the settling time should be about 20 seconds, with fastest rise 

time and smallest overshoot possible. Using trial and error manual tuning Kp = 0.2 

(proportional action) and Kd = 0.1 (derivative action) are obtained. The FLC is of Takagi- 

Sugeno type with seven equally spaced triangular memberships for each of the input variables 

(error and rate o f change o f error). The output variable is defined using seven spikes and the 

weighted average defuzzification strategy is employed. Only a PD type controller is considered 

because the inputs to the FLC resemble a PD controller. Table 2.1 shows the rule base for the 

FLC, with the universe o f discourse and membership positions shown above and to the side of 

it. Each input and output are described by the linguistic variables ‘NB’ (Negative Big), ‘NM’ 

(Negative Medium), ‘N S’ (Negative Small), ‘ZE’ (Zero), ‘PS’ (Positive Small), ‘PM’ (Positive 

Medium), and ‘PB’ (Positive Big).

Figure 2.1 shows the response o f the nominal plant with the PD and FLCs to a unit step 

input. From these it is apparent that both controllers perform well but with the FLC there is no 

overshoot and has a faster rise time. However, the responses of the perturbed systems with the 

same controllers are quite different. Figure 2.2 and Figure 2.3 shows the response o f the 

perturbed systems with each o f the controllers. As can be seen the FLC performs significantly 

better than the PD in terms of robustness. Notice the case for perturbed plant 2. The PD 

controller is extremely erratic, while the FLC, although not reaching the desired response, is 

nonetheless much more stable. Note that none o f the controllers are tuned after the initial 

design.

xxxxxx
\  -3 3

NB NM NS ZE PS PM PB

NB NB NB NB NB NM NS ZE

NM NB NB NB NM NS ZE PS

NS NB NB NM NS ZE PS PM

ZE NB NM NS ZE PS PM PB

PS NM NS ZE PS PM PB PB

PM NS ZE PS PM PB PB PB

PB ZE PS PM PB PB PB PB

Table 2.1 Fuzzy rule base for nominal plant



O
ut

pu
t 

O
ut

pu
t 

O
ut

pu
t

11 2 Background

0 * --------------------------1----------------------- i------------------------ i

0 5  10  15

T im e (se c )

FLC ........... PD

Figure 2.1 Nominal

0L i----------------------— i----------------------------- 1 _

0  5  10  15
Time (sec)

  Nominal (FC)

Perturbed I ( F C )  Perturbed 2 (FC)

Figure 2.2 Com parison

0 .5

100 5 15
Time (sec)

  Nominal (PD )

Perturbed I (I’D ) Perturbed 2 (PD)

0.6

o
fc 0 4

LD

0.2

- 0.2
0 10 15 205

T im e (sec)

FLC PD

response: Fuzzy v PI)

0 .3

0 6

0 4

0 2

200 5 10 15
Time (sec)

  Nominal (FC)

Perturbed l ( F C )  Perturbed 2 (FC)

plant response with FLC

'v

Ot
LU

■0.5

2015100 5
Time (sec)

  Nominal (PD)

Perturbed I ( P D )  Perturbed 2 (PD)

Figure 2.3 C om parison  of plant response with PD controller



2 Background 33

Next the various stages of the FLC are investigated. The first stage is the knowledge 

base. As opposed to the simple PID design where there are only three parameters to optimise, 

in fuzzy control the number o f parameters to optimise are numerous. For instance, in the 

knowledge base the parameters to consider are choice of universe of discourse for each variable 

and the structure o f the rule base. Figure 2.4 shows the response o f the system to the non- 

symmetrical (and completely randomly generated rules) rule base o f Table 2.2. The difference 

in response is obvious. The random generation of the rules was to demonstrate that the structure 

o f the rule base is dependent on the knowledge of the operator. That said, the robustness of 

fuzzy control as a method for controller design is well demonstrated. The response due to the 

non-symmetrical rule base, while rather oscillatory and erratic, does not fail in the long run. 

Although not shown in the time scale for Figure 2.4, over a longer period, the non-symmetrical 

rule base does reach the desired states. In addition to the positions o f the membership functions, 

the shape and number o f the membership functions are also important. Figure 2.5 shows the 

response of the system to various shapes of membership function at the same centre points, and 

Figure 2.6 shows the response to a varying number of membership functions. For complex 

systems it is generally better to use more membership functions to define areas o f specific 

sensitivity. The choice o f the membership function shapes depends on the application. For 

systems where smoother transitions between regions are required gaussian shapes are better 

suited, but where piece-wise implementation is sufficient, triangular and trapezoidal are 

preferred because they are simpler to implement and computationally efficient.

Another two stages in the fuzzy control design process are the inferencing mechanism 

and the defuzzification process. Figure 2.7 shows the response to various implication and 

defuzzification processes. The mean of maximum has a faster rise time but also a greater steady 

state error. The advantages and disadvantages of the various defuzzification methods are found 

Klir and Yuan (1995). As can be seen the sensitivity o f the system depends on the information 

the operator provides to the controller.

N B  NB ZE

NM

PM

NS

ZE

PB ZE

PS PB

PM

NB ZE PM ZE

NB NS ZE PS

PS NB

PS PS ZE i PB

PM PB I NS

NM

NB

PB

Table 2.2 Non-symmetrical rule base for nominal plant
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From this simple test one might conclude that fuzzy control offers as good, if not better 

than, an alternative to conventional methods. However the design process is not as simple. 

There are far more variables to consider and unless the operator is confident o f  the knowledge 

provided to the controller, the FLC will not give satisfactory results. It is therefore necessary to 

find ways to automate the design process and optimise the controller. It is possible, through trial 

and error, to work through all the possible solutions but that could often be a painful, tiring and 

very time consum ing process. From literature, it can be seen that numerous attempts have been 

made at reducing a lot o f  the guesswork from the design process through self-organising and 

neural network based systems. However, while this seems to have solved some problems, it has 

introduced many others. How to decide what type o f  activation functions, thresholds, size o f  

network, number o f  neurons and num ber o f  links and connections to use? In the next section, a 

messy genetic algorithm as a means for addressing some o f  these issues is introduced, and a 

benchmark test on the algorithm is carried out to demonstrate its effectiveness.

2.2 Neurofuzzy Control

Fuzzy logic is based on the theory o f  approximate reasoning that enables certain classes 

o f  linguistic statements to be treated mathematically. This is akin to decision-making by 

humans who tend to work with vague or imprecise concepts that can be expressed linguistically. 

To put it simply, fuzzy logic is an extension o f  conventional logic theory, and is essentially a 

way o f  mapping an input space to an output space. These input and output spaces contain 

objects, or parameters, with defined boundaries. From here on, fuzzy set theory moves away 

from conventional set theory. In conventional set theory, an object must either belong to a 

specified set or not, hence partial values are not possible. Therefore the two possible states are
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one (existence) and zero (non-existence). Fuzzy set theory on the other hand assigns all the 

objects (variables) of a particular class o f membership (linguistic variable) in the form of a 

membership function (degree of membership). This membership is usually defined in the range 

zero (non-membership) and one (full membership).

It is known that fuzzy control systems may be used as an alternative to some conventional 

control schemes where significant improved system behaviour can be obtained when fuzzy 

reasoning is applied. However, there are no optimal guidelines for designing FLCs. If they are 

designed manually, then a long period o f trial and error and much input from experts are 

required. Because the design process is ad hoc it is difficult to defend the choice of, for 

example, any particular type o f membership functions or the reasoning structure. What may be 

adequate for one set of conditions, may not be appropriate under similar but different 

conditions. In addition, fuzzy control systems lack the learning ability o f other intelligent 

techniques such as neural networks.

Neural network and fuzzy logic theories were developed about the same period of time. 

ANNs are massive parallel structures with high non-linear processing elements whose weights 

and characteristics may be “trained”. Fuzzy systems are also of parallel structures but are more 

suitable for knowledge extraction and representation. However, both knowledge extraction and 

knowledge representation in an ANN are difficult. On the other hand, the weak points of fuzzy 

systems are the difficulty o f defining accurate membership functions and o f applying the 

learning method. One o f the most obvious similarities between a fuzzy system and an ANN is 

that they can both handle extreme nonlinearities in the system collectively by a network of 

“ local” elements such as memberships or neurons. The functionality o f the shape of the 

membership function in the fuzzy system and that of the threshold function in the ANN, are 

similar. Multiply-add operation o f artificial neurons is very close to M A X -M IN  operation of 

approximate reasoning. The M IN  operation of input fuzzy variables conducted at each 

proposition o f IF  parts of fuzzy inference rules correspond to a product of input to the neuron 

and synaptic weights. The M A X  operation to obtain the final inference value from TH EN  parts 

of these plural inference rules corresponds to the input sum with a neuron. These reasons lead 

to the idea o f merging these two approaches.

The following is a summary o f the main results, drawn from literature, regarding 

computational equivalence between neural networks and fuzzy systems (Kosko 1991, Lin and 

Lee 1991, Horikawa et al 1992, Nomura et al 1992, Jang 1993, Nauck and Kruse 1993, Spooner 

and Passino 1996)

1. Feedforward neural networks with n inputs, m outputs ( n>  1,m> 1), one or more hidden 

layers, and a continuous activation function (e.g., the sigmoid function) in each neuron are 

universal approximators.
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2. Fuzzy systems based on multiconditional approximate reasoning can approximate 

feedforward neural networks with n inputs, m outputs, one or more hidden layers, and a 

continuous activation function in each neuron, provided that the range of the input variable 

is discretised into n values and the range of the output variable is discretised into m values.

3. It follows from (1) and (2) that fuzzy expert systems of the type described in (2) are also 

universal approximators.

4. Fuzzy input-output controllers based on multiconditional approximate reasoning and a 

defuzzification of obtained conclusion, are universal approximators.

Neurofuzzy networks vary in size from 3-layer to 6-layer networks. In the three-layer 

format, the first layer represents fuzzy input variables, with the middle layer representing the 

fuzzy rule base and the final layer representing the fuzzy outputs as in the pure fuzzy logic 

system. Early attempts at combining neural networks and fuzzy control were limited to just 

tuning o f the shape o f the membership functions. A first work in this was by Nomura et al, 

(Nomura et al 1992) where the membership functions are assumed to be symmetrical triangular 

functions depending on two parameters, the peak and the width. Fuzzy cognitive maps 

proposed by Kosko (Kosko 1991) are another scheme to integrate neural networks and fuzzy 

logic. Here, the membership function or fuzzy rules are chosen subjectively. Below is a review 

o f some o f the more popular fuzzynet structures and models. An overview of other models can 

be found in (Brown and Harris 1995), (Gomide et al 1992) and (Nauck 1997).

2.3 M essy Genetic Algorithm

Messy Genetic Algorithms (mGAs) were developed to eliminate the major problems with 

the simple GA (Goldberg 1989b). The simple GA is considered too rigid where the length of 

the string is fixed and a good string arrangement is only possible when information on the tight 

coding scheme is available. So the only way to bring important alleles together is to use 

ordering schemes such as inversion. Messy GAs use a relaxed and flexible coding 

representation to solve linkage problems. In addition, Goldberg showed that mGAs were able 

to tackle complex higher order problems, which the simple GA was unable to do.

A similar linkage problem has also been existent in nature. In nature, evolution can also 

be considered rigid because members o f a certain species tend only to mate with their own kind, 

and the evolution operators and operation thus ensure that the full gene complement for that 

gene is maintained. However, when one considers evolution over a wider time scale, this 

apparent rule of evolution was not always so. In fact evolution began with simple life forms 

which used and reused good building blocks through time to form more complex life forms. 

Therefore, putting GA theory aside, nature itself has shown that structures need not be rigid and
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complex from the start, but rather begin by building simple structures and then evolve it to more 

complex structures through time. In the following sections this alternative form of GA is 

explored.

2.3.1 An Overview o f mGA

A Messy GA is a two-phase iterative optimisation method with a local search template 

and adaptive representation. The two phases are primordial and juxtapositional. In the 

primordial phase, using the selection operator alone, near global solutions are built up. In the 

juxtapositional phase, the solutions are subjected to the mGA operators to obtain the optimal 

solution. An mGA is different from the simple GA in that the mGA gene contains its locus and 

alphabet, and also uses a variable length chromosome. Due to these features, the operators used 

in the juxtapositional phase are different from the simple GA.

2.3.2 Flexible Coding

Messy GAs liberates the fixed allele position of the simple GAs by allowing the 

construction o f chromosomes whose genes are ordered independent o f its position. A messy 

gene is an ordered pair identifying its locus (or index) and its alphabet (or value). Since the 

string is variable and can potentially increase in size, the size o f the locus has to be limited to 

size. Not only is the chromosome of variable length, a certain locus can appear more than once 

in the string or many may altogether be missing. Consider a problem of length 3, then all of the 

following strings are valid:

S| = ((2,1) (1,0))

S2 = ((3,0) (2,0) (3,1) (1,1))

S3 = ((1,0) (2,0) (2,1))

The first string is an example o f an underspecified string because reference to locus 3 is 

missing. The second string is a classic case o f overspecification because reference to locus 3 

occurs twice, and is typically handled by some sort or precedence rule. The third example is 

both underspecified and overspecified. It is underspecified because reference to locus 3 is 

missing, and overspecified because reference to locus 2 appears twice. Notice also the order of 

the genes. This is one of the characteristic properties of the mGA, i.e. the order of the genes are 

irrelevant unlike in the simple GA where it is critical for the decoding process.
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2.3.3 mGA D ecoding

As has been seen, a messy chrom osom e can take various forms, and methods o f  decoding 

it have to reflect the chrom osom e representation. More often than not, a full gene com plem ent 

is required in order to evaluate the objective function, and in such cases, o f  the two types o f  

representation, overspecification is the easier o f  the two to handle. Consider a three parameter 

problem represented by the string ((3,1) (1,1) (1,0)), there is a choice o f  selecting a value o f  0 or 

1 for parameter I. Goldberg and Smith suggested that the most reliable precedence rule is the 

firs t-co m e-firs t-served  rule (Goldberg  and Smith 1987) where the first gene is taken from a left- 

to-right scan, hence the gene (1,1) was chosen.

Underspecification need only be dealt with when all decision variables have to be 

available in order to evaluate the objective function. In the above example, in order to evaluate 

the objective function with the three values, the missing value needs to be filled in somehow. 

This is done by com paring the string with a predefined template and by borrowing the missing 

value from the template. How the template is defined is important. The missing parameter 

value can be filled by randomly generating it, but this would have the effect o f  introducing noise 

that could lead to sub-optimal solutions. Alternatively, the template can be randomly set, but 

fixed after generating the first time. Again some o f  the problems with randomly generating 

every time persist. Another method is to initialise the template with Os and build it up with 

locally optimal ones obtained from the completed run. This way, it is possible to be certain to 

some extent o f  obtaining a partial sub-optimal performance. This is the method adopted in this 

thesis. Supposing the locally optimal template were set to (1 1 0), then the missing gene in the 

above example would take the value (2,1), giving the full gene com plement as ((1,1) (2,1) 

(3,1)).

2.3.4 mGA Operators

Due to the nature o f  the string representation, the standard genetic operator crossover has 

to be modified. Consider the fixed length coding o f  Figure 2.8 and the standard crossover 

operator on it.

Crossover point Crossover

Figure 2.8 S ta n d a rd  crossover on fixed length string
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In messy GA such operation would not work because of the variable length string 

because a single cut point may not be applicable or available on both chromosomes. Instead, the 

standard crossover is replaced by two operators: cut and splice.

The cut operator is based on a cut probability calculated as p c = p K{A ~ 1) , where A is

the length of the string and p K < 1 is a gene-wise cut probability. If the cut is called for, the

chromosome is cut at a position chosen uniformly at random. For example, if cut is called for in 

the string ((2,1) (3,0) (1,1) (3,1) (4,0) (7,1)) and the cut occurs at position 2, the two resulting 

sub-strings resulting from the cut operation would be ((2,1) (3,0)) and ((1,1) (3,1) (4,0) (7,1)).

The splice operator simply joins two sub-strings, resulting from the cut operator, to form 

a single chromosome with splice probability p s . Applying the splice operator on the two sub­

strings above would result in the chromosome from which they were obtained through cut. 

Figure 2.9 illustrates the cut and splice operators graphically.

Cut Point

(6,1)(4,1)( 1, 1) (5 ,0) (2,1) (5,0) (2,1)(4, 1) (6, 1) ►

S p l i c eCut
Cut Point

(5,0)(3,0) (2 , 1)( 1, 1) (2 , 1) (5,0) (3,0) ( 1, 1)

(6, 1)(3,0) (2,1)( 1, 1)

(5,0) +(2 , 1)(5,0)(1,1) (4,0)

Figure 2.9 Cut and splice operation

If cut occurs on both strings, and splice is not called for in one or both cut parent parts, 

the non-spliced parts are reinserted back in to the population as new individual strings. 

Similarly, if cut occurs only on one parent string or no cut occurs at all, then the splice operator 

is not called for. Note also that in mGA, a single-point crossover is applied.

Mutation in an mGA chromosome can take the form of any type described above for the 

simple GA, as is also the case with the selection method. In this thesis, hyper-mutation 

(Grefenstette 1992) and tournament selection (Goldberg et al 1991) is used for mGA 

implementation.
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2.3.5 mGA Operation

A messy GA works in two phases: a primordial and a juxtapositional phase. Figure 2.10 

shows the schematic of the mGA algorithm.

Before the primordial phase, the population is initialised randomly such that all possible 

combinations of the currently considered relations are represented. Depending on how the 

template is to be constructed, the initial population may be evaluated to obtain the objective 

value for each string, and the locally optimal solution from the population can be used as the 

template.

During the primordial phase, through the selection operator alone, the population is 

enriched, over a number of generations, with locally optimal strings. In this phase, no function 

evaluation is performed. Since no other operators are used, the strings in this phase retain their 

original lengths. At this stage, if a complete era has passed, then the population with the fittest 

* half is kept for future generation and the other half of the population is randomly generated to 

introduce diversity into the population. Depending on the length of the primordial phase, it may 

be that several eras will have passed before the next phase starts. After obtaining an enriched 

population of strings, the population is processed in the next phase where all the mGA operators 

are used (i.e. cut and splice) as described in §2.3.4. At the start o f the juxtapositional phase, 

larger strings are obtained through splicing. The rest o f the operation in this phase follows the 

standard GA process.
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Figure 2.10 Messy GA flow diagram
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2.3.6 A Benchmark Test

The objective function of an ^-dimensional maximisation problem that was introduced by 

Michalewicz (Michalewicz 1992) and further studied by Renders and Bersini (Renders and 

Bersini 1994) is given by:

/(*) = E /(* ,)= L sin(*,)sin'
/ = i  / = i

(  ■ 2 \  
IX, for x  e  [0, x]n (2.4)

It is composed o f a family o f amplitude-modulated sine waves whose frequencies are 

linearly modulated. This objective function is, in effect, de-coupled in every dimension 

represented by f ix ,) .  Every such member function is independent and is shown in Figure 2.11 

for k = 1 and n = 20. This characteristic yields the following properties:

The theoretical benchmark solution to this ^-dimensional optimisation problem may be 

obtained by maximising n independent uni-dimensional functions, f h the fact of which is 

however unknown to an optimisation algorithm being tested. The results for k  = 1 and n = 10 

are shown in Table 2.3. Note that the lower boundary o f the objective is / m j n  = 0 within the 

given search space. The optimality, accuracy and sensitivity are, as shown in (Feng 1998):

Optimality = ^ m,n = (2.5)
f  -  f  9 6547J  max J  min ^  /

Accuracy] = 1 - lx 0 - x o | | 2

x - x
=  1 —

10 12 
X K  - * o , |
/ = l

VTo. ( 2 .6 )
n

. . .  1 - Optimali ty
Sensitivity ~ --------------------  (2.7)

1 -  Accuracy

• The larger the product kn  is, the sharper the landscape becomes.

18 n•  There are n\ = 2.4329x 10 local maxima within the search space [0, tt] .

• The ease of obtaining theoretical benchmarks regardless of n makes it ideal for studying

NP characteristics of the algorithms being tested.
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Figure 2.11 The /i independent uni-dimensional functions that form the 20-D objective

function

Using the above benchmarks, the performances o f some EAs are tested. For each 

method, 10 repeated experiments are carried out with randomly generated initial populations. 

The results o f optimality, accuracy, sensitivity, reach-time and optimiser overhead are shown in 

Table 2.4.

/ 1 2 3 4 5

*i0 2.072 1.571 1.305 1.916 1.718

fiO .8409 1.000 .9619 .9396 .9890
i 6 7 8 9 10

X,Q 1.571 1.458 1.755 1.655 1.571

f o 1.000 .9933 .9830 .9964 1.000

Table 2.3 Theoretical solutions and objectives of Benchmark Problem (2.4)
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Algorithm Supremum Optimality Accuracy
Random search 3.331613 34.51% 25.7369%
Simplex (Press et al 1994) 1.789972 18.54% 25.7807%
Hill-climbing (a posteriori) 9.6363 99.81% 99.21%
Simulated annealing 9.6402 99.85% 99.20%
Simple GA (Goldberg 1989) 5.876064 60.86% 21.7845%
FlexTool(GA) Toolbox 9.2081 95.37% 89.0542%
Messy GA 9.3743 97.10% 96.437%
Theoretical objective 9.6547 1 0 0 .0 0 % 100.00%
Algorithm Sensitivity N  or 

Reach-Time
Overhead

Random search 88.3786% 40,000 2.6437%
Simplex (Press et al 1994) 109.978% 40,000 5.5914%
Hill-climbing (a posteriori) 24.05% 39,038 25.07%
Simulated annealing 18.75% 38,721 34.23%
Simple GA (Goldberg 1989) 0.502699 40,000 1111.78%
FlexTool(GA) Toolbox 42.3732% 40,000 1170.36%
Messy GA 81.39% 40,000 1058.66%

Table 2.4 Benchm ark test results on the 10-D problem

2.4 Reinforcement Learning

2.4.1 Reinforcement and Advantage Learning

In many control problems, the most appropriate control actions are unknown and thus 

learning techniques are employed. For learning, three types o f mainstream learning methods are 

explored: supervised, unsupervised and reinforcement learning. Most learning fuzzy control 

techniques fall into the category of supervised learning systems, and their biggest drawback is 

the need for the desired output o f the controller. These desired outputs are generally considered 

to be provided by a supervisor. This requirement is difficult to satisfy for a control system since 

the most appropriate control actions may not be known.

A learning paradigm, known as reinforcement learning (RL), has a more appropriate 

feature in that instead of requiring a supervisor to provide the correct control actions, it can 

accept feedback o f scalar performance measured by a critic. The critic defines good and bad 

performance. A motivation for RL is that it is the primary learning method of biological 

systems. Animals learn and adapt daily with only reinforcement type error signals. 

Reinforcement learning studies therefore seek to capture similar capabilities in artificial 

systems. Just as artificial neural networks are patterned after biological neural networks, RL 

systems strive to emulate animal learning and are investigated in this thesis.

Reinforcement learning is an approach to machine intelligence that combines 

unsupervised learning and dynamic programming to solve problems that neither of these 

disciplines are able to address alone (Barto et al 1983). Dynamic programming is a field of 

mathematics that has traditionally been used to solve problems of optimisation and control. It 

works by generating a utility function (J) which is optimised in the short term for an
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environment (m) with utility function (U), and U is optimised in the long run. However, 

traditional programming is limited in the size and complexity of the problem it can address.

In reinforcement learning, a signal is received that does not say anything about the 

desired response as in supervised and unsupervised learning, but it does say whether a system is 

performing well or badly. Usually, a system is said to be learning when it improves its 

performance based on a certain performance measure. Suppose that the performance measure is 

calculated as a function of the parameters of the learning system, which represent its current 

state. For instance, in a water tank system these parameters could be e the error between the 

current and the destination height, h the destination height, u the inflow signal sent to the pump 

and maybe some other sensory information. If the performance measure can be visualised as a 

surface, then each state o f the system {e\ hd; u...) can be assigned to a point on that surface j{e\ 

hd\ u ...) where / i s  the performance-measure function. Now, if the system is to improve its 

performance, the point corresponding to its state on the performance surface should move 

towards higher points (Barto 1992).

Figure 2.12 illustrates the reinforcement learning procedure. An agent is connected to its 

environment via perception and action. On each step o f interaction the agent receives as input 

some indication of the current state o f the environment; the agent then chooses an action to 

generate as output. The action changes the state of the environment and the value o f this state 

transition is communicated to the agent through a scalar reinforcement signal. The agent's 

behavior should choose actions that tend to increase the long-run sum of values of the 

reinforcement signal. It can learn to do this over time by systematic trial and error, guided by a 

wide variety of algorithms.

Environment

State/Scalar
feedback

Action
Reinforcement

Learning
System

Agent

Figure 2.12 Standard reinforcement learning schematic

In addition to the environment and the agent, a reinforcement learning system has three 

main sub elements:
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• A policy

• A reinforcement function

• A value function.

A policy is the central part of the agent, and on its own can define the behaviour o f the 

agent. It decides which actions to take in a given state. All the other components work around 

the policy and works to improve the policy. The reinforcement function determines the 

objective o f the reinforcement learning agent, and the aim of the agent is to maximise the 

reward it receives over the long run. It is fixed and indicates what is good or bad in the 

immediate situation. The value function is a mapping from states to state value and can be 

approximated using any type of function approximator (e.g. multi-layered perceptron, memory- 

based system, radial basis functions, look-up table, etc.) (Anderson 1989, Watkins 1989, 

Kaelbling 1991, Lin 1992, Millan and Torras 1992, Singh 1992, Thrun 1993, Anderson 1993, 

Glorennec 1994, Gullapalli et al 1994, Lin and Lee 1994, Lee et al 1995, Shijojima et al 1995). 

It is a reward predictor and indicates what is good or bad in the long run.

In application to the optimal control problems RL could be formulated in a way that the 

long-term consequences o f actions are taken into account since in most o f the cases the goal is 

to design a controller with an optimal long-term performance. The RL-controller is then 

designed to receive a reinforcement signal from the controlled process based on its performed 

action and the state o f the process. The objective o f the learning system is then to minimise or 

maximise the amount o f reinforcement signals accumulated in the future, depending on what the 

signal represents, cost or benefit. This performance measure is often calculated as a discounted 

sum of the future reinforcement signals in which the earlier ones are weighted more.

2.4.2 Reinforcement Learning and Evolutionary Algorithms

The standard RL problem is based on dynamic programming approach, and the difficulty 

with that is it uses an estimate of the value and value function hence does not actually produce 

global solutions as evolutionary algorithms. However, on closer examination, evolutionary 

algorithms can be identified to be a special type o f reinforcement learning system except that 

they differ from dynamic programming RLs in two important ways. First, EAs search in a 

completely random fashion and hence ignore a lot of the information between state transitions; 

and secondly, EAs discards poor solutions in favour o f good ones whereas RLs use this 

information in its decision making process. To illustrate this, consider Figure 2.13.
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Environment Fitness
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State/Scalar
feedback

Fitness
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SolutionReinforcement
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Evolutionary
Algorithm

Agent Agent

Figure 2.13 Comparison of reinforcement learning and evolutionary algorithms

Comparing the way an RL system and an EA is structured, it is evident that EAs are in 

fact RL systems. Evolutionary algorithms tackle the same kind of problems as the dynamic 

programming RLs, and have similar properties. Neither requires derivative information, and 

both work around a performance measure, and yet they work differently. EAs do not learn the 

value function, but instead learn the candidate solution (or policy) directly. Instead o f working 

with a single policy (i.e. population member) at a time, It generates population of policies and 

can evaluate each one sequentially or in parallel. Through genetic operators, crossover and 

mutation, new pool o f policies is constructed. Each policy is then evaluated against a 

reinforcement function, and based on the goodness of that policy, credit assignment is carried 

out. Unlike RLs though, the algorithm iterates until a sufficiently good policy is found. Since 

EAs explore the search space in a random fashion, EAs ignore much of the useful structure of 

the standard RL problems, in that they do not make use o f the fact that the policy they are 

searching for is a function from state to action. Also they do not notice which states an 

individual passes through during its lifetime or which actions it selects.

2.5 Summary

This chapter serves as background and foundation for the contributions made in the 

thesis. The theme of the thesis is fuzzy learning through neural network representation, and the 

relationship between fuzzy systems and neural networks was highlighted. Through a simple 

analysis and experiment, the difficulties and confusion that a designer faces when design FLCs 

were identified. The conclusion of the experiment is that a method or set of methods should 

exists that allows for designing FLCs such that it is completely flexible and have self learning 

properties so that the operator or designer does not have to design in ad hoc. For this purpose, it 

has been decided that Goldberg’s messy genetic algorithm and reinforcement learning would be 

used. Messy genetic algorithm for optimising and tuning neurofuzzy controllers was described, 

and the original binary coding of Goldberg’s mGA is replaced by integer coding to enable
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flexible representation of neurofuzzy systems. This was followed by a simple benchmark test to 

show the potential of mGA.

To demonstrate the need for flexibility in the structure, consider the general format for 

representing fuzzy sets within a fixed length chromosome such that each gene represents a 

parameter o f the fuzzy set (i.e. the spread and centre for gaussian sets). Then there would be a 

need for 18 genes to represent a variable with 9 fuzzy sets. This is obviously not desirable if 

there is a large number o f such variables to optimise. In addition to not knowing how many sets 

to represent each variable with, one also has to consider the type of the sets and the form of the 

rules defining the (state, action) pair. In addition, any redundant information identified as a 

result o f the evolution process is not removed from the process as it still remains in the coded 

structure.

Finally, reinforcement learning is described, and the relationship between RLs and EAs 

has been highlighted. Just as artificial neural networks are patterned after biological neural 

networks, reinforcement learning systems strive to emulate animal learning. Reinforcement 

learning combines elements of both supervised and unsupervised learning. Like supervised 

learning there is some training information available. However, an external teacher does not 

provide this. Instead, as in unsupervised learning, there is a built-in critic that provides the 

training information. In addition as in evolutionary algorithms, it works around an evaluation 

function. In fact the correlation between evolutionary algorithms and reinforcement learning 

systems, will be studied. However, unlike EAs, the evaluation function does not tell the agent 

how it should change its behaviour. The agent simply tries to maximise or minimise the 

performance measure o f the evaluation function.

The study has also highlighted the lack of a learning algorithm for the fuzzy systems that 

is not handicapped by issues such as quality training data and learning online while system 

parameters change. These are the objectives of the next chapter.
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Chapter 3

Systematic Approach to FLC Design  

Automation

Imagination is more important than knowledge. Knowledge is 

limited. Imagination encircles the world.

- Albert Einstein

The success o f  a neurofuzzy control system solving any given problem  

critically depends on the architecture o f  the network. Various attempts have 

been made in optimising its structure using genetic algorithm automated 

designs. In a regular genetic algorithm, however, a difficulty exists which 

lies in the encoding o f  the problem by highly f i t  gene combinations o f  a 

fixed-length. For the structure o f  the controller to be coded, the required 

linkage form at is not exactly known and the chance o f  obtaining such a 

linkage in a random generation o f  coded chromosomes is slim. This chapter 

presents a new approach to structurally optimised designs o f  neurofuzzy 

controllers. Here, a messy genetic algorithm, whose main characteristic is 

variable length chromosomes, is used to obtain structurally optimised 

neurofuzzy controllers. Structural optimisation is regarded important before 

neural network based learning is switched into. Upon structure

optimisation, a new neurofuzzy learning algorithm, based on the 

backpropagation algorithm, is developed fo r  online or off-line learning.

Both the evolutionary structure optimisation stage and the learning stage 

belong to the same model, complimenting each other, and is known as 

ENFLICT (Evolutionary NeuroFuzzy Learning Intelligent Control 

Technique). The resulting model is a new method fo r  neurofuzzy control that 

is completely liberated in structure andfeature.

3.1 The D esign o f FLC

In the previous chapters it was seen that the usefulness of fuzzy control is offset by the 

difficulties in tuning the controller, and also that there have been numerous attempts at 

optimising, automating and tuning FLCs through neural network and genetic algorithm hybrids.
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It is evident from the literature review that there is no systematic procedure for achieving these 

tasks. There are presumptions, restrictions and complications associated with every model and 

approach discussed. Therefore, in this thesis, an autonomous fuzzy control paradigm is 

developed that is systematic, flexible and autonomous. In this chapter the process of achieving 

an autonomous controller is worked through systematically, and since a single solution is not 

available, several intelligent control components are required. The phases involved in designing 

the controller are be broken down to:

1) Definition of the system behaviour such as system constraints and desired response.

2) Initialising the controller with a priori information. Here the input and output variable 

operating regions are defined as are guestimated membership types, numbers and positions.

3) Off-line learning o f fuzzy parameters and global learning o f structure

4) Local or online learning and fine tuning o f fuzzy parameters

5) Validation o f the controller with conditions outwith the optimisation process

3.2 Self-Evolving Neurofuzzy Control

From the above experiment o f §2.2, it is possible to conclude that learning can be applied 

to at least five different aspects of a fuzzy system

1) The definition of the fuzzy sets covering the universe o f discourse of the variable, i.e. the 

shape and position o f their membership functions. This point is addressed by many 

proposals within the fuzzy community. Most o f the proposals consider a given rule base, 

either covering all the possible combinations of antecedent and consequent values, or given 

by some expert.

2) Which values o f the variables in the rule antecedents are relevant for a given application? 

Many of the approaches so far proposed address this problem considering all the possible 

antecedent configurations, but this may lead to a non-minimal, large number of rules, some 

of which might not match any relevant world state, thus leading to problems of unreliable 

evaluation.

3) Which values of the variables in the rule consequences are relevant? Generally, this is 

obtained as a by-product of the learning activity, centred on the next aspect.

4) What is the best combination of antecedent and consequent values in a rule? In other 

words, what is the most appropriate action, given a situation? Notice that, with fuzzy rules, 

the action sent to the actuators does not depend only on one rule, but on many different 

rules triggering with different degrees.

5) What combination of rules best covers all the situations occurring?
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Since the description of the system behaviour is system dependent, and the FLC is desired 

to learn from experience, the choice of the initial FLC variables becomes less important as long 

as they are reasonable. Therefore, in pursuit o f the main aim of the thesis, which is to develop a 

method for constructing self-learning controllers based on fuzzy control, the construction of the 

model is begun by developing a neurofuzzy model that will be responsible for the learning and 

respond to system and environmental changes. The neurofuzzy model will henceforth be 

known as ENFLICT (Evolutionary NeuroFuzzy Learning Intelligent Control Technique). 

Thereafter, the process o f structure optimisation by the messy genetic algorithm of this model 

will be described.

3.2.1 EN FLIC T Network Architecture

The ENFLICT structure developed in this thesis also exhibits properties similar to those 

highlighted in §2.1. That is, it is an universal approximator based on a feedforward neural 

network with / inputs and j  outputs. The threshold functions of the neurons are represented by 

fuzzy membership functions, and the M IN  operation o f input fuzzy variables carried out at each 

I F  parts of fuzzy inference rules correspond to a product o f input to the neuron and synaptic 

weights. The M A X  operation is then used to obtain the inference value from TH EN  parts of 

these rules, corresponding to the input sum with a neuron. The model is depicted in Figure 3.1. 

Layers Lj and L2 represent the fuzzification process while layers L3 and L4 represent the 

inferencing mechanism with layer L5 equivalent to the defuzzification process. Since the 

network essentially represents a fuzzy logic controller mapping there are restrictions on how 

much the network can be adjusted in order to achieve the desired actions from the systems, e.g. 

the number of layers cannot be altered since this has direct relation to the inferencing 

mechanism. This limits the structural optimisation to the type of activation function of the 

neurons, the number of neurons per layer and the necessary links between adjacent layers. 

Therefore, the relevant parts of the network requiring optimisation are the shapes of the 

antecedent membership functions, the number of rules, the network connectivity and the 

consequent part, indicated by layers L3 and L4 as only these influence the action of the 

controller. The other parts on the network are kept constant.
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Fuzzification Fuzzy Inference Defuzzification

L4 U

Figure 3.1 ENFLICT structure

Layer L |: The function of this layer is simply to scale and map the input \ t to the 

corresponding fuzzy subspace represented by the neuron in layer L2. The scaling is carried out 

to make the input lie in the interval [0,1]. Consequently, the universe o f discourse for all inputs 

lies in the interval [0,1]. Therefore, the output o f neurons of this layer does not connect to all 

the neurons of its adjacent layer, i.e.,

0 ZO) = y/(x i ) /=  1,2,....,/? (3.1)

where ij/ is the scaling factor given by
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max mini

There are no link weights to adjust in this layer, hence all weights are unity, and the 

number o f nodes is the same as the number o f inputs.

Layer L2: The nodes of this layer are labelled M-nodes. The output o f each node 

depends on the type o f activation (membership) function used to define each linguistic variable. 

The noticeable feature o f each node is that each node represents a sub-network with one hidden 

layer whose nodes represent the parameters o f the membership function. For example, Figure 

3.2 shows a typical sub-network for an A/-node representing a trapezoidal type membership 

function. The nodes o f layer L2-i and L 2 - 2  have linearly saturated transfer functions, and the link 

weights of layer L2.i are unity . The link weights o f layer L2.2 represent the membership function

parameter set. For the trapezoidal example, c o ^ 2'2̂  = {a ,b ,c ,d}, Figure 3.3 shows how these 

parameters map to the trapezoidal shape.

<0 ^ =1 (3.3)

L 2-I L2-2 L2-3

*

Figure 3.2 Layer 2 Af-node sub-network
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b da c

Figure 3.3 Trapezoidal membership function

The output o f layer L2.3 and hence of layer L2 is

(* ,))=  / ( t f / 2- 2,2- 3)(A/p (*,-))) p =  1,2, ... ,w and /=  1,2, ... ,/? (3.4)

where / i s  the function defining the shape of the fuzzy set. This in essence gives the grade of 

membership of the p'h membership function of the /th input variable. The link weights of layer 

L2 do not change and are of unit value.

0 ) ^  = 1 (3.5)

Layers L3: This layer is part of the inferencing mechanism. For rules o f the form

/?/: IF (x\ is M|(*i)) AND  AND (x, is Mp(x j ) )  THEN (y\ is AT|(yi) ) . . .  (y} is Âq(yj))

where / is the rule number, M  and K  are fuzzy variables characterised by the activation

functions. Every neuron in this layer then essentially performs the AND operation of the fuzzy 

inferencing mechanism using the product operator. There are as many neurons in this layer as 

there are rules. Each neuron output represents the firing strength of a rule.

0/(3) = l W * i )  '= > .2 ........« (3.6)
i

where p  is the grade of the membership function activated by the fuzzy rule premise. Once 

again, the link weights of this layer do not change and are of unity.

(3.7)
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Layer 4: The nodes of this layer are o f two types. The © nodes resolve rules having the 

same consequence through the OR operation. The SUM operator is used for fuzzy OR, and 

there are as many © nodes as there are rules. The output o f each © node is given by:

O (4,®) _
= 1

I
I -  1,2 , ... , r and i=  1,2 , ..., n (3.8)

where / is the rule number. The other type of node in this layer is the AT-node. AT-nodes represent 

a sub-network similar to the nodes of layer 2. Once again, there is one hidden layer. However, 

the hidden layer nodes represent the parameters used to define the output membership functions. 

For example, Figure 3.4 shows the sub-network for a /£-node representing a trapezoidal 

membership function like Figure 3.3.

L 4-1 u -2 L 4-3

(4 -1 ,4 -2 ) (4 -2 ,4 -3 )

A..

Figure 3.4 Layer 4 AT-node sub-network

As with the M-node sub-networks, layers L4.1 and L4.2 have saturated linear transfer 

functions, and the link weights connecting L4_i and L 4 . 2  are unity. The link weights connecting 

L 4 . 2  and L 4 . 3  reflect the output membership function parameter sets. The output of L 4 .3 , and 

hence L 4  A^-nodes is given by

= J 4- 2A- 3\ K g { y j ) ) - r W * , - )  (3.9)
/

where / = 1,2 , ... , r; /' = 1,2 , ..., n\ j  = 1,2 , ..., m and &/2_2,2“^ represent the membership 

function parameter set, for example, ry 2̂-2 2-^ = {a,b,c,d}  for the trapezoidal case.
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The advantage of using A^-type nodes for each rule consequence, instead o f using a single 

node to represent an output membership function, is that both Mamdani and Sugeno type FLCs 

may be designed. That is, it can represent continuous or discrete fuzzy sets. If desired, since 

there are as many M  and K  nodes as there are rules, each neuron can represent a different fuzzy 

set or fuzzy sets can be shared between rules trough grouping.

Since all the parameters relating to the shapes o f membership are dealt with in the sub­

network, there are no link weights of the main network that need adjusting. Hence the link 

weights of layer L4 are also unity.

0 ) ^  = 1 (3.10)

Layer Ls: This is the output layer and acts as the defuzzification process. This is 

dependent on the defuzzification type. Here the centroid defuzzifier is used because this 

method almost always displays smooth control behaviour. If a specific rule is predominant in a 

certain process, it may not be so dominant the next time. The centroid defuzzifier however will 

ensure that it will still have some influence regardless o f how drastic the change in the 

environment.

i
/

^ - 2 ,4 - 3

i

I
/

n  <“ ;(* ,)
/

3.2.2 The Learning Algorithm

The learning algorithm resembles a backpropagation algorithm. First one needs to define 

an energy function which indicates how well the neurofuzzy controller is performing at meeting 

certain desired response or environment or condition. The error function employed is on the 

relative entropy function (Solla 1988) defined by.

£ = ±(l+y)log  ----  +L(l+_v)|o,
\ ' +y )  2

l + l
'+y.

(3.12)

where y  is the desired response due to input x  and y  the actual. The function has an advantage 

over the standard quadratic error function in that it accelerates convergence on plains in the 

error landscape where the standard function could stick, and decelerates progress on sharp bends
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of the cost surface. The function is defined for a single input pattern at any instance of time, but 

can also be adapted and used for training data in off-line batch mode.

The task is to minimise (3.12) for the given network structure. The energy function 

defined in (3.12) is the global energy function for the network indicating how well the whole 

network is performing. However, the difficulty lies with the fact that controllers based on such 

networks reflect only specific operating conditions. The other allied problem is that it also 

implies, particularly in batch learning, that one needs to know the input-output relations which 

the network tries to match through the learning rule. Obtaining accurate and quality training 

data for engineering systems is probably the primary difficulty because often it is not possible to 

do so or the algorithms producing the training data are not in general predictive and cannot truly 

represent the varying environment. Ideally, all one would like to provide is a reference input 

signal and one wants the system to follow this signal regardless of the states the system inputs 

go through. Therefore, one should not have to be concerned about producing input-output test 

patterns for the network to match, but simply some reference signal for the network to follow. 

In addition, one would also wish to take this further and want the network to be able to operate 

on-line where only a single input set is available at any instance o f time and thereafter eliminate 

the input set after the network has learnt.

In order to achieve this and for the network to adapt to changing operating conditions, it 

is necessary first to ensure that the input pattern drawn at time t is independent of the previous 

input pattern, i.e. the input pattern to the network is provided at random. Second, one would 

need to ensure that changes in the operating conditions take place by small amounts. Third, a 

local energy function which takes account o f such fluctuations in the operating conditions, 

needs to be introduced. Finally, static condition based networks have a learning algorithm with 

an asymptotically vanishing learning rate. Therefore, the algorithm has to be adjusted to take 

account of a non-vanishing learning rate.

Let al\ the weights and thresholds of the network be represented by vector w, then the 

networks weights are updated according to the rule

w (t) -  w(t -  1) + TjS(t -  1) —
dw

(3.13)

where i) is the learning rate, and

(3.14)

As already stated, the operation of the learning rate is a major factor in the convergence 

and learning o f the network. The larger this rate, the faster the response o f the network to
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changes in the environment. However, the negative side to this is that it causes large 

fluctuations around the local optimal of the vector h > ,  thus affecting the network’s accuracy. On 

the other hand accuracy has to be compromised for generality if the network is to be truly 

adaptive and reflect any change in the environment. To address this issue, in the learning 

algorithm the learning rate is replaced by an annealing rate a  which is defined by.

where /? is a variable containing the boundary information o f the local weight vector, w. Both ft

and the -  terms are used to prevent the annealing rate tending to zero as global energy

decreases. As the network learns more and more, around a specific operating region of change 

in system parameters, so generality o f the network will be affected as it fluctuates around the 

optimal value of w. To take account of this, a local energy function, s, is used to compensate 

for the loss o f generality. The local energy function is defined as .

The simplicity o f this learning method is that it requires no prior knowledge o f any 

probability distributions or complex matrices such as the Hessian or Jacobian as proposed in 

other on-line learning algorithms (Berenji 92, Rattray and Saad 97). The other advantage of this 

method is that fuzzy parameters can be dealt with directly as is needed to at the fuzzification 

stage. As mentioned before, this rule need only be applied to weights of the membership 

functions of layers L2.2 and L4.2. The weights of other layers are of unit strength.

a ( t)  = j  [a(t -  \)s ( t  - 1) -  s ig n (s(t (3.15)

(3.16)

where (w) indicates the expected value of w over all inputs, and in (3.15), the direction of 

change o f the annealing rate is controlled through

s ig n (s(t  - 1)) (3.17)

The learning rule (3.13) is now updated as follows

w (t) = w(t - 1) + a S ( t  -  \) -^ —
dco

(3.18)

5
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Now that the necessary components of the backpropagation algorithm for on-line and 

unsupervised learning have been identified and modified, it is possible to apply the algorithm 

and work backwards through the network.

Layer L5: From the equations describing the behaviour of the network, it is clear that in«
the main network, there are actually no weights that need adjusting. Only when a sub-network 

node is encountered does the error need to be taken at the output o f that network and the 

learning algorithm applied with the annealing rate. Other than that, the error only needs to be 

propagated backwards to the preceding layer.

d y d y j

1 + y
log

i + y j

i + y
+

i - y ,
log

1 - y
(3.19)

since y  . = . Therefore, evaluating (3.19),

Oj  2 log

V

- l o g
f  1 -  ^

l ~ y j
\ - y

J)
= - - l o g r ] + y j _ \ - E

1 - y j  1 + y
(3.20)

Layer L4: the layer does not have any weights that need updating. Therefore, the error is 

simply propagated backwards. However, there is still some computation involved. The weights 

of the K-node sub-network layer L4.2 still need to be updated. Using the chain rule,

dE dE d O p K^

d J ^ ( K q ( j , ) )  a 2 l >

dE dE

dO y . dO
(3.22)

From (3.11),
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8 0 )

'y j  
J**)

r w * , )

hence,

(3.24)

dE

dO
- #

I
/

(3.25)

and then from (3.18), the weights o f the hidden layer L4.2 are obtained from

„tM _ „ ( 4 , K ) _  - o ( 5 ) .  
m(t) 1) a O j

d O (4.AT)

n  M i k i )

(3.26)

where

(3.27)

Since the error propagates through types of nodes at layer L4 the sum of the errors passed 

through each type of node is taken.

4 4)= - £
j  d O

dE J  dE dE ^

j \ d o f ' K) + d o f ^
(3.28)

dE dE d y ,

dO d y j  dO)(4,©)
(3.29)

From (3.8), (3.9) and (3.11), it is clear that

8 y j  ?
eo (4.®)

r i f t k )
/

Using (3.25), (3.28) and (3.30), the error propagated to the preceding layer is

(3.30)
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-Z
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(3.31)

Layer L3: Returning to the single type of nodes in this layer, the error to propagate to the 

preceding layer is derived as in the following:

< # = - 2 :
dE

= - z  
/

1 CD '"CT
'

1

(4)dE  dE 80}

8 y , a O ;(4) 5 o ) 3)
, ( 4 ) ^

S l  a o F
(3.32)

From (3.6), (3.8) and (3.9)

SO (4'
+ 1 (3.33)

(j p ) = - 4 < 5 ! 4, U 4'A' , + i)J (3.34)

Layer L2: As with the Anodes, the AZ-nodes are treated separately to adjust the 

parameters of its sub-network. Denote:

< 2 , M )  = < y ( 2 - 2 , 2 - 3 (3.35)

then by the chain rule,

dE  = _ _  dE 8 0 {,3) d o ) 2)

d a > ^ ~  7  d 0 ^  d O {2) d c o f ' ^
(3.36)

then (3.4) and (3.6),

t % >  = r w * , )3 o ! 2) / -1
(3.37)

and,
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(3.38)

where is the function used to define the A/h membership function o f the / h input. 

Therefore,

(3.39)

There is no need to propagate the error back to layer Lj since there are no weights to 

adjust at that layer and there are no further sub-networks. Thus far the learning ability o f the 

ENFLICT architecture has been discussed. In the next section a consideration is made as to 

how to obtain the structure necessary before any learning algorithm is applied.

3.2.3 Evolutionary Learning o f Structure

The network topology optimisation is concerned with finding out the number of 

subspaces for each input variable and output variable and also the network connectivity or the 

rule structure. The regions o f fuzzy subspaces are defined according to the information available 

about the plant to the operator. Where the operating regions are known, a fixed universe of 

discourse with varying size membership functions is used. When the operating region range is 

not so clear, fixed size membership functions with varying universe of discourse is used. The 

resulting network is one where the entire operating region is well covered with equally spaced 

overlapping membership functions, enabling smooth transition between states. However, such a 

network will only give coarse network performance without any fuzzy set tuning.

When optimising using mGA, each gene is a set o f numbers that indicates the 

input/output (I/O) index, the neuron of the adjacent layer it connects to and the type of 

activation of the neuron (fuzzy set shape). Using the mechanism of the mGA, a candidate 

neurofuzzy controller system may be initialised, coded and decoded as described in example

Example 3.1: Consider a 2-input and 1-output system. Before encoding the controller, it 

is first necessary to decide the maximum and minimum number of fuzzy subspaces desired to 

work with for each I/O domain for the controller to operate satisfactorily. These can be defined

25 (5-5) rows where each row corresponds to a fuzzy rule. The initial population would have

3.1.

as 5 and 2 subspaces respectively for each domain. Then, the initial template would consist of
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strings o f length 75 (number of domains-IKmaximum of each input domain)) maximum, and 

length 12 (number of domains-ri(minimum of each input domain)). Deciding that one wants to 

work only with gaussian and triangular membership shapes, these are assigned as:

Type I : Gaussian 

Type 2: Triangular 

Type 3: Trapezoidal

Then, a typical gene may be encoded as follows:

where,

g n = S (>> + S a ' + S m  (3-40)

5 " ’ = i p ( r - ( r f - 1 )  + l )-100  (3.41)

S >2> = iP(r ' <3-42>
i - ' m m  i - ' m m

where ip ()  indicates the integer part of a number, r is a uniformly distributed random number 

and d  is the number of domains. Smax and Sm]n are the minimum and maximum subspaces of 

domain S. A typical chromosome is shown in Figure. 3.5.

1 2 3 2 3 3 3 5 1 1 3 3 3 3 3 1 4 2 2 3 1 2 2 2 2 5 2 1 2 3 1 4 1 2 1 1 3 2 1 2 4 3 2 4 3 1 5 2 1 4 1 3 3 3 3 5 3

R u l e  1 R u l e  2 R u l e  3 R u l e  4 R u l e S*

Figure 3.5 encoded ENFLICT structure

The noticeable feature is how the chromosome is divided up to form the rules. The 

division is made every d+\ gene from a left-to-right scan. Each gene decodes to a 3-tuple 

vector [v(l)v(2) v(3)] as follows:

v(,) = ip g
100

(3.44)
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v(2) - ip
g l - 100v (1)

10
(3-45)

v<3> = i p ^  -  100v(l* -  10v(2)) (3.46)

The first column indicates the input-output domains. The second column refers to the M- 

node or A>node o f the adjacent layer to which the I/O variable connects to and the last column 

refers to the activation type of that node. For instance, the first gene of rule string 3, (252), 

decodes to [2 5 2). This interprets as

[2 5 2]: Input 2 connects to the 5th A/-node belonging to this domain, and this node has 

shape type 2. Decoding the other genes,

(123) - > [1 2  3]: Input 1 connects to the 2nd M-node belonging to this domain, and this node has 

shape type 3.

(141) - > [ 1 4  1[: Input 1 connects to the 4th A/-node belonging to this domain, and this node has 

shape type 1.

(211) —>(2 1 1]: Input 2 connects to the 1st A/-node belonging to this domain, and this node has 

shape type 1.

Notice there is no rule consequence, i.e. there is no reference to the output domain. In 

such a situation one would refer to the template and extract the appropriate consequent part. 

However, first it is necessary to resolve the premise. There is reference to both inputs more 

than once in this rule string. In such a case, the gene to appear first is used and the other 

rejected. The same precedence rule is also applied to resolve rules having the same premise but 

different consequent. The same rule also hold for resolving shape conflicts at both the Af-nodes 

and /C-nodes.

The parameter that introduces diversity into the GA so that it adapts to changes in the 

environment, is mutation. Although the standard mutation with a uniformly distributed 

probability of mutation every generation, performs well at a continuously changing 

environment, it fails even with a high mutation rate to track an environment which changes 

unexpectedly. Instead hyper-mutation can be used, which has the advantage of being adaptive 

(Grefenstette 92). The drawback of this type of mutation is that it does not perform well for 

large changes in the environment. Provided the changes are not large, the hyper-mutation will 

ensure the diversity needed in the GA even for discontinuous changes in the environment. The 

way that hyper-mutation works is that when the performance of the GA is poor or tends towards
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poor, the mutation rate is set high with a non-uniform distribution. In all other cases, the 

mutation rate is set to a very low value with a uniform distribution.

3.3 Comparison of ENFLICT with other Neurofuzzy and 

Evolutionary-Neurofuzzy Approaches.

It is perhaps worthwhile comparing the functions and properties with other similar 

hybrids from literature aiming to achieve similar objectives. As was seen from the literature 

review in §1.2, the paths to obtaining optimal fuzzy control are many and fragmented. Since 

ENFLICT is a complete model, the only true comparisons can only be made against 

evolutionary-neurofuzzy hybrids. Although, a true comparison is not appropriate with simply 

neurofuzzy or evolutionary-fuzzy hybrids, there are some such hybrids that resemble individual 

components of ENFLICT. Therefore, comparisons between the complete ENFLICT model are 

made between other evolutionary-fuzzy and neurofuzzy models. The whole ENFLICT model is 

used for comparing both approaches because as the name suggests,, ENFLICT is a single unite 

and separating it inappropriate. These are summarised in Tables 3.1 and 3.2 respectively. The 

comparison is made on two areas: optimisation and learning. Flere, in optimisation, one is 

concerned with using evolutionary techniques for representation o f fuzzy systems in terms of 

structure, flexibility o f rule base representation, tuning of the fuzzy sets, gene representation and 

ability to continuously learn and adapt to system and environmental changes.

3.3.1 Evolutionary Algorithm O ptim isation

Table 3.1 compares several optimisation techniques. Early methods were concerned with 

simply tuning certain parts of the fuzzy system while keeping other parts fixed. One o f the 

main reasons for doing this was that such schemes were represented by binary encoded 

chromosomes, as a result, the more information that is encoded, the longer the chromosomes 

would get (Karr 1991a, Cooper and Vidal 1993).
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ENFLICT

Hoffman & 
FTister 
(1995) Ng (1995)

C arse et 
al. (1996)

Takagi & 
Lee 

(1993)
Karr

(1991)
Kinzel et 
al. (1994)

H enera et 
al. (1995)

Thrift
(1991)

Cooper & 
Vidal 

(1993)
Fuzzy S ystem  O ptim isation
Rule b ase  construction ✓ ✓ ✓ ✓ ✓ X ✓ ✓ ✓ ✓
Fuzzy se t construction ✓ JC X ? X X ✓ JC X X

Fuzzy se t tuning ✓ X ✓ ✓ ✓ ✓ ✓ S ✓ ✓

Variable universe of discourse ✓ X ✓ X X X X JC X X

[G]lobal or [L]ocal fuzzy se ts G,L G G L G G G G G G
Fuzzy se t type definition ✓ X X X X X X X X X

EA R ep re sen ta tio n
Integer encoding ✓ ✓ ✓ ✓ ✓ X ✓ ✓ ✓ X

Variable length representation ✓ ✓ X ✓ X X matrix X X ✓

Reproduction operator
cut and 
splice

cut and 
splice crossover

user
defined crossover crossover crossover crossover crossover

user
defined

Entropy cost function ✓ X X X X X X X X X

Single gene  representation ✓ X X ? X X X X X X

Table 3.1 Comparison of fuzzy system optimisation using evolutionary algorithms

Crucial to the success of EAs is the way the fitness function is represented or coded in 

genetic form and how the genes are represented. Generally, the parameters are encoded in two 

forms: binary and non-binary, more specifically float. To float or not to float has always been 

a subject o f debate in the GA community. Traditional GA theory is based around binary coding 

because of its ease of manipulation and it is easier to prove theorem about them (Davis 1991). 

However, using floating point numbers to represent the genes has several advantages. They are 

more useful for higher order problem and problems requiring greater numerical precision. 

Although the drawbacks of binary coding can be overcome with the aid of various coding 

schemes such as gray coding (Srinivas 1994), the deciding and rearranging process is 

cumbersome and complex. Perhaps the most compelling reason for floating is that floating 

point representation allows a gene-variable direct mapping without the need for a complex 

decoding process. Michalewicz also showed through various tests other benefits o f using 

floating point representation such as avoiding hamming cliffs, increased speed and less 

generation to population conformation (Michalewicz 1996).

ENFLICT presents a number of advantages over other methods. First, it uses a single 

chromosome to represent all information pertaining to a certain variable. The advantage o f this 

is that the same kind of information can be presented in any gene, thus making the order o f the 

genes irrelevant, making the reproduction procedure simple. It also means that systems of 

higher order can be represented without the length o f the chromosome getting out o f control. Of 

the other methods being compared, the only one that uses a similar method is that o f Carse et al 

(Carse et al 1996), although it is difficult to judge because this has not been clearly specified in 

the literature. However, even if it does use a single gene representation, the order o f the gene is 

important because the prior to crossover for reproduction, the genes have to be sorted according 

to the centres of the fuzzy sets. Also, if a single gene is used, then the process of encoding and 

decoding the parameter information is not specified. The process in ENFLICT is much simpler 

because every gene represents the same kind of information, that is, the index of the input or 

output variable; the number o f the fuzzy sets that the input or output maps to and the type o f that
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fuzzy set. While ENFLICT does not tune the fuzzy set during the evolutionary learning stage, 

as most of the other methods being compared with, the feeling is that there is no need to fine 

tune it at this stage. Coarse tuning takes place by adding and removing the number o f fuzzy 

subspaces for each variable. Fine-tuning is not carried out at this stage because first, fuzzy 

control is robust enough to sustain reasonable performance, and in engineering applications, 

often “reasonable” performance is sufficient. In addition, the problem with fine tuning fuzzy 

sets with evolutionary algorithms is that it is a one-time process only. Due to the amount of time 

that EAs take for a single cycle, it is almost impossible and impractical to continuously learn the 

sets due to changing environment. Therefore, local learning is preferred to global learning.

Another advantage that ENFLICT provides over any o f the other methods is that it allows 

for identifying the type o f fuzzy set to represent any specific subspace in the variable’s universe 

o f discourse. All the other techniques employ a single type o f fuzzy sets, be it gaussian (Ng

1995), triangular (Karr 1991, Hoffman and Pfister 1995, Carse et al 1996) or trapezoidal 

(Herrera et al 1995a). While this may not be as important a factor as, for example, the structure 

o f the rule base in the optimality o f the fuzzy system, it nonetheless provides the versatility to 

work with any type or functions, and is not restricted to these three types of fuzzy sets. In 

addition, sometimes, mixed fuzzy sets may be desirable where the control surface varies 

between continuous and less continuous.

The other major factor influencing the convergence o f the EA is the definition o f the cost 

function. Most EAs have cost functions based on the standard quadric error function. 

ENFLICT uses a relative entropy function. Although, due to the randomness, EAs are resistant 

to getting trapped at local optima, they are not renowned for their speed. The purpose of the 

entropy function is to speed this learning process up and has been found to have a faster 

convergence than the standard quadratic error function.

More important to the stability of the fuzzy system is the number o f rules and the rule 

base, that is the combination of premise and action for each rule. Most o f the methods being 

compared with use a fixed length chromosome. The number of rules is found by introducing 

“don’t care” entries in the chromosome (Thrift 1991, Takagi and Lee 1993, Ng 1995). This has 

a number o f disadvantages. For example, first it implies some knowledge, on the part of the 

operator, of the system, and this is always not the case, specially for complex systems. The 

other problem is the curse o f  dimensionality. As the number o f input and output variable 

increase, so does the size o f the rule base. Do demonstrate this, a two-input-one-output system 

with 3 fuzzy subspaces per variable would yield a maximum of 9 rules. Now increase this to a 

three-input-one-output system with 3 fuzzy subspaces per variable. This would yield a maxim 

of 27 (3-3-3) rules. Thus the problem increases exponentially. To alleviate this, a number of 

works was carried out using variable length chromosome that grows and shrinks (Cooper and 

Vidal 1993, Hoffman and Pfister (1995), Carse et al 1996). However, ENFLICT is much more 

powerful and versatile than these methods. While Hoffman and Pfister’s work, and was the
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initial inspiration for the messy genetic algorithm representation developed here is innovative, 

they didn’t go far enough and the method has a number of restrictions. First, the number of 

fuzzy subspaces is predefined, implying prior knowledge of the rule base structure, and second, 

because, the number of subspaces is fixed, there is no fuzzy set tuning by addition and 

subtraction of subspaces. The other differences are highlighted in Table 3.1 and have already 

been discussed. Both Carse et al (Carse et al 1996) and Cooper and Vidal (Cooper and Vidal 

1993) also have variable chromosome representation and have to perform special reordering or 

sorting prior to reproduction, hence the order of the genes are important. This implies 

knowledge o f the linkage format o f the genes, where as with ENFLICT, there is no such 

presumption.

ENFLICT and the works of Hoffman and Pfister (Hoffman and Pfister) use the cut and 

splice operators to deal with reproduction. This was preferred to developing a new operator, as 

was the case in (Cooper and Vidal 1993) and (Carse et al 1996), because it’s convergence 

properties has already been theoretically proven elsewhere (Goldberg 1989b, Goldberg 1990, 

Goldberg 1991) and is not the place in this thesis to prove GA properties. In (Cooper and Vidal 

1993) and (Carse et al 1996), the operation of the new reproduction operator was explained, but 

no theoretical proof was provided. In (Carse et al 1996), the process is a little complicated 

because the operation of the modified crossover operator is different based on the number of 

inputs and outputs. This is not the case with the cut and splice operators.

Another difference between ENFLICT and all the other methods is that it allows for both 

global and local fuzzy set representation. Global fuzzy sets imply that rules and inputs and 

output variables share fuzzy sets, where as, local fuzzy sets are more appropriate for local 

learning and tuning. However, local fuzzy sets can present conflict problems of some 

dominating fuzzy sets engulfing other sets (Carse et al 1996) and some sort of precedence rule 

has to be applied. In ENFLICT, although, provision exists for both local and global fuzzy sets 

exist, global representation is preferred, as local learning with the neurofuzzy structure takes 

care of the local structure. The other time local fuzzy sets are useful is when designing a 

Sugeno-type controller.

As has already been stated, a main property of ENFLICT is its flexibility. With the 

exception Ng’s work (Ng 1995), none of the methods allow for variable universe of discourse. 

Just as fixing the size of the rule base implies knowledge of the search space and control surface 

area, so does fixing the universe of discourse. Therefore, as can be seen, even simply 

comparing the optimisation process with existing methods, ENFLICT is much more powerful 

and versatile.
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3.3.2 N eurofuzzy Learning

It is often claimed that during optimisation with EAs, fuzzy sets are learning (Case et al 

1996). In the strictest sense this is incorrect. Learning implies a continuous process, with 

adaptation and tuning, and modification properties. At the extreme case, in the case of 

evolutionary-fuzzy system hybrids, it can be claimed that the fuzzy sets are learned for a 

specific set o f environmental conditions. To reflect these learning properties, ENFLICT is a 

two-phase process, where the first phase involves global optimisation and the second phase is 

local learning using a neurofuzzy structure. To reiterate again, the two phases are inseparable 

because the first phase in essential to the success o f the second phase. Table 3.2 compares only 

the learning properties of ENFLICT with other neurofuzzy “learning” methods.

ENFLICT
Jang

(1993)
Lin et al. 
(1991)

Kaur & Lin 
(1998)

Harris et 
al (1996)

Bruske at 
al. (1993)

Khan
(1993)

Spooner & 
Passino 
(1996)

Kim etal.
(1993)

Fuzzy set tuning ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Rule modification ✓ X X ✓ ✓ ✓ ✓ ✓ X

Mamdani controller ✓ X ✓ ✓ X ✓ X X V
Sugeno controller ✓ ✓ X X X X X ✓ X

Non-symmetrical fuzzy sets ✓ ✓ ✓ ✓ X X X X ✓
Different inferencing mechanism ✓ X X X X X X X X

Different defuzzification process ✓ X X X X X X X X

Supervised learning ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Unsupervised learning ✓ X X X ✓ X X X X
Online learning ✓ X X X ✓ ✓ X X X
Local learning ✓ X X X X X X ✓ ✓

Model dependent ✓ X ✓ X ✓ ✓ ✓ ✓ ✓
Model independent ✓ ✓ ✓ ✓ X X X X X

Table 3.2 Comparison of neurofuzzy networks

Neurofuzzy methods, as the name suggests, are combinations o f fuzzy systems and neural 

networks, and the reason for such combinations arises from the properties of both. While fuzzy 

systems can be described using heuristics, easy to implement and interpret, it possesses no 

learning ability and requires detailed knowledge of the problem to be solved, although not 

necessarily a mathematical description of the system itself. In contrast, neural networks require 

very little a priori knowledge of the system, specifically developed for learning from patterns, 

work in parallel and function unsupervised. However, it is difficult to interpret the information 

that a neural network learns, and a priori knowledge is required of the derivative information of 

the functions that guide the learning process, before learning can be applied.

Neurofuzzy learning systems come in various forms. They vary from part neurofuzzy 

and part conventional control (Spooner and Passino 1996); through pure neural networks used 

to fine tune the performance of FLCs (Kim et al 1993, Khan and Venkatapuram 1993); to neural 

networks based on the functional equivalence of fuzzy systems and neural network using radial 

basis functions (Harris et al 1996); and fuzzy systems taking the form of neural networks, and
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functioning as neural networks (Lin and Lee 1991, Jang 1993, Bruske et al 1993, Kaur and Lin 

1998). ENFLICT is based on the last of these types, and is considered the best set-up because it 

allows directly representing, modifying, tuning and interpreting the structure.

One o f the major objections to using neural networks, and subsequently neurofuzzy 

networks is the reliance of training data for learning the system. In order for the network to 

succeed in properly learning to control the system, such data has to be of sufficient quality and 

accuracy. Obtaining the accurate and quality training data for engineering systems is probably 

the primary difficulty because often it is not possible to do so or the algorithms producing the 

training data are not in general predictive and can not truly represent the real world. Despite 

this, most neurofuzzy hybrids are dependent on training data, and hence supervised. The 

advantage o f this is that a model is not required because the network can learn directly from the 

data. Other than the difficulties of obtaining the quality data, the disadvantage o f the supervised 

process is that it is off-line, and is not truly generalised to accurately control a real system. This 

is not necessarily the case with ENFLICT because, ENFLICT can use both training data and 

operate online.

One o f the major reasons for people avoiding online unsupervised learning is the learning 

algorithm itself. Most neurofuzzy algorithms (including ENFLICT) is based on the 

backpropagation (BP) algorithm (Appendix A). In the BP algorithm, the major factor affecting 

the convergence of the network is the learning rate. The larger this rate, the faster the response 

o f the network to changes in the environment, but the side effect being that it causes large 

fluctuations around the local optimal thus affecting the network’s accuracy. The neurofuzzy 

methods that ENFLICT is being compared with are selected because they are representative of 

neurofuzzy structures in general, and ENFLICT is the only one o f these methods that addresses 

this issue o f learning rate so that online learning possible.

Looking at table 3.2, it can be seen that neurofuzzy networks are generally Sugeno-type 

(Jang 1993, Spooner and Passino 1996) or Mamdani Type (Lin and Lee 1991, Bruske et al 

1993, Kaur and Lin 1998). Sugeno controllers do not have output variables represented by 

fuzzy sets, and are computationally easier to implement, and use the weighted average method 

to obtain the final output process (Takagi and Sugeno 1983). This is fine if enough information 

is available on the partitioning of the output variable and how the inputs relate to the output. It 

is therefore no surprise that most neurofuzzy networks are based on the Mamdani controller 

where the output is represented by fuzzy sets. ENFLICT does not chose either camp, instead 

allows for any type of controller. This is possible because the underlying network structure 

does not change, but instead, the fuzzy sets are tuned through sub-networks. Such fuzzy sets 

can either be local or global, and it is this format that allows one to design both type of 

controller.

By choosing to design a Mamdani type of controller, one has to then choose a type of 

inferencing mechanism and a type o f defuzzification process. The most popular of all the
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defuzzification processes in fuzzy control because it uses the whole of the output membership. 

It gives much smoother control behaviour than any other method and is also less sensitive to 

small perturbations (Sugeno 1985). However, other inferencing and defuzzification 

mechanisms are also available, and ENFLICT allows for any o f these to be used without any 

modification to the structure of the network.

Neurofuzzy networks learn by adjusting the threshold function (or fuzzy sets), and 

generally a sigmoidal or gaussian type function is used. This means that the tuned fuzzy sets 

are symmetrical in shape since only two parameters can be tuned, namely the width and centres. 

As has been mentioned already, mixed fuzzy sets are desirable sometimes, and in contrast to the 

other methods, ENFLICT allows one to do this, and tune non-symmetrical fuzzy sets. For 

instance, the supports a and d  of Figure 3.3 need not necessarily be equidistant from its centre 

position.

To summarise, from this comparative study, it can be seen that ENFLICT is very novel 

and original in its approach. It’s flexibility liberates the design environment completely, and 

provides the operator and control designer every possible option to suit the environment under 

which it is to be operated. It combines two separate approaches of optimisation and learning 

and functions as a single model, complementing both phases.

3.4 Application to Coupled Non-linear Process Control

As an example, Figure B.l shows the general construction o f a non-linear coupled liquid 

level regulation system. The system consists o f a container divided at the centre partition into 

two areas which represent the two tanks. A variable speed pump that supplies water to the first 

tank provides the fluid input. The actual flow rate is measured by a flow meter. The water of 

the second tank drains out via an adjustable tap into a tray, which provides the supply reservoir 

for the pump. The objective is to control the liquid level of tank 2 by means o f the pump flow 

into the system. This sort o f control problem typically occurs in the dairy, chemical or heat- 

balancing process industries where the fluid level in a storage tank or reaction vessel has to be 

controlled. Any variations in the upstream supply flow (Q0) are filtered out by tank 1. The 

system dynamics are described by the equations

A ^ -  = Q0 - C d,a ^ 2 g ( H , - / / , )  (3.47)
dt

A — 2-  = Cdl a, J 2  g(H,  - H , ) - C i2a,  p  g ( H,  -  d)  
dt

(3.48)
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where, H\{t) and H2{t) are the liquid levels of Tank I and Tank 2, respectively; d(t) is also a 

pumped input but is used to test the rejection of disturbances when necessary; and g = 9.81 m s' 2 

is the gravitational constant. A = 0.01 m2 is the cross-sectional area of both tanks; /?0= 0.03 m is 

the minimum liquid level bounded by the height o f the orifices. The derivations of the 

equations of motion for this system are given in Appendix B. The other parameters are variable 

and used to test the variations in the environment.

Flow rate 0 < Q0 < 5 x 10"5m3/s

Discharge constants: 0.3 < Cdi, Cd2 < 0.6

Cross sectional area o f orifice 1: 30x1 O'6 m2 < a\ < 50x1 O'6 m2

Cross sectional area o f orifice 2: 30x1 O'6 m2 <a 2 < 50x1 O'6 m2

The controller and the plant set-up are as in Figure 3.6. During the learning process, a 

reference signal is fed into the system, and the ENFLICT network model takes as its input the 

error and the change o f error. The output o f the network is the control signal, u, and is fed into 

the plant. © is a vector o f all the adjustable environment parameters, © = (Cdi, Cd2, a h a2)T, and 

is adjusted at regular intervals to enable the network to adapt to the change and for the system to 

settle down to a stable level. For the learning algorithms and the mGA to follow the changes in 

the environment, only a small change in the environment is allowed, hence only one parameter 

is adjusted at any time.

PLANT

ENFLICT

Figure 3.6. Control system set-up

The first step toward getting a self-learning controller is to learn the global structure of 

the network by mGA evolution. Before using mGA for the network optimisation, one must first 

to decide on how large the network should grow, and what type of activation to use. The 

universe o f discourse to use for each input variable and output variable, is already known as 

they are all scaled to the interval [0,1]. The activation type used is the gaussian type described 

by equation (3.49). The advantage of this type is that it enables smooth transition between states 

and sub-regions. This is necessary since there is no information available on the way in which 

the environment changes.

( x - c )2
Gaussian(x\cr,c) = g  2o2 (3.49)
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where c is the centre and crthe width o f  the activation function.

3.4.1 Global Structure Learning

To begin with, the network is initialised as a fully connected one with seven membership 

functions for each input variable and output variable. The choice on the number of 

memberships is entirely arbitrary. The inputs to the network are the error e between the set 

point and the output y, and the rate of change in error. A population size o f 100 was used over 

100 generations and 2 eras. At the start o f the second era (i.e. at generation 55), the mGA was 

reinitialised and the population was reconstructed by filling half o f it with the best members 

from the previous era and by randomly generating the other half. For the juxtapositional phase 

the cut and splice rates were set to 75% and 80% respectively. The hyper mutation had a 

baseline rate of 0.001 and an upper limit rate of 0.02  and the genes were mutated to a value not 

in the chromosome. The reference signal presented is a step-up-step-down signal. This is to 

ensure a greater degree o f generality in the operating points in addition to the changes in the 

plant parameters. The cost function that the mGA tries to minimise is equation (3.12).

Figure 3.7(a) shows the response of the network to the step-up-step-down reference signal 

after the mGA has learned. Figure 3.7(b) shows the control action applied to achieve the 

response while Figure 3.7(c) shows the control surface which is equivalent to the network 

connectivity. Figure 3.7(d) shows the progress o f the best-fit individual through the mGA 

learning. The reason for the sudden decrease in the quality of the individual’s fitness is that at 

generation 55 the second era was executed where half o f the old population members were 

carried forward to the next generation, and the other replaced by randomly generated population 

members.
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Figure 3.7 Network behaviour after mGA learning 

(a) controller response, (b) control action
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Figure 3.7 Network behaviour after mGA learning, (c) control surface, (d) fitness of best

individual over 100 generations

Figure 3.8 displays the extracted equivalent membership functions of the network. It can 

be observed from the response of Figure 3.7(a) that the network is able to follow the reference 

signal. However, there is a lot of switching occurring at the operating points as reflected by the 

control action in Figure 3.7(b). The system being considered is a slow system, and hence it is 

possible under a simulation environment to achieve such a sudden change in the control action 

which otherwise may not be possible in real-time full-scale operation. This reinforces De 

Jong’s statement about GAs wandering about near the global area (De Jong 1985). Hence 

further parameter tuning of the network is required.
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Figure 3.8 Extracted membership functions after mGA learning.

3.4.2 Parameter Pruning

While the mGA tries to obtain a network structure to give reasonable response, the 

network learning operates simply as a feedforward network. No parameter tuning o f the 

weights is carried out. Only after the mGA phase has been completed is the parameter tuning 

carried out on the “best” network. The inputs to the network are held over an interval to enable 

the network to adapt to changes due to the previous inputs. The annealing rate is set to 0.95
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with boundary [0.5,1.5]. The response of the controller due to various changes in the 

environment is shown in Figure 3.9-3.12. Figure 3.9 shows the response of the network as 

changes to the environment are introduced by varying the cross-sectional area of orifice 1. It is 

adjusted as follows.

3.956e~sm 2 0 < t < 2 0 0  

"5 -2 200  < /< 6 0 03.056e m
4.512 e~5m 2 6 0 0< /< 1000

7.856e~5m 2 1000 < / < 1200

It is apparent from the response that the networks work very well with the learned 

parameters, Figure 3.9, except for the final third o f the time period where the response remains 

rather coarse. During this period two incidences occur. First the operating point changes 

suddenly by a large amount and second, before the network can adapt to this sudden change, 

variations in the system parameters also occur by quite a large amount. This validates the 

statement that the learning algorithm is suitable only for small variations in the environment. 

The reason for this is that although the annealing rate adapts the network well, it can not change 

quickly enough to adapt the network for large environmental variations. Figure 3.10 shows the 

changes in the parameters of the network, taking place as it adapts to the variations in the 

environmental conditions. Each row of Figure 3.10 corresponds to a time period o f 200 seconds 

in Figure 3.8. Further tests were carried out to validate the algorithm that it does indeed adapt 

to varying environmental conditions, and results are shown in Figure 3.11 and Figure 3.12. 

Figure 3.11 shows the network behaviour to a changing discharge coefficient while Figure 3.12 

indicates the network behaviour to a sinusoidal reference signal. For Figure 3.12, no retraining 

of the network was necessary by mGA, and the same network topology as illustrated in Figure 

3.7(c) was used.

To compare the performance o f the ENFLICT network with other method, the learned 

network was tested against a PD controller and the ANFIS model (Jang 1993), Figure 3.13. The 

PD controller was manually tuned to follow the reference signal, and for ANFIS, training data 

was generated by simulating the model using the 4(h order Runga-Kutta method. The 

ENFLICT response is that of the learned network (above) without any disturbance or parameter 

changes. As can be seen, all three controllers perform reasonably well. However, the PD 

controller was found to oscillate erratically when the step size changed, before recovering to the 

set point. It can also be seen that, with the same PD parameters, it is difficult to follow the 

reference properly. In contrast, the ENFLICT model, while having larger settling times, has 

smaller overshoots, more stable around the operating regions and follows the reference signal 

much more closely. Comparing ANFIS with ENFLICT, it can be seen that ANFIS is not as 

oscillatory as the PD controller, and appears to be just as good as the ENFLICT model.
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However, this is only because it is using training data, while ENFLICT is performing without 

the training data. ENFLICT is learning by interacting with the system with one set o f  input data 

at any time instance. Hence, it takes longer to reach the desired set points. The point is that, in 

this case, description o f  the model was available, and it was possible to obtain training data for 

ANFIS. For instances where this is not possible, ENFLICT would be more suitable. 

Com parisons with vary ing system parameters are also difficult because modelling such changes 

in the process for generating training data would require system identification techniques. 

Whereas, as has been demonstrated in Figure 3.9-3.12, with ENFLICT, no such identification 

process is necessary.
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Figure 3.11 Network performance with changing discharge constant 1.
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Figure 3.13 Comparison of ENFLICT with conventional PD and ANFIS structures

3.5 Case Study — Cart-Pole System

For the second case study, consider the example o f the inverted pendulum in Appendix C, 

but with only one link. The problem is to control the motion of the cart along a horizontal line 

so that the pole will not fall down and will eventually stand at a desired angle. The problem is of 

particular interest because it resembles many practical engineering robot-arm like applications, 

such as ballistics, cranes, space shuttle arm, which depend on precision, stability and flexibility. 

There are four states associated with this model: cart position x , cart velocity v, pole angular 

position 6, and pole angular velocity co. The pendulum is controlled by applying a force of 

varying magnitude to the cart’s centre o f mass. The simplified equations of motion are:

6  = co (3.49)

6  =  d) =

g s i n #  +  c o s #
- U  - m lO 2 s i n #

m +  M

/
4 / h c o s 2 6 
3 m +  M

(3.50)

x  = v (3.51)

U +  m / [ # 2 s i n 6 - 0 c o s # ]  

m +  M
(3.52)
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For the tests, the following parameters were used:

g  (acceleration due to gravity) = 9.81 m/sec2 

0.1 <m  (mass o f pole) < 1 kg 

0.5 < M (mass of cart) < 2.0 kg 

0.5 < / (length of pole) <0.1 m

The first task is to control the pole and bring it to a vertical position by applying a force 

o f varying magnitude to the centre of mass of the cart. The messy genetic optimisation was

carried out and the fixed universe o f discourse scheme was used. The initial template was

defined as a fully connected network with seven memberships for each input and output 

domain, and the optimisation process was carried out on the neurofuzzy controller with with a 

single era of 100 generations and a population size o f 200. The probability for cut and splice 

was set to 75% and 65% respectively, and mutation was set as 5%. The best network after the 

100 generation was then mapped onto the ENFLICT structure for fine-tuning. Figure 3.14 

shows the normalised error curve after mGA learning. The strength o f the mGA is well 

demonstrated as near optima region is reached quite quickly.

For the online learning, the pendulum was reset with different settings. Figures 3.15 and 

3.16 show the responses o f the cart and pole system respectively for pole o f length 0.5m, mass

0.3kg and a cart o f mass 1kg, starting from the initial condition (x ,0 ,v ,& )  (0.4, 5, 0, 0). It can 

be seen that the system is brought to its equilibrium point where the pole is balanced vertically 

and the cart is positioned to the middle of the track, i.e., the objectives have been reached.
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Figure 3.14 Normalised error measure
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3.6 Summary and Discussion

In this chapter, a new model for designing intelligent controllers based on evolutionary 

and neurofuzzy technique has been developed. At the heart of this new model are portability, 

flexibility, usability, learning and evolution. While not based on any previously developed 

models elsewhere, the ENFLICT model can be applied to the same sort o f problems as the Lin, 

ANFIS (Jang 1993), NeuFuz (Khan 1993), NN-FLC (Kaurand Lin 1998).

Flexibility implies freedom to choose from the various types of membership functions, 

the number of membership functions and the rule structure. Although the overall structure takes 

the form of a neural network, the underlying operation is simply a FLC with the ability to adapt 

to changing operating situations. Flexibility is achieved through the sophisticated messy genetic
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algorithm. The variable length of the mGA chromosomes allows for growing network size 

(with certain preconditions), while the template and era operations allow for quick recovery o f 

lost information. In order to accommodate the network connectivity, shape definitions and rule 

structures, the original mGA coding has been modified. In addition to the information that each 

gene now has, its structure is also different. In the developed model, the genes are represented 

by single integers. Of course, the resulting network obtained by the mGA lacks the ability to 

prune the network parameters, and hence its performance is coarse. Fine-tuning of the 

parameters is achieved through an on-line backpropagation learning algorithm.

Central to the working of the model is its learning properties. It was identified that the 

major drawback of other neurofuzzy models is that they are based on supervised batch learning. 

They depend on the operator providing quality network training data that can be expensive, 

unrepresentative and of poor quality. Despite various claims, such networks operate poorly 

outside the data they are trained with. The other difficulty that the ENFLICT model overcomes 

is that of on-line operation where the input pattern to the network is provided at random, and 

independent of the previous pattern. This has meant the need to modify the major parameter 

affecting the learning and convergence o f the network. Therefore, the learning rate is replaced 

with an annealing rate, which is adaptive and reflects changes in the operating conditions so that 

the ENFLICT model operates on-line. The network structure optimisation needs to be carried 

out off-line due to the nature of genetic algorithms. In addition, the other drawback o f this 

model is that it fails to operate satisfactorily to large changes in the operating conditions 

because the annealing rate can not adapt fast enough to reflect this change.

Finally, the ENFLICT model stands out from others for its usability. Usability can be 

tied up to flexibility because, although the backpropagation type learning is described for 

Mamdani type controllers, it can equally be applied for Sugeno type controllers. This is 

possible because the network operates at two levels. The main network remains unchanged and 

does not have any adjustable weights. However, by choosing the appropriate shape parameters 

at the various sub-networks, and selecting different defuzzification strategies, one can easily 

switch between the two types of controllers.

While ENFLICT is a two-phase model, the phases are inseparable, and comparisons have 

been made with optimisation techniques and neurofuzzy learning systems so that like for like 

comparisons can be made for flexibility, learning and optimisation. The main tasks and 

properties sought in optimisation are representation o f fuzzy sets in terms o f structure, 

flexibility o f the rule base representation, tuning o f the fuzzy sets, gene representation and 

ability to continuously learn and adapt to a changing environment. While many techniques exist 

for carrying out these tasks, most falls short from being a complete model that encompasses all 

properties. For example, binary representation of information as those of (Karr 1991) and 

(Cooper and Vidal 1994), mean that in order to keep the length of the string down, the amount
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of information that can be encoded is restricted, whereas with integer encoding, a one-to-one 

gene-parameter representation can be used, and hence more information can be encoded.

ENFLICT takes the coding scheme further, but encoding all the information pertaining to 

a certain variable in one gene. This is very advantageous specially when using the variable 

length chromosomes. In contrast, other variable length representations require knowledge of the 

order of the gene and the linkage format because the order of the genes is important (Cooper 

and Vidal 1994, Carse et al 1996). Although in (Hoffman and Pfister 1995), the order of the 

gene is not important, a single integer representation was employed. Instead two integers were 

used to represent a single gene. This thus restricted the amount o f information that could be 

encoded. For instance, in (Carse et al 1996), the genes consisted of only the centres and with of 

triangular fuzzy sets, and in (Hoffman and Pfister 1995) the genes made up only the rule base. 

In ENFLICT, the genes represented the type o f fuzzy sets, the number o f fuzzy sets and the 

mapping o f the fuzzy sets. This means that high dimensional problems can be easily 

represented without any extra computational effort on the processor.

One o f the main reasons for having the learning and optimisation phases separated is that, 

EAs are difficult to use for on-line processing, especially for fast and complex systems. Hence, 

most optimisations are applicable only for a set operating region for a set o f parameters. For 

learning, universal approximators such as neural networks and fuzzy systems are better suited. 

By combining fuzzy systems to neural networks, it is possible to overcome the difficulties o f 

both while retaining the advantages o f both. The properties o f neurofuzzy learning systems 

compared in §3.3.2 are symptomatic o f neurofuzzy systems in general. That is, they are suitable 

either for off-line or online learning; applicable for either a Mamdani or Sugeno type controller; 

model dependent or independent based; use a single defuzzification and inferencing strategy. 

The reason for so many combinations being in existence is that as the authors of these works 

have shown, they are suitable for specific type of application. The aim of ENFLICT is not to be 

ad hoc, but to be suitable for any kind o f system. Using the structure of ENFLICT presented, 

with its new annealing rate, it is possible to accomplish all the above tasks. The only limitation 

o f ENFLICT when in the learning phase is that it works best for slow varying systems.

In the next chapters the ENFLICT model is taken a few steps further, and direct 

interaction with the environment through reinforcement learning is worked towards. This will 

lead to a completely model free, unsupervised and autonomous neurofuzzy control method for 

continuous time systems.
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Chapter 4

Further Learning Through Reinforcements

Supposing is good, but finding out is better.

- Mark Twain in 'Eruption'

In this chapter reinforcement learning (RL) enhances the flexible 

evolutionary learning method fo r  neurofuzzy control so that controllers can 

learn directly from  the environment. The difficulty with on-line learning is 

that o f  knowing the exact future actions that will lead to global optimality.

The standard dynamic programming based reinforcement learning uses an 

estimate o f  the value and advantage function hence does not actually 

produce global solutions. Evolutionary algorithms are identified to be a 

special type o f  reinforcement learning system. Evolutionary algorithms 

address the same set o f  problems as the dynamic programming RL. In the 

ENFLICT model unsupervised learning was preferentially chosen in order to 

overcome the undesirable property o f  having to rely on a teacher to provide 

correct answers to input patterns at the start o f  the problem. In 

unsupervised learning this is done by incorporating how to behave within 

the system. This is, in fact, undesirable too because it hinders the generality 

o f  the system. In this chapter, reinforcement learning techniques are used to 

overcome the difficulties associated with on-line learning. The model 

features are compared with other similar reinforcement learning methods 

and tested against some application.

4.1 The N eed  of Reinforcement Learning

Reinforcement learning is an approach to machine intelligence that combines 

unsupervised learning and dynamic programming to solve problems that neither o f these 

disciplines are able to address alone (Barto et al 1983). Dynamic programming is a field of 

mathematics that has traditionally been used to solve problems of optimisation and control. A 

motivation for RL is that it is the primary learning method of biological systems. Animals learn 

and adapt daily with only reinforcement type error signals. Reinforcement learning studies 

therefore seek to capture similar capabilities in artificial systems. Just as artificial neural
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networks are patterned after biological neural networks, RL systems strive to emulate animal 

learning.

Reinforcement learning is o f interest in this chapter because first, the ENFLICT model in 

its present state requires a model of the system so that derivative information can be collected 

on its error measures so that the network parameters can be adjusted to minimise this error. 

However, often such derivative information is not available, and the actual description o f the 

model is not always possible to obtain. Therefore, instead o f using an error measure to indicate 

the performance of the network, RL can be used directly interact with the system to learn the 

network though reinforcements. The second reason for using RLs is that they are very similar 

to EAs in their semantics. However, RLs differ from EAs in two important ways: EAs search in 

a completely random fashion and hence ignore a lot o f the information between state transitions, 

and secondly, EAs discards poor solutions in favour o f good ones whereas RLs use this 

information in its decision making process. The similarities and differences o f RL and EAs are 

highlighted in §2.5.

In the previous chapter a learning model was developed on the basis of neurofuzzy and 

genetic based methods. The system was based on off-line neurofuzzy structure optimisation 

and then on-line parameter tuning. The off-line learning was necessary because GA is not 

computationally viable for on-line implementation o f fast and large systems. This leads on to 

the use of a simulation model of the system to be controlled, which has have discussed is not 

desirable as the simulated system cannot truly represent the actual system. There is, therefore, a 

need to modify the ENFLICT learning model so that not only are the network parameters fine- 

tuned, but also there is room for modifying the structure in terms of the control rule structure 

while on-line.

In the ENFLICT model unsupervised learning was preferentially chosen in order to 

overcome the undesirable property of having to rely on a teacher to provide correct answers to 

input patterns at the start o f the problem. In unsupervised learning this is done by incorporating 

how to behave within the system. This is, in fact, undesirable too because it hinders the 

generality of the system.

In pursuit of the objective of this chapter an algorithm is used and extended that does not 

require a model to be given or learned, is fast and, perhaps most importantly, applicable to 

continuous systems. The RL algorithm is based on Harmon and Baird’s (Harmon and Baird

1996) advantage learning, which is an enhancement of their advantage updating algorithm 

(Baird 1993) and requires the RL system to store only one type o f information. This learning 

algorithm as it stands works only for the discontinuous case where a look-up table is used to 

guide the learning. The algorithm is therefore first extended for delayed reinforcement and on­

line learning before applying to the ENFLICT model.

Finally, the procedures are compared with methods found in literature, and applied on 

some benchmark problems to demonstrate the stability and flexibility.
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4.2 Continuous Tim e Reinforcement Advantage Learning

The goal o f RL is to find a policy for selecting actions in a way that the selected sequence 

o f actions will be optimal according to a certain evaluation (value) function. Since the actual 

outputs of the evaluation function involve future data not immediately available to the learning 

system, it leads to the fundamental question of almost all reinforcement learning research, i.e. 

how to devise an algorithm that will efficiently find the optimal value function?

Consider an RL-controller used to optimise a continuous system. Let x(t) represent the 

system state at time t and u(t) the action based on the state o f the system and not on the previous 

ones. Suppose the system starts at t = 0, then r(x(t), w(0) represents the reinforcement received 

by the system after performing action u at state x. Then the value is taken as the weighted sum 

of future reinforcements, which should be maximised for the system to perform optimally, and 

the value function for a given policy is defined as:

J (x ) = (Z ,* o Y 'r (x (0>t‘(0)lx (0 ) = * ) (4-1)

where <•> is the expectation operator and ythe  discount factor which represents the extent to 

which the learning system is concerned with future reinforcements of the control actions. The 

discount factor takes a value 0 < y  < 1. The closer it is to 1, the greater the weight of future

reinforcements, and y= 1 implies infinite future weighting. The optimal value function J u(x)  

could then be calculated by:

J u ( x ) : m ax J ( x ) V x  (4.2)
u

4.2.1 Advantage Learning

Advantage learning is the RL algorithm used in this thesis to achieve the objective of 

learning through interaction. It is an algorithm that enhances advantage updating (Baird 93) by 

requiring only the learning update, and only the advantage function A(x,u) needs to be stored. 

For each state-action pair (x,u ), the advantage A(x,u) is stored, representing the advantage of 

performing action u rather than the action currently considered best. The advantage in 

advantage learning is the sum of the value of the state plus the expected rate at which 

performing u increases the total discounted reinforcement. This advantage is so called because 

what is being considered is the advantage of receiving an increased overall weighted 

reinforcement by performing action u rather than the current action. The optimal advantage
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function Au can be defined in terms o f the optimal value function J ‘. The optimal value function 

f  (x) represents the true value of each state, and is defined as:

J u{x) = m & x A u(x , u )  (4.3)
u

The advantage Au (x,u) for state x  and action u is defined to be:

lR  + y * J u( x +j ) - J u(x)
A u(x,u)  = J u (x) + J - (4.4)

At

where <•> represents the expected value over all possible results of performing action u in state

x  to receive immediate reinforcement R and to go to a next state jc+ , and yAt is the discount 

factor per time step. For optimal actions the second term is zero, meaning the value o f the 

action is also the value o f the state; for sub-optimal actions the second term is negative, 

representing the degree o f sub-optimality relative to the optimal action.

Advantage Learning and other RL algorithms such as Q-leaming (Watkins 1989) and 

TD(0) (Sutton 1988) are generally classed as direct methods because they use a look-up table

(Moore and Atkeson 1993) with a finite number o f states. Each entry o f the table has a state-

action pair and various states are visited in any order and any number o f times during each 

learning cycle. Convergence theories of most RL algorithms are based on such a finite look-up 

table structure. Although such methods are very fast and convergence for the finite space case 

is proven, the problem arises when the input space is continuous or infinite. In the look-up 

table, state and action spaces must be quantised into a finite number o f cells. There are 

difficulties associated with determining an appropriate quantisation scheme to provide enough 

accuracy and low quantisation error. Many real-world applications are very large and very 

complex, and representing the states and actions is not a possibility because of the 

complications associated with trying to interpolate or identify values that are never seen. Look­

up tables become impractical since the number of cells grows exponentially with the number of 

variables and geometrically with the number of quantisation levels, and convergence o f the 

learning algorithm becomes extremely slow as the number o f states and actions increases.

To overcome this, various function approximators such as neural networks (Anderson 

1986, Thrun 1993, Gullapalli et al 1994) have been used because such approximators have 

generalisation properties and are able to perform reasonably steadily outside the input space in 

which they are trained. This is important because in systems with continuous state and action 

spaces, it is unlikely that the agent will experience exactly the same situation it has experienced 

before.
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T he direct method of advantage learning is implemented by combining with

backpropagation based neural networks and shows convergence for a general neural network. 

The aim of the network is to adjust the network parameter to minimise an error function such as 

the mean squared error:

Although this method is more stable than the look-up table method, and performing 

gradient descent on the mean squared Bellman residual is guaranteed to converge to a local 

minimum, the method has a number o f drawbacks. The first is that it is suitable only for off­

line learning such as batch processing learning where the number o f states to be learned is finite. 

The other noticeable feature is that it is an immediate RL algorithm.

4.2.2 Delayed Rewards

In an immediate RL, the agent receives reinforcements immediately after performing 

action u at state x. While this is desirable in some situations such as a robot trying to navigate a 

room, and it provides a lot of information, it is not possible in other situations. Consider the 

case of a surface-to-air missile control system. In such cases immediate reward is of little use 

because the performance measure is constantly changing. Instead it is more interesting to look 

at the reward or punishment several steps later such as at the point o f impact between the 

missile and its target. This is referred to as learning with delayed reinforcements. Delayed RL 

is also very appropriate for situations where knowledge of the environment is incomplete or

(4.5)
p

The equivalent Bellman mean square error is:

P

(4.6)

where for input x, the output of the network is ./(jr) and the desired output is + y J ( x +) j .

Between each transition from state x  to jc+, the weights are updated according to

£st? r ^
A W  = - ;? ------ = - r j R  + y J ( x +) - J ( x ) —  x/(jc+ )

' dW L - aw
(4.7)
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unavailable. In other words, it is suitable for on-line learning where the environment could be 

very large and complex.

In delayed RL, the consequences of long-term compared with short term actions are 

adjusted by the discount factor y. Recall that the discount factor y  lies between 0 < y  < 1. The 

closer the discount factor is to 0 the more immediate the reinforcement. Unlike the immediate 

reinforcement method where each action-state is usually locally optimal, the delayed RL does 

not perform optimally for each state transition. Instead it is said that the RL system operates 

optimally on average.

4.3 Gradient D escent Delayed Advantage Reinforcement 

Learning

Having argued the benefits for gradient descent RL and delayed RL, the advantage 

reinforcement learning is extended for delayed RL. Immediate reinforcement is appealing 

because there is available the immediate information about the goodness or otherwise of taking 

an action at a state. This is not possible in delayed RL, and to achieve some sort of local 

optimality, an estimate o f the optimal advantage function is used. Now, if an action u is taken at

state x  resulting in the next state x+, then estimate A  o f the optimal A* is taken as the immediate 

reinforcement of (x, a), and a good locally optimal policy is obtained. Now, how to obtain an 

estimate o f A u?

Identifying what is good or bad for each action is the problem that makes reinforcement

learning difficult. In other words, the goal is to find an estimate, of f  (.) in (4.3),

where W is the parameter set o f the neural network. A good estimation of f  (.) is important 

since it could be used to check the optimality of the policy u and if necessary adapt it to get a 

better policy. Let n represent the number o f time-steps elapsed after the system was in state x, 

and for brevity r{t) instead of r(x(/), u{x{t)). Let an estimate of (4.1) be defined based on

geometrically averaging . / “̂ ( x ) . is defined as

J U x )  = ( \ - X ) I a'-'-W
n=I

(4.8)

with (1-T) being a normalising term, and 0 < A < 1. Notice that the term J ^ ( x )  with smaller

values for n is weighted more in the averaging process. This makes sense since the terms with a 

large n rely more heavily on future data and therefore should be weighted less in the average. 

Now define an «-step truncation o f the sum in (4.1) as
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*/ (“n ) W =  2 > r H r ) (4-9)
r=0

Since r(0) = r(x,u(x)), (4.8) can be rewritten recursively as

J “ (x) = r(x,u(x))  + y { \ - X ) H x ( y ) \ W )  + yXJuw (x<S)) (4.10)

with jc( 1) being the system state one time-step after x. Using (4.10):

X = 0 -»  J “ (x) = r(x,u(x))  + yJ(x( \ ) ;W) = J “ (x)

X = l ->  J “ (x) = r(x,u(x))+ y.J"(x(\)) = . / " ( * )

In other words, in order to calculate the discounted sum J u , J q makes use of the

immediate cost within one time-step plus the approximation o f the rest of the sum. , on the 

other hand, relies only on the actual costs to achieve the same goal. This learning method using

J \  is called TD(A), with TD being the short form for temporal difference (Sutton 1988). Let a

learning rule now be defined using J \  :

J{x\  fV): = J(x; W) + a ' J \  (x) -  J{x\  W)j  (4.11)

A

where J  is an approximation of f .  To be able to use this rule, J  ̂  (x) has to be calculated on­

line without requiring a system model. As was seen in (4.1), the evaluation function is defined 

as the discounted sum of the future costs. The relation between two consecutive evaluations 

could easily be derived as:

f ( x )  = r + y f { x { \ ) )  (4.12)

with x(l) being the system state one time-step after x. However, the same relation should also 

hold for the predictions of J  if it is a good approximation o f f  . If that is not the case then the 

difference between these predictions could be used to adapt J . Now, £(.) is defined as the 

temporal difference between two successive predictions of the evaluation function
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£(x) = r(x ,i/(x ))+ y J(x (l);lV ) -  J (x ;W ) (4.13)

s(.) can be calculated using the temporal sequence of data available in each time step - hence the 

name temporal difference learning. The error used in the learning rule in (4.11) is a weighted 

sum of the temporal differences computed at each of the visited states.

Temporal differences are weighted exponentially with the earlier ones weighted more. 

Still, this value could not be used in the learning rule (4.11) since the calculation of all the terms 

except the first one involves data only available in the future. There are different ways to deal 

with this problem:

In (4.14) the terms on the right hand side could be truncated to select only the first N 

terms. This means that each term is calculated as the required information becomes available. 

The estimator J  stays unchanged for jV time-steps until the required error is accumulated, after 

which it will be used to update J  using (4.11).

Alternatively, the effects o f the temporal difference could be included as and when they 

occur in time. This can be implemented through the use o f an eligibility trace, e(x, t) for each 

visit, and using the rule at time t (Klopf 1988, Watkins 1989):

J \ { x )  -  J (x ;W)  = e(x) + (yX)s(x(  1)) + (yX)2s{x{2)) +... (4.14)

J ( x \ W )  = J ( x ; W )  + rje{x, t )s{x{t))\ fx (4.15)

where the eligibility trace is adapted according to

0 if  x  is not seen 

e(x , / )  = < yXe(x,l  - 1) if  x(t )  *  x  

1 + yAe(x,t - 1) if  x(l )  = x

(4.16)

Similarly the estimate for A and a learning rule are obtained,

A(x,  u; W ) = A(x,  u\ W)  + rjeA (x, u , t ) s A (*(/), u( l ) )v(x , i t ) (4.17)

where the trace is given by:
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0  i f  (x,w) is not seen

e A{ x j )  = \ yAeA( x , t - 1) if  ( x( t ) ,u( / ))  *  ( x , u )  

\ + y A e A(x, t  - l )  i f  ( x(t ) ,u( t ) )  = ( x ,u)

(4.18)

and the temporal difference

s A = r (x , u) + , J* (x ,); W ) -  w; I f ) (4.19)

The condition for using this procedure is that the trace be reset to zero if more than one 

trial is carried out, and that it is only implemented with connectionist methods such as 

backpropagation neural networks.

4.4 Application of Modified RL to Ship Control Regulation

The problem of manoeuvring a ship is challenging and of considerable interest because of 

the complexity in obtaining an accurate dynamic model. Various external forces such as wave 

motion and wind effects, allied with the coupled behaviour o f the navigation, steering and auto 

pilot systems, make the control task very difficult. In this example the only point o f interest is 

the design o f a controller for regulating a cargo ship heading at a desired angle. A fuller 

description o f the problem is given in (Astrom and Kallstrom 1976) and is summarised in 

Appendix D. It is also listed as IFAC benchmark problem number 89-08.

For straight-line motion the model of the ship under constant velocity is described as

u = rudder angle 

y  = heading angle of ship 

x\ = sway velocity of ship 

x2 = turning yaw rate 

x^ = heading angle of ship

x  = Ax  + Bu (4.20)

y  = cx (4.21)

3 I Iwhere jc e  R , u e  R , y  e  R  are given as follows:

and the structure of A, B and C is given by
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0.895 -0 .2 8 6 0 N '  0.108 '

A = - 4 .3 6 7 -0 .9 1 8 0 B = -0 .9 1 8

v 0 1 o, , o ,

The objective is to find a controller of the system to control and regulate the heading angle of 

the ship to a desired angle o f 12° such that no overshoot occurs for the heading angle, while the 

rudder motion is constrained by:

I H I < 4 0 °

The reinforcement function is defined as the difference between the actual heading and 

the desired angle. The amount o f reinforcement received as a result o f each state-action 

operation is inversely proportional to the amount by which the ship is away from the desired 

angle, with the amount overshot being penalised more:

ref
i f  n o  o v e r s h o o tl - e

r  =  \ ref  i f  d e s i r e d  ( 4 . 2 2 )

ref  i f  o v e r s h o o t  

1 -  5e

where e is the difference between the desired and the actual heading angle, and re f  is the desired 

reference that should be followed. The function approximator used to approximate the 

advantage function is a simple neural network with a single hidden layer. There are neurons in 

the hidden layer and each neuron has a sigmoidal activation function. The network is fully 

connected with three inputs and one output. The standard backpropagation learning algorithm 

is used to update the network parameters, error is minimised according to (4.6), and the weights 

updated according to (4.7). However, instead o f using J, the estimate o f the advantage function 

A needs to be used, where A is as (4.17). The trials are generated using the 4th order Runga- 

Kuta algorithm. The experiment was carried out over 200 trials where each trial consisted of 

200 steps, and each trial terminates when overshoot occurs. Figure 4.1 shows the behaviour o f a 

cargo ship of length 160m with a forward speed of 10 ms' 1 required to follow a path o f 45° to 

the horizontal. As can be seen the ship has learned to follow this path correctly. Figure 4.2 

shows the learning curve o f the network. After a slow start when the exploration space is large, 

the ship learns quite quickly to follow the objectives set out.
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Figure 4.1(a) Ship heading with respect to reference and (b) R udder motion
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Figure 4.2 Perform ance measure at each learning cycle

4.5 Evolutionary N eurofuzzy Reinforcem ent Learning

In Chapter 3, the network structure was learned off-line through the messy genetic 

algorithm. Thereafter, the structure remained fixed while the network parameters were learned. 

In this section, a two-phase learning algorithm is developed where network structure is learned 

both on and off-line based on the dynamic programming and evolutionary reinforcement 

learning methods. The algorithm is summarised in Algorithm 4.1, and illustrated in Figure 4.3

Algorithm 4.1 Evolutionary RL o f  neurofuzzy networks

Stage 1: Off-line structural optimisation

1. Identify inputs and outputs

2. Identify approximate fuzzy subspaces for inputs variables

3. Obtain an approximate fuzzy rule base and network mapping

4. Optimise fuzzy subspaces and structure o f  the network using mGA
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Stage 2: On-line network weight tuning

1. Start with the off-line network to obtain controlled actions

2. While the system is successful within limits apply new input states to the network

3. Record time to failure to reward and reinforce the best networks using Advantage 

Learning

u(t)

On-line Performance
EvaluatorP(t)

SYSTEM
Off-line y(t)

R a n d o m

N u m b e r

G e n e r a to rNFRL

ERL

Figure 4.3 Block diagram of the evolutionary neurofuzzy RL algorithm

In the off-line process, the RL block is based on evolutionary algorithms, more 

specifically messy genetic algorithms. The on-line RL block is a gradient descent neurofuzzy 

network based on the ENFLICT model. In either case, the RL block accepts a state vector *(/) 

and produces a control signal u{t) which is then perturbed by adding a small signal generated by 

a random number generator. The performance p(t) of the system due to this signal is then 

evaluated and fed back to the RL blocks. In the off-line process, the NFRL (neurofuzzy 

reinforcement learning) operates as a feed-forward network, and the ERL (evolutionary 

reinforcement learning) block determines its structure. The messy genetic algorithm (mGA) of 

the ERL block determines the shapes of the activation functions (fuzzy subspaces), the number 

of nodes in each layer and the interconnection of the network.

4.5.1 Off-line Learning

The first stage therefore deals with obtaining the structure of the network using the mGA 

procedure. The regions of fuzzy subspaces are defined according to the information available 

about the plant to the operator. Where the operating regions are known, a fixed universe of 

discourse with varying size membership functions is used. When the operating region range is 

not so clear, fixed size membership functions with a varying universe of discourse are used. 

The resulting network is one where the entire operating region is well covered with equally 

spaced overlapping membership functions, enabling smooth transition between states. At this 

stage, since no input-output data pattern is available, new input to the controller is obtained by
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applying a 4th order Runga-Kutta algorithm to the system, and simulating the system over a 

certain time frame. The simulation would be carried out over a number of cycles to obtain a 

good general solution. The actual learning procedure using mGA is as described in §3.2.3.

On completion o f the first stage, the best network structure is passed to the second stage 

where pruning and fine-tuning of the network is carried out and adjustments to the network 

structure made if necessary. Random initial states are applied to the network, which is then 

allowed to run until the system fails. If running off-line, new states to the controller are 

obtained as before using the RK. algorithm. The number o f successful (x, u(x)) (i.e. {state, 

action)) pairs are recorded and used as the overall reinforcement signal. The weights of the 

network are updated according to the number o f hits they receive during each cycle of the 

learning algorithm.

4.5.2 On-line Learning

On-line learning is concerned with taking a near optimal network structure, plugging to a 

real system instead o f a simulation and observing the system behaviour, and adapting the 

controller structure and parameters to these environmental changes. The learning algorithm 

employed is that of §4.3. Learning is through reward and penalty. If certain weights 

(corresponding to the parameters of the membership function (MF)) are used more often than 

others are, then they are rewarded such that the base width of the membership function is 

increased and its adjacent MFs are penalised by being reduced. Since no gradient information is 

being used, it does not make any sense to use the backpropagation algorithm to update the rules 

and network weights

Consider the equivalent fuzzy sets represented by the neurons at the M-nodes and K- 

nodes of the ENFLICT model. Let the shapes of these fuzzy sets be o f triangular shape defined 

as

(4.23)Triangle (x; a, b,c) = max
/ r  \ \x-a  c-x

, 0max min -----9-----
V vb-a c-b  , )

where a, b, c are parameters of the set as shown in Figure 4.4. x{C$ ,C S ) and w(C5/ ,C$  ) 

are defined as the [state, action] pair, and CS/ ,C S are the supports of the fuzzy set.
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b

ca

Figure 4.4 Triangular activation function

CS l( 0 = A S i( / )C S/_ ( / - l )  (4.24)

CSr(0  = ASr (OCSr( « - l )  (4.25)

where AS is the amount the support is shifted,

A S  = —  N
R  (4.26)

where R ’ is the number of unique rules exciting set, R is the total number o f rules as found at 

stage one o f the process, and TV is a weighting factor given by

N =
max(/Js (m))  (427)

where s is the set under consideration, S is the full range o f sets for the state and m is the 

linguistic rule. Finally to use the advantage learning o f (4.17) the reinforcement signal is 

defined as

' ) = ! /  ,r,+k+rnfi(xi+n)
k (4.28)

where/  is the objective or value function and y(0.95) is the discount factor.
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To illustrate the algorithm, consider Figure 4.5. Consider an initial network weight set-up 

such that the corresponding membership function set-up is as in Figure 4.5a. Now, assuming 

that the weights corresponding to the second membership function “NS” receive the most 

attention, then the base of this MF is spread out more into the regions of its adjacent MFs, “ZE” 

and “NM”, Figure 4.5b. At the same time, as a consequence, the bases of its adjacent MFs are 

also reduced because they are playing a smaller role in the process. The amount of increase and 

decrease is proportional to the extent to which the weights are activated

NM NS ZE PS PM NM NS ZE PS PM

«-
Spread increased

(a) (b)

Figure 4.5 Extracted activation functions (a) before learning, (b) after learning

This sort of reward-penalty policy also has the advantage of removing redundant MFs. 

Consider Figure 4.5a again. In addition to “NS” receiving the most attention, assume “PS” is 

receiving more attention than “ZE” and “PM”. The base of “PS” would then also be increased 

and the base of “ZE” and “PM” reduced. So “ZE” is gradually squeezed out from both sides. If 

as a result of increasing both “NS” and “PS”, “ZE” is completely encompassed or not activated 

at all then ”ZE” is removed, and with it any rules referring to “ZE” is ignored. The cycle o f this 

second stage is repeated until the plant operates successfully to the operator’s satisfaction (such 

as for a specified period).

4.6 Comparison of ENFLICT with other Reinforcement 

Learning Techniques.

When comparing the RL based ENFLICT, in addition to continuing the theme of learning 

fuzzy systems, the main focus is on the learning aspects. That is, whether delayed actions can 

be learned, continuous on-line learning is possible and flexibility exists to implement this 

learning fuzzy system for wide range o f applications regardless o f size and complexity. Table 

4.1 compares ENFLICT with other fuzzy and neurofuzzy RL methods.
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ENFLICT
N au ck  e t 
al (1995)

B onarin i
(1996)

Berenji
(1992) Lin (1995)

Zikidis & 
V asilak o s( 

1996)

F u zzy  s e t  tun ing Y Y Y Y Y Y
R u le  m odification Y Y Y X Y X

M am dani con tro lle r Y Y X X y X

S u g e n o  con tro lle r Y X X Y X Y
N on-sym m etrica l fuzzy  s e ts Y X Y X X X

D ifferent in fe ren c in g  m ech an ism Y X X X X X

D ifferent defuzzification  p ro c e s s Y X X X X X

U n su p e rv ise d  lea rn in g Y X X X X Y
O n lin e  lea rn in g Y X X X X X

Local le a rn in g Y Y Y X X X

C o n tin u o u s  tim e lea rn ing Y Y Y Y X Y
D elay ed  re in fo rcem e n t Y X X Y Y Y
M odel in d e p e n d e n t Y X X X X X

Table 4.1 Comparison of fuzzy reinforcement learning systems

As can been seen from Table 4.1, most work in literature have identified the need for 

continuous learning and delayed reinforcement. However, none of these mainstream methods 

are model independent as ENFLICT is. The main reason is that the neurofuzzy structures such 

as NEFCON (Nauck et al 1995, Zikidis and Vasilakos 1996) are not really neurofuzzy 

structures in the sense referred to in this thesis. That is they are not true representations o f fuzzy 

systems as neural network structures. Instead, they are radial basis function networks that are 

functionally equivalent to fuzzy systems. This means that they are restricted to gaussian 

membership function type threshold functions, and the only parameters to learn are then the 

centres and widths o f these functions, and only symmetrical fuzzy set tuning is possible. The 

other disadvantages of these systems are that they can't truly learn a fuzzy system. That is, these 

systems can not learn the type and shapes of the fuzzy sets, and only the rule base is learnt, and 

not the rule structure.

To learn the rule premise and consequents, Bonarini's (Bonarini 1996) ELF used an 

approach based on the Michigan evolutionary algorithm approach. This means that a group o f 

rules, similar to a population of chromosomes, is used in the reinforcement learning approach. 

The problem of using this sort of EA based RL is that the appropriate premise to consequent 

mapping may always not be available, and thus result in sub-optimal solution. Thus, to begin 

with, the population is composed with full rule compliment, and reduced gradually. This 

implies that the operator has knowledge of the control surface to start off with. As (Nauck et al

1995) argues, this is also computationally expensive, as RL in general a slow learning process. 

In ENFLICT, although the rules are also deleted in the on-line phase, the approximate control 

surface has already been found by the off-line EA based RL, thus is less expensive. The 

Bonarini method also posses the problem on the other extreme. Since some rules are not 

available, the system can not cope with certain data. This problem is also shared with Nauck et 

a ls NEFCON approach. From this point of view, the ENFLICT approach is a compromise 

from both sides. No knowledge of the control surface is assumed, and constructed in the off­

line phase, and rules are decremented during more localised learning.
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Berenji's (Berenji 1992) GARIC model is one o f the most cited works in this field 

because it was one of the very first systems to learn fuzzy systems through reinforcement 

learning. However, as can be seen, it only deals with fuzzy sets tuning, and does not have any 

rule modification properties. In terms of true comparisons, the closest system is that of Nauck 

et a fs  NEFCON model. Although Lin's (Lin 1995) RFNC and the (Zikidis and Vasilakos 1996) 

model has a neurofuzzy structure, these are based on gradient decent learning, hence requiring 

knowledge o f the derivative information needed to guide the learning. This is not the case with 

ENFLICT or NEFCON. However, as has mentioned already, NEFCON has certain restrictions, 

amongst which, the fuzzy weights must be implemented in such a way, that identical linguistic 

terms are represented by identical fuzzy sets. This symptomatic of other systems using the 

Mamdani control approach. In addition, in NEFCON, for different application areas different 

neurofuzzy models have to be derived. As has already been highlighted, this is not the case for 

ENFLICT.

To summarise, RL using ENFLICT presents a completely new approach to continuous 

time learning with relayed reinforcements for any kind of application without change of the 

underlying network structure. This model is able to learn the fuzzy rule base, rule structure, the 

fuzzy sets and the type o f fuzzy sets.

4.7 Application to a Non-linear Coupled System

To see the operation of the algorithm, consider again the twin tank system used in the 

previous example. The objective of this control system is to drive, through the input to Tank 1, 

the liquid level at Tank 2 towards the desired level o f 0.1 m in the first control cycle as fast as 

possible with minimal overshoots and steady-state errors. A second control cycle takes place 

from 600 s and the desired level in Tank 2 now is 0.2 m. The input states to the neurofuzzy 

network, are the tank height and rate of change of height and the output the pump flow rate.

For stage 1, the mGA was configured to accommodate a maximum of nine membership 

functions for each state variable. Since there are obvious limitations to the amount the liquid 

level can rise and the capacity of the pump, a fixed universe of discourse scheme was used. 

The activation type used was the triangular form. Since this system is very slow, to keep the 

computational time minimal only one type of activation is used. In addition, the triangular 

shape gives greater freedom when fine tuning the network in Stage 2 is carried out. The initial 

template was defined as a fully connected network with 9 memberships to describe each 

state/action variable. An initial population size o f 200 was used which was halved after each 

era for 2 eras. This left a population size o f 100 after the primordial phase, and the remaining 

population members were created randomly. For the juxtapositional phase the cut and splice 

rates were set to 75% and 80% respectively. Mutation rate was set to 10% and genes were
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mutated to a value not in the chromosome. The resultant network o f the system after stage 1 is 

illustrated in Figure 4.6 and figure 4.7, and the response is given in Figure 4.8. As can be seen 

the response is reasonable but not as smooth as one would wish. There appears to be excessive 

switching effect taking place as was experienced before and therefore again much tuning is 

required.

Figure 4.6 Neurofuzzy network of tank system after stage 1
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Figure 4.7 Extracted fuzzy sets from network of tank system after stage 1
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Figure 4.8 Closed Loop response of tank system after stage 1

This resulting “best” network if figure 4.6 is carried forward to the second stage for local 

learning and fine-tuning. For each training state if the network was able to deliver a level of 

liquid in tank 2 to within 5% of the desired level, it is rewarded with a score o f 1, and -1 if 

outside the 5% boundary. With the objective not only to reach the desired height in the tank but 

also to maintain the level for a set period of time, the cumulative score after each run is used to 

reinforce the “local learning”. The process is repeated until a satisfactory response is observed. 

Figures 4.9 and 4.10 show the resulting network of the system after local learning, and Figure 

4.11 shows the response. Comparing with Figure 4.6, it is observed that in addition to the shape 

of the activation being affected, the number of neurons and the network connectivity is 

simplified. To test the robustness and ability in dealing with a non-linear system with varied 

operating conditions, the resultant controller was tested for different desired heights and this
_5 2

time a constant inflow disturbance o f 8 .33x10  m  / sec was applied at intervals of 300s. 

Note that there are no steady state errors and no switching effect. Figure 4.12 shows the 

responses for this test. Once again, observe that the oscillations are removed and the tank level 

is within 'acceptable' limits.
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Figure 4.9 Neurofuzzy network of tank system after stage 2
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Figure 4.10 Extracted fuzzy sets from network of tank system after stage 2
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Figure 4.11 Closed Loop response o f tank  system afte r  stage 2
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Figure 4.12 Closed loop response with disturbance

A comparison can also be made between ENFLICT and NEFCON as shown in Figure 

4.13. As can be seen, NEFCON takes longer in comparison to ENFLICT to reach the desired 

levels o f  0.1m and then 0.2m. This is because N EFCO N  has to build up the rule base as it 

learns, where as ENFLICT RL learning takes effect from a coarsely tuned network. As a result 

o f  not having the appropriate rules, there are more oscillations for N EFCON. However, since 

NEFCON learns from training data, it is more accurate, whereas at a level o f  0.2m, there is a 

small steady state error for ENFLICT. This is as a consequence o f  the generalisation effect o f  

the network, and can be solved using more localised learning.
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Figure 4.13 comparison between ENFLICT and NEFCON

4.8 A pplication to a S ingle-Input M ulti-O utput N on-linear 

System w ith On-line Learning

To illustrate the algorithm with another example,, consider the highly non-linear cart- 

pendulum system. However, instead o f  using the traditional single pendulum found in a lot o f  

reinforcement learning and fuzzy control literature, and presented in Chapter 3, the more
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complex double pendulum system is used as shown in Figure E.l. This non-linear control 

problem is often selected because of its similarity to many practical engineering applications, 

such as robot balancing, space shuttle arm, ballistics, and factory roof cranes, which require 

precision, stability and flexibility. The objective is to centre the cart on the track and balance 

both pendulums to vertical axis, by applying a control force to a cart centre of mass. The 

dynamic equations of the system are given below and full derivation can be found in Appendix 

E.

h]x  + h2a ] cos a , + h2ta 2 cos or2 -  /z2dr,2 sin or, -  h3d 22 sin a 2 = u  (6.7)

h2x c o s a ] + h4a x + h5a 2 cos(a, - a 2) - h sa 22 sin(ar, - « 2) - / z 7 sin a , = 0  ^  ^

h2x c o s a 2 + h5a x cos(a , - a 2) + h6a 2 -  h5a 2 sin(ctr, - a 2) - h s s inar2 = 0 (6.9)

where hx be defined as below:

\  = mc + mx + h5 = m2l2 L,

h2 — m\l\ + #*2 hb = m2l2 + J 2

K  = m2̂ 2 hn -  mxlxg  + m2L]g

h4 = m f i  + MiJiS

where x  is the cart position, ai and a2 are pendulum link angles in radians, Lt (=0.6m) and L2 

(=0.5m) are lengths of pendulum links, g  (=9.81 ms'2) is the gravitational constant, // and l2 are 

the distances between the pivot and centre o f mass o f respective links, u is the control force, mc

(= 1.5 kg) is the mass of cart, m j (= 0.5 kg) and m2 (=0.75 kg) are masses of the first and

second links and J j  and J2 (=0.0005kgm2) are the inertia of the first and second links about

their centre of mass.

The inputs to the neurofuzzy network are cart position, cart velocity, the pendulum link 

angles and their angular velocities and the output variable is the control force. For Stage 1, the 

mGA was configured to accommodate a maximum of nine membership functions for each state 

variable. This time the only bounds were the length o f the track, which is set to 2m. Ideally the 

pendulum would be able to operate successfully from any given angle, but in practice this is not 

possible, hence a fixed universe of discourse scheme was used. The activation type used was 

the triangular and gaussian bell shaped form. Since there are 6 inputs, if a single controller in 

simple fuzzy form were to be used, a 6-D rule base would be needed, which would be incredibly 

complex to implement. However, this is not a problem with the neurofuzzy structure.

The off-line learning requires an initial template describing the network structure to be 

defined, and this was configured as a fully connected network with 9 memberships to describe 

each state/action variables. With the size o f the problem in mind, an initial population size of 

200  was used which was halved after each era and the other half refilled with random members
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for 2 eras. The eras were executed at generation 20 and 45 respectively. For the juxtapositional 

phase the cut and splice rates were set to 80% and 80% respectively. Mutation rate was set to 

15% and genes were mutated to a value not in the chromosome.

For the second phase (on-line learning), scores were awarded if  the cart was within the 

track limits and the pendulums did not fail. An error margin o f  5% was defined as 

' ‘satisfactory” . Figures 4.14-4.17 illustrates the behaviour o f  the cart-pendulum system with the 

optimised controller. Figure 4.18 shows the learning curves for the on-line and off-line stages. 

One can observe all the states reaching the desired states to a fast settling time and no 

oscillations. Only a snap shot o f  the entire time process is displayed to show the behaviour o f  

the pendulums and cart before reaching the goal state.
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Figure 4.17 Network Learning Curves (a) off-line and (b) on-line

4.9 Sum mary and D iscussion

In the previous chapter an unsupervised learning model was developed which was based 

on the backpropagation algorithm. However, it had a number o f  drawbacks that mean that the 

model in its existing format is unsuitable. The first is that the network structure grew with the 

size and complexity o f  the problem and the number o f  input and output domain variables. 

Another drawback is that once one has a network as presented after the evolution process, there 

is no scope to modify its structure. In other words there is no provision for modifying, rules. 

Unnecessarily large network structures can lead to slow operation o f  the model computationally, 

and also be detrimental to the convergence o f  the network parameters. In addition, being based 

on the backpropagation algorithm for updating o f  the network parameters implies that some
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derivative information need to be available, like the direction of the annealing rate, to guide the 

learning. Finally, it was assumed that a model was present that could be used by the network to 

obtain a measure of its performance during learning. Therefore in this chapter reinforcement 

learning techniques were developed to solve these problems.

Reinforcement learning is a paradigm of artificial intelligence and is interested in systems 

that can adapt to their environment and experiences. A motivation for reinforcement learning is 

that it is the primary learning method of biological systems. Animals learn and adapt daily with 

only reinforcement type error signals. Reinforcement learning studies therefore seek to capture 

similar capabilities in artificial systems. Just as artificial neural networks are patterned after 

biological neural networks, reinforcement learning systems strive to emulate animal learning. 

Reinforcement learning combines elements o f both supervised and unsupervised learning. Like 

supervised learning there is some training information available. However, this is not provided 

by an external teacher. Instead, as in unsupervised learning, there is a built-in critic that 

provides the training information. In addition as in evolutionary algorithms, it works around an 

evaluation function. In fact the correlation between evolutionary algorithms and reinforcement 

learning systems, will be studied. However, unlike EAs, the evaluation function does not tell 

the agent how it should change its behaviour. The agent simply tries to maximise or minimise 

the performance measure o f the evaluation function.

In this thesis, Harmon and Baird’s advantage learning algorithm (Harmon and Baird

1996) was used because it has been shown to function for continuous time systems without the 

need for a model definition. Some limitations o f this algorithm were identified, viz., that it 

deals only with immediate reward RL, and uses a look-up table to guide the learning. 

Immediate reward is not suitable for on-line learning where the environment can be very large 

or complex. It is also unsuitable for situations where the system must be operating for 

considerable lengths of time before any information can be gathered regarding its relative 

performance. To overcome these limitations the gradient descent algorithm was extended to 

delayed reinforcement. This is a significant change because it is the only RL algorithm that can 

be truly applied to continuous time systems with a function approximator that is guaranteed to 

converge, and it is also suitable for on-line, model-free, implementation. This cannot be said for 

other RL algorithms. For instance, Q-learning and R-Leaming do not work in continuous time 

and are sensitive to errors with small time steps. Other algorithms such as value iteration and 

SRV can work in continuous time. However value iteration requires a model to be learned and 

the calculation of the maximum of an infinite set o f integrals to perform one update, and the 

SRV algorithm does not deal with delayed reinforcements.

After adapting the algorithm so that it can function for continuous time systems and on­

line, the gradient descent advantage learning is combined with the ENFLICT model, and a two 

phase learning procedure is constructed that allows for off-line global network structure 

learning, and local on-line pruning of the network parameters. Since the underlying function
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approximator is the ENFLICT model, the network is able to adapt to system parameter 

variations.

Comparisons with pure RL methods such as (Sutton 1988) and (Watkins 1989) are 

difficult as these are table based, supervised and applied to environments where all the 

information is available. Unfortunately, in the real world, this ideal environment does not exist. 

However, comparisons with other fuzzy-RL methods show the developed method to be much 

superior. To begin with, it is model independent unlike NEFCON (Nauck et al 1995), GARIC 

(Berenji 1992) and RFNC (Lin 1995). ENFLICT is a true integration o f fuzzy and neural 

methods, and not some functional equivalent. Hence, all aspects o f a fuzzy system can be 

learned, and different types of controller (Mamdani or Sugeno) can be used to suit the 

application without changing the network properties or structure. Unlike the likes of GARIC, 

ENFLICT is a single structure, hence only one simple structure needs to be learned. It is a 

compromise between the bottom up approach of NEFCON and top down approach o f ELF 

(Bonarini 1996). With ELF, the Michigan style structure implies that rules may not exist for 

certain input, while using the bottom up approach also suffers the same problem.

Much has been achieved towards the aim of developing a flexible, autonomous, learning 

fuzzy control method. However, one important undesirable property has shown up in 

ENFLICT in its present state. While the network learns well for a specific set point, for a new 

set point, it performs sub-optimally, though not coarsely. Hence there is at least one further step 

that has to be taken, before it can satisfactorily be said that the method has achieved the aims of 

the thesis. The fact that EAs take a very long time (as does RL) for on-line operation means 

that there is a need for some approach that accommodates much more complex and higher order 

systems. An alternative approach to controlling such systems at a global level is to break the 

system up into sub-systems so that individual sub-systems can be treated locally, and then to 

connect up again through some hierarchical structure so that all the sub-systems when combined 

operate at a global level. In the next chapter this is further explored.
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Chapter 5

Model-Free Design of FLCs

It's what you learn after you know it all that counts.

--John Wooden

This chapter focuses on localised learning aspects. Localised learning here 

refers to learning at different operating regions and also learning complex 

and coupled systems though hierarchical structures. In the last chapter, 

reinforcement learning was used to learn without a model and by direct 

interaction. However, to learn delayed actions, an estimate o f  the optimal 

action was used because knowledge o f  the next state was not immediately 

available. The effect o f  this was that the network performed sub-optimally 

around different operating regions. In this chapter, this problem is 

overcome by using plant step response data as the model, thus allowing 

immediate reinforcement to be used and more accurate networks to be 

obtained. The advantage o f  this approach is that learning can be done 

offline using data that is truly representative o f  the system. The method is 

then extended to deal with complex systems by breaking the system up in to 

sub-components and learning in a hierarchical structure. Then comparisons 

are made with well known complete evolutionary-neurofuzzy methods and 

the completed ENFLICT structure.

5.1 Autonomy and Ease of Design

Both evolutionary learning and reinforcement learning are good explorers and able to find 

good solution after a number of trials and some exploration. However, the main difficulty with 

such learning is that of knowing the plant behaviour in the form of a mathematical model and 

what the goal state or the next states should be. It is therefore important for the simulation 

model to be as accurate as the real plant itself so that the cost function and the fitness of a 

particular design reflect its true performance in the real world. Similarly for RL, having a good 

model and value function (especially if using an estimate) is of significant importance. This is, 

however, a challenging task in engineering practice.

Li et al (Li et al 1996) showed that it is possible to design linear controllers directly from 

plant response step data without the need for any mathematical model of the plant. When the
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plant is non-linear it is shown that using such data is actually o f a higher fidelity than any 

linearised model. In this chapter, this technique is extended to non-linear control system design 

and neurofuzzy system design in particular. The advantage of this is that the data can be treated 

as a model and the actual model need not be used at all. The disadvantage is that the data can be 

collected at any time for only one set point, but this is overcome by using the neurofuzzy 

structure to learn the controller. The generalisation property o f the network means that it should 

be possible for the controller to operate at other areas outside the set-point that the data 

represents.

For more complex systems, where the system is highly coupled or the input and output 

domains are o f higher order, the system can be broken down to sub-systems, and controllers 

may be obtained for each sub-system response data. Therefore, the other objective in this 

chapter is to construct a procedure for such a hierarchical structure.

5.2 Data as Model

In system design, the response to a step input is often utilised to analyse the system 

performance in terms o f transient measures such as rise time, settling time and steady state 

errors. Given step-response data the controlled closed-loop output can be viewed as an open 

loop response o f the system to the input filtered by a first order high pass and then convoluted 

by the step response o f the plant. This arises from the fact that a system or plant is characterised 

by its unit impulse response, and the response o f a plant can be obtained mathematically by 

convoluting the input waveform to that plant with its unit impulse response.

U(s)E(s)
R(s)

Y(s)
H(s) G(s)

Figure 5.1 Schematic of unity feedback control system

Consider the plant set-up of Figure 5.1. If U(s) = 1, then for the open loop, the output is 

obtained by taking the inverse Laplace transform.

y( t )  = r 1 {G(s) • U(s)} = r 1 {G(s)} = g ( t ) (5 .1)
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This can be generalised for any arbitrary input signal by applying the principle of 

superposition summation (Dorf 1989). Since a step signal is most common to obtain in the

laboratory, let U(s)  = —. Then the plant step response data will be given by:
.5

Ys {t )= ^ g { v ) d v  (5.2)

in other words,

g ( 0  = y s (t ) (5 -3 )

Now consider a candidate controller is being designed, which provides a control signal 

U(t). The plant output can then be simulated by:

y{t)  = w(/) * g{t) = u(t) * y s(/) = [ u { t )  - y s{ t - r ) d v  (5.4)

It is clear to see from (5.4) that there is no mention of G or g(t) i.e. the plant. Therefore, it 

is possible to simulate the control system and evaluate its performance directly from the plant 

response yx(t). Thus by taking this response to a step input, one can treat this like training data 

and use the evolutionary and reinforcement learning methods to evolve and learn a neurofuzzy 

controller. The difference between this and pure supervised learning is that the teacher has to 

generate manually the learning pattern for the network to learn in supervised learning, whereas 

in this case the data represents the true behaviour of the plant.

5.3 Hierarchical Control Approach

The drawback of this approach is that for a non-linear plant, such a method is valid only 

around the operating point. That is, the convolution approach can only be used for one operating 

region - which is undesirable since the aim is to have a controller that can perform over all

operating regions. A possible way around this problem would be to build a controller, like a

local controller network (Gawthrop 1996, Johansen and Foss 1992), around each operating 

region and then switch between each controller when in the appropriate region.

The objective o f the hierarchical approach is to design a set of controllers which are 

locally optimal, and also when put together are general enough to perform efficiently at a global 

level. Therefore it is necessary to ensure that no single controller has priority over others, that 

the rewards and penalties are distributed equally amongst all the controllers. The whole
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learning procedure can be broken up into three levels. The first is to obtain a global network 

structure that encompasses all the lower level controllers (LLCs) or networks; then to use a 

learning rule that adapts the ‘global’ network structure to environmental changes; and thirdly, to 

use the global information for tuning each local network. The hierarchical structure can also be 

applied for more complex and large systems. At the lower lever, individual controllers would be 

constructed for each local (or sub-system) level, and a network at the upper level structure 

would ensure that all the local networks would perform globally. Since EAs and, in the context 

o f this thesis, a messy GA has been shown to be good global approximators, the upper level of 

the hierarchical structure is overseen by the mGA. At the lower lever, each local network 

controller is shaped by the reinforcement ENFLICT structure.

5.3.1 Global Network Structure Optimisation

Consider the case, at the top level o f the hierarchy, of landing an aircraft. At a lower 

level, the sub-tasks may involve descending and taxiing the aircraft. Using the hierarchical 

structure, at least 2 controllers would be needed. Then for all local ENFLICT controllers, an 

upper lever structure consists o f the combination o f the networks such that it forms a global 

network as shown in Figure 5.2. As can be seen, this network resembles a feedforward 

structure.

In fact, this is another neurofuzzy network similar in structure to the ENFLICT model 

used for each local controller. The objective of the upper level is to perform a mapping from 

some input to some output space. For each state input, there is a switching policy that indicates 

the extent to which that state input will affect a certain local controller. This is similar to 

obtaining the degree of membership to which a certain fuzzy set is fired in a standard FLC. The 

task of the switching policy is to distribute the inputs to each of the controllers at the lower 

level. It does so by weighting the input according to the degree to which that input set is 

relevant to the sub-system.
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Figure 5.2 Global Network Structure for Local Controller Design

For example, for the 2 controllers there would be a policy selector, and its output is a 

measure, or degree of activation, of the immediate level o f activation o f the higher level 

expressed quantitatively as a scalar. This is an indication o f the amount o f influence that the 

upper level will have on the control action corresponding to the set-point during the control 

cycle. Therefore, the switching policy blocks resemble fuzzy subspaces, where the fuzzy 

subspaces correspond to the operating region of the sub-system it is hierarchy to. The fuzzy 

subspaces are defined by gaussian membership functions such that the centre o f each 

membership function is a set point, and the spread is such that there is 50% overlap between 

adjacent membership functions, as shown in Figure 5.3. Here ‘LLC1’ stands for ‘Lower Level 

Controller 1 \  ‘Lower’ does not imply a lower performance, but locally refined. Therefore, the 

output of a policy selector is given by

{x-cf
M = e  2<j2 (5-5)

where x  is the input, c is the centre of the fuzzy subspace, and a  is the spread o f the fizzy 

subspace. The output of each sub-network, or lower controller, is a reinforcement signal that 

indicates how well that lower controller is performing for the given state inputs, and is given by 

(4.28).
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Just as the policy switching block performs fuzzy operations, the action selector then

performs defuzzification operation. Just as in the conventional defuzzification process, the

result from all the rules is aggregated and defuzzified to provide crisp action, The action selector

also defuzzifies the aggregate o f all the output of ‘lower’ level controller in its hierarchy. This

means that the output of the lower level networks have to be presented as fuzzy sets to the

action selector. As a result, the defuzzification of the LLCs is carried out after their ‘parent’

defuzzification. Thus working up all the time, the output of the action selector of the highest

level controller represents the overall behaviour of the global system. The overall output o f the

hierarchy is thus given by

. .  Y  wr
V = — ----- (5.6)

where r is the reinforcement signal of each local network and w is the weight connecting the 

lower network to the action selector of its parent network. 5.6 is in fact the weighted average 

defuzzification process. Thus in essence the network is a neurofuzzy one. A normalised term is 

used to avoid under-generalisation. If normalisation is not used, then the sum of all the 

reinforcement signals may produce a value close to zero as a result o f contributions o f networks 

well outside the set point.

LL LLC2 LLC3 LLC4

0.8

0.2

10 3020 2515

Figure 5.3 Lower level controller representation by gaussian fuzzy subspaces

It is worthwhile to note that while all the networks work in parallel, not all the networks 

will actually be fully functional for any set point. If the said state input is not in the 

neighbourhood of any LLC, or if the switching policy block has decided that during a certain 

control cycle a certain LLC does not necessarily have to function, then that LLC by default 

returns the worst reinforcement signal. Processing power is thereby saved and the time taken to 

obtain the corresponding action is reduced. This is equivalent to the LLC having zero rules
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firing for the set-point in question. Since response data is being used as opposed to having the 

controller being plugged into the real system, it is now possible to use the messy genetic 

algorithm for continuous learning. Messy genetic algorithm is only used for the highest level in 

the hierarchy because the exploration space is largest at this level. It can used for LLCs, but, 

since the search space is narrower, RL is used instead.

The messy genetic algorithm codes and decodes as in the case of offline learning 

described in §3.2.3, but the interpretation of the decoded information is different. Recall the 

gene (252) which decodes to [2 5 2]. Previously, this was interpreted as

[2 5 2]: Input 2 connects to the 5,h A/-node belonging to this domain, and this node has 

shape type 2 .

This now interprets as,

[2 5 2]: Input 2 connects to the 5th controller immediately under its hierarchy, and the 

fuzzy subspace representing this local controller has shape type 2 .

Since the network output is given by the action selector, another difference is that each 

gene encodes and decodes for the input domain only,. As before, there has to be some sort of 

precedence rule, such as first-come-first-served, that governs the description o f the fuzzy 

subspaces and the definition o f the premise. Note also that there has to be a predefined limit on 

the number of local controllers, or else the mGA may end up with a very high dimensional 

global network structure prematurely. However, there is provision for adding further local 

networks should the need arise, and the rule for this is defined in the objective function for the 

mGA as follows:

• Determine the local network with the largest cumulative error, and call this network 1

• Determine the local controller adjacent to network 1 with the highest cumulative error and 

call this network 3.

• Create a new local controller, 2, in the middle of 1 and 3.

• Create a fuzzy subspace for 2 such that its centre is between that of 1 and 3, and its spread 

has 50% overlap with those for 1 and 3. Note that if 1 is such that its fuzzy subspace is at 

the boundary of the global operating condition, then 3 does not need to be scanned as it is 

the only controller adjacent to 1.
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5.3.2 Local Network Structure and Parameter Learning

While the higher level behaviour is similar to a neurofuzzy structure in that it performs a 

mapping from some input space to some output space, the lower level maps the inputs to control 

outputs. Also, as the messy GA optimises the global structure, the local network structures and 

parameters are learned with the advantage learning procedure described above. It should be 

noted that each sub-system might itself have sub-systems immediately below it. To illustrate 

this, consider again the example o f landing an aircraft. Under the sub-system dealing with the 

aircraft’s descent, it is possible also to have the systems dealing with lifting of the wing flaps, 

the lowering o f the wheels and controlling of the attitude. This is shown in Figure 5.4. 

Therefore, each sub-system with further nodes below it operates in the same fashion as the node 

at the highest level, except that the action selector returns a crisp value after its own parent has 

carried out the defuzzification process. The other difference is that the learning o f the network 

structure at this level is carried out by not mGA but by the RL algorithm. In this case, in 

addition to the rule structures being adapted, the network parameters are also tuned. That is, the 

positions of the fuzzy subspaces are changed.

Land
Aircraft

Taxi

Descend

Attitude Brake SteerWings W heels

Figure 5.4 Hierarchical control structure for aircraft landing

This operation also applies for the lowest level of the hierarchy, where the operation is at 

a local region of the global search space. However, since only a local region o f the entire 

exploration space is accessible to the network, the learning algorithm will be greatly 

handicapped in pursuit of the optimal policy because it may not have enough information about 

the system. There are two approaches to overcome this. The first is to remove some 

information from the system such as narrowing of the global operating regions. However, while 

this may make one local controller perform better around a certain operating region, it may 

render the other controllers ineffective or sub-optimal.
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To avoid such interference, an alternative solution is to let each controller reach the best 

optimality it can in its separate operating regions. Thereafter, if further learning is required and 

more information is needed, detach the local controller from the hierarchical structure and let it 

explore further on the global search space. The advantage of this is that the starting controller is 

already near optimal and hence the time required for finding the optimal will be greatly reduced.

5.4 Comparing ENFLICT with Evolutionary Neurofuzzy  

Learning Systems

Thus far, any comparison between ENFLICT and methods found in other literatures, has 

been with evolutionary-fuzzy, neurofuzzy or fuzzy-reinforcement learning systems, and not 

with any global and complete evolutionary neurofuzzy systems. Now that the development is 

being concluded, it is a good moment to reflect on ENFLICT's properties and compare it with 

methods that it can be compared with as a single structure. The summary o f the comparison is 

shown in Table 5.1.

ENFLICT

Ishigami 
et al. 

(1995)
Fukuda et 
al. (1994)

Melikhov
(1996)

Kim et al 
(1995)

Perneel et 
al (1995)

Russo
(1998)

Fuzzy System Optimisation
Rule base construction ✓ ✓ X X X X X

Fuzzy set construction ✓ ✓ X X X X X

Fuzzy set tuning ✓ ✓ ✓ ✓ ✓ ✓ ✓
Variable universe of discourse ✓ X X X X X X

[GJIobal or [Ljocal fuzzy sets G,L G G G G G G
Fuzzy set type definition ✓ X X X X X X

Mamdani controller ✓ ✓ ? ✓ ✓ ✓ ✓
Sugeno controller ✓ X ? X X X X

Non-symmetrical fuzzy sets ✓ ✓ X X X X X

Different inferencing mechanism ✓ X X X X X X

Different defuzzification process ✓ X X X X X ✓
Supervised learning ✓ ✓ ✓ ✓ ✓ ✓ V
Unsupervised learning ✓ X X X X X X

Online learning ✓ X X X X X X

Local learning V X ✓ X X X X

Model dependent ✓ ✓ ✓ ? ✓ ✓ V
Model independent X X ? X X X

Hierarchical structure ✓ X ✓ X X X X

Learning directly from data ✓ X X X X X X

Learning through reinforcement V X X X X X X

EA Representation
Integer encoding ✓ ✓ ? ✓ X ✓ X

Variable length representation ✓ X X X X X X

Reproduction operator
cut and 
splice crossover crossover crossover crossover crossover

crossover 
& hill 

climbing
Entropy cost function ✓ X X X X X X

Single gene representation ✓ X X X X X X

Table 5.1 Comparison of ENFLICT with evolutionary neurofuzzy methods
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Comparisons are made against the major contributions of the thesis, that is, in the 

flexibility o f the evolutionary algorithm representation. This involves coding o f the rule base, 

the rule structure, gene representation, cost function and the number, type and shape of the 

fuzzy sets. In this thesis, a variable length chromosome is used that allows for representing the 

rule base and the rule mappings. In contrast, none o f the systems being compared with exhibit 

this property. As has already been highlighted, using a fixed length chromosome is restrictive 

on the size of the problem and the amount of information that can be represented in the genes. 

Genes in the ENFLICT structure are integer encoded and a single gene coding is used, thus 

allowing a gene-to-parameter representation and making the order of the genes in the 

chromosome irrelevant. Therefore, knowledge o f the linkage format is not necessary. In 

contrast to ENFLICT, all the other methods were found to be using some variation of the 

quadratic error function as the cost function. In ENFLICT, an entropy function speeds up the 

learning process and also is less resistant to getting trapped in local optima.

In the learning process, the focus is on how flexible and accommodating the network 

structure is. It comes as no surprise that most methods employ the Mamdani type controller 

because the Sugeno type uses crisp values to represent the output that is often difficult to 

predict. However, as has been highlighted in §3.3, there are situations where Sugeno type is 

useful. ENFLICT is the only model that allows for both types of controllers. However, what is 

surprising is that with the exception o f (Ishigami et al 1995), none of the other methods are 

concerned with optimising the rule base. These methods are only concerned with optimising 

symmetrical fuzzy sets. As has been illustrated in §2.2, the shape and type o f fuzzy sets can 

affect the performance o f the controller. From this point o f view, ENFLICT is much more 

flexible as it is the only model that allows mixed type non-symmetrical fuzzy sets.

A third area of contribution of the thesis is in the type o f learning. Reinforcement 

learning was used for unsupervised learning through direct interaction with the environment. 

As can bee seen from Table 5.1, all these methods are based on supervised learning where 

training data is used to train the network. In contrast, ENFLICT allows one to learn the network 

on-line, unsupervised and independent of a model.

Final area of contribution is in local learning and learning of complex systems through 

hierarchical structures. ENFLICT uses plant step response data to represent the model, thus 

being able to learn off-line using data that is a true representation o f the model. None of the 

methods being compared with exhibited this property.

In conclusion, whether being compared with individual components or as a whole 

structure, the methods developed around ENFLICT for learning fuzzy systems is the most 

flexible structure developed.
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5.5 Case Studies

5.5.1 Single inverted pendulum

To illustrate the above procedures, consider the example of the inverted pendulum in appendix 

E, but with only one link, first studied in Chapter 3. The problem is to control the motion of the 

cart along a horizontal line so that the pole will not fall down and will eventually stand at a 

desired angle. As before, there are four states associated with this model: cart position x , cart 

velocity v, pole angular position 6\ and pole angular velocity co. The pendulum is controlled by 

applying a force o f varying magnitude to the cart’s centre of mass. The hierarchical structure 

o f the system is illustrated in Figure 5.5. For the tests, the following parameters were used:

g  (acceleration due to gravity) = 9.81 m/sec2 

0.1 < m (mass o f pole) < 1 kg 

0.5 < M  (mass of cart) < 2.0 kg 

0.5 < / (length of pole) <0.1 m

C a r t  S u b ­
s y s t e m

B a l a n c e  C a r t  
a n d  P o l e

P o l e  S u b ­
s y s t e m

A c t i o n
S e l e c t o r

P o l i c y  S e l e c t o r  
f o r  P o l e

P o l i c y  S e l e c t o r  
f o r  C a r t

Figure 5.5 Hierarchical structure for cart-pole system

The aim is to find the control force required such that x(f) and 0(\) converge towards the 

desired centre position on the track, and an angle of zero to the vertical axis respectively in the 

shortest possible time for system parameter variations. As can be seen, there are two lower 

level controllers, one deals with the cart and the other the pole. The first task is to set up the 

global controller for the messy GA to optimise. This consists simply of two switching policy 

blocks with two membership function definitions, and the hidden layer consisting of two nodes, 

each representing a lower level controller. The evolutionary optimisation was carried out on the 

global controller alone with 100 generations over a single era and a population size of 200. The 

probabilities for cut, splice and mutation were set at 65%, 70% and 5% respectively. For 

computational efficiency, the mGA was only allowed to select between triangular and gaussian 

membership shapes.

For the local learning procedure, the local networks were each set initially with 5 fuzzy 

subspaces, equally spaced out for each o f the input and output domains. To keep the
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computational burden down only the centres and widths o f each membership function were 

learned. Figure 5.6 and 5.7 show the two LLCs, and 5.8 and 5.9 shows the global controller 

input memberships. Figure 5.10-5.13 illustrates the response o f the system to the various points 

used during and after the learning procedure. As can be seen, both the sub-system network 

structures have changed during the learning operation, and have found some nodes to be 

unnecessary and removed them from the structure. The responses are, as described, for the 

highest level structure, which consists of the two local controllers and the two switching policy 

structures o f Figure 5.8 and 5.9. As can be seen, the required objectives have been achieved. 

Comparing the responses with those of the identical set-up for the model based system it can be 

seen that this model free approach procedure is comparable.

F u zzy  In fe ren c e

-37 44

9.72

-25.26

P o s i t i o n

17.28

F o r c e20.39

29
20

21.66
V e l o c i t y

49

Figure 5.6 Controller for cart sub-system
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Figure 5.9 Fuzzy subspaces pertaining to the pole switching policy box
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Figure 5.10 Position of cart for initial conditions (0;0;0;0)
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Figure 5.11 Velocity of cart for initial conditions (0;0;0;0)
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Figure 5.12 Angle of pole for initial conditions (0;0;0;0)
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Figure 5.13 Angular velocity of pole for initial conditions (0;0;0;0)

5.5.2 Case Study -  Liquid Level Control Example

As a second example, consider again the liquid level control system first encountered in 

Chapter 3. Simulations were first carried out on the tank system in open loop. Sample 

response to a step input signal was obtained by applying 4th order Runga-Kutta to the system 

equations. Figure 5.14 illustrates the response o f  the system for a step-input signal in open loop 

for the model and that obtained with the convolution method.

5  009

0 07

0 06

H  0 05

0 04
- P i rom Data

0 03
100 150

time (seconds)
200 250 30050

Figure 5.14 Plant response data for non-linear model and data obtain by convolution

For the local neurofuzzy networks, the type o f  activation functions were limited to two 

types, gaussian and triangular. However, this time the sub-components are different set-points 

which the system must follow, instead o f  physical sub-components, as shown in figure 5.15. 

As before, the inputs to the networks are the tank level and the rate o f  change o f  the level, and 

the output is the pump flow rate. Since the system is very slow and hence to keep the 

computational time to a minimal possible, an upper limit o f  7 nodes per layer was imposed. For 

the higher level network, an initial population size o f  400 was used which was halved after each 

era for 2 eras. This left a population size o f  200 after the primordial phase, and the remaining 

population members were filled randomly. For the juxtapositional phase the cut and splice rates
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were set to 75% and 80% respectively. Mutation rate was set to 10% and genes were mutated to

a value not in the chromosome.

Liquid-level
control

Set-point 1 Set-point 2 Set-point 3

Figure 5.15 Hierarchical structure for liquid level control system

Figure 5.16 shows the tank liquid level responses and the control actions needed for 

various set points. It can be observed that the response obtained through the convolution 

method using the neurofuzzy based on mGA and RL combination has faster rise time and 

settling time than that obtained through the model. The neurofuzzy approach seemed to have a 

small steady state error for set points different from that with which the training was carried out. 

This is due to the difficulties stated, with the local controllers needing more information 

available to them for optimal performance. This suggests the limitation of using the linear 

convolution data to replace the non-linear plant. Nevertheless, it shows that a neurofuzzy 

controller designed from the data can provide a good controller for an unknown non-linear 

plant. For comparison, a single controller designed around a single operating point was also 

constructed, and Figure 5.17 shows the behaviour o f the tank. As can be see, as expected, the 

hierarchical method performs better because it is able to obtain controllers that are more 

representative of the global system. The set-point used to obtain the single controller is 0.1m, 

and it can be seen that for a set-point of 0.075m, which is in the neighbourhood of 0.1m, the 

controller does a good job, deviating only slightly from the desired point. On the other hand, 

for a set-point of 0.15m, the deviation from the desired is very significant. Comparing it with 

5.16, the hierarchical structure has yielded a better global performance.
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Figure 5.16 Tank performance at various set points
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Figure 5.17 Response of system to a single controller around a single set-point

5.6 Sum m ary and D iscussion

In this chapter, the learning through direct interaction with the environment procedure 

was extended and a method for working with complex and large systems was developed. First, 

the environment was replaced with plant response data. Using the convolution approach means 

that no identification o f  the plant is necessary'. The response data o f  the system to a step can be 

taken as the model. However it was identified that since the input-output data is not 

representative o f  the whole operating range o f  the plant, a single controller performed 

inadequately for set-points outside the response data.

To overcome this, a hierarchical structure for controller design was developed. This not 

only allowed for learning controllers outside the step response data, but can also be used to learn 

larger and more complex systems. The idea is to decompose the system into subsystems, or in 

the case o f  operating under different set-points. decompose the operating range into sub-regions 

and work at a lower level on each subsystem or sub-region.
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All the levels in the hierarchy are neurofuzzy networks where the higher level performs a 

mapping from an input space to an output space, and the lower level maps the inputs to control 

outputs. At the top level, the global search space is handled by the messy genetic algorithm, 

and it regulates the flow of information to the lower levels, while at lower levels RL is used to 

learn network structure and tune parameters of the lower level networks. This enables the 

system to compensate for local changes in the environment. Through examples, it has been 

shown that this adaptive hierarchical structure is a flexible and efficient approach to 

autonomous and globally optimal fuzzy control design.
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Chapter 6

Conclusion and Future Research
One never notices what has been done; 

one can only see what remains to be done.

- Marie Curie

6.1 Conclusions

The aim of this thesis was not to reinvent fuzzy control but to help control designers build 

better fuzzy controllers more easily. This has been achieved through Soft Computing (SC) 

techniques. SC is a discipline that compliments the distinct methodologies of fuzzy logic, 

neural network, evolutionary algorithms and learning theory. The underlying principle o f SC is 

exploitation o f impricision and uncertainty to achieve flexibility, stability and robustness.

The reason for this work is associated with the fact that there appears to exist no 

systematic design methodology for fuzzy control. The objective is also set out that the design 

and the designed system should be flexible, autonomous and interactive. This is important 

because many applications are very complex and time varying, and representing them by 

traditional mathematical means may be impossible or impractical.

To achieve these goals, it was argued that the learning fuzzy control system be modelled 

around SC. The important characteristic of SC is that it is not a mixture of FL, NN, EA, RL and 

other learning theory, but that it is a complementary partnership in which each o f the individual 

methods contribute a distinct methodology for addressing problems in its domain. Initially, the 

learning fuzzy control system is modelled around a neural network framework because such a 

network has been established as a fast learner with generalisation capabilities, and it is simple to 

map onto. However, the existing neural and fuzzy hybrid structures, such as the ANFIS (Jang 

1993), NEFCON (Nauck and Kruse 1994) and NEUFUZ (Khalid et al 1994) models, have been 

found to have a number o f limitations. For example, the ANFIS model can deal with Sugeno 

type controllers only, while the Neufuz model lacks the rule modification ability and its 

performance with slow systems is rather poor. To overcome these inadequacies, the ENFLICT 

(Evolutionary NeuroFuzzy Learning Intelligent Control Technique) has been developed. The 

model is flexible in terms of:
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♦ the type of FLC it can represent

♦ the type of fuzzification

♦ the defuzzification strategy

♦ the inferencing mechanism

♦ the type of memberships that can be used to define the linguistic expressions

♦ the rule structure that can be used to define the control behaviour.

This is in contrast to other methods where the focus o f attention is mainly on fuzzy tuning 

(Lin and Lee 1991), where only one type of symmetrical fuzzy set can be used (Harris et al 

1996, Bruske et al 1993, Khan 1993), and which is restricted to a single type o f inferencing and 

defuzzification process.

The developed model is more than just a neurofuzzy model. As the name suggests, it also 

exhibits evolutionary optimisation properties, where global and flexible learning o f the FLC and 

its structure is achieved. Although there have been a number of attempts at using flexible 

chromosome representations to overcome some of the problems associated with traditional 

chromosomes, the existing results are not as flexible as ENFLICT even excluding the neural 

learning feature. For example, a variable length chromosome technique was developed by 

Carse et al to tune the fuzzy sets by adjusting the width and centres of triangular fuzzy sets 

(Carse et al 1996). Since only the centres and widths are adjusted, the fuzzy sets must be 

predefined symmetrical. Further, the requirement o f reordering genes in this approach implies 

that the number of rules and fuzzy sets per variable is limited.

Hoffman and Pfister (Hoffman and Pfister 1995) used a messy genetic algorithm to 

encode the rule base using two integer representations. However, in this work the size of the 

rule base was predefined and there exists no option for tuning the fuzzy sets. An improved 

version of Goldberg’s mGA (Goldberg 1989b) has been used in this thesis because of its 

attractive flexible coding properties. The improvement is in the gene and chromosome 

representation. In the improved version, each gene uses integer encoding instead o f binary and 

each single integer value can also hold more than one piece of information about the FLC. This 

is to overcome the rigid, such as fixed-length, coding deficiency in existing evolutionary-fuzzy 

hybrids (Takagi and Lee 1993, Kinzel et al 1994, Ng 1995, Herrera et al 1995). The extension 

from the pair to three-parameter gene set has meant that it is possible to represent more 

information within each gene without affecting convergence, while at the same time avoiding 

chromosomes of large dimensions and redundant code. This also allows ENFLICT to 

accommodate such non-symmetrical fuzzy sets. ENFLICT assumes no a priori knowledge and 

requires no restrictions on the number of fuzzy set, rules and shapes, and the types of the fuzzy 

sets are determined through the evolutionary process.
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The ENFLICT model has therefore been developed for the purpose of fine tuning the 

network parameters. In addition to the flexible structure, significant differences between other 

neurofuzzy models and the ENFLICT model are that ENFLICT is able to learn:

♦ online as well as offline

♦ local and global fuzzy sets

♦ Mamdani and Sugeno type controllers

♦ mixed membership functions

♦ non-symmetrical fuzzy sets

♦ with different fuzzification and defuzzification strategies

♦ a global structure followed by local fine tuning.

Learning online has the advantage that the network is able to adapt to real environmental 

changes, which would otherwise have been difficult to simulate. It also implies that one does 

not need to collect training data that may be unrepresentative or inaccurate. However, despite 

these significant strides forward, the cost of using this global and flexible evolutionary 

algorithm is that it is almost impossible to implement in real time. It is only possible to 

optimise offline the network connectivity and the type of activation for each node or neuron. 

This results in a controller that is coarse and further tuning is necessary. The second problem 

left to tackle is that the standard ENFLICT learning procedure depended on a model being 

available. One way to overcome these is to alter the rule structure online by directly interacting 

with the environment. For this purpose reinforcement learning techniques have been employed. 

Since RL is similar to an evolutionary algorithm, it naturally and smoothly expands the EA's 

capability into online and offline fine and fast tuning.

There exists a number of reinforcement learning techniques, and it has been argued that 

the one best suited to the purpose of this work is that of Advantage Reinforcement Learning. 

This is because it requires no models to be defined and it can work with continuous time 

systems. Using the ENFLICT model, its gradient descent backpropagation algorithm can be 

switched on when needed in conjunction with the extended reinforcement learning method.

The problems with learning online are fully addressed in Chapter 4. In supervised 

learning the goal state from any action is provided by the teacher. However, this can be very 

time-consuming and inappropriate as what the goal state or the successive should be is 

unknown. In online or unsupervised learning the system will only know this through 

exploration. On the other hand, the aim of all methods developed is to make the system behave 

optimally at each state. Therefore, one is caught compromising between exploration and 

immediate optimal behaviour. If exploration is compromised, the optimal policy may not be 

found, and if it is not, then immediate optimality is not likely to be achieved. Although it has 

been argued that supervised learning is not desirable because of the various difficulties
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highlighted in Chapters 2 and 3, it seems that it should not be sidelined altogether. In fact, 

comparison tests with methods from literature show such evidence. The resulting RL model 

exhibits the following properties:

♦ continuous online learning without derivative information

♦ optimal behaviour at each state

♦ online control surface modification

♦ non-lookup table delayed reinforcement exploration

Learning from real plant data as opposed to from a model has been achieved in Chapter 5. 

This has various advantages:

♦ the data is truly representative of the plant

♦ one does not have to use expensive equipment and set-up to learn the controller

♦ the response to step input allows system performance analysis in terms o f transient 

measures such as steady state errors, rise and settling times.

However, since such response is taken around a set point, it limits the controller to learn 

to only one set point. To expand to include an entire operating envelope, a Local Controller 

Network (Gawthrop 1996) has been constructed to allow operation in different conditions or to 

carry out different tasks. Thus it is possible to learn to control the most complex o f systems by 

breaking it up into sub-components and learning each sub-component independently. While 

there is a separate controller for each sub-goal, they do not operate sequentially. Therefore, 

learning for all conditions is continuous until error thresholds are satisfied for all conditions.

6.2 Future Research

Although it is hoped that the aims of this thesis have been fulfilled, it is believed that 

there is still scope for further work in this area.

♦ Stability and Robustness Analysis: In this work as well as in work reported elsewhere in 

this field, stability and robustness are guarded by the design criteria in the form of fitness or 

cost functions, which are validated through simulations in the design optimisation (Li et a/ 

1996). Although this is sufficient by human experience and linguistic expression o f control 

behaviour, to a sceptic of fuzzy control it is mathematically insufficient. This is probably 

one of the major factors that have dogged the progress of fuzzy control, and any work 

towards a general and formalised design procedure. Therefore, it is believed that a step
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forward from the point to which the work has progressed, is to carry out theoretical analysis 

on robustness and stability for all the methods developed.

• Digital Control: Fuzzy control is increasingly implemented by digital means. It is less 

expensive, more flexible and easier to implement. It is technologically feasible nowadays to 

implement a FLC on a single silicon chip using the modem system level integration 

technology. Therefore, another possible direction that can be followed from the work in 

this thesis is to work towards automation and code generation in addition to the 

mathematics o f an optimal FLC. For example, for portability, platform independence and 

object orientation, generating Java code for plugging in to a Java interpretable board could 

be the first step towards the eventual goal o f "fuzzy control systems on a chip".
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Appendix A

The Backpropagation Algorithm

Suppose that a given feed-forward network in layered representation has L-layers and 

layer / (/ = 0,1, /=0 represents the input layer) has N(i) nodes. Then the output and

function nodes /(/ = 1, N(i)) o f layer i can be represented as x/ / and f i i  respectively, as

shown in Figure A.I. Without loss of generality, we assume there are no jumping links, that is, 

links connecting non-consecutive layers.

I,

h

O,

w, O,

Figure A.l 2-layer feed-forward network

Given an input vector P, the input at the hidden unit j  is

h j = l . w jk I k (A .l)

where / £  is the input signal k belonging to an input vector P. The output from the same hidden 

unit j is obtained by

o Pj =  f ( h Pj )  -  f  T w ik Iki j;  j ^ - ' j k
V k

(A.2)
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Output unit /  thus receives a net input

h t = 'Lwv o FJ = Z »V / f
j  j  V k

(A.3)

which produces the final output

O f  = F ( h '‘) = F
(  \ f f  \ \

z w i j 0 pj = F I  wjk Ik
x J j j V k J J

(A.4)

The overall error measure at the output is

Z  p  i Z  p  i
T i - F \

r \ \
'LWijf 'LwJk Ik 

v J v * J)
(A.5)

Provided the activation functions are differentiable, using the chain rule the change in 

weights at the output layer is found from

AW;
m u P

(A.6 )

where q is known as the learning rate and is used to decide how fast the weights are allowed to 

change for each time step. Substituting equation A.3 into A .6

W y  = 7 l [ r f - o f ]  =Z  S t  o',
p m . p

(A. l)

where

S,P = T i - O i
dF

3 i
(A.8)

The updated weight Wy is found from Wy— Wy+AWy. The change in weight in the 

hidden layer is found in a similar way
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Awjk =
dE /. p] o F i h f ) c h f

d w j k  P i c h ^  ^ j k
(A.9)

Using the chain rule, and from equations A .l, A.2 and A.3

A w Jk = n l  I  [t - -  of]- • wtj ■

P i  oh! oh ,  jk

P I at;  a t ;

tiL L s ?  -Wu
v k ' j )• P txr W  /  j  P

i j ' Jt,p kp  i 3 i J

= n ! . S j , - i k
P

(A. 10)

(A.l 1)

(A. 12) 

(A-13)

The updated weight wjfc  is found from w jk =  w jfc+ A w jk . The update rule can be 

generalised for an arbitrary number o f layers

mn - n Y 5 output ' ^input (A. 14)
P

where Vmp Ut is the input to the layer being considered, and m and n are the connection of the 

two ends being considered.
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Appendix B

The Coupled Tank System

The system consists o f a glass container divided at the centre to form two areas that 

represent the two tanks. Water is pumped into the first tank through a variable speed pump, and 

the flow rate is measured by a flow meter. The water out of the second tank is recycled to 

provide the supply reservoir for the pump. The depth o f fluid is measured using differential 

pressure sensors that provide an analogue direct current signal for control purpose. Figure B.l 

illustrates the set-up.

f l o w  m e t e r

p u m p

F ig u re  B .l S ch em atic  o f  liqu id -leve l system

Consider the tank set-up, as depicted in Figure B .l. A fluid balance about each tank 

delivers:

Qo ~Q\ -  d
d H ]

~dt
(B .l)

Qi ~ Qi -  a
d H :

dt
(B.2)

From Bernoulli’s equation can be derived:

g H ] = g H 2 + ^ u ]2 (B.3)
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g H 2 = g d  + ^ u 22 (B.4)

where U\ and u2 are the flow velocities through orifice 1 or 2, respectively. With

Q\ = u ]a ] (B.5)

Q 2 = u 2a 2 (B.6 )

the following equations are obtained:

Q, = c dl<7,V 2 g ( / / ,  - H2) (B.7)

Ql =cd2a2^S(f^2 ~d) (B.8)

where cdi and cd2 are the discharge coefficients of orifices 1 and 2 , respectively.

Substituting equation (B.7) and (B.8) into (B .l) and (B.2) gives:

A ^ L  = Q0 - c Ma ^ 2 g ( H l - H 2 ) (B.9)
at

A — 1 - = c d]a ]yl 2 g ( H l - H 2 ) - c A2a 2 ^ l g { H 2 - d ) . (B .10)
dt

Equations (B.9) and (B.10) describe the system dynamics in their true non-linear form. 

The discharge coefficients cd] and cd2 can be determined from experimental results as follows:

Discharge coefficient cd] :

Assuming there is no flow into tank 1 ( Q0 = 0 ) and the drain tap is closed (Q2 = 0 ), from 

equation (B .l) and (B.2),

d H ,
01 =<4— 1  (B.l I)

dt
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Q , = A — - ±  . (B. 12)
dt

Subtracting these equations gives:

- 2 0 ,  - H 2 ) . (B. 13)
dt

Substituting Q} by equation (B.7) leads to:

- 2 c 6la j 2 g ( H t - H 2 ) = A ^ - ( H , - H 2 ) . (B.14)
dt

Equation (B. 14) can be rearranged to give:

where H] -  H2 is substituted by HA .

Integration of (B.15) from / = /0 to t = t0 + T and from HA(0) = (t0) -  H2(t0) to

HA (/0 + T)= H | (t0 + T)~ H2do + T) ■> respectively, delivers the final result:

cd] -  j = ^ j H ] (t0 ) -  H 2(to) —^ H \ ( t Q + T )  — H 2(to + 7 ’)] (B.16)
a\Ty}2g

where /Yj (/0) , H2(to), / / 1( /0 + 7’) and H2(tQ + T) are to be measured at t = t0 and t = t0 + T, 

respectively. T  is a known time interval.

Discharge coefficient cd2

Assuming the tanks are one, i.e. with the partitions removed, with cross-sectional area 

2 A , the following flow balance can be written:

^  „ d H  2- Q 2 = 2 A — ^ .  (B.17)
dt
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Substituting Q2 by equation (B.8) gives:

~ c d2a 2 ^ 2S ( H 2 ~ d ) =
d H :

~d t
(B.l 8 )

As with discharge coefficient cdi equation (B .l8) can be rearranged and integrated to

give:

c d2
4 A

a 2r f i i
[\Z^ 2  (^o) ~ d  ~ V '^ 2  (^o + T )  — d (B. 19)

where H2(t0), H2(t0 + 7r) are to be measured at t = t0 and t = t0 + T, respectively. T is a 

known time interval.
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Appendix C

Dynamics of Cart-Pole system

The coordinate system for the single inverted pendulum is as Figure C.l

Figure C.l Cart-pole co-ordinate system

where

z - cart position, m

p , - pendulum link angle, radians

A - length of pendulum link, m

/, - distance between pivot and centre o f mass, m

/ - force exerted on cart, N

G, - centre of mass of primary link

General system equations:

M
z + c Z

+ N  = 7 '

A A 0

Inertia matrix M , damping matrix C and nonlinear terms N are:
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M  =
mc + m, m,/, cos/?,

, c  =
'v 0 “

, N =
- m , l ,  sinp p 2

m,/, cos/?, m j f + J ^ [o  c, -  m ,l,g s in$

Considering motor equations, force is:

, K. J... D„ .f  = — l, - t z - T Z (C.2)

The matrices M and C become:

Ja r Dm 1
M = mc + m, + —r  

r
131,1, COS P

, c  = V +  - T -  0
r"

m, 1 ,cosp m,l2 +J, 0 Ci.

det(M) = ^mc + m, + J , ) -  mflf cos2 P

In current control mode

ia = k tu

where the u is voltage. Introducing state variables:

= [x, x2 x3 x Af  =[z P  z  p f (C.3)

x, = x 3 (C.4)

x2 = x4 (C.5)

* 3

'J
/7?j/| + J  j

det(M)
. 2 K k i D mvx3 -W]/| sinx2x4  u + ——x3

+ " ' I ' ™ * 2 s i n x 2 + C ,x 4 )
det(M)

( C . 6 )
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m d x co s j c?  (  , • 2 Kk: D m
x d = ——--------- vx-> - m , l i s in x ?x 4 ---------u + —— x-,

4 de t(M ) V r r

m c + m ] + - j

 .■ .T V ; /  -(~ 'W |/ |g s in jr2 + C |X 4 )
de t(M )

(C.7)
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Appendix D

Ship Dynamics

The equations describing ship dynamics are obtained from Newton's laws expressing 

conservation o f linear and angular momentum. The forces are in general complicated functions 

o f the ship's motion, i.e. the time history o f the velocity, angular velocity and the rudder motion. 

Consider the ship as a rigid body with 6 degrees o f freedom corresponding to translations in 3 

directions and rotation around 3 axes. Neglecting sensor and actuator dynamics, the ship can 

thus be modelled as a 12-order system. Additional dynamics are also introduced by the rudder 

servo. It is customary at least for tankers and similar ships to neglect the coupling between the 

yaw motion and the pitch and roll motions. To describe the equations o f motion the co­

ordinate system fixed to the ship shown in Figure. D.l is used.

Figure D .l. Definition of co-ordinates fixed to the ship. Translation along the co-ordinate 

axes are called surges sway and heave and rotation around the co-ordinate axes are called

rote pitch and yaw, respectively.

Let v be the projection of the ship's velocity on the y-axis, and r the component of the 

angular velocity on the z-axis, Figure D.2. The projection of the ship's velocity on the .r-axis is 

assumed to be constant and equal to u0. The equations for the yaw motion are then given by the 

laws of conservation o f linear and angular momentum:

(D .l)
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where m is the mass of the ship, Iz its moment o f inertia about the z-axis, Y the component of 

the hydrodynamic forces on the y~axis, N  the z-component o f the torque due to the 

hydrodynamic forces and x(i the x  co-ordinate of the centre of mass. It is assumed that the 

centre of mass is located in the x-z plane. The hydrodynamic force Y and the torque N  are 

complicated functions of the motion. It is usually assumed that

r = y(v,r,£,v,r), (D.2)

N = N(v,r,S,v ,r),

where S  is the rudder deflection. The functions Y  and N  will also depend on trim and draught, 

and the results will hold for one loading condition only.

Stationary solutions

Assuming that the rudder is kept constant at the centre position the steady-state solution 

to the equations o f motion is given by

/ ( v ,  r)  = Y  (v, r, 0,0,0) -  m ruQ = 0, 

g ( v , r )  = N ( v ,r ,0 ,0 ,0 ) - m x Gru0 = 0,

(D.3)

For a ship which is symmetric around its centre plane the force Y and the torque N  will 

vanish for a motion with v = 0 and r = 0. The stationary solution to (D.3) is then given by v = 0 

and r = 0. Depending on the properties of the functions Y and N  there may, however, also be 

other solutions. These are obtained from a graph o f the functions /a n d  g. in Figure D.3. The 

case of one stationary point Q only as shown in Figure D.3(A) is most common. For very large 

tankers the case shown in Figure D.3(B) can, however, occur. In such a case the solution v = 0 

and r = 0. point Q  in Figure D.3(B), which corresponds to a straight line motion is unstable 

while the solutions v = v0, r = -r0 and v = v0, r = r0, point P\ and Pi respectively in Figure 

D.3(B), which correspond to circular motions are stable. A ship with these properties cannot be 

kept on a straight course with zero rudder. It will either go into a port yaw or into a starboard 

yaw and the motion will tend to a stationary circular motion.
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t

Figure D.2. Variables used to describe the linearised yaw motion of a ship. Notice that 

different conventions for the sign o f <?are used in the literature.

f(v ,r)= 0

g (v ,r)= 0

Figure D.3 The determination of the stationary motions as the intersections of the curves 

/(v , r)=0 and g(v, r)=0. In case A the curves intersect at the origin only but in case B there

are 3 stationary solutions.

Normalisation and linearisation

It is customary to normalise the equations by introducing dimension free quantities. This 

can be done in several different ways. In the 'prime' system, which is most common, the length 

unit is the length o f the ship, I ,  the time unit is L/V, where V is the ship's speed, and the mass 

unit is p l) l2, where p  is the mass density o f water. The normalised variables are denoted by 

introducing a 'prime' on the non-normalised variables. To linearise the equations it is necessary 

to introduce the partial derivatives of the force Y and the torque N. The partial derivative

Yv = ( S / S v ) Y ( v , r , S , v , f )
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where the right hand side is evaluated at arguments zero, is called a hydrodynamic derivative. 

The derivatives Yr , Y$ , Ŷ , Yf. , N u , N r , , N 0 and AL are defined analoguously.

Linearisation of(D . I ) around the stationary solution v=0, r= 0 and normalization gives

1

s f m 'x G -  Y d V
V r

m 'x G - N v i z -  y \ dr' / _
r

1 i

5l V
+

ii

K N r - m ' x G r' L ^ J

where all parameters and variables are dimension free. Notice that it has been assumed that
r t

Uq/V= 1. The derivatives Y0 and are negative. Notice that they appear in the equations in

the same way as the mass and the inertia. These terms are therefore sometimes called added 

mass and added inertia.

State equations

The normalised equations of motion (D.4) are converted to standard state space notation 

by solving for the derivatives d v ' / dt '  and d r ' / d t ' . This gives the following model for the 

yaw motion o f the ship

d_

dt'

v' a \\ a \2 0 v' V
r' = a 2] a 22 0 r' + b2\ 6 , (D.5)

(P. 0  1 0 0

where the heading ^defined by d y / / dt'  has also been introduced as an extra variable. The

heading ^ is  shown in Figure D.2. The linearised yaw motion of a ship can thus be described as 

a third-order dynamical system where the state variables can be chosen as

1. v’ the sway velocity, i.e. the component o f the ship velocity on the y-axis in the co-ordinate 

system fixed to the ship,

2 . r ’ the ship’s angular velozity about the z-axis,

3. ^ th e  deviation in heading angle

Other state variables are sometimes chosen. The angle o f attack, i.e. (3 in Figure D.2, can 

be used instead of the sway velocity v.
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Appendix B

Double Inverted Pendulum Model

The mechanic of the system consists o f 3 rigid bodies, as shown in Figure D .l, and has3 

degrees of freedom, 1 translational and 2 rotational

Figure E.l Double pole system coordinates

Where, z  is the cart position; /?j , /?2 are the pendulum link angles, Z,,, L2 are the lengths 

of pendulum links; /,, l2 are the distances between the pivot and centre of mass o f respective 

links; f  is the force exerted on cart; G] is the centre of mass of primary link and G2 is the 

centre of mass of second link

Equations of Motion

Using a Lagrangian approach, the system equations are developed by determining the 

kinetic and potential energies of system components in terms of generalised co-ordinates. 

Defining the Lagrangian Equation:
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3L^

dt

dL cD „
 + -----  =  Q adq dq

(E .l)

where L = T  — V ; T is the kinetic energy; V is the potential energy; D is the Rayleigh 

dissipation function; Q is the generalised forces not taken into account in T, V, and D; q is the 

generalised co-ordinates

q = P\ 

P i

(E.2)

The system kinetic energy, T is:

with

T  ~  Tcart +  TpendulumX +  T pendulum ! ~  T \ +  T !  +  ^3

Tt = —m ^ z ‘

(E.3)

T2 + 3 j , A 2

1 2 1 -2
^2 = ~ m2vG2 + 2*^2^2

(E.4)

where mc is the mass of cart ; m I the mass of first link; m2 is mass of second link; ./, is the 

inertia of first link about centre of mass; J2 is inertia of second link about centre o f mass; 

vc , vr; are the linear velocities of G 7 and G2.

Velocities vr  , v,. can be found from radius vectorsf/,’ (>2

drx _ dr2
= — -  and vr  = — -  (E.5)

G> dt  dt

If r, = ru i + rXjj  and r2 = r2ii + r2 j j  , then

VC, -  + t fj  an<̂  vg2 -  r2i + r2j (E.6 )
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where the derivatives are

ru = z + l ^ f t  c o s /?,

*\j = ~ h P \ ^ n P\
and

r2i = z  + L\ j3\ c o s /?, + l2P 2 c o s Pi
h j  = ~L\P\ sin/?i - h P i  P i

Therefore the velocities are given by

Vc, =(i  + /iAcos/?,)2 +/,2sin2 ^iA2

vc2 ={z  + l2P i ^ s p 2 + L \ P \ C o s P \ f  +{l2P 2 s \ n p 2 +L\ P\  sin

(E.7)

(E.8 )

(E.9)

Finally

T  1 -2 
T\ = t  mcz

T2 = - ~ mi (i  + l \ P i cosP \ f  + l \ s in2PtP\

h = ^ m2{i + l2P2cosP2+LlPlc°sP,f + 

f  m 2 {l2P 2 s in p 2 + L\P\ s in /9 ,)2 +

4 - / . A 2
(E.IO)

The expression for the system potential energy , V is:

V  =  K a r t  + ^ pendulum1 +  Vpendulum! =  ^1 + ^2 + ^3 ( E-11)

where:

F, = 0

F2 = /w ,g/, cos/?, (E.12)

F3 = w 2g (^ | cos /?, + 12 cos p 2 )

where g  is the gravitational constant 9.807 m/s2. For general viscous friction forces, Rayleigh's

dissipation function is defined as a quadratic function o f generalised velocities q,

1  i =I j =I

(E. 13)



A p p e n d ix  E - D oub le  Inverted  Pendu lum  M odel____________________________________________________________________[7 1

so that the viscous friction generalised force in the direction of the /,h co-ordinate becomes

dD n
Q vj = - —  = - ' L c ij<ij (E. 14)

j =i

For the pendulum at hand, ctJ = 0, for ;V 0 .  Also, for convenience o f notation we let 

c n = v -> C22 =  C , ,  c 33 = C 2 so that:

D = \ v i 2 + \ C ^ + \ C 2Pl  (E-15)

where v is the coefficient of sliding viscous friction between track and cart; C| the coefficient of

viscous friction at the pivot of first link; C2 is coefficient of viscous friction at the pivot of

second link. The expression for generalised forces, Q is:

' f i r  ' 7 '

2? = 2/?,
= 0 (E l 6 )

where /  is a force exerted on the cart by the actuator. Now we can write the Lagrangian 

equations for L2 system as

d_(dL
d t y d z

d_

dt

d_

dt

dz dz 

dL dD ^

y d p , )  dp,  dp,

dL A 

d p 2

d L d D
+ — = Qp,

d p 2 d p 2

(E.I7)

Let be defined as below:

/?! = m c + m\ + m 2 

h2 = A721 / j + m 2L x 

/z3 = m 2l 2
2 2 

/ ? 4  — / 7 Z ] / ,  +  YYl2L\ +  J ,

(E.l 8a)
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h5 = m 2l 2L\

h  ̂ = ttl2l2 ^ 2 

hn = m ]l ]g  + m 2L ]g

8̂ = m 2l l S

After simplifications the equations o f motion become

h{z + h20 \ cos p x + /z3/?2 cos P i ~ h iP \  sin p x -  h3P 2 sin p 2 = f  

h2z cos/?, + /i4 /j, + hs p 2 cos(/?, -  p 2 ) + hsp l  sin(/?! -  P 2) - h - ,  sin /?| 

/?3z c o s P 2 + h 5Pi c o s (p t - p 2) + h 6p 2 - h 5P f S i n ( p t ~ P 2 ) ~ h  sin p 2

The system equations can be written in compact form:

M (q)q  + Cg + N ( q ,q )  = Qq 

where the matrices M, C  and A  are defined as follows:

M ( q )  = M  =

hx h2 cos p x

h2 cos p } /z4
hj  cos P 2 h5 c o s (p 2 - P , )

h2 cos P 2 

h5 cos(/?2 -  /?,) 

K

V 0 0

c  = 0 Q 0

0 0 C 2

All nonlinear terms are collected into N:

N { q , q ) = N  =

- h 2p }  sin/?, - h 2p \  sinP 2 

h5p 2 sin {fly - P 2) - h 1 sin /?, 

- h5f)\ sin(Pf - P 2)-h& sinP 2

GL.ASGO'-'HT'V’UrRO 'I

(E. 18b)

0 (E. 19) 

0

(E.20)

(E.21)

(E.22)

(E.23)


