7 research outputs found

    Incremental and Decremental Maintenance of Planar Width

    Full text link
    We present an algorithm for maintaining the width of a planar point set dynamically, as points are inserted or deleted. Our algorithm takes time O(kn^epsilon) per update, where k is the amount of change the update causes in the convex hull, n is the number of points in the set, and epsilon is any arbitrarily small constant. For incremental or decremental update sequences, the amortized time per update is O(n^epsilon).Comment: 7 pages; 2 figures. A preliminary version of this paper was presented at the 10th ACM/SIAM Symp. Discrete Algorithms (SODA '99); this is the journal version, and will appear in J. Algorithm

    On some geometric optimization problems.

    Get PDF
    An optimization problem is a computational problem in which the objective is to find the best of all possible solutions. A geometric optimization problem is an optimization problem induced by a collection of geometric objects. In this thesis we study two interesting geometric optimization problems. One is the all-farthest-segments problem in which given n points in the plane, we have to report for each point the segment determined by two other points that is farthest from it. The principal motive for studying this problem was to investigate if this problem could be solved with a worst-case time-complexity that is of lower order than O(n 2), which is the time taken by the solution of Duffy et al. (13) for the all-closest version of the same problem. If h be the number of points on the convex hull of the point set, we show how to do this in O(nh + n log n) time. Our solution to this problem has also triggered off research into the hitherto unexplored problem of determining the farthest-segment Voronoi Diagram of a given set of n line segments in the plane, leading to an O(n log n) time solution for the all-farthest-segments problem (12). For the second problem, we have revisited the problem of computing an area-optimal convex polygon stabbing a set of parallel line segments studied earlier by Kumar et al. (30). The primary motive behind this was to inquire if the line of attack used for the parallel-segments version can be extended to the case where the line segments are of arbitrary orientation. We have provided a correctness proof of the algorithm, which was lacking in the above-cited version. Implementation of geometric algorithms are of great help in visualizing the algorithms, we have implemented both the algorithms and trial versions are available at www.davinci.newcs.uwindsor.ca/ ∼asishm.Dept. of Computer Science. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2006 .C438. Source: Masters Abstracts International, Volume: 45-01, page: 0349. Thesis (M.Sc.)--University of Windsor (Canada), 2006

    Circles in the Water: Towards Island Group Labeling

    Full text link
    Many algorithmic results are known for automated label placement on maps. However, algorithms to compute labels for groups of features, such as island groups, are largely missing. In this paper we address this issue by presenting new, efficient algorithms for island label placement in various settings. We consider straight-line and circular-arc labels that may or may not overlap a given set of islands. We concentrate on computing the line or circle that minimizes the maximum distance to the islands, measured by the closest distance. We experimentally test whether the generated labels are reasonable for various real-world island groups, and compare different options. The results are positive and validate our geometric formalizations

    Evaluating the cylindricity of a nominally cylindrical point set

    Get PDF
    International audienceThe minimum zone cylinder of a set of points in three dimensions is the cylindric crown defined by a pair of coaxial cylinders with minimal radial separation (width). In the context of tolerancing metrology, the set of points is nominally cylindrical, i.e., the points are known to lie in close proximity of a known reference cylinder. Using approximations which are valid only in the neighborhood of the reference cylinder, we can get a very good approximation of the minimum zone cylinder. The process provides successive approximations, and each iteration involves the solution of a linear programming problem in six dimensions. The error between the approximation and the optimal solution converges very rapidly (typically in three iterations in practice) down to a limit error of (8 omega^2)/R ( where omega is the width and R is the external radius of the zone cylinder)

    36th International Symposium on Theoretical Aspects of Computer Science: STACS 2019, March 13-16, 2019, Berlin, Germany

    Get PDF

    Efficient Randomized Algorithms for Some Geometric Optimization Problems

    No full text
    In this paper we first prove the following combinatorial bound, concerning the complexity of the vertical decomposition of the minimization diagram of trivariate functions: Let F be a collection of n totally or partially defined algebraic trivariate functions of constant maximum degree, with the additional property that, for a given pair of functions f; f 0 2 F , the surface f(x; y; z) = f 0 (x; y; z) is xy-monotone (actually, we need a somewhat weaker property---see below). We show that the vertical decomposition of the minimization diagram of F consists of O(n 3+" ) cells (each of constant complexity), for any " ? 0. In the second part of the paper we present a general technique that yields faster randomized algorithms for solving a number of geometric optimization problems, including (i) computing the width of a point set in 3-space, (ii) computing the minimum-width annulus enclosing a set of n points in the plane, and (iii) computing the `biggest stick' inside a simple polyg..
    corecore