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Abstract

The minimum zone cylinder of a set of points in three dimensions is
the cylindric crown defined by a pair of coaxial cylinders with minimal
radial separation (width). In the context of tolerancing metrology, the
set of points is nominally cylindrical, i.e., the points are known to lie in
close proximity of a known reference cylinder. Using approximations
which are valid only in the neighborhood of the reference cylinder,
we can get a very good approximation of the minimum zone cylinder.
The process provides successive approximations, and each iteration
involves the solution of a linear programming problem in six dimen-
sions. The error between the approximation and the optimal solution
converges very rapidly (typically in three iterations in practice) down

to a limit error of
8ω2

0

R
( where ω0 is the width and R is the external

radius of the zone cylinder).
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1 Introduction

The aim of metrology is, given an object, to certify that it has the desired
shape.

The usual process consists in sampling a set of points S on the object
boundary and to verify that their distance from the surface of a nominal
shape is smaller than some tolerance. Of course, one normally deals with the
shape and not with the position of the object, so one has to find a position
of the reference shape which minimizes that distance.

Evaluating cylindricity is a very important application in metrology. A
large fraction of mechanical parts are indeed cylinders, and the precision-
mechanical industry is devoting increasing attention to the certification of the
cylindricity of objects. It is worth mentioning that, next to planar surfaces,
cylindrical surfaces are the most natural products of industrial machining.

International standard (Publication ISO/DIS 12180-1 and -2) specify dif-
ferent kinds of measures designed to evaluate the quality of a set of points.
For cylinders (and similarly for circles and spheres), four notions of cylinders
are used: the minimum enclosing cylinder, the maximal enclosed cylinder,
the minimum zone cylinder, and the least square cylinder. Among these four
notions, the zone cylinder is the one that best conforms with the international
specifications. The zone cylinder is the cylindrical crown contained between
two co-axial cylinders with minimum radial separation (width) and contain-
ing all the data points. This notion is analogous to the two-dimensional
notion of zone circle. However, whereas resort to the closest- and farthest-
point Voronoi diagrams of the data set in two dimension permits an efficient
and exact construction of the zone circle, no analogous constructs are known
for the zone cylinder. The situation is analogous to the triviality of construct-
ing the circle by three points in the plane and the considerable difficulty of
constructing a circular cylinder by five points in space. Due to this compu-
tational difficulty, practitioners frequently prefer to adopt the least square
cylinder measure because of its relative computational ease.

In all applications, the metrological task operates on a set of measure-
ments of the cylinder surface (the data points), and it is reasonable to assume
that these points deviate minutely from a nominal cylinder and are more or
less uniformly distributed. These assumptions rest on the manufacturing ob-
jective to produce a cylindrical object of good quality and on the metrological
objective to produce a data set that simplifies the certification task.

In this paper we propose a new approach to the evaluation of cylindricity,
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which trades computational effort with a negligible loss of accuracy. Specif-
ically our method avoids the analytical difficulty of constructing the zone
cylinder of a given set of points, by ”linearizing” the problems and obtaining
a suitable “object” that contains all the points, and from which a (non-
minimal) zone cylinder containing the points can be readily obtained. The
resulting zone cylinder, which is obtained by standard linear programming in
time proportional to the size of the data point set, yields an excellent approx-
imation of the minimal zone cylinder. We shall bound the error between the
width of this zone cylinder and that of the (unknown) zone cylinder of the
data points. We shall see that, in general,the quality of the approximation
increases with the quality of the ”cylindricity” of the physical object (i.e.,
the quality of its machining process).

Since the construction of the zone circle of a given set of points in the plane
(the roundness problem) provides a much simpler two-dimensional setting for
our approach to the cylindricity problem and is of interest in its own right
(despite the known solution based on Voronoi diagrams), we shall begin by
applying our method to the solution of the roundness problem, and shall see
that the technique applies equally well to the evaluation of sphericity.

1.1 Roundness

The problem of computing the annulus of minimal area containing a set
of points S in the plane is well known to be reasonably simple, since it is
solved by linear programming in the four-dimensional space of the parameters
defining an annulus (center, inner and outer radii) in time O(|S|) = O(n).

The problem of computing the annulus of minimal width ω0 (and outer
radius R0) containing S is more difficult and has been extensively studied.
Rivlin [6] showed that the minimum-width annulus is defined by 4 points,
2 on the inner circle and 2 on the outer circle and that inner/outer points
alternate around the center. In other words, the center of the annulus is
at the intersection of an edge of the nearest-neighbor Voronoi diagram and
an edge of the farthest-neighbor Voronoi diagram, so that the superposition
of these two diagrams give in general an O(n2) algorithm. This bound was

improved to O(n
3

2
+ε) by Agarwal and Sharir [3]. Agarwal et al. also proposed

an approximation algorithm which gives an annulus of width smaller than
(1 + ε) times the optimal width in time O(n log n + n

ε2
) [1]. Garcia, Ramos

and Snoeyink[4] and Ramos [5] address the special but very important case
where the set S of points is “almost round”: if the circular order of the points
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around the center is known, then in some relevant domain there is only one
local optimum of the width of the annulus (in term of the center) and this
optimum can be computed in time O(n logn). Under the restriction that
the points belong to an annulus whose width is one tenth of its radius, the
problem is almost LP -type [7] and can be solved in randomized O(n) time.

In Section 2, we define as 2D-dense sample a set of points obtained by
sampling a circle so that no angular sector of width π/2 is empty, and prove
the following result:
Theorem 2 Given a 2D-dense sample S of a circular object of nominal
radius R, a zone circle (minimum-area annulus) of S can be computed in
time O(|S|), such that the difference between its width and the width ω0 of

the minimum zone circle of S is smaller than 3
ω2

0

R0

.
This shows that the method is very adequate in most metrology applica-

tions, and that its validity increases with the quality of the mechanical object
(smaller ω0).

1.2 Cylindricity

The natural generalization of the roundness problem in three dimensions
is the computation of the minimum-width spherical shell, since this width
expresses the sphericity of the set of points. Unfortunately, cylinders are
much more complex to manipulate than spheres, and problems such that
minimum enclosing cylinder, maximum enclosed cylinder or minimum zone
cylinder are very difficult. Agarwal et al. proposed a solution of the minimum
enclosing cylinder problem [2] in O(n3+ε) time, involving the lower envelope
of algebraic surfaces in 4D and parametric search.

In Section 3 we fully develop our method and propose an approximate
scheme exhibiting excellent behavior if the points are realistically assumed to
lie in close proximity of some known vertical cylinder and the sampling sat-
isfies some reasonable assumption of denseness (to be defined as a 3D-dense
sample). Our approach uses two devices. First, instead of searching cylin-
ders, we search another family of quadrics (one-sheet elliptic hyperboloids
with circular horizontal sections) which are good approximations of cylin-
ders when the axis is nearly vertical. Second, as for the roundness problem,
we solve the analog of a ”minimum area” problem, by conveniently ”lineariz-
ing” the problem. This device affords an efficient linear-time construction of
an approximating hyperboloid, from which a valid zone cylinder is immedi-
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ately obtained. We also show that the process can be iterated with rapid
convergence and we prove:
Theorem 6 Given a 3D-dense sample S of a cylindrical object and a zone
cylinder of radius R and width smaller than R/4, a zone cylinder of S can be
computed by iterated linear programming such that the difference between its
width and the width ωC of the minimum zone cylinder of S is smaller than
5.7ω2

C

R
.

2 The roundness problem

We begin with a discussion of the much simpler two-dimensional roundness
problem. Our conclusions will provide the setting for the cylindricity prob-
lem.

As is well known, the circularity of an object is judged on the basis of
the size of the annulus enclosing all the measured points, and there are two
alternative definitions of annulus size: The first is the area, the second is
the radial separation or width ( in the latter case, the annulus is referred to
in metrology as the zone circle). As is intuitive, we shall show that in the
reasonable hypothesis that the measured points deviate minutely from an
ideal circle, the two definition of size give rise to minutely different solutions.

In a suitable system of coordinates, the minimum-width annulus, of outer
radius R and width ω0, is defined by the inequalities:

(R − ω0)
2 ≤ x2 + y2 ≤ (R)2

Its area satisfies the inequality

σ0 = π
(

R2 − (R − ω0)
2
)

≤ 2πRω0

Next we consider the minimum-area annulus. In the same frame of ref-
erence, each point of the measured set must satisfy the two constraints

x2 + y2 − 2αx − 2βy ≤ R2 + 2Rη = (R + η′)2 − α2 − β2

x2 + y2 − 2αx − 2βy ≥ R2 + 2Rτ = (R + τ ′)2 − α2 − β2

Since the area of the just defined annulus is

σ = 2πR(η − τ)
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we recognize (as is well known) that the minimum-area annulus is obtained by
minimizing the (linear) objective function (η−τ) subject to linear constraints
on the parameters, a linear-programming problem.

Denoting by ω the width of the minimum-area annulus, by definition we
have σ ≤ σ0 and ω0 ≤ ω. We now wish to establish that, under reasonable
hypotheses, ω is an excellent approximation to the minimum ω0.

We know that the minimum-width annulus is determined by four points of
S, two on the inner and two on the outer circle. Therefore if the two annuli are
concentric, they necessarily coincide. It follows that any difference between
the two is due to a displacement of their respective centers. Specifically, let
(α, β) denote the center of the minimum-area annulus, so that the distance
between the centers is d =

√
α2 + β2.

Expanding
√

R2 + ξ to third-order terms,we obtain

√

R2 + ξ ' R +
ξ

2R
− ξ2

8R3
+

5ξ3

128R5
.

Form this, it is easy to establish that for ξ ∈ [−R2, R2]:

R +
ξ

2R
− ξ2

8R3
+

5ξ3

16R5
≤
√

R2 + ξ ≤ R +
ξ

2R

Thus we have

ω =
√

R2 + 2Rη + α2 + β2 −
√

R2 + 2Rτ + α2 + β2

≤ R + η − R − τ +
(2Rτ + d2)2

8R3
+

5(2Rτ + d2)3

16R5

=
σ

2πR
+

τ 2

2R
+

τd2

2R2
− 5τ 3

2R2
+

d4

8R3
− 15τd4

8R4

Our next objective is to bound from above the error term τ2

2R
+ . . . in terms of

ω0. To this end, we introduce some reasonable assumption on the distribution
of the measured points, as expressed by the following definition:

Definition 1 A set of points obtained by sampling a circular object is a 2D-
dense sample if there is no empty sector with respect to the center of angular
width π

2
.

With this assumption, and referring to Figure 1, we obtain the inequali-
ties:
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R

R − ω0

d

R + τ ′

R + η′

π

4

b

Figure 1: Minimum width annulus (shaded,centered at O) and possible po-
sitions of the minimum area annulus (centered at b).

R − ω0 − d ≤ R + τ ′ ≤
√

√

√

√

(

d√
2

)2

+

(

R − d√
2

)2

=
√

d2 + R2 −
√

2Rd

≤ R

R + d ≥ R + η′ ≥
√

√

√

√

(

d√
2

)2

+

(

R − ω0 +
d√
2

)2
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=

√

√

√

√d2 + R2 +
√

2Rd + ω2
0 − 2ω0

(

R +
d√
2

)

From these we can bound σ from below, i.e.:

σ = π(R + η′)2 − π(R + τ ′)2

≥ π(2
√

2Rd + ω2
0 − 2ω0R −

√
2ω0d)

≥ π
√

2(2R − ω0)d − 2πω0R

Using the fact that 2πRω0 ≥ σ0 ≥ σ, we obtain

d ≤ 4Rω0√
2(2R − ω0)

≤ 2ω0(2R − ω0 + ω0)√
2(2R − ω0)

≤
√

2ω0 +
ω2

0√
2R

Finally, observing that 0 > τ ≥ τ ′ ≥ −ω0−d we conclude that |τ | ≤ ω0+d,
so that

τ 2

2R
≤ (ω0 + d)2

2R
≤ (3 + 2

√
2)ω2

0

2R
+ O

(

ω3
0

R2

)

τd2

2R2
− 5τ 3

2R2
+

d4

8R3
− 15τd4

8R4
≤ O

(

ω3
0

R2

)

Therefore the error term can be bounded and, since (3 + 2
√

2)/2 < 3, we
get:

ω0 ≤ ω ≤ ω0

(

1 + 3
ω0

R
+ O

(

ω2
0

R2

))

.

We summarize the preceding discussion as follows:

Theorem 2 Given a 2D-dense sample S of a circular object of nominal
radius R, a zone circle (minimum-area annulus) of S can be computed in
time O(|S|), such that the difference between its width and the width ω0 of

the minimum zone circle of S is smaller than 3
ω2

0

R0

.
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This result validates our prior claim on the quality of the approximation.
To provide a quantitative appreciation of this fact in metrological appli-

cations, if R = 1cm and ω = 10µm, the resulting error on the width is at
most 30nm.

Higher dimension

The dimension is not explicitly used in all computations above, thus we can
deduce the following result. Given a set S of points in d dimensions, if the
minimal-width spherical shell containing S has width ω0 and there is a point
of S in any cone of angle π

2
with vertex at the center, then the spherical shell

minimizing the difference of the square radii of the inner and outer spheres
has width ω such that

ω0 ≤ ω ≤ ω0

(

1 + 3
ω0

R

)

This spherical shell can be computed by linear programming in d+2 dimen-
sions.

3 The cylindricity problem

We assume that the nominal cylinder has equation

x2 + y2 = R2, − h ≤ z ≤ h

A zone cylinder (domain limited by two coaxial cylinders of identical
height 2h) is defined by the mid-point (α, β, 0) on the common axis of the
two cylinders, by the direction (u, v, h) of the axis, by the external radius
R + η, and by the internal radius R + τ . Thus the six parameters (all having
dimension of a length) u, v, α, β, η, τ define a point p = (u, v, α, β, η, τ) of a
6-dimensional space P, to which a unique zone cylinder Cyl(p) corresponds.
The origin of P corresponds to the nominal cylinder (obviously with radial
separation 0). Since the six parameters are expected to be very small, we
shall restrict our attention to a neighborhood of the origin.
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3.1 Equations of a circular cylinder and of its associ-

ated hyperboloid

Consider the axis of parameters (u, v, α, β). The distance δ(x, y, z) (or δ for
short) of a point (x, y, z) of space from this axis is the length of the difference
between the vector w = (x − α, y − β, z) and its projection on the axis of
length w·a

||a|| (where a = (u, v, h)). Thus we have

||w||2 =

(

w · a
||a||

)2

+ δ2

and

δ2 = ||w||2 −
(

w · a
||a||

)2

=
1

h2 + u2 + v2

[

(h2 + u2 + v2)
(

(x − α)2 + (y − β)2 + z2
)

−((x − α)u + (y − β)v + hz)2
]

=
1

h2 + u2 + v2

[

(h2 + v2)x2 + (h2 + u2)y2 − 2uvxy (1)

+(u2 + v2)z2 − 2huxz − 2hvyz + 2h(uα + vβ)z

−2(h2α + v2α − uvβ)x − 2(h2β − uvα + u2β)y

+h2(α2 + β2) + v2α2 + u2β2 − 2uvαβ
]

The zone cylinder Cyl(u, v, α, β, η, τ), illustrated in Figure 2, is defined
by the inequalities:

(R + τ)2 ≤ 1
h2+u2+v2 [(h2 + v2)x2 + (h2 + u2)y2 − 2uvxy (2)

+(u2 + v2)z2 − 2huxz − 2hvyz + 2h(uα + vβ)z

−2(h2α + v2α − uvβ)x − 2(h2β − uvα + u2β)y

+h2(α2 + β2) + v2α2 + u2β2 − 2uvαβ] ≤ (R + η)2

The equation δ2 = R2 describes a cylinder of radius R and axis of pa-
rameters (u, v, α, β). Using this equation to determine the parameters of a
cylinder through five points or the zone cylinder through six points gives rise
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Cyl(u, v, α, β, η, τ)

z = 0

z = h

R + η

R + τ

(α, β, 0)

(u, v, h)

Figure 2: Parameters of a cylinder

to a system of degree-4 equations1. This kind of systems need sophisticated
algebraic geometry tools for their solution. It is therefore appropriate to
resort to suitable approximations.

We assume that p = (u, v, α, β, η, τ) is in a neighborhood of the origin of
size O(θ) we will define precisely in Section 3.3. Rewriting Equation (1) in a
form where only first-order terms in θ are explicit, we obtain:

δ2 = x2 + y2 − 2
u

h
xz − 2

v

h
yz − 2αx − 2βy + O(θ2) (3)

Given the cylinder δ2 = R2, the quadric surface

R2 = x2 + y2 − 2
u

h
xz − 2

v

h
yz − 2αx − 2βy

1This parameterization is not the most convenient one for determining the equation of
a cylinder through given points and it is used here for the purpose of our approximation.
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Hyp(u, v, α, β, η, τ)

z = 0

z = h

' R + η

' R + τ

(α, β, 0)

(u, v, h)

Figure 3: Cylinder approximation by a hyperboloid

is a one-sheet elliptic hyperboloid, referred to as the hyperboloid associated to
the cylinder. Moreover, given p ∈ P, consider the geometric object Hyp(p)
defined by

R2 + 2Rτ ≤ x2 + y2 − 2uxz/h − 2vyz/h − 2αx − 2βy ≤ R2 + 2Rη (4)

This region of space is delimited by two coaxial one-sheet elliptic hyper-
boloids, and its horizontal sections are annuli. It will be referred to as a zone
hyperboloid (see Figure 3).

Following Equation (3) we compute a second order approximation of δ2:

δ2 − (x2 + y2 − 2ux − 2vyz − 2αx − 2βy) (5)

= (ux − vy)2/h2 + (u2 + v2)(z2)/h2 + 2(uα + vβ)z/h + α2 + β2 + O(θ3)/h

Clearly, a cylinder and its associated hyperboloid are two distinct geo-
metric objects with a common axis. If this axis (i.e., its defining parameters
(u, v, α, β)) is known, then performing a transformation of coordinates that
brings the z-axis to coincide with the common axis, both objects have equa-
tions x2 + y2 = R2, that is, they coincide. This observation is the key to our
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approach. In fact, rather than searching over the set of zone cylinders, we
perform the much easier tasks of searching over the set of zone hyperboloids
as defined above. If, as it happens in general, the axis of the minimal zone
cylinder has nonzero parameters (u, v, α, β), then it does not coincide with
the axis of the minimum zone hyperboloid (as computed for the given data
set), nor do the two objects coincide. However, if we can prove that these
two axes are reasonably close, then we can bring the z-axis to coincide with
the (known) axis of the minimum zone hyperboloid, and be assured that the
(unknown) axis of the minimum zone cylinder is brought closer to the z-axis
than it was initially. Iterating this process, we can approach the cylinder
axis with very good precision (for small width),

3.2 Computation of the minimal zone hyperboloid

As previously stated, our approximation approach consists of searching, rather
than circular cylinders, hyperboloids with circular horizontal sections. Specif-
ically, we are looking for a zone hyperboloid, parameterized by six parameters
as described by Equation (4) containing all the points of S, i.e., for a point
pi ∈ S the parameters of the hyperboloid must satisfies the two inequalities:

−2xizi

h
u − 2yizi

h
v − 2xiα − 2yiβ + x2

i + y2
i ≤ R2 + 2Rη ' (R + η)2

−2xizi

h
u − 2yizi

h
v − 2xiα − 2yiβ + x2

i + y2
i ≥ R2 + 2Rτ ' (R + τ)2

This formulation yields 2n constraints in a six-dimensional space, which
can be solved in time O(n) by a linear program minimizing the objective
function η − τ .

Incidentally, the same approach enables the determination of the min-
imum enclosing hyperboloid or of the maximum inscribed hyperboloid (by
linear programming in 5 dimensions).
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3.3 Error analysis: Distance between Cyl(p) and Hyp(p)

Let (x, y, z) be a point on the outer hyperboloid of Hyp(p), i.e. (x, y, z)
satisfies the equation:

−2xz

h
u − 2yz

h
v − 2xα − 2yβ + x2 + y2 = R2 + 2Rη.

The distance δ(x, y, z) of this point from the axis, satisfies δ2 = R2 + 2Rη +
O(θ2) by Equation (3) and Inequality (4). Using now the explicit expression
of the error O(θ2) given by Equation (5) we have:

δ2 = R2 + 2Rη + (ux − vy)2/h2 + (u2 + v2)z2/h2

+2(uα + vβ)z/h + α2 + β2 + O(θ3)/h

We now characterize the neighborhood of the origin of P to be used in
our approximation. We assume that:

• the distance between the axis of our object and the origin in the plane
z = 0 is at most θ,

• the horizontal projection of vector (u, v, h) defining the axis direction
has length smaller than θ,

• η and τ are also of the same order of magnitude θ.

Next we make some reasonable assumptions on the quality of the physical
object and of the sampling process:

• for −h ≤ z ≤ h, we have ||(x, y)|| ≤ R + O(θ) and θ ≤ R ≤ h.

Definition 3 A set of points obtained by sampling a cylindrical object is
a 3D-dense sample if the at height z ∈ {−h, 0, h} it contains a 2D-dense
sample.

We formalize these hypotheses as follows:
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Hypotheses:

(i) u2 + v2, α2 + β2 ≤ θ2

(ii) |η|, |τ | ≤ θ
(iii) ||(x, y)|| ≤ R + O(θ)
(iv) θ ≤ R ≤ h

(v)

∀z0 ∈ {−h, 0, h} and ∀ sector W
in plane z = z0 of angular width
≥ π

2
; W ∩ S 6= ∅

(6)

The domain defined by (6i,ii,iii) will be denoted N (θ). From these con-
ditions we derive the following bounds:

0 ≤ |ux − vy| ≤ θ(R + O(θ)) from (6i, iii)
0 ≤ (ux − vy)2 ≤ θ2(R2 + O(Rθ)) ≤ θ2h2 + O(hθ3)
0 ≤ |uα + vβ| ≤ θ2 from (6i)

We recall that R+ ξ

2R
− ξ2

8R3 + 5ξ3

16R5 ≤ √
R2 + ξ ≤ R+ ξ

2R
for ξ ∈ [−R2, R2].

Therefore using above values of δ2 and Hypotheses (6):

δ2 ≤ R2 + 2Rη + 5θ2 +
1

h
O(θ3)

δ ≤ R +
1

2R

(

2Rη + 5θ2 +
1

h
O(θ3)

)

≤ R + η +
5θ2

2R
+

1

h2
O(θ3) (7)

and

δ2 ≥ R2 + 2Rη − 2θ2 +
1

h
O(θ3)

δ ≥ R +
1

2R

(

2Rη − 2θ2 +
1

h
O(θ3)

)

− 1

8R3

(

2Rη + O(θ2)
)2 − 5R3O(θ3)

16R5

≥ R + η − θ2

R
− 4R2

8R3
η2 +

1

Rh
O(θ3) from (6ii)

≥ R + η − 3θ2

2R
+

1

h2
O(θ3) (8)

Thus, the cylinder of axis (u, v, α, β) and whose constant term in the equa-
tion is R2 +2R(η+ 5θ2

2R
) encloses the outer hyperboloid of Hyp(u, v, α, β, η, θ)
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and the cylinder with constant term R2 + 2R(η − 3θ2

2R
) is inscribed in this

hyperboloid. Similarly, a cylinder of axis (u, v, α, β) and with constant term
R2+2R(τ+ 5θ2

2R
) encloses the inner hyperboloid and the cylinder with constant

term R2 + 2R(τ − 3θ2

2R
) is inscribed in it.

This is summarized as follows:

Theorem 4 Under the hypothesis p ∈ N (θ), the zone cylinder Cyl(p +
(0, 0, 0, 0, 5θ2

2R
,−3θ2

2R
)) encloses the zone hyperboloid Hyp(p).

3.4 Relationship between optimal zone hyperboloid and

optimal zone cylinder

Consider in P the sets

H = {p ∈ P : S ⊂ Hyp(p)}
and C = {p ∈ P : S ⊂ Cyl(p)}.

Since H is defined by a set of linear constraints, it is a convex polytope in P.
Let Hyp(pH) be the minimal zone hyperboloid (computed by the linear

program as explained in Section 3.2), that is, pH is the extremum of the
convex set H in the direction v = (0, 0, 0, 0, 1,−1) (since the linear program’s
objective function is η−τ). Let Cyl(pC) be the minimum zone cylinder, that
is, the global extremum of the set C. Our present objective is to obtain a
neighborhood of pH in P that is guaranteed to contain pC .

Let pe = (0, 0, 0, 0, 5θ2

2R
,−3θ2

2R
), p′

e = (0, 0, 0, 0,− 3θ2

2R
, 5θ2

2R
) and p a point on

the boundary of H. From Equations (7) and (8) we conclude that p + pe is
inside C and p + p′

e is outside C. In fact Cyl(p + pe) encloses Hyp(p) and
therefore S; on the other hand, there exists a point q ∈ S which belongs to
the boundary of Hyp(p) (otherwise Hyp(p) could not be minimal), so that q
is outside Cyl(p + p′

e) which consequently cannot contain S (see Figure 4).
This statement holds under Hypotheses (6). The conclusion is that, in the
relevant neighborhood N (θ) of the origin, the boundary of C is sandwiched
between two translations of the boundary of H by vectors p′

e and pe (see
Figure 5).

We also know that in ordinary space Cyl(pC), by definition of optimal
solution, has smaller width than Cyl(pH + pe). In P this fact is interpreted
as follows. Since ω = η − τ is the width, each width value is associated with
a hyper-plane in P orthogonal to the vector v. Therefore, pC lies in the half-
space Z delimited by the hyper-plane passing by pH + pe with inner normal
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Hyp(p)

Cyl(p + pe)
Cyl(p + p′

e)

q

Figure 4: Positions of cylinders and hyperboloids

v; the equation of this hyperplane is η − τ = ωH + 8θ2

2R
= ωZ. Let H + p′

e

denote the domain obtained by translating H by p′
e. Then Z ∩ (H + p′

e)
defines a small domain K that is guaranteed to contain pC (see, again, Figure
5). K is clearly above the plane η−τ = ωH− 4θ2

R
. It follows that the difference

between the respective widths ωC and ωH of Cyl(pC) and of Hyp(pH) is at
most 8θ2

2R
:

|ωH − ωC | = |(ηH − τH) − (ηC − τC)| ≤ 4θ2

R
(9)

We now wish to (over)estimate the size of K. To this end we establish
necessary conditions for p to be in K. Assuming that p ∈ K, as in Section 2
(see Figure 1) in appropriate sections of Hyp(p) we can bound the radii of the
annulus in terms of the corresponding radii of Hyp(pH). Let d be the hori-
zontal distance between the axis of Hyp(p) and the axis of Hyp(pH) at some
height z0 ∈ {−h, 0, h}. Note that

√
R2 + 2Rτ + ρ2, and

√
R2 + 2Rη + ρ2 are

the radii of the annulus for Hyp(p) at z = z0, where ρ2 = (α + uz0/h)2 +
(β + vz0/h)2. We similarly define ρ2

H = (αH + uHz0/h)2 + (βH + vHz0/h)2.
Using the hypothesis (6v) of sufficiently dense sampling at z = z0 we obtain:

(

√

R2 + 2RηH + ρ2

H
+ d

)2

≥ R2 + 2Rη + ρ2 ≥
(

d√
2

)2

+

(

√

R2 + 2RτH + ρ2

H
+

d√
2

)2
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po

η − τ

u, v, α.β, η + τ

C

H

p′
e

Z
pH

pC

1.42ωH + 8.25 θ
2

R

pH + pe

K

pH + p′
e

pe

Figure 5: How pC is approximated by pH

(

√

R2 + 2RτH + ρ2

H
− d

)2

≤ R2 + 2Rτ + ρ2 ≤
(

d√
2

)2

+

(

√

R2 + 2RηH + ρ2

H
− d√

2

)2

From these we derive the following bounds on η and τ :

η ≥ τH +
d2 + ρ2

H − ρ2

2R
+

d
√

R2 + 2RτH + ρ2
H√

2R

≥ τH +
d2 + ρ2

H − ρ2

2R
+

d√
2

+
dτH√
2R

+ O

(

θ3

R2

)

(10)

τ ≤ ηH +
d2 + ρ2

H − ρ2

2R
−

d
√

R2 + 2RηH + ρ2
H√

2R

18



≤ ηH +
d2 + ρ2

H − ρ2

2R
− d√

2
− dηH√

2R
+ O

(

θ3

R2

)

(11)

η ≤ ηH +
d2 + ρ2

H − ρ2

2R
+

d
√

R2 + 2RηH + ρ2
H

R

≤ ηH + d +
d2 + ρ2

H − ρ2 + 2dηH

2R
+ O

(

θ3

R2

)

(12)

τ ≥ τH +
d2 + ρ2

H − ρ2

2R
−

d
√

R2 + 2RτH + ρ2
H

R

≤ τH + d +
d2 + ρ2

H − ρ2 − 2dτH

2R
+ O

(

θ3

R2

)

(13)

Now, since p ∈ K, we have η − τ ≤ ωZ, i.e.,:

ωZ ≥ η − τ ≥ τH − ηH +
√

2d +
τH + ηH√

2R
d + O

(

θ3

R2

)

Using (6ii),

ωZ = ωH +
4θ2

R
≥ −ωH +

√
2d −

√
2θ

R
d + O

(

θ3

R2

)

we derive:

d
√

2

(

1 − θ

R

)

≤ 2ωH +
4θ2

R

d
√

2 ≤
(

2ωH +
4θ2

R

)(

1 +
θ

R
+ O

(

θ2

R2

))

d ≤
√

2ωH +
8θ2

√
2R

+ O(θ3)/R (14)

To apply this result to z0 = −h, 0, h, we note that for these values of z
the distances between the axes of Hyp(pH) and Hyp(p) are, respectively,
the lengths of the vectors:

(α − u − αH + uH , β − v − βH + vH),
(α − αH , β − βH) and
(α + u − αH − uH , β + v − βH − vH)

Each of these distances satisfies bound (14), so that:
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√

(u − uH)2 + (v − vH)2,
√

(α − αH)2 + (β − βH)2 ≤
√

2ωH +
5θ2

√
2R

(15)

These inequalities bound the size of K in the first four dimensions of P.
It remains to bound it in dimensions η and τ . We use inequalities (10)-(13).
Specifically, from (12) and (13) we respectively obtain

η − ηH ≤ d +
d2+ρ2

H
−ρ2+2dτh

2R
≤ d +

9θ2

2R

−τ + τH ≤ d − d2+ρ2

H
−ρ2−2dτh

2R
≤ d +

5θ2

2R

which, using (14), are combined as

−τ + τH , η − ηH ≤ d +
9θ2

2R

≤
√

2ωH +
(5
√

2 + 9)θ2

2R

Similarly, subtracting ηH from both sides of (10), τH from both sides of (11),
and using ωH = τH − ηH , we obtain

η − ηH ≥ −ωH +
d√
2

+
d2 + ρ2

H − ρ2 +
√

2dτH

2R

−τ + τH ≥ −ωH +
d√
2
− d2 + ρ2

H − ρ2 −
√

2dτH

2R

Using (14), we combine these inequalities as

−τ + τH , η − ηH ≥ −ωH − (1 + 2
√

2)θ2

R

We have therefore obtained the following bounds of K in the η and τ dimen-
sions:

|η − ηH |, |τ − τH | ≤
√

2ωH +
(5
√

2 + 9)θ2

2R
(16)
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Theorem 5 Given a 3D-dense sample S of a cylindrical object and a zone
cylinder of radius R and width 2θ, a zone cylinder of S can be computed
in time O(|S|), such that the difference between its width and the width ωC

of the minimum zone cylinder of S is smaller than 4θ2

R
. This zone cylinder

approaches the minimal one with an error smaller than 1.414ωC + 14θ2

R
on the

internal and external radii and on the position of the axis.

3.5 Iterative approximation

The preceding arguments establish that, given a nominal cylinder of radius
R and assuming that the minimum zone cylinder, enclosing the measured
set S, is in a small neighborhood of the nominal cylinder, we can compute
a zone cylinder enclosing S. In our terminology, the latter is Cyl(pH + pe),
whereas Cyl(pC) is the minimum zone cylinder and Cyl(0) is the (zero-
width) nominal cylinder. The above hypothesis is formalized by saying that
pC ∈ P belongs to a neighborhood of the origin defined by u2 +v2, α2 +β2 ≤
θ2 and |η|, |τ | ≤ θ, for sufficiently small θ.

The quality of the approximation depends of the distance between 0 and
pC . Ideally, if the first four coordinates of pC are 0, then pH = pC , and the
problem is solved exactly by Hyp(pH). Therefore our objective is to move
the origin of P closer to pC by an iterative process. Since only zero-width
nominal cylinders are allowed, the new origin must belongs to the plane
η = τ .

Let θ1 = θ. If we choose as a new origin p1 = (uH, vH , αH , βH , ηH+τH

2
, ηH+τH

2
)

( so that Cyl(p1) is the new nominal cylinder), Equations (15) and (16) shows
that in the new frame of reference the parameter vector p′

C of the minimum
zone cylinder satisfies the bounds:

√

u′2
C + v′2

C ,
√

α′2
C + β ′2

C ≤
√

2ωH +
5θ2

√
2R

|η′|, |τ ′| ≤
√

2ωH +
(5
√

2 + 9)θ2

2R

This implies that θ2 =
√

2ωH + (5
√

2+9)θ2

2R
can now be used as the parameter

bounding the neighborhood of the origin; if θ2 < θ1, then the process can be
iterated in the new parameterization corresponding to the nominal cylinder
C(p1).
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Assuming ω small enough, the i-th iteration will give a solution with an

error of
(

(5
√

2+9)θ
2R

)2i−2
4θ
R

θ on the width. In other words, if (5
√

2+9)θ
2R

≤ 1, i.e.,

2θ ≤ R/4 this process converges to pC very rapidly.
The assumption that ω is small enough, upon which the stated conver-

gence is contingent, is equivalent to saying that in the definition of θi+1 the
term in θi is large with respect to the one in ωH . When the accuracy im-
proves θi decreases and converges to

√
2ωC. The upper bound on the error

converges to
4
√

2ω2

C

R
. This is summarized as follows:

Theorem 6 Given a 3D-dense sample S of a cylindrical object and a zone
cylinder of radius R and width smaller than R/4, a zone cylinder of S can be
computed by iterated linear programming such that the difference between its
width and the width ωC of the minimum zone cylinder of S is smaller than
5.7ω2

C

R
.

4 Metrology application

Measuring cylindricity in metrology involves an apparatus consisting of a
turntable, a probe, and the support of the probe, as illustrated in Figure 6.

Such a system does not directly measure three-dimensional coordinates.
Rather, the probe measures variations of the radius as the table turns or as
the probe support slides vertically. This measurement involves three different
axes: the axis of rotation of the table, the axis of the cylindrical object and
the axis of the probe support. Ideally, all these axes are parallel, but in
practice they are not. Conventionally, the axis of the turntable is taken as
the z-axis; the deviation of the axis of the probe support is corrected by
calibration, and the axis of the cylinder is the real unknown we are looking
for.

This system gives three outputs: the height of the probe z, the angle of
the table γ and the probe value ρ; these parameters are transformed into
the three-dimensional point ((R + ρ) cos γ, (R + ρ) sin γ, z). Since the probe
measures variations of the distance from the axis of the turntable, getting
three-dimensional points involves the knowledge of some nominal radius R.

In a first order approximation, this nominal radius does affect the width
of the set of points. We can remark that in the iterative process, described
in previous section, we can take advantage of the knowledge of successive
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probe

support

turn-table

object

Figure 6: A physical metrology system

nominal cylinders to improve the accuracy of the transformation of the triples
(ρ, γ, z) to three dimensional points.

We shall now consider some typical values occurring in metrology systems
and compute the resulting error on the width of the minimal zone cylinder.
Our parameters are the cylinder height and radius, (of the order of a few
centimers), the offset from the cylinder axis (of the order of a small fraction
of a millimeter), the machining spread (or ”width”, of the order of a few
µm).The precision of the probe can be as small as 5 nm. In a table below we
shall illustrate two examples: The first is a pessimistic case ( large positioning
error and machining spread), and the error is reduced to about 2% in 4
iterations. The second example is more realistic, and in 3 iterations the error
is reduced below the precision of the sensor.

23



h R position ω iteration θ final
(mm) (mm) error (µm) (µm) error

100 5 100µm 10 1 100 8 µm
2 30 0.7 µm
3 15.6 0.2 µm
4 14.5 0.17 µm

∞ 14.2 0.16µm

100 10 50µm 1 1 50 1µm
2 3.4 4.7nm
3 1.4 0.8nm

∞ 1.4 0.8nm

5 Experimental results

6 Experimental results

We report below results obtained with our technique, with various numbers
of iterations, on two qualitatively different artifacts, and compare them with
analogous results obtained by other method currently used for cylindricity
evaluation in metrological applications, such as the least square (LS) method,
where cylindricity is measured by the deviations of the data points from the
least-square cylinder, or the minimum-zone least-square cylinder (LS-MCZ),
where the cylindricity results from a minimum-zone optimization starting
from a least-square axis. It must be pointed out that the quoted methods
only provide upper bounds on the cylindricity, while our method yields a
precise evaluation with a bound on the error, i.e. with a certificate of quality.
J’ai donc toujours un problme ici: pour le deuxime objet la 3eme

itration me dit que la cylindricit est 19.03 a 0.01 prs et la 4eme

que c’est 19.47 a 0.01 prs. Ce n’est pas compatible!

With reference to our technique, for each iteration we report:
— the evaluated cylindricity,
— the upper bound on the error on the cylindricity obtained by Theorem 5,
— the upper bound θ on the parameters on the cylinder, where this bound
is provided at first iteration, and computed using Theorem 5 thereafter,
— the quantity max(

√
α2 + β2,

√
u2 + v2, |η|, |τ |), denoted |p| and used to

compute θ at the next iteration. This technique has been tried on real data
points obtained by actual measurement. For the first object, of very coarse
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quality, the six points determining the minimum zone hyperboloid remain
identical through all iterations of our method, as was to be expected. The
iterations basically improve the curvature of the hyperboloid, so that the
end result closely approximates a cylinder. The second object, on the other
hand, is of very good quality and is much more interesting. The high quality
suggests that the entire set of data points are nearly co-cylindrical, so that
the six points defining the minimum zone hyperboloid change from iteration
to iteration.

The behavior of the cylindricity values through the iterations is, at first
sight, somewhat puzzling, since we intuitively expect some sort of ”cover-
gence”, and therefore a monotonically decreasing sequence of cylindricity
values. Upon reflection, however, we completely justify the observed be-
havior and fully understand the features of the method. As established in
the preceding sections, our method evaluates a minimum zone hyperboloid
(i.e., a hyperboloid with minimum radial separation) of a very well defined
type, namely, with annular horizontal sections. In other words, the result-
ing hyperboloid is determined (by the data points and) by the accidental
position of the z-axis. Only when the z-axis coincides with the resulting hy-
perboloid axis does the hyperboloid coincide with a minimum-zone cylinder,
After modifying the frame of reference, a different set of six points defines the
new minimum-zone hyperboloid, and there is no guarantee that the resulting
cylindricity be smaller. However, and this is the strength of the method,
through successive iterations the error exhibits monotonic convergence and
enables us to obtain a sequence of values with an associated guarantes. In
our example, Iteration 5 yields the best result with a cylindricity 19.01±0.01,
very close to the result 19.03± 0.01 of Iteration 3 and superior to the result
19.47 ± 0.01 of Iteration 6.

—————-
We propose below the results obtained with our technique with different

number of iterations and we compare it with results obtained by least square
methods currently used for cylindricity evaluation ??????? Explanations

?? the mail refer to LS cylinder and to LS based MZC. Noticed
that these methods give only an upper bound on the cylindricity while our
method give a precise evaluation with a bound on the error.

For our technique, we give at each iteration:
— the evaluated cylindricity,
— the upper bound on the error on the cylindricity obtained by Theorem 5,
— the upper bound θ on the parameters on the cylinder, this bound is given
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at first iteration and computed using Theorem 5 after,
— max(

√
α2 + β2,

√
u2 + v2, |η|, |τ |) denoted as |p| and used to compute θ

at the next iteration.
This technique has been tried on real data points obtained by actual

measurement. ????? Details on the objects measured ???????? For
the first object, the six points determining the minimum zone hyperboloid
remains identical during all the iteration of our method, thus the iterative
process is just improving the curvature of the hyperboloid so that it is closer
to the cylinder. The second object of very good quality is more interesting.
Since the points are more cocylindrical, the points defining the minimum
zone hyperboloid change with the iterations.

Well, I have in fact a problem with the results given in the mail. Third
iteration claimes that 19.02 ¡ cylindricity ¡ 19.04 and fourth iteration gives
19.46 ¡ cylindricity ¡ 19.48

Method R h cylindricity error θ |p|
(inches) (µ inches)

LS ≤3035
LS based ≤2463

this paper 1 2.003 2 2069 200 10000 4330
] iterations 2 2066 127 7956 1634

3 2066 50 5003 1033
4 2066 34 4134 1033

LS ≤37.2
LS based ≤26.8

this paper 1 0.625 1.25 19.6 6.4 1000 400
] iterations 2 18.8 1.3 450 9.7

3 19.03 0.01 42 9.6
4 19.47 0.01 37 10
5 19.01 0.01 37 9.9
6 19.48 0.01 37 10

7 Conclusion

We have shown that in two dimensions the minimum area annulus gives an
approximation of the minimal width with an error O(ω2/R) and an analogous
result has been established in three dimensions for the cylindricity problem.
If ω is not small enough (i.e., the physical object is of poor quality, so that its
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zone cylinder is ”thick”), the linear programming approach does not produce
a good approximation of the desired solution.

In two dimensions, Ramos [5] proves that the exact minimum width an-
nulus can always be determined by solving an LP-type problem. This would
suggest that, to avoid the described limitation of our approach, one may try
to establish that finding the minimum zone hyperboloid in the family

(r + τ)2 ≤ x2 + y2 − 2uxz − 2vyz − 2αx − 2βy ≤ (R + η)2

is an LP-type problem (where R and r are fixed), so that iteration may be
possible without assuming a small width.

Finally, we remark that our scheme applies also to the construction of the
minimum enclosing cylinder or the maximal inscribed cylinder, by minimizing
η or −τ instead of η − τ in the linear program. In such cases, however, the
quantity being optimized is the area of an horizontal cross-section and not
the radius. Nevertheless, under reasonable hypotheses, we expect that in
these cases as well provably good approximations can be obtained.
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