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Abstract

An optimization problem is a computational problem in which the objective is to find 

the best of all possible solutions. A geometric optimization problem is an optimiza­

tion problem induced by a collection of geometric objects. In this thesis we study 

two interesting geometric optimization problems. One is the all-farthest-segments 

problem in which given n  points in the plane, we have to report for each point the 

segment determined by two other points that is farthest from it. The principal motive 

for studying this problem was to investigate if this problem could be solved with a 

worst-case time-complexity that is of lower order than 0 (n 2), which is the time taken 

by the solution of Duffy et al. (13) for the all-closest version of the same problem. If 

h be the number of points on the convex hull of the point set, we show how to do this 

in 0(nh  +  n log n) time. Our solution to this problem has also triggered off research 

into the hitherto unexplored problem of determining the farthest-segment Voronoi 

Diagram of a given set of n line segments in the plane, leading to an 0 (n  log n) time 

solution for the all-farthest-segments problem (12).For the second problem, we have 

revisited the problem of computing an area-optimal convex polygon stabbing a set of 

parallel line segments studied earlier by Kumar et al. (30). The primary motive be­

hind this was to inquire if the line of attack used for the parallel-segments version can 

be extended to the case where the line segments are of arbitrary orientation. We have 

provided a correctness proof of the algorithm, which was lacking in the above-cited 

version. Implementation of geometric algorithms are of great help in visualizing the 

algorithms, we have implemented both the algorithms and trial versions are available 

at www. davinci. newcs.uwindsor.ca/ ~ asishm.
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Chapter 1

Introduction to  Com putational 

G eom etry and Geom etric 

O ptim ization

1.1 Introduction

This thesis aims at addressing problems falling in the class of proximity problems in 

the field of geometric optimization. In this class of problems, we attempt in finding 

out the maximum or minimum value of the objective function, and that too in an 

efficient manner. Our work aims at minimizing the objective function, being induced 

by geometric objects such as points and lines, hence they are geometric optimization 

problems.

Design and analysis of algorithms is a popular field of study for a long period 

of time. Study of computational geometry has been motivated from this field in 

the late 1970s (10). A large number of efficient researchers are working in this field 

and the subject has now its own identity through its own conferences and journals. 

The various challenging problems studied in this field is a reason why this field has 

become so popular as a research discipline. Also it is not confined to the books only, it

1
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Chapter 1 On Some Geometric O ptim ization problems

has substantial real world applications in computer graphics, Geographic Information 

Systems (GIS), robotics, medical science to name a few.

In the next two sections we try to give a panoramic view about computational 

geometry and geometric optimization.

1.2 C om putational G eom etry

Computational geometry is the study of algorithms aimed at solving problems in the 

field of geometry. Study of purely geometrical problems is also considered to be part 

of computational geometry. There are two main branches of computational geometry.

Combinatorial computational geometry, also called algorithmic geometry, mainly 

deals with developing efficient algorithms and data structures for solving problems 

stated in terms of basic geometrical objects like points, line segments, polygons etc.

A typical combinatorial geometric algorithm is the minimum spanning circle problem, 

that is given n points in a plane, the problem is to find the circle of minimum area 

that contains these points. The simplest algorithm considers every circle defined by 

two or three of the n points, and finds the smallest of these circles that contains every 

point(Fig. 1.1). There exists 0 (n 3) such circles, and each takes O(n) time to check, 

for a total running time of 0 (n 4). Designing of various optimization techniques for 

reducing this time complexity were later found, and now this problem can be solved 

in linear time by a technique called Prune and Search due to Megiddo (25). We 

will briefly introduce some of these techniques in the next section when we discuss 

Geometric Optimization.

Another field of computational geometry is Numerical geometry. It deals with 

geometric modeling. This area is concerned with problems such as curve and surface 

reconstructions, modeling and representation and has applications in shipbuilding, 

aircraft, and automotive industries.

University o f Windsor, 2006 2
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Chapter 1 On Some Geometric O ptim ization problems

*

*

Figure 1.1: M inimum Enclosing Circle fo r  a set of points 

1.2.1 Limitations of Computational Geometry

One of the limitations of Computational Geometry is its discrete nature (27). In 

other words, when we solve a problem on a computer we express it in a discrete 

form. Some applications in real world deal with discrete approximation to continuous 

phenomenon. In Geographic Information Systems, road networks are discretized into 

collections of line segments.

Generally, researchers on computational geometry are originally experts in de­

sign and analysis of algorithms, but they do not deal much with core geometry (27). 

As a result, they intend to work on problems where they have to deal less with geom­

etry and numerical computations. On one side it makes working in Computational 

Geometry fun by only allowing us to deal with combinatorial issues with really no 

requirement of substantial knowledge in analytical or differential geometry. But it 

also limits the scope of the applications of the field.

While most of the computational geometry problems deal with issues in 2- 

dimensions, our life may be made harder in higher dimensions. In 2 dimensions it

University o f Windsor, 2006 3
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Chapter 1 On Some Geometric O ptim ization problems

is easy to understand as we can visualize the problems without much difficulty. In 

higher dimensions, it is much more difficult to understand the problems and most 

of the applications require the study of problems in 3 or higher dimensions. Often 

the results obtained in 2-dimensions do not correspond to those obtained in three 

dimensions. For example, if we are given a set of n points in a plane and are asked 

to find the rectangle of minimum area that contains any k  points among them, we 

will see that at least one edge of this rectangle will flush with one of the edges of the 

convex hull of these k  points (9). But this result does not hold good in 3 dimensions.

1.3 G eom etric O ptim ization

Geometric Optimization has emerged to be an important area in Computational 

Geometry. The study of this area has been motivated by applications in various 

fields like GIS, robot motion planning, optimal layout problems, etc.

The goal of an optimization problem is find the best of all possible solutions. 

A geometric optimization problem is one that is induced by a collection of geometric 

objects. The minimum enclosing circle problem mentioned in the last section is a 

typical example of a geometric optimization problem.

1.3.1 Optimization Techniques

There are quite a many optimization techniques available in literature. We briefly 

introduce some of these in the next section.

Param etric Search

Parametric Search is an optimization technique where we have a decision problem 

based on a real value, say A, and the corresponding problem P(A) is monotonous on 

A i.e. if P(Ao) is true, then A is true for all A < Ao (2) (32) (4). Our main purpose is 

to find A*, the maximum value for which P(A0) is true. Several improvements of the 

parametric search technique have been suggested in (22) (23).

University o f Windsor, 2006  4
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Chapter 1 On Some Geometric O ptim ization problems

Linear Programming

In linear programming (LP) we have a set of linear inequalities, or constraints, which 

we can think of as defining a (may be empty or unbounded) polyhedron in space, called 

the feasible region, and we also have a linear objective function, which is to be min­

imized or maximized subject to the given constraints (27). A typical d-dimensional 

linear programming problem might be expressed as:

Maximize: cTx

Subject to: Ax<b, where c and x  are d-vectors, b is an n-vector and A  is an n 

x d matrix.

Prom a geometric point of view, the feasible region is the intersection of halfs­

paces. Thus it is a (may be unbounded) convex polyhedron in d-space. The objective 

function can be viewed as a vector ~c. So we search in the feasible region for a point 

that is farthest in the direction ~c .We can call it the optimal vertex.

■'easfc-e I c
rz-yor

optimal vertex

Figure 1.2: 2-dimensional linear programming (27)

Prune and Search

This technique is similar to parametric searching in the way that it too performs 

binary search implicitly over a given set of finite input values for A* (25) (24). But 

the novel of this method lies in the fact that while searching it tries to eliminate a 

constant fraction of the input objects, and this elimination does not affect the optimal

University o f Windsor, 2006  5
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Chapter 1 On Some Geometric O ptim ization problems

value A*. Thus after a logarithmic number of steps, the size of the problem becomes 

constant and then we can solve the problem by brute force method. The overall 

running time of the algorithm is proportional to the cost of a single pruning stage.

R a n d o m iz e d  A lg o r ith m s

Input to a randomized algorithm is being guided by random numbers. Thus its run 

time complexity varies from one execution to another even with a fixed input. In the 

analysis of a randomized algorithm we establish bounds on the expected value of a the 

running time of the algorithm, (or any other performance measure) that are valid for 

every input, as against the worst case complexity for deterministic algorithms. It is 

an essential tool in computational geometry (3) (1). There are two major benefits of 

randomization: simplicity and speed. A randomized algorithm is the fastest algorithm 

available, or the simplest, or both for many applications.

The deterministic algorithmic methods make our life harder in generalizing 

to higher dimensions. This becomes much easy in the randomized frame. In two 

dimensions also, this leads to algorithms that are more efficient than the deterministic 

ones. Unfortunately, there are some deterministic algorithms that have no randomized 

counterparts.

Theoretically, we should have a truly random source (31). But in practice what 

we use is a pseudorandom generator, which we assume to be completely random. 

Quite naturally, these generators cannot guarantee the degree of randomness that 

may be required for good performance by these algorithms.

Now, an example of a pseudorandom generators is the linear congruential 

generator, or the LCG. The generators in the LCG class were known to exhibit strong 

and predictable regularities in most cases, until in 2000, Bernd Gartner (15) showed 

that it can produce misleading results in testing geometric algorithms that involve 

determinant computations.

Simulating a randomized algorithm in a deterministic fashion (31) is Deran­

domization. Derandomized algorithms clarifies the trade-off between randomness and 

determinism.

University o f Windsor, 2006  6
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1.4 Som e A pplication  Areas of G eom etric O ptim ization

We conclude our discussion on geometric optimization by mentioning some application 

areas.

1.4.1 Layered Manufacturing

Layered manufacturing is an important technology able to manufacture complex 

shapes. A multi-disciplinary project at Rutgers University (18) is aimed at developing 

advanced material delivery systems for layered manufacturing and rapid prototyping. 

We briefly describe their work below.

The CAD model of the 3D object is sliced using slice algorithms. The infor­

mation on each slice is then sent to a manufacturing unit which consists of a material 

delivery or a curing system capable of tracing out the layer. Each layer has an as­

sociated thickness and the entire layer has the same cross-section. Once the current 

layer is ready, the computer sends the information about the next layer to the manu­

facturing system which builds it on the existing layers. In this way, the entire object 

is built layer-by-layer.

Majhi et al. (21) discuss some important issues arising in this area such as 

minimizing stair step errors on the surfaces of the manufactured surfaces under vari­

ous formulations, minimizing the volume of so called support structures used, as well 

as minimizing the contact area between the supports and the manufactured object. 

They present efficient algorithms to address these issues by reducing these problems 

into geometric optimization ones such as halfplane range searching, constrained op­

timization, etc(Fig. 1.3).

1.4.2 Geographical Information Systems

A Geographical Information System is a collection of spatially referenced data (i.e. 

data that have locations attached to them) and the tools required to work with 

the data. One of the important issues in GIS is the map labeling problem (14). 

(Fig. 1.4) illustrates a general map labeling problem. This problem is concerned

University o f Windsor, 2006  7
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Chapter 1 On Some Geometric O ptim ization problems

Figure 1.3: Optimal orientation found by Majhi et a l’s weighted sta ir stepping algorithm fo r  a 

speedometer component (21)

Figure 1.4: Area labelling labelling countries with curved labels

(37)

with issues in labeling a set of sites (points, lines, regions); given a set of candidates 

(rectangles, circles, ellipses, irregularly shaped labels) for each site (37). A map 

can be a classical cartographical map, a diagram, a graph or any other figure that 

needs to be labeled. Map labeling is the problem of positioning labels on a map, 

maintaining some constraints such as the labels will not overlap and they should not 

cover important features of the map. Cartographers say that labeling a map manually 

consumes fifty percent of the time of actually drawing the map itself. So they seek 

some automated method to handle this problem. Finding such a labeling is NP-hard. 

Various geometric optimization techniques have come into play while addressing these 

issues.

1.4.3 Geometric Modeling and Industrial Geometry

Geometric Modeling and Industrial Geometry is a research unit at the Institute of 

Discrete Mathematics and Geometry, Vienna University of Technology (26). They are 

performing application oriented fundamental research and industrial research closely

University of Windsor, 2006  8
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Figure 1.5: Input Object (19)

Figure 1.6: Reconstructed Object (19)

connected to geometry. One of the application areas they deal with is constrained op­

timization problems occurring in Geometric Computing. Ongoing research focuses on 

the computation of curves and surfaces constrained to surfaces and obstacle avoidance 

in motion design and curve and surface approximation.

Liu et al. (19) investigate 3D shape reconstruction from measurement data in 

the presence of constraints.

1.5 O rganization of th e thesis

In this thesis we will be investigating two interesting geometric optimization problems. 

The first problem is: Given n points in a plane, we report the farthest segment(from 

among the implicitly defined line segments defined by these n points) from each point. 

As we know, the number of line segments defined implicitly by these n points is in 

0 (n 2). A brute force approach to the solution of this problem will give rise to an 0 (n 3) 

algorithm. Our goal was to design an efficient algorithm, thus trying to improve the 

time complexity of the brute force algorithm. We have been able to come up with the 

following result: If h be the number of vertices on the convex hull then our algorithm 

reports the farthest segment from each point in 0(nh  +  n log n) time.

University of Windsor, 2006  9
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For the second problem we revisit the algorithm of Kumar et al. (30) for 

computing an area-optimal convex polygon intersecting a set of parallel line segments 

for which we provide a correctness proof and also an implementation. We also es­

tablish that after an initial step of computing convex hulls that is in O(nlogn), the 

complexity of the rest of the steps is in 0(n). Study of the geometry of collection of 

parallel line segments was originally done by Goodrich et al. (16). Their work found 

applications in computer graphics, such as vectorizing scanned images, computing 

visibility for graphical display, and finding shortest paths for motion planning.

In the next two chapters we describe these two problems. The next chapter 

shows results shown by the implementation of our algorithms. We finally conclude 

with scope of future research that can be done on this thesis.

University o f Windsor, 2006  10
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Chapter 2

On the All Farthest Segm ents 

Problem  for a Planar Set of Points

In this chapter, we outline a very simple algorithm for the following problem: Given 

a set S  of n points Pi,P2 ,P3 , ■ ■ ■ ,pn in the plane, we have 0(ri2) segments implicitly 

defined on pairs of these n points. For each point pt, find a segment from this set 

of implicitly defined segments that is farthest from p̂ . We have 0 (n 2) segments 

implicitly defined on pairs of these n points. The time complexity of our algorithm 

is in 0(nh  +  n log n ), where n is the number of input points, and h is the number of 

vertices on the convex hull of S.

2.1 Som e C om putational G eom etry C oncepts

2.1.1 Convex Hull

This is one of the very basic geometry structures. Given n points in a plane, we are 

interested to know the smallest convex polygon that contains these points. By the 

term convexity we mean that, if we join any two points in the convex hull, all the 

points in the line joining these two points will lie entirely within the convex hull. 

There are several algorithms for computing the convex hull of a set of points. We 

have used Graham Scan algorithm (27) here. Timothy Chan (6) proposed a very

11
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Figure 2.1: Convex Hull o f a se t o f points (27)

Figure 2.2: Voronoi Diagram

efficient method of computing the convex hull.

2.2 Voronoi D iagram s

Given a set of points S' in a plane Voronoi Diagram is a partition of a plane into 

regions, each region is the locus of points (x,y) ,  closer to a point of S  than to any 

other point in S  (33). Given two points, p* and pj,  the set of points closer to than 

to pj is the half-plane containing p, formed by the perpendicular bisector of pip]- If 

we denote this half-plane by H(pi,pj), then the convex polygonal subdivision that 

describes the areas that are nearest to a set of the points in S  is the intersection 

of such N  — 1 halfplanes and has no more than N  — 1 sides. Let us denote by 

V (i) =  C\H{pi,Pj), i+j.
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Figure 2.3: Voronoi Diagram with its Delaunay triangulation

This polygonal subdivision is called the Voronoi diagram^Fig. 2.2). The ver­

tices of the diagram are called Voronoi vertices and the line segments are called 

Voronoi edges.

2.2.1 Some Properties of Voronoi Diagrams

We discuss some important properties of the Voronoi diagram (33) (27).

Voronoi Edges: For every vertex v of the Voronoi diagram, the circle centered at 

that point contains no other points of S.

Voronoi vertices: Every vertex of the Voronoi diagram is the common intersection 

of exactly three edges of the diagram. Thus it is the center of the circle passing 

through these sites, and this circle contains no other sites in its interior.

Degree: Assuming no four points of S  are cocircular, every Voronoi vertex has degree 

three.

Convex hull: Any cell V(i) is unbounded iff Pi is a point on the boundary of the 

convex hull of the set S.

Triangulation: The straight-line dual of the Voronoi Diagram is a triangulation of 

S. This structure is called the Delaunay triangulation.

Size: The Voronoi diagram on N  points has at most 2N  — 5 vertices and 3N  — 6 

edges.

University o f Windsor, 2006  13
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• 2

Figure 2.4: Farthest Poin t Voronoi Diagram  (17)

There are various methods of computing Voronoi diagrams (33) (27). A de­

tailed discussion of these methods is out of the scope of this thesis.

2.2.2 Farthest Point Voronoi Diagram

Farthest point Voronoi diagrams are the opposite of Voronoi diagrams (17). These 

identify the areas which have the greatest distance from the given points(Fig. 2.4). 

They have similar properties as the nearest version. A detailed algorithm for the 

construction of the farthest point Voronoi diagram can be found in(35).

2.3 Previous Work

The problem we study belong to the class of proximity problems which has a long 

history in computational geometry. As for example, we can consider the closest pair 

problem. Given n points in a plane we are required to find the closest pair of points 

among them. An 0 (n  log n) solution to this problem is by using Delaunay trian­

gulation. In an arbitrary fixed dimension d, the first 0 (n  log n) algorithm, based 

on divide-and-conquer, was described by Bentley and Shamos (5). They investigate 

a divide-and-conquer technique in multidimensional space which decomposes a geo­

metric problem on n points in k dimensions into two problems on n/2 points in k 

dimensions plus a single problem on n points in k — 1 dimension. Special structure of 

the subproblems was also exploited to obtain an algorithm for finding the two closest

University of Windsor, 2006  14
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of n points in 0{n  log n) time in any dimension. Another 0 (n  log n) algorithm of 

Vaidya (36) can actually find the nearest neighbor to each of the given points.

The more general problem of enumerating the k closest pairs (or enumerat­

ing the first k smallest distances) has also been looked into. Dickerson et al. (11) 

used the Delaunay triangulation to enumerate the k closest pairs. They present an 

0(n \ogn  + k\ogk) time and 0{n + k) space algorithm which takes as input a set of n 

points in the plane and enumerates the k smallest distances between pairs of points in 

nondecreasing order. They also present an 0(n\ogn-\-kn\ogk) solution to the prob­

lem of finding the k nearest neighbors for each of n points. Both of their algorithms 

are based on Delaunay triangulation. Timothy Chan in (7) revisits the problems of 

enumerating the k closest pairs and selecting the fc-th smallest distance, given an n 

point-set. He presented randomized and deterministic algorithms with 0 (n \o g n  + k) 

running time in any fixed-dimensional Euclidean space. For the selection problem, 

he describes an approach to obtaining fc-sensitive time bounds. He also points out 

output-sensitive results for halfspace range counting that are of use in more general 

distance selection problems.

Our work is directly related to the following work done by Daescu and Luo(8). 

Given a set S  of n  points in a plane and another point q they give optimal 0 (n  log n) 

time and 0 (n ) space algorithms for finding the closest and farthest line segments 

from q among those implicitly defined by points in S. They also suggest an O(nlogn) 

time and 0(n) space algorithm to find the £;-th closest line and also show a method 

to report these k closest lines in 0 (n  log n + k) time and 0{n) space.

Duffy et al.(13) presented an algorithm that determines for every point r e S  

the closest distance between r  and a line segment (p , q) implicitly defined in S. Their 

algorithm takes 0{n2) time and O(n) space. They also show that their algorithm is 

3SUM-hard, and so it is unlikely that a better solution can be obtained.

While it is hard to provide any practical motivation for problems of this type 

that does not appear contrived, it is intriguing to know whether the all-farthest prob­

lem can be solved as efficiently as or faster than the all-nearest version.
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PJ

pk

Figure 2.5: Farthest distance from  pi to  segment (pj,Pk) is to an interm ediate point (Type A  segment)

2.4 C haracterization o f a farthest segm ent

Let pjPk be a farthest segment of a point p.L. The farthest distance is obtained either 

by dropping a perpendicular from pl to the segment pjpj) (Fig. 2.5) or by joining Pi 

to the nearer one of the end points Pj and Pk (Fig. 2.6). We call these two types of 

farthest segments type A  and type B  respectively.

We design an algorithm by characterizing the two types of segments. To ensure 

the correctness of the arguments below, we shall assume that no three points of S  are 

collinear.

Lemma 1. If the segment pjpk, is a type A farthest segment for a point Pi then pfpf 

is an edge on the convex hull of S.

Proof: If the segment pjpf is not a convex hull edge, then there exists a point pi of 

S  in the open half-plane defined by the supporting line through pj and pk that does 

not contain p, (Fig 2.7). This gives a segment pjpi that is farther from p* than pfpf 

since pip] is the hypotenuse of the right-triangle formed by p.(, pj and the foot of the 

perpendicular from p, to pjpf- This contradicts the assumption that pjpf is a farthest 

segment of pi.
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pk

Figure 2.6: Farthest distance fro m p i to segment (j>j,Pk) is to an endpoint (Type B  segment)

PI

Figure 2.7: If a type A segment is not a convex hull edge
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Figure 2.8: Illustrating the case w h en pj andpk are both internal vertices of the convex hull of S)

Lem m a 2. If the segment pjp] is a type B farthest segment for a point pi, the farthest 

distance being the length of pip], then either p]p] is an edge on the convex hull of S  

or pj is farthest from pt among all the points that are interior to the convex hull of 

the point set, while pk is a convex hull vertex of the given point set.

Proof: Let the farthest distance be realized by joining Pi to pj. Our proof is in three 

parts, covering the mutually exclusive and exhaustive possibilities that the end points 

of PjPk are both points internal to the convex hull of S, are both convex hull vertices 

or one is an internal vertex while the other is a convex hull vertex. (1) Suppose Pj and 

Pk are both internal to the convex hull. If this were true, consider the half-plane de­

fined by a line through pk  orthogonal to p fp f  that does not contain p t . This half plane 

must contain a vertex p t of the convex hull of S. giving us a segment ppp[ that is far­

ther from p i than p j p ]  and a contradiction. Hence this possibility is excluded(Fig 2.8).

(2) Suppose pj and pk are both vertices of the convex hull. We claim that in this case 

p]Pk is a convex hull edge (Fig 2.9).

If otherwise, the segment pfp] divides the convex hull of S  into two parts.
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Figure 2.9: p j and pk are non-adjacent convex hull vertices

Consider the convex hull boundary going from pj to Pk that lies in the part not con­

taining Pi. Since there is at least one convex hull vertex on this boundary, let pi be 

the one closest to pj. Then pjp% gives us a segment (could be of type A  or Type B) 

that is farther from pt than pjpf as the distances of all points on pfpk from pt are 

greater than the distance from p% to pj. This proves our claim.

(3) pk is a convex hull vertex and pj is an internal vertex. We claim that in this case 

Pj is farthest from pt among all internal vertices. Otherwise, let pi be an internal 

point that is farther from pi than pj. There exists a point prn that lies on the convex 

hull and is in the half-plane defined by a line through pi orthogonal to pfpi, not con­

taining pi. This gives us a segment pipA farther from pi than pjpk and a contradiction.

By (1), (2) and (3), we have proven that the farthest segment from pt must 

either be an edge of the convex hull of S, or have one end point on the convex hull 

while the other end point is the farthest from Pi among all internal points.

With these two lemmas, it is easy to design an efficient algorithm for solving 

this problem.
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2.5 A lgorithm

We first construct the convex hull of the point set; then the farthest-point Voronoi 

diagram of the interior points, if any. The time complexity of each of these two steps 

is in 0 (n  log n), (33), (35). For each point pi: we find the farthest segment as outlined 

in the following algorithm._________________________________________________

A lgorithm  All-Farthest-Segments 

Input: A set of n points Pi,P2 , ■ ■ ■ ,Pn 

Output: The farthest segment pjpf for each Pi

for each do

Step 1 : Find the farthest segment among the edges of the precomputed convex hull; 

record the segment and the distance.

Step 2: Locate Pi in the precomputed farthest point Voronoi diagram of the points 

interior to the convex hull. Let pj be its farthest neighbor and record the distance to 

it from pi. If this distance is smaller than that computed in Step 1 report the segment 

found in Step 1 and quit, else continue.

Step 3: Draw a line orthogonal to the segment pipJ; the other endpoint Pk is a con­

vex hull vertex that lies in the halfplane not containing p.t. We find this by a linear 

search (we can afford this!) on the convex hull boundary. Report pjpl as the farthest 

segment.

od
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2.6 A nalysis

The time complexity of Step 1 is in 0(h)-, that of Step 2 is in 0(log(n — h))-, while 

that of Step 3 is also in 0(h). Putting it all together, the time complexity of All- 

Farthest-Segments is in 0(nh  + nlogn).

2.7 Conclusion

We have implemented the algorithm using JDK 1.4. One can view the software 

in (28). Clicking the mouse randomly on the screen to generates the points and then 

by clicking the button ” Show Farthest Segments” one can see the furthest segments 

from each point. The software also shows how the segment is obtained,i.e. whether 

it is a convex hull edge or one of the endpoints is an internal point.

An improvement of this algorithm has been already done by R.L. Scot Drysdale 

and Asish Mukhopadhyay (12). The authors have used a farthest segment voronoi 

diagram for convex hull edges and have been able to solve the problem in O(nlogn) 

time.
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Chapter 3

On Intersecting a Set of Vertical 

Line Segm ents w ith a Convex 

Polygon of M inimum Area

We have revisited the problem of computing an area-optimal convex polygon stabbing 

a set of parallel line segments studied earlier by Kumar et al (30), and provided a 

correctness proof. We also establish that after an initial step of computing convex 

hulls that is in 0 (n  log n), the complexity of the rest of the steps is in 0(n).

3.1 Previous Work

In (16) Goodrich and Snoyeink investigate the geometry of collections of parallel line 

segments. They look into the issue when a straight line or convex polygon can be 

fitted to such a collection. They define the convex stabbing problem in the following 

way: Let 5  be a collection of parallel line segments on a plane. A straight line is 

said to stab S  if it intersects each line segment in S. They generalize this concept to 

convex polygons, where they redefine the term stabbing saying that a convex polygon 

stabs S  if its boundary intersects each line segment in S. Thus they pose the convex 

stabbing problem: given a set S  of parallel line segments in the plane, find a convex

22
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polygon P  that stabs S, if such a polygon exists, report failure otherwise.

The authors devise an algorithm that solves the convex stabbing problem for 

n parallel line segments in O(nlogn) time and 0(n) space. They claim their solution 

to be optimal, as by reduction from sorting, any algorithm that outputs the stabbing 

polygon in clockwise order must take 0 (n  log n) steps to find a stabber of n  points 

on a circle. Also their work leads to finding a minimal perimeter or minimal area 

stabbing polygons in 0 (n 2) time and O(n) space.

Lyons et al. (20) presented an 0 (n  log n) algorithm to compute a minimum- 

perimeter convex polygon that intersects a set of n isothetic line segments by reducing 

the problem to a shortest-path computation. David Rappaport (34) showed that a 

minimum perimeter polygon stabbing a set of line segments constrained to lie in a 

fixed number of orientations can be found in 0 (n  log n) time. He also showed that if 

m  denotes the number of orientations, then the complexity of the algorithm is given 

by 0(3mn  +  logn).

3.2 D efin itions and N otations

Let S  denote a set of n parallel line segments. Each line segment in S  with endpoints 

p and q is denoted by pq. The functions top(.) and bot(.) return the upper and lower 

end-points of a line segment.

3.3 C haracterization

We first observe a trivial case. If all the line segments have a common transversal 

then the minimum area optimum polygon reduces to an arbitrary line segment. This 

is illustrated in (Fig. 3.1).

The question is,when can this case arise? Well, let us observe the y-valnes of 

the top and bottom end points. Let us denote the maximum value of the bottom 

end points by maxBot and the minimum value of the top end points by minTop. We 

observe that, this is indeed the case when the maxBot is of a smaller value than the
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Figure 3.1: A  set of vertical segments with a common transversal
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Figure 3.2: A truncated se t of vertical line segments

minTop. We now deal with the situation when the case is otherwise.

We assume, without loss of generality that there is a unique leftmost line- 

segment IL and a unique rightmost line segment rR.

Lem m a 3. If the y -value of the maxBot is larger than that of minTop then the 

minimum area convex polygon will lie within a strip defined by horizontal lines through 

maxBot and minTop.

Proof: The minimum area convex polygon will always have its vertices among the 

top and the bottom end points of the segments that lie between the leftmost and 

rightmost segments. Also, it will have a vertex on each of the extreme segments. 

Thus, the minimum convex polygon eventually lies within the horizontal strip defined 

by maxBot and minTop. Thus we redefine S  to be consisting of the truncated line 

segments as defined in (Fig. 3.2).

Our main task is to determine the latter vertices. Before we do this, we try 

to characterize the minimum polygon. Let us define two functions, bot(.) and top(.) 

which return the bottom endpoint and the top endpoint of each line segment in S.
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We construct the upper chain of the convex hull of the lower end-points of the 

line-segments in S. Going by the property of the convex hull, the bot(s) of each line- 

segment s lies on or below this upper chain. Let us define a partial order relationship 

over the convex chains over a given range of x-values by defining a chain to be ” less 

than or equal” to another if at every point of the range the corresponding y-value of 

the former is less than or equal to the corresponding y-value of the latter. Thus the 

upper hull of the lower end-points is the “smallest” one in the above partial order to 

have the above property . To denote this we denote this fewest wpward-convex chain 

by luc(S).

Similarly, the lower chain of the convex hull of the upper end-points is the 

“largest” among all convex chains which have top(s) for each line segment s lying on 

or above it. We denote this highest downward-convex chain by hdc(S).

Lem m a 4. If P  be a convex polygon, lying between IL and rR  the upper hull of P  

lies ”on or above” luc(S) and its lower hull lies ”on or below” hdc(S).

Proof: Since P  intersects each line segment s its bottom point cannot lie strictly 

above the upper chain of the convex hull of P. Thus the convex set consisting of the 

upper chain of the convex hull of P  and the semi-infinite lines from the leftmost and 

rightmost vertices of P  on IL and rR  respectively to -oo contains the convex hull of 

the bottom end-points of all the s fs  and thus, in particular, luc(S). Similarly, the 

convex set consisting of the lower chain of the convex hull of P  and the semi-infinite 

lines from the leftmost and rightmost vertices of P  on IL and rR  respectively to oo 

contain the convex hull of the top end-points of all the Sj’s and thus, in particular, 

hdc(S). Hence the claim of the lemma is proved.

Thus any convex polygon P which intersects all the segments must include 

the area bounded by the polygon with thick edges as shown in (Fig. 3.3)

If Pmin is the minimum polygon, then the above holds true. We now prove the 

following lemma to further characterize Pmin• Let Vi and vr be the leftmost vertex 

and rightmost vertex on IL and rR  respectively.

Lem m a 5. Pm*n is obtained by drawing tangents from Vi and vr to hdc(S) and luc(S). 
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Figure 3.3: Convex Polygon that m ust be included by any polygon that intersects S

Proof: Let us consider the convex chains of Pmin from V[ to Vb and ut(Fig. 3.5). If 

these are disjoint from hdc(S) and luc(S) then we can obtain a convex polygon of 

smaller area than Pmin, contradicting its minimality.

3.4 Solving th e O ptim ization Problem

Now, as stated earlier the main problem here is to determine vi and vr. Before we do 

this, we prove the following lemma:

Lem m a 6. The determination of vi and vr can proceed independently. Each can be 

determined by local optimization problems.

Proof: The edges that make up hdc(S) and luc(S) are extended to partition the 

leftmost segment IL into intervals. Similarly the rightmost segment rR  is also par­

titioned. Now consider (Fig. 3.4). We see that the interval shown by the thick lines 

on the IL is not visible by those on rR. This gives rise to two independent optimiza­

tion problems, each to be solved independently for the left and right part. Consider 

(Fig. 3.5). On the left we have to .determine tangents from vi to the convex chains
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Figure 3.4: Intervals are invisible

Vt

Vi

L

Vb

Figure 3.5: Two independent optim ization problems
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Figure 3.6: Tangents to hdc(S) and luc(S) from a point in an in terval on IL
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from L to vt and from I to vj, so that the area of the Aviab is minimum. Similarly on 

the right we have to determine tangents from vr to the convex chains from R to vt 

and from r to so that the area of the A vra'b' is a minimum.

We now discuss how to solve the optimization problem. We will explain how 

to solve the problem on the left, an exact similar kind will be done on the right. Prom 

each point in an interval on the two extreme line segments we can draw tangents to 

a vertex of hdc(S) and to a vertex of luc(S) as shown in (Fig. 3.6), where from the 

point p in the interval [u,v] on IL, tangents have been drawn to the convex chains 

hdc(S) and luc(S). The optimization for each interval goes as follows: the chosen 

point for which the area is a minimum will have to be an endpoint of the interval, 

determined by the skew of the segment joining the points of tangency with respect 

to IL. We determine the area of the convex polygon to the left of vtvi as a result of 

this optimization; the minimum area of all polygons obtained from each interval is 

Pminieft• Similarly, we determine the minimum convex polygon, Pminright to the right 

of vtvi and bounded by it. The area of Pmin is the sum of two values. We formally 

describe the algorithm in the next section.

3.5 T he A lgorithm

A lgorithm  VerticalMinPolyStabber

S tep 1. Compute the upper hull luc(S) of the points bot(s) and the lower hull hdc(S) 

of the points top(s).

S tep 2. Extend the edges of these chains to partition lL(rR) into subintervals. 

S tep 3. For each subinterval on lL(rR ) find the minimum triangle and compute the 

area of the left(right) polygon; update the current minimum on the left(right).

S tep 4. Report the minimum area by summing the leftMinimum and the rightMin- 

imum.
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3.6 A nalysis o f th e A lgorithm

The complexity of Step 1 is bounded above by 0 (n  log n). The time complexity of 

Step 2 is in 0(n). That of Step 3 is in 0{n) as the computation of the area of the 

convex polygon, say on the left,corresponding to the uppermost point on IL, takes 

O(n) time. The re-computation as we move to the vertex below this takes 0(1) time, 

and again for the vertex below that and so on, for a total time that is 0(n). Hence 

the VerticalMinPolyStabber is in O(nlogn).

3.7 Conclusion

An implementation of the above algorithm has been done in Java using JDK 1.4. One 

can use the software going to (28).

As a future work of this algorithm, Mukhopadhyay (29) has proposed an 0 (n 5) 

algorithm for the version of the problem where he has considered a set of isothetic 

line segments.

University o f Windsor, 2006  31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4

Experim ental R esults

Both the algorithms have been developed in Visual Studio 2005. Programming lan­

guage used is Java using JDK 1.4.The softwares have been developed in Windows XP 

platform.

4.1 R esu lts on th e first problem

The following pages show some snapshots of the software developed for a set of points. 

How to use the software is described below.

Step 1: Open the Applet Window clicking on the software link on the homepage of 

Dr Asish Mukhopadhyay(http://davinci.newcs.uwindsor.ca/~asishm).

Step 2: The Applet Window appears. Click the mouse at different points on the 

applet window.

Step 3: When you think you have had enough points, and now want to see the 

farthest segment from each one of them,click the button ” ShowFurthestLines” . Go 

on clicking it, and you will be shown the farthest segment one by one. The concerned 

point whose farthest segment is being shown is marked with a red hollow box. The 

farthest segment is shown in red. Whether it is obtained by joining an endpoint, or 

by dropping a perpendicular, is being shown with a blue line.
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l ;;iApplet Viewer: h i ,class
Applet

Show FurthestLlhes 1 I R e se t

Applet started.

Figure 4.1: Input Points
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Applet Viewer; M .c tass
Applet

I  ShowPurthestMnesj R eset

\ \ X

'X
' X

\ X

Applet started.

Figure 4.2: P oin t 1, Farthest segment is a convex hull edge
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t  Applet Viewer: fs2,class

Applet

StiowFurtbestUnesi Reset

Applet started.

Figure 4.3: P oin t 2, Farthest segment is a convex hull edge

University o f Windsor, 2006 35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4 On Some Geometric O ptim ization problems

i  jftpplet Viewer: fs2.class . ( 5 T ) f H S
Applet

i ShowFurthestOries 1 Reset

m

/
Applet started.

Figure 4.4: P oin t 3, Farthest segment has one endpoint as an internal point
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Applet Viewer: fs7.clnss
Applet:

Applet started.

IShowFurthestLinesj Reset

\

Figure 4.5: P oin t 4, Farthest segment is a convex hull edge
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« Applet Viewer; fs 2. class

Applet

tSftowFurtRestyiiesfl Reset |

\

\

\
\

Applet started.

Figure 4.6: P oin t 5, Farthest segment is a convex hull edge
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4.2 R esu lts on th e second problem

The following pages show some snapshots of the software developed for a set of vertical 

line segments. How to use the software is described below.

Step 1: Open the Applet Window clicking on the ’software’ link on the homepage of 

Dr Asish Mukhopadhyay(http://davinci.newcs.uwindsor.ca/~asishm).

S tep 2: The Applet Window appears. Click the checkbutton ’’ShowLines”. Now 

click the mouse at any place on the screen and drag it vertically downwards to some 

distance. Release the button and you have the first segment drawn. Even if due 

to personal error the drag is not exactly vertical, there is nothing to worry,it will 

automatically draw a vertical line from the starting point to the same y-value of the 

point where the mouse is released. Draw as many vertical segments as you can.

Step 3: Click on the checkbox ’’Show Convex Hulls” . You will see the Upper Hull 

of the lower endpoints and Lower Hull of upper endpoints. Here you can add more 

line segments, the hulls will be dynamically updated.

Step 4: Click on the checkbox ’’Show Polygons”. You will see the candidate polygons 

being shown. In the left you see the intervals showing all the candidate triangles, and 

a similar picture on the right. Here also, you may keep adding some segments, the 

figure will be dynamically updated.

S tep 5 :Click on the checkbox ’’Show Minimum Polygon”. You see the final polygon 

of minimum area stabbing the line segments.
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hulls) r  Show Polygons F" Show MinPolygon R esit 

] |

I

Applet started.

Figure 4.7: Input Line Segments
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Applet Viewer: stdbherstripuld.class

Applet

17 Showjines 17 IShow convex hulls) P  Show Polygons P  Show MinPolygon Reset

A

Applet started.

. / A

V /

\

Figure 4.8: Upper Hull of the Lower End P oin ts and Lower Hull of Upper Endpoints
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£ Applet Viewer: stabberstripold.class

Applet

17 Showjines 17 Show_convex_hulls f7i3hqw P o l y g 'Q n 's l  I Show MinPolygon Reset

Applet started.

Figure 4.9: Searching fo r  the m inimum polygon in each interval
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Applet

I? Showjines v  Show_c:invex_hulls .V Show Polygons P[Show MmPoiyggnj Reset

Applet started.

Figure 4.10: The M inimum Polygon
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Conclusions and Future Research

The first problem that we have worked had been accepted for presentation at the 

European Workshop on Computational Geometry, 2006 (EWCG 2006). Dr Asish 

Mukhopadhyay, my advisor had delivered the talk. The paper has also been ac­

cepted for publication in a journal, namely Information Processing Letters. This 

work has some special significance due to two reasons. First of all, it is a completely 

new problem never been addressed before. After the paper had been presented at 

EWCG, Dr RL Scot Drysdale of Dartmouth College, USA opined that this algorithm 

can be improved. The improvement comes in where we search for the farthest convex 

hull segments. In this thesis we do that by a linear search, thus use 0(h) time, h 

being the number of vertices on the convex hull boundary. But this can be avoided, 

if we have a data structure (similar to the farthest point voronoi diagram) that can 

enable us to search for the farthest convex hull segments in 0 (n  log n) time. Thus, our 

work has in fact led to the motivation of building a completely new data structure, 

called the Farthest Segment Voronoi Diagram, which was so long being unknown in 

literature. In (12), the authors used this data structure to improve the complexity 

to O(nlogn).

One of the challenging open problems that this work poses is finding all fc-th 

farthest segments for each point. One way of achieving this is to consider the A;-th 

order voronoi diagram, instead of the farthest point voronoi diagram. If S  is a set of
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n points in a plane, any point in the k-th order voronoi diagram shares the same set 

of k closest points in S'. It would be also interesting to see if a data structure similar 

to the one used in (12) can be designed, to address the problem of finding the fc-th 

farthest convex hull segments in minimum possible time.

In the second problem, we have considered parallel line segments only (if we 

change the reference frame we can always have a set of parallel segments boil down 

to a set of vertical segments). The advantage we had here is that the intervals on 

the left and the rightmost segments are always invisible, due to the convex chains of 

the lower hull and the upper hull. Because of this, the global optimization problem 

of finding out the minimum polygon, eased down to solving two independent local 

optimization problems. But life will not be that easy, if we consider a set of isothetic 

line segments, that is when there are both vertical and horizontal lines. There, we 

will have two other extreme segments at the top as well at the bottom. So, we will 

have to consider four intervals at a time. It may happen that the interval on the top is 

visible to that on the left or right or both. Similar case may arise with the interval at 

the bottom. However, Dr Asish Mukhopadhyay as being stated earlier has considered 

all the cases carefully in (29) where he has proposed the 0 (n 5) algorithm. The real 

finding of the work in this thesis is that the minimum polygon can only be obtained 

by partitioning the extreme line segments. This concept has also been used in the 

isothetic version of the problem. Partioning the extreme line segments into intervals 

also enable us to see that the solution for the minimum local to an interval is at one 

of the endpoints. This finding holds good for the isothetic line segments version also.

But the real goal is still left to be addressed. If the line segments are of 

arbitrary orientation, it will be interesting to see whether our observations still hold 

fine, or things will change in that case. There are many things that need to be 

addressed. For example, in the very first step, one needs to see how the hulls can 

be drawn. In fact, whose hulls are needed to be drawn? Since they are of arbitrary 

orientation, we cannot characterize endpoints as bottom endpoints or top endpoints. 

It may be easier to first consider problems where the line segments may be of fixed 

orientation, and then move to the arbitrary version.
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