830 research outputs found

    Multiuser MIMO techniques with feedback

    Get PDF
    Kooperative Antennenanlagen haben vor kurzem einen heißen Forschungsthema geworden, da Sie deutlich höhere spektrale Effizienz als herkömmliche zelluläre Systeme versprechen. Der Gewinn wird durch die Eliminierung von Inter-Zelle Störungen (ICI) durch Koordinierung der-Antenne Übertragungen erworben. Vor kurzem, verteilte Organisation Methoden vorgeschlagen. Eine der größten Herausforderungen für das Dezentrale kooperative Antennensystem ist Kanalschätzung für den Downlink Kanal besonders wenn FDD verwendet wird. Alle zugehörigen Basisstationen im genossenschaftlichen Bereich müssen die vollständige Kanal Informationen zu Wissen, die entsprechenden precoding Gewicht Matrix zu berechnen. Diese Information ist von mobilen Stationen übertragen werden Stationen mit Uplink Ressourcen zu stützen. Wird als mehrere Basisstationen und mehreren mobilen Stationen in kooperativen Antennensysteme und jede Basisstation und Mobilstation beteiligt sind, können mit mehreren Antennen ausgestattet sein, die Anzahl der Kanal Parameter wieder gefüttert werden erwartet, groß zu sein. In dieser Arbeit wird ein effizientes Feedback Techniken der downlink Kanal Informationen sind für die Multi-user Multiple Input Multiple Output Fall vorgeschlagen, der insbesondere auf verteilte kooperative Antennensysteme zielt. Zuerst wird ein Unterraum-basiertes Kanalquantisierungsverfahren vorgeschlagen, das ein vorbestimmtes Codebuch verwendet. Ein iterativer Codebuchentwurfsalgorithmus wird vorgeschlagen, der zu einem lokalen optimalen Codebuch konvergiert. Darüber hinaus werden Feedback-Overhead-Reduktionsverfahren entwickelt, die die zeitliche Korrelation des Kanals ausnutzen. Es wird gezeigt, dass das vorgeschlagene adaptive Codebuchverfahren in Verbindung mit einem Datenkomprimierungsschema eine Leistung nahe an dem perfekten Kanalfall erzielt, was viel weniger Rückkopplungsoverhead im Vergleich zu anderen Techniken erfordert. Das auf dem Unterraum basierende Kanalquantisierungsverfahren wird erweitert, indem mehrere Antennen auf der Senderseite und/oder auf der Empfängerseite eingeführt werden, und die Leistung eines Vorcodierungs- (/Decodierungs-) Schemas mit regulierter Blockdiagonalisierung (RBD) wurde untersucht. Es wird ein kosteneffizientes Decodierungsmatrixquantisierungsverfahren vorgeschlagen, dass eine komplexe Berechnung an der Mobilstation vermeiden kann, während es nur eine leichte Verschlechterung zeigt. Die Arbeit wird abgeschlossen, indem die vorgeschlagenen Feedback-Methoden hinsichtlich ihrer Leistung, ihres erforderlichen Feedback-Overheads und ihrer Rechenkomplexität verglichen werden.Cooperative antenna systems have recently become a hot research topic, as they promise significantly higher spectral efficiency than conventional cellular systems. The gain is acquired by eliminating inter-cell interference (ICI) through coordination of the base antenna transmissions. Recently, distributed organization methods have been suggested. One of the main challenges of the distributed cooperative antenna system is channel estimation for the downlink channel especially when FDD is used. All of the associated base stations in the cooperative area need to know the full channel state information to calculate the corresponding precoding weight matrix. This information has to be transferred from mobile stations to base stations by using uplink resources. As several base stations and several mobile stations are involved in cooperative antenna systems and each base station and mobile station may be equipped with multiple antennas, the number of channel state parameters to be fed back is expected to be big. In this thesis, efficient feedback techniques of the downlink channel state information are proposed for the multi-user multiple-input multiple-output case, targeting distributed cooperative antenna systems in particular. First, a subspace based channel quantization method is proposed which employs a predefined codebook. An iterative codebook design algorithm is proposed which converges to a local optimum codebook. Furthermore, feedback overhead reduction methods are devised exploiting temporal correlation of the channel. It is shown that the proposed adaptive codebook method in conjunction with a data compression scheme achieves a performance close to the perfect channel case, requiring much less feedback overhead compared with other techniques. The subspace based channel quantization method is extended by introducing multiple antennas at the transmitter side and/or at the receiver side and the performance of a regularized block diagonalization (RBD) precoding(/decoding) scheme has been investigated as well as a zero-forcing (ZF) precoding scheme. A cost-efficient decoding matrix quantization method is proposed which can avoid a complex computation at the mobile station while showing only a slight degradation. The thesis is concluded by comparing the proposed feedback methods in terms of their performance, their required feedback overhead, and their computational complexity. The techniques that are developed in this thesis can be useful and applicable for 5G, which is envisioned to support the high granularity/resolution codebook and its efficient deployment schemes. Keywords: MU-MIMO, COOPA, limited feedback, CSI, CQ, feedback overhead reduction, Givens rotatio

    Power Allocation in Wireless Relay Networks

    Get PDF
    This thesis is mainly concerned with power allocation issues in wireless relay networks where a single or multiple relays assist transmission from a single or multiple sources to a destination. First, a network model with a single source and multiple relays is considered, in which both cases of orthogonal and non--orthogonal relaying are investigated. For the case of orthogonal relaying, two power allocation schemes corresponding to two partial channel state information (CSI) assumptions are proposed. Given the lack of full and perfect CSI, appropriate signal processing at the relays and/or destination is also developed. The performance behavior of the system with power allocation between the source and the relays is also analyzed. For the case of non-orthogonal relaying, it is demonstrated that optimal power allocation is not sufficiently effective. Instead, a relay beamforming scheme is proposed. A comprehensive comparison between the orthogonal relaying with power allocation scheme and the non-orthogonal relaying with beamforming scheme is then carried out, which reveals several interesting conclusions with respect to both error performance and system throughput. In the second part of the thesis, a network model with multiple sources and a single relay is considered. The transmission model is applicable for uplink channels in cellular mobile systems in which multiple mobile terminals communicate with the base station with the help of a single relay station. Single-carrier frequency division multiple access (SC-FDMA) technique with frequency domain equalization is adopted in order to avoid the amplification of the multiple access interference at the relay. Minimizing the transmit power at the relay and optimizing the fairness among the sources in terms of throughput are the two objectives considered in implementing power allocation schemes. The problems are visualized as water-filling and water-discharging models and two optimal power allocation schemes are proposed, accordingly. Finally, the last part of the thesis is extended to a network model with multiple sources and multiple relays. The orthogonal multiple access technique is employed in order to avoid multiple access interference. Proposed is a joint optimal beamforming and power allocation scheme in which an alternative optimization technique is applied to deal with the non-convexity of the power allocation problem. Furthermore, recognizing the high complexity and large overhead information exchange when the number of sources and relays increases, a relay selection scheme is proposed. Since each source is supported by at most one relay, the feedback information from the destination to each relay can be significantly reduced. Using an equal power allocation scheme, relay selection is still an NP-hard combinatorial optimization problem. Nevertheless, the proposed sub-optimal scheme yields a comparable performance with a much lower computational complexity and can be well suited for practical systems

    Finite precision deep learning with theoretical guarantees

    Get PDF
    Recent successes of deep learning have been achieved at the expense of a very high computational and parameter complexity. Today, deployment of both inference and training of deep neural networks (DNNs) is predominantly in the cloud. A recent alternative trend is to deploy DNNs onto untethered, resource-constrained platforms at the Edge. To realize on-device intelligence, the gap between algorithmic requirements and available resources needs to be closed. One popular way of doing so is via implementation in finite precision. While ad-hoc trial and error techniques in finite precision deep learning abound, theoretical guarantees on network accuracy are elusive. The work presented in this dissertation builds a theoretical framework for the implementation of deep learning in finite precision. For inference, we theoretically analyze the worst-case accuracy drop in the presence of weight and activation quantization. Furthermore, we derive an optimal clipping criterion (OCC) to minimize the precision of dot-product outputs. For implementations using in-memory computing, OCC lowers ADC precision requirements. We analyze fixed-point training and present a methodology for implementing quantized back-propagation with close-to-minimal per-tensor precision. Finally, we study accumulator precision for reduced precision floating-point training using variance analysis techniques. We first introduce our work on fixed-point inference with accuracy guarantees. Theoretical bounds on the mismatch between limited and full precision networks are derived. Proper precision assignment can be readily obtained employing these bounds, and weight-activation, as well as per-layer precision trade-offs, are derived. Applied to a variety of networks and datasets, the presented analysis is found to be tight to within 2 bit. Furthermore, it is shown that a minimum precision network can have up to 3.5×\sim3.5\times lower hardware complexity than a binarized network at iso-accuracy. In general, a minimum precision network can reduce complexity by up to 10×\sim10\times compared to a full precision baseline while maintaining accuracy. Per-layer precision analysis indicates that precision requirements of common networks vary from 2 bit to 10 bit to guarantee an accuracy close to the floating-point baseline. Then, we study DNN implementation using in-memory computing (IMC), where we propose OCC to minimize the column ADC precision. The signal-to-quantization-noise ratio (SQNR) of OCC is shown to be within 0.8 dB of the well-known optimal Lloyd-Max quantizer. OCC improves the SQNR of the commonly employed full range quantizer by 14 dB which translates to a 3 bit ADC precision reduction. The input-serial weight-parallel (ISWP) IMC architecture is studied. Using bit-slicing techniques, significant energy savings can be achieved with minimal accuracy lost. Indeed, we prove that a dot-product can be realized with single memory access while suffering no more than 2 dB SQNR drop. Combining the proposed OCC and ISWP noise analysis with our proposed DNN precision analysis, we demonstrate 6×\sim6\times reduction of energy consumption in DNN implementation at iso-accuracy. Furthermore, we study the quantization of the back-propagation training algorithm. We propose a systematic methodology to obtain close-to-minimal per-layer precision requirements for the guaranteed statistical similarity between fixed-point and floating-point training. The challenges of quantization noise, inter-layer and intra-layer precision trade-offs, dynamic range, and stability are jointly addressed. Applied to several benchmarks, fixed-point training is demonstrated to achieve high fidelity to the baseline with an accuracy drop no greater than 0.56\%. The derived precision assignment is shown to be within 1 bit per tensor of the minimum. The methodology is found to reduce representational, computational, and communication costs of training by up to 6×6\times, 8×8\times, and 4×4\times, respectively, compared to the baseline and related works. Finally, we address the problem of reduced precision floating-point training. In particular, we study accumulation precision requirements. We present the variance retention ratio (VRR), an analytical metric measuring the suitability of accumulation mantissa precision. The analysis expands on concepts employed in variance engineering for weight initialization. An analytical expression for the VRR is derived and used to determine accumulation bit-width for precise tailoring of computation hardware. The VRR also quantifies the benefits of effective summation reduction techniques such as chunked accumulation and sparsification. Experimentally, the validity and tightness of our analysis are verified across multiple deep learning benchmarks

    Adaptive Communication for Wireless Massive MIMO Systems

    Get PDF
    The demand for high data rates in wireless communications is increasing rapidly. One way to provide reliable communication with increased rates is massive multiple-input multiple-output (MIMO) systems where a large number of antennas is deployed. We analyze three systems utilizing a large number of antennas to provide enhancement in the performance of wireless communications. First, we consider a general form of spatial modulation (SM) systems where the number of transmitted data streams is allowed to vary and we refer to it as generalized spatial modulation with multiplexing (GSMM). A Gaussian mixture model (GMM) is shown to accurately model the transmitted spatially modulated signal using a precoding framework. Using this transmit model, a general closed-form expression for the achievable rate when operating over Rayleigh fading channels is evaluated along with a tight upper and a lower bounds for the achievable rate. The obtained expressions are flexible enough to accommodate any form of SM by adjusting the precoding set. Followed by that, we study quantized distributed wireless relay networks where a relay consisting of many geographically dispersed nodes is facilitating communication between unconnected users. Due to bandwidth constraints, distributed relay networks perform quantization at the relay nodes, and hence they are referred to as quantized distributed relay networks. In such systems, users transmit their data simultaneously to the relay nodes through the uplink channel that quantize their observed signals independently to a few bits and broadcast these bits to the users through the downlink channel. We develop algorithms that can be employed by the users to estimate the uplink channels between all users and all relay nodes when the relay nodes are performing simple sign quantization. This setup is very useful in either extending coverage to unconnected regions or replacing the existing wireless infrastructure in case of disasters. Using the uplink channel estimates, we propose multiple decoders that can be deployed at the receiver side. We also study the performance of each of these decoders under different system assumptions. A different quantization framework is also proposed for quantized distributed relay networking where the relay nodes perform vector quantization instead of sign quantization. Applying vector quantization at the relay nodes enables us to propose an algorithm that allocates quantization resources efficiently among the relay nodes inside the relay network. We also study the beamforming design at the users’ side in this case where beamforming design is not trivial due to the quantization that occurs at the relay network. Finally, we study a different setup of distributed communication systems called cell-free massive MIMO. In cell-free massive MIMO, regular cellular communication is replaced by multiple access points (APs) that are placed randomly over the coverage area. All users in the coverage area are sharing time and frequency resources and all APs are serving all UEs while power allocation is done in a central processor that is connected to the APs through a high speed backhaul network. We study the power allocation in cell-free massive MIMO system where APs are equipped with few antennas and how the distribution of the available antennas among access points affects both the performance and the infrastructure cost

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    Matching sets of features for efficient retrieval and recognition

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.Includes bibliographical references (p. 145-153).In numerous domains it is useful to represent a single example by the collection of local features or parts that comprise it. In computer vision in particular, local image features are a powerful way to describe images of objects and scenes. Their stability under variable image conditions is critical for success in a wide range of recognition and retrieval applications. However, many conventional similarity measures and machine learning algorithms assume vector inputs. Comparing and learning from images represented by sets of local features is therefore challenging, since each set may vary in cardinality and its elements lack a meaningful ordering. In this thesis I present computationally efficient techniques to handle comparisons, learning, and indexing with examples represented by sets of features. The primary goal of this research is to design and demonstrate algorithms that can effectively accommodate this useful representation in a way that scales with both the representation size as well as the number of images available for indexing or learning. I introduce the pyramid match algorithm, which efficiently forms an implicit partial matching between two sets of feature vectors.(cont.) The matching has a linear time complexity, naturally forms a Mercer kernel, and is robust to clutter or outlier features, a critical advantage for handling images with variable backgrounds, occlusions, and viewpoint changes. I provide bounds on the expected error relative to the optimal partial matching. For very large databases, even extremely efficient pairwise comparisons may not offer adequately responsive query times. I show how to perform sub-linear time retrievals under the matching measure with randomized hashing techniques, even when input sets have varying numbers of features. My results are focused on several important vision tasks, including applications to content-based image retrieval, discriminative classification for object recognition, kernel regression, and unsupervised learning of categories. I show how the dramatic increase in performance enables accurate and flexible image comparisons to be made on large-scale data sets, and removes the need to artificially limit the number of local descriptions used per image when learning visual categories.by Kristen Lorraine Grauman.Ph.D
    corecore