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ABSTRACT 

Ibrahim, Ahmed A. PhD, Purdue University, August 2018. Adaptive Communication 
for Wireless Massive MIMO Systems. Major Professor: David J. Love. 

The demand for high data rates in wireless communications is increasing rapidly. 

One way to provide reliable communication with increased rates is massive multiple-

input multiple-output (MIMO) systems where a large number of antennas is deployed. 

We analyze three systems utilizing a large number of antennas to provide enhancement 

in the performance of wireless communications. First, we consider a general form of 

spatial modulation (SM) systems where the number of transmitted data streams is 

allowed to vary and we refer to it as generalized spatial modulation with multiplexing 

(GSMM). A Gaussian mixture model (GMM) is shown to accurately model the trans-

mitted spatially modulated signal using a precoding framework. Using this transmit 

model, a general closed-form expression for the achievable rate when operating over 

Rayleigh fading channels is evaluated along with a tight upper and a lower bounds 

for the achievable rate. The obtained expressions are flexible enough to accommodate 

any form of SM by adjusting the precoding set. Followed by that, we study quantized 

distributed wireless relay networks where a relay consisting of many geographically 

dispersed nodes is facilitating communication between unconnected users. Due to 

bandwidth constraints, distributed relay networks perform quantization at the relay 

nodes, and hence they are referred to as quantized distributed relay networks. In 

such systems, users transmit their data simultaneously to the relay nodes through 

the uplink channel that quantize their observed signals independently to a few bits 

and broadcast these bits to the users through the downlink channel. We develop al-

gorithms that can be employed by the users to estimate the uplink channels between 

all users and all relay nodes when the relay nodes are performing simple sign quanti-



xv 

zation. This setup is very useful in either extending coverage to unconnected regions 

or replacing the existing wireless infrastructure in case of disasters. Using the uplink 

channel estimates, we propose multiple decoders that can be deployed at the receiver 

side. We also study the performance of each of these decoders under different system 

assumptions. A different quantization framework is also proposed for quantized dis-

tributed relay networking where the relay nodes perform vector quantization instead 

of sign quantization. Applying vector quantization at the relay nodes enables us to 

propose an algorithm that allocates quantization resources efficiently among the relay 

nodes inside the relay network. We also study the beamforming design at the users’ 

side in this case where beamforming design is not trivial due to the quantization 

that occurs at the relay network. Finally, we study a different setup of distributed 

communication systems called cell-free massive MIMO. In cell-free massive MIMO, 

regular cellular communication is replaced by multiple access points (APs) that are 

placed randomly over the coverage area. All users in the coverage area are sharing 

time and frequency resources and all APs are serving all UEs while power allocation 

is done in a central processor that is connected to the APs through a high speed 

backhaul network. We study the power allocation in cell-free massive MIMO system 

where APs are equipped with few antennas and how the distribution of the available 

antennas among access points affects both the performance and the infrastructure 

cost. 



1 

1. INTRODUCTION 

Recently, a main focus of the wireless communication research is providing reliable 

high data rate communication [1] and connecting the unconnected [2]. On the one 

hand, in the past 15 years, multiple-input multiple-output (MIMO) antenna systems 

have been studied extensively due to their ability to provide reliable increases in data 

rates compared to single antenna systems [1, 3]. With MIMO technology becoming 

mature, massive MIMO systems have been recently introduced and studied [4, 5]. 

Massive MIMO can increase the total throughput of the network by using a very 

large number of antennas in the transmitter or receiver. On the other hand, there 

are many projects that aim to extend wireless broadband access to the underserved 

areas that lack the required infrastructure as in Google’s project Loon [6] and Face-

book’s Internet.org [2]. These projects use distributed massive MIMO where a very 

large number of antennas is used for either transmission or reception or both but 

these antennas are geographically distributed to make use of spatial macrodiversity 

as the relay nodes are spaced apart with a distance much larger than the operating 

wavelength [7, 8]. 

In this work, we study the achievable rate of one of the recent techniques facili-

tating the use of massive MIMO to achieve high data rates with less power and with 

elimination of the inter-channel-interference. This technique is spatial modulation. 

Followed by that, we proposed the quantized distributed relay networking where a re-

lay is enabling communication between different users. The distributed relay consists 

of many single-antenna nodes that are not communicating together. The nodes of 

the relay receive uplink signals from various users and broadcast a quantized version 

of the combined signal back to the users for decoding. Finally, we analyze another 

setup that utilizes distributed massive MIMO which is cell-free massive MIMO sys-

tem. In cell-free massive MIMO, cellular coverage is replaced by many access points 

https://Internet.org
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(APs) that are distributed over the coverage area where each AP is equipped with 

few antennas. In the proposed distributed setup, all users are served by all APs at 

all times and across all frequencies. We study the power allocation among these APs 

so that we can maximize the minimum rate that the users are seeing. We also study 

the advantages and disadvantages of having APs with multiple antennas as opposed 

to the case of single-antenna APs. In the following, we present the related work in 

the above mentioned topics (spatial modulation, quantized distributed relaying, and 

cell-free massive MIMO) and briefly mention the contribution done in each part. 

1.1 Spatial Modulation 

Recently, spatial modulation (SM) has been proposed to enhance the spectral 

efficiency utilizing both digital modulation and MIMO technology [9–21]. In most 

SM work [9, 13, 14, 22], the transmitter activates only one of the transmit antennas 

per channel use. The scheme uses conventional amplitude/phase modulation (i.e., a 

conventional one-dimensional symbol is sent) and conveys additional information to 

the receiver embedded in the transmitting antenna index. In [23], a framework is 

introduced for the performance analysis of SM using ordered statistics. 

There are two main advantages for one-dimensional SM over conventional MIMO 

spatial multiplexing in [15,16]. These advantages are eliminating Inter-channel inter-

ference (ICI) and removing the requirement of tight antenna synchronization as SM 

uses a single RF chain. Hence, the one-dimensional SM reduces both the transmis-

sion overhead and the receiver complexity compared to spatial multiplexing which 

improves energy efficiency [17] and makes it favorable for usage when a large number 

of antennas is available at the transmitter [18]. The receiver complexity reduction is 

emphasized in [9, 13], in which a sub-optimal SM detector is investigated. The sub-

optimality of the detectors in [9, 13] causes an error floor, unless the fading channels 

are known at the transmitter as demonstrated in [14]. The sub-optimal SM detectors 

are summarized in [19, 20]. An optimal SM detector is proposed in [14]. Although 
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optimal, the detector in [14] still has the same complexity order as other MIMO 

systems due to the joint detection of both spatial and modulated data. Therefore, 

low-complexity, optimal SM detectors have been developed in [19,21] that separately 

treat detection of the antenna index and the modulation index. 

Another approach that overcomes the problem of joint detection is a simplified 

version of SM known as space shift keying (SSK) [24]. In SSK, only the antenna index 

carries the information and needs to be detected but not the transmitted symbol. As a 

result, SSK dramatically reduces the detection complexity compared to SM, keeping 

comparable bit error rate performance, while the penalty is the reduced spectral 

efficiency. 

Instead of triggering one antenna for transmission in both SM and SSK, multiple 

antennas can be triggered using generalized spatial modulation (GSM) or generalized 

space shift keying (GSSK) as in [25] and [26], respectively. In GSM, the same symbol 

is transmitted on every antenna in an antenna subset and similarly in GSSK, multiple 

antennas can be triggered for transmission at the same time. When triggering more 

than one antenna at the same time for transmission, the inter-antenna interference 

arises again losing one of the main advantages of SM. However, ICI-free transmission 

is still preserved as mentioned in [10]. In [27–29], GSM was combined with spatial 

multiplexing to transmit different data streams over the set of active transmit anten-

nas leading to a hybrid of SM and spatial multiplexing. For this case, a near-optimal 

decoder is proposed in [28] where linear spatial multiplexing detectors are used. 

We present a general system model for spatial modulation, which we refer to as 

generalized spatial modulation with multiplexing (GSMM). In GSMM, the number 

of data streams transmitted is variable. The GSMM utilizes precoding to generalize 

spatial modulation and encapsulate multistream spatial modulation using a fixed or 

variable number of data streams. The spatial information is assumed to be encoded 

on beamforming vectors (or matrices). Encoding spatial information on beamforming 

vectors was proposed earlier in [30] where a beamforming vector is chosen from a 

given codebook to convey spatial data, rather than the antenna index, however, the 
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technique in [30] uses only a single data stream. The proposed precoding structure 

is more general assuming fixed or variable multistream to be transmitted. We show 

that the input vector of GSMM can be succinctly analyzed using a Gaussian mixture 

model. 

Although the pairwise error probability has been widely investigated for SM, SSK, 

GSM, and GSSK in [13, 24–26], finding a general achievable rate expression of them 

is still an open problem. A tight upper bound for the capacity of SM systems was 

investigated in [31], in which only conventional SM with a single receive antenna was 

considered and was called information-guided channel hopping (IGCH). The upper 

bound is derived in [31] by separately treating the rate achieved by the antenna in-

dexes and the rate associated with the modulation size leading to a result that IGCH 

outperforms the single-input single-output (SISO) systems and orthogonal space-time 

coding (OSTBC) when the number of antennas is larger than two. The achievable 

rates of SM and SSK through an empirical study were the main focus of the work 

in [32], demonstrating that SM is superior to the SISO system but inferior to the 

multiple-input single-output (MISO) system. Either GSM or GSSK were, however, 

not considered in [32]. Recently, a new capacity analysis was presented in [33, 34] 

where the spatial modulation system is modeled as two independent sources of in-

formation leading to a straightforward calculation of the system capacity. On the 

other hand, the presented analysis jointly models both sources of information using 

precoding and the Gaussian mixture model (GMM). There has been some work on 

the secrecy rate of SM systems in the presence of an eavesdropper in [35, 36]. Thus 

far, no work analyzing the capacity of a general SM framework encompassing SM, 

GSM, SSK, GSSK, and GSMM has been reported. 

We also present a general capacity analysis encompassing different forms of SM 

(conventional SM, GSM, SSK, GSSK and GSMM) along with tight upper and lower 

bounds of the achievable rate. The key idea that leads to the closed-form expression 

is to treat the spatial information bearing precoders with the varying number of 

streams as a GMM random variable and employ the GMM distribution. The obtained 
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expressions are flexible enough to accommodate any form of SM - where any subspace 

can be used for transmission - by adjusting the precoding set. 

1.2 Multi-Way Quantized Distributed Relaying 

Cooperative communication where nodes help each other increase achievable rates 

has been extensively studied [37–41]. In particular, relay networking has been the 

focus of a tremendous number of papers over the last twenty years, and many dif-

ferent forms of processing have been introduced [37, 42–52]. Some examples of relay 

networks are amplify-and-forward [44,45] and compress-and-forward relaying [46–49], 

and physical layer network coding (PLNC) in [50, 51]. 

Even though extensive research has been dedicated to centralized relay networks, 

there are practical benefits to employing distributed relay networks consisting of a 

large number of simple single-antenna relay nodes that are geographically dispersed. 

In [53], the diversity order of network codes for a multiple-user multiple-relay wireless 

network was investigated. The transmit power allocation and the pairwise error 

probability of a multiple-user multiple-relay network with single-antenna users were 

studied in [43] and extended to the case where users have multiple antennas in [54]. 

The capacity of large Gaussian relay networks was studied in [42] using an upper 

bound and a lower bound on the capacity where the bounds coincide when the number 

of relay nodes goes to infinity in certain scenarios. Aside from this, it was shown in [55] 

that a quantized distributed relay network can generalize PLNC and provide a high 

rate connection between two users. However, [55] considered a system supporting only 

two users where the maximum likelihood (ML) and the zero-forcing (ZF) detectors 

were derived. The ML detector suffers from high complexity and the ZF detector 

suffers from an error floor even at high signal-to-noise ratio (SNR). In this work, we 

consider a multi-user relay network where we derive sub-optimal detectors that are 

less complex than the ML detector and have lower error floor than the ZF detector. 
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We consider a scenario where many users with multiple antennas are communicat-

ing through a relay network that consists of many single antenna relay nodes. Each 

relay node receives a signal that is the superposition of uplink transmissions made by 

broadcasting users, quantizes the signal, and then transmits the quantized signal back 

to the same users through the downlink channel. The work presented here is related 

to compress-and-forward relaying [46–49]. However, the work in [46, 47] showed only 

theoretical results while the implementable schemes in [48,49] only considered a relay 

(a single relay node) equipped with a single antenna. Our interest here is to propose 

practical user detection schemes that exploit the advantage of having multiple relay 

nodes performing simple quantization and broadcast functions. 

There are several structures where the scenario considered in this system model 

fits. For example, the proposed system can be used in several internet of things 

(IoT) applications. It can be deployed in connected cars to provide wireless access to 

cars especially in environments where users (e.g., connected cars) are unable to com-

municate due to poor channel conditions, topographical limitations or various other 

reasons. A distributed relay network with relay nodes at sufficiently high altitudes can 

provide a wireless connection between users otherwise unable to communicate. The 

relay network can receive data from all ground users and then broadcast a quantized 

version of the combination of the received data through a downlink. The assumption 

in this work, that the relay nodes perform simple operations, fits the model where 

relay networks need to be energy efficient as they should be placed at high altitudes 

where access to them would be limited. 

Although we assume that the relay network performs quantization independently 

at each relay node, we have two assumptions on the quantization operation in the 

relay network. We first start by a very simple quantization by utilizing a one-bit 

quantizer at each relay node in Chapter 3. In the one-bit quantizer, the complex 

observation at each relay node is quantized into one bit representing the real part of 

the observation and one bit representing the imaginary part. Followed by that, we 

study a relay network performing vector quantization at each relay node in Chapter 
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4. Using vector quantization instead of simple one-bit quantization makes it possible 

to allocate the system resources efficiently to achieve throughput gain as shown in 

our analysis in Chapter 4. 

1.3 Cell-Free Massive MIMO 

Cell-free massive multiple-input multiple-output (MIMO) is a special version of 

massive MIMO that was recently proposed using a coverage area that is not divided 

into cells [56–58]. Instead, in cell-free massive MIMO (CFmM) systems, access points 

(APs) are distributed all over the coverage area to serve a smaller number of users 

simultaneously. CFmM utilizes full time and frequency sharing between users to 

improve coverage and control interference. It also benefits from the increased macro-

diversity gain that is caused by the distribution of the APs over the coverage region. 

Many of the challenges in CFmM systems have been addressed in [56–58]. Dif-

ferent types of downlink precoders are studied in [56], and uplink designs, downlink 

designs, and pilot contamination are studied in [57]. In [58], the uplink minimum 

mean squared error receiver is studied. However, all these works focus on CFmM 

systems with single-antenna APs. 

In this work, we study the effect of using multiple antennas at each AP. First, we 

show analytically that deploying a larger number of antennas at each AP improves 

the system performance. Next, we consider the tradeoff between achieving higher 

rates from one side and increasing the backhauling traffic and the infrastructure cost 

from another side. This gives us an important insight on how to optimally distribute 

a fixed number of antennas among APs. 
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2. ACHIEVABLE RATE OF GENERALIZED SPATIAL 

MODULATION USING MULTIPLEXING UNDER A 

GAUSSIAN MIXTURE MODEL 

In this chapter1 , we study the achievable rate expressions of a generalized spatial 

modulation with multiplexing (GSMM) wireless system where the input symbol vec-

tor entering the precoder is assumed to have i.i.d. Gaussian entries and the number of 

triggered antennas is allowed to vary [59]. The distribution of the transmitted vector 

over the channel is shown to follow a Gasussian mixture model (GMM) distribution. 

We also propose an approximate, though computationally exhausting, expression for 

the achievable rate of SM utilizing a precoding framework. We overcome the ex-

hausting computations by introducing a tight upper bound and a lower bound for 

the achievable rate that is general and can be adjusted to accommodate different SM 

scenarios (SM, GSM, SSK, GSSK, and the proposed GSMM). Simulations demon-

strate the effect of the dimensions of the system (number of transmit and receive 

antennas) on the obtained achievable rate results. We also compare our expressions 

with other prominent results published earlier. Tightness of the obtained upper and 

lower bounds and characterization of the factors that may make them loosen are also 

discussed. 

The rest of the chapter is organized in the following way. In Section 2.1, the 

system model is given. Section 2.2 discusses the GMM distribution, describing its 

probability density function (pdf) and providing a closed-form expression for its co-

variance matrix. In Section 2.3, the mutual information and entropy of the complex 

GMM random vector are studied with the derivation of an upper bound and a lower 

1 2016 IEEE. Reprinted, with permission, from [59]. 
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bound on the entropy. The achievable rate expressions are presented in Section 2.4. 

Simulations exploring the obtained results are demonstrated in Section 2.5. 

2.1 System Model 

Consider a MIMO system in Fig. 2.1, where the system is equipped with Mt 

transmit antennas and Mr receive antennas. The channel input-output expression is 

Fig. 2.1. System Model for GSMM where Ns is the number of bits per 
symbol. 

represented by 
√ 

y = ρ Hx + n, (2.1) 

where ρ is the signal to noise ratio, y ∈ CMr ×1 is the received vector, x ∈ CMt×1 

is the transmitted vector, n ∈ CMr×1 is the noise vector, and H ∈ CMr ×Mt is the 

channel matrix. Let hij represent the flat-fading channel coefficient between the jth 

transmit antenna and the ith receive antenna. Perfect channel state information 

(CSI) is assumed at the receiver but not at the transmitter. The entries of n and 

H are independent and identically distributed (i.i.d.) complex Gaussian random 

variables with zero mean and unit variance. The transmitted vector x has a unity 

power constraint satisfying � � �� 
trace E xx H ≤ 1. (2.2) 
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When evaluating the capacity of conventional MIMO systems, the transmitted 

vector x is assumed to be a zero-mean complex Gaussian random vector. The Gaus-

sian input assumption is made to achieve the maximization of the mutual information 

between the transmitted and received vectors to be able to give an expression for the 

system capacity [1, 60]. However, this is not the case when SM is used. In the fol-

lowing, we write the transmitted vector x in a form that enables the derivation of its 

pdf when either conventional or generalized SM is used. 

This can be better depicted using a vector notation. Let the transmitted unit 

energy complex symbol be s where E [| s |2] = 1. The transmitted vector x for 

conventional SM can be expressed as 

x = es, 

where e ∈ {e1, e2, . . . , eMt } with ei denoting the ith column of the Mt-dimensional 

identity matrix. The choice of the vector ei corresponds to transmission of the mod-

ulated symbol over antenna i while not transmitting over all other Mt − 1 antennas. 

The choice of i conveys information to the receiver. 

In the case of the GSM in [25], more than one antenna can be triggered for 

transmission, leading to a transmitted vector of the form 

x = us, (2.3) 

where u ∈ CMt×1 is a unit-norm vector and u ∈ U = {u1, u2, . . . , uK1 }. Here, K1 

is the cardinality of the set U that depends on the precoding structure. In the case 

of subset antenna selection, the vector u will have only N non-zero elements in the 

locations corresponding to the indices of the triggered antennas. 

This can be easily extended to allow a form of generalized SM using spatial mul-

tiplexing where there are multiple input data streams. If the input data streams 

are s1, s2, . . . , sM leading to an input symbol vector s = [s1 s2 . . . sM ]
T satisfying the 

unity power constraint. The transmitted vector x is then given by 

x = Fs, (2.4) 



11 

∈ CMt×Mwhere F such that F ∈ FM = {F 1, F 2, . . . , F KM } and similarly KM 

depends on the precoding structure. The power constraint in (2.2) makes all the 

precoding matrices satisfy the condition � � �� 
H F Htrace E F iss i ≤ 1. 

In the case of GSMM where a variable number of data streams is allowed, the 

precoding matrix F changes while the transmitted vector x is on the same form as 

in (2.4). The symbol vector s will be of variable dimension and equal to the number 

of input streams M (i.e., s ∈ CM×1). The minimum dimension of the vector s is one 

(i.e., conventional SM where M = 1), and the maximum dimension does not exceed 

the total number of transmit antennas Mt (i.e., conventional spatial multiplexing). 

The precoding matrix F will have a variable size of Mt × M where the number of 

columns will be variable and F ∈ F . The set F is the set of all possible precoding 

matrices. In other words, 
Mt[ 

F = Fi, (2.5) 
i=1 

where Fi is the set of precoding matrices of dimension Mt ×i corresponding to i input 

data streams while Fi is an empty set if i data streams are not to be transmitted. 

The cardinality of the set F is 

XMt MtX 
K = card (F ) = card (Fi) = Ki, (2.6) 

i=1 i=1 

leading to a transmitted vector x given by 

x = F 0 s 0 , (2.7) 

where F 0 ∈ F = {F 0 1, F 2 
0 , . . . , F 0 } where K is the caridnality of the set F andK 

s0 is the data stream vector with variable dimension that is changing from 1 to Mt 

matching the number of columns of the precoding matrix F 0 . 

This case, which is described in (2.7), is the most general because it can be adjusted 

to describe any of the other SM scenarios. For example, if the number of data streams 

is fixed to M , then the union in (2.5) contains only the set FM . For the case of a 
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single data stream (M = 1), the only non-empty set in the union is F1. Moreover, 

if only one antenna is triggered (N = 1), F1 will consist of the columns of the 

Mt-dimensional identity matrix. It is also worth mentioning that GSMM is more 

challenging at the receiver side not only because the number of data streams is not 

constant but also because the number of bits to be transmitted is not the same while 

we change the number of data streams. The bits to be transmitted are split into 

two blocks, one block represents the modulated symbol (and this is fixed as long as 

we fix the modulation scheme) and the other one represents the spatial information 

(or antenna index) that depends on the cardinality of the precoding set that changes 

when we change the number of data streams as shown in (2.5) and (2.6). 

It is straightforward to show that the precoding matrix set can be mapped to a set 

of covariance matrices Q. For example, in the case of fixed number of data streams 

(M), the covariance matrix of the transmitted vector can be written as � � � � 
Qi = E xx H | F = F i = E F iss H F H = F iF H , (2.8)i i 

for i = 1, 2, . . . , KM , where Qi is the covariance of the transmitted vector x as-

suming that the symbol vector s has complex Gaussian i.i.d. entries that has zero 

mean and unit variance. This means that the precoding matrix set has a one-to-one 

correspondence with the set of covariance matrices Q. According to the transmit-

ted information, the precoding matrix dimension and the set of possible precoding 

matrices will be determined which in turn determines the set of possible covariance 

matrices. In other words, we can consider spatial information to be conveyed in the 

covariance matrices instead of the precoding matrices (or vectors). 

Utilizing this concept, the input vector x can be modeled using GMM as shown 

in Section 2.2. The GMM is a mixture of Gaussian distributions with each of the 

distributions having a certain probability to be chosen. The effect of the spatially 

modulated signals (encoded in the index of the precoding matrix) appears in the 

distribution of the transmitted vector that is distributed as a GMM. To be more 

explicit, if the input symbols to the channel have a Gaussian distribution, then the 

distribution of the transmitted vector will be GMM if SM is used while it will be 
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Gaussian if no spatially modulated data is transmitted. For example, in case of a 

MISO system with three transmit antennas using conventional SM where we trigger 

one antenna per transmission, we will have three possible covariance matrices for the 

transmitted signal vector, namely 

Q1 = 

⎡ ⎢⎢⎢⎣ 
1 0 0 

0 0 0 

⎤ ⎥⎥⎥⎦ , Q2 = 

⎡ ⎢⎢⎢⎣ 
0 0 0 

0 1 0 

⎤ ⎥⎥⎥⎦ , Q3 = 

⎡ ⎢⎢⎢⎣ 
0 0 0 

0 0 0 

⎤ ⎥⎥⎥⎦ , 
0 0 0 0 0 0 0 0 1 

where each of the three covariance matrices is chosen with a probability αi, i = 1, 2, 3, 

respectively. If SM is not used and we are transmitting through one of the transmit 

antennas, then the covariance matrix of the transmitted signal will be only one of the 

three covariance matrices mentioned above (according to which antenna is chosen) 

with probability one. Being a mixture of Gaussian distributions makes GMM a 

reasonable assumption when evaluating the capacity. 

2.2 Gaussian Mixture Model Distribution 

In this section, the pdf of the transmitted vector x and covariance matrix are 

derived. The general case of SM mentioned in (2.4) is considered assuming a fixed 

number of data streams (M). This will be generalized to the case of GSMM with 

variable number of data streams in Section 2.4. 

2.2.1 Probability Density Functions of the Spatially Modulated Trans-

mitted and Received Vectors 

The symbol vector s is assumed to be unconstrained which means that it has i.i.d. 

entries that are complex Gaussian with zero mean and unit variance. This causes the 

transmitted vector x to be also complex Gaussian given a certain precoding matrix 

(i.e., F = F i) in the form 

x = F is. 
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This leads to x having a conditional pdf gi (x) that is complex Gaussian with zero 

mean and a covariance matrix Qi as shown in (2.8). This can be written, in the form 

of a conditional distribution, as 

� � 
p x F = F i = gi (x) , (2.9) 

where 
1 � � 

H Q−1 gi (x) = exp −x i x . (2.10)
πMt det (Qi) 

Due to the fact that the covariance matrices (Qi’s) have different ranks and might be 

singular in some cases (for instance, in the case of conventional SM, the rank of each 

of the Qi’s is one), the transmitted vector x can alternatively be described using its 

moment generating function Φi (λ) as � � 
Φi (λ) = exp −1

4 λ
H Qiλ . 

On the other hand, the choice of a certain precoding matrix F i conveys informa-

tion and is also random. The probability mass function (pmf) of the random vector 

F can be assumed to be 

p (F = F i) = αi, i = 1, 2, . . . , KM , (2.11) 

KPM 

where 0 ≤ αi ≤ 1 and αi = 1 to have a valid pmf. Using (2.9), (2.10) and (2.11), 
i=1 

we can write the following theorem that gives the pdf of the transmitted vectors. 

Theorem 1 If the transmitted symbol vector s has complex Gaussian entries with 

zero mean and unit variance, the transmitted vector x in the GSM system follows a 

complex GMM distrbution with pdf 

KPM 

g (x) = αi gi (x) , 
i=1 

where gi (x) and αi are as defined in (2.9) and (2.11), respectively. 

Proof Using (2.9), the cumulative distribution function (cdf) of the transmitted 

vector x conditioned on the precoding matrix F can be found to be 
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� � R RtMt t1P x ≤ t F = F i = · · · gi (x) dx1 · · · dxMt ,−∞ −∞ 

where i = 1, 2, . . . , KM and the notation x ≤ t denotes that x1 ≤ t1, x2 ≤ t2, · · · , xMt ≤ 

tMt . Using (2.11), Z tMt 
Z t1 

P (x ≤ t, F = F i) = αi · · · gi (x) dx1 · · · dxMt , (2.12) 
−∞ −∞ 

where i = 1, 2, . . . , KM . This will lead to the marginal cdf, G(t) = p (x ≤ t), given 

by � �KPM R RtMt t1G(t) = αi · · · gi (x) dx1 · · · dxMt .−∞ −∞ 
i=1 

Hence, the pdf of the transmitted vector x can be obtained from the cdf using the 

fundamental theorem of calculus to be 

KMX 
g (x) = αi gi (x) . (2.13) 

i=1 

The expression in (2.13) matches the pdf of a complex GMM random vector with 

zero means and a covariance matrix set Q = {Q1, Q2, . . . , QKM 
}. This concludes the 

proof. 

This theorem introduces a very important result that is the key of our analysis 

in this chapter. It shows that the unconstrained assumption (zero-mean Gaussian 

assumption) of the symbols input to the precoder leads to a transmitted vector x 

that is a GMM random vector when spatial modulation is employed (in the form of 

information carrying precoders). Using Theorem 1, it is straight forward to show that 

the received vector y is also distributed as a complex GMM distribution with pdf 

KPM 

f (y) = αi fi (y) . 
i=1 

This is due to the fact that the received vector y, given a certain precoding matrix 

F i is used for transmission, is on the form 

√ 
y = ρHF is + n. 
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Hence, y is conditionally distributed as a complex Gaussian random vector of dimen-

sion Mr with zero mean and a covariance matrix Σi as follows � � 1 � � 
H Σ−1 p y F = F i = fi (y) = exp −y i y , (2.14)

πMr det (Σi) 

where 

Σi = ρHQiH
H + IMr , (2.15) 

and IMr is the Mr-dimensional identity matrix. The marginal pdf of the received 

vector y can be found to be 

KMX 
f (y) = αi fi (y) , (2.16) 

i=1 

which is of the same form as that of a complex GMM random vector of dimension 

Mr with KM complex Gaussian components of zero means and a covariance matrix 

set E = {Σ1, Σ2, . . . , ΣKM }. 

The investigation of the achievable rate involves the computation of mutual in-

formation. Mutual information is a function of the covariance matrix of the received 

vector. The covariance matrices of the transmitted and the received random vectors 

that are distributed as complex GMM are of interest. 

2.2.2 Covariance Matrix of a GMM Random Vector 

The next lemma provides a closed from expression of the covariance matrix. 

Lemma 1 The covariance matrix Q of the complex GMM random vector x with pdf 

g (x) as defined in (2.13) is 
KMX 

Q = αiQi. (2.17) 
i=1 

Proof As the transmitted vector x has zero mean, its covariance matrix will be the 

same as its autocorrelation matrix. For x, the covariance matrix Q will be � � 
Q = E xxH . 
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This can be evaluated using the expectation conditioned on the precoding matrix F 

described as � � � � �� 
E xxH = EF E xxH F . � � 

However, the conditional expectation can be found to be E xxH F = F i = Qi, 

which leads to 
KM� � X 

Q = E xx H = αiQi. (2.18) 
i=1 

This concludes the proof. 

The Lemma 1 is general and can be extended to apply to the received vector y because 

it is also a complex GMM random vector. Replacing Qi in (2.18) by Σi leads to the 

covariance matrix of the received vector y � � KPM KPM � � 
Σ = E yyH = αiΣi = αi ρHQiH

H + IMr . 
i=1 i=1 

These results will be found useful to analyze the mutual information between the 

transmitted vector x and the received vector y of GSMM. 

2.3 Mutual Information of GMM Random Variable 

The informed mutual information between the transmitted vector x and the re-

ceived vector y is written as 

� � � � � � 
I x; y H = H y H − H y x, H , (2.19) 

where H (·) indicates the entropy function. 

The differential entropy of y given H is given in [61] by Z� � 
H y H = E [− log f (y)] = − f (y) log f (y) dy. (2.20) 

CMr 

From (2.20) and the definition of the pdf of a GMM random vector in (2.13), it is 

easy to see that there is no closed-form for the entropy of a vector with a GMM pdf. 

This is due to the logarithm of the sum of exponentials which can’t be simplified [62]. 
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Using the multivariate Taylor-series expansion of the logarithm of the sum as 

suggested in [62] assuming that all mixture components have zero mean gives 

LX 1 � �k 
log f (y) = y T r log f (y) + OL, (2.21)

y=0k! 
k=0 

where L is the number of terms to be considered from the expansion, r is the gradient 

with respect to the random variable y, OL is the remainder term, and the substitu-

tion by y = 0 is only done inside the logarithmic function in the right hand side. 

Truncating the remainder term OL in (2.21) yields the required finite approximation 

of the logarithm. 

It is difficult to derive the deviation of the approximated entropy from its true 

value. Tight lower and upper bounds on entropy was investigated in [61]. The bound 

characterization makes it easy to tell if the obtained approximation is meaningful or 

not. An upper bound for the differential entropy of a complex GMM random vector 

is found by following the same steps that are used in [62] to prove the entropy upper 

bound for a real GMM random vector. An upper bound of the differential entropy of 

the received complex GMM random vector y is 

KM � h i�� � X 
MrH y H ≤ αi − log αi + log (πe) det (Σi) 

i=1 (2.22) � � 
= Hu y H . 

A lower bound of H(y H) can be obtained using the lower bound fund in [62] 

(see Theorem 2 in [62]). This yields ! � � XKM KM � �X 
H y H ≥ − αi log αj γi,j = HL y H , (2.23) 

i=1 j=1 � � 
where γi,j = 1/ πMr det (Σi + Σj ) . 

The upper bound obtained in (2.22) is not tight. We use the algorithm men-

tioned in [62] to refine the obtained upper bound. The algorithm successively merges 

Gaussian components of the GMM to identify Gaussian-shaped clusters. The algo-

rithm then calculates the upper bound and compares with the currently lowest upper 

bound. At each step, the algorithm merges two Gaussian components of the GMM. 
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Having the differential entropy (and hence, the mutual information) approximated 

and bounded, we can move to finding a closed-form along with tight bounds of the 

achievable rate of GSMM in the next section. 

2.4 Achievable Rate Analysis 

In this part, achievable rate analysis of the MIMO system employing GSMM that 

is described in the normalized model in (2.1) is provided. The term achievable rate 

here will be used for the mutual information between the transmitted and received 

vectors under the assumption that the transmitted vector has a complex GMM dis-

tribution. 

2.4.1 Achievable Rate of GSM with a fixed number of data streams 

The mutual information in (2.19) has two terms. The first term is the differential � � 
entropy H y H , and it can be found using the entropy results in (2.20) and (2.21) 

and bounded using (2.22) and (2.23) because the received signal vector y is a complex 

GMM random vector. � � 
On the other hand, the second term is H y x, H which can be found, using the 

fact that the system is normalized and that the complex Gaussian noise vector has 

unit covariance matrix, to be 

� � 
H y x, H = H (n) = Mr log (πe) . (2.24) 

It is clear then that the first term is the only part in the mutual information 

expression in (2.19) that depends on the GMM assumption of the transmitted vector. 

Knowing the pdf of the received signal vector y that is mentioned in (2.16), the � � 
differential entropy H y H can be written as 

� � R PKMH y H = − CMr log f (y) i=1 αifi (y) dyR � (2.25)�kPL 1 T 
PKM≈ − y r log f (y) × αifi (y) dy,CMr k=0 k! y=0 i=1 
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where the log function is approximated using (2.21) by truncating the remainder term. 

This leads to a closed-form of the achievable rate obtained by subtracting (2.24) from 

(2.25) to give � � 
CM = H y H − Mr log (πe) , 

where CM denotes the achievable rate of the GSM system assuming a fixed number of 

data streams equal to M multiplexed over the triggered transmit antennas (N = M). 

This approximated expression needs many terms of the Taylor series expansion which 

makes it impractical to use. To overcome the complexity of finding approximated 

expression, a tight upper and lower bounds are investigated. � � 
A tight upper bound for H y H can be found using (2.22). An upper bound for 

the achievable rate assuming a fixed number of data streams (M), denoted by Cu
M , 

can be shown using (2.19), (2.22) and (2.24) to be 

KM � h i�X 
Cu
M = αi − log αi + log (πe)Mr det (Σi) − Mr log (πe) . (2.26) 

i=1 

The summation can be split into two added terms where the logarithm can be dis-

tributed as follows 

XKM KM KMX X 
Cu
M = − αi log αi + Mr (αi log (πe)) + (αi log det (Σi)) − Mr log (πe) . 

i=1 i=1 i=1 

(2.27) 
KPM 

Using (2.15) along with the fact that αi = 1, the upper bound of the achievable 
i=1 

rate becomes � �XKM 1 � � 
Cu
M = αi log + αi log det ρHQiH

H + IMr . (2.28)
αii=1 

This upper bound can be refined using the algorithm mentioned in Section 2.3. 

On another front, a lower bound on the achievable rate, denoted by CL
M , can be 

obtained using (2.23) to be ! 
KM KMX X 

CM 
L = − αi log αj γi,j − Mr log (πe) . (2.29) 

i=1 j=1 
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In general, the mixing variables {αi}KM will be equal with αi = 1 . This willi=1 KM 

simplify the obtained upper bound of the achievable rate to 

KMX 1 � � 
Cu
M = log (KM ) + log det ρHQiH

H + IMr , (2.30)
KMi=1 

and the lower bound of the achievable rate will simplify to !! 
KM KMY X 

CL
M = − 

1 
log 

1 
+ log KM − Mr log (πe) ,

KM πMr det (Σi + Σj)i=1 j=1 

(2.31) 

where Σi, i = 1, 2, · · · , KM can be found from the expression in (2.15). One remark 

to be made is that quantifying the rate sources would be helpful towards optimizing 

the spatial modulation system. The separation can be seen by looking at the upper 

bound expression in (2.30) where the first term (log KM ) models the achievable rate 

due to SM while the second term represents the rate due to the conventional sym-

bols. However, it might not be useful to do the separation in this chapter as the 

approach that is followed jointly represents the conventionally modulated data with 

the spatially encoded data through the GMM distribution. 

2.4.2 Achievable rate of GSMM 

In GSMM, the number of data streams is assumed to be variable. This means 

that M is not fixed but it varies to take values M = 1, 2, · · · ,Mt. The choice of the 

number of data streams is assumed to be uniformly random. Hence, we can define 

the pmf of the discrete random variable M to be 

p(M = j) = 
M 
1 
t 
, j = 1, 2, · · · ,Mt. 

For each number of data streams (a realization of M where M = i), there exists a 

corresponding coding set Fi that has Ki precoding matrices. This leads to KM being 

a random variable that has pmf as follows 

1 
p(KM = Kj ) = , j = 1, 2, · · · ,Mt. (2.32)

Mt 
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Using the pmf in (2.32), the achievable rate of GSMM, denoted by C, can be written 

as follows 

C = 
PMt Cj p(M = j) = 1 PMt C{M=j}.j=1 Mt j=1 

Similarly, the upper and lower bounds will be 

1 PMtCu = Cj ,
Mt j=1 u 

and 

1 PMt CjCL = L,Mt j=1 

respectively, where Qi ∈ Qj with Qj denoting the subset of possible covariances given 

that j data streams are transmitted and {Qi}i
K 
=1 
j are the elements of the set Qj . 

2.4.3 Uniform Triggering of Transmitting Array 

In (2.30), the construction of the precoding matrix set is implicit. If the precoding 

is assumed to uniformly trigger the antennas, motivated by unknown CSI at the 

transmitter, this will constrain the cardinality of the set of possible precoding matrices 

and limit the possible covariance matrices as well. In this subsection, we analyze 

GSMM under the assumption of uniform antenna triggering. 

To be more specific about what is meant by uniform antenna triggering, we give 

this example. If Mt = 3, for instance, the uniform triggering leads to a set of possible 

covariance matrices Q given by 

S3Q = i=1 Qi, � � 
1 1 1 1 1 1where Q1 = Q1,1, Q2,2, Q3,3 , Q2 = Q1,1 + Q2,2, Q1,1 + Q3,3, Q2,2 + Q3,3 ,2 2 2 2 2 2� 

1 1 1 ∈ CMt×Mtand Q3 = Q1,1 + Q2,2 + Q3,3 with Qi,j denoting a sparse matrix
3 3 3 

where all the elements are zero except for the element in the ith row and jth column 

which is equal to one. 
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It is clear (as shown above in the example of Mt = 3) that the number of possible 

ways to transmit M data streams over M uniformly triggered antennas is � � 
Mt

KM = , (2.33)
M 

leading to a total number of possible ways for transmission equal to 

Mt Mt � Mt 
�X X 

K = Ki = = 2Mt − 1. (2.34)
i 

i=1 i=1 

The new upper bound Cu for a certain realization of M where M = ν can be 

rewritten as follows � �PKν 1Cu
ν = log (Kν ) + i=1 Kν 

log det ρHQν,iH
H + IMr , 

where Qν,i is the ith element in the set Qν . On the other hand, the lower bound is !!YKν KνX1 1 
CL
ν = − log + log Kν − Mr log (πe) ,

Kν πMr det (Σν,i + Σν,j )i=1 j=1 

(2.35) 

where Σν,i = ρHQν,iH
H + IMr , i = 1, 2, · · · , Kν . 

To be able to give an expression for the upper bound, the achievable rate upper 

bound is averaged over all possible realizations of M which gives 

PMtCu = Cν p (M = ν) ,ν=1 u 

yielding 

1 PMtCu = Cν ,
Mt ν=1 u 

and similarly, 

1 PMtCL = CL
ν .

Mt ν=1 

Furthermore, the achievable rate can be optimized in case of fixing the number 

of data streams by choosing the number of data streams that maximizes the lower 

bound. This can be done by choosing Mopt to be 
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Mopt = argmax CL
ν . 

ν∈{1,2,...,Mt} 

The rank adaptation criterion can describe the trade-off between the achievable rate 

and number of streams, meaning that it allows the system to choose the optimal num-

ber of streams (which is not always min(Mt,Mr), thereby energy efficient) maximizing 

the throughput. 

Next section presents numerous simulations demonstrating the analysis that is 

done throughout the chapter. 

2.5 Simulations 

In this section, we provide a set of simulation results to support the analysis pre-

sented in the previous sections. The scenario of uniform antenna triggering is assumed 

to give more insightful comparisons although the achievable rate approximation and 

bounds proposed can be used with any precoding structure. Tightness of the upper 

and lower bounds obtained is demonstrated in Fig. 2.2, Fig. 2.3, Fig. 2.4, and Fig. 

2.5. In Fig. 2.2, the upper and lower bounds of the achievable rates of conventional 

SM (where only one antenna is triggered per transmission, i.e., N = 1 and one data 

stream is transmitted, i.e., M = 1) are shown for MISO systems with different di-

mensions. The same is done for GSM with N = 2 and M = 1, for GSM with spatial 

multiplexing over the activated antennas with N = M = 2, and for GSMM in Fig. 

2.3, Fig. 2.4 and Fig. 2.5, respectively. 

It’s clear from these figures that the bounds are tighter when the dimensions of 

the system (number of antennas) is smaller. There is approximately one bit/sec/Hz 

difference between the upper and lower bounds when the number of transmit antennas 

is four or less. This difference increases as the dimensions of the system increases. 

Another observation to be made is that the lower bound is almost the same for 

different system dimensions which contradicts the expected result that the achievable 

rate should increase when the dimensions of the system increases because of the 

transmission of spatial data along with the regularly modulated data. This shows 
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LB Mt=128
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Fig. 2.2. Upper and lower bounds of the achievable rate of the conventional 
SM with single data stream and single activated transmit antenna (N = 
M = 1) in MISO systems with Mt = 2, 4, 8 and 128 where LB and UB 
stand for lower bound and upper bound, respectively. 

that the lower bound loosens as the dimensions increase while the upper bound would 

still be tight due to using the refinement algorithm mentioned in Section 2.3. 

In Fig. 2.6, the effect of the number of antennas to be triggered per transmission 

- in a MISO system with 8 available transmit antennas utilizing GSM with a single 

data stream is demonstrated while Fig. 2.7 shows the same effect when GSM with 

multiple data streams that are spatially multiplexed over the triggered antennas (i.e., 

N = M) is used. 

GSM with a single data stream in Fig. 2.6 shows that triggering 2 antennas per 

transmission out of the 8 available transmit antennas gives the same performance as 

triggering 6 antennas out of the 8 available. This is expected due to the fact that 

we are transmitting only a single stream and the cardinality of the precoding set 
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Fig. 2.3. Upper and lower bounds of the achievable rate of GSM with 
a single data stream (M = 1) and two transmit antennas activated at a 
time (N = 2) in MISO systems with Mt = 4, 8 and 12. 

in both cases (triggering 2 antennas or 6 antennas per transmission) is the same as �
8
� �

8
� 

2 = 
6 = 28. The achievable rate (we mean the upper bound as we mentioned 

earlier that the lower bound is less sensitive to the changes in the system) increases 

slightly when the number of triggered antennas per transmission is 4 out of the 8 

available transmit antennas. This demonstrates that triggering more than half of 

the number of available transmit antennas per transmission in the case of GSM with 

a single data stream is not helping the achievable rate while the energy efficiency is 

negatively affected. In SM, the energy efficiency can be defined, for instance in [63], as 

the achievable throughput over the total power consumed (including circuitry power 

consumption). Hence, turning on more RF chains obviously deteriorates the energy 

efficiency here. From Fig. 2.6, it is seen that the worst option is triggering all of 
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Fig. 2.4. Upper and lower bounds of the achievable rate of GSM with two 
transmit antennas activated at a time and two data streams (N = M = 2) 
in MISO systems with Mt = 4, 8 and 12. 

the transmit antennas per transmission as this makes the system lose all its spatial 

degrees of freedom to send the same data stream over all the transmit antennas. 

The situation is different in Fig. 2.7 where different data symbols are multiplexed 

over the triggered antennas per transmission. The achievable rate seems to increase 

when we multiplex more data streams. This can be in the figure that even triggering 

6 antennas out of the 8 antennas gives better achievable rate than triggering 2 an-

tennas out of the 8 antennas as we are multiplexing more data symbols by increasing 

the number of triggered antennas although we have precoding sets with the same 

cardinality. 

A comparison between all different forms of SM is presented in Fig. 2.8. A 

MISO system with 8 transmit antennas is assumed and only the upper bounds of 

the achievable rate is shown as lower bounds are less sensitive to system changes 
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Fig. 2.5. Upper and lower bounds of the achievable rate of GSMM with 
data streams equal to the number of triggered transmit antenna (N = 
M = i, i = 1, 2, · · · ,Mt) in a MISO systems with Mt = 4, 8 and 12. 

as concluded from the previous simulations. The achievable rate of GSMM is the 

highest but it has a very slight increase (almost the same achievable rate) than GSM 

with two data streams multiplexed over two triggered antennas per transmission. 

Although slightly enhancing the performance, GSMM introduces many complications 

(regarding detection and receiver complexity) due to transmitting a variable number 

of data streams. The lowest achievable rate is for conventional SM. GSM with a single 

data stream and two triggered antennas per transmission offers a higher achievable 

rate than conventional SM and it gets even higher when two data streams are spatially 

multiplexed over these two antennas as shown in the figure. 

In Fig. 2.9, we compare the upper bound proposed in this chapter with other 

prominent results in [31] and [32]. To be able to give a fair comparison, the same 
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Fig. 2.6. Achievable rate upper and lower bounds for GSM with a single 
data stream (M = 1) in a MISO system with Mt = 8 and N = 2, 4, 6 and 
8 along with the upper and lower bounds of conventional SM. 

system dimension is assumed (a MISO system with Mt = 4) and conventional SM is 

utilized. The channel is assumed to be a Rayleigh fading channel which is the same 

assumption made in [31] and [32]. It is clear that the proposed upper bound is tight 

and the achievable rates almost overlap. Although the proposed upper bound seems 

to be a little bit higher at low SNR, the proposed expressions have the advantage that 

they can be adjusted to accommodate different SM scenarios with single, multiple, 

fixed, or variable data streams, while other results in [31] and [32] are restricted to 

MISO case only and not adjustable. Thus, the bounds are very general. 

The effect of changing the number of receive antennas while fixing the number of 

transmit antennas (Mt = 8) is studied in Fig. 2.10 and Fig. 2.11 for SM and GSM 

with a single data stream, respectively. As it appears in the two figures, having more 

than one receive antenna increases achievable rate considerably. The bounds tend 
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Fig. 2.7. Achievable rate upper and lower bounds for GSM with multiple 
data streams that are spatially multiplexed in a MISO system with Mt = 8 
and N = M = 2, 4, 6. 

to be more loose at low SNR and get tighter as SNR increases. It can be seen as 

well that the lower and upper bounds become tighter at high SNR when Mr > 1. 

The looseness of the bounds at low SNR is due to increasing the number of receive 

antennas to more than one. 

Finally, we demonstrate the correctness of the proposed bounds and the tightness 

of the upper bound presented in this chapter in Fig. 2.12 by testing the bounds on 

V-BLAST that has a well defined capacity analysis [16]. V-BLAST has an achievable 

upper bound for the capacity � � 
Cupper bound = log det 

ρ 
HHH + IMr . 

Mt 
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UB GSMM

Fig. 2.8. Achievable rate upper bounds for SM, GSM with a single data 
stream (M = 1) and two transmit antennas activated at a time (N = 2), 
GSM with multiple spatially multiplexed data streams (N = M = 2), and 
GSMM (N = M = i, i = 1, 2, · · · ,Mt). 

Because V-BLAST can be seen as a special case of GSM, the same exact upper 

bound can be obtained from our proposed upper bound expression. Our proposed 

upper bound expression for GSM is shown in (2.30) to be 

KMX 1 � � 
Cu
M = log(KM ) + log det ρHQiH

H + IMr . KMi=1 

Adjusting our GSM scheme, to have a number of data streams (M) that is equal to 

the number of transmit antennas that are all activated (N = Mt) and uniform trig-

gering of all transmit antennas, will correspond to the V-BLAST scenario. Applying 

these assumptions leads to KM = 1 as the triggering of all the transmit antennas 

uniformly during all transmissions will lead to a precoding matrix set containing only 

√1 one possible precoding matrix which is F1 = IMt . Hence, the cardinality (KM ) of Mt 
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Fig. 2.9. Comparison of the proposed upper bound against other results 
in a MISO system with Mt = 4 in case of conventional SM (M = N = 1). 

the set of all the possible precoding matrices will be equal to one. Moreover, we can 

find the covariance matrix Q1 as in (2.8) to be 

1 1 1 
Q1 = F1F

H 
1 = √ IMt √ IM

H 
t 
= IMt . 

Mt Mt Mt 

Substituting into the upper bound expression in (30) will give � � 
Cu
M = Cu

Mt = log det 
ρ 
HHH + IMrMt 

which is the same exact expression as the upper bound of the of V-BLAST. 
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Fig. 2.10. Achievable rate upper and lower bounds for conventional SM 
(M = N = 1) in a MIMO system with Mt = 8 and Mr = 2, and 4. 
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Fig. 2.11. Achievable rate upper and lower bounds for GSM with a single 
data stream (M = 1) and two transmit antennas activated at a time 
(N = 2) in a MIMO system with Mt = 8 and Mr = 2 and 4. 
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Fig. 2.12. Testing our bounds for the V-BLAST as a special case of GSM. 
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3. QUANTIZED DISTRIBUTED RELAY NETWORKING 

USING PROJECTED BINARY QUANTIZATION 

In this chapter1 , we develop a unified framework for a multi-way relay network that 

uses spatial multiplexing with distributed quantized reception. The proposed frame-

work can be adjusted by changing the number of relay nodes to set quality of service. 

Related observations have been made in [65–69] regarding similar distributed systems 

and their asymptotic performance (as the number of relay nodes grows large). How-

ever, the systems proposed in [65, 67] were based on quantizing the received signal 

from the transmitter and then forwarding it to the receiver (known as the fusion 

center) to decode the transmitted data. In [66], coding theory was applied to design 

a framework for coded distributed diversity reception where linear block codes are 

used to maximize the diversity gain. In contrast, the proposed work assumes a more 

practical model than [67] and we assume that the relay nodes quantize the received 

signal from all broadcasting users at the same time and then broadcast the quantized 

signal (from each relay node) to all users through the downlink. Subsequently, each 

user can detect the signal transmitted by a set of intended users. 

We propose various detectors starting from the ML detector to sub-optimal detec-

tors that are more computationally efficient with comparable performance to the ML 

detector. Performance of the derived detectors under different system parameters is 

also discussed. The proposed detectors assume the knowledge of the channel at the 

receive user side. Channel estimation techniques that can be used are discussed in 

Section 3.5. 

The rest of the chapter is organized as follows. The system setup is presented 

in Section 3.1. The ML detection algorithm is given in Section 3.2. Sub-optimal 

1 2017 IEEE. Reprinted, with permission, from [64]. 
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Fig. 3.1. Mutli-way distributed wireless relay network. 

detectors are derived in Section 3.3 and the performance of the derived detectors is 

analyzed in Section 3.4. The channel estimation process is presented in Section 3.5. 

Finally, we present numerical results in Section 4.5. 

3.1 System Model 

We consider a multi-way relay network consisting of Kuser users that exchange 

packets through a distributed relay network. Each user is equipped with Nt transmit 

antennas and receive antennas where we assume the same number of transmit and 

receive antennas for practical hardware cost. The relay network consists of Knode 

geographically separated, single antenna relay nodes as shown in Fig. 3.1. Informa-

tion is transmitted from many users simultaneously to the relay network through an 

uplink channel. After processing, the relay nodes’ broadcast signals to the users (the 

transmitting and receiving users are the same) through the downlink channel. 
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3.1.1 Uplink Stage 

During the uplink, the signal observed by the kth relay node is defined as 

KuserX 
yk,u = hHk,ixi,u + wk, k = 1, . . . , Knode (3.1) 

i=1 

where the uplink channels between the ith user and the kth relay node are hk,i ∈ CNt×1 , 

wk is the complex additive white Gaussian noise (AWGN) at the kth relay node that 

is distributed as CN (0, σ2), and xi,u = [xi,1,u, xi,2,u, · · · , xi,Nt,u]
T is the discrete-time 

signal transmitted by the ith user. It is important to stress that the uplink channels 

between each of the relay nodes and the ith user are independent. 

We assume xi,j,u ∈ X ⊂ C is drawn from an M -ary PSK constellation X with a 

power constraint on the transmitted signal that kxi,uk2 = Nt for 1 ≤ i ≤ Kuser. 

Each symbol indicates a sequence of log2(M) bits as in xi,j,u = M(bi,j,u), where 

1 ≤ i ≤ Kuser, and 1 ≤ j ≤ Nt, with bi,j,u ∈ GF (2)log2(M) and M is the modulation 

mapping function. The received signals at the relay network (i.e., at all relay nodes) 

can be written in a compact form as 

KuserX 
HH yu = i xi,u + w, (3.2) 

i=1 

T ∈ CKnode×1where yu = [y1,u, y2,u, · · · ] is the received vector at the relay , yKnode,u 

network, Hi = [h1,i, h2,i, · · · , hKnode,i] ∈ CNt×Knode is the uplink channel matrix be-

tween the ith user and the relay network, and w = [w1, w2, · · · , wKnode ]
T ∈ CKnode×1 

is the AWGN vector. Note that our formulation assumes that the users have the 

same number of antennas. While not required to develop detectors, we make this 

assumption for the sake of notational simplicity. 
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3.1.2 Signal Processing Across the Relay Network 

To simplify the explanation of distributed relay processing, we reform our model 

in (3.1) to be real-valued to simplify the explanation of the detection techniques. 

First, the uplink signal at the kth relay node in (3.1) is written as 

Kuser 

¯ ȳ k,u = Hk,ix̄ i,u + w̄ k (3.3) 
i=1 

where 

X 

⎡⎣ Re(yk,u) ⎤⎦ = 

⎡⎣ Re(wk) ⎤⎦ ∈ R2×1 
h 
⎡⎣ 

iT 
∈ R2Nt×1T Tx̄ i,u = , ȳ k,u = , w̄ kRe(x ), Im(x ) ,

i,u i,u 
Im(yk,u) Im(wk)⎤⎦ ⎡⎣ ⎤⎦h̄TRe(hT ) Im(hT 

k,i k,i ) k,i,1¯ ∈ R2×2NtHk,i 
¯−Im(hT ) Re(hT ) hT 

k,i k,i k,i,2 

Note that we are using the notation ā to express the real format of a complex vector 

a throughout the chapter.. From (3.3), we note that the uplink signal at the kth relay 

node can be written as 

= = . 

XKuser 

h̄T ȳ  k,`,u = k,i,`x̄ i,u + w̄ k,`, ` = 1, 2 (3.4) 
i=1 

`th `th¯where ¯ is the element of the vector ¯ hT is the row in the matrix 

¯

yk,`,u yk,u, k,i,` 

Hk,i, w̄ k,` ∼ N (0, σ2/2) is the `th element of the vector w̄ k, and ` = 1, 2. 

After receiving the uplink signals from the users, each relay node constructs a 

downlink signal and broadcasts it back to the users via the downlink channel. As 

mentioned earlier, all Knode relay nodes, that together form the downlink signal vector, 

are geographically separated and not connected to one another. We assume that the 

relay nodes are only able to perform simple operations such as quantization. As such, 

the signal observed by the kth relay node (i.e., yk,u) is quantized to a value that can 

be represented with only a few bits. In particular, each of the relay nodes in the relay 

network quantizes its observed signal before broadcasting it to satisfy the downlink 

channel bandwidth constraint. 
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The quantized version of the observed signal yk,u is denoted by y̌k,u which is 

defined as 

y̌k,u = Qk (yk,u) ∈ {−1, 1}Bk×1 

where Qk(·) is the quantization function and Bk is the total number of quantization 

bits transmitted by the kth relay node. Note that Bk is the number of bits repre-
Bk Bksenting the complex observation yk,u with 
2 bits assigned to the real part and 

2 

bits assigned to the imaginary part. The quantization function at the kth relay node 

(Qk(·)) compares the projections of the real and imaginary components of the ob-

served signal to a certain threshold. In other words, Qk(·) first generates the vector 

zk,u as 

zk,u = ȳT (3.5)k,uPk 

where Pk ∈ R2×Bk is the projection matrix applied at the kth relay node. After 

generating zk,u, the quantization function Qk(·) thresholds the entries of the vector 

zk,u to give y̌k,u where 

y̌k,u,i = 

⎧⎨ ⎩ 1, when zk,u,i ≥ τk,i 

−1, when zk,u,i < τk,i 
(3.6) 

where y̌k,u,i and zk,u,i are the ith entry of y̌k,u and zk,u, respectively, τk,i is the threshold 

applied at the kth relay node to generate the ith bit, and i = 1, 2, · · · , Bk. 

In [70], it was proved that a choice of the projection matrix requires an orthonor-

mal projection matrix when two bits are used by each relay node to represent the 

receive signal (i.e., Bk = 2 for all 1 ≤ k ≤ Knode). Moreover, [70] shows that a 

heuristic choice of the threshold can be taken to be zero (i.e., τk,i = 0). Hence, the 

quantization parameters are 

Bk = B = 2 Pk = P = I2, τk,i = τ = 0. 

This corresponds to a simple quantization function ⎡⎣ sgn(Re(·)) ⎤⎦Qk(·) = Q(·) = (3.7) 
sgn(Im(·)) 
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where for an arbitrary scalar α ∈ R, 

1 when α ≥ 0 
⎧⎨ ⎩sgn(α) = (3.8) 
−1 when α < 0 

leading to 

= 

⎡⎣ ⎤⎦sgn(Re(yk,u)) 
y̌k,u ∈ {−1, 1}2×1 . (3.9) 

sgn(Im(yk,u)) 

This is equivalent to each relay node transmitting one bit representing the real part of 

its received signal and one bit representing the imaginary part. These results provide 

�high data compression at the relay network with a simple quantization process. Hence, �TT , . . . , y̌T ∈the broadcast vector from the relay nodes to the users is x̄ d = y̌1,u K,u 

{−1, 1}2Knode×1 . 

3.1.3 Downlink Stage 

The relay nodes are only transmitting two binary symbols per relay node (due to 

the quantization performed at each relay node). Hence, the downlink channel can be 

assumed to be a discrete memoryless binary symmetric channel (BSC) with a certain PKnode 

crossover probability and a bandwidth constraint Bk = Btot = 2Knode. This low 
k=1 

rate transmission in the downlink makes the BSC assumption more reasonable for 

modeling the downlink. We also assume that the downlink channels between each of 

the relay nodes and the users are independent. In this case, the received vector at the 

ith user is a noisy version of the broadcast vector x̄d. This noisy version is denoted 

T T Ty · · · , ȳ 
�T ∈ {−1, 1}2Knode×1 with Pr(¯ =6i,d,1, ¯ i,d,2, i,d,Knode 

yi,k,`,d by 
� 

ȳ i,d = ȳ x̄ k,`,d) = 

qi,k = 1 − pi,k where pi,k is the crossover probability of the BSC between the kth relay 

node and the ith user, x̄ k,`,d and ȳ  i,k,`,d are elements of x̄ d and ȳ i,d, respectively, at the 

(2(k − 1) + `)th location for k = 1, . . . , Knode, ` = 1, 2 and s, t ∈ {1, −1}. 

Time and frequency resources of the digital downlink channel are allocated to fa-

cilitate downlink transmission from relay nodes to the receiving user. In other words, 

we assume that the relay nodes are transmitting their date without interference. This 
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can be done when each relay node operates on a different narrow-bandedw bandwidth 

or when the relay nodes are transmitting their data in series not concurrently. How-

ever, the latter assumption might not be practical if we deploy a large number of relay 

nodes at the relay network. This assumption can be adjusted to include an error free 

downlink channel by assuming that the BSC has a zero crossover probability. In such 

a case (the case of a robust downlink channel), the received vector ȳ i,d at the ith user 

is the same as the broadcast vector x̄ d. 

3.2 Maximum Likelihood Detector 

In this section, the ML detector employed by a user to recover information symbols 

transmitted from other users is presented. For the derivations of the detectors in this 

chapter, we assume that the uplink channel state information between each user 

and each relay node in the relay network (hk,i where k = 1, 2, · · · , Knode and i = 

1, 2, · · · , Kuser) is known among all users. 

In particular, we design an ML detector that can be employed by the jth user 

to recover the symbols transmitted by all the users whose indices are in Dj , where 

j ∈ {1, 2, · · · , Kuser} and i ∈ Dj = {1, 2, · · · , Kuser} \ {j}. In other words, the set 

Dj is the set of indices of users that are detected at the receiver side. Therefore, the 

algorithm estimates x̄ Dj ,u (i.e., the concatenation of all x̄ i,u where i ∈ Dj ) directly 

from ȳ j,d (the signal received at the BSC output of the jth user) given knowledge 

of prior uplink transmission x̄ j,u. We derive the ML detector by working directly 

with the cumulative distribution function to define a likelihood function. Note that, 

we consider a conditional likelihood function as shown later in this section. This 

is different from the assumption in [67] as we utilize the knowledge of prior uplink 

transmissions. 

We start by rewriting (3.4) to be 

h̄T hT h̄T + h̄Tȳ  k,`,u = 
P 

k,i,`x̄ i,u + ¯ k,j,`x̄ j,u + w̄ k,` = k,Dj ,`
x̄ Dj ,u k,j,`x̄ j,u + w̄ k,` (3.10) 

i∈Dj 
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¯ ∈ R2(Kuser−1)Nt ∈ R2(Kuser−1)Ntwhere hk,Dj ,` and x̄ Dj ,u are the long vectors concate-�
¯nating the vectors hk,i,` and {x̄ i,u} , respectively. Hence, we can define a 

i∈Dj i∈Dj 

conditional likelihood function as L(x̄ Dj ,u|x̄ j,u) which can be employed by the jth user 

to estimate the symbols transmitted in the uplink as in 

x̄ Dj ,u,ML = argmax L(x̄ Dj ,u,ML|x̄ j,u) (3.11) 
x̄Dj ,u∈X̄

2(Kuser−1)Nt×1 

¯where X is the real representation of the constellation set X and j ∈ {1, 2, · · · , Kuser}. 

To simplify our notation, we begin with the definition of the sets 

X = {(k, ̀ ) : where ȳ  j,k,`,d = 1, x̄ k,`,d = 1}, 

Y = {(k, ̀ ) : where ȳ  j,k,`,d = −1, x̄ k,`,d = 1}, 
(3.12) 

U = {(k, ̀ ) : where ȳ  j,k,`,d = −1, x̄ k,`,d = −1}, 

V = {(k, ̀ ) : where ȳ  j,k,`,d = 1, x̄ k,`,d = −1} 

where the sets X and U correspond to the sets of ordered pairs containing the index 

of the relay node k and the part being quantized ` (i.e., ` = 1 corresponds to the real 

component and ` = 2 corresponds to the imaginary component) when the received 

quantization bit is received correctly. Similarly, Y and V are the sets of the same 

ordered pairs when the quantization bit is received incorrectly. Using these definitions, 

a conditional likelihood function for the jth user can be derived to be [64] 

2 Knode h �q � �� iQ Q 
2L(x̄ Dj ,u,ML|x̄ j,u) = Φ 
σ2 h̃ 

k, 
T 
Dj ,`
x̄ Dj ,u + µk,j,` p̃j,k + pj,k (3.13) 

`=1 k=1 

h̃Twhere µk,j,` = ¯ pj,k = (1 − 2pj,k), and Φ is the Gaussian cumulative distribu-k,j,`xj,u, ˜ 

tion function (cdf) defined as Z Zt t 1 − τ 2 

Φ(t) = φ(τ)dτ = √ e dτ. (3.14)2 

−∞ −∞ 2π 

The complete proof of the ML detector in (3.13) can be found in [64]. 

Note that this result is similar to the ML detector derived in [67] where an error 

free channel between the distributed nodes and fusion center is assumed. There are 

two key differences between our approach and [67]. First, our derived likelihood 
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function in (3.15) is conditional as each user uses the knowledge of its own prior 

uplink transmissions resulting in a Gaussian distribution with non-zero mean that is 

equal to µk,j,` at the jth user. This can be seen as if we have a variable threshold 

which is equal to µk,j,`. Second, the downlink is assumed to be a BSC with crossover 

probability that is specific to a particular user-relay node pair.. When the downlink 

channel is robust (i.e., error-free), the proposed conditional likelihood function in 

(3.13) simplifies to h �q � ��i2 Knode Q Q 
2 h̃TL(x̄ Dj ,u,ML|x̄ j,u) = Φ 
σ2 k,Dj ,`

x̄ Dj ,u + µk,j,` . (3.15) 
`=1 k=1 

The work here generalizes [67] to allow multiple transmitters in the uplink instead of 

only one user transmission. 

It is clear that ML detection needs an excessive number of computations to solve 

the optimization problem in (3.11) as we need to search for the optimal vector among a 

set of M (Kuser−1)Nt different possibilities when the transmitted symbols are modulated 

using a constellation of size M . For instance, consider a scenario where only four users, 

equipped with four antennas each, are transmitting data simultaneously. For this 

setup, the cardinality of the set of possible transmitted vectors 232 in the case of QPSK 

modulation. Clearly, this is not practical for implementation today. This motivates 

the development detectors that are less computationally complex with performance 

comparable to the ML detector. 

3.3 Sub-optimal Detectors 

In this section, we present sub-optimal detectors that are less computationally 

complex than the ML detector. Three different detection algorithms that can de-

crease the complexity of the detector design are derived. Each of these algorithms is 

based on certain assumptions. First, we introduce a linear ZF detector followed by an 

orthogonal subset ML (OSML) detector. Finally, we relax the constraints in the op-

timization problem in (3.11) to use projected gradient methods to find the maximizer 

of the likelihood function which we call a relaxed ML (relaxed-ML) detector. 
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3.3.1 Zero-forcing Detector 

In this part, we summarize a ZF detector that is derived in [64]. This ZF detector 

offers a significant reduction in computational complexity relative to the ML detector. 

In [64], the ZF detector is derived from an upper bound on the likelihood function. 

A soft estimate of the unknown symbol vector x̄ Dj ,u using the ZF detector in [64] can 

be written to be ⎡ ⎢⎢⎢⎣ 
⎤ ⎥⎥⎥⎦ . 

�√ � 
NtkH̃ Dj ,ukF + kµj,uk2 

x̄̂ Dj ,u,ZF = H̃ † √ 12Knode − µj,u|{z}Dj ,u| {z } | 2Knode{z } self-interference standard ZF detector 
scaled quantized downlink signal cancellation 

(3.16) 

The complete proof of (3.16) can be found in [64]. 

From the expression in (3.16), it is clear that the ZF detector does two things. 

First, it subtracts µj,u from the properly scaled downlink signal where µj,u represents 

the interference caused by other users transmitting at the same time. Followed by 

the subtraction, it multiplies the result by the pseudo inverse of the downlink channel 

H̃ Dj ,u after scaling it with the quantization bits. This is why it is referred to as ZF 

detector because of the ZF-like nature of its expression. 

�Finally, we produce an actual estimate of the transmitted complex symbols de-

noted by xDj ,u,ZF = xDj ,u,ZF,1, xDj ,u,ZF,2, · · · , xDj ,u,ZF,|Dj |Nt , using symbol-by-symbol 

detection to the nearest constellation point as follows 

�T 

�� 
x̄ Dj ,u,ZF,n = argmin | x̂̄Dj ,u,ZF − s|2 (3.17)

n 
s∈X 

def�� ̄̂
 x̄̂ Dj ,u,ZF,2n−1 + jx̄̂ Dj ,u,ZF,2n, 1 ≤ n ≤ |Dj |Nt and x̄̂ Dj ,u,ZF,nwhere is the=xDj ,u,ZF n 

th element in the vector x̄̂ Dj ,u,ZF. This is different from [67] because of the BSCn 

assumption in the downlink and the self interference cancellation based on the fact 

that each user knows its prior uplink transmission as shown in (3.16). 
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3.3.2 Orthogonal Subset Maximum Likelihood (OSML) Detector 

The OSML detector depends on maximizing a likelihood function similar to the 

one in (3.13). However, the main idea of the OSML detector is to analyze the broad-

cast signals from a subset of the relay nodes instead of analyzing the broadcast signals 

from all Knode relay nodes. This decreases the complexity of the ML detector. Two 

questions we are answer are: 

1. What is the minimum number of relay nodes to consider to keep comparable 

performance to the ML detector? 

2. What is the criteria that we should use to choose the subset of relay nodes? 

To answer these two questions, we assume the scenario where the jth user is 

receiving data that originated from the users whose indices are in the set Dj . To 

determine the minimum number of relay nodes to consider, we recall that each user has 

Nt antennas and uses spatial multiplexing to transmit Nt different symbols each from 

a constellation of size M . Hence, the number of information bits transmitted from 

each user is Nt log2(M). Moreover, each relay node in the relay network quantizes its 

observed signal into two bits. Therefore, the number of selected relay nodes targets 

dividing the space containing possible symbol vectors into distinguishable regions. 

These distinguishable regions have two or more of the possible symbol vectors in the 

same region with a very low probability. More details on the number of selected relay 

nodes are discussed in Section 3.4.2. 

To answer the second question, we select the relay nodes that have the most 

orthogonal uplink channels with each of the users who are to be detected (i.e., users 

whose indices are in Dj ). The most orthogonal channels are the channels whose 

vectors have the smallest inner product among each other. They are obtained by 

choosing the first node to be the one that has an uplink channel having the largest 

norm. After that, in each iteration, we add the node that has the largest projection 

on the null space constructed by the vectors of the uplink channels of the previously 

selected nodes. We keep adding nodes until the required number of considered nodes 
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is reached. The motivation behind considering the most orthogonal channels is that 

they have the least amount of interference between one another. This methodology 

leverages the knowledge of the uplink channels of all users ({Hi,u}Knode ) at each ofi=1 

the users. 

We denote the set of indices of the relay nodes to be used for detection with Γ. 

The cardinality of Γ (i.e., |Γ|) has to be greater than or equal to a certain number, 

denoted by |Γmin|, for the OSML detector to work. Going below this number will 

make part of the transmitted data unrecoverable regardless of the detector employed 

at the receiver side and regardless of the orthogonality of the uplink channels. The 

more relay nodes included in the set Γ, the better the performance of the OSML 

detector. The effect of the cardinality of the set Γ is further studied in Section 3.4.2. 

The OSML detector maximizes a likelihood function on the form 

Q2 Q h �q 
2 
� 
h̃T 

�� i 
L(x̄ Dj ,u,ML|x̄ j,u) = Φ 

σ2 k,Dj ,`
x̄ Dj ,u + µk,j,` p̃j,k + pj,k (3.18) 

`=1 k∈Γ 

where Γ is the set of indices of the selected relay nodes such that 

|Γmin| ≤ |Γ| < Knode. (3.19) 

However, finding the most orthogonal uplink channels may result in high complexity. 

Using either singular value decomposition or brute-force search through inner prod-

ucts of the channel vectors has factorial growth rate in complexity as we increase the 

number of relay nodes Knode. To avoid the huge complexity, we use Algorithm 1 that 

is motivated by techniques used to select users in the downlink in large-scale multi-

user MIMO systems with ZF beamforming [71]. The receiver runs this algorithm to 

find the most orthogonal uplink channel vectors out of the Knode uplink channels. 

3.3.3 Relaxed Maximum Likelihood Detector 

Although computationally more efficient than ML, the two sub-optimal detectors 

derived so far, the OSML and the ZF detectors, have performance limitations. The 

OSML has a limitation regarding the number of relay nodes in the relay network 
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Algorithm 1: Find most orthogonal uplink channel vectors 
def

input : K = number of chosen relay nodes (K = |Γ|),� 
H 

def ∈ C(Kuser−1)Nt×1= hk,Dj where 1 ≤ k ≤ Knode and hk,Dj is the 

concatenation of {hk,i} in one long vector}i∈Dj 

def 
output: Γ = Set of indices of chosen relay nodes 

1: A(1) = argmaxkh0k2 � h0∈H � 
Γ(1) k22: = argmax khk0 ,Dj 

1≤k0≤Knode 

for m ∈ {2, · · · , K} do 

3: Evaluate null space projection matrix W(m) using� �−1 
AH AHW(m) = I − A(m−1) (m−1)A(m−1) (m−1) 

4: Project rest of Knode channels onto the null space 

gk0,m = W(m)hk0 ,Dj 

where k0 ∈ ψ = {1, 2, · · · , Knode} \ Γ(m−1) 

5: Find the new relay node index to add to Γ 

k̂ = argmaxkgk0,mk2 

k0∈ψ 

6: Update the orthogonal set Γ 

Γ(m) = Γ(m−1) ∪ {k̂} 

and consequently, h i 
A(m) = A(m−1), hk,ˆ Dj 

end 
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while the ZF detector has an error floor at high SNR as will be discussed later in 

Section 3.4. Here, we derive the relaxed-ML detector that is computationally efficient 

and avoids the downfalls of the ZF and the OSML detectors. 

We can derive the log-likelihood function of the conditional likelihood function 

derived in (3.13) to be h �q � �� i2 Knode P P 
2 ˜log L(x̄ Dj ,u,ML|x̄ j,u) = log Φ hT x̄ Dj ,u + µk,j,` p̃j,k + pj,k σ2 k,Dj ,` 

`=1 k=1 
(3.20) 

and the ML detector will then maximize the log-likelihood function as follows 

x̄ i,u,ML = argmax log L(x̄ Dj ,u,ML|x̄ j,u). (3.21) 
x̄Dj ,u,ML∈X̄ 2(Kuser−1)Nt×1 

The current form of the problem is not convex due to both the constraints and the 

objective function. 

We relax the optimization problem in (3.21) to make it convex to be able to use 

the projected gradients optimization methods. This needs both the objective function 

and the constraints to be convex. On the one hand, any linear combination of the 

optimization variable inside a Gaussian cdf (i.e., Φ(·)) is a log-concave function [72]. 

This means that the only term that causes the objective function to be non-concave 

is the scalar term (i.e., pj,k) inside the log. Because the values of the crossover 

probability of the BSC are usually very small (pj,k � 1) in practical communication 

systems, we neglect the additive constant term pj,k inside the log function. The 

log-likelihood function then approximates to 

2 Knode h �q � �� iP P 
hTlog L(x̄ Dj ,u,ML|x̄ j,u) = log Φ 

σ 
2 
2 
˜ 
k,Dj ,`

x̄ Dj ,u + µk,j,` p̃j,k (3.22) 
`=1 k=1 

which is a concave function. On the other hand, to overcome the problem of having 

non-convex constraints, we relax the constraints on the detected vector using the 

X̄ 2(Kuser−1)Nt×1same approach in [73]. Instead of having x̄ i,u ∈ as our constraint, we 

will constrain the Euclidean norm of the transmitted vector (i.e., kx̄ i,uk) to be in a 
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closed ball of radius Nt in the real domain for all i ∈ Dj . Thus, the relaxed-ML 

optimization problem can now be written as 

x̄ Dj ,u,relaxed-ML = argmax log L(x̄ Dj ,u,ML|x̄ j,u). (3.23) 
∈R2(Kuser−1)Nt×1x̄Dj ,u 

kx̄Dj ,uk
2≤(Kuser−1)Nt 

Now, the problem in (3.23) has convex constraints and a concave objective function 

that can be solved using the projected gradient methods [74–76]. Following the same 

algorithm in [73], we can find a solution to the problem in (3.23) to give x̄ i,u,relaxed-ML 

followed by a symbol slicer as done in case of the ZF detector in (3.17). 

3.4 Performance Analysis 

In this section, we study the performance of the proposed detectors in Section 3.2 

and Section 3.3. We show how the performance changes with respect to the design 

parameters such as the number of relay nodes and the order of the modulation scheme. 

3.4.1 ML Detector 

The ML detector derived in Section 3.2 converges to the original transmitted signal 

in probability when the number of relay nodes goes to infinity. This convergence leads 

to a zero mean square error between the estimate and the true signal. We prove this 

in the following lemma. 

Lemma 2 The estimate x̄ Dj ,u,ML converges in probability to the true transmitted vec-

tor x̄ Dj ,u, i.e., 

p 
x̄ Dj ,u,ML −→ x̄ Dj ,u as Knode −→ ∞. 

Proof [Sketch of proof] The proof follows from the proof of Lemma 2 in [67]. The 

proof is done by showing that L(x̄ Dj ,u,ML|x̄ j,u) > L(ū|x̄ j,u) at an arbitrary SNR 

u ∈ R2(Kuser−1)Ntlevel as Knode −→ ∞ for every ¯ where kūk2 = (Kuser − 1) Nt and 

u =6 x̄ Dj ,u,ML. 
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0 ∈ R2(Kuser−1)NtThe log-likelihood function in (3.20) for an arbitrary vector x̄ can 

be written as 

log L(x̄0|x̄ 2,u) " r ! # 
2 Knode (3.24)X X 2 0 = log Φ 

σ2 
(h̃Tk,Dj ,`

x̄ + µk,j,`) p̃j,k + pj,k . 
`=1 k=1 

Similar to [67], we can show ( " r ! #) 
log L(x̄0|¯ −→ 2E log Φ (h̃T x̄0 ˜ as 

1 
xj,u) 

p 

σ 
2 
2 k,Dj ,` + µk,j,`) pj,k + pj,k Knode →∞. 

Knode 
(3.25) 

Due to the fact that both pj,k and p̃j,k = 1 − 2pj,k are constants that do not depend 

on the transmitted vector, it is sufficient to show that 

d 
(h̃ 

k, 
T 
Dj ,`
x̄ Dj ,u,ML + µk,j,`) >(h̃ 

k, 
T 
Dj ,`
ū+ µk,j,`), (3.26) 

d 
where > means the first order stochastic dominance. The term µk,j,` is deterministic 

by conditioning on xj,u at the receiver. Therefore, the relation in (3.26) follows 

directly from the proof in Appendix-B in [67]. This completes the proof. 

3.4.2 Performance of Sub-optimal Detectors 

ZF Detector 

Here we show that the ZF detector in (3.16) has an error floor at high SNR with 

value inversely proportional to Knode. In particular, we show that the error floor of 

the ZF detector can be made arbitrarily small when using a large number of relay 

nodes at high SNR. 

To show this, we approximate the quantization error associated with the downlink 

signal using additive Gaussian noise wq. In addition, we normalize the additive 

Gaussian noise at the relay nodes and express the complex downlink signal as 

√ √ 
xd = ρHD 

H 
j 
xDj ,u + ρHj,u 

H xj,u + wnormalized + wq (3.27) 
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where ρ = 1 is the SNR, wnormalized ), wq , ρσ2 ),
σ2 ∼ CN (0, IKnode ∼ CN (0Knode q IKnode 

and xd = [xd,1, xd,2, · · · ]T is the complex form of the signal broadcast by the, xd,Knode 

relay network such that 

def 
xd,n = x̄ d,2n−1 + jx̄ d,2n, 1 ≤ n ≤ Knode. 

As the downlink channel is a BSC, the complex signal broadcast from the relay 

network (i.e., xd) is not received perfectly at the receiver. This makes the mean 

square error (MSE) harder to evaluate than the case of a robust backhaul channel 

in [67]. However, a lower bound on the MSE of the ZF detector is found in the 

following lemma. 

Lemma 3 The MSE of the ZF detector in (3.16) is 

1 � � 
MSEZF = E kxDj ,u − xDj ,u,ZFk2 (3.28)

(Kuser − 1) Nt 

and a lower bound on the MSE in (3.28) is 

(ρ−1 + σ2)(1 − maxk,j pj,k)2Knode 

MSEZF ≥ q 
. (3.29)

Knode 

Proof Using iterative expectation, it is possible to derive a lower bound on the MSE 

in our case. This can be written, using iterative expectation, as 

� � �� 
MSEZF = 1 

(Kuser−1)Nt 
EY E kxDj ,u − xDj ,u,ZFk2|Y (3.30) 

where Y is a random variable representing the number of bits that are received cor-

rectly and p(Y = y) is the probability mass function (pmf) of the random variable 

Y and y takes integer values from the interval [1, 2Knode]. The MSEZF can be lower 

bounded by (3.31) where (a) comes from the fact that the pmf values are positive, 

(b) assumes the same crossover probability for the quantized bits of both the real and 

the imaginary parts of the signal broadcast from relay node to a certain user, and 

(c) replaces all crossover probabilities with their maximum value to obtain a lower 

bound. The fact that the expectation in (3.31) is exactly the same as the MSE if we 

have a robust downlink channel leads to (d). 
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� � �� 
MSEZF = 1 EY E kxDj ,u − xDj ,u,ZFk2|Y(Kuser−1)Nt 

2Knode � � 
= 1 P 

E kxDj ,u − xDj ,u,ZFk2|Y = y p(Y = y)
(Kuser−1)Nt 

y=0 
(a) � � 
≥ 1 E kxDj ,u − xDj ,u,ZFk2|Y = 2Knode p(Y = 2Knode)(Kuser−1)Nt .� �Knode (b) Q 
= 1 E kxDj ,u − xDj ,u,ZFk2|Y = 2Knode (1 − pj,k)2 

(Kuser−1)Nt 
k=1 

(c) � � 
1≥ E kxDj ,u − xDj ,u,ZFk2|Y = 2Knode (1 − maxk,j pj,k)2Knode 

(Kuser−1)Nt 

( 
= 
d) 
MSEZF,robust(1 − maxk,j pj,k)2Knode 

(3.31) 

Using Proposition 1 in [77], we can show that 

Knode(ρ
−1 + σ2)q 
A2 

≤ MSEZF,robust ≤ 
Knode(ρ

−1 + σ2)q 
B2 

(3.32) 

when AI(Kuser−1)Nt ≤ HH 
Dj ,u
HDj ,u .≤ BI(Kuser−1)Nt 

It is also known from random matrix theory and the result shown in [78] (see 

equation 10) that 

1 p 1 p
HH − , HH − (3.33)Dj ,u

HDj ,u → I(Kuser−1)Nt j,uHj,u → INtKnode Knode 

when Knode −→ ∞ which corresponds to the case where a very large number of 

relay nodes are used in the relay network. This simplifies the MSEZF,robust to be 
(ρ−1+σ2)

MSEZF,robust = q and hence,
Knode 

(ρ−1 + σ2)(1 − maxk,j pj,k)2Knode 

MSEZF ≥ q 
. (3.34)

Knode 

This completes the proof. 

The expression in (3.29) shows that the ZF detector has an error floor that does 

not vanish even with very large SNR values. The factor that can decrease the MSE 

and take it down to very small values is the number of the relay nodes Knode. However, 

it is clear that the derived lower bound is not tight as it should be higher than the 

error floor in case of a robust downlink channel. 
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OSML Detector 

The OSML detector can be seen as an ML detector with a smaller number of relay 

nodes (as |Γ| < Knode) but with more orthogonal uplink channels. Although it is hard 

to estimate the performance of the OSML, it is easy to see that its performance is 

upper bounded by the performance of a similar system running ML detector with 

a relay network that has |Γ| relay nodes and uplink channels that are completely 

orthogonal. From the analysis of the performance of the ML detector, we see that the 

MSE floor vanishes only when the number of relay nodes goes to infinity. This means 

that the OSML detector will still suffer from an error floor with a finite number of 

relay nodes |Γ|. 

This problem is closely related to classical combinatorial geometry [79,80]. Using 

[81], we first find the relation between the number of relay nodes included in the set 

Γ and the number of distinguishable regions. Using Lemma 2 in [81], we can find 

the number of distinguishable regions in a 2 (Kuser − 1) Nt-dimensional space using 

2|Γ| hyperplanes (assuming the number of relay nodes selected for detection is |Γ|)� �
2(Kuser−1)Nt−1P 2|Γ| − 1 

to be N = 2 . Although there is a condition in [81] on the 
kk=0 

hyperplanes to be in general position, this condition is supported by choosing the 

relay nodes that have the most orthogonal uplink channel vectors. 

We can find the minimum required number of relay nodes that are needed to be 

included in the set Γ for the OSML detector to perform properly. Assuming that all 

users transmit symbols from a M -ary constellation, the number of possible vectors 

that can be detected at the receiver side is M (Kuser−1)Nt . Therefore, the minimum 

number of relay nodes (|Γmin|) that are required for the OSML to properly detect the 

uplink transmission of the (Kuser − 1) transmitting users should satisfy 
2(Kuser−1)Nt−1 � �X 2|Γmin| − 1 ≥ M (Kuser−1)NtNmin = 2 (3.35)

k 
k=0 

which can be solved to find the minimum cardinality required for the set Γ. However, 

increasing the cardinality of the set Γ enhances the performance of the OSML detector 

as the number of distinguishable regions, in the space of possible transmitted vectors, 
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Table 3.1. 
Minimum number of relay nodes for OSML in Γ. 

(M, Nt, Kuser) # Broadcast Bits M (Kuser−1)Nt |Γmin| 

(8,4,2) 12 4096 6 

(4,2,8) 28 268435456 14 

(16,2,4) 24 16777216 13 

increases. Hence, the probability of two different symbol vectors lying in the same 

region decreases. 

For the OSML to work, it is important that different transmitted vectors result in 

different received quantized vectors. This can be shown to be to true in a way similar 

to [73]. Assuming two possible transmitted vectors xDj ,u,1 = [x1, x2, · · · ]T, x(Kuser−1)Nt 

and xDj ,u,2 = [−x1, x2, · · · , x(Kuser−1)Nt ]
T where xi is chosen from the constellation set 

X , the received quantized vectors at the jth user are yj,d,1 and yj,d,2, respectively. 

If the uplink channels (hk,i ∈ CNt×1) are independent and identically distributed 

(i.i.d.) Rayleigh fading channels whose entries are distributed as CN (0, 1), then 

the probability of receiving two equal quantized vectors is shown in (3.36). The 

probability in 

2KQnode � √ 
p(yj,d,1 = yj,d,2) = (1 − pj,k) π 

2 arctan Kuser − 1 + σ2 

k=1 (3.36)� √ �� 
+pj,k 1 − 

π 
2 arctan Kuser − 1 + σ2 . 

goes to zero when the number of relay nodes go to infinity. 
(Kuser−1)Nt log2(M)Note that |Γmin| is larger than or equal to as the latter is the

2 

number of relay nodes that would make the relay broadcast the same number of bits 

that need to be detected while the former is the number of relay nodes required by 

the OSML to work. In Table 3.1, we give some examples of |Γmin| in some proper 

setups. 
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Relaxed-ML Detector 

The performance of the relaxed-ML can not be fairly compared with either the 

ML or ZF detector. However, we can make some comments on the performance of 

the relaxed-ML detector. First, it is clear that the relaxed-ML detector derived in 

Section 3.3.3 is sub-optimal as the search region (the constraint of the optimization 

problem) is the ball of radius 2 (Kuser − 1) Nt followed by a symbol slicer. Second, 

when compared against the ZF detector, we see that the complexity of the relaxed-ML 

is dominated by the iterative process. 

3.5 Channel Estimation Techniques 

For the decoding phase, each user requires knowledge of the uplink channels be-

tween all users (including the decoding user itself) and all relay nodes. This motivates 

the development of a channel estimation framework for a quantized distributed re-

lay network. We find the ML channel estimator utilizing a conditional likelihood 

function. The ML channel estimator is shown to simplify to a non-convex problem. 

Hence, we relax the non-convex ML problem to obtain a nearML channel estima-

tor. Three sub-optimal channel estimators (including a linear channel estimator) are 

also derived to provide lower complexity estimators. We also discuss the design of 

the training sequence used for channel estimation. Finally, we compare the perfor-

mance of the derived estimators in the simulations using mean squared error as a 

performance measure. 

3.5.1 Training Phase 

In this section, we analyze the training phase used by each of the Kuser users to 

estimate the uplink channels between all unique users and relay node combinations 

of the system. The uplink channels are assumed to be block fading channels and thus 

static over a block length T channel uses and are independent from block to block. 
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We assume that we use L channel uses for training while the rest of the channel uses 

are used for data transmission (i.e., T − L channel uses for data transfer). To make 

best use of the channel, T must be significantly larger than L (i.e., L << T ). On 

the other hand, L should be large enough to provide a good estimate of the channel. 

This process is repeated for every block of length T . 

Here we focus on the estimation of the uplink channels between all users and all 

Knode nodes. Note the these channels can be separately estimated as the channels 

are assumed to be independent over the relay nodes. Moreover, training of the Kuser 

users is assumed to be done jointly. In other words, we design long training vectors of 

dimension KuserNt to be transmitted from the Kuser users during the training period. 

To detail the training process, we can write the received signal for the kth node 

that the m channel use to be 

KuserX 
yk,u[m] = hH (3.37)k,i,uxi,u[m] + wk,u[m], 

i=1 

where 1 ≤ k ≤ Knode and 0 ≤ m ≤ L − 1. The data transmission here is assumed to 

be from all Kuser users as each of the users requires the knowledge of its own uplink 

channel along with the uplink channels for all other Kuser − 1 users for decoding 

purposes. We assume that during the training phase each user transmits the training 

sequence xi,u[m] = xi,train[m], for m = 0, 1, · · · , L − 1 and i = 1, 2, · · · , Kuser. The 

design of xi,train[m] is discussed later in Section 3.5.3. 

Because our focus is on uplink channel estimation for a single node, we drop the 

suffixes k and u. As such, we redefine (3.37) to be 

KuserX 
hH y[m] = i xi,train[m] + w[m], (3.38) 

i=1 

where xi,train[m] are known based on our training sequence design and the unknowns 

that need to be estimated are hi for i = 1, 2, · · · , Kuser. We can reformulate (3.38) to 

a more compact form as in 

KuserX 
XH y = hi + w, (3.39)i,train 

i=1 
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where the received vector is y = [y[0], · · · , y[L − 1]]H , w = [w[0], · · · , w[L − 1]]H , and 

the combined training matrix is Xi,train = [xi,train[0], xi,train[1], · · · , xi,train[L − 1]] ∈ 

CNt×L . 

As mentioned earlier, the training is done jointly. Hence, we design the combined 

training vector h iT 
T T ∈ CKuserNtxtrain[m] = x · · · x [m] (3.40)
1,train[m] Kuser,train 

leading to a training sequence matrix Xtrain ∈ CKuserNt×L defined as h iT 

XT XT XT (3.41)Xtrain = · · · .
1,train 2,train Kuser,train 

The system model in (3.39) can now be seen as a single transmitter with KuserNt 

transmit antennas that is transmitting its data vector over the uplink channel h = � �T ∈ CKuserNthT 
1 , h

T 
2 , · · · , hT to the single-antenna kth node of the relay in LKuser 

consecutive channel uses as in 

y = XH (3.42)trainh + w. 

The jth user then estimates the uplink channels exploiting the knowledge of the 

training sequences transmitted by all users using the signal broadcast from the kth 

node and received by the jth user. 

3.5.2 Channel Estimation Algorithms 

In this section, we present four different algorithms that the users can run during 

the training phase. The algorithms we propose consist of a nearML training algorithm 

and three other training algorithms that are sub-optimal however more computation-

ally efficient than the nearML. Throughout this section, we use a simple quantization 

function (Qk = Qsign) that generates two bits per node (i.e., Bk = 2) where Pk in 

(3.5) is I2 and τk,i = 0 in (3.6) for k = 1, 2, · · · , K and i = 1, 2. Training sequences 

are sent from the users to the relay nodes as the number of relay nodes is assumed to 

be very large relative to the number of users. 
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ML and nearML Channel Estimation Algorithm 

Prior to our derivation, we develop a real framework for the uplink system model 

similar to what is done in [55,82]. The received vector at the kth node can be written 

as 

X̄ T ¯ ȳ = h + w̄ , (3.43)train � �T � �T � �T 
where ȳ = Re(yT ), Im(yT ) , w̄ = Re(wT ), Im(wT ) , ȳ, w̄ ∈ R2L , h̄ = Re(hT ), Im(hT ) ∈ 

R2KuserNt , and ⎡ ⎤ ⎣ Re(Xtrain) −Im(Xtrain)¯ ⎦ ∈ R2KuserNt×2LXtrain = . 
Im(Xtrain) Re(Xtrain) 

The kth node then quantizes the received vector ȳ to generate x̄ d,k ∈ {−1, 1}2L using 

the quantization function Qsign defined at the beginning of this section. The downlink 

signal x̄ d,k is broadcast through the downlink BSC. The signal received by the jth user 

is denoted by ȳ j,d,k where j = 1, 2, · · · , Kuser. 

The ML channel estimator can be derived by following a similar approach to what 

is done in [55] to derive the ML receiver. The only difference is that the channel and 

the transmitted signal are now in reversed roles and the number of users is arbitrary. 

Hence, making use of the fact that the signal broadcast from the relay nodes is 

received by all users through a BSC, the uplink channel can be estimated by running 

the same algorithm at each user. The ML channel estimator at the jth user can be 

found by solving " s ! # 
2LY 2¯ T h̄0hML = argmax Φ x̃ (1 − 2p) + p , (3.44)train,`σ2 

h̄0∈R2KuserNt u`=1 

T T `th ¯where x̃ = ¯ x xtrain,` is the column of the matrix Xtrain, ȳ  j,d,k,` istrain,` yj,d,k,` ̄  train,`, ¯ 

the `th entry of ȳ j,d,k, and Φ is the Gaussian cumulative distribution function (cdf). 

Note that p = pj where we dropped the subscript because we focus on one user only 

in our derivations. 

The optimization problem in (3.44) is not convex due to its objective function. 

Hence, it is not guaranteed that the solution will converge to a global maximum. 
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Hence, we simplify (3.44) in a manner that yields a convex function such that it can 

be solved using well-known algorithms for solving unconstrained convex optimization 

problems [74]. It is known that a scaled Gaussian cdf is a log-concave function. 

Therefore, to make the problem convex, we ignore the scalar term p inside the product 

using the fact that the crossover probability of the BSC is usually very small relative 

to the cdf term. Consequently, we can express the nearML channel estimator as 

follows 
2L h �q � iP 

h̄ 
nearML = argmax log Φ 

σ 
2 
2 x̃train 

T 
,`h̄

0 (1 − 2p) 
u 

h̄0∈R2KuserNt `=1 
2L �q � (3.45)P 

2 T h̄0= argmax log Φ x̃
σ2 train,`
u 

h̄0∈R2KuserNt `=1 

where h̄ 
nearML is of the same form of the ML channel estimator in the case of a robust 

downlink channel. 

The problem in (3.45) is now a convex optimization problem that can be solved 

efficiently when L >> KuserNt. The uplink channels between the Kuser users and the 

kth relay node can then be constructed easily as 

¯h`,nearML = hnearML[(` − 1)Nt + 1 : `Nt] 
(3.46) 

+ jh̄ 
nearML[KuserNt + (` − 1)Nt + 1 : (Kuser + `)Nt], 

where h̄ 
nearML[m : n] is the vector that consists of the segment containing the entries 

th thstarting from the m entry to the n entry of h̄ 
nearML and 1 ≤ ` ≤ Kuser. 

It is clear that the nearML channel estimator is computationally complex even 

when solved using efficient convex optimization methods as the optimization variable 

h̄0 is 2KuserNt-dimensional. This complexity motivates deriving other channel estima-

tors that are less complex. Three channel estimators that are more computationally 

efficient are derived in the following subsection. 

Reduced Complexity Channel Estimation Algorithms 

Here, we derive three computationally efficient channel estimators. The first, 

which we call the separate training (ST) channel estimator, divides the nearML prob-

lem into Kuser separate optimization problems. The second is based on the expectation 
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maximization (EM) algorithm similar to what is done in [83, 84]. The last one is a 

zero-forcing (ZF) linear estimator. 

Separate Training Channel Estimator The algorithm presented in this part is 

similar to the nearML channel estimator however the training for the uplink channels 

between the node and each of the users is done separately taking the dimension of the 

problem down to 2Nt. Therefore, the L channel uses assigned for training are divided 

into Kuser blocks where each consists of L channel uses. During the `th block, only 
Kuser 

the `th user is transmitting its training sequence while the other Kuser − 1 users are 

silent. Hence, we can write the combined training sequence matrix Xtrain ∈ CKuserNt×L 

Kuseras a block diagonal matrix where X`,train ∈ CNt× L 

is the `th block on the diagonal 

with all other elements being zeros and � � � � �� 
L L 

X`,train = x`,train (` − 1) , · · · , x`,train ` − 1 . 
Kuser Kuser 

This leads to Kuser separate nearML problems for estimating the uplink channels 

of the Kuser users where the ST channel estimator of the uplink channel of the `th 

user is ⎧ PL 

2 T 
⎨ ` h �q �iKuser 

¯ ¯h`,ST = argmax log Φ x̃ h0 
σ2 train,i
u 

h̄0∈R2Nt ⎩ Li=(`−1) +1
Kuser ⎫ 

L 
(3.47)

` +L h �q �i⎬KuserP 
2 T h̄0+ log Φ x̃ .
σ2 train,i
u ⎭

i=(`−1) L +L+1
Kuser � Kuser¯The vectors {h`,k,u}Kuser can be reconstructed from h`,ST in a manner similar`=1 `=1 

to (3.46). 

EM-based Channel Estimator Here we use the expectation-maximization (EM) 

algorithm [83,85,86] where an iterative approach is used for finding the ML estimate of 

a channel using quantized observations. The EM algorithm sets the estimated channel 

vector to a random initial value and then iterates on the estimate until it is stable. 

In each iteration, the new estimate uses the conditional mean of the unquantized 

signal (that cannot be observed) conditioned on the previous ML estimate of the 
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channel vector and the quantized observations (observed by users). We use EM-

based estimation in a manner similar to how it is used for channel estimation in 

millimeter wave in [84]. 

¯Referring to (3.43), the EM algorithm to find hEM can be summarized in the 

following steps. 

(i) Set h̄ 
EM to a random vector in R2KuserNt . 

(ii) Evaluate the conditional mean of the unquantized observed signal to be ŷ = � �
¯E y|ȳ k,d,train, hEM where the ith entry of ŷ can be found by ŷi = pγi+pψ (ȳj,d,i, γi) 

iγ
2 � � 
uewith ψ (¯ ¯ σ√u � √− 

σ2 � and γi = X̄ T ¯ is the ith entry yj,d,i, γi) = yj,d,i 2 π − 2¯ trainhEM i 
Φ 

yj,d,iγi 
σu 

of X̄ T ¯ 
trainhEM. 

(iii) Update the estimated channel vector hEM as follows � �−1¯ ¯ X̄ T ¯hEM ← Xtrain train Xtrainŷ. (3.48) 

(iv) Repeat starting from (ii) until the change in h̄ 
EM is negligible. 

Zero-Forcing Channel Estimator Motivated by the complexity of the optimiza-

tion problems in both the nearML channel estimator in Section 3.5.2 and the separate 

training channel estimator in Section 3.5.2, we introduce a linear channel estimator. 

Similar to what is done in [55], we can derive a ZF channel estimator at the jth user 

to be � �†¯ X̄ ThZF = train ȳ j,d,k (3.49) � �† 
where X̄ T is the Moore-Penrose pseudo-inverse of the matrix X̄ T Although we train train. 

assume a simple sign quantization function in this section, the ZF estimator derived 

in (3.49) can also be used in case of a general quantization function. 

In the following section, we will discuss the training sequence and how it can be 

optimally designed to achieve better channel estimation results. 
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3.5.3 Training Sequence Design 

h ∈ R2KuserNtTo design the training sequence, we estimate the unknown real vector ¯ 

from a quantized and noisy version of ȳ. The vector ȳ is the output of passing 

¯the unknown vector through the training sequence matrix Xtrain followed by adding 

AWGN. The design of the training sequence depends on the kind of estimator used. 

In the case of the nearML, the ST, and the EM estimators, an arbitrary training 

sequence matrix of full rank (even if the entries are standard complex normal random 

variables) will give good estimates of the uplink channels [77] as long as we train for 

a large enough period (i.e., L is large enough). This is shown in the simulations in 

Section 4.5. 

The situation is different for the case of the ZF linear estimator. The ZF channel 

estimator is found by multiplying the vector of received bits by the pseudo-inverse 

of the training sequence matrix as shown in (3.49). To find the optimal training 

sequence, the quantization effect can be approximated as AWGN. Therefore, (3.43) 

can be rewritten as 

X̄ T ¯ x̄ d,k = trainh + w̄ + n̄ q, (3.50) 

qwhere n̄ q ∼ N(0, 
σ 
2 

2 

I2L) and σq 
2 is the quantization variance. Furthermore, if we have 

enough training sequences, the downlink BSC will not affect the estimation process 

as the crossover probability is usually sufficiently small. Moreover, it does not make 

sense for the training sequence matrix to have multiple columns that are the same. 

This is because in the high SNR limit, no extra information would be obtained. Also, 

this is much different from the MIMO systems as the power constraint in our system 

model is set for each relay node separately. 

Similar to [82] and [87], we assume that the training sequence matrix is designed 

to satisfy 

XtrainX
H = 

L 
IKuserNt . (3.51)train KuserNt 

This is proved in [77] to give the minimum MSE for the linear estimate of the uplink 

channels. 
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Following the assumption in (3.51), The ZF channel estimator in (3.49) can be 

simplified to 
KuserNt¯ ¯hZF = Xtrainȳ j,d,k. (3.52)

L 

As shown in [55], [67], and [77], the ZF estimator suffers from an error floor. Using 

(3.50), we can write the mean squared error floor of the ZF channel estimator to be 

4K2 N2(σ2 + σ2)user t u q
MSE = . (3.53)

L(1 − p)2L 

In [88], it is shown that the training sequence has to be a scalar multiple of a 

matrix with orthonormal columns to satisfy the condition in (3.52) and to optimize 

the capacity bounds of the system. This can be done by constructing the training 

sequence matrix as [89] 

Xtrain = [xtrain[0], xtrain[1], · · · , xtrain[L − 1]] , (3.54) 

where the mth column of the matrix Xtrain is denoted by xtrain[m] and it is equal to 

the DFT vector defined as 

1 h 
j2π(m−1) j2π(m−1) 

iT 
L (1) 

L (KuserNt−1)√ 1, e , · · · , e . (3.55)
KuserNt 

3.6 Numerical Results 

In this section, we present performance results obtained via Monte Carlo simu-

lation for the ML detector introduced in Section 3.2 and the sub-optimal detectors 

derived in Section 3.3. Throughout this section, we assume that the uplink channels 

(hk,i ∈ CNt×1) are independent and identically distributed (i.i.d.) Rayleigh fading 

channels whose entries are distributed as CN (0, 1). We also use the transmit SNR 

based on transmit power normalization. Hence, SNR is defined as SNR = 1/σ2 . 

In Fig. 3.6, we show the BER performance of the OSML detector when we use 

8PSK with |Γ| = 5, 6, 9. We assume that we have two users transmitting at each time 

and each user is equipped with four antennas (i.e., Nt = 4). An important observation 

is that for the same cardinality, the BER decreases as we increase the number of relay 
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Fig. 3.2. BER performance - 8PSK uplink transmission - two users trans-
mitting simultaneously - 20 and 50 relay nodes. 

nodes. The reason is that the uplink channels become more orthogonal when we have 

more relay nodes in the relay network according to (3.33). For example, we see that 

by choosing the six of 50 relay nodes with the most orthogonal channels gives about a 

3 dB gain in SNR at BER lower than or equal to 0.3 relative to choosing 6 of 20 relay 

nodes. Using (3.35), the minimum number of relay nodes that should be included in 

the orthogonal set to work properly is six relay nodes (i.e., |Γ|= 6). It shows in Fig. 

3.6 that when |Γ| = 5 < 6, the receiver is not able to detect the transmitted data. 

Moreover, as we increase the number of relay nodes included in the set Γ, the BER 

decreases because we increase the number of distinguishable regions as mentioned 

earlier and hence, lower the probability of having two possible transmitted vectors in 

the same region. 

In Fig. 4.7 and Fig. 4.8, we compare the performance of all the detectors derived 

in this chapter for a small number of relay nodes (20 relay nodes) and for a relatively 

large number of relay nodes (50 relay nodes), respectively. Note that we do not show 
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Fig. 3.3. BER performance - 8PSK uplink transmission - two users 
transmitting simultaneously - 20 relay nodes. 

the results for the ML detector when the relay has 50 relay nodes due to the large 

computational complexity required to compute the result. Same system parameters 

used to generate Fig. 3.6 are assumed for both figures. The performance of the 

relaxed-ML detector is the closest to the ML detector in both cases. However, ZF 

and OSML detectors are of lower complexity. As the number of relay nodes increases 

the amount of information left out when using the OSML detector becomes more 

significant. Therefore, we note that the BER performance of the OSML detector is 

better than the ZF detector when the number of relay nodes is small and vice versa 

when the number of relay nodes increases. As expected, we see in Fig. 4.8 that the 

BER performance of the OSML detector gets better as we increase the cardinality 

of the orthogonal subset of relay nodes to be used for detection. In particular, the 

OSML detector can achieve comparable performance to the ZF detector when the 

number of relay nodes selected in the orthogonal subset is 13 relay nodes. 
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Fig. 3.4. BER performance - 8PSK uplink transmission - two users 
transmitting simultaneously - 50 relay nodes. 

The performance metric used to compare the different estimators derived in Sec-

tion 3.5.2 is mean square error defined as 

1 � � 
MSE = E ||h − hEst||2 

KuserMt 

where the expectation is taken over h (the actual channel vector) and hEst is the 

estimated channel vector using any of the four estimators defined in the previous 

section. The channel estimate is assumed to be normalized, regardless which estimator 

is used. This exploits the fact that E [||h||2] ≈ KuserMt for most of the channel models. 

The normalization is enforced in each estimator in a different way. In case of 

hnearML and hST, we guarantee normalization of the estimate by adding a constraint 

to the optimization problems in (3.45) and (3.47) such that ||h0||2 ≤ KuserMt and 

||h0||2 ≤ Mt, respectively. This is because the Gaussian cdf in the objective function 

is a monotonically increasing function and tends to overestimate the channel vector 
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norm. Adding the norm constraint guarantees that the upper bound of the norm is al-

ways achieved. For the ZF estimator, we add a normalization step after obtaining hZF 
√ 

to normalize the norm of the estimated channel vector (i.e., hZF ← hZF KuserNt).||hZF||√ 
Similarly, the norm of the EM estimate is fixed in each iteration to KuserMt as done 

for the ZF estimator. 

In Fig. 3.5, we assume that we have only two users (i.e., Kuser = 2) and we focus 

on one node in the relay. MSE is shown for each of the derived estimators in the low 

SNR and high SNR regimes in Fig. 3.5 and Fig. 3.6, respectively. At low SNR in 

Fig. 3.5, it is clear that the nearML estimator has the minimum MSE among the 

derived estimators. Although both of the ZF and EM estimators perform worse than 

the nearML estimator, they are more computationally efficient. The ZF and EM 

estimators have lower MSE than the ST estimator at lower values of L. The reason 

for this is that the ST uses only L channel uses to estimate a channel vector of
Kuser 

dimension Mt. This means that we only use 1 of the available channel uses for
Kuser 

training to decrease the dimension of the problem by 1 . Consequently, because 
Kuser 

L >> Mt, we have some degradation in performance. This degradation decreases 

as the number of channel uses assigned for training (L) increases. As we increase 

the number of the training sequences L, the ZF approaches the performance of the 

nearML and the ST estimators while the MSE of the EM estimator decreases with a 

lower rate. 

Although the ZF estimator has a higher MSE than the EM estimator at low SNR, 

the performance of the ZF and EM estimators are almost the same at high SNR as 

shown in Fig. 3.6. The behavior of the ST in the high SNR regime is similar to the 

case of low SNR, where the ST performs worse than the ZF at lower L values and 

outperforms the ZF as L increases. 
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Fig. 3.5. MSE with Mt = 4 and different values of L at low SNR regime 
(SNR= 0 dB). 
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Fig. 3.6. MSE with Mt = 4 and different values of L at high SNR regime 
(SNR= 15 dB). 
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4. QUANTIZED DISTRIBUTED RELAY NETWORKING 

USING VECTOR QUANTIZATION 

In this chapter, we present a quantize-and-forward distributed relay network that 

consists of multiple relay nodes facilitating communication between users equipped 

with multiple antennas. A receiving user is decoding the transmission of a certain 

user in the existence of interfering signals from the rest of the users. The users trans-

mit their signals to the relay network through a fading uplink channel. Followed by 

this, each relay node concatenates its observations across multiple time slots and then 

performs vector quantization on the concatenated signal vector. The total number of 

bits that are used for quantization across all relay nodes is constrained. The quantized 

output of the relay network is then broadcast to the users through a digital robust 

downlink channel where the receiving user decodes the transmission of an intended 

user. Performing vector quantization at the relay network instead of simple binary 

thresholding allows us to optimally allocate quantization resources (bits) among the 

relay nodes based on their channel conditions and the amount of interference each 

relay node sees. Quantization bits allocation for a system model similar to the one 

presented in this chapter was proposed in [90]. However, [90] only considered single 

antenna users. Here, we extend the work to the case where users are equipped with 

multiple antennas and users are utilizing transmit beamforming. The design of trans-

mit beamforming at the users’ side is not trivial because of the quantization at the 

relay network as shown in Section 4.4. 

To optimally allocate quantization resources, one of two approaches can be used. 

A central processor can be used at the relay network to allocate the quantization 

bits among the relay nodes. However, this approach makes it necessary that uplink 

channel estimation is done at each relay node to be able to optimize the quantization 

resources. This adds non-trivial complexity to the relay network. Another approach 
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Fig. 4.1. Wireless distributed relay networking communication system in 
study. 

is to perform the optimization of the quantization resources at the users’ side and 

then feedback the output of the optimization algorithm to the relay network. The 

second approach makes use of the fact that the users need to estimate the uplink 

channels anyway for decoding reasons. 

4.1 System Model 

We study the wireless communication system shown in Fig. 5.1. We assume that 

there is a single transmitting user and (M − 1) interfering users. The transmitting 

user and the interfering users are equipped with nt antennas each. The transmitter 

communicates with the destination through a distributed relay network that consists 

of K single-antenna relay nodes. We assume that the transmitter and the interfering 

users transmit their data simultaneously. The mth user is transmitting a single data 

stream denoted by sm satisfying a power constraint that E [|sm|2] = ρm for m = 

1, 2, · · · ,M . Each user uses a beamforming vector fm ∈ Cnt such that E [kfmk2] = 1. 
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Communication occurs in two time slots. In the first time slot, users transmit their 

data to the relay network through the uplink. The uplink channels between the users 

and the relay network are assumed to be fading channels. In the second time slot, 

each relay node in the relay network transmits a quantized version of its observation 

back to the users through the downlink. The downlink channel is assumed to be 

robust under a predefined bandwidth constraint. 

4.1.1 Uplink Transmission 

The received signal at the kth relay node at the `th channel use is 

MP 
yk[`] = hH [`]fm[`]sm[`] + vk[`]k,m 

m
M 
=1 (4.1)P ̃

= hk,m[`]sm[`] + vk[`] 
m=1 

where hk,m[`] ∈ Cnt is the uplink fading channel vector between between the kth relay 

node and the mth user whose entries are independent and identically distributed (i.i.d.) 

CN (0, 1), vk is the normalized additive white Gaussian noise (AWGN) at the kth relay 

node which is distributed as CN (0, 1), and h̃k,m[`] = hH [`]fm[`] is the effective uplinkk,m 

channel between between the kth relay node and the mth user. We assume that the 

uplink channels do not change over T channel uses (i.e., the uplink channels are block 

fading channels that remain fixed for T or more channel uses). When the intended 

user transmission is the data stream of the mth user, where m0 ∈ {1, 2, · · · ,M}, then0 

the transmissions of the rest of the users are considered as interference. Therefore, 

we can rewrite (4.1) to be 

˜yk[`] = hk,m0 [`]sm0 [`] + wk,m0 [`] + vk[`] (4.2) 

where 
MX ̃

wk,m0 [`] = hk,m[`]sm[`] (4.3) 
m=1 

m6=m0 
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is the interference seen at the kth relay node. The intended data stream (i.e., sm0 [`]) 

is chosen from an M−ary constellation set S such that 

� � 
E |sm0 [`]|2 = ρm0 . 

The interfering data streams (i.e., sm[`] where m 6= m0) are assumed to be i.i.d. 

CN (0, ρm). 

4.1.2 Processing at the Relay Network 

Each relay node independently quantizes its observation into a small number of 

bits. These bits are broadcast through the robust downlink channel. Users can 

decode the intended transmitted signal using the broadcast of the relay network. 

After receiving the signal from the users during T channel uses, each relay node uses 

the T complex observation to perform vector quantization. In particular, the kth relay 

node forms a vector yk combining the observations at T channel uses such that 

yk = [yk[0], yk[1], · · · , yk[T − 1]]T ∈ CT . 

Followed by that, the constructed vector is mapped to a vector bk ∈ {0, 1}2Bk , where 

2Bk is the number of bits assigned to the kth relay node to use for vector quantization 
KP 

and 2Bk = Btotal is the total number of bits at the relay network that are utilized 
k=1 

for vector quantization. Therefore, we can represent the broadcast vector from the 

kth node to be 

bk = Qk(yk) (4.4) 

where the vector quantization function is 

Qk(·) : CT → {0, 1}2Bk . 

The quantization process is repeated every T channel uses. The quantization rate 

at the kth node is denoted by Rk where 

2Bk
Rk = . 

T 
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The total rate broadcast from the relay network is bounded above by Rtotal satisfying 

a total rate constraint that 

KX Btotal
Rk ≤ Rtotal = . 

T 
k=1 

4.1.3 Signal Reconstruction at the Receiver 

Time and frequency resources of the digital downlink channel are allocated to 

facilitate downlink transmission from relay nodes to the receiving user. In other words, 

we assume that the relay nodes are transmitting their data without interference. This 

can be done when each relay node operates on a different frequency or time resource. 

Hence, the receiving user observes the broadcast bits from the relay network (i.e., bk 

for k = 1, 2, · · · , K). Followed by that, the receiving user dequantizes the observed 

bits from each relay node and reconstructs an estimate of the vector yk which we 

denote by 

ŷk = [ŷk[0], ŷk[1], · · · , ŷk[T − 1]]T . 

Therefore, the reconstructed observation ŷk[`] can be written as 

ŷk[`] = yk[`] + ek[`] (4.5) 

where ek[`] is the quantization error at the `th channel use with a variance denoted 

by σk 
2[`]. 

We assume block fading of length T during which the channel is fixed and we 

focus only on one of the channel instances. Hence, we drop the index of the channel 

use and write (4.5) as 

˜ŷk = hk,m0 sm0 + wk,m0 + vk + ek 

(4.6) 

˜= hk,m0 sm0 + nk,m0 . 
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The reconstructed vector of the observations of the relay network (across all relay 

nodes) at the receiving user is 

˜ŷ = hm0 sm0 + wm0 + v + e 

(4.7) 

˜= hm0 sm0 + nm0 . 

where the received vector at the `th channel use is 

ŷ = [ŷ1, ŷ2, · · · , ŷK ]
T , h iT 

h̃ 
m0 = h̃ 

1,m0 , h̃
 
2,m0 , · · · , h̃ 

K,m0 ∈ CK×1 

this the vector of the effective uplink channels between the m0 user and the relay 

network, 

wm0 = [w1,m0 , w2,m0 , · · · , wK,m0 ]
T 

is the interference vector, 

v = [v1, v2, · · · , vK ]
T 

is the AWGN noise vector, 

e = [e1, e2, · · · , eK ]
T 

is the quantization error vector, and 

nm0 = [n1,m0 , n2,m0 , · · · , nK,m0 ]
T 

is the combined error vector. Assuming that the length of the fading block is large 

enough, the quantization error at the kth relay node can be approximated to have 

complex Gaussian distribution with zero mean and a variance σ2 as shown in [91].q,k 

Hence, the combined error is distributed as 

nm0 ∼ CN (0K , Cn) 

where 

Cn = Cw + IK + Cq (4.8) 
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� K 
is the covariance matrix of combined error vector, Cq = Diag σ2 is the quan-q,k k=1 

tization error covariance matrix, and Cw is the interference covariance matrix. As 

shown in [91], the quantization error variance at the kth relay node is � � 
MP 

σ2 = 2−2Rk |h̃ 
k,m|2ρm + 1 q,k 

m=1 (4.9) 
= 2−2Rk σ̂2 

q,k. 

The interference vector wm0 can be written as 

˜wm0 = Hm̄ 0 sm̄ 0 (4.10) 

where h i 
˜ ˜ ˜ ˜ ˜ ˜ ∈ CK×M−1Hm̄ 0 = h1, h2, · · · , hm0−1, hm0+1, · · · , hM 

and 

sm̄ 0 = [s1, s2, · · · , sm0−1, sm0+1, · · · , sM ]
T ∈ CM−1 . 

Therefore, the covariance matrix of the interference noise can be derived to be PM = fH HHCw m6=m0 
ρmHmfm m m 

(4.11)
˜ H̃ H= H ̄  P ̄  .m0 m0 m̄ 0 

where 

P = Diag {ρm}M ∈ C(M−1)×(M−1) .m̄ 0 m=1,m6=m0 

The receiver uses all K noisy observations (i.e., ŷk for 1 ≤ k ≤ K) to decode the 

intended user transmission (sm0 ) using a combiner z ∈ CK×1 followed by a symbol 

slicer as in 

ŝm0 = argmin |s − z H ŷ|2 (4.12) 
s∈S 

where ŝm0 is the output of the receiver. 

4.2 Receiver Design 

The design of the receiver depends on how to construct the combining vector z 

in (4.12). The goal of deriving the receivers in this section is to find an expression 
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for the increase in the mean squared error (MSE) of the system that happens due to 

the quantization at the relay nodes. We derive two receivers which are the minimum 

mean squared error (MMSE) receiver and the soft symbol estimate (SSE) receiver. 

The latter is a receiver that is not aware of the quantization happening at the relay 

network. This is done by neglecting the effect of the quantization noise in the received 

signal. The difference between the MSE of both receivers will be the MSE that is 

caused by the relay network quantization which we minimize later in Section 4.3 by 

optimizing the quantization resources available at the relay network. 

4.2.1 Minimum Mean Squared Error (MMSE) Receiver 

To derive the MMSE receiver, we design zMMSE to maximize the quantized-signal-

to-interference-and-noise-ratio (Q-SINR) defined as 

ρm0 |zH h̃ 
m0 |2 

Q-SINR = 
H |2] 

. (4.13)
E [|z nm0 

Using the fact that the merged noise vector has a covariance matrix Cn, we can write 

the Q-SINR on the form 
ρm0 |zH h̃ 

m0 |2 

Q-SINR = . (4.14) 
zH Cnz 

It is shown in [92, 93] that the minimum mean square error receiver uses a linear 

combiner maximizing the Q-SINR. Therefore, the the linear combiner zMMSE that is 

used in the design of the MMSE receiver is the maximizer of the Q-SINR and it can 

be found to be 
|zH h̃ 

m0 |2 

zMMSE = argmax (4.15) 
z∈CK×1 zH Cnz 

where we removed ρm0 from the objective function as it does not affect the design of 

the combiner. 

The problem in (4.15) is a generalized Rayleigh-Quotient (RQ) optimization prob-

lem [93]. The optimal solution is obtained using the following lemma which was stated 

in [90]. 
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Lemma 4 The optimal linear combiner maximizing the Q-SINR in (4.15) is given 

by 
C−1 ̃  
n hm0 zMMSE = . (4.16)

h̃H C−1 ̃  
m0 n hm0 

The proof of the lemma is very similar to the proof of (16) in [93]. � 

4.2.2 Soft Symbol Estimate (SSE) Receiver 

It is useful for the receiver in many implementations to be ignorant of quantiza-

tion. This simplification makes the relay network design transparent to the ground 

based users. In this case, the receiver operates as if there is no quantization at the 

relay network. Therefore, the users do not need to be informed with the quantiza-

tion covariance at the relay network which decreases the amount of feedback that is 

required in the system. 

If the receiver has access to the noiseless observations of the relay nodes (i.e., the 

receiver knows y), then it can use the best linear unbiased estimator (BLUE) to find 

an estimate of the intended user transmission. The BLUE constructs a combiner 

vector (zBLUE) that is given in [94] to be 

(Cw + IK )
−1h̃ 

m0 zBLUE = (4.17)
h̃H (Cw + IK )−1h̃ 

m0m0 

and combines the noiseless observations to find the estimate 

H s̄ m0,BLUE = z y. 

The variance of s̄ m0,BLUE, denoted by var(s̄m0,BLUE), is � �−1 
var(s̄m0,BLUE) = hH (Cw + IK )

−1h ∗ . (4.18)m0 m0 

Note that the MSE of the BLUE receiver is equal to the variance in (4.18) due to the 

estimator being unbiased. 

Motivated by the BLUE receiver, we use the same combiner on the quantized 

observations (i.e., on ŷ) leading to a new receiver that we denote by the soft symbol 
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estimate (SSE) receiver. Using zBLUE, the estimate of sm0 based on the SSE combiner 

is 
h̃H + IK )

−1ŷ m0 
(Cw 

s̄ m0,SSE = . (4.19)
h̃H + IK )−1 ̃  
m0 
(Cw hm0 

Note that the estimator s̄ m0,SSE in (4.19) can still be shown to be unbiased because " # 
h̃H (Cw + IK )

−1ŷ 
E[s̄m0,SSE] = E m0 (4.20)

h̃H (Cw + IK )−1 ̃  
m0 

hm0 

h̃H + IK )
−1 ̃  

m0 
(Cw hm0 sm0 = (4.21)

h̃H 
m0 
(Cw + IK )−1h̃ 

m0 

= sm0 . (4.22) 

We follow by a symbol slicer to map the estimated value to the closest one to it in 

the constellation set S similar to what is done in the MMSE linear receiver, . 

4.3 Quantization Rate Allocataion 

As mentioned earlier, the relay network performs vector quantization at each 

relay node independently. In this section, we study how to optimize the available 

quantization bits among the relay nodes. The goal in the optimization problem is 

to minimize the increase in the MSE that happens due to the quantization process. 

To do that, we start by finding a relation between the MSE of the estimate of the 

intended symbol in two cases. The first case is when the relay network performs 

vector quantization and the receiver observers a quantized version of the observations 

of the relay network while the second case is when the receiver has access to the 

unquantized observations of the relay network. Then we minimize the difference in 

the MSE between the two cases. A similar method was proposed in [95]. However, 

the focus in [95] was to minimize the consumed energy in a wireless sensor network 

which is different from our goal in this chapter which leads to a different optimization 

problem that is completely different in both its structure and its solution method. 
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The MSE of s̄ m0,SSE is derived in (4.24) where the (a) comes from adding and 

subtracting s̄ m0,BLUE followed by bracket expansion in (b), and (c) is because 

E [(s̄m0,SSE − s̄ m0,BLUE)(s̄m0,BLUE − sm0 )] = 0 

as s̄ m0,SSE is independent of ŷ for any y. Finally (d) follows from (4.17) and (4.19) 

while (e) follows from (4.18). As shown in (4.24), it is easy to see that 

−1 −1 ˜h̃H (Cw + IK ) (Cw + IK )m0 
Cq hm0α = > 0. 

h̃H −1 ˜+ IK )m0 
(Cw hm0 

Therefore, minimizing the scalar value α decreases the effect of the quantization 

happening at the relay network on the total MSE of the proposed system. The value 

of α is a function of the quantization error covariance matrix Cq which is in turn 

a function of the quauntization bits allocated to each relay node (i.e., Rk = B
T 
k for 

1 ≤ k ≤ K) as shown in (4.9). The following theorem from [90] gives the optimal bit 

allocation strategy. 

Theorem 2 The optimal bit allocation that minimizes the difference between MSE 

of the BLUE estimator with infinite bandwidth downlink channel and of the BLUE 

estimator with a finite bandwidth downlink that is equal to Btotal = TRtotal bits per 

channel use is � � 
K |σ̂2 −1 ˜ |X q,k (Cw + IK ) hm0Rtotal 2 kRk,opt = + log2 � � 

K −1 ˜| K{z } |σ̂2 + IK ) | (4.23)
i=1 q,i (Cw hm0 

iUniform Allocation | {z } 
Regulation Term � � 

−1 ˜ −1 ˜where (Cw + IK ) hm0 is the ith entry of the vector (Cw + IK ) hm0 with h̃ 
m0 

i 

being the uplink channel vector between the m0 
th user (transmitting the signal intended 

for decoding) and all of the relay nodes. � 
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MSE(s̄m0,SSE) = E [(s̄m0,SSE − sm0 )
2] 

( 
= 
a) E [(s̄m0,SSE − s̄ m0,BLUE + s̄ m0,BLUE − sm0 )

2] 

( 
= 
b) E [(s̄m0,SSE − s̄ m0,BLUE)

2] + E [(s̄m0,BLUE − sm0 )
2] + E [(s̄m0,SSE − s̄ m0,BLUE)(s̄m0,BLUE 

( 
= 
c) E [(s̄m0,SSE − s̄ m0,BLUE)

2] + E [(s̄m0,BLUE − sm0 )
2] 

� �2 
(d) h̃H (Cw +IK )

−1(ŷ−y) 
= E 

h̃ 
m

H 
0 

(Cw+IK )
−1 ̃  + var(s̄m0,BLUE) 

m0 
hm0 

h̃H (Cw +IK )
−1E[(ŷ−y)(ŷ−y) ∗ ](Cw+IK )

−1h̃ 
m0m0 1 = 2 + 

h̃H (Cw+IK )
−1 ̃  

m0 m0(h̃H (Cw+IK )
−1h̃∗ ) m0 

hm0 

� � 
˜ 
m0 

hm0 = 
h̃H (Cw+IK )

−1h̃ 
m0 

+ 1 var(s̄m0,BLUE) 
m0 

(e) hH (Cw +IK )
−1Cq (Cw+IK )

−1 ̃  

= (α + 1) var(s̄m,BLUE). 
(4.24) 

Proof To prove the theorem, we first note that the difference between MSE of the 

BLUE with an infinite bandwidth downlink channel and of the BLUE with a finite 

bandwidth downlink (i.e., the downlink bandwidth is equal to B bits per channel use) 

is the scalar value α defined in (4.24). Thus, the optimization problem that yields 

the optimal bit allocation is 

h̃H (Cw +IK )
−1Cq (Cw+IK )

−1h̃ 
m0{Bk,opt}K = argmin m0 

k=1 h̃H (Cw+IK )
−1 ̃  

Bk ∈R m0 
hm0 

K (4.25)P 
subject to 2B

T 
k = Btotal. 

k=1 
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Note that we are assuming real continuous values for {Bk}Kk=1 to make the optimiza-

tion problem easy to solve. Followed by finding {Bk,opt}Kk=1, we take the ceil of each 
KP 2Bk,optvalue and add the left over bits (B − 

T ) randomly to any of the relay nodes. 
k=1 

Because only Cq depends on Bk, we can focus only on minimizing the denominator 

of α leading to modifying the optimization problem to be 

˜ ˜{Bk,opt}K = argmin hH C̃ −1CqC̃ −1hm0 ,k=1 m0 w w 
Bk∈R 

K (4.26)P 
subject to 2B

T 
k = Btotal 

k=1 

where C̃ 
w = Cw + IK . Using the fact that (Cw + IK ) is a diagonal matrix with σ2 

q,k 

in the kth diagonal position, the objective function can be more simplified as follows 

˜ −1 −1 ˜f(Bk) = hH (Cw + IK ) Cq (Cw + IK ) hm0� �PKm0

2Bk 
� 

−1 ˜ 
� 2 (4.27) 

= σ2 2− 
T (Cw + IK ) hm0 .q,k 

kk=1 

Therefore, we can write (4.26) 

{Bk,opt}Kk=1 = argmin f(Bk) 
Bk∈R 
K (4.28)P 

subject to 2B
T 

k = B. 
k=1 

We can use Lagrange multipliers to solve the optimization problem in (4.28) as it 

is a constrained optimization problem. First, the Lagrangian function is � � 
K � � 2P 2Bk 

TL(Bk, λ) = σ2 2− −1 ˜ 
q,k (Cw + IK ) hm0 

k=1 � 
K 

� k 
(4.29)P 2Bk+λ 

T − Btotal 
k=1 

Solving for the minimizer {Bk,opt}Kk=1, we obtain the partial derivatives !X∂L(Bk, λ) 
K 
2Bk 

= 0 = − Btotal (4.30)
∂λ T 

k=1 

leading to the constraint 
KX 2Bk 

= Btotal, (4.31)
T 

k=1 
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and �� 2 
∂L(Bk,λ) −1 ˜T= ln 1 σ2 2− 

2Bk 
(Cw + IK )∂Bk 4 q,k hm0 + λ 

k (4.32) 
= 0. 

leading to ⎛ ⎜⎝ 
⎞ ⎟⎠ 

�� 2 
σ2 (Cw + IK )

−1 ˜ ln 2 q,k hm0Bk 1 klog2 . (4.33)= 
T 2 λ 

Solving (4.31) and (4.33) together gives � 
(Cw 

� 
−1 h̃m0σ2 

q,k 
K 

+ log2 

X + IK )Btotal/2 1Bk,opt = � 
(Cw 

�k 
T | K{z } K −1 ˜ (4.34)hm0σ2 

q,i + IK )i=1 | {z i }Uniform Allocation 

Regulation Term 

which leads directly to (4.23). 

4.4 Beamformer Design 

In this section, we study how to use beamforming gain at the users to enhance the 

system performance. We have shown in the previous section that the optimal quanti-

zation rate allocation depends on the beamformer of all users. Therefore, beamformer 

design cannot be done separately from the allocation of quantization rates in the relay 

network. Hence, we study in this section two main approaches. The first approach 

is the possibility of achieving comparable performance using beamforming gain at 

the users only while having a fixed quantization rate allocation in the relay network. 

The advantage of this approach is maintaining low complexity at the relay network 

while leaving extensive computations to the users which are assumed to have access 

to more power than the relay network. However, we show in this section that we need 

co-ordination between the users to schedule their transmissions in order to be able 

to derive a closed form solution for the beamformers. In the second approach, we 

design both the beamformers and the quantization rate allocate jointly. This enables 

us to achieve a better throughput. Both approaches can be useful depending on the 
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system requirements and the limitations of the design. We discuss both approaches 

in the following subsections. 

4.4.1 Beamforming Design with Uniform Quantization Rate Allocation 

As mentioned earlier, in this approach, we assume that the quantization bits are 

preallocated among the relay nodes in the relay network and this allocation is fixed. 

Therefore, in this part, we assume that 

2Bk
Rk = 

T 

is known prior to designing the beamformers. Recalling the system model in (4.7) and 

the covariance of the combined error vector (AWGN plus interference plus quantiza-

tion error) in (4.8), we can write the MSE of the received vector (assuming MMSE 

combiner at the receiving user side) to be 

1 
MSE = (4.35)

1 + ρm0 f
H C−1HH 
m0 
Hm0 n m0 

fm0 

where Hm0 = [h1,m0 , h2,m0 , · · · , hK,m0 ] ∈ Cnt×K and Cn is as defined in (4.8). Hence, 

the beamformers fm for 1 ≤ m ≤ M that minimize the MSE of the received signal 

can be found using the following theorem. 

Theorem 3 In a quantized distributed relay networking system performing vector 

quantization at the relay network whose model in described in (4.7) and (4.8), the MSE 

of the received signal can be modeled as in (4.35). Hence, the optimal beamformer is 

fopt m0 
= argmin MSE 

kfm0 k≤1� � (4.36)PK 1 hH= v1 k=1 hk,m0 k,m0(1+2−2Rk ) 

where v1(A) is the dominant left singular vector of the matrix A and single-user-

scheduling algorithm is assumed such that only one user is active for transmission at 

each time slot. � 
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Proof Recalling (4.7, (4.8), and (4.35), the beamformers fm for 1 ≤ m ≤ M that 

minimize the MSE of the received signal can be found by solving an optimization 

problem as follows 

fopt m = argmin MSE 
kfmk≤1 

= argmax MSE−1 

kfmk≤1 
(4.37) 

= argmax 1 + ρm0 fm
H 

0 
Hm0 Cn 

−1HH
m0 
fm0 

kfmk≤1 

= argmax fm
H 

0 
Hm0 C

− 
n 
1HH

m0 
fm0 . 

kfmk≤1 

The optimization problem in (4.38) is not convex and cannot be solved to obtain 

the optimal beamformers. This can be easily seen by looking at the structure of 

the covariance matrix Cn in (4.8) which depends on both the interference covariance 

matrix and the quantization error covariance matrix while both of them depend on 

the beamformers that are to be found. Therefore, we assume a single-user-scheduling 

mechanism where users transmit their data in orthogonal non-overlapping time slots. 

In other words, at a certain time slot, only one user is active while all other users have 

zero beamformers (inactive). This requires co-ordination between users to synchro-

nize their transmissions accordingly. Even with the above mentioned user-scheduling 

algorithm, the optimization problem is still not straightforward. This is because the 

covariance matrix still depends on the designed beamformer (even though we removed 

the interference noise by the single-user-scheduling. The updated covariance matrix 

(when applying single-user-scheduling) is denoted by Σn and it is diagonal due to the 

interference cancellation that is performed using single-user-scheduling. 

In particular, based on the single-user-scheduling (assuming mth
0 user is the one 

scheduled for transmission), we can rewrite the optimization problem in (4.38) to be 

fopt m0 
Σ−1= argmax fH HH 

m0 
Hm0 n m0 

fm0 
kfm0 k≤1 

(4.38) 
= argmax γ(fm0 ) 

kfm0 k≤1 

where Σn is a diagonal matrix that can be written as � � �	 K 
Σn = Diag 1 + 2

−2Rk 1 + ρm0 f
H hk,m0 h

H fm0 . (4.39)m0 k,m0 k=1 
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Therefore, we can simplify the objective function in (4.38) to be 

KX fH hH 
m0 
hk,m0 k,m0 

fm0
γ(fm0 ) = (4.40)

fH (1 + 2−2Rk + ρm0 2
−2Rk hk,m0 h

H )fm0m0 k,m0k=1 

where we used the fact that at the optimal solution, we have 

fm
H 

0 
fm0 = 1 

to achieve maximum power transmission at the user side. Then, the optimization 

thproblem that is used to find the optimal precoder at the m0 user can be simplified 

to 
fH hH 

fopt 
PK m0 

hk,m0 k,m0 
fm0 

m0 
= argmax k=1 f H hH . (4.41)(1+2−2Rk (1+ρm0 hk,m0 ))fm0m0 k,m0kfm0 k=1 

The problem in (4.41) is a sum of Rayleigh Quotients. Although the problem of 

the sum of Rayleigh Quotients is solvable when the added terms are two (i.e., K = 2), 

there is no closed form solution for the case of more than two terms which is our case 

here. However, It is clear the scalar first twp terms in the denominator in (4.41) is 

bigger than the scalar coefficient of the channel matrix in the same denominator and 

the gap increases as the quantization rate Rk increases. Therefore, in the relatively 

low signal-to-noise ratio (SNR) regime, we can approximate the optimization problem 

in (4.41) to be 

f H hH 
m0 k,m0fopt 

PK hk,m0 fm0 = argmaxm0 k=1 (1+2−2Rk )f H fm0kfm0 k=1 m0" # PK (4.42)
f H 1 hH 
m0 k=1 hk,m0 k,m0 

fm0(1+2−2Rk )
= argmax .

fH 
m0 

fm0kfm0 k≤1 

The problem in (4.42) is the standard Rayleigh Quotient optimization problem and 

the solution for the optimal beamformer can be obtained using singular value decom-PK 1position (SVD) of the coefficient matrix ( hH ). Therefore, thek=1 (1+2−2Rk )
hk,m0 k,m0 

thoptimal beamformer minimizing the MSE of the received signal at the m0 user can 

be written as � �PKfopt 1 hH= v1 hk,m0 (4.43)m0 k=1 (1+2−2Rk ) k,m0 

where v1 {A} is the dominant left singular vector of the matrix A. 
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The result in (4.36) implies that the beamformer is aligned with a weighted average 

of the channel of each relay node. The weights are calculated such that the relay 

nodes that are assigned more quantization resources (i.e., larger quantization rate Rk) 

contribute more in the weighted average. Note that we assume that all relay nodes 

are active and are assigned non-zero quantization rate. If a relay node is inactive, 

then it should be excluded from the summation. This can be easily done in practice 

as the users should be able to calculate the quantization rate of each of the relay node 

as we already assume that the users are trained for the uplink channels to be able 

to derive the beamformer. The drawback of this simple approach is that users need 

to be syncronized to have only one user transmitting per time slot. This causes the 

system throughput to scale down linearly with the number of users. This also makes 

it unfeasible to alternate between optimizing quantization rates and beamformers to 

reach a jointly optimal point. This is due to the fact that the optimization of the 

quantization rates in (4.23) relies mainly on the interference of the transmission of 

other users. If there are no interferring users, then the algorithm will yield uniform 

quantization rate allocation among the relay nodes (i.e., equal number of bits for each 

of the relay nodes inside the relay network). 

4.4.2 Joint Design of Beamforming and Quantization Rate Allocation 

In this approach, we assume that the joint design of the beamformers and the 

quantization rate allocation occurs at the relay network. Then, the designed beam-

formers are sent though a feedback link to the users. Both operations (beamformers 

design and rate allocation) can also be done at the users but this requires a feedback 

channel to report the quantization rate allocation to the relay network. The main 

advantage of this approach is that we do not need the strict condition of single user 

scheduling required for the first approach. However, this comes at the cost of the 

increased complexity of the relay network as the joint optimization needs to occur 

at the relay network with the requirement of a feedback channel between the relay 
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network and the users which causes overhead for data transmission. To jointly find 

the optimal quantization rate allocation and the optimal users’ beamformers, we use 

an algorithm that is similar to the one proposed for C-RAN in [96, 97]. 

Before we start, we should note that the optimization of the quantization rate can 

be done by finding the optimal quantization error covariance matrix. Although the 

quantization error depends implicitly on the designed beamformer as shown in (4.9), 

keeping this relationship hidden inside the quantization error makes the formulation 

of the joint optimization problem feasible. After obtaining the joint optimal solution 

for both the quantization error covariance and the beamformers, we can find the 

optimal quantization rate for each relay node by exploiting the relationship between 

the optimal quantization error and the obtained optimal beamformers. 

Recall the system model in (4.1) where 

MX 
hH yk[`] = [`]sm[`] + vk[`]k,m[`]fm 

m=1 

and the the reconstructed signal in (4.5) where 

ŷk[`] = yk[`] + ek[`]. 

Similar to the virtual multiple access channels in [97], when the users utilize the 

MMSE combiner derived in Lemma 4 in (4.16), the transmission rate for each the 

mth user is given by 

Ratem ≤ log 1 + ρmfm
H HmC

− 
n 
1HH

mfm . (4.44) 

The quantization occuring at the relay network should also satisfy the downlink rate 

constraint such that the total number of bits that are broadcast from the relay net-

work at each time slot is upperbounded by Rtotal. Therefore, under the assumption of 

Gaussian transmissions from all users and Gaussian approximation for vector quanti-

zation at the relay network, we can write the mutual information between the observed 

signal at each relay node and its quantized version similar to [96] to be � � hH fH 
ˆ fm hk,m + 1 + σ2 

k,m m q,k 
I Yk, Yk = log . (4.45)

σ2 
q,k 
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Hence, we can model the rate constraint in the downlink to be 

XK hH fmf
H hk,m + 1 + σ2 

k,m m q,k 
log ≤ Rtotal. (4.46)

σ2 
q,k k=1 

After defining users’ transmission rates and quantization rates constraint, we can 

start formulating the problem as a sum-rate maximization problem where the opti-

mization parameters are the beamformers and the quantization error covariance. The 

sum-rate maximization problem is 

MP 
max log 1 + ρmfH HmC

−1HH fmm n m 
fm,σ2 

m=1q,k PK |hH
k,mfmfm

H hk,m+1+σ
2 | (4.47)such that k=1 log σ2 
q,k ≤ Rtotal, 

q,k 

kfmk ≤ 1, for 1 ≤ m ≤ M. 

Although, the sum-rate maximization problem in (4.47) is not convex due to the 

objective function being a non-convex function and the first constraint being non-

convex, it is similar to the weighted sum rate maximization problem in [96]. In 

Algorithm 1 in [96], the authors proposed a novel algorithm that finds a stationary 

point of their weighted sum rate maximization problem which can be directly applied 

to our problem due to the similarity between the two problems. Hence, we can find 

an optimal solution for the problem in (4.47) using the proposed algorithm in [96]. 

Although we can utilize an existing algorithm to transform the sum-rate maxi-

mization problem in (4.47) to be convex, the solution of the convex problem still needs 

to be numerically evaluated using any of the convex optimization solvers which takes 

more time than applying a closed form solutions. Therefore, to be able to apply the 

joint optimization approach, we need a quasi-static uplink channel for longer periods 

of time to be able to evaluate the optimal quantization rate allocation and the op-

timal beamformers and then transfer control information between the relay network 

and the users before starting data transmission. This assumption can be practical for 

systems where users have low mobility causing the coherence time of the channel to 

be relatively large. 
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4.5 Numerical Results 

In this section, we use Monte Carlo simulations to study the performance of the 

receivers derived in Section 4.2, the quantization rate allocation derived in Section 4.3, 

and the beamforming design methods discussed in Section 4.4. The uplink channels 

are modeled as spatially i.i.d. Rayleigh fading channels. Without loss of generality, 

as we assume normalization of the AWGN power, the transmit SNR at the mth user 

that is equal to ρm. 

To compare the derived receivers, the performance metric that is used for com-

parison is the symbol error rate (SER) defined as 

SER = E [Pr (ŝm,x 6= sm|, Bk, ρm, S, hk,m∀m, k)] 

for the receiver x. In Fig. 5.2, we plot the SER versus SNR in case of QPSK modu-

lation. We assume that there are ten users where one of them is the transmitter and 

the other nine are interfering users. We also assume that the number of quantization 

bits is the same for all the relay nodes and are equal to one bit for the real part 

and one bit for the imaginary part per channel use. In other words, B
T 
k = 1 for all 

k = 1, 2, · · · , K. We can see that the performance of both receivers gets better as 

we increase the number of nodes in the relay. At K = 20, the SSE receiver shows 

comparable performance to MMSE receiver at low SNR but the performance gets 

slightly worse by less than 1 dB as the SNR increases. The same observations can be 

made at K = 40. 

In order to understand the effect of the quantization rate allocation algorithm 

derived in Section 4.3, we show how the algorithm works in Fig. 4.3 and Fig. 4.4. In 

Fig. 4.3, we show the relative SINR for a single channel realization when the relay 

network has 30 relay nodes. Here, we define the relative SINR at the kth relay node, 

thwhen the intended transmission is from the m0 user, to be � � 
K σ2X q,k (Cw + IK )

−1 h̃ 
m0(m0) kSINR = log2 � � . (4.48)k −1 ˜σ2 

i=1 q,i (Cw + IK ) hm0 
i 
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Fig. 4.2. SER for QPSK with ten users and different receiver designs and 
different values of K with unit interference power from unintended users 

The corresponding number of quantization bits that are assigned to each relay node 

is shown in Fig. 4.4. We can see that the ninth relay node is assigned the largest 

number of quantization bits (8 bits/time slot) in Fig. 4.4 as it has the best relative 

SINR value compared to other relay nodes in Fig. 4.3. Some relay nodes that are in 

deep fading (such as the sixteenth and the twenty-ninth relay nodes) are completely 

turned off and not used. This means that we are optimizing the usage of spatial 

macrodiversity gained by the distributed structure of the relay network. 

In Fig. 5.4 and Fig. 5.5 we show the effect of the bit allocation algorithm on the 

ergodic capacity defined as 

� � � ��� 
C = Ehm0 

log2 1 + SNR hm 
∗ 

0 
Cn 
−1hm0 . (4.49) 

The quantization rate allocation algorithm shows significant enhancement in the 

achievable rate relative to uniformly assigning the same rate to each of the relay 

nodes. However, the achievable rate saturates at high SNR due to the quantization 
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Fig. 4.3. Relative SINR for one channel realization at each relay node. 
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Fig. 4.4. The number of quantization bits that are assigned to each relay 
node based on the algorithm in Theorem 1. 
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noise being an increasing function of SNR. We have different channel assumptions in 

Fig. 5.4 and Fig. 5.5. 

In Fig. 5.4, all the uplink channels between the transmitting user and all the relay 

nodes are modeled as i.i.d. CN (0, 1). At Knodes = 20, we see that there is around 

one bit/sec/Hz gap in the achievable when we optimally allocate the bits among the 

relay nodes. The gap decreases by slightly less than half a bit/sec/Hz at low SNR and 

saturates at approximately one bit/sec/Hz as SNR increases. As a general trend, we 

see more benefit to applying the quantization rate algorithm as the number of relay 

nodes increases. In particular, as we increase the number of relay nodes to 40, the 

gap in the achievable rate saturates at around two bits/sec/Hz. 

The derived bit allocation algorithm becomes even more beneficial when some of 

the uplink channels are extremely worse than the other. This is because the algorithm 

assigns more bits to the relay nodes that have stronger uplink channels. To show that, 

we assume that the gain of the uplink channels between the transmitting user and the 

first relay node is statistically ten times higher than the uplink channels between the 

transmitting user and the rest of the relay nodes other than the first one. It is clear 

that the gap in the achievable rates between the two cases (optimal quantization rate 

allocation case and uniform allocation case) is higher. The enhancement due to the 

optimal allocation gradually increases as SNR increases until it saturates at around 

four bits/sec/Hz when K = 20 while the enhancement saturation increases to almost 

five bits/sec/Hz when K = 40. 

In Fig. 4.7, we present simulations to show the benefit of applying beamforming 

at the transmitter side. In this figure, the achievable rate is simulated in two cases. 

The first case is when we use uniform transmit beamformer at the transmit user. The 

uniform beamformer is distributing the transmit power equally among the transmit 

antenna. In particular, the transmit beamformer the mth
0 user is given by 

1 
fm0 = √ 1nt . nt 

The second case applies the optimal beamformer derived in (4.36), In both cases we 

use the SUS described in Theorem 3. SUS linearly downscales the achievable rates 
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K = 40, Bit−Allocation
K = 40, Uniform−Allocation
K = 40, Unquantized
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K = 20, Unquantized

Fig. 4.5. Ergodic capacity performance for ten users with Rayleigh fading 
uplink channels. 

by the number of users. In other words, we divide the achievable rate in (4.49) by the 

number of users. The reason we do this is that only one user is allowed to transmit at a 

given time slot according to the SUS algorithm. We see that the optimal beamformer 

gives a slight gain (less than 0.5 bit/sec/Hz) in achievable rate compared to uniform 

beamforming. 

We conclude our numerical analysis by comparing the joint optimization of the 

quantization rate allocation and the transmit beamformer against other methods dis-

cussed earlier in this section. We show this comparison in Fig. 4.8. It is clear that the 

achievable rates in case of using beamformers with uniform quantization show around 

50% decrease due to SUS penalization compared to algorithms that do not require 

SUS. Joint optimization of both rate quantization and transmit beamformers show 

the highest achievable rate values. However, the gain in achievable rate of joint op-

timization of beamformers and quantization rate allocation with four-antenna users 

compared to only optimizing the quantization rate allocation with single-antenna 
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Fig. 4.6. Ergodic capacity performance for ten users with a strong uplink 
channel between the transmitting user and the first node. 

users is less than 0.5 bits/sec/Hz in low SNR regime and saturates to approximately 

1 bit/sec/Hz. In spite of the marginal gain in achievable rate, joint optimization of 

beamformers and quantization rate allocation adds significant complexity to the sys-

tem. The added complexity is two-fold. On the one hand, iterative optimization with 

numerical solution of each iteration is required to find the jointly optimal beamformer 

and quantization rate allocation. On the other hand, feedback is required between 

the users and the relay network. From the results in Fig. 4.8, optimization of quanti-

zation rate allocation alone as described in Theorem 2 is the best option if we consider 

a compromise between the achievable rate performance and system complexity. 
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Fig. 4.8. Ergodic capacity performance comparison for all derived methods 
assuming four users. 
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5. POWER ALLOCATION IN CELL-FREE MASSIVE 

MIMO WITH MULTI-ANTENNA ACCESS POINTS 

In this chapter1 , we present our work on Cell-free massive multiple-input multiple-

output (MIMO). Cell-free massive MIMO was recently proposed as an alternative to 

partitioning coverage area into cells. The main idea is to have many access points 

(APs) distributed over the coverage area to serve a smaller number of users. Users 

are served by all APs simultaneously by sharing time and frequency resources. In this 

chapter, we study the deployment of multi-antenna APs in cell-free massive MIMO 

systems. In particular, we study the advantages and disadvantages of using multi-

antenna APs with respect to the achievable rates, the backhauling traffic, and the 

infrastructure cost to give results on how disperse antennas should be among APs. 

5.1 System Model 

We consider a cell-free massive MIMO system where a certain geographical area is 

covered by M randomly distributed access points (AP). Each AP is equipped with L 

antennas. These APs serve K single antenna users that are randomly located in the 

same geographical area. The assumption here is that the number of APs is much larger 

than the number of users. This is different from cellular MIMO systems in two ways. 

First, the geographical area is not divided into cells, and there is no user assignment to 

a certain base station. Instead, all users are being served by all APs at the same time. 

Second, time and frequency resources are completely shared, which is also a major 

difference between cell-free systems and network MIMO systems [99, 100]. The APs 

are connected to a network controller that controls some of the system parameters, as 

will be discussed later, and forwards data traffic to the the APs. Channel estimates 

1 2017 IEEE. Reprinted, with permission, from [98]. 
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Fig. 5.1. Multi-antenna cell-free massive MIMO system. 

are also transmitted from the APs to the network controller. The traffic between the 

network controller and the APs is referred to as the backhauling traffic. The system 

diagram is shown in Fig. 5.1. 

Our work is meant to apply to an OFDM-based physical layer. However, we 

only consider one OFDM subcarrier. This is the reason we will not refer to the 

OFDM symbol in our analysis. The size of the coverage area is chosen to make the 

propagation time compatible with the OFDM cyclic prefix duration. The channel 

coefficient between the `th antenna of the mth AP and the kth user is p 
gm`k = βmkhm`k (5.1) 

where βmk is the large-scale fading coefficient that includes path loss and shadowing 

effects and hm`k is the small-scale fading coefficient which is modeled as independent 
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and identically distributed (i.i.d.) CN (0, 1) across space. The large-scale fading 

coefficient does not depend on ` as it is the same for all L co-located antennas at the 

same AP. We assume that the values of βmk for all m, k are known at the network 

controller because they change slowly relative to the small-scale fading coefficients 

and remain constant for multiple transmissions. The channel matrix between all 

users and all APs can be written as G ∈ CML×K where gm`k is the element in the 

(Lm − L + `)th row and the kth column of G. The uplink and downlink channel 

coefficients are assumed to be the same due to channel reciprocity. 

As we assume that each user is being served by all APs at the same time, there 

is interference for each user reception. Hence, transmission adjustments (precoding) 

need to be done before data is transmitted. Therefore, the channel needs to be esti-

mated prior to data transmission. We assume time division duplexing (TDD) which 

means that pilots are used for channel estimation every time the large-scale fading 

coefficients change. We assume that all users simultaneously transmit a sequence 

of pilot signals for a training duration time τ . The pilot sequence is denoted by 

ψ1, ψ2, · · · , ψK where ψi ∈ Cτ ×1 for 1 ≤ i ≤ K. These pilots are received at all the 

APs. The channel between each of the users and each of the L antennas of the M 

APs are estimated based on the received signal from the pilots transmission. 

We assume low mobility speeds for the users in the system. Therefore, the set of 

the pilot sequences is assumed to be an orthonormal set, i.e., ψH
i ψj = δij . We also 

neglect the pilot contamination effect because the main focus of this work is to show 

the correlation between the performance and the cost of the cell-free massive MIMO 

system from one side and the antenna distribution among APs from the other side. 

This is to answer the question of how to optimally allocate antennas between these 

APs (e.g., maximum dispersion by installing one antenna per each AP or co-located 

in a more dense way). 
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Following the transmission of pilots from all users, the received signal at the `th 

antenna of the mth AP is 
KX√ 

ym` = ρrτ gm`iψi + wm` (5.2) 
i=1 

where ρr is the uplink signal-to-noise ratio SNR, τ is the length of each pilot sequence, 

and wm` ∼ CN (0τ , Iτ ) is additive white Gaussian noise (AWGN) at the `th antenna 

of the mth AP. Using the received signal, each AP evaluates the minimum mean 

squared error (MMSE) channel estimates for the channels between each of the users 

and each of the antennas of the AP and then forwards these estimates to the network 

controller. The MMSE channel estimate of gm`k is 

ĝm`k = cmky̌m`k (5.3) 

√ 
ρr τβmk ψHwhere cmk = and y̌m`k = k ym`. Note that the scalar factor cmk does not1+ρr τβmk 

depend on the antenna index ` as it depends only on the large-scale fading coeffi-

cients which are equal across co-located antennas at the same AP. From [56], we can 

find the distribution of both the channel estimate and the channel estimation error 

(g̃m`k = gm`k − ĝm`k) which are shown in [101] to be uncorrelated. Therefore, it is 

straightforward to write these distributions as 

gm`k ∼ CN (0, βmk) 

ĝm`k ∼ ρrτβ2 
mkCN (0, )

1+ρrτβmk 
. (5.4) 

g̃m`k ∼ ρr τβ2 
mkCN (0, βmk − )

1+ρrτβmk 

5.2 Precoder Design 

In this section, we discuss both conjugate beamforming (CB) and zero-forcing 

(ZF) precoding in cell-free massive MIMO systems with multi-antenna AP. We de-

rive the power allocation (PA) coefficients that optimize the max-min optimization 

problem for the signal-to-interference-and-noise ratio (SINR) among users. As men-

tioned earlier, each AP gets estimates of the channels between each antenna in the 

AP and each of the users along with estimating the large-scale coefficients between 
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the AP and each of the users as well. In the case of CB, only the large-scale fading 

coefficients are trasnmitted through the backhaul to the network controller. However, 

small-scale fading coefficients are needed in the case of the ZF precoding as will be 

discussed later. Both data traffic and power allocation coefficients are originated at 

the network controller and forwarded to the APs through the backhaul network. 

5.2.1 Conjugate Beamforming 

With CB, the signal transmitted from the mth AP is 

KX√ √ 
xm = ρf ηmiĝ

∗ (5.5)mksi 
i=1 

∈ CL×1where xm , ρf is the downlink SNR from each AP, ηmi is the power allocation 

coefficient for the mth AP that is allocated to the ith user, ĝmi = [ĝm1i, ĝm2i, · · · , ĝmLi]T 

is the estimate of the channel between the ith user and the mth AP, and si is the data 

signal intended to the ith user where E [|si|2] = 1. Note that the power allocation 

coefficient does not depend on the antenna index as will be explained later in Lemma 

1. The received signal at the kth user is 

MX 
yk = g T + wk (5.6)mkxm 

m=1 

where gmk = [gm1k, gm2k, · · · , gmLk]T and wk ∼ CN (0, 1) is the AWGN at the kth 

user. To minimize overhead, the assumption is that the users only know the channel 

statistics (i.e., E [|ĝm`k|2] for all m and ` as defined in (5.4)). 

Similar to [56], (5.6) can be represented in the form 

M 

yk = 
P √

ρf ηmkE [kĝmkk2] sk 
m=1 P P 
+ 

M K √ 
ρf ηmiĝ

T ĝ∗ 
mk misi 

m=1 i=6 k 
M 

(5.7)P √ 
+ ρf ηmk (kĝmkk2 − E [kĝmkk2]) sk 

m=1 
M K pP P 

+ ρf ηmig̃
T ĝ∗ 
mk misi + wk, 

m=1 i=1 
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where g̃mk = gmk − ĝmk. The first term is the intended signal part scaled by the 

channel statistics which the user knows, the second term is the interference caused by 

data transmission to other users, the third term is the error due to the knowledge of 

the channel statistics only at the users, and the fourth term is the channel estimation 

error. 

Lemma 5 The downlink achievable rate at the kth user is log2 (1 + SINRk), where 

SINRk is the signal-to-interference-and-noise ratio at the kth user which is given by � �2MP √ ρr τβ2 
mkL2ρf ηmk 1+ρr τβmk 

SINRk = m=1 (5.8)P PK M 
ρr τβ2 

1 + Lρf ηmiβmk 
mi 

1+ρr τβmi 
i=1 m=1 

Note that the SINR at the kth user only depends on the large-scale fading coeffi-

cients. Therefore, the power allocation will only depend on the index of the AP, not 

the index of each antenna within the same AP as mentioned earlier. The required 

backhauling traffic, besides the data to be broadcast, consists of the large-scale fading 

coefficients that are transferred from each AP to the network controller which in turn 

runs the power allocation algorithm to determine the values of ηmk for all m and k 

and then forward them to the corresponding APs through the backhaul network one 

more time. 

To determine the optimal power allocation coefficients, we consider maximizing 

the minimum SINR in (5.8) among all users which in turn maximizes the minimum 

achievable rate subject to average transmit power constraint. The transmit power 

constraint limits the average power transmission for each AP to be less than or equal 

ρf . Using the definition of the transmitted vector from the mth AP in (5.5), the 

power constraint is 

K� � X τβ2ρr miE kxmk2 = Lρf ηmi ≤ ρf , 1 ≤ m ≤ M. (5.9)
1 + ρrτβmii=1 
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Hence, the max-min power allocation problem can be stated, by defining the set 

H = {ηmk : 1 ≤ m ≤ M, 1 ≤ k ≤ K} to be 
!2 

MP ρr τ β2 
mkL2ρf ηmk 1+ρr τ βmk 

max min SINRk(H) = K

m=1 

MP P ρr τ β2H k mi1+Lρf ηmiβmk 1+ρrτ βmi (5.10)
i=1 m=1 PK ρr τβ2 

s.t. L ηmi mi ≤ 1, 1 ≤ m ≤ M. 
1+ρr τβmi 

i=1 

Similar to [102], the optimization problem in (5.10) can be shown to be a quasi-

convex optimization problem. Hence, it can be solved using the bisection method [74]. 

Although solvable, the complexity of the bisection method is high. This motivates 

deriving less complex suboptimal algorithms that have comparable performance to 

the optimal one. A suboptimal solution, that is more computationally efficient, is to 

fix the power transmission of each AP to full power transmission. This changes the 

max-min problem in (5.10) to 

!2 
MP ρrτ β2 

mkL2ρf ηmk 1+ρr τ βmk 

max min SINRk(H) = m=1 

MPH k 1+ρf βmk Pm (5.11)
m=1 PK ρr τβ2 

s.t. L ηmi mi = Pm, 1 ≤ m ≤ M. 
1+ρr τβmi 

i=1 

where 0 < Pm ≤ 1 is the total power transmitted by the mth AP. The max-min 

problem in (5.11) is more computationally efficient because it is convex instead of 

quasiconvex. This can be adjusted to a full power transmission when Pm = 1 for 

1 ≤ m ≤ M . An approach similar to the heuristic approach in [102] can be taken to 

adjust Pm for the mth AP by using a training set of randomly generated large-scale 

fading coefficients to interpolate a value for Pm that is close to the optimal one. 

A more simple method for power allocation is to use uniform power allocation 

where the power allocation coefficients can be found using trivial calculations. In 

other words, we assume that each AP is transmitting with its full power while the 

power allocation coefficients are the same for all users and change only among APs. 
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Moreover, we continue to assume equal power allocation among co-located antennas 

at each AP. This leads to 
1 

ηmk = . (5.12)PK ρr τβ2 

L mi 
1+ρrτβmi 

i=1 

Comparison between the optimal power allocation algorithm and suboptimal algo-

rithms is shown in the simulations. 

5.2.2 Zero-Forcing 

The advantage of CB in cell-free systems is that the power allocation only depends 

on the large-scale fading coefficients which change slowly relative to the small-scale 

fading coefficients. This corresponds to lower backhauling traffic. However, if we 

increase the backhaling traffic and provide the estimate of the small-scale fading 

coefficients from each AP to the network controller, higher donwnlink rates can be 

achieved by using ZF precoding. This is a compromise between achievable downlink 

rates and the overhead of the backhauling traffic. In ZF, the precoder design aims to 

cancel the interference between users. 

We derive a global ZF precoder which is very similar to the ZF precoder design 

in [102]. In global ZF, the preocoder design needs the pseudo-inverse of the combined 

channel matrix of dimension ML × K. Although suboptimal, a simple ZF precoder 

is the pseudo-inverse of the channel matrix G [103]. Hence, we have � �� �−1 
Ĝ ∗ Ĝ T Ĝ ∗ FZF = ◦ P (5.13) 

where P ∈ RML×K is the power allocation matrix that is distributed uniformly among p
co-located antennas at the same AP, i.e., ηmk is the element in the (Lm − L + `) th 

L 

row and the kth column of P for 1 ≤ ` ≤ L. To guarantee interference cancellation 

with ZF precoding, the power allocation coefficients have to be the same for different 

APs and change only from one user to another. In particular, we have η1k = · · · ηMk = 

ηk for all 1 ≤ k ≤ K leading to � �−1 
Ĝ ∗ Ĝ T Ĝ ∗ FZF = P (5.14) 
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where P ∈ RK×K is a diagonal matrix having ηk in the kth diagonal entry. 

Therefore, the signal received at the kth user is 

√ Tyk = ρf gk FZFs + wk � �−1√ T Ĝ ∗ Ĝ T Ĝ ∗ = ρf (ĝk + g̃k) Ps + wk� �−1 
(5.15)√ √ T Ĝ ∗ Ĝ T Ĝ ∗ = + ρf g̃ Ps +ρf ηksk k wk| {z } |{z}| {z } 

AWGN desired signal channel estimation error 

where gk = [g11k, · · · , g1Lk, · · · , gM1k, · · · , gMLk]
T , ĝk = [ĝ11k, · · · , ĝ1Lk, · · · , ĝM1k, · · · , ĝMLk]

T , 

g̃k = gk − ĝk, and s = [s1, · · · , sK ]
T . Although the system setup is different, the 

received signal in (5.15) has the same structure as the received signal in case of 

single-antenna APs in [102]. Therefore, SINR can be found in a similar way to be 

ρf ηk
SINRk = (5.16)

KP 
1 + ρf ηiγki 

i=1 

where γki is the ith element of the vector composed of the diagonal elements of the 

matrix �� ��−1 � � 
∗ T 
� �−1 

E Ĝ T Ĝ ∗ Ĝ T E g̃kg̃k Ĝ
 ∗ Ĝ T Ĝ ∗ 

� �� � ρτ τβ2 
H T mkand E g̃ g̃ is a ML×ML diagonal matrix with βmk − IL being its mthk k 1+ρτ τβmk 

diagonal block. A max-min optimization problem similar to [102] can be constructed 

to optimally allocate the power among users as 

ρf ηk max min SINRk(H) = KPH k 1+ρf ηiγki P i=1 (5.17)
K 

s.t. ηiδm`i ≤ 
L 
1 , 1 ≤ m ≤ M, 1 ≤ ` ≤ L 

i=1 

where � �� �−1 � �−1 
�� 

Ĝ T Ĝ ∗ Ĝ T Ĝ ∗ δm`i = E Gm` , 
ii 

T ∗Gm` = ĝ[m`]ĝ[m`], 

ĝ[m`] is the ((m − 1) L + `)th row of the matrix Ĝ, and [A]ii is the element in the ith 

diagonal element of the square matrix A. The effect of having multiple antennas in 
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each AP is shown in the simulations results in section 5.3. A uniform power allocation 

can be used as well to give the power allocation coefficients as 

1 
η1 = · · · = ηK = . (5.18)

KP 
max L δm`i 
m i=1 

5.3 Numerical Results 

We consider M APs and K users that are placed randomly in a square urban 

area of 2 × 2 km2 that is wrapped around to avoid boundary effects. We assume the 

COSTA Hata model for the large-scale fading 

10 log10 (βmk) = −136 − 35 log10 (dmk) + Xmk 

where dmk is the distance between the mth user and the kth user in kilometers and 

Xmk ∼ N (0, σ1
2) with σ1

2 = 8 dB. We also assume a bandwidth of 20 MHz and 

a maximum transmitted power ρr = ρf = 200 mW while the length of the pilot 

sequence τ = K. 

In Fig. 5.2, we compare the 5% outage rates of cell-free using CB when having 16 

users in the coverage area. It is clear that having more antennas achieves higher rates 

even if we are using the same number of APs. In particular, if we have 128 APs each 

equipped with a single antenna, then the 5% outage rate is smaller than the rate in 

case of having 128 APS with eight antennas. Also, we can achieve higher rates if we 

have 32 APs with 8 antennas each (total 8 × 32 = 256 antennas) more than using 128 

APs with single antenna. However, if we have the same number of antennas available, 

we can see that the optimal distribution (optimizing the achievable rate) is when we 

use APs equipped with a single antenna. For example, if we have 128 antennas (i.e., 

ML = 128), the 5% outage rate, in the case when M = 128 and L = 1, is about 50% 

higher than the case when M = 16 and L = 8. 

One drawback of having a larger number of APs is that we will have more back-

hauling traffic and more infrastructure requirements as all APs need to be connected 

to the central network controller. This is a trade-off between the achievable rates in 
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Fig. 5.2. CDFs of the achievable rates per-user for cell-free schemes un-
der different power allocation methods and different number of APs and 
antennas per AP assuming 16 users in the coverage area and CB at the 
APs. 

the downlink and the cost (as will be defined later) that we can optimize based on 

a given cost model. We can also see that uniform power allocation, although less 

complex, offers almost half the rates provided by the max-min power allocation. Ob-

servations similar to the case of CB can be made in the case of ZF beamforming with 

cell-free systems. This can be seen in Fig. 5.3 

To show the correlation between the cost of the system and the distribution of 

APs, we have developed a linear cost model. The linear cost model is 

C = M(1 + pL) 

where C is the total cost of the system and p is the cost of installing one antenna at 

one AP. The linear cost model assumes a normalized cost of installing M APs that 

is equal to M where adding one antenna at each AP increases the cost by pM . In 

Fig. 5.4, we started by a reference point which is having 64 single-antenna APs (i.e., 
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der different power allocation methods and different number of APs and 
antennas per AP assuming 16 users in the coverage area and ZF at the 
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M = 64 and L = 1). We started decreasing the number of APs and compensate that 

by adding more antennas per each AP to give the same achievable rate performance 

based on CB with max-min power allocation. As expected, the less APs available, 

the more antennas needed at each AP. In particular, based on the points obtained in 

Fig. 5.4, we plotted the total costs of each system versus p in Fig. 5.5. As we see 

in Fig. 5.5, for p < 0.1, the least cost would be for installing the minimum number 

of APs (i.e., M = 16 and L = 9). For p > 0.1, the minimum cost would be to a less 

dense choice where we have 20 APs and each of them is equipped with five antennas. 

We notice that it is never optimal from the cost point of view to install single-antenna 

APS. This is expected because of the higher cost of installing more APs than the cost 

of just adding more antennas to each AP. More complicated cost models other than 

our simplified linear cost model can be used. 
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6. CONCLUSION 

We studied the achievable rate expressions of a GSMM wireless system where the 

input symbol vector entering the precoder is assumed to have i.i.d. Gaussian en-

tries. The distribution of the transmitted vector over the channel was shown to 

follow a GMM distribution. We proposed an approximate, though computationally 

exhausting, expression for the achievable rate of SM utilizing a precoding framework. 

We overcame the exhausting computations by introducing a tight upper bound and a 

lower bound for the achievable rate that is very general and can be adjusted to accom-

modate different SM scenarios (SM, GSM, SSK, GSSK, and the proposed GSMM). 

Simulations demonstrated the effect of the dimensions of the system (number of trans-

mit and receive antennas) on the obtained achievable rate results. We also compared 

our expressions with other prominent results published earlier. Tightness of the ob-

tained upper and lower bounds and characterization of the factors that may make 

them loosen were also discussed. 

For distributed relay networking, we utilized distributed reception and spatial 

multiplexing to define a multi-way relay network facilitating communication between 

multiple unconnected users. For this network, we derived a conditional likelihood 

function that led to the derivation of the ML detector that can be employed by 

network users to recover information. We also presented sub-optimal detectors to 

overcome the computational inefficiency of the ML detector. Through the simulation 

results, we verified the limitations of the derived detectors and showed how the system 

assumptions derive selection of the detector. We also proposed different solutions for 

channel estimation in the multi-way quantized distributed relay networks that can 

used for decoding purposes. We derived the ML channel estimator which requires 

the optimization of a non-convex objective function. We approximated the objective 

function of the ML estimator to present a convex optimization problem that led to a 
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nearML estimator. The obtained nearML receiver can be solved using efficient convex 

programming methods. To further simplify the optimization problem, we introduced 

the ST channel estimator that runs the nearML algorithm using a block diagonal 

training sequence making it possible to separately estimate the uplink channels be-

tween each of the users and the nodes of the relay. We also proposed a linear ZF 

estimator that is more computationally efficient than the nearML estimators but suf-

fers from an error floor at high SNR. The EM algorithm was applied to find a channel 

estimator that is more computationally efficient than the ML estimator. 

Different from this, we proposed a quantized distributed relay networking that uses 

vector quantization at the relay network. The relay network uses vector quantization 

and quantization resources allocation to enhance system performance. We derived 

two receivers that can deployed at the receiver side to retrieve the transmit signal 

from the quantized observations output from the relay network. We proposed a 

quantization rate allocation alogrithm that distribute the quantization rates among 

the relay nodes based on their channel quality and the amount of interference each 

relay node sees. We also derived a transmit beamformer that minimizes the received 

MSE under the condition of single user transmission at each time slot and fixed 

quantization rate allocation in the relay network. Finally, we proposed a framework 

to jointly optimize the quantization rate allocation and the transmit beamformer. We 

have shown through numerical simulations that quantization rate allocation is the 

optimal trade-off considering both the achievable rates and the system complexity, 

Finally, we analyzed cell-free systems when the available APs are equipped with 

more than one antenna. Modified versions of both the CB and the ZF precoders 

corresponding to mutli-antenna APs were derived. The precoders were designed to 

optimize the 5% outage rate by solving a max-min optimization problem. We con-

cluded the finding by introducing a linear cost model to show the trade-off between 

the achievable rates and the cost representing the amount of backhauling traffic and 

the infrastructure requirements. 
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